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Abstract—The Line Hough Transform (LHT) is a robust and
accurate line detection algorithm, useful for applications such
as lane detection in Advanced Driver Assistance Systems. For
real time implementation, the LHT is demanding in terms of
computation and memory, and hence Field Programmable Gate
Arrays (FPGAs) are often deployed. However, many small FPGAs
are incapable of implementing the LHT due to the large memory
requirement of the Hough Parameter Space (HPS). This paper
presents a memory efficient architecture of the LHT named
the Angular Regions - Line Hough Transform (AR-LHT). We
present a suitable FPGA implementation of the AR-LHT and
provide a performance and resource analysis after targeting a
Xilinx xc7z010-1 device. Results demonstrate that, for an image
of 1024x1024 pixels, approximately 48% less memory is used
than the Standard LHT. The FPGA architecture is capable of
processing a single image in 9.03ms (110 frames per second).

I. INTRODUCTION

The Line Hough Transform (LHT) is a well known tech-

nique for detecting lines within digital images [1], [2]. The

LHT algorithm achieves line detection, using a simple local

peak detection process in an associated Hough Parameter

Space (HPS). In the HPS, the parameters of edge pixels, i.e.

points in an image with sharp intensity changes, are treated as

‘votes’, and accumulated. The effect is to create local peaks in

the HPS, corresponding to lines in the image. The algorithm is

robust and can operate successfully in noisy images and when

there are gaps in a line.

Major drawbacks of the LHT are its demands in terms of

computation and memory. Previous work provides optimisa-

tions to reduce its complexity in software implementations; for

instance, in [3] the gradient orientation is used to approximate

the direction of lines. The Kernel Hough Transform [4]

reduces votes by clustering pixels and limiting their votes to

a small area of the HPS. Other schemes, such as the Random

Hough Transform [5], Probabilistic Hough Transform [6], and

Progressive Probabilistic Hough Transform [7], use random

sampling to reduce the number of voting edge pixels.

Hardware implementations, using Field Programmable Gate

Arrays (FPGAs), have been investigated for their ability to

accelerate the LHT through parallel processing. In [8], the

authors implemented a high-speed parallel FPGA architecture

capable of processing a video frame of 1024x768 pixels in

5.4ms. In [9], a low-latency LHT architecture for an image

of 512x512 pixels is capable of applying the LHT in 1.07ms.

A pipelined, shift-and-add architecture was described in [10],

capable of applying the LHT to an image of 1024x768 pixels,

and accurately detecting lines in 15.59ms.

In each of these implementations, the memory consumption

of the HPS was significant, making them unsuitable for small

FPGAs. For example, in [9] the memory required to implement

the LHT architecture is 3,317,760 bits. However, a Xilinx

xc7z010-1 device is unable to host this architecture as it only

contains 2,211,840 bits of dedicated FPGA memory.

The HPS can be optimised using the Adaptive Hough Trans-

form [11]. However, this approach requires random memory

access, for which an FPGA is not suited unless the candidate

image is stored in on-chip memory. The authors in [12]

achieved a memory efficient HPS. We recognise that this work

could be further improved in terms of memory utilisation.

The original contribution of this paper is an algorithm for

a memory-efficient HPS, based on a modified version of the

algorithm presented in [12], and its FPGA architecture. We

demonstrate that this method significantly reduces memory

requirements compared to the Standard LHT [2] and other

previously reported work, whilst maintaining the integrity of

data stored in the HPS and overall pixel throughput.

The remainder of this paper is organised as follows: Section

II summarises the Standard LHT algorithm and memory

requirements of the HPS; Section III presents the proposed

method; Section IV describes the FPGA architecture and sim-

ulation results; Section V evaluates the hardware architecture

and provides a comparison with previously published work;

and the paper is concluded in Section VI.

II. THE LINE HOUGH TRANSFORM

The LHT operates on binary images obtained after applying

edge detection operators such as Sobel, Prewitt or Canny to

determine the collinearity of edge pixels and thus to detect

lines [13]. Each edge pixel (x, y) has an associated magnitude

of displacement ρ, and orientation of displacement θ, from the

image origin. These are related by the equation

ρ = xcos(θ) + ysin(θ) (0◦ ≤ θ◦ < 180◦). (1)

The HPS represents an accumulator array A(θ, ρ), that

is pre-allocated in memory. The HPS is quantised with Nθ

and Nρ levels, chosen according to the applicable accuracy

requirements and memory constraints. The edge pixels within

the image are processed using (1) over a discrete range of θ
values [0 : δθ : θmax], where δθ is the discretisation step and

θmax is the maximum value of θ. The resulting parameters

form an address that applies a vote to the corresponding

location in the HPS.



