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a b s t r a c t

In this paper a cross-slot geometry for which the height of the channel is small compared to the
other channel dimensions is considered. The normal components of the viscoelastic stresses are found
analytically for a second order fluid up to numerical inversion. The validity of the theoretical analysis was
corroborated by comparisonwith numerical simulations based on a stabilizedGalerkin least squares finite
element method using an Oldroyd B fluid. Close agreement was found between numerical predictions
and analytical results for Weissenberg numbers up to 0.2. An explicit expression is formulated for
viscoelastic parameters in terms of the variation and strength of the first normal stress difference around
the stagnation point. The analysis is generalized for the case where the inlet channel width is different
from the outlet channel width. For such configurations it was found that uniformity of the elongation rate
was reduced.

© 2017 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Polymer melts, which are widely used in processing operations
such as injection molding, mixing and extrusion, exhibit non-
Newtonian properties. Due to the relaxation times involved and
memory effects, the ability to accurately predict the velocity and
stress fields is still a challenging problem.

The modeling of such viscoelastic fluids has proven to be dif-
ficult, both numerically and analytically, even in the most simple
of geometries. Analytical solutions are often presented under the
assumption of constant velocity gradients, i.e. constant shear or
elongation. Other solutions have been found, for example, an an-
alytical solution for a FENE-P fluid was presented by Oliveira [1]
and Rajagopal and Bhatnagar [2] found solutions for the flow of
an Oldroyd B fluid, though exact analytical results often require
the specification of a flow field such that the advection terms are
zero. In this paper we use perturbation methods to derive a semi-
analytical result for a second order fluid in a Hele-Shaw cross-
slot device. The Hele-Shaw approximation necessitates that the
geometry must have one length scale which is much smaller than
the others. In our system the channel height is assumed to bemuch
smaller than its width and thus the aspect ratio, δ, is small. This
approximation has been used in numerous other studies, see for
instance [3,4]. A sketch of the full three-dimensional system is
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given in Fig. 1. Mathematically, the system reduces to the two-
dimensional system shown in Fig. 2. Under the Hele-Shaw as-
sumption one can perform an analysis of the stress under non-
constant elongation. A finite element formulation for this flow
configuration was also undertaken to consider the validity of the
analytical results. As we are considering the case of a Hele-Shaw,
cell this allows one to use a small-channel approximation. The
small channel approximation imposes no-slip conditions on the
vertical wall but permits slip boundary conditions on the horizon-
tal walls. In reality there is a small layer close to the horizontal
walls where the no-slip condition forces the velocity to drop to
zero.

Experimental interest in the cross-slot geometry is focused on
investigating the extensional behavior of polymers and is moti-
vated by the strong elongational nature of the flow in a cross-
slot device. Birefringence techniques used in conjunction with
numerical studies of extensional flows have been used effectively
to assess the validity of constitutive models, however, studies of
polymer melts have highlighted some inconsistencies due to end
effects and beam deflections [5]. Recently, Scoulages et al. [6,7]
made three-dimensional birefringent measurements of flow in a
lubricated cross-slot geometry in a study aimed at removing end
effects. Achievement of this goal would lead to greater conformity
with two-dimensional simulations without the compromise of
using large aspect ratios. It may be possible to extend the results of
this paper to a lubricated device without the need for small aspect
ratios using the theory of Joesph [8,9].

The cross-slot device does not produce pure extensional be-
havior throughout the flow field and the aim of generating purely
extensional flows still proves challenging. Haward et al. [10] used

https://doi.org/10.1016/j.euromechflu.2017.11.006
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Fig. 1. Sketch of the three-dimensional geometry.

Fig. 2. Two-dimensional slice of the cross-slot geometry. The widths of the inlet
section of the channel DC and the outflow channel FA are taken to be equal in
Section 4 and unequal in Section 5.

numerical simulations to optimize the shape of corner regions in a
cross-slot to produce a more homogeneous extensional flow field.
This study was purely two-dimensional which can be difficult to
realize experimentally due to end effects which arise from finite
aspect ratios.

