The

University

yo, Of
Sheffield.

This is a repository copy of A Deep Recurrent Neural Network Based Approach for Internet
of Things Malware Threat Hunting.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/128430/

Version: Accepted Version

Article:

HaddadPajouh, H., Dehghantanha, A orcid.org/0000-0002-9294-7554, Khayami, R. et al.
(1 more author) (2018) A Deep Recurrent Neural Network Based Approach for Internet of
Things Malware Threat Hunting. Future Generation Computer Systems, 85. pp. 88-96.
ISSN 0167-739X

https://doi.org/10.1016/j.future.2018.03.007

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A Deep Recurrent Neural Network Based Approach for
Internet of Things Malware Threat Hunting

Hamed HaddadPajouh?®, Ali Dehghantanha® Raouf Khayami®, Kim-Kwang
Raymond Choo°

®Department of Computer Engineering and Information, Technology, Shiraz University
of Technology, Iran
b Department of computer science, University of Sheffield, UK
¢Department of Information Systems and Cyber Security and Department of Electrical
and Computer Engineering, The University of Texzas at San Antonio, San Antonio, TX
78249, USA
School of Information Technology € Mathematical Sciences, University of South
Australia, Adelaide, SA 5095, Australia

Abstract

Internet of Things (IoT) devices are increasingly deployed in different in-
dustries and for different purposes (e.g. sensing/collecting of environmental
data in both civilian and military settings). The increasing presence in a
broad range of applications, and their increasing computing and processing
capabilities make them a valuable attack target, such as malware designed
to compromise specific IoT devices. In this paper, we explore the potential
of using Recurrent Neural Network (RNN) deep learning in detecting IoT
malware. Specifically, our approach uses RNN to analyze ARM-based [oT
applications’ execution operation codes (OpCodes). To train our models,
we use an loT application dataset comprising 281 malware and 270 benign
ware. Then, we evaluate the trained model using 100 new [oT malware sam-
ples (i.e. not previously exposed to the model) with three different Long
Short Term Memory (LSTM) configurations. Findings of the 10-fold cross
validation analysis show that the second configuration with 2-layer neurons
has the highest accuracy (98.18%) in the detection of new malware sam-
ples. A comparative summary with other machine learning classifiers also

Email addresses: hp@sutech.ac.ir (Hamed HaddadPajouh), alid@alid.info (Ali
Dehghantanha), khayami@sutech.ac.ir (Raouf Khayami),
raymond. choo@fulbrightmail . org (Kim-Kwang Raymond Choo)

Preprint submitted to Future Generation Computer Systems February 2, 2018

demonstrate that the LSTM approach delivers the best possible outcome.

Keywords: ARM-based IoT Malware Detection, loT Malware Detection,
Long Short Term Memory, Machine Learning, OpCodes Analysis, Deep
Learning Threat Hunting

1. Introduction

Threats from malware are not new, although malware or cyber threat
hunting remains an ongoing challenge. For example, with the increasing
popularity of Internet of Things (IoT) devices [7] and the general lack of
security protection for such devices, IoT devices can be vulnerable to mal-
ware attacks [24]. According to Kaspersky Lab, in 2016 the majority of IoT
devices examined were insecure, in the sense that these devices had either
default password or unpatched vulnerabilities. In other words, these devices
can be easily compromised using malware such as Hijme [31] and Mirai [19].
Previous literature have suggested the potential of leveraging machine learn-
ing in static and dynamic malware analysis techniques to enhance malware
hunting [8, 13, 38], but it is not practical to simply integrate machine learning
in static and dynamic malware analysis techniques due to the wide variety
and distribution of IoT devices, particularly for (inexpensive) IoT devices
with limited processing power.