Fig. 1: LHT mapping between edge image (left) and HPS (right).

The result of voting is to create a sinusoid in the HPS for

each edge pixel. Figure 1 demonstrates this relationship using

three edge pixels on a line, E0(x0, y0), E1(x1, y1), E2(x2, y2),
and their corresponding Hough Parameters as calculated using

(1). The sinusoids produced by edge pixels that exist on line

i within the image intersect at a common point (θi, ρi).
After the voting process is complete, the HPS is examined

for peaks. Parameter coordinates with a significant number of

votes are identified, as these correspond to linear elements in

the image. Reconstruction of the lines in the spatial image

domain is carried out using the inverse function of (1).

A. HPS Memory Requirements

The memory requirements for the HPS using the Standard

LHT can be easily calculated. The HPS is restricted in size

using the maximum displacement of a line ρmax. This is

calculated for a W ∗H pixel image in (2).

ρmax =

√

(W

2

)2

+
(H

2

)2

(2)

This restricts the displacement parameter ρ in the accumu-

lator array to the range [−ρmax, ρmax].
It is necessary for the HPS to store the votes of all edge

pixels, therefore the limit of the third dimension of the HPS

accumulator array (‘votes’) is set to the length of the image

diagonal, 2ρmax. The equation to calculate the total number

of bits required to store the HPS in memory is therefore

Abits = NρNθ⌈log2(2ρmax)⌉. (3)

For example, the memory required by the HPS, for an image

of 1024x1024 pixels, is 2,871,000 bits when Nθ = 180 and

Nρ = 2⌈ρmax⌉. We will later use (3) to compare memory

utilisation of the Standard LHT with our proposed method.

III. THE PROPOSED METHOD

In this section, we develop a memory-efficient design for

the HPS, suitable for a small FPGA. We name this method,

the Angular Regions - Line Hough Transform (AR-LHT). The

AR-LHT is based on a modified version of the algorithm

presented in [12], wherein the ρ axis on the HPS was reduced

by partitioning the input image into subregions. Our innovation

is to instead reduce the size of the HPS along the θ axis,

recognising the potential to increase memory efficiency and

reduce the complexity of the FPGA architecture.

The algorithm for the AR-LHT follows the procedure

outlined in Figure 2. Two memories are pre-allocated, one

for the HPS to accumulate votes, and another known as a

Region Bitmap (RBM). This follows the general method and

terminology of [12] to maintain a record of the edge gradient

orientation θi, and displacement ρi, for each vote.

Fig. 2: Overview of the AR-LHT algorithm.

The remainder of this section details the AR-LHT and the

functionality of each of the blocks shown in Figure 2.

A. Calculating the Edge Gradient Orientation

The AR-LHT uses the edge gradient orientation θG of the

candidate image to approximate the direction of lines. This

reduces the number of votes that are applied to the HPS by

minimising the range over which θ operates.

θG is calculated by initially finding the directional gradi-

ents of a greyscale image using the horizontal and vertical

Sobel filters. These filters are applied to the image through

convolution, deriving approximations for the horizontal and

vertical gradients, Gx and Gy , for each pixel of the input

image. This operation is normally carried out to derive edge

pixels, produced by thresholding the gradient image G, i.e.

G =
√

G2
y +G2

x. (4)

The edge gradient orientation can then be computed using

θG = tan−1
Gy

Gx

. (5)

The value of θG is brought into the limits of (1) by adding

180◦ if θG < 0. It can then be used in (1) as θ to calculate ρ.

B. Optimising the HPS

Peaks that are formed in the HPS are usually thinly dis-

persed throughout the array. We can use this knowledge to

reduce the total number of addressable locations in the HPS.

The size of Nθ is reduced by an integer factor R. Doing

so results in an accumulator array that contains NρNθ/R
addressable memory locations. The number of bits required

to store this reduced-size HPS is given in (6).

Aopt
bits =

NρNθ⌈log2(2Rρmax)⌉

R
(6)

Figure 3 provides a graph of the HPS for both the Standard

LHT and the proposed method. Our investigations found that

when R > 4 and Nθ = 180, the extraction of peaks that

correspond to lines in an image is no longer successful.

Therefore R is limited to an integer in the range 1 < R ≤ 4.



Fig. 3: The HPS for the Standard LHT (left), and the AR-LHT (right).

Votes can only be applied to the reduced HPS if they are

in the range [0, (θmax + δθ)/R − δθ]. To ensure each vote

is applied to the HPS, inapplicable votes are adjusted into the

above range. This adjusted orientation is named θA and, while

voting, is applied to the HPS with the same value of ρ.

