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Knowing, and controlling, the spatial polarization distribution of a beam is of importance in applications such
as optical tweezing, imaging, material processing and communications. Here we show how the polarization
distribution is affected by both linear and nonlinear (self-focussing) propagation. We derive an analytical ex-
pression for the polarization rotation of fully-structured light (FSL) beams during linear propagation and show
that the observed rotation is due entirely to the difference in Gouy phase between the two eigenmodes comprising
the FSL beams, in excellent agreement with numerical simulations. We also explore the effect of cross-phase
modulation due to self-focusing (Kerr) nonlinearity and show that polarization rotation can be controlled by
changing the eigenmodes of the superposition, and physical parameters such as the beam size, the amount of
Kerr nonlinearity and the input power. Finally, we show that by biasing cylindrical vector (CV) beams to have
elliptical polarization, we can vary the polarization state from radial through spiral to azimuthal using nonlinear
propagation.

INTRODUCTION

Vector, or fully structured light (FSL), beams [1–3] have
attracted increasing attention for a number of applications.
These beams consist of a vector superposition of two scalar or-
bital angular momentum (OAM) carrying Laguerre-Gaussian
(LG) eigenmodes with orthogonal polarizations. The resul-
tant beam has non-uniform spatial intensity, phase and po-
larization distributions. The ability to control both the spa-
tial intensity and the polarization distribution of the optical
field is of use in material processing [4]), in STED and con-
focal microscopy [5–8], in optical trapping and manipulation
[9, 10], in atomic state preparation, manipulation, and detec-
tion [9, 11, 12], in optical communications [13, 14] and even
classical entanglement [15–17]. Additionally, novel focussing
properties associated with particular polarization distributions
can lead to tighter focussing [18] and strong axial field compo-
nents that are of use in microscopy [5, 6], optical trapping [9],
and as a mechanism for linear accelerators [19]. It is therefore
important to understand how the spatial intensity and polariza-
tion distributions can be affected – and potentially controlled
– by linear and nonlinear beam propagation.

It has been shown previously that the polarization distribu-
tion of a lower-order Poincaré beam of `L = 0, `R = 1 and net
OAM = 1, undergoes a rigid rotation of π/2 as it propagates
linearly from the waist plane to the far field zone [2]. Here
we derive an analytical expression for the polarization rota-
tion of any FSL beam during linear propagation. We show
that the observed rotation is due entirely to the difference in
the Gouy phase between the two eigenmodes comprising the
FSL beams and explain apparent inconsistencies in the rota-
tion of different polarization distributions. Our results are in
excellent agreement with numerical simulations.

For many applications it is useful to retain a desired in-
tensity and/or polarization distribution, for example for mod-
ern optical technologies and high-power laser systems [20].
Beams carrying OAM are of particular interest due to their
potential to carry an increased information content [13]. Al-
though the effect of beam spreading due to diffraction during
linear propagation can be mitigated, and in some cases exactly

balanced, by using a self-focusing (Kerr) nonlinear medium,
OAM beams are known to fragment into multiple (twice the
OAM) soliton peaks during nonlinear propagation [21, 22].
It has been shown that this fragmentation can be inhibited,
without altering the nonlinear confinement, by using vector
beams instead of scalar beams [14, 23–25]. Indeed, it has
been shown that cylindrical vector (CV) beams can propagate
in a saturating Kerr nonlinear medium with no change to their
spatial profile or their axially symmetric polarization distri-
bution for much longer distances than the equivalent scalar
beams [14]. Similar spatial confinement can be seen for FSL
beams, though in this case the nonlinear propagation will af-
fect the rotation of the polarization structure.

Here we investigate how nonlinear propagation affects the
polarization distribution. We show how the magnitude and
direction of the polarization rotation is affected by the spa-
tial overlap between the two eigenmodes, and how it can be
controlled by modifying the effective nonlinearity via physi-
cal parameters such as the input power, the temperature of the
sample, and the size of the FSL beam waist.

In addition to self-focusing, a Kerr medium also induces a
cross-phase modulation between the two eigenmodes of the
vector beam. We show that as the coupling tries to maximise
the spatial overlap, the rotation of the polarization structure
is no longer rigid. Note that although we do not propagate
our beams to the point of fragmentation, one effect of this
homogenisation is that the beams will fragment into equal-
sized solitons.

