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& Enzymes

Exploration of Strategies for Mechanism-Based Inhibitor Design
for Family GH99 endo-a-1,2-Mannanases

Pearl Z. Fernandes,[a] Marija Petricevic,[a] Lukasz Sobala,[b] Gideon J. Davies,*[b] and
Spencer J. Williams*[a]

Abstract: endo-a-1,2-Mannosidases and -mannanases, mem-

bers of glycoside hydrolase family 99 (GH99), cleave a-Glc/

Man-1,3-a-Man-OR structures within mammalian N-linked

glycans and fungal a-mannan, respectively. They are pro-

posed to act through a two-step mechanism involving a 1,2-

anhydrosugar “epoxide” intermediate incorporating two

conserved catalytic carboxylates. In the first step, one car-

boxylate acts as a general base to deprotonate the 2-hy-

droxy group adjacent to the fissile glycosidic bond, and the

other provides general acid assistance to the departure of

the aglycon. We report herein the synthesis of two inhibitors

designed to interact with either the general base (a-manno-

syl-1,3-(2-aminodeoxymannojirimycin), Man2NH2DMJ) or the

general acid (a-mannosyl-1,3-mannoimidazole, ManManIm).

Modest affinities were observed for an endo-a-1,2-manna-

nase from Bacteroides thetaiotaomicron. Structural studies re-

vealed that Man2NH2DMJ binds like other iminosugar inhibi-

tors, which suggests that the poor inhibition shown by this

compound is not a result of a failure to achieve the expect-

ed interaction with the general base, but rather the reduc-

tion in basicity of the endocyclic nitrogen caused by intro-

duction of a vicinal, protonated amine at C2. ManManIm

binds with the imidazole headgroup distorted downwards, a

result of an unfavourable interaction with a conserved active

site tyrosine. This study has identified important limitations

associated with mechanism-inspired inhibitor design for

GH99 enzymes.

Introduction

Glycoside hydrolases of the carbohydrate-active enzyme (see

www.cazy.org; www.cazypedia.org)[1,2] family GH99 are endo-

acting mannosidases that cleave a-mannoside linkages within

mammalian high mannose N-glycans (endo-a-1,2-mannosidas-

es)[3–7] and fungal a-mannans (endo-a-1,2-mannanases, Fig-

ure 1A).[8, 9] Inhibitor design for these enzymes is driven by

their potential use to understand glycoprotein biosynthesis

and maturation in the secretory pathway, and to manipulate

fungal mannan degradation processes in the human gut mi-

crobiota. Structural and mechanistic studies of family GH99 en-

zymes suggest that they utilise an unusual mechanism involv-

ing neighbouring group participation by the substrate 2-hy-

droxy to form a 1,2-anhydrosugar intermediate.[10] In this pro-

posed mechanism, a conserved active site residue acts as a

general base to deprotonate the 2-OH group, thereby facilitat-

ing its nucleophilic attack on C1 (Figure 1A). This process has

little biological precedent (for a related proposal see Ref. [11]),

but occurs in the base-promoted solvolysis of a-mannosides.[12]

Efforts to develop inhibitors of GH99 enzymes have relied

upon appending 1,3-linked a-glucosyl (to target mammalian

endo-a-1,2-mannosidases) or 1,3-linked a-mannosyl (to target

bacterial endo-a-1,2-mannanases) groups to various sugar-

shaped heterocycles. Spiro and co-workers reported the dis-

covery of a-glucosyl-1,3-deoxymannojirimycin (GlcDMJ) as an

effective inhibitor of the mammalian enzyme,[13, 14] and follow-

on studies by Fleet and co-workers revealed a-mannosyl-1,3-

deoxymannojirimycin (ManDMJ) to be a slightly weaker inhibi-

tor for this enzyme (Figure 1B).[15] The potency of GlcDMJ

was subsequently exceeded by a-glucosyl-1,3-isofagomine

(GlcIFG).[10,16] Equivalent results have been noted for bacterial

GH99 enzymes, which led to the development of a-mannosyl-

1,3-isofagomine (ManIFG; dissociation constant, KD=0.14 mm

for Bacteroides thetaiotaomicron GH99).[8] Furthermore, reintro-

duction of the “missing” 2-OH of 1,3-isofagomine (IFG) into

ManIFG gave a-mannosyl-1,3-noeuromycin (ManNOE), which

was shown to be five-fold more potent towards the B. thetaio-

taomicron GH99 enzyme (KD=0.03 mm).[17] These compounds

bind in a ground-state 4C1 conformation, as seen in complexes

of inactive enzyme with substrate and thus proposed for the
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conformation of substrate within the Michaelis complex (Fig-

ure 1A), which suggests that potent inhibition of GH99 en-

zymes can be achieved simply by mimicry of the charge in the

transition state.[17]

Separately, Spiro and co-workers showed that the neutral

compound GlcGlucal (Figure 1C) was a modest inhibitor of

mammalian GH99 (rat Golgi preparation, IC50=2.3 mm ; for

GlcDMJ IC50=1.7 mm) ;[14,18] the equivalent molecule targeting

bacterial GH99, ManGlucal, was also a ligand with mildly

potent affinity (KD=15 mm for BtGH99).[17] Computational free-

energy landscape analysis of the preferred conformation of d-

glucal suggested that the inhibition of the glucal-based inhibi-

tors arises from mimicry of the proposed 4E conformation of

the transition state or the proposed 4H5 conformation of the

1,2-anhydro sugar intermediate, but with no contribution from

charge mimicry owing to the neutral nature of this com-

pound.[17]

We report here our efforts to explore two new inhibitor

design strategies for the inhibition of GH99 enzymes. Consider-

ing the role of the basic residue implicated in the 1,2-anhydro-

sugar mechanism of GH99 enzymes, we speculated that intro-

duction of an amino group into the structure of ManDMJ to

give Man-2NH2DMJ (1; Figure 1E) could promote the formation

of a favourable ionic interaction upon inhibitor binding (Fig-

ure 1D). Separately, the glycoimidazole class of inhibitors were

developed following the discovery of the natural product nag-

statin,[19] and are believed to derive their potency from their

ability to mimic the shape of the oxocarbenium-like transition

state as well as from the ability of the imidazole glycosidic ni-

trogen to engage in a hydrogen bond with an appropriately

situated carboxylate residue in the active site (Figure 1D).[20]

For the present work, this would require the synthesis of Man-

ManIm (2 ; Figure 1E). Thus, we report herein on the synthesis

of these two target inhibitors, the structural characterisation of

their binding modes and measurement of their binding con-

stants.

Results and Discussion

Synthesis of Man2NH2DMJ and ManManIm

Man2NH2DMJ (1) was prepared by substitution of known tosy-

late 3[21] with sodium azide in DMF to afford azide 4

(Scheme 1). Coupling of azide 4 with trichloroacetimidate 5[22]

under the agency of TfOH afforded the disaccharide 6 in a

yield of 83%. The deprotection of 6 was achieved in a stepwise

Figure 1. (A) Proposed mechanism for family GH99 enzymes retaining endomannosidases/endomannanases. Only the first half of the catalytic cycle is shown.

(B) Saturated basic heterocyclic inhibitors for GH99 enzymes mimicking the ground state conformation. (C) Neutral glycal inhibitors for GH99 enzymes mim-

icking the transition state. (D) Two inhibitor design concepts explored herein. (E) Structures of Man2NH2DMJ (1) and ManManIm (2).
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manner, as attempts to perform a global deprotection that in-

volved simultaneous removal of benzyloxycarbonyl (Cbz), ben-

zylidene and benzyl ethers as well as the reduction of the

azide was unsuccessful. Deacetylation of 6 (NaOMe/MeOH) and

then hydrolysis of the benzaldehyde acetal (TFA/H2O) afforded

triol 7. The azide group was reduced with dithiothreitol (DTT)/

pyridine buffer to afford amine 8. Removal of the Cbz and

benzyl groups then proceeded smoothly by using H2 and

Pearlman’s catalyst to afford 1.

ManManIm (2) was synthesised through a sequence involv-

ing the preparation of the protected mannoimidazole alcohol

22, followed by elaboration to the disaccharide (Scheme 2).

The known alcohol 9[23] was treated with 2-naphthylmethyl

bromide (NapBr)/NaH in DMF to afford 10. Hydrolysis of the

thioglycoside with N-iodosuccinimide (NIS) in H2O/acetone

gave the hemiacetal 11, which was oxidised to the lactone 12

under Albright–Goldman conditions.[24] For the conversion of

the lactone 12 to the lactam 17 we followed the protocol de-

veloped by Overkleeft et al. ,[25] which involved aminolysis to

the acyclic amide 13, Albright–Goldman oxidation (!14) and

ring closure promoted by ammonia/MeOH (!15). Reduction

of the hemiaminals 15 with NaCNBH3 afforded a 2:1 mixture of

the d-manno and l-gulo lactams, from which the d-manno

lactam 17 was isolated in a yield of 38%. Conversion of the

lactam to the thionolactam 18 was achieved by using Lawes-

son’s reagent and pyridine in toluene. Annulation of the imida-

zole ring was achieved by following the general approach of

Vasella and co-workers.[26] Reaction of the thionolactam 18

with aminoacetaldehyde dimethyl acetal afforded the amidine

19, and imidazole ring formation was achieved by catalysis

with TsOH to provide a mixture of d-gluco and d-manno imida-

Scheme 1. Reagents and conditions: a) NaN3, DMF, reflux, 74%; b) TfOH,

CH2Cl2, @30 to 0 8C, 87%; c) i. NaOMe, MeOH, ii. 9:1 TFA/H2O, 83%; d) DTT,

pyr, pH 9.2 NaHCO3/Na2CO3, 80%; e) H2, Pd(OH)2/C, aq. HCl, 2:2:1 EtOAc/

MeOH/H2O, 70%.