Existing machine learning-based IoT malware hunting approaches have
focused on energy consumption patterns [3] and OpCode [2]. This is not sur-
prising, as system calls and OpCodes are two common features in malware
hunting [23]. For example, in [32], the authors proposed a method to classify
variants of known malware families based on OpCodes’ frequency. The au-
thors in [30] also built a similarity graph based on application’s OpCodes to
detect metamorphic malware. In [26], SVM classifier and n-gram techniques
were used to evaluate OpCodes and identify optimum feature for malware
detection. The authors in [33] proposed a method based on the frequency
of appearance of OpCodes sequences under different machine learning clas-
sifiers and reportedly obtained over an accuracy rate of 96%. Using a text
mining method that utilizes n-gram technique, the authors claimed that their
approach in detecting malicious software has an accuracy rate of 75% when
N=3 and N=4 [25]. In [9], n-gram technique was utilized to extract ap-
plication’s OpCodes sequence, and the findings indicated an accuracy rate
of 99.88%. The authors in [16] used the application programming inter-

face (API) sequence as a feature for classification, and the longest common
sequence (LCS) technique and sequence analysis to detect malware. An ac-
curacy of 99% was reported in their 70% (training)-30% (testing) dataset
split evaluation.

In recent years, deep learning methods have also been used in malware
analysis and detection. In [39], for example, the authors used over 200 fea-
tures extracted from static and dynamic analysis of Android malware to
build a model based on deep belief networks. The reported detection accu-
racy of this approach is 96%. Saxe and Berlin [34] proposed a model based
on the deep feed-forward neural network that extracts features from over
40,000 Windows application binary files, and reported a detection rate of
95% with a 0.1% false positive rate. Kolosnjaji et al. [20] combined con-
volutional neural network (CNN) and recurrent neural network (RNN) to
perform hierarchical feature extraction, and used N-gram technique to select
appropriate OpCodes for malware detection. The authors reportedly had a
89% detection accuracy. More recently in 2017, Rhode, Burnap and Jones
[29] presented an approach using RNN and long short term memory (LSTM)
for OpCodes-based malware detection and reportedly obtained a 98% detec-
tion accuracy with a 1.41% false alarm rate. The authors in [40] utilized deep
belief network (DBF) to achieve a 98% accuracy rate in detecting malware
based on OpCodes sequences.

At the time of this research, there has been no existing work that uses
deep learning in [oT malware detection. Therefore, in this paper, we propose
using RNN to detect IoT malware by analyzing IoT application’s OpCodes.
Our approach does not require the modification of OpCodes representation.
The latter is particularly attractive for real-world malware threat hunting.
The focus of this paper is on ARM-based IoT applications since the majority
of Unix System-V IoT devices use ARM processors [5]. We then evaluate
its utility by comparing its performance against those of using conventional
machine learning classifiers — Support Vector Machine (SVM), K-Nearest
Neighbor, Nave Bayes, Decision Tree, and Random Forest, as well as Ada-
Boost (an ensemble learning technique).

In the next section, we will present our proposed approach.

2. Proposed Approach

The proposed IoT malware hunting approach comprises three stages, as
presented in Figure 1. In the first stage, we collected IoT malware and

Feature Deep Threat
HER Paier Extraction Classifier

Unpacking

i

iy Selecting
ELF File Opeode Deep Training
Occurrence
ARM ELF Decompiling > v L M
Files ELF File
Creating
ELF File D_ﬁﬁfﬂﬁm
Feature Vector B

Extracting
Opcode

e

Figure 1: Proposed deep IoT threat hunting approach

benignware samples to build our dataset and extract the OpCodes. A feature
vector file based on the OpCodes was then created for each sample. The final
stage utilized vectored data for deep neural network training and evaluation,
and finally tuning for optimum results.

2.1. Dataset Creation and OpCodes Extraction

As previously discussed, the focus of this research is on ARM-based [oT
applications. Since Unix System-V is Debian-based, our benign samples
were collected from the Linux Debian package repositories (” Linux Packages
Search - https://pkgs.org/”) of applications compatible with Raspberry
Pie II. ARM processors have been widely used in cloud edge devices, and
the Raspberry Pi IT can also be considered as an IoT cloud edge device [28].
There are two major types of ARM processors, as follows:

1. Application processors (e.g. Arm Cortex-A processor) are generally
used in systems with a full-featured operating system (OS), such as
Linux distributions and Windows RT, and on smart mobile devices,
servers, etc.