Finally, we show that the nonlinearity not only changes the
amount of polarization rotation for beams with a net OAM, but
that it can also induce a rotation in beams with zero net OAM
if there is an amplitude difference between the two modes. By
biasing cylindrical vector (CV) beams such that they have el-
liptical polarization, we can vary the polarization distribution
from radial through spiral to azimuthal during nonlinear prop-
agation.
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FULLY-STRUCTURED LIGHT BEAMS

Fully-Structured Light (FSL) beams, or Poincaré beams,
are are constructed from a vector superposition of two scalar
orbital angular momentum (OAM) carrying spatial transverse
eigenmodes with orthogonal polarizations:

~E(r, φ, z) = EL(ρ, φ, z)~el + ER(ρ, φ, z)~er, (1)
with

EL = cos(γ)LGL; ER = eiβ sin(γ)LGR, (2)

where γ and β give the relative amplitudes and phase, re-
spectively, of the two modes. Throughout this paper we
have adopted the circular polarization basis and we assume
that each of the spatial modes takes the form of a Laguerre-
Gaussian beam with radial index p = 0 [26]:
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where ` is the orbital angular momentum (OAM) index of the
mode, φ is the azimuthal angle, zR = k0w2

0/2 is the Rayleigh
range for a beam with waist w0 and free-space wavenumber

k0, w(z) = w0

√
1 + z2/z2

R describes the linear diffraction of

the beam and (|`| + 1)η(z), with η(z) = tan−1(z/zR), is the
Gouy phase [27]. If either EL or ER is zero, then the resul-
tant beam is a scalar LG mode with spatially uniform right-
or left-handed circular polarisation, respectively. If the two
modes have equal amplitude and the same OAM, the resultant
beam will have spatially uniform linear polarisation. If they
have equal amplitude and equal but opposite OAM, however,
the resultant cylindrical vector (CV) beam [1, 3] can have spa-
tially varying linear polarization distributions that are radial,
azimuthal or spiral, depending on the phase difference β. The
polarization of the beam will be axially symmetric about the
beam’s propagation axis and span the equator of the Poincaré
sphere. If the two modes have different magnitudes of OAM,
such that the resultant FSL beam carries a net OAM, the polar-
ization will vary in both the angular and radial coordinates and
covers all polarization states on the Poincaré sphere [2]. Note
that we are working in the paraxial regime throughout, which
is an excellent approximation as we are considering beam
sizes that are larger than the wavelength, and that our anal-
ysis is based on vector superpositions of Laguerre-Gaussian
modes, which are solutions of the paraxial wave equation in
cylindrical coordinates [26]. Extension to the non-paraxial
regime is non-trivial as in this case the beam polarization is
a local property and changes on propagation [28]. Moreover,
during propagation, a non-paraxial vortex mode will acquire
a non-integrable topological phase with no simple analytical
form [29]. This tends to the Gouy phase, on which our analyt-
ical calculations are based, when the paraxial approximation
is valid.

In order to map the polarization distribution on the trans-
verse plane we use the Stokes parameters that, in the circular
polarization basis, are given by [30]

S 0 = I = |ER|
2 + |EL|

2 ; S 1 = 2Re(E∗REL),
S 2 = 2Im(E∗REL) ; S 3 = |ER|

2 − |EL|
2, (4)

where I is the intensity and the subscripts R, L denote the
right and left circular components, ER ≡ (Ex − iEy)/

√
2, and

EL ≡ (Ex + iEy)/
√

2). We can then calculate the ellipticity,
χ, and orientation, ψ, of the polarization at each point on the
transverse plane using [31]
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Typical examples of polarization distributions of FSL beams
are given in Fig. 1.
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FIG. 1: Polarization distributions at the beam waist for FSL beams
with (left) “lemon” polarization, `R = 1, `L = 0, and (right) “web”
polarization, `R = −3, `L = 0, polarization at the beam waist (prop-
agation distance z = 0). White, red, blue lines correspond to right
circular, linear, left circular polarization, respectively.

Polarization rotation during linear propagation

We can calculate the orientation of the polarization at any
transverse point in the field by using Eqs. 2 and 3 to re-write ,
see Eq. 6, in terms of the constituent modes:

ψ(z) =
1
2
[
(`L − `R) φ − (|`L| − |`R|) η(z) − β

]
. (7)

From this it is clear that the initial orientation of the polar-
ization at any point, ψ(0) = 1

2
[
(`L − `R) φ − β

]
, depends only

on the difference in OAM of the two eigenmodes, together
with any fixed initial phase difference, β and is independent of
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z. We note that in the case of scalar beams, where either EL

or ER is zero, the polarization is right- or left-circular and so
there is no direction of polarisation orientation.

