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Motivation Electriϐication of heat and transport along with signiϐicant increases in distributed energy resources pose challenges for distribution network operators  ȋDNOsȌ as they evolve into distribution system operators ȋDSOsȌǤ )ssues may include capacity constraintsǡ voltage excursionsǡ lower supply security and reduced power qualityǤ A method of addressing these matters whilst unlocking capacity is therefore requiredǤ 
 

Medium Voltage DC (MVDC)? MVDC networks ȋoperating in the range of ͷ-ͷͲ kVȌ represent a candidate technology to release capacity of existing assets without increasing system fault levelǤ   MVDC faces similar challenges to (VDC in the sense that semiconductor devices must withstand voltages that are not readily handled by single devicesǤ (oweverǡ a simple down scaling of (VDC is unlikely to yield the optimal solution as priorities for costǡ volumeǡ reliably and functionality are differentǤ  MVDC converters for grid applications reside between MV machine drives ȋused within wind turbinesǡ tractionǡ mining etcǤ generally between ʹ-ͳͶ kV ratingȌ and (VDC operating at hundreds of kVǤ Although the power ratings of MV machine drives ȋtypically ͳ-ͺͲ MVAȌ are similar to that which an MVDC network solution will takeǡ the voltage capability of such converters needs to be increased to reduce resistive lossesǤ  )ncreasing power densities of power electronics and their reducing cost through market volume makes the prospect of reinforcing the conventional ac grid with dc elements more appealingǤ 
Power Flow Studies This poster considers the case for the selective interconnection of grid supply points ȋGSPȌ and primary substations via fully controllable power electronic linksǤ An existing ͵͵ kV distribution network ȋFigǤ ʹǤȌ is usedǤ Power ϐlows for a conventional network will be benchmarked before assessing the potential capacity release created by delivering energy from multiple substations via controllable interconnectionǤ  Substation loading is presented in Table ͳǤ 
 

 

Results  Table ʹ shows line loading resultsǤ Red highlights line overloadsǤ Yellow highlights lines loaded to εͻͲΨ of thermal ratingǤ For maximum demandǡ the MVDC link removes the immediate thermal overload but creates a new one elsewhere for minimum demandǤ A SNOP solves this problem even with a ͵Ͷ MVA increase in generationǤ Line capacities were not altered when repurposing ac conductors to dcǤ 

Conclusion & Future Work Power ϐlow analysis has highlighted that assets are stressed in places yet underutilised elsewhereǡ suggesting that rebalancing and rerouting or power is requiredǤ  )t has been shown that dc technologies can be effective in alleviating problems Ȃ in this caseǡ conversion of one line to dc and use of a SNOP has the potential to reduce congestion and to make better use of existing line assetsǤ  The analysis has focussed on keeping within thermal limits and in that context results are encouragingǤ  Power quality and security factors have not yet been addressed and neither have the relative costs compared to conventional ac reinforcementǤ An important consideration is the availability and maturity of the relevant dc technologiesǤ Practical implementation considerations ȋincluding protectionǡ control  and operational aspectsȌ will be considered in the subsequent monthsǤ 

FŝŐ͘ ϰ͘ SŽŌ NŽƌŵĂůůǇ OƉĞŶ 
PŽŝŶƚ ;SNOPͿ ĐŽŶŶĞĐƚĞĚ 
ĂĐƌŽƐƐ ďƵƐ-ĐŽƵƉůĞƌ͘  

FŝŐ͘ ϯ͘ EŵďĞĚĚĞĚ MVDC ŶĞƚͲ
ǁŽƌŬ ůŝŶŬ ŽƉĞƌĂƟŶŐ Ăƚ ц Ϯϳ 
ŬV ;ƌĞƉƵƌƉŽƐŝŶŐ ŽĨ LŝŶĞ ϱͿ͘ 

FŝŐ ϭ͘ EǆĂŵƉůĞ ŽĨ Ă ϰ ŬV MV ŵĂĐŚŝŶĞ 
ĚƌŝǀĞ ŽĨ ϳ MW͘ 
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1 20.86 8.01 42 37 24 20 38 22 54 45

2 38.81 8.48 60 60 92 139 92 92 65 92

3 41.2 0.01 26 27 53 98 53 54 30 54

4 38.81 6.29 70 83 35 55 17 29 118 96

5 29.43 13.68 132 143 84 99 84 84 138 84

6 20.86 0.025 76 92 23 42 23 22 83 22

7 20.86 6.25 59 47 55 36 90 66 66 33

8 24.63 12.56 8 2 8 2 64 44 2 41

9 20.86 0.21 40 59 40 59 88 98 124 81
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͚DCн͛ с SNOP Θ MVDC ůŝŶĞ ϱ 

͚BĂƐĞ͛ с NĞƚǁŽƌŬ ͚ĂƐ ŝƐ͛ 
͚GĞŶ ј͛ с IŶĐƌĞĂƐĞ ŝŶ DG ŽĨ ϭϵ MVA Λ A ĂŶĚ ϭϱ MVA Λ B 
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GSP1 60 43.49 10.87

GSP2 120 33.47 8.37ᬅ 10 4.08 1.02 1ᬆ 2 12.6 3.15 0.7ᬇ 5 2.32 0.88 1ᬈ 24 9.55 2.39 0.9ᬉ* 13ᬊ 5 2.78 2.39 0.8ᬋ* 33ᬌ 10 4.74 1.19 1ᬍ* 21.6ᬎ 10 6.7 1.67 1ᬏ 10 5.7 1.44 1ᬐ 10 1.9 0.47 1ᬑ 24 5.86 1.46 1ᬒ* 14.3ᬓ 40 4.54 1.14 1ᬔ 21 13.35 3.34 1ᬕ 24 15.14 3.79 1
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TĂďůĞ ϭ͘ SƵďƐƚĂƟŽŶ ĂŶĚ GSP ŵĂǆͲ
ŝŵƵŵ ĂŶĚ ŵŝŶŝŵƵŵ ůŽĂĚŝŶŐƐ͘ 
΀Ύ IŶĚŝĐĂƚĞƐ ŐĞŶĞƌĂƟŽŶ ŶŽĚĞ΁ 