2. Embedded processors can be found in a number of microcontroller
products, and embedded systems. The Arm Cortex-M processor family,
for example, is one of the market leaders in the microcontroller mar-
ket, and the Cortex-R processor family is typically used in specialized
controllers such hard disk drives.

[7f 45 i ox47
23 4c dec %esp
35 46 inc sesi
4: 01 01 add %eax, (%ecx)
[H 01 00 add %eax, (%eax)

10: 02 00 add (%eax),%al

323 28 00 sub %al, (%eax)

14: 01 00 add %eax, (%eax)

16: 08 00 add %al, (¥eax)

18: de 81 00 00 34 @ rolb 0x340000(%ecx)

1e: 00 00 add %al, (%eax) jg dec inc add add

483 sl b Bt :gfz?gzgii’%“x 2dd sub add add rolb add mov add add add add add add add

27: 04 34 add $0x34,%al jo addl add add and add and add add add add add add add add add
29: 00 20 add %ah, (%eax)

2b: 08 05 00 28 06 id add %al,0x1d062800

31: 00 ia add %b1, (%edx)

33: @0 01 add %al, (%ecx)

35: 00 00 add %al, (%eax)

37: 70 3c jo 0x75

Figure 2: Pruning sequential OpCodes from decompiled IoT applications.

The malware samples were collected by searching for available 32-bit ARM-
based malware in the Virus Total Threat Intelligence platform as of Septem-
ber 30th, 2017 [37]. The collected dataset consisted of 280 malware and 271
benign files. All files were unpacked using Debian installer bundle and then
Object-Dump tool was used to decompile all samples. We wrote a Linux
bash script for the dataset samples’ OpCodes. First, the script extracted
each Debian package files (deb file), then searched for ELF files from the
extracted materials, and finally feeding the object-dump tool to decompile
the ELF files. The decompiled codes were then pruned to extract the se-
quence of OpCodes in each sample. As observed from Figure 2, the output
of object dump tool consists of irrelevant data such as operands and line of
codes. Thus, our batch script was applied on each output in order to ob-
tain a pruned file, which listed the sample OpCodes in a sequential order.
In terms of the instruction set in these type of microprocessors, Cortex-A
has the largest instruction set (OpCodes). Since Raspberry Pie II devices
is based on Cortex-A, the complete set of Opcodes obtained will increase
detection date (in comparsion to, say the Cortex M families since memory
management instruction set is not provided).

2.2. Feature Selection

Here, we used text mining to obtain the features vector from the pruned
OpCodes. We compiled a word dictionary from all unique OpCodes from
our dataset. The final vector comprised 681 possible Opcode indices for each
sample. The resulted featured vectors were also parsed using different met-
rics, namely: binary encoding (takes a value for each OpCode index that
exists in the given sample, otherwise takes the value of 0), Term Frequen-
cylnverse Document Frequency (TF-IDF) [15], and count of occurrences of

ot

adcl opcode vmovdqu opcode

@
B £ &
s & 8

<1
3

Freguency

o 8 8 8 8

Frequency

o 200 400 00 800 1060 0 2 4 6 8 10 12
Value Value

mulb opcode fadds opcode

Freguency
Frequency

00 25 50 75 100 15 150 175 0 2 a 6 8
Value Value

Figure 3: Frequency distributions of selected prominent OpCodes based on IG feature
selector

each feature in each application. Figure 3 shows the distribution frequency of
selected OpCodes in both malware and benign class using Information Gain
(IG) [22] feature selector.

In Equation 1, f denotes the given OpCode in dataset D, ¢ is the number
of classes in the training set (and we had two classes, namely: malicious
and benign), D, is the OpCode stream where feature f exists, and wi is the
proportion of D, to class i.

IG(D, f) = Z —p;Inp; — Z % Z —w; Inw; (1)
i=1

i=1 ve{0.1}

After obtaining each IG, we sorted the values in decreasing order to
identify the most prominent features required in the setting of a threshold
(v > 0.3) —See Tablel.