As the beam propagates from z = 0, the net polarization
rotation is simply

∆ψ(z) = ψ(z) − ψ(0) =
1
2

∆
∣∣∣`R,L

∣∣∣ η(z), (8)

where ∆
∣∣∣`R,L

∣∣∣ = |`R|−|`L|. This depends only on the difference
in the magnitudes of the OAM of the two modes and the Gouy
phase η(z). Note that both the polarization orientation and
rotation are independent of the amplitudes of the two modes
and that the amount of rotation is the same for every point in
the transverse plane. This reduces to

∆ψ =
π

8
∆

∣∣∣`R,L

∣∣∣ (9)

for a beam propagating from a waist plane z = 0 through a
Rayleigh range z = zR and asymptotes to

∆ψ =
π

4
∆

∣∣∣`R,L

∣∣∣ (10)

as the beam propagates into the far field (since tan−1(z/zR) →
π/2 as z→ ∞).

Fig. 2 shows the polarization rotation during linear prop-
agation given by 8 for a number of FSL beams with differ-
ent values of ∆

∣∣∣`R,L

∣∣∣ propagating from a beam waist z = 0
to z = 20zR, solid lines. As expected the rotation asymp-
totes to π

4 ∆
∣∣∣`R,L

∣∣∣. We note that this result depends only on the
difference in the magnitudes of the two OAM eigenmodes,
not on their particular values, and that there is no polariza-
tion rotation for cylindrical vector beams as both modes have
the same magnitude of OAM and hence experience the same
Gouy phase. Fig. 3 shows the polarization distributions at
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FIG. 2: Polarization rotation calculated using 8 for linear propagation
from a beam waist z = 0 to the far-field z = 20zR for FSL beams, solid
lines. Dashed lines give the equivalent numerical results for z = 0 to
z = 6zR using 12 with µ = 0. ∆

∣∣∣`R,L

∣∣∣ = 1 (red, cyan), 2 (green,
orange), 3 (blue, magenta). Note that rotation is plotted in units of
π/4 to clarify the asymptotic behaviour.

z = 20zR for beams with (left) `R = 1, `L = 0 ⇒ ∆
∣∣∣`R,L

∣∣∣ = 1

and (right) `R = −3, `L = 0 ⇒ ∆
∣∣∣`R,L

∣∣∣ = 3. Note that
diffraction corresponds to a global scaling according to w(z)
that has been neglected for clarity. Comparing these to the
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FIG. 3: Polarization distributions at z = 20zR for FSL beams with
(left) `R = 1, `L = 0, and (right) `R = −3, `L = 0. White, red, blue
lines correspond to right circular, linear, left circular polarization,
respectively. Note that beam expansion due to propagation has no
effect on the polarization distribution and so has been neglected for
clarity.

initial polarization distributions at the beam waist, Fig. 1, it
appears that the polarization distribution on the left has ro-
tated rigidly anti-clockwise by π/2, as observed in [2], while
the polarization distribution on the right has rotated rigidly
anti-clockwise by π/4. Although these results seem to con-
tradict the predicted rotations of π/4 and 3π/4, respectively,
on closer inspection one can see that while the polarization
at each point on the transverse plane has indeed as predicted
by 8, the apparent rotation of the polarization structure as a
whole depends on the rotational symmetry of the pattern.

We also model linear propagation of the FSL beams numer-
ically using the paraxial equation normalized to dimensionless
quantities, ρ = r/w0 and ζ = z/(2zR), where w0 is the beam
waist and zR is the Rayleigh range of the beam [21–23]

∂EL,R

∂ζ
=

i
2
∇2
⊥EL,R. (11)

Here EL,R are the left- and right-circularly polarized beams
and ∇2

⊥ is the Laplacian in the transverse (x, y) plane. As Fig.
2 shows, we find excellent agreement between the analytical
and numerical results until the beam diffraction is too large to
accurately track the polarization rotation (approximately z =

5zR). Note that the effect of diffraction is more pronounced
for higher-order FSL beams, resulting in increased noise as
the propagation distance increases. Propagation of radial and
the azimuthal components of a paraxial beam along the optical
axis of a uniaxial anisotropic crystal has been investigated in
[32] and references within.