Scheme 2. A) Preparation of imidazole alcohol 22. Reagents and conditions: a) NapBr, NaH, DMF, 86%; b) NIS, H2O, acetone, 0 8C, 99%; c) DMSO, Ac2O; d) NH3,

THF, reflux; e) DMSO, Ac2O; f) NH3, MeOH, 88% over steps c–f ; g) HCO2H, NaBH3(CN), 38% d-manno, 33% l-gulo ; h) Lawesson’s reagent, pyridine, 4 a molecu-

lar sieves, toluene, 93%; i) H2NCH2CH(OMe)2 ; j) TsOH·H2O, toluene, 60 8C, yields over steps i and j: 42% d-gluco, 32% d-manno ; k) DDQ, CH2Cl2/H2O, 67%.

B) Synthesis of ManManIm (2). Reagents and conditions: l) TfOH, 4 a molecular sieves, toluene, @20 8C, 47%; m) K2CO3/MeOH, 46%; n) H2 (34 bar), Pd(OH)2/C,

AcOH, EtOAc, MeOH, H2O, 48%.
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zoles in a 2:1 ratio, from which the d-manno imidazole 21 was

isolated in a yield of 32% over two steps. The naphthylmethyl

group was removed under the agency of 2,3-dichloro-5,6-di-

cyano-1,4-benzoquinone (DDQ) and CH2Cl2/H2O to afford the

alcohol 22.

Coupling of 22 with trichloroacetimidate 5[22] catalysed by

TfOH afforded the disaccharide 23 in a yield of 47%. Deprotec-

tion was achieved in two steps under conditions chosen to

avoid epimerisation at C2. Treatment of 23 with K2CO3/MeOH

afforded the alcohol 24, and hydrogenation with Pearlman’s

catalyst afforded 2.

Binding affinities and 3D structures

Isothermal titration calorimetry (ITC) was used to assess the

binding of 1 and 2 to a bacterial endomannosidase. Titration

of BtGH99 with Man2NH2DMJ (1) revealed binding with KD=

97.7:4.9 mm (Figure 2), whereas no binding with ManManIm

(2) was evident by ITC. Placed in context, 1 has a poorer bind-

ing affinity towards BtGH99 than GlcDMJ (KD=24 mm) ;[10] the

equivalent data is not available for ManDMJ, but as this

enzyme prefers to bind Man-configured substrates, the differ-

ence would be expected to be even greater.

Three-dimensional structures were obtained for 1 and 2

bound to the endo-a-1,2-mannanase BxGH99 from Bacteroides

xylanisolvens, which is closely related to BtGH99 but more ame-

nable to complex formation. These complexes diffracted to a

resolution of 1.1 and 1.3 a, respectively (Table 1). Occupancy of

the active site for the complex with 1 was essentially complete,

whereas that with 2, with prolonged soaking, was estimated to

be 80%, likely a consequence of the poor affinity of the com-

pound for the enzyme. As predicted, both compounds bound

in the @2/@1 subsites of the enzyme (sub-site nomenclature

from Ref. [27]) and will be discussed in turn.

Structural analysis of the BxGH99–1 complex (Figure 3A) re-

vealed the piperidine ring in a 4C1 conformation, which match-

es that seen for complexes of the wild-type enzyme with

GlcDMJ and isofagomine-based inhibitors[8, 10, 17] as well as that

of a disabled mutant with substrate.[8] The 2-amino group is

situated appropriately to interact with the E333 residue, that

which is proposed to act as a general base/acid through de-

protonation of the 2-hydroxy group. Overlay of this complex

with that of BxGH99–GlcDMJ reported previously[10] revealed

that the positioning and conformations of the rings in the @1

and @2 sub-sites are essentially identical, and that no amino

acid residues undergo significant movement (Figure 3C). In

particular, the E333···O2 and E333···N2 distances are 2.54 and

2.59 a, respectively. The poor binding affinity of 1 compared

with GlcDMJ therefore does not result from incorrect binding

of the inhibitor, and must instead reflect a failure to fully capi-

talise on the proposed interactions. It is widely acknowledged

that iminosugars such as DMJ (and thus GlcDMJ) achieve inhib-

ition through binding to glycosidases in their protonated

Table 1. Data collection and refinement statistics for the complexes of

BxGH99 with 1 and 2.

BxGH99 complexed

with aminoDMJ (1)

BxGH99 complexed

with ManManIm (2)

Data collection

Space group I4 I4

Cell dimensions

a [a] 108.1 108.6

b [a] 108.1 108.6

c [a] 67.5 67.8

a [8] 90 90

b [8] 90 90

g [8] 90 90

resolution [a] 76.44–1.13 (1.15–1.13)[a] 76.81–1.30 (1.32–1.30)[a]

Rmerge 0.069 (1.501) 0.054 (1.224)

Rpim 0.026 (0.735) 0.020 (0.610)

CC(1/2) 0.999 (0.400) (0.999) 0.486

I/sI 10.2 (1.0) 14.0 (0.9)

completeness [%] 99.1 (86.0) 99.5 (92.7)

redundancy 7.5 (4.8) 7.5 (4.6)

Refinement

resolution [a] 76.44–1.13 76.81–1.30

no. reflections

all/free

143544/7133 96144/4810

Rwork/Rfree 0.122/0.144 0.134/0.162

no. atoms

protein 3188 3146

ligand/ion 22 25

water 467 427

B factors [a2]

protein 17.2 20.5

ligand/ion 20.3 22.4

water 35.1 36.7

r.m.s. deviations

bond lengths [a] 0.0101 0.011

bond angles [8] 1.495 1.497

PDB ID 6FAM 6FAR

[a] Values in parentheses are for the highest-resolution shell.

Figure 2. Isothermal titration calorimetry thermogram showing the binding

of Man2NH2DMJ (1) to Bacteroides thetaiotaomicron endo-a-1,2-mannanase

(BtGH99). DP=differential power. Binding parameters KD=97.7:4.9 mm,

N=1 (fixed) and DH=@5.9:0.1 kcalmol@1.
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form;[28] this is supported by first-principles consideration of

the basicity of these inhibitors and the relevant pKa values of

the catalytic residues, as well as by studies of the pH depend-

ence of inhibition. In the case of 1, there are two basic nitro-

gen residues. However, for vicinal diamines, protonation at one

nitrogen has a profound effect on the pKa value at the second

nitrogen; in acyclic systems this effect has been estimated to

be DpKa=3.6 units for NH3
+ and NR3

+ .[29] Moreover, in cyclic

systems there are stereoelectronic and conformational contri-

butions, notable examples for various diamines (pKa1, pKa2) in-

clude piperazine (9.8, 5.7),[29] cis-1,3-diaminocyclohexane (10.3,

8.3)[30] and trans-1,3-diaminocyclohexane (10.4, 8.5).[30] Finally,

vicinal hydroxy groups can also perturb amine pKa values; in

Man2NH2DMJ, O4 is antiperiplanar with respect to the endocy-

clic nitrogen and would be expected to reduce its basicity by

around 1.3 pKa units.
[30] Collectively, this analysis would suggest

that N2 is protonated by the general acid E333, and that it is

unlikely that the dication is formed, and therefore

Man2NH2DMJ fails to appropriately mimic an oxocarbenium-

like transition state. A related example of this phenomenon

was reported in which introduction of a second amine vicinal

to a pre-existing one in apramycin resulted in a dramatic loss

of binding to a bacterial ribosome of approximately 100-

fold.[31] Additionally, the proposed binding mode of 1 shown in

Figure 1D highlights the fact that the 2-amino group has addi-

tional hydrogen substituents that may cause an energy penalty

upon binding of the inhibitor.

Structural analysis of the BxGH99–2 complex revealed the pi-

peridine ring of the mannoimidazole moiety to be in an un-

usual 2H3/E3 conformation (Figure 3B).[32] Overlay of the com-

plex with that of BxGH99–GlcDMJ[10] revealed that although

the @2 sugar residues occupy similar positions, the mannoimi-

dazole headgroup is atypically positioned such that the hetero-

cycle projects downward into the active site, below the plane

of the piperidine ring of the GlcDMJ complex (Figure 3D). In

this case the E336···N (imidazole ring) distance is 2.65 a, similar

to that seen in related glycoimidazole complexes.[33] In the

original formulation by Heightman and Vasella, b-equatorial

glycosidases were proposed to perform protonation from the

side, in what was termed “lateral protonation”, with the acid

either on the same side as the endocyclic oxygen (syn) or op-

posed to it (anti).[20] In a subsequent publication Nerinckx et al.

formalised this concept by dividing the space around the @1

sugar into anti and syn hemispheres through a plane defined

by the glycosidic oxygen, C1 and H1 of the sugar residue.[34]

Analysis of complexes of various anti-protonating glycosidases

revealed that the acid/base or acid residues responsible for

protonating the leaving group are in fact not universally locat-

ed lateral to the mean plane of the sugar, but are more com-

monly positioned above or below it, so as to better protonate

the leaving group oxygen. However, this does not prevent gly-

coimidazoles binding in normal orientations and engaging in

hydrogen-bonding interactions with the imidazole nitrogen.