Since not every sample consists of all OpCodes in their feature vectors,
features may have a zero value. Therefore, we used the word embedding tech-
nique [4] to transform each sample to a numeric sequence representation. One
of the main challenges to solve natural language processing problem is the
“curse of dimensionality” [14]. As we had 681 possible feature values for

6

(vocabulary size x num_dim)
V=D —

Hidden LV

Output Layer (num_words » num_dim)
WxD

Input layer

(num_words * vocabulary_size) WxV

INEEEE

Figure 4: Implementation of embedding layer to mitigate curse of dimensionality

each sample, we utilized Principle Component Analysis (PCA) to mitigate
this issue in our dataset. Also, most of our dataset vectors consisted of zero
value, features sparsity is another issue that we need to address. We did so
by embedding a hidden layer of neurons in the proposed model to reduce
feature space of dataset — see Figure 4.

We also compared each selected OpCode in both malicious and benign
dataset sample, in terms of their occurrence in dataset to obtain a forensic
insight into the analysis of these IoT malwares — see Figure 5. As it can be
observed, the "add” OpCode is most frequently found in both malware and
normal applications. This Opcode along with ”xor, mov, sub and pop” have
a high frequency pattern in our dataset samples.

2.3. Deep Malware Threat Classifier
We utilized the Long Short Term Memory (LSTM) [10], a RNN struc-
ture, to build the deep learning structure and detect IoT malware samples

based on their sequences of OpCodes. This is an approach suggested by
Keras [6] in Weka 3.9 [12]. We also used Google Tensor Flow [1] as the

Table 1: Top 10 selected (OpCodes) features by their IG score.

opcode gainValue
pushl 0.599
fildll 0.548
fcos 0.53
andl 0.527
movups 0.505
fdivrp 0.466
ret 0.472
incl 0.465
cmp 0.459
Xor 0.441

2500000

2000000

E 1500000
51000000 W Benign
u Malware
500000 | |
i |I I“l ||I“II||”II|||I| 0 T ol ok oo e e
BriEpEFCLEIIYEIAREIIoATLIELS
OpCode -
Figure 5: Frequency of occurrences for top 30 OpCodes in collected dataset.

backend structure of the deep learning approach and Scikit-learn [27] as the
machine learning library to perform model evaluation tasks. Since LSTM
structure is capable of learning dependencies between given data, it can be
used in OpCodes sequence based learning too. Although LSTM structure
is a repeating blockchain similar to the RNN architecture, it only has four
neural networks [11]. In the LSTM structure, each memory block contains
the following equations:

i; = (Uihg—1y + Wiz, + b;) (2)

fi = (Ush—1y + Wy, + by) (3)

ot = (Ushg—1) + Woay + b,) (4)

¢y = [i * ci—1) + i x tanh(Uchg—q) + Wexy + be) (5)
hy = oy x tanh(c;) (6)

In the above equations, 4;, f; and o; denote i'* input, forget, output gates,
respectively within (n x d) vector. ¢, is the (n x d) cell state in #** timestamp.
hy is the (n x d) activation of hidden unit in t time in Equations 4 and 5. x; is
(I x d) vector, tanh denotes the hyperbolic tangent function and * operator
is the point-wise (Hadamard) multiplication. U and W are the respective
weight matrix in each cell, and b is the bias parameter.

We also used bidirectional neural networks (BNN) [35] instead of regular
RNN neuron structure. BNN basically splits the regular RNN into two direc-
tions as follows: the forward states are used for positive time direction and
the other direction (i.e. backward states) is used for negative time direction.
BNN structure can be trained as a regular RNN due to the lack of interac-
tions between the two existing directions. However, in the back propagation,
additional computations are required to update neuron weights - see Figure
6.