NONLINEAR PROPAGATION

As mentioned earlier, it is possible to counteract the effect
of diffraction and to control the spatial profile of the beam us-
ing a self-focussing (Kerr) nonlinearity. The usual fragmenta-
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tion of scalar vortex (OAM) beams in Kerr media can be inhib-
ited by using vector vortex or FSL beams. It has been shown
that cylindrical vector (CV) beams can additionally propagate
with no change to their axially symmetric polarization distri-
bution, while lower order (` = 0, 1) FSL beams experience a
polarization rotation [14]. We note that azimuthally polarized,
spatial, dark soliton solutions of Maxwell’s equations without
OAM have been demonstrated in [33].

In order to investigate the effect of nonlinear propagation
on the polarization we numerically simulated propagation of
FSL beams through a Kerr medium using two coupled (2+1)-
dimensional nonlinear Schrödinger equations with saturable
self-focusing nonlinearity under the slowly varying envelope
and paraxial approximations and normalized to dimensionless
quantities, ρ = r/w0 and ζ = z/(2zR)

∂EL,R

∂ζ
=

i
2
∇2
⊥EL,R + iµ

∣∣∣EL,R

∣∣∣2 + 2
∣∣∣ER,L

∣∣∣2
1 + σ

(∣∣∣EL,R

∣∣∣2 + 2
∣∣∣ER,L

∣∣∣2)EL,R (12)

where the parameters of importance are the nonlinear param-
eter, µ, and the saturation parameter, σ, given by:

µ =
2k2

0n2P0

3n0
; σ =

4P0

3Isatw2
0

, (13)

where k0 is the free-space wavenumber, n0 and n2 are the lin-
ear and nonlinear refractive indices (n2 > 0 for self-focusing),
Isat is the saturation intensity, and P0 is the power of the inci-
dent laser beam.

If one neglects the beam rescaling due to diffraction, we
can see from Eq. 12 that the first effect of the medium is
an additional phase shift φNL

R,L to the orthogonal modes pro-
portional to the nonlinear term. This results in an additional
rotation ∆ψNL(z) ∝

(
φNL

L − φ
NL
R

)
. As the nonlinear phase shift

depends on the spatial intensity of the two modes and on the
cross phase modulation, we expect the nonlinear rotation to be
dependent on the magnitude of the OAM of each mode (and
not just the difference in the net values). We also expect the
rotation to be spatially-dependent, except for the CV beams
which have the same magnitude of OAM and hence the same
spatial profile. We show the effect of the spatial dependence
in more detail in Fig. 6 but the fact that the polarization ro-
tation is spatially dependent then begs the question of how to
measure it. An overall sense of the polarization rotation can be
found either by considering a point that remains at the peak in-
tensity of the FSL beam, as shown in Fig. 6 (green line), or by
taking an average over a number of points across the beam. In
cases where both eigenmodes have non-zero OAM these two
approaches are in good agreement. However, when one of the
eigenmodes is a gaussian, the transverse position of the peak
changes a lot during propagation and so the averaging method
gives the best sense of the rotation behaviour. For that rea-
son we use this method for all of our nonlinear results, unless
otherwise stated. Obviously for more exact measurements,
the rotation can be measured and compared at many points
across the beam. In the simulations reported below, we have

selected P0 = 7.4mW, Isat = 5W cm−2, n2 = 8 × 10−6 cm2/W
and λ = 780nm that reproduce the experimental configuration
given in [14]. We use a beam waist of 100µm throughout (un-
less explicitly stated otherwise), corresponding to a Rayleigh
range of approx. 4cm. We performed numerical integrations
of the propagation Eqs. 12, using the split-step method with
fast Fourier transforms.

Comparison with the linear case

To investigate the effect of the propagation in the nonlinear
medium we first numerically integrated Eq. 12 for FSL beams
with `R = ±1,±2,±3 and `L = 0 giving ∆

∣∣∣`R,L

∣∣∣ = 1, 2, 3, re-
spectively, with the parameters given above. Note that in order
to avoid the numerical errors that occur when the beams have
diffracted significantly, we present only results for propaga-
tion up to 3zR throughout the remainder of the paper.