The cross-slot device also exhibits strong bifurcating behavior
with visco-elastic fluids [5,11–13]. Sousa et al. [14] considered the
effects of aspect ratio on this instability. They found that for smaller
aspect ratios the symmetry breaking bifurcation required a larger
Weissenberg number (We), and that for sufficiently small aspect
ratios, the symmetry breaking bifurcation was superseded by a
transient bifurcation. Cruz et al. [15] performed computational
investigations using a PTT fluid model. Cruz et al. reported the
same behavior as Sousa et al. [14], finding that the unstable flow
regimes are along the diagonals of the cross-slot. Such instabilities

will not be considered in this study as wewill assume symmetry of
the device throughout. Bifurcations in cross-slot channels are not
limited to non-Newtonian fluids. Poole et al. [16] found symmetry
breaking birefringence for strongly inertial flows for Newtonian
fluids, though the behavior of this bifurcation is inherently differ-
ent to those caused by viscoelastic effects.

The aim of this investigation is to determine whether one can
obtain analytic results for a viscoelastic fluid in a cross-slot de-
vice. This would be advantageous as three-dimensional simula-
tions of viscoelastic fluids can prove costly in terms of both time
and computational power. Our approach builds on the previous
studies of viscoelastic stresses that assume an idealized exten-
sional flow field. A complete solution for constant elongation flow
for the upper-convective Maxwell model was found by Cruz and
Pinho [17], who further generalized the work of Thomases and
Shelley [18]. Cruz and Pinho found the dependency of the smooth-
ness and singularities of the pressure and stresses to the elongation
rate and the Deborah number. Analysis ofmore complex viscoelas-
tic models in pure extensional fields have also been performed,
such as the Giesekus [19] and finite extensibility models [20,21].
The latter two investigations provide explicit expressions for the
width of the bifurcation strand in terms of the viscoelastic param-
eters.

We will find later that our solution is not valid in the corner
region. Viscoelastic effects in corner regions have been extensively
studied. Analytical studies have addressed the dynamics of Ol-
droyd B and Upper Convective Maxwell (UCM) fluids flowing in
a channel containing a sharp bend. Renardy [22] used a similarity
solution for the stress stream function and found that the stresses
scaled∼ r− 2

3 in the corner region, where r is the distance from the
corner. This work was subsequently generalized by Rallison and
Hinch [23] to encompass a range of channel bend angles, and by
Evans [24] who investigated the downstream effects. We refer to
these studies to address the local corner effects. However, in this
study we will focus predominantly on the stress effects along the
line of symmetry in the outflow channel (the line AB in Fig. 2),
which is not in the vicinity of the corner.

The difficulty in generating formulations for analytical flows in
such a geometry can be overcome by the use of complex potential
theory, namely the Schwarz–Christoffel mapping (SCM) theorem.
Taking advantage of the symmetry of the cross-slot device means
that we need only consider one quadrant.

In this paper, a finite element model is used to assess the
validity of an approximate analytical solution for the flow of an
inertialess Oldroyd B fluid in a three-dimensional cross-slot. We
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Fig. 3. Sketch demonstrating the conformal mapping. From left to right, mapping the z-plane onto the η-plane, and then the η-plane onto the ζ -plane.

found that this problem exhibited numerical difficulties arising
from the sharp corner. The problem, as first noted byKeunings [25],
is that increases in the mesh resolution led to poorer convergence
at highWe when a sharp corner is present. As one often needs high
mesh resolution in such corner regions this proves problematic.
However, Singh and Leal [26] noted that this poor convergencewas
due to insufficient mesh resolution in the azimuthal direction. We
took note of this consideration in our numerical simulations.

In Section 2 we describe the construction of the flow field. The
governing equations and flow field are presented in Section 3. For
the case of inlet and outlet channels of equalwidth, the viscoelastic
stress components and stagnation point pressure are analyzed in
Section 4. The effects of varying the inlet and outlet channel width
ratios are considered in Section 5. The conclusions are summarized
in Section 6.

2. Construction of the flow field

Under the assumption of a small aspect ratio δ under zero
Reynolds number for a Newtonian fluid, the mass and momentum
conservation equations can be written as [27]

uin = −
1

2µ
∇̄px3 (d − x3) ,

∂p

∂x3
= 0, u3 = 0, ∇̄ · uin = 0,

(1)

except for a small region near the walls of order O(δ) where the
no-slip condition dominates. Here uin = (u1, u2) is the in-plane
velocity, x1 and x2 are the in-plane coordinates. Likewise, u3 is the
out-of-plane component of the velocity where x3 is perpendicular
to x1 and x2. The variable p denotes the pressure, ∇̄ is the in-plane
gradient operator and d denotes the channel height. In a planewith
x3 fixed, this is analogous to the commonly used potential flow
problems for irrotational fluids whereby uin = ∇̄φ, where φ is the
velocity potentialwhich acts analogous to pressure in our problem.