3. Findings

For the evaluation, we built three LSTM models with different configura-
tions — see Table 2. We denoted data set D as D = {51, Sa, S3,, Si}, and each
sample exists in the dataset defined as S. Every sample has many sets of Op-
code, S = {o1,09,03,,0,}. We also provided an Opcode dictionary I, where
each Opcode was mapped into an integer index I, = {4y, 42, 3,,74}. Then, we
set a window size for an OpCode sequences as W; = {wy, wa, w3, , w;}, where

9

Encoding opeode
Sequences

imp add mov mul xor

Input

Figure 6: LSTM structure for IoT malware detection

w; is a sequence of Opcode with length of j. We defined different window
size (100-250) for each sample Opcodes sequence, as shown in Figure 8. Due
to the size of our dataset, we used 1-55 batch size (min=1, max = one tenth)
for feeding each model to find the optimum parameter. The batch size is the
number of samples, which pass through neural network in each propagation.
A very small batch size may affect the training time due to network conver-
gence upon weight updates. On the other hand, a larger batch size may lead
to over-fitting [21]. We used Adam as the weight updating algorithm [17]
in our configuration. Adam is an implementation of the scholastic gradient
descent that does not require tuning of its parameters [18]. To avoid over-
fitting (a common phenomena in deep neural network model), we applied the
dropout technique. Another issue with the neural network that can result
in overfitting is the limited size of training data (similar to our case) [36].
By omitting some units of the model temporarily drop from the network
with a fixed probability (and in our case, the optimum parameter is 0.2), our
approach achieved a 94% detection rate in unseen samples.

Finally, the following common performance indicators were used for eval-
uating the performance of the classifiers:

10

Table 2: Model configurations used in the evaluations

Hyper Parameter LSTM-1 LSTM-2 LSTM-3
Depth 1 2 3
Bidirectional True True True
No. of neurons 64 192 320
Weight updating algo- Adam Adam Adam
rithm

Dropout rate 0.2 0.2 0.3
Epochs 100 100 100
Weight regularization None None None
Windows size 100 150 100
Batch size 48 46 49

Table 3: Possible parameter values for the model configurations

Hyper Parameter Possible values

Depth 1,2,3

Bidirectional True,False

No. of neurons 1-320

Weight updating algorithm Adam

Dropout rate 0 0.5 (0.1 increments)
Epochs 1-100

Weight regularization None

Windows size 100-250

Batch size 1-55

11

2500000

2000000

1500000
H Unseen Malwares

Frequency

1000000 W Benign Sample

m Dataset Malware

500000

& | Ili |II lli ||i |II -Iﬂ -|I «l .II .Im ull il -Il | _Ii T T

add xor mow push inc and or in pop (bad) adc shb dec sub loope cmp jmp imul popa loop je

OpCode

Figure 7: OpCodes frequency of unseen malwares against collected dataset samples

True Positive (TP): ratio of benign files classified as benign;

True Negative (TIN): ratio of malware correctly detected as malware;
False Positive (FP): ratio of malware identified as benign; and

False Negative (FIN):: ratio of benign files classified as malware.

We then computed the accuracy (ACC) using the following equation:

TP +TN
ACC_FN+TP+FP+TN (")

We utilized 10-fold Cross Validation (CV) on 100 epochs for each config-
uration and also used 100 malware samples’ OpCodes not previously used in
the training to evaluate the utility of our approach. The OpCodes of unseen
samples and dataset samples had different distribution, and the detection
findings was reasonable —see Figure 7. Findings demonstrated that the sec-
ond configuration (LSTM-2) with two layers of LSTM architecture had an
optimum average accuracy of 97%. Figure 9 presents the three LSTM config-
uration models’ accuracy rate with a 10-fold CV. Figure 10 is a comparative
summary, and as observed from Figure 12 and Table 5, the second config-
uration outperformed the other approaches (i.e. achieved 94% accuracy in
classification of new malware samples). We also examined different window
sizes to obtain the optimum parameter for classify the samples. Figure 11
shows the different windows size within their classification result.