For example, in the case of the retaining GH116 b-glucosidase

from Thermoanaerobacterium xylanolyticum, the acid/base is

positioned above the mean plane of the sugar, but a normal

orientation and conformation of glucoimidazole was ob-

served.[35] Mannoimidazole also binds in the normal fashion to

an inverting GH47 a-mannosidase from Caulibacter sp. in

which the acid is below the mean plane of the inhibitor, but

instead the inhibitor establishes an interaction with another

conserved active site carboxylic acid that lies lateral to the imi-

dazole.[36] BxGH99 is an anti-protonating enzyme with its gen-

eral acid/base Glu336 positioned below the plane of the ring

to facilitate classical anti protonation of the axial glycosidic

oxygen (O5-C1-O1 angle is approximately 608). The distorted

mode of binding of the mannoimidazole moiety of 2 seems to

be a consequence of the imidazole binding to maximise this

interaction with the acid/base. Close examination of the active

site of BxGH99 revealed that if the ManIm moiety were to be

shifted up to the same position as that of the piperidine of

GlcDMJ, a steric interaction would result with Tyr252, a con-

served residue. In fact, the distance between the imidazole C=

C bond and Tyr252 Ce is only 3.2 a, which causes the wwPDB

validation software[37] to report H/H steric clashes in this

region. In fact, a ternary complex of GlcDMJ and a-1,2-manno-

biose highlighted the fact that the active site of the enzyme in-

volves a sharp bend in the @1 and +1 sub-sites. The failure of

2 to bind in a typical position in the @1 sub-site is thus likely a

result of a failure to accommodate the imidazole ring owing to

the location of Tyr252.

Conclusions

We have reported here the design and synthesis of two “mech-

anism-based” inhibitors of family GH99 endomannanases. Al-

though Man2NH2DMJ (1) bound to the bacterial endomanna-

nase BxGH99 in the expected manner, its affinity for BtGH99

did not exceed that seen for GlcDMJ. This appears to be a

result of the perturbing effect of the 2-amino substituent,

which reduces the basicity of the endocyclic nitrogen and its

ability to be protonated in the active site and thereby resem-

ble the oxocarbenium-like transition state. On the other hand,

the binding of ManManIm (2) to BtGH99 could not be detect-

Figure 3. Three-dimensional structures of BtGH99 complexed with

A) Man2NH2DMJ (1) and B) ManManIm (2). Electron density maps are maxi-

mum likelihood/sA weight Fo@Fc difference syntheses contoured at 0.5 and

0.3 ea@3 for panels A and B, respectively, visible before refining the structure

model with the ligand added. (C) Overlay of Man2NH2DMJ (1) with GlcDMJ

(PDB code 4FAM). (D) Overlay of ManManIm (2) with GlcDMJ (PDB code

4FAR).
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ed by ITC and, consistent with this, the X-ray structure of 2

complexed with BxGH99 displayed incomplete occupancy. The

poor binding of this inhibitor appears to be a consequence of

an inability of the active site of BxGH99 to accommodate the

annulated imidazole ring because of an interaction with a con-

served Tyr active-site residue. This study provides important in-

sights that will inform future strategies for the development of

mechanism-inspired and transition-state mimicking inhibitors

of GH99 enzymes.

Experimental Section

General : 1H and 13C NMR spectra were recorded by using 400, 500

or 600 MHz Varian INOVA spectrometers. All signals were refer-

enced to TMS (d=0.00 ppm) or solvent peaks (CDCl3 : d=7.26 ppm

for 1H and 77.16 ppm for 13C; D2O: d=4.80 ppm for 1H and TMS:

d=0.00 ppm for 13C; [D4]MeOH: d=3.49 ppm for 1H and d=

49.0 ppm for 13C). Melting points were obtained by using a Reich-

ert-Jung hot-stage apparatus. TLC analysis was performed with alu-

minium-backed Merck Silica Gel 60 F254 sheets, detection was ach-

ieved by using UV light, 5% H2SO4 in MeOH or ceric ammonium

molybdate (“Hanessian’s stain”) with charring as necessary. Flash

chromatography was performed by using Geduran silica gel ac-

cording to the method of Still et al.[38] Dry CH2Cl2, THF and Et2O

were obtained from a dry solvent apparatus (Glass Contour of SG

Water, Nashua).[39] DMF and DMSO were dried over 4 a molecular

sieves.

2-Azido-4,6-O-benzylidene-N-benzyloxycarbonyl-1,2,5-trideoxy-

1,5-imino-d-mannitol (4): Sodium azide (57.8 mg, 0.890 mmol)

was added to a solution of 4,6-O-[(R)-benzylidene]-N-benzyloxycar-

bonyl-1,5-dideoxy-2-O-(p-toluenesulfony1)-d-glucitol[21] (3 ; 120 mg,

0.222 mmol) in DMF (1 mL). The suspension was heated at reflux

for 18 h, poured into ice, extracted into EtOAc (3V20 mL), washed

with brine (2V20 mL), dried over anhydrous MgSO4 and evaporat-

ed to dryness. Column chromatography (AcOEt/pet. ether 40-60,

1:5) gave the azide 4 (67.7 mg, 74%) as a white solid. [a]24D =@21.9

(c=1.12 in CHCl3) ;
1H NMR (CDCl3, 500 MHz): d=2.74 (s, 1H; NH),

2.82 (dd, J=1.6, 14.5 Hz, 1H; 1-Ha), 3.06 (td, J=4.6, 10.2 Hz, 1H; 5-

H), 3.74 (dd, J=3.8, 9.2 Hz, 1H; 3-H), 3.79–3.93 (m, 2H; 2,4-H), 4.31

(dd, J=3.0, 14.5 Hz, 1H; 1-Hb) 4.46 (t, J=11 Hz, 1H; 6-Ha), 4.66 (dd,

J=4.6, 11.6 Hz, 1H; 6-Hb), 5.01 (d, J=3.1 Hz, 2H; CH2), 5.48 ppm (s,

1H; CH); 13C NMR (CDCl3, 125 MHz): d=48.1, 55.8, 60.1, 67.8, 69.2,

73.6, 78.2 (7C; C1–C6, CH2), 101.8 (1C; CH), 126.3, 128.3, 128.4,

128.5, 128.7, 129.4, 136.0, 137.3 (12C; Ph), 155.0 ppm (1C; C=O);

HRMS (ESI, +ve): m/z calcd for C21H22N4O5 : 411.1663 [M++H]+ ;

found: 411.1664.

2-O-Acetyl-3,4,6-tri-O-benzyl-a-d-mannopyranosyl-(1!3)-2-

azido-4,6-O-benzylidene-N-benzyloxycarbonyl-1,2,5-trideoxy-1,5-

imino-d-mannitol (6): TfOH (0.043 mL, 0.0049 mmol) was added to

a mixture of acceptor 4 (20 mg, 0.049 mmol) and 2-O-acetyl-3,4,6-

tri-O-benzyl-a-d-mannopyranosyl trichloroacetimidate (5 ;[22] 37 mg,

0.058) in CH2Cl2 over 4 a sieves at @30 8C, The mixture was stirred

for 30 min, warmed to 0 8C and quenched with Et3N (7 mL,

0.05 mmol) and then concentrated under reduced pressure. Flash

chromatography (EtOAc/pet. ether, 25:75) gave the disaccharide 6

(37.4 mg, 87%) as a colourless oil. [a]24D =@4.2 (c=0.89 in CHCl3) ;
1H NMR (CDCl3, 500 MHz): d=2.80 (dd, J1,1=14.4, J1,2=0.9 Hz, 1H;

1-Ha), 3.15 (dt, J=10.1, 4.6 Hz, 1H; 5-H), 3.70–4.00 (m, 6H; 3,4,4’,5’-

H, 6“-Ha, 6’-Hb), 4.03 (dd, J=9.3, 3.4 Hz, 1 H; 3’-H), 4.17–4.20 (m,

1H; 2-H), 4.28 (dd, J=14.5, 2.2 Hz, 1H; 1-Hb), 4.47–4.52 (m, 3H; 3V

CH2Ph), 4.60–4.64 (m, 2H; 6-Ha, CH2Ph), 4.69 (d, J=11 Hz, 1H;

CH2Ph), 4.76 (dd, J=11.6, 4.5 Hz, 1H; 6-Hb), 4.86 (d, J=11 Hz, 1H;

CH2Ph), 5.12 (d, J=3.6 Hz, 2H; CH2), 5.28 (d, J=1.6 Hz, 1H; 1’-H),

5.59 (dd, J=3.3, 1.8 Hz, 1H; 2’-H), 5.64 (s, 1H; CH), 7.17–7.46 ppm

(m, 25H; Ph); 13C NMR (CDCl3, 125 MHz): d=48.3 (1C; C-1), 56.3

(1C; C-5), 60.0, 72.7, 74.4, 77.8 (4C; C-3,4,4’,5), 67.7 (1C; CH2), 68.5

(1C; C-2’), 69.1 (1C; C-6), 69.3 (1C; C-6’), 72.2, 73.6, 75.1 (3C;

CH2Ph), 78.1 (1C; C-2), 78.2 (1C; C-3’), 99.5 (1C; C-1’), 100.90 (1C;

CH), 100.92, 126.0, 127.77, 127.79, 127.83, 127.9, 128.0, 128.2,

128.28, 128.29, 128.41, 128.44, 128.5, 128.7, 128.9 ppm (30C; Ph);

HRMS (ESI, +ve): m/z calcd for C50H52N4O11: 907.3525 [M++Na]+ ;

found: 907.3544.