C. Calculating the Adjusted Orientation θA

To obtain θA, we first need to carry out the integer division

⌊θG/((θmax + δθ)/R)⌋. This generates a positive integer that

is used to indicate the number of times (θmax+δθ)/R should

be subtracted from θG to adjust it into the range [0, (θmax +
δθ)/R− δθ]. The value of θA can then be calculated as in (7).

θA = θG −

⌊

θG
(θmax + δθ)/R

⌋

θmax + δθ
R

(7)

D. Separating Peaks using the RBM

The RBM is an array of size NθxNρx1, that is set to zero

before processing begins. The RBM is required to keep a

record of θG, and ρ, for all of the edge pixels that have been

processed using (1). It achieves this by using (θG, ρ) as an

index, and changing the value of that location to a binary ‘1’.

Upon processing an entire image, the RBM is used to cross-

check the parameters of peaks found in the HPS, so that they

are of the correct directional orientation before reconstruction.

This is performed by searching the RBM at intervals of

(θmax + δθ)/R for the extracted value of θA.

Due to noise pixels in the edge image, noise will also exist

in the RBM and could produce incorrect results. A simple

method of suppressing noise in the RBM is by filtering it with

a morphological opening. This is a fast method of overcoming

this problem and is suitable for FPGA implementation.

IV. IMPLEMENTATION

In our FPGA implementation δθ = 1◦, θmax = 179◦ and

R = 4. An overview of the FPGA architecture for the proposed

method can be seen in Figure 4. The input RGB image is

initially converted to greyscale for Sobel processing.

Throughout the remainder of this section, we will focus

primarily on the memory aspects of our hardware design. In

particular, the architecture for the HPS and RBM memories.

To correctly index the HPS memory array, the angle of θG
must be in the range of [0, (θmax+δθ)/R−δθ]. As previously

discussed, the practical limit of R is 4 when Nθ is 180. A

Fig. 4: Overview of the FPGA architecture.

simple hardware architecture designed to adjust θG into the

above range can be seen in Figure 5.

Fig. 5: Architecture to adjust θG into [0, (θmax + δθ)/R− δθ].

The Hough parameters, ρ and θG, are used to generate an

address to access the RBM and update it accordingly. Similarly

the HPS uses ρ and the adjusted angle θA to generate an

address to accumulate votes.

The HPS memory uses 36Kb Block RAM (BRAM) tiles,

configured as dual-port 2K memory. The memory has two

modes of operation, Vote Accumulation and Read-out and

Reset. During Vote Accumulation, port A of the BRAM is

configured to read the HPS vote so that it may be incremented

by 1. Port B writes the updated vote back to memory.

The RBM memory uses 36Kb BRAM tiles, configured as

single-port 32K memory. The RBM memory has two modes.

One for Reading Parameters and another for Read-out and

Reset. During Reading Parameters the RBM sets applicable

address locations defined by (θG, ρ) to a binary ‘1’.

When both memories are in Read-out and Reset mode, the

RBM is filtered using a morphological opening while the HPS

is thresholded for peaks. Both memories are then compared to

cross-check line orientation. Since the HPS is R times smaller

than the RBM, the HPS can be read from memory R times and

compared to the filtered RBM over (θmax + δθ)/R intervals.

On the final iteration, the HPS is reset.

The above architecture was developed using Xilinx System

Generator. Simulations correctly produced Hough Parameters

corresponding to lines in several test images. These were

reconstructed and superimposed on the original images for

inspection; two examples are shown in Figure 6. The output

images are similar to results produced using the Standard LHT.

V. PERFORMANCE AND RESOURCE ANALYSIS

The AR-LHT was synthesised and implemented using Vi-

vado Design Suite for various image resolutions, and shown

to achieve a clock frequency of 145MHz on a Xilinx xc7z010-

1 device. Table I provides the memory consumption, in bits,

for each tested resolution and compares them to the memory

requirements of the Standard LHT, calculated using (6).



(a) A: Edge Image (b) A: Line Image (c) A: AR-LHT

(d) B: Edge Image (e) B: Line Image (f) B: AR-LHT

Fig. 6: Results of the LHT Simulation on two 1024x1024 images.

The standard LHT requires 2,871,000 bits of memory for

an image of 1024x1024 pixels. The xc7z010-1 device would

be unsuitable for implementation as it only contains 2,211,840

bits of dedicated FPGA memory. However, it can apply the

AR-LHT to the same image resolution due to its memory-

efficient HPS. The AR-LHT requires 1,474,560 bits, saving

48.64% of memory as compared to the Standard LHT.