12

500 500
400 200 1
3 b}
2 2
= 300 =~ 300
]]
5 g
& % 20
g &
100 100
0 - [
0 2 4 & 80 100 0 M 4 6 B 100 120 140
window size window size
00
€00 600
500 500
%]
2 400 & %0
5 z |
g 300 § 300
g
£]
£ 20 £ 200
100 100
0 0
D 2% s 75 100 15 150 175 200 0 50 100 150 200 50
window size

window size

Figure 8: Two different input sequences windows

10-fold CV

10

<
w

accuracy
= =2
=~ o

0.6 1

— 3-layer LSTM
—— Z-layer LSTM
— l-layer LSTM

05

T T

0 2 < 6 B

fold

Figure 9: Accuracy of three LSTM models configurations

13

10-fold CV

10
0.9 4
0.8
S
o
g
=
15
&
0.7 4
— SVM
- Naive Bayes
—— Decision Tree
06 4 —— Random Forest
= KNN
—-= Multilayer perceptron
Ada-Boost
=== LSTM-2
05 T T T T T
0 2 4 6 8
Fold

Figure 10: Conventional machine learning classifiers vs the second LSTM threat hunting
configuration

100 =

T — \ / \\
70 0

60 !
50
40
30
20
10

Percent

0 20 100 150 200 250 300

Window size
— — Detection rate

Figure 11: Detection rate of the optimum model on different windows sizes

14

Table 4: Accuracy of conventional machine learning classifiers and LSTM models by 10-

fold CV: A comparative summary

Classifier

Accuracy (%)

RandomForest
SVM
NaiveBayes
MLP

KNN
AdaBoost
DecisionTree
LSTM-1
LSTM-2
LSTM-3

92.37
82.21
90.37
88

94
93.64
92.36
94.54
98.18
96.36

Table 5: Accuracy of conventional machine learning classifiers and LSTM models on new

malware: A comparative summary
Classifier

Accuracy (%)

RandomForest
SVM
NaiveBayes
MLP

KNN
AdaBoost
DecisionTree
LSTM-2

87.84
72.12
87.51
59.07
94

84.35
89.36
94

model accuracy

[=]
=

accuracy
=
]

— train

0.3 J ." I test

0 2 40) & 100
Figure 12: Accuracy of the best LSTM configuration against unseen malware

4. Conclusion

[oT-based systems will be increasingly commonplace, with the range and
types of IoT devices rapidly increasing in the foreseeable future. Thus, it is
important to secure such devices, say against malware.

In this paper, we proposed an approach that uses LSTM structures to
hunt IoT malware based on their OpCodes sequence. We then evaluated
our approach using ARM-based IoT applications’ execution OpCodes, and
achieved a detection accuracy of 98% against IoT malware not used in the
training.

While the findings appeared promising, there are many potential exten-
sions to this work. Firstly, the dataset we used is small in comparison to the
real-world cyberthreats. Thus, future research includes implementing the
proposed approach in a real-world environment and evaluating its effective-
ness in identifying both known malware and new malware. We should also
explore and design deep learning techniques that can be used to increase the
accuracy, speed and scalability of IoT malware detection, particularly against
a wider range of IoT devices with different specifications.

Acknolwedgement

The views and opinions expressed in this article are those of authors alone
and not the organizations with whom authors are or have been associated or
supported. We thank VirusTotal for graciously providing us with a private

16

API key to access their data to prepare our dataset. This work is partially
supported by the European Council International Incoming Fellowship (FP7-
PEOPLE-2013-11F) grant, and the last author is supported by the Cloud
Technology Endowed Professorship.

Reference

1]

2]

[5]
[6]
[7]

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfel-
low, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L.,
Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray,
D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, 1., Tal-
war, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals,
O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., Mar.
2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Dis-
tributed Systems. arXiv:1603.04467 [cs]ArXiv: 1603.04467.

URL http://arxiv.org/abs/1603.04467

Azmoodeh, A., Dehghantanha, A., Conti, M., Choo, K.-K. R., Aug.
2017. Detecting crypto-ransomware in IoT networks based on energy
consumption footprint. Journal of Ambient Intelligence and Humanized
Computing, 1-12.

URL https://link.springer.com/article/10.1007/
$12652-017-0558-5

Azmoudech, A., Dehghantanha, A., Choo, K. K. R., 2017. Robust Mal-
ware Detection for Internet Of (Battlefield) Things Devices Using Deep
Eigenspace Learning in press.

Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C., 2003. A necural prob-
abilistic language model. Journal of machine learning research 3 (Feb),
1137-1155.

Brash, D., 2016. The arm architecture version 6.
Chollet, F., 2015. Keras.

Conti, M., Dchghantanha, A., Franke, K., Watson, S., 2018. Internet of
Things security and forensics: Challenges and opportunities. Elsevier.

17

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Demontis, A., Melis, M., Biggio, B., Maiorca, D., Arp, D., Rieck, K.,
Corona, I., Giacinto, G., Roli, F., 2017. Yes, Machine Learning Can
Be More Secure! A Case Study on Android Malware Detection. IEEE
Transactions on Dependable and Secure Computing PP (99), 1-1.

Ding, Y., Dai, W., Yan, S., Zhang, Y., Jul. 2014. Control flow-based
opcode behavior analysis for Malware detection. Computers & Security
44 (Supplement C), 65-74.

URL http://www.sciencedirect.com/science/article/pii/
S0167404814000558

Gers, F. A., Schmidhuber, J., Cummins, F.; 1999. Learning to forget:
Continual prediction with LSTM.

Greff, K., Srivastava, R. K., Koutnk, J., Steunebrink, B. R., Schmidhu-
ber, J., Oct. 2017. LSTM: A Search Space Odyssey. IEEE Transactions
on Neural Networks and Learning Systems 28 (10), 2222-2232.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Wit-
ten, I. H., 2009. The WEKA data mining software: an update. ACM
SIGKDD explorations newsletter 11 (1), 10-18.

Homayoun, S., Dehghantanha, A., Ahmadzadeh, M., Hashemi, S.,
Khayami, R., 2017. Know Abnormal, Find Evil: Frequent Pattern Min-
ing for Ransomware Threat Hunting and Intelligence. IEEE Transac-
tions on Emerging Topics in Computing.

Indyk, P., Motwani, R., 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In: Proceedings of the thirtieth
annual ACM symposium on Theory of computing. ACM, pp. 604—613.

Joachims, T., 1996. A Probabilistic Analysis of the Rocchio Algorithm
with TFIDF for Text Categorization. Tech. rep., Carnegie-mellon univ
pittsburgh pa dept of computer science.

URL http://www.dtic.mil/docs/citations/ADA307731

Ki, Y., Kim, E., Kim, H. K., Jun. 2015. A Novel Approach to Detect
Malware Based on API Call Sequence Analysis. International Journal
of Distributed Sensor Networks 11 (6), 659101.
URL https://doi.org/10.1155/2015/659101

18

mgma, D.; Ba, J., . am: A method for stochastic optimization.
17 Ki D., Ba, J., 2014. Ad A hod f hasti imizati
arXiv preprint arXiv:1412.6980.

[18] Kingma, D. P., Ba, J., 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980.

[19] Kolias, C., Kambourakis, G., Stavrou, A., Voas, J., 2017. DDoS in the
IoT: Mirai and Other Botnets. Computer 50 (7), 80-84.

[20] Kolosnjaji, B., Zarras, A., Webster, G., Eckert, C., Dec. 2016. Deep
Learning for Classification of Malware System Call Sequences. In: Al
2016: Advances in Artificial Intelligence. Lecture Notes in Computer
Science. Springer, Cham, pp. 137-149.

URL https://link.springer.com/chapter/10.1007/
978-3-319-50127-7_11

[21] LeCun, Y. A., Bottou, L., Orr, G. B., Mller, K.-R., 2012. Efficient
backprop. In: Neural networks: Tricks of the trade. Springer, pp. 9-48.

[22] Mitchell, T. M., 1997. Machine learning. 1997. Burr Ridge, IL: McGraw
Hill 45 (37), 870-877.

[23] Narudin, F. A., Feizollah, A., Anuar, N. B., Gani, A., 2016. Evalua-
tion of machine learning classifiers for mobile malware detection. Soft
Computing 20 (1), 343-357.