3,4,6-Tri-O-benzyl-a-d-mannopyranosyl-(1!3)-2-azido-N-benzyl-

oxycarbonyl-1,2,5-trideoxy-1,5-imino-d-mannitol (7): A solution

of sodium methoxide in methanol (0.1m, 10 mL, 1 mmol) was

added to 6 (60 mg, 0.068 mmol) in methanol (0.5 mL) and the mix-

ture was stirred for 1 h and then concentrated under reduced pres-

sure to give an alcohol, which was used without purification. TFA/

H2O (9:1, 100 mL) was added to the crude alcohol and the mixture

was stirred for 30 min, concentrated and azeotroped with toluene

(3V10 mL). Flash chromatography (EtOAc/pet. ether, 9:1) gave the

triol 7 (42.5 mg, 83%,). [a]25D =44.6 (c=1.03 in MeOH); 1H NMR

(500 MHz, CD3OD): d=2.67–4.20 (13H; 1-Ha–6-Hb, 2’-H–6’-Hb), 4.43–

4.46 (m, 2H; 2VCH2Ph), 4.52 (d, J=12.0 Hz, 1H; CH2Ph), 4.70 (d, J=

12.7 Hz, 1H; CH2Ph), 4.72 (d, J=11.2 Hz, 1H; CH2Ph), 4.89 (d, J=

2.1 Hz, 1H; 1’-H), 5.12 (s, 2H; CH2), 5.15 (app. s, 1H; 1’-H), 7.03–

7.42 ppm (m, 20H; 4VPh); 13C NMR (CDCl3, 125 MHz): d=59.5,

68.0, 68.9, 69.0, 71.9, 72.5, 73.5, 74.2, 74.9, 79.5 (13C; C-

1,2,3,4,5,6,1’,2’,3’,4’,5’,6’, CH2) 127.8, 127.9, 128.0, 128.1, 128.16,

128.19, 128.4, 128.5, 128.6, 128.7, 137.9, 138.0, 138.3 (24C; Ph),

156.5 ppm (1C; C=O); HRMS (ESI, +ve): m/z calcd for C41H46N4O10 :

755.3287 [M++H]+ ; found: 755.3300.

3,4,6-Tri-O-benzyl-a-d-mannopyranosyl-(1!3)-2-amino-N-

benzyloxycarbonyl-1,2,5-trideoxy-1,5-imino-d-mannitol (8): DTT

(51 mg, 0.331 mmol) was added to a solution of azide 7 (25 mg,

0.0331 mmol) in pyridine (1 mL) and NaHCO3/H2CO3 buffer

(0.625 mL, pH 9.16). The mixture was stirred at room temperature

for 4 h, concentrated and azeotroped with toluene (5V10 mL).

Flash chromatography (EtOAc/MeOH/H2O, 94:4:2) gave the

amine 8 (80%, 19.2 mg). 1H NMR (500 MHz, CD3OD): d=2.89 (t, J=

12.4 Hz, 1H; 2-H), 3.21–4.13 (13C; m, 1-Ha, 1-Hb, 3,5-H, 6-Ha, 6-Hb,

1’–6b’-H), 4.36 (t, J=7.8 Hz, 1H; 4-H),4.46–4.54 (m, 2H; 2VCH2Ph),

4.58 (d, J=12.0 Hz, 1H; CH2Ph), 4.66 (d, J=11.8 Hz, 1H; CH2Ph),

4.77–4.81 (m, 2H; 2VCH2Ph), 4.98 (d, J=2.5 Hz, 1H; 1’-H), 5.15 (s,

2H; CH2), 7.16–7.47 ppm (m, 20H; Ph); 13C NMR (CDCl3, 125 MHz):

d=46.8, 59.9, 65.6, 68.5, 69.4, 70.4, 72.6, 73.7, 74.4, 75.4, 75.7, 78.1,

80.1, 100.8 (16C; C-1–6, C1’–6’, 4VCH2), 128.81, 128.84, 129.2,

129.28, 128.30, 129.3, 129.4, 129.5, 138.0, 139.3, 139.5, 139.6 ppm

(24C; Ph); HRMS (ESI, +ve): m/z calcd for C41H48N2O10 : 729.3385

[M++H]+ ; found: 729.3398.

a-d-Mannopyranosyl-(1!3)-2-amino-1,2,5-trideoxy-1,5-imino-d-

mannitol (1): The triol 8 (19.2 mg, 0.0264 mmol) in EtOAc/MeOH/

H2O (2:2:1, 3 mL) and 10% HCl in methanol (0.3 mL) was treated

with Pd(OH)2/C (50 mg) and H2 (20 atm, 18 h). The suspension was

filtered, concentrated and purified with cation and anion resin

(eluted with aqueous NH3) to give ManNH2DMJ (1; 70%, 6.02 mg)

as a colourless oil. [a]25D =17.2 (c=0.08 in H2O);
1H NMR (500 MHz,

D2O): d=2.78–2.84 ( m, 1H; 5-H), 3.09 (dd, J1a,1b=14.0, J1a,2=2.1 Hz,

1H; 1-Ha), 3.25 (dd, J1a,1b=14.0, J1a,2=3.2 Hz, 1H; 1-Hb), 3.62–3.95

(m, 9H; 2,3,4,4’,5’-H, 6-Ha, 6’-Ha, 6-Hb, 6’-Hb), 3.98 (dd, J3’,4’=9.2,

J2’,3’=4.3 Hz, 1H; 3’-H), 4.09 (dd, J2’,3’=3.3, J1’,2’=1.8 Hz, 1H; 2’-H),

5.24 ppm (d, J1’,2’=1.6 Hz, 1H; 1’-H); 13C NMR (125 MHz, D2O): d=

44.5, 50.4, 60.0, 60.8, 61.0, 66.6, 67.3, 69.7, 70.1, 73.7, 77.3,

101.6 ppm; HRMS (ESI, +ve): m/z calcd for C12H24N2O8 : 325.1605

[M++H]+ ; found: 325.1606.
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4-Methylphenyl 2,4,6-tri-O-benzyl-3-O-(2-naphthylmethyl)-1-

thio-a-d-mannopyranoside (10): A dry solution of the alcohol 9[23]

(167 mg, 0.30 mmol) in DMF (5 mL) was cooled to 0 8C. The solu-

tion was charged with NaH (60% dispersion in mineral oil, 36 mg,

0.9 mmol) and the mixture stirred for 30 min. 2-Bromomethylnaph-

thalene (79.6 mg, 0.36 mmol) was added and the mixture stirred

overnight. The mixture was diluted with Et2O (20 mL), poured into

ice/water and washed with water (3V20 mL) and brine (1V20 mL).

The organic extracts were dried (MgSO4), the solvent was removed

under reduced pressure and the resulting residue was subjected to

flash chromatography (EtOAc/pet. ether, 15:85) to give the protect-

ed thioglycoside 10 (179.3 mg, 86%) as a colourless oil. [a]24D = +

65 (c=0.69 in CHCl3) ;
1H NMR (500 MHz, CDCl3): d=2.28 (s, 3H;

TolMe), 3.78 (dd, J5,6a=1.8, J6a,6b=10.9 Hz, 1H; 6-Ha), 3.87 (dd, J5,6b=

5.2, J6a,6b=10.9 Hz, 1H; 6-Hb), 3.97 (dd, J2,3=3.0, J3,4=9.3 Hz, 1H; 3-

H), 4.04 (dd, J1,2=3.0, J2,3=1.8 Hz, 1H; 2-H), 4.11 (m, 1H; 4-H), 4.33

(ddd, J4,5=9.8, J5,6a=5.1, J5,6b=1.6 Hz, 1H; 5-H), 4.49 (d, J=11.9 Hz,

1H; CH2Ph), 4.57–4.67 (m, 3H; 3VCH2Ph), 4.74 (m, 3H; CH2Ph, 2V

CH2Nap), 4.96 (d, J=10.9 Hz, 1H; CH2Ph), 5.58 (d, J1,2=1.5 Hz, 1H;

1-H), 7.02 (app. d, J=7.9 Hz, 2H; Tol), 7.21–7.37 (m, 17H; 3VPh,

Tol), 7.44–7.47 (m, 3H; Nap), 7.74–7.83 ppm (m, 4 H; Nap); 13C NMR

(125 MHz, CDCl3): d=21.2 (1C; TolMe), 69.3 (1C; C-6), 71.9 (1C;

CH2Ph), 72.2 (1C; CH2Nap), 72.8 (1C; C-5), 73.3 (1C; CH2Ph), 75.1

(1C; C-4), 75.2 (1C; CH2Ph), 76.3 (1C; C-2), 80.3 (1C; C-3), 86.1 (1C;

C-1), 125.9–126.5 (4C; Nap), 127.5–128.4 (18C; 3VPh, Nap), 129.8

(2C; Tol), 132.3 (2C; Tol), 133.4, 135.8, 137.6, 138.0, 138.5,

138.6 ppm (6C; Cq) ; HRMS (ESI, +ve): m/z calcd for C45H44O5S:

719.2802 [M++Na]+ ; found: 719.2809.