Ser and Siu [12], developed an LHT algorithm for a

reduced memory HPS. Their algorithm was applied to an

image of 384x256 pixels and achieved 50% saving in memory

as compared to the Standard LHT. However, our AR-LHT

was able to save 58.13% when operating on the same image

resolution, as shown in Table I.

Table II provides implementation results of this work and

the results from other published FPGA implementations of the

LHT, three of which targeted Altera devices. As Xilinx and

Altera devices are not directly comparable for total resource

cost, and as our work focuses on memory optimisation, we

compare memory consumption and execution time.

Zhou et al. [9] achieved a low-latency LHT architecture for

an image of 512x512 pixels, at the expense of high memory

consumption. Our work, the AR-LHT, saves approximately

86% of memory for the same image size.

Chen et al. [14] implemented the HPS in off-chip memory,

for an image of 512x512 pixels. By comparison, our AR-LHT

saves approximately 87% of overall memory and adds the

flexibility to cater for more than one image resolution. The

execution time of this implementation would be dependant on

the bandwidth and speed of the off-chip memory in use.

TABLE I: Results of this work for different resolutions, when

R = 4, δθ = 1◦ and θmax = 179◦.

Resolution Execution Memory (Bits)

(pixels) Time AR-LHT Standard LHT % Saved

384x256 1.25ms 313,344 748,440 58.13

512x512 2.71ms 442,368 1,306,800 66.15

1024x768 7.01ms 1,345,536 2,534,400 46.90

1024x1024 9.03ms 1,474,560 2,871,000 48.64

Guan et al. [8] created a system which applied the LHT to a

video stream. They reduced the total memory requirements of

the HPS, by setting the discretisation step of θ to 2◦ (δθ = 2◦).
This has the effect of reducing the accuracy of line detection,

unlike our work, which still achieves δθ = 1◦. Even for

unequal δθ, the AR-LHT provides a memory saving of 16%.

Lu et al. [10] developed a shift-and-add LHT architecture

with δθ set to 0.8952◦. This achieved better accuracy of

extracted lines whilst increasing the memory requirements of

the HPS. If this approach was combined with the AR-LHT (a

possible avenue of future work), the HPS could become more

memory-efficient while also improving accuracy.

VI. CONCLUSION

This paper has presented the AR-LHT, a memory-efficient

algorithm for the detection of lines in images. It was demon-

strated that the memory consumption of the HPS could be

reduced by exploiting the thin dispersion of peaks within it.

We found that two separate, smaller memories (a reduced-

size HPS across the θ dimension, and a 1-bit RBM) could be

used in conjunction to substantially reduce memory utilisation

compared to the Standard LHT. After voting was complete,

the RBM was used to determine the true orientation of

detected peaks in the reduced HPS. The incorporation of a

morphological opening post-processing stage (applied to the

RBM) was crucial in the success of the proposed method.

The AR-LHT algorithm was developed using Xilinx System

Generator. A series of simulations were carried out on a set

of test images. Results demonstrated that the output Hough

Parameters correlated successfully with lines in the original

test image. The hardware architecture was then synthesised

and implemented using Xilinx tools, resulting in very efficient

resource requirements in comparison to similar work. An im-

age of 1024x1024 pixels was found to save 48.64% of memory

compared to the Standard LHT. The FPGA architecture was

capable of operating at 145MHz, and can process the image

in 9.03ms, equivalent to a frame rate of 110fps.

TABLE II: Results of the proposed method and comparison with related works

Algorithm Device Resolution Frequency Execution Time Logic Blocks DSPs Memory (Bits)

Proposed Method Xilinx 1024x1024 145MHz 9.03ms 2202 (Slices) 0 1,474,560
(AR-LHT) XC7Z010-1 (110fps)

Zhou et al. [9] Xilinx XC6VLX240T-1 512x512 200MHz 1.07ms (936fps) 14493 (Slices) 178 3,317,760

Chen et al. [14] Altera 512x512 200MHz 2.07-3.61ms 855 (ALUTs)+ 0 3,270,032 (off-chip)+
EP2S180F1508C3 (277-483fps) 421 (Registers) 223,360 (on-chip)

Guan et al. [8] Altera 1024x768 200MHz 5.4ms 1737 (ALUTs)+ 32 1,565,202 (δθ = 2
◦)

EP4SGX230KF40C2 (185fps) 1196 (Registers)

Lu et al. [10] Altera EP4CE115F29 1024x768 200MHz 15.59ms (64fps) 15,704 (LEs) 8 3,052,544
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