[24] Nia, A. M., Jha, N. K., 2017. A Comprehensive Study of Security of
Internet-of-Things. IEEE Transactions on Emerging Topics in Comput-
ing PP (99), 1-1.

[25] O’Kane, P., Sezer, S., McLaughlin, K., Jan. 2014. N-gram density based
malware detection. In: 2014 World Symposium on Computer Applica-
tions Research (WSCAR). pp. 1-6.

[26] O’Kane, P., Sezer, S., McLaughlin, K., Im, E. G., Mar. 2013. SVM
Training Phase Reduction Using Dataset Feature Filtering for Malware

Detection. IEEE Transactions on Information Forensics and Security
8 (3), 500-509.

19

[27]

28]

[29]

[30]

[31]

[32]

[33]

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Van-
derplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duch-
esnay, d., Oct. 2011. Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research 12, 28252830.

URL http://jmlr.csail.mit.edu/papers/v12/pedregosalla.html

Puthal, D., Nepal, S., Ranjan, R., Chen, J., 2016. Threats to network-
ing cloud and edge datacenters in the internet of things. IEEE Cloud
Computing 3 (3), 64-71.

Rhode, M., Burnap, P., Jones, K., Aug. 2017. Early Stage Malware Pre-
diction Using Recurrent Neural Networks. arXiv:1708.03513 [cs]ArXiv:
1708.03513.

URL http://arxiv.org/abs/1708.03513

Runwal, N., Low, R. M., Stamp, M., May 2012. Opcode graph similarity
and metamorphic detection. Journal in Computer Virology 8 (1-2),
37-52.

URL https://link.springer.com/article/10.1007/
s11416-012-0160-5

Sam Edwards, Ioannis Profetis, Oct. 2016. Hajime: Analysis of a
decentralized internet worm for IoT devices. Tech. Rep. 1, Rapidity
Networks.

URL https://security.rapiditynetworks.com/publications/
2016-10-16/hajime.pdf

Santos, 1., Brezo, F., Nieves, J., Penya, Y. K., Sanz, B., Laorden,
C., Bringas, P. G., Feb. 2010. Idea: Opcode-Sequence-Based Malware
Detection. In: Engineering Secure Software and Systems. Lecture Notes
in Computer Science. Springer, Berlin, Heidelberg, pp. 35-43.

URL https://link.springer.com/chapter/10.1007/
978-3-642-11747-3_3

Santos, 1., Brezo, F., Ugarte-Pedrero, X., Bringas, P. G., May 2013. Op-
code sequences as representation of executables for data-mining-based

unknown malware detection. Information Sciences 231 (Supplement C),
64-82.

20

[34]

[35]

[36]

[37]

[38]

[39]

[40]

URL http://www.sciencedirect.com/science/article/pii/
50020025511004336

Saxe, J., Berlin, K., Oct. 2015. Deep neural network based malware de-
tection using two dimensional binary program features. In: 2015 10th
International Conference on Malicious and Unwanted Software (MAL-
WARE). pp. 11-20.

Schuster, M., Paliwal, K. K., 1997. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing 45 (11), 2673-2681.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., Salakhutdinov,
R., 2014. Dropout: A simple way to prevent neural networks from over-
fitting. The Journal of Machine Learning Research 15 (1), 1929-1958.

Team, V., 2017. VirusTotal-Free Online Virus, Malware and URL Scan-
ner.

Xiao, L., Li, Y., Huang, X., Du, X., Oct. 2017. Cloud-Based Malware
Detection Game for Mobile Devices with Offloading. IEEE Transactions
on Mobile Computing 16 (10), 2742-2750.

Yuan, Z., Lu, Y., Wang, Z., Xue, Y., 2014. Droid-Sec: deep learning in
android malware detection. In: ACM SIGCOMM Computer Communi-
cation Review. Vol. 44. ACM, pp. 371-372.

URL http://dl.acm.org/citation.cfm?id=2631434

Yuxin, D., Siyi, Z., Jul. 2017. Malware detection based on deep learning
algorithm. Neural Computing and Applications, 1-12.

URL https://link.springer.com/article/10.1007/
s00521-017-3077-6

21