2,4,6-Tri-O-benzyl-3-O-(2-naphthylmethyl)-a-d-mannopyranose

(11): N-Iodosuccinimide (216 mg, 0.961 mmol) was added to a solu-

tion of the thioglycoside 10 (447 mg, 0.641 mmol) in acetone (1%

aq., 10 mL) at 0 8C and left to stir for 2.5 h. The solution was

quenched with aq. Na2S2O3 (0.5m, 10 mL), diluted with EtOAc

(20 mL) and washed with aq. Na2S2O3 (0.5m, 3V20 mL), NaHCO3

(2V20 mL) and brine (1V20 mL). The organic extracts were dried

(MgSO4), the solvent was removed under reduced pressure and

the resulting residue was subjected to flash chromatography

(EtOAc/pet. ether/Et3N, 30:69.5:0.5) to afford the hemiacetals 11

(344 mg, 91%; a/b 3.3:1) as a white powder. a anomer: 1H NMR

(500 MHz, CDCl3): d=3.69 (dd, J5,6a=6.6, J6a,6b=10.5 Hz, 1H; 6-Ha),

3.74 (dd, J5,6b=2.0, J6a,6b=10.4 Hz, 1H; 6-Hb), 3.83 (dd, J1,2=2.0,

J2,3=2.8 Hz, 1H; 2-H), 3.91 (t, J3,4= J4,5=9.6 Hz, 1H; 4-H), 4.05 (dd,

J2,3=3.0, J3,4=9.4 Hz, 1H; 3-H), 4.10 (ddd, J4,5=8.7, J5,6a=5.8, J5,6b=

1.9 Hz, 1H; 5-H), 4.51–4.59 (m, 3H; 3VCH2Ph), 4.74–4.76 (m, 4H;

2VCH2Ph, 2VCH2Nap), 4.94 (d, J=11.0 Hz, 1H; CH2Ph), 5.27 (d,

J1,2=1.8 Hz, 1H; 1-H), 7.18–7.41 (m, 17H; 3VPh), 7.45–7.47 (m, 3H;

Nap), 7.72–7.83 ppm (m, 4H; Nap); 13C NMR (125 MHz, CDCl3): d=

69.7 (1C; C-6), 71.4 (1C; C-5), 72.2 (1C; CH2Nap), 72.7 (1C; CH2Ph),

73.3 (1C; CH2Ph), 75.1 (1C; CH2Ph), 75.1 (1C; C-2), 75.3 (1C; C-4),

79.8 (1C; C-3), 92.6 (1C; C-1), 125.8–126.3 (4C; Nap), 127.6–128.5

(18C; 3VPh, Nap), 133.0, 133.4, 136.1, 138.0, 138.5 ppm (6C; Cq) ;

HRMS (ESI, +ve): m/z calcd for C38H38O6 : 608.3007 [M++NH4]
+ ;

found: 608.3007.

2,4,6-Tri-O-benzyl-3-O-(2-naphthylmethyl)-d-mannonolactone

(12): A solution of the hemiacetal 11 (742 mg, 1.26 mmol) in acetic

anhydride (6.1 mL) and dry DMSO (6.6 mL) was stirred under N2 for

22 h. The mixture was diluted with EtOAc (20 mL), quenched with

ice and washed with water (3V20 mL) and brine (1V20 mL). The

organic extracts were dried (MgSO4) and the solvent was evaporat-

ed. Azeotropic toluene was used to remove any residual AcOH to

afford the crude lactone 12 (823 mg), which was used directly in

the next step. A portion of 12 obtained from a separate experi-

ment was purified by flash chromatography (EtOAc/pet. ether, 1:9)

to yield analytically pure 12 as a colourless oil. [a]25D = +4.05 (c=

0.44 in CHCl3) ;
1H NMR (500 MHz, CDCl3): d=3.61 (m, 2H; 6-Ha, 6-

Hb), 3.80 (dd, J2,3=1.5, J3,4=7.2 Hz, 1H; 3-H), 4.09 (dd, J1,2=2.6,

J2,3=1.6 Hz, 1H; 2-H), 4.23 (m, 2H; 5-H, 4-H), 4.38 (d, J=2.6 Hz, 1H;

CH2Ph), 4.48 (app. d, 2H; 2VCH2Ph), 4.56 (d, J=11.8 Hz, 1H;

CH2Ph), 4.77 (d, J=12.5 Hz, 1H; CH2Ph), 4.94 (d, J=12.5 Hz, 1H;

CH2Ph), 5.06 (m, 2H; 2VCH2Nap), 6.96–7.45 (m, 18H; 3VPh, Nap),

7.69–7.78 ppm (m, 4H; Nap); 13C NMR (125 MHz, CDCl3): d=69.0

(1C; C-6), 71.6 (1C; C-4), 72.8 (1C; CH2Ph), 72.9 (1C; CH2Nap), 73.3

(1C; CH2Ph), 75.5 (1C; CH2Ph), 75.8 (1C; C-3), 76.5 (1C; C-2), 78.4

(1C; C-5), 125.9–126.1 (3C; Nap), 126.9 (1C; Nap), 127.6–128.9

(18C; 3VPh, Nap), 132.9, 133.0, 135.0, 136.7, 137.3, 137.6 (6C; Cq),

169.3ppm (1C; C=O); HRMS (ESI, +ve): m/z calcd for C38H36O6 :

606.2850 [M++NH4]
+ ; found: 606.2853.

2,4,6-Tri-O-benzyl-3-O-(2-naphthylmethyl)-d-mannonamide (13):

A dry-ice/acetone cold finger cooling trap was used to condense

ammonia (50 mL) into a solution of the crude lactone 12 (823 mg)

in dry THF (30 mL) at @78 8C. The solution was allowed to reflux at

0 8C for 4 h. The mixture was then evaporated to dryness to afford

the crude amide 13 (771 mg), which was used directly in the next

step. A portion obtained from an independent experiment was pu-

rified by flash chromatography (EtOAc/pet. ether, 3:2) to yield ana-

lytically pure 13 as a yellow solid. M.p. 120 8C; [a]25D = +7.21 (c=

0.41 in CHCl3) ;
1H NMR (500 MHz, CDCl3): d=3.20 (d, J5,OH=6.2 Hz,

1H; OH), 3.61 (m, 2H; 6-Ha, 6-Hb), 3.87 (dd, J3,4=5.9, J4,5=7.3 Hz,

1H; 4-H), 3.98 (m, 1H; 5-H), 4.13 (dd, J2,3=3.5, J3,4=5.8 Hz, 1H; 3-

H), 4.33 (d, J2,3=3.5 Hz, 1H; 2-H), 4.43–4.60 (m, 6H; 6VCH2Ph), 4.82

(s, 2H; 2VCH2Nap), 5.50 (br s, 1H; NH), 6.54 (br s, 1H; NH), 7.11–

7.27 (m, 15H; 3VPh), 7.38–7.43 (m, 3H; Nap), 7.68–7.76 ppm (m,

4H; Nap); 13C NMR (125 MHz, CDCl3): d=71.1 (1C; C-5), 71.4 (1C;

C-6), 72.9 (1C; CH2Ph), 73.6 (1C; CH2Ph), 74.6 (1C; CH2Ph), 75.0

(1C; CH2Nap), 79.1 (1C; C-4), 80.2 (1C; C-2), 81.6 (1C; C-3), 126.0–

126.3 (3C; Nap), 126.9 (1C; Nap), 127.8–128.7 (18C; 3VPh, Nap),

133.1, 133.4, 135.7, 137.2, 138.2, 138.4 (6C; Cq), 173.4 ppm (1C; C=

O); HRMS (ESI, +ve): m/z calcd for C38H39NO6 : 606.2844 [M++H]+ ;

found: 606.2850 ppm.

(3S,4S,5S,6R/S)-3,5-Bis(benzyloxy)-6-(benzyloxymethyl)-6-hy-

droxy-4-(2-naphthylmethoxy)piperidin-2-one (15): A solution of

the crude amide 13 (771 mg) in acetic anhydride (6.1 mL) and dry

DMSO (6.6 mL) was stirred under N2 for 21 h. The reaction mixture

was diluted with EtOAc (20 mL), quenched with ice and washed

with water (3V20 mL) and brine (1V20 mL). The organic extracts

were dried (MgSO4) and the solvent was evaporated to afford the

keto-amide 14 as a white solid. A dry-ice/acetone cold finger was

used to condense ammonia (20 mL) into a solution of the crude

keto-amide in dry methanol (30 mL) at 0 8C. The solution was al-

lowed to warm to room temperature and stirred under N2 for 16 h.

The solvent was removed under reduced pressure and the result-

ing residue was subjected to flash chromatography (EtOAc/pet.

ether, 1:1) to give a separable mixture of the hydroxy-lactams 15

(669 mg, 88% over four steps; d-manno/l-gulo 2.2:1). 1H NMR

(500 MHz, CDCl3), partial spectrum of the mixture of diastereomers:

d=3.38 (d, J=9.8 Hz, 1H; CH2(C6) d-manno), 3.43 (d, J=9.6 Hz,

1H; CH2(C6) l-gulo), 3.47 (d, J=9.8 Hz, 1H; CH2(C6) d-manno), 3.57

(d, J=9.6 Hz, 1H; CH2(C6) l-gulo), 3.72 (br s, 1H; OH), 4.22 (d, J3,4=

3.0 Hz, 1H; 3-H d-manno), 4.26 (d, J3,4=3.1 Hz, 1H; 3-H l-gulo),

4.98 (d, J=12.5 Hz, 1H; CH2Ph d-manno), 5.10 (d, J=12.3 Hz, 1H;

CH2Ph l-gulo), 6.33 (br s, 1H; NH l-gulo), 6.22 ppm (brs, 1H; NH d-

manno) ; 13C NMR (125 MHz, CDCl3): d=74.0 (1C; CH2(C6) d-

manno), 74.5 (1C; C-3 d-manno), 169.6 (1C; C=O d-manno),

170.2 ppm (1C; C=O l-gulo) ; HRMS (ESI, +ve): m/z calcd for

C38H37NO6 : 604.2694 [M++H]+ ; found: 606.2698 ppm.
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(3S,4S,5S,6R)-3,5-Bis(benzyloxy)-6-(benzyloxymethyl)-4-(2-naph-

thylmethoxy)piperidin-2-one (16) and (3S,4S,5S,6S)-3,5-bis(ben-

zyloxy)-6-(benzyloxymethyl)-4-(2-naphthylmethoxy)piperidin-2-

one (17): Sodium cyanoborohydride (90.4 mg, 1.44 mmol) was

added to a solution of the hydroxy-lactams 15 (86.9 mg,

0.144 mmol) and formic acid (0.52 mL) in dry acetonitrile (3 mL)

and the mixture stirred under N2 for 20 h. Sodium cyanoborohy-

dride (90.4 mg, 1.44 mmol) was added and the reaction mixture

was stirred for a further 24 h when TLC analysis (EtOAc/pet. ether,

1:3) indicated complete consumption of the starting material. The

mixture was diluted with EtOAc (20 mL) and washed with aq. sat.