As Fig.4 shows, in the nonlinear medium the polarization
rotation no longer asymptotes but instead increases almost lin-
early with propagation distance. For completeness, we note
that there is again no rotation for cylindrical vector beams as
both modes have the same magnitude of OAM and the same
spatial intensity and so that they experience the same Gouy
and nonlinear phase shifts.
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FIG. 4: Polarization rotation during nonlinear propagation from a
beam waist z = 0 to z = 3zR using 12 with µ = 257.5 and σ = 19.8
for FSL beams with `R = ±1,±2,±3 and `L = 0 (dashed lines). Solid
lines give the corresponding analytical results for linear propagation
using 8. ∆

∣∣∣`R,L

∣∣∣ = 1 (red, cyan), 2 (green, orange), 3 (blue, magenta).

Effect of beam composition

Unlike in the linear case, where the polarization rotation de-
pends solely on the difference in the magnitudes of the OAM
of the two eigenmodes, in the nonlinear medium the phase
shift, and hence polarization rotation, depends on the spa-
tial overlap of the eigenmodes and the cross-phase modula-
tion between them. To demonstrate this we repeated our sim-
ulations for a number of different mode superpositions with
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the same difference in the Gouy phase, i.e. a fixed value of
∆

∣∣∣`R,L

∣∣∣ = |`R| − |`L|.
In Fig. 5 we show the polarization rotation for ∆

∣∣∣`R,L

∣∣∣ = 2.
The red line is the analytical linear result for all superposi-
tions, as in Fig. 2, while the cyan line is the nonlinear result
for a beam with `R = 2; `L = 0, as in Fig. 4. The dashed
green line shows the equivalent result but for a beam with
`R = 3; `L = −1 (green). Note that similar behaviour is seen
for the beam with `R = 4; `L = −2 but this is omitted for clar-
ity. We see a significant change in the behaviour of the po-
larization rotation between the lowest-order FSL beam `L = 0
and the higher-order beams |`L| > 0. In particular we note
that the higher-order beam experiences less polarization rota-
tion overall: there are regions during the propagation where
the polarization rotation seems to stop, or even change direc-
tion, and the rotation appears to asymptote with increasing
propagation distance. There are two important phenomena af-
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FIG. 5: (a) Polarization rotation during nonlinear propagation from a
beam waist z = 0 for 3 Rayleigh ranges, z = 3zR, for FSL beams with
beam waist w0 = 100µm and ∆

∣∣∣`R,L

∣∣∣ = 2. Cyan line corresponds to
`R = ±2, `L = 0 at low nonlinearity (n2 = 8). Dashed lines corre-
spond to `R = ±3, `L = ±1 at n2 = 8 (green) and n2 = 12 (purple).
Red line is the equivalent linear result for all superpositions. (b) &
(c) Cross-section of the spatial intensity during propagation for the
FSL beams of `R = ±3, `L = ±1 at n2 = 8 (top) and n2 = 12 (bottom)

fecting the behaviour of the polarization rotation: the intensity
of the modes and their spatial overlap. In Fig. 5 we plot the
cross-section of the beam intensity of the `R = 3, `L = −1
mode at two different values of the nonlinearity, n2 = 8 (top)
and n2 = 12 (bottom). It is clear that there is still signifi-
cant diffraction for n2 = 8, and the corresponding reduction
in intensity results in less nonlinear phase shift and leads to
the asymptotic behaviour of the rotation (green line in Fig. 5
(a)). At n2 = 12, however, the beam is quite well-confined and
there is also a more consistent mode overlap. In this case we
almost recover the rotation experienced by the lowest order
mode (dashed purple line in Fig. 5a).

As mentioned earlier, the nonlinear polarization rotation
also depends on the cross-phase modulation and hence on
the spatial overlap of the eigenmodes. An overall sense
of the behaviour of the polarization rotation can usually be
found by tracking the polarization at point that remains at
the peak intensity of the FSL beam. However, when one of