Potential flow theory can be used to find a solution for the flow
in complex channel geometries by superposing fundamental solu-
tions, such as sinks, sources, dipoles, etc. It is often advantageous
to work in terms of the complex potential, w, which is given by

w(z) = φ + iψ, (2)

where z is the complex variable x1 + ix2, and ψ is the stream-
function for the in-plane velocity (u1, u2). It is easily shown that
the derivative of (2) can be used to find the velocity components
(u1, u2) from

dw

dz
= u1 − iu2. (3)

To construct the flow field as in Fig. 2, we make use of the SCM
theorem [28]. The SCM theorem concerns the conformal trans-
formation of the upper half-plane onto the interior of a simple
polygon. This theorem states that for n points along the real axis
(η1, η2, . . . , ηn) corresponding to the vertices of a simple polygon,
such that η1 < η2 < · · · < ηn, where θ1, θ2, . . . , θn are the internal

angles of the polygon, the transformation from the η-plane to the
z-plane is given by

dz

dη
= K (η − η1)

θ1
π −1(η − η2)

θ2
π −1 · · · (η − ηn)

θn
π −1, (4)

where K is a complex constant. If one chooses a map from the
corners of a channel containing a right-angled bend, as shown in
Fig. 2, to the η-plane given by

A → −∞, B → −a, C,D → 0,

E → b, F → +∞,
(5)

then the SCM theorem gives

dz

dη
= Kη−1(η + a)−

1
2 (η − b)

1
2 , (6)

where a and b are positive non-zero real constants. Upon inte-
gration, it should be remembered that the constant of integration
will be complex. Initially the SCM theorem maps the cross-slot
geometry onto the upper half infinite plane. This semi-infinite half
plane can then be readily mapped onto an infinitely long rectangle
of unit height using the transformation

ζ =
1

π
ln(η). (7)

These mappings are shown graphically in Fig. 3 which also depicts
the mappings of the vertices. The complex stream function for a
uniform flowwith constant fluxQ0 from C,D toA, F , in the ζ -plane,
is given by

w(ζ ) = Q0ζ , (8)

which can be written as

w(η) =
U0h

π
ln(η), (9)

where we have used the fact that for a channel of height h, and
constant flow U0 we can write Q0 = U0h. Physically, in the η-
plane, the complex potential w is analogous to a source with flux
Q0 around the origin, or in the z-plane to a flux source located
infinitely far up the x2-axis.

Combining (6) and (9) gives

dw

dz
=

U0h

πK

√
(η + a)

√
(η − b)

. (10)

The constants are determined by imposing the condition of a
uniform flow stream at the channel inlet and outlet. This gives rise
to

dw

dz
∼ −U0 as η → ±∞, (11)

dw

dz
∼ U0i as η → 0. (12)

Constraints (11) and (12) can be used to determine the constants,
giving

K = −
h

π
, a = b = 1. (13)
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(a)

(b)

Fig. 4. (a) The inverse function F (z) plotted against its argument. (b) The predicted
velocity along the line of symmetry (solid line) together with that predicted by
assuming purely elongational flow (dashed line), plotted against z.

We note that there is an arbitrary degree of freedom for assigning
the value of a and for convenience we set a = 1. By integrating (6)
with the constants determined in (13) andmaking the substitution
η = cosh(t) we find that

z(t) = −
h

π

(

t + tan−1

(

1

sinh(t)

)

− iπ +
π

2

)

, (14)

w(t) =
U0h

π
ln (cosh(t)) , (15)

where t ∈ C is a dummy variable. The constant of integration
translates the geometry around the z-plane and is assigned such
that the bottom corner is at the origin. Eqs. (14) and (15) form
an implicit relation for the velocity field in the L bend geometry.
Eq. (14) can be inverted to give the result, t = F (z), which is plotted
in Fig. 4 along with the velocity profile along the center line of the
channel. The stream lines are shown in Fig. 5. Note that the solution
gives rise to a singularity in the corner region which makes the
flow unphysical in this vicinity. We can analyze the local behavior
of the stagnation point by performing a Taylor expansion around
t = iπ . Ignoring the constant term, forw is uniqueup to an additive
constant,

w ∼
U0h

2π
(t − iπ )2 + O(t − iπ )4,

z ∼ −
2h

π
(t − iπ)+ O(t − iπ )2.

(16)

We thus see that locally w ∼ U0π

8h
z2, from which, by considering

the imaginary component, we can recover the stagnation point
stream-function ψ = U0π

4h
x1x2, used in previous studies of stag-

nation points, see for instance [18,29].