NaHCO3 (3V20 mL) and brine (1V20 mL). The aqueous extracts

were treated with sodium hypochlorite prior to disposal. The or-

ganic extracts were dried (MgSO4), the solvent was removed under

reduced pressure and the resulting residue was subjected to flash

chromatography (EtOAc/pet. ether, 1:1) to afford the l-gulo lactam

16 (28.2 mg, 33%) and the d-manno lactam 17 (32.5 mg, 38%),

both as colourless oils.

Characterisation for 16 : [a]23D =@57 (c=0.535 in CHCl3) ;
1H NMR

(400 MHz, CDCl3): d=3.36 (dd, J6,6a=4.27, J6a,6b=9.11 Hz, 1H;

CH2(C6)), 3.46 (m, 2H; 6-H, CH2(C6)), 3.57 (m, 1H; 3-H), 3.91 (dd,

J3,4=3.1, J4,5=4.4 Hz, 1H; 4-H), 3.95 (m, 1H; 6-H), 4.08–4.19 (m, 3H;

2VCH2Ph, 5-H), 4.40 (m, 2H; 2VCH2Ph), 4.66 (d, J=12.4 Hz, 1H;

CH2Ph), 4.71 (d, J=12.3 Hz, 1H; CH2Nap), 4.93 (d, J=12.3 Hz, 1H;

CH2Nap), 5.10 (d, J=12.4 Hz, 1H; CH2Ph), 5.83 (br s, 1H; NH), 6.84

(app. d, J=7.05 Hz, 2H; Ph), 7.07–7.45 (m, 16H; Ph, Nap), 7.62 (s,

1H; Nap), 7.72–7.79 ppm (m, 3H; Nap); 13C NMR (100 MHz, CDCl3):

d=52.8 (1C; C-6), 70.3 (1C; CH2(C6)), 72.5 (1C; CH2Nap), 73.6 (1C;

CH2Ph), 73.6 (1C; CH2Ph), 73.7 (1C; CH2Ph), 74.2 (1C; C-5), 74.3

(1C; C-3), 74.8 (1C; C-4), 126.0–126.3 (3C; Nap), 126.8 (1C; Nap),

127.8–128.6 (18C; 3VPh, Nap), 133.2, 133.3, 135.6, 137.0, 137.6,

138.4 (6C; Cq), 171.3 ppm (1C; C=O); HRMS (ESI, +ve): m/z calcd

for C38H37NO5 : 588.2749 [M++H]+ ; found: 588.2747.

Characterisation for 17: [a]25D =@9.49 (c=0.715 in CHCl3) ;
1H NMR

(400 MHz, CDCl3): d=3.41 (m, 1H; CH2(C6)), 3.54 (m, 2H; 6-H,

CH2(C6)), 3.66 (t, J4,5= J5,6=5.2 Hz, 1H; 5-H), 3.98 (dd, J3,4=2.9, J4,5=

5.0 Hz, 1H; 4-H), 4.18 (d, J3,4=2.9 Hz, 1H; 3-H), 4.38 (d, J=11.6 Hz,

1H; CH2Ph), 4.42–4.49 (m, 2H; 2VCH2Ph), 4.55 (d, J=11.6 Hz, 1H;

CH2Ph), 4.69 (d, J=12.1 Hz, 1H; CH2Ph), 4.74 (d, J=12.2 Hz, 1H;

CH2Nap), 4.88 (d, J=12.2 Hz, 1H; CH2Nap), 5.06 (d, J=12.2 Hz, 1H;

CH2Ph), 5.91 (br s, 1H; NH), 7.08–7.49 (m, 18H; 3VPh, Nap), 7.72–

7.84 ppm (m, 4H; Nap); 13C NMR (100 MHz, CDCl3): d=55.5 (1C; C-

6), 71.5 (1C; CH2(C6)), 72.9 (1C; CH2Nap), 72.9 (1C; CH2Ph), 73.4

(1C; CH2Ph), 73.5 (1C; CH2Ph), 75.0 (1C; C-5), 75.2 (1C; C-3), 77.8

(1C; C-4), 126.1–126.3 (3C; Nap), 127.0 (1C; Nap), 127.8–128.6

(18C; 3VPh, Nap), 133.2, 133.3, 135.5, 137.5, 138.1 (6C; Cq),

169.6 ppm (1C; C=O); HRMS (ESI, +ve): m/z calcd for C38H37NO5 :

588.2744 [M++H]+ ; found: 588.2747.

(3S,4S,5S,6S)-3,5-Bis(benzyloxy)-6-(benzyloxymethyl)-4-(2-naph-

thylmethoxy)piperidin-2-thione (18): Lawesson’s reagent (202 mg,

0.50 mmol) was added to a mixture containing the mannonolac-

tam 17 (98 mg, 0.167 mmol), pyridine (6.7 mL, 0.083 mmol), freshly

activated 4 a molecular sieves and distilled toluene (6 mL) and the

mixture was stirred for 20 h. The mixture was then filtered, stirred

with MeOH (1.68 mL) for 2 h and the solvent removed under re-

duced pressure. The residue obtained was subjected to flash chro-

matography (EtOAc/pet. ether, 20:80) to afford the thionolactam

18 (94 mg, 93%) as a white solid. M.p. 147 8C; [a]23D =@52 (c=

0.215 in CHCl3) ;
1H NMR (400 MHz, CDCl3): d=3.43 (m, 1H;

CH2(C6)), 3.56 (m, 2H; 6-H, CH2(C6)), 3.83 (apt. t, 1H; 5-H), 3.91 (dd,

J3,4=2.6, J4,5=7.2 Hz, 1H; 4-H), 4.42 (d, J3,4=2.5 Hz, 1H; 3-H), 4.44–

4.52 (m, 3H; 3VCH2Ph), 4.68–4.73 (m, 2H; CH2Nap, CH2Ph), 4.79 (d,

J=12.1 Hz, 1H; CH2Nap), 4.83 (d, J=12.0 Hz, 1H; CH2Ph), 5.08 (d,

J=12.1 Hz, 1H; CH2Ph), 7.14–7.52 (m, 18H; 3VPh, Nap), 7.73–7.85

(m, 4H; Nap), 8.13 ppm (br s, 1H; NH); 13C NMR (100 MHz, CDCl3):

d=59.8 (1C; C-6), 70.6 (1C; CH2(C6)), 72.5 (1C; CH2Nap), 73.2 (1C;

CH2Ph), 73.5 (1C; CH2Ph), 73.7 (1C; CH2Ph), 74.2 (1C; C-5), 78.3

(1C; C-4), 79.8 (1C; C-3), 125.9–126.3 (3C; Nap), 126.8 (1C; Nap),

127.8–128.7 (18C; 3VPh, Nap), 133.1, 133.3, 135.4, 137.3, 137.6,

138.0 (6C; Cq), 200.0 ppm (1C; C=O); HRMS (ESI, +ve): m/z calcd

for C38H37NO4S: 604.2516 [M++H]+ ; found: 604.2524 [] .

(5R,6R,7S,8S)-7-(2-Naphthylmethoxy)-6,8-bis(benzyloxy)-5-(ben-

zyloxymethyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine (20) and

(5R,6R,7S,8R)-7-(2-naphthylmethoxy)-6,8-bis(benzyloxy)-5-(ben-

zyloxymethyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine (21): Thi-

onolactam 18 (256 mg, 0.424 mmol) was dissolved in aminoacetal-

dehyde dimethyl acetal (0.69 mL, 6.33 mmol) and the mixture

stirred under N2 for 18 h. The mixture was diluted with Et2O

(20 mL) and washed with H2O (2V20 mL) and brine (1V20 mL).

The organic extracts were dried (MgSO4) and the solvent removed

under reduced pressure to afford the amidines 19 as a colourless

residue. p-Toluenesulfonic acid monohydrate (0.14 g, 0.74 mmol)

was added to a solution of the crude amidines in toluene (9.5 mL)

and the mixture was stirred at 60 8C overnight. The mixture was

then diluted with DCM (20 mL) and washed with NaHCO3 (2V

20 mL) and brine (1V20 mL). The organic extracts were dried

(MgSO4), the solvent was removed under reduced pressure and

the residue was subjected to flash chromatography (EtOAc/pet.

ether, 1:1) to afford the glucoimidazole 20 (110 mg, 42% over two

steps) as a colourless oil and the mannoimidazole 21 (83.3 mg,

32% over two steps) as a yellow oil.