the eigenmodes is a gaussian, the transverse position of the
peak changes significantly during propagation and so a better
method is to average the results over a number of points across
the beam. For applications requiring more exact knowledge of
the polarization state at each point on the transverse plane the
polarisation rotation can be compared at various points across
the beam. To demonstrate the effect of the cross-phase mod-
ulation term we consider a beam with eigenmodes of `R = 3
and `L = −1. As the cross-phase modulation term is asym-
metric unless `R = `L and contains a saturating term, the
mode sizes will oscillate during propagation with correspond-
ing variations in the spatial overlap. The polarization rotation
at each point will therefore depend on its location on the trans-
verse plane. This is demonstrated in Fig. 6 for propagation of
a FSL beam with `R = 3; `L = −1 at low nonlinearity (n2 = 8).
At the start of the propagation (see Fig. 6a), points on the
outer edge of the beam (magenta) see more right-circularly
polarized (RCP) light while points closer to the centre (blue)
see more left-circularly polarized (LCP) light and thus their
polarizations rotate in opposite directions. When the modes
overlap exactly (Fig. 6b) the modes experience the same non-
linear phase shift and so there is no net nonlinear rotation. If
the beams remain “locked” like this there is a corresponding
plateau in the rotation curve (see, for example, Fig. 5, green
line). As the modes oscillate net left- or right-circularly polar-
ized light can swap resulting in polarization rotation changing
direction (Fig. 6c). Note that as the beam continues to propa-
gate the effect of the nonlinearity is to try to maintain the spa-
tial overlap of the two modes. The “locked” beams then prop-
agate with a constant small rotation depending on the overlap
until they fragment into solitons [21, 22] (Fig. 6d).
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FIG. 6: Left: Cross-section of modes (`R = 3, red, and `L = −1, blue)
with beam waist w0 = 100µm showing the spatial overlap at various
points during nonlinear propagation at low nonlinearity (n2 = 8).
Right: Corresponding polarization rotation. Magenta and blue lines
corresponds to points close to the outer edge and center of the FSL
beam, respectively. Green line corresponds to the position of the
peak intensity.

Control of polarization rotation

In addition to understanding how the state of polarization
is affected by propagation, it may be useful to be able to con-
trol it. Linearly the polarization rotation can be controlled
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by choosing the eigenmodes of the FSL beam to give a spe-
cific difference in the magnitudes of the OAM (∆

∣∣∣`R,L

∣∣∣), as
shown in Fig. 2, and by choosing the beam size to control the
Rayleigh range.

Nonlinearly, the amount and direction of the nonlinear po-
larization rotation depends on the spatial overlap and intensity
of the eigenmodes. These can be controlled both by the choice
of eigenmodes (see Fig. 5) and by changing experimental pa-
rameters such as the power of the FSL beam, the temperature
of the medium [14] and the size of the FSL beam to control the
nonlinear parameter, µ, and the saturation parameter, σ (Eq.
13) and hence the confinement of the beam.

For example, Fig. 7 shows how the polarization rotation
of the `R = 1 and `L = 0 beam changes as we increase the
input power P. This increases both the nonlinear response and
the saturation parameter leading to an enhanced polarization
rotation at the output.

P = 50mW
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P = 7.5mW
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P = 15mW
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FIG. 7: Polarization rotation of `R = 1 and `L = 0 beam during
nonlinear propagation from a beam waist z = 0 to z = 3zR for FSL
beams with input powers of 5mW (purple), 7.5mW (blue), 10.0mW
(green), 15.0mW (orange) and 50.0mW (red).

As before, the size of the FSL beam can also be used to
control the Rayleigh range. In Fig. 8 we plot the polariza-
tion rotation during nonlinear propagation from a beam waist
z = 0 to z = 3zR for FSL beams with waists of 100µm and
∆

∣∣∣`R,L

∣∣∣ = 1, 2 (dark blue, cyan) using 12 with P = 7.44mW
and n2 = 8×10−6W cm−2 s.t. µ = 257.5 and σ = 19.8. Equiv-
alent results for beams with waists of 200µm (green, magenta)
and with rescaled experimental parameters P = 29.8mW and
n2 = 2 × 10−6W cm−2 s.t. σ and µ are unchanged. We con-
sider two superpositions of FSL beams (`R = 1, `L = 0 and
`R = 2, `L = 1) and show that the results for the two different
beam waists match in both cases if we plot rotation as versus
number of Rayleigh lengths propagation (Fig. 8 (left)). If we
polt the same results but as a function of distance ((Fig. 8
(left))) we can see that by doubling the beam waist, and hence
increasing zR by a factor 4, the rotation of the larger beam is
correspondingly decreased by a factor 1/4.
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FIG. 8: Polarization rotation during nonlinear propagation for FSL
beams with ∆

∣∣∣`R,L

∣∣∣ = 1, 2 and waists of 100µm (dark blue, cyan) and
200µm (green, magenta). In both cases µ = 257.5 and σ = 19.8.
(a) rotation versus number of Rayleigh lengths, (b) rotation versus
distance (cm).

Biased Vector Beams - γ , π/4

While many applications of cylindrical vector beams use
spatially-varying linear polarization (radial or azimuthal),
beams with azimuthally-varying elliptical polarization allow
the space-variant spin in the beam to be transferred to the
atomic medium, thus offering a unique way to manipulate
atoms spatially [12]. Such elliptically polarized FSL beams
can be produced by changing the relative amplitudes of the
two eigenmodes of a cylindrical vector beam (i.e. by chang-
ing the value of γ in Eq. 2). As we have already mentioned,
equal-amplitude CV beams do not experience any polariza-
tion rotation during propagation – linearly or nonlinearly –
as both components have the same magnitude of OAM, and
hence experience the same Gouy phase and the same spatial
intensity distribution. However, when elliptically polarized,
or biased, CV beams are propagated in the nonlinear medium
we find that the polarization distributions do rotate and that
the amount and direction of the rotation is dependent on the
ellipticity of the polarization. This is clearly shown in Fig.
9 where |`R| = |`L| = 1 and γ in Eq. 2 has been chosen s.t.
|ER| : |EL| is 4 : 1 (red), 2 : 1 (blue), 1 : 1 (green), 1 : 2 (cyan),
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1 : 4 (magenta). Note that as the bias is increased the beams
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FIG. 9: Nonlinear polarization rotation for propagation of a cylin-
drical vector beam with |`R,L| = 1 over 3zR. The parameter γ in 2 is
chosen s.t. |ER| : |EL| is 4 : 1 (red), 2 : 1 (blue), 1 : 1 (green), 1 : 2
(cyan), 1 : 4 (magenta).

become more “scalar” as the contribution of the second beam
becomes negligible, and the polarization becomes circular. In
this case we recover the behaviour demonstrated in [14] where
the scalar beam is shown to fragment more quickly than the
corresponding vector beam. As Fig. 10 shows, the amount of
rotation saturates as the bias increases. The rotation may also
be increased by using higher-order CV beams, but as these
diffract more for the same experimental parameters, a higher
nonlinearity is required in order to keep the beams confined.
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FIG. 10: Nonlinear polarization rotation at 3zR as a function of bias
for biased CV beams with |`R,L| = 1, 2, 3 (red, blue, green).

One effect of this rotation is the conversion of radial (or
azimuthal) elliptical polarization to azimuthal (or radial) with
minimal changes to the spatial profile of the beam, as shown
in Fig. 11. By choosing the bias and the propagation distance
for a given beam waist we can control the polarization of the
beam with no polarization optics.

CONCLUSION

Knowing how the spatial polarization distribution of a beam
is affected by propagation is of importance in many applica-

z = 0 z = 1.3z
R

z = 2.5z
R

FIG. 11: Radially elliptically polarized vector beam with |`R,L| = 1
and |ER| : |EL| = 4 : 1. Left to right: At a beam waist z = 0, after
nonlinear propagation over z = 1.3ZR, z = 2.5ZR. There is little
change to the spatial profile of the beam during propagation, but the
polarization changes from radial through spiral to azimuthal.

tions that depend on the state of polarization. We have analyt-
ically calculated the polarization rotation of fully-structured
light (FSL) beams during linear propagation and shown that
the observed rotation is due entirely to the difference in
Gouy phase between the two eigenmodes comprising the FSL
beams. This allows the exact polarization state at a particu-
lar propagation distance to be controlled simply by choosing
the eigenmodes of the FSL beam and the beam size. More-
over, we have shown that polarization rotation is also af-
fected by propagation through a self-focussing (Kerr) non-
linear medium and that this can be controlled by changing
the eigenmodes of the superposition, and physical parameters
such as the beam size, the amount of Kerr nonlinearity and
the input power. In addition to the ability to control both the
intensity and polarization of FSL beams may provide a useful
method for applications in micromachining and microscopy
[4, 34]. Finally, we have shown that by biasing cylindrical
vector (CV) beams to have elliptical polarization, we can vary
the polarization state from radial through spiral to azimuthal
using nonlinear propagation.
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