Characterisation for 20 : [a]25D = +52 (c=0.315 in CHCl3 ; lit. :
[39]
+52

(in CHCl3)) ;
1H NMR (600 MHz, CDCl3): d=3.75 (dd, J5,5a=5.0, J5a,5b=

10.3 Hz, 1H; CH2(C5)), 3.87 (m, 2H; 6-H, CH2(C5)), 4.13 (dd, J6,7=7.5,

J7,8=5.8 Hz, 1H; 7-H), 4.18 (m, 1H; 5-H), 4.45 (app. d, 2H; 2V

CH2Ph), 4.51 (d, J=11.2 Hz, 1H; CH2Ph), 4.78 (d, J7,8=5.8 Hz, 1H; 8-

H), 4.84 (d, J=11.6 Hz, 1H; CH2Ph), 4.86 (d, J=11.2 Hz, 1H; CH2Ph),

4.89 (d, J=11.5 Hz, 1H; CH2Nap), 4.97 (d, J=11.5 Hz, 1H; CH2Ph),

5.19 (d, J=11.5 Hz, 1H; CH2Nap), 7.04 (s, 1H; 2-H), 7.12 (s, 1H; 3-

H), 7.14–7.48 (m, 18H; 3VPh, Nap), 7.68–7.83 ppm (m, 4H; Nap);
13C NMR (125 MHz, CDCl3): d=58.3 (1C; C-5), 68.5 (1C; CH2(C5)),

72.9 (1C; CH2Nap), 73.4 (1C; CH2Ph), 74.3 (1C; CH2Ph), 74.4 (1C;

CH2Ph), 74.5 (1C; C-8), 76.2 (1C; C-6), 82.2 (1C; C-7), 117.4 (1C; C-

2), 126.1–126.9 (3C; Nap), 127.7 (1C; Nap), 127.8–128.6 (18C; 3V

Ph, Nap), 129.5 (1C; C-3), 133.2, 133.4, 135.5, 137.4, 137.7, 138.4

(6C; Cq), 144.2 ppm (Cq, imidazole).

Characterisation for 21: [a]25D =@24 (c=0.24 in CHCl3 : lit. :
[39]

@20

(in CHCl3)) ;
1H NMR (600 MHz, CDCl3): d=3.57 (dd, J5,5a=7.1, J5a,5b=

10.1 Hz, 1H; CH2(C5)), 3.71 (dd, J5,5a=3.4, J5a,5b=10.1 Hz, 1H;

CH2(C5)), 3.84 (dd, J6,7=9.3, J7,8=3.1 Hz, 1H; 7-H), 4.06 (m, 1H; 5-

H), 4.25 (dd, J5,6=9.3, J6,7=7.2 Hz, 1H; 6-H), 4.39 (m, 2H; 2V

CH2Ph), 4.56–4.66 (m, 3H; 2VCH2Ph, CH2Nap), 4.69 (d, J=12.2 Hz,

1H; CH2Nap), 4.74 (d, J=12.0 Hz, 1H; CH2Ph), 4.78 (d, J7,8=3.0 Hz,

1H; 8-H), 4.96 (d, J=11.2 Hz, 1H; CH2Ph), 6.98 (s, 1H; 3-H), 7.09 (s,

1H; 2-H), 7.17–7.39 (m, 18H; 3VPh, Nap), 7.62–7.74 ppm (m, 4H;

Nap); 13C NMR (125 MHz, CDCl3): d=60.0 (1C; C-5), 68.3 (1C; C8),

70.6 (1C; CH2Nap), 71.2 (1C; CH2(C5)), 71.8 (1C; CH2Ph), 73.3 (1C;

CH2Ph), 74.3 (1C; C-6), 75.0 (1C; CH2Ph), 80.2 (1C; C-3), 119.5 (1C;

C-2), 125.2–126.9 (3C; Nap), 126.7 (1C; Nap), 128.6–127.7 (18C; 3V

Ph, Nap), 129.4 (1C; C-3), 133.2, 133.3, 135.4, 137.6, 138.2, 138.3

(6C; Cq), 143.0 ppm (Cq, imidazole).

(5R,6R,7S,8R)-6,8-Bis(benzyloxy)-5-(benzyloxymethyl)-5,6,7,8-tet-

rahydroimidazo[1,2-a]pyridin-7-ol (22): DDQ (25.2 mg,

0.111 mmol) was added to a solution of the mannoimidazole 21

(22.6 mg, 0.037 mmol) in DCM/H2O (9:1, 1 mL) and the reaction

mixture was stirred at room temperature overnight. DDQ (25 mg,
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0.11 mmol) was again added and the mixture stirred for 3 days

when TLC analysis (EtOAc/pet. ether, 8:2) indicated complete con-

sumption of the starting material. The mixture was then diluted

with DCM (20 mL), washed with water (3V20 mL) and aq. sat.

NaHCO3 (3V20 mL), dried (MgSO4), filtered and concentrated. The

crude product was purified by flash chromatography (EtOAc/pet.

ether, 80:20 to 100:0) to afford the alcohol 22 (11.7 mg, 67%) as a

yellow oil. [a]24D =@35 (c=0.585 in CHCl3 ; lit. :
[40]

@6 (in CHCl3)) ;
1H NMR (500 MHz, CDCl3): d=3.64 (dd, J5,5a=5.9, J5a,5b=10.2 Hz,

1H; CH2(C5)), 3.78 (dd, J5,5a=2.5, J5a,5b=10.2 Hz, 1H; CH2(C5)), 4.03

(m, 3H; 7-H, 6-H, 5-H), 4.42 (app. s, 2H; 2VCH2Ph), 4.54 (d, J=

11.2 Hz, 1H; CH2Ph), 4.65 (d, J=11.6 Hz, 1H; CH2Ph), 4.70 (d, J7,8=

3.3 Hz, 1H; 8-H), 4.85 (d, J=11.6 Hz, 1H; CH2Ph), 4.90 (d, J=

11.2 Hz, 1H; CH2Ph), 7.05 (s, 1H; 3-H), 7.13 (s, 1H; 2-H), 7.19–

7.28 ppm (m, 15H; 3VPh); 13C NMR (125 MHz, CDCl3): d=59.1 (1C;

C-5), 70.2 (1C; CH2(C5)), 71.2 (2C; C-8, CH2Ph), 72.4 (1C; C-6), 73.2

(1C; CH2Ph), 74.6 (1C; CH2Ph), 75.3 (1C; C-7), 118.9 (1C; C-2),

127.7–128.5 (15C; 3VPh), 129.6 (1C; C-3), 137.5, 137.7, 137.8 (3C;

Cq), 142.3 ppm (Cq, imidazole).

(5R,6R,7S,8R)-7-(2-O-Acetyl-3,4,6-tri-O-benzyl-a-d-mannopyrano-

syloxy)-6,8-bis(benzyloxy)-5-(benzyloxymethyl)-5,6,7,8-tetrahy-

droimidazo[1,2-a]pyridine (23): A mixture of the alcohol 22

(13.8 mg, 0.029 mmol), 2-O-acetyl-3,4,6-tri-O-benzyl-a-d-mannopyr-

anosyl trichloroacetimidate (5 ;[22] 32.5 mg, 0.051 mmol) and freshly

activated 4 a molecular sieves in toluene (1.5 mL) was stirred at

room temperature for 30 min. Triflic acid (1 mL, 0.011 mmol) was

added to the mixture at @20 8C and the mixture was stirred for

1 h, then at 0 8C for 20 min, and at room temperature for another

20 min, quenched with pyridine (1 drop) and filtered through a

pad of Celite. The solvent was removed under reduced pressure

and the resulting residue was subjected to flash chromatography

(EtOAc/pet. ether/ Et3N 80:19:1) to recover alcohol 26 (6.4 mg) and

afford the disaccharide 23 (12.9 mg, 47%) as a colourless oil.

[a]23D = +7.2 (c=0.175 in CHCl3) ;
1H NMR (600 MHz, CDCl3): d=2.11

(s, 3H; Ac), 3.49 (dd, J5’,5a’=1.7, J5a“,5b’=10.9 Hz, 1H; CH2(C5’)), 3.55

(dd, J5,5a=6.7, J5a,5b=10.2 Hz, 1H; CH2(C5)), 3.63 (dd, J5’,5b’=3.5,

J5a”,5b’=10.8 Hz, 1H; CH2(C5’)), 3.67 (dd, J5,5b=3.2, J5a,5b=10.2 Hz,

1H; CH2(C5)), 3.87 (m, 1H; 5’-H), 3.93 (t, J3’,4’= J4’,5’=9.5 Hz, 1H; 4’-

H), 4.01 (dd, J2’,3’=3.3, J3’,4’=9.5 Hz, 1H; 3’-H), 4.07 (dd, J6,7=9.5,

J7,8=3.1 Hz, 1H; 7-H), 4.13 (1H, m, 5-H), 4.29 (dd, J5,6=7.1, J6,7=

9.5 Hz, 1H; 6-H), 4.41 (m, 2H; 2VCH2Ph), 4.46 (d, J=10.9 Hz, 1H;

CH2Ph), 4.51 (d, J=11.3 Hz, 1H; CH2Ph), 4.54 (d, J=12.0 Hz, 1H;

CH2Ph), 4.57 (d, J=11.3 Hz, 1H; CH2Ph), 4.64 (app. d, 3H, 3V

CH2Ph), 4.81 (d, J2,3=3.1 Hz, 1H; 2-H), 4.84 (m, 2H; 2VCH2Ph), 5.19

(d, J1’,2’=1.6 Hz, 1H; 1’-H), 5.48 (dd, J1’,2’=1.6, J2’,3’=3.3 Hz, 1H; 2’-

H), 7.07 (s, 1H; 3-H), 7.14 (s, 1H; 2-H), 7.08–7.34 ppm (m, 30H; 6V

Ph); 13C NMR (125 MHz, CDCl3): d=21.2 (1C; Me), 60.0 (1C; C-5),

68.5 (1C; C-6’), 69.1 (1C; C-2’), 70.3 (1C; CH2Ph), 70.8 (1C; CH2(C5)),

70.9 (1C; C-8), 72.1 (1C; CH2Ph), 72.4 (1C; C-5’), 73.4 (1C; CH2Ph),

73.7 (1C; CH2Ph), 74.2 (1C; C-4’), 74.4 (1C; C-6), 75.1 (2C; CH2Ph),

78.2 (1C; C-3’), 80.3 (1C; C-7), 100.1 (1C; C-1’), 119.4 (1C; C-2),

127.6–128.7 (30C; 6VPh), 129.5 (1C; C-3), 137.6, 137.7, 137.9,

138.1, 138.2, 138.8 (6C; Cq), 142.6 (Cq, imidazole), 170.4 ppm (1C;

C=O); HRMS (ESI, +ve): m/z calcd for C58H60N2O10 : 945.4321

[M++H]+ ; found: 945.4322.

(5R,6R,7S,8R)-7-(3,4,6-Tri-O-benzyl-a-d-mannopyranosyloxy)-6,8-

bis(benzyloxy)-5-(benzyloxymethyl)-5,6,7,8-tetrahydroimida-

zo[1,2-a]pyridine (24): K2CO3 (1 mg, 0.007 mmol) was added to a

solution of the acetate 23 (13.1 mg, 0.014 mmol) in dry methanol

(0.3 mL) and the resulting suspension was stirred at room tempera-

ture for 6.5 h. The reaction mixture was quenched with acetic acid

(5 mL, 0.087 mmol), the solvent was removed under reduced pres-

sure and the resulting residue was subjected to flash chromatogra-

phy (EtOAc/pet. ether/Et3N 50:49.5:0.5) to afford the alcohol 24

(5.8 mg, 46%) as a colourless oil. [a]24D = +13 (c=0.305 in CHCl3) ;
1H NMR (500 MHz, CDCl3): d=2.40 (d, J2’,OH=2.5 Hz, 1H; OH), 3.49

(dd, J5’,6a’=1.8, J6a“,6b’=10.8 Hz, 1H; 6’-Ha), 3.58 (m, 2H; CH2(C5), 6’-

Hb), 3.70 (dd, J5,5a=3.2, J5a,5b=10.1 Hz, 1H; CH2(C5)), 3.87 (m, 1H;

5’-H), 3.91 (m, 2H; 4’,3’-H), 4.03 (m, 1H; 2’-H), 4.08 (dd, J6,7=9.6,

J7,8=3.1 Hz, 1H; 7-H), 4.13 (1H, m, 5-H), 4.28 (dd, J5,6=7.3, J6,7=

9.6 Hz, 1H; 6-H), 4.40–4.53 (m, 5H; 5VCH2Ph), 4.57–4.68 (m, 5H;

5VCH2Ph), 4.79 (m, 2H; 2VCH2Ph), 4.85 (d, J7,8=3.1 Hz, 1H; 8-H),

5.23 (d, J1’,2’=1.5 Hz, 1H; 1’-H), 7.08 (s, 1H; 3-H), 7.14 (s, 1H; 2-H),

7.11–7.35 ppm (m, 30H; 6VPh); 13C NMR (125 MHz, CDCl3): d=60.0

(1C; C-5), 68.6 (1C; C-6’), 69.0 (1C; C-2’), 70.3 (1C; CH2Ph), 70.7

(1C; C-8), 71.1 (1C; CH2(C5)), 72.0 (1C; C-5’), 72.4 (1C; CH2Ph), 73.4

(1C; CH2Ph), 73.7 (1C; CH2Ph), 74.3 (2C; C-6,3’), 75.1 (2C; CH2Ph),

80.1 (1C; C-4’), 80.4 (1C; C-7), 101.8 (1C; C-1’), 119.3 (1C; C-2),

127.6–128.7 (30C; 6VPh), 129.6 (1C; C-3), 137.6, 137.8, 138.1,

138.3, 138.7 (6C; Cq), 142.7 ppm (Cq, imidazole); HRMS (ESI, +ve):

m/z calcd for C56H58N2O9 : 903.4215 [M++H]+ ; found: 903.4214.

(5R,6R,7S,8R)-6,8-Dihydroxy-5-(hydroxymethyl)-7-(a-d-manno-

pyranosyloxy)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine (2):

Pd(OH)2/C (20%, 24 mg) was added to a solution of the deacety-

lated disaccharide 24 (12.6 mg, 0.014 mol) in EtOAc/MeOH/H2O

(5:17:3, 1.50 mL) and AcOH (0.34 mL). The reaction vessel was filled

with H2 (34 bar) and agitated for 4 days. At this point TLC analysis

(EtOAc/MeOH/H2O, 7:3:2) indicated complete conversion to a

single species along with baseline by-products. The suspension

was filtered through a pad of Celite, the solvent was evaporated

and the resulting residue was subjected to flash chromatography

(EtOAc/MeOH/H2O, 5:2:1) to afford ManManIm (2 ; 2.4 mg, 48%) as

a colourless residue. [a]27D = +13 (c=0.12 in H2O);
1H NMR

(500 MHz, D2O): d=3.57 (t, J3’,4’= J4’,5’=9.8 Hz, 1H; 4’-H), 3.66 (dd,

J5’,6a’=6.3, J6a“,6b’=12.1 Hz, 1H; 6’-Ha), 3.77 (m, 1H; 5’-H), 3.83 (m,

2H; 3’-H, 6’-Hb), 3.91 (m, 1H; 5-H), 3.95 (dd, J5,5a=3.3, J5a,5b=

12.7 Hz, 1H; CH2(C5)), 3.99 (dd, J6,7=10.2, J7,8=3.7 Hz, 1H; 7-H),

4.02 (dd, J1’,2’=3.4, J2’,3’=1.7 Hz, 1H; 2’-H), 4.13 (dd, J5,5b=2.6,

J5a,5b=12.7 Hz, 1H; CH2(C5)), 4.27 (dd, J5,6=8.6, J6,7=10.2 Hz, 1H; 6-

H), 4.97 (d, J7,8=3.7 Hz, 1H; 8-H), 5.23 (d, J1’,2’=1.6 Hz, 1H; 1’-H),

7.01 (s, 1H; 3-H), 7.20 ppm (s, 1H; 2-H); 13C NMR (125 MHz, D2O):

d=59.3 (1C; CH2(C5)), 60.9 (1C; C-5,6’), 63.5 (1C; C-8), 63.9 (1C; C-

6), 66.7 (1C; C-4’), 69.9 (1C; C-2’), 70.3 (2C; C-4,3’), 73.5 (1C; C-5’),

78.1 (1C; C-7), 102.1 (1C; C-1’), 118.3 (1C; C-2), 128.7 (1C; C-3),

144.7 ppm (Cq, imidazole); HRMS (ESI, +ve): m/z calcd for

C14H22N2O9 : 363.1398 [M++H]+ ; found: 363.1398.

Isothermal titration calorimetry (ITC): The binding affinity of

Man2NH2DMJ (1) to BtGH99 was determined by using a Microcal

iTC200 calorimeter (GE Healthcare/Malvern Instruments). The assay

was carried out at 25 8C with 18V2 mL injections of the inhibitor

(6 mm) titrated into the ITC cell containing 117 mm BtGH99. Owing

to the low affinity of the ligand, which prevented the observation

of a sigmoidal binding isotherm, N was fixed at 1.[41] An initial ITC

experiment was conducted by using 1m inhibitor in the syringe

and 52 mm protein with 24V1.5 mL injections. The dissociation con-

stant (KD), change in enthalpy (DH) and measurement uncertainty

were calculated by using the MicroCal PEAQ-ITC Analysis Software

(Malvern Instruments).

Crystallisation and data collection : BxGH99 protein[10] was crystal-

lised by using the vapour diffusion hanging drop method in 3m

sodium acetate at pH 7.4. Crystals were grown at 19 8C in a 24-well

plate with 500 mL of reservoir solution in each well and sealed with

vacuum grease. The droplet was created by mixing 1 mL of BxGH99

solution (34 mgmL@1 in 25 mm HEPES buffer, pH 7.0, 100 mm NaCl)

with 1 mL of the crystallant solution. Crystals were fished from the

droplet by using a nylon cryoloop, without cryoprotection. Data
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were collected at Diamond Light Source beamline i04 using X-rays

with a wavelength of 0.979 a.

Structure solution and refinement : Images containing diffraction

patterns were indexed and integrated by using DIALS[42] through

xia2.[43] The hkl index of each data set was then matched to a pre-

vious solution in Aimless.[44] Refinement was performed by using

Refmac5[45] and real-space model building in Coot.[46] Model geom-

etry and agreement with electron density were validated in Coot

and Edstats.[47] The quality of the carbohydrates and nitrogen het-

erocycles were verified by using Privateer.[32] The modelling and re-

finement processes were aided by using ccp4i2 interface.[48]
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