Fig. 5. Streamlines derived from the conformal mapping analysis.

The solution near the corner point E is mapped to t = 0. Taking
the limit around t = 0, we have z ∼ hi − h

6π
t3, w ∼ 1

2
t2, thus we

are left with w ∼ 2− 1
3 3

2
3 π

2
3 h− 2

3 (z − z0)
2
3 , i.e. locally one recovers

φ ∝ r
2
3 cos

(

2
3
θ
)

, ψ ∝ r
2
3 sin

(

2
3
θ
)

, which is the potential flow
solution around a corner, as to be expected.

3. Governing equations

Wewill use theNewtonian velocity to try and capture viscoelas-
tic effects. However to compare the validity of our approximation
we will compare the result to the Oldroyd B equations coupled to
the inertialess Navier stokes system

− ∇p + µs∇2u + ∇ · T = 0, ∇ · u = 0

T + λ
∇
T = µpγ̇, γ̇ = ∇u + ∇uT , (17)

where here ∇ denotes the upper convective derivative. We chose
the Oldroyd B model over the UCM because the addition of a small
solvent viscosity can lead to considerably improved numerical
stability [30]. However, one must bear in mind that the Oldroyd B
model, in its relative simplicity, does predict physically unrealistic
behavior at high elongation rates, notably, the well-known phe-
nomenon of singular extensional viscosity at a finite elongation
rate. Fundamentally, this problem arises as the Oldroyd B model
has a linear extensional law at a microscopic scale. This is often
overcome using models such as FENE-P, FENE-CR. Despite its limi-
tations, the Oldroyd B model does reproduce complex viscoelastic
behavior and is known to be a suitable choice for modeling Boger
fluids [31]. Also, in general, most other more complex viscoelastic
models reduce to the Oldroyd B model in certain parameter limits.

We will therefore solve the system of PDEs given by (17). The
inlet velocity U and inlet width of the channel are taken to be
of unity were the polymer and solvent viscosities are linked via
µs+µp = 1. This is equivalent to the non-dimensionalization used
by Craven [32].

We used the finite element software COMSOL Multiphysics.
Numerical convergence can be difficult to achieve for the UCM
and Oldroyd B models, especially for high Weissenberg numbers
in the presence of large velocity gradients. Here we make use of
the Galerkin least squares (GLS) method to stabilize the equations
as originally proposed by Hughes et al. [33]. The scheme used here
follows the procedure of Behr et al. [34] which was implemented
in COMSOL by Craven et al. [32]. The GLS method is similar to
the commonly used streamline up-wind Petrov–Galerkin method
that is often used for integrating the Navier–Stokes equations,



S.T. Chaffin, J.M. Rees / European Journal of Mechanics / B Fluids 68 (2018) 45–54 49

where the standardweak form of the equations is augmentedwith
additional stabilization terms:

− ⟨∇ · w, p⟩ + µ1 ⟨γ̇[w], γ̇[u]⟩ +
1

2
⟨γ̇[w], T⟩ + ⟨q,∇ · u⟩

+ ⟨S, T⟩ + λ

⟨

S,
∇
T

⟩

− µ2 ⟨S, γ̇[u]⟩ +
∑

elements

τmom ⟨ ∇q − ∇ · S

− µ1∇ · γ̇[w] , ∇p − ∇ · T − µ1∇ · γ̇[u] ⟩
+

∑

elements

ρτcont ⟨∇ · w,∇ · u⟩

+
∑

elements

τcons

⟨[

S + λ
∇
S − µ2γ̇[w]

]

,

[

T + λ
∇
T − µ2γ̇[u]

]⟩

, (18)

under the convention γ̇[g] = ∇g+∇gT . The terms τcons, τmom, τcont
are the GLS parameters as defined as in [34]. Here w, S, q denote
the test functions for the velocity field, extra stress tensor and
the pressure field respectively. The test functions are taken to
be Lagrange polynomials. It was found that the greatest stability
could be achieved using cubic elements for the velocity field, and
quadratic elements for the pressure field and for the extra stress
tensor, though mixed elements are non-mandatory as the GLS
formulation negates compatibility conditions on the order of the
test functions. In the corner region, onewould expect large velocity
gradientswhichwould give rise to a lack of convergence in the FEM
model.

The grid used for this studywas composed of amixed triangular,
quadrilateral mesh comprising 20 374 elements, which was then
swept in the x3 direction to form 5 mesh layers. The mesh was
refined until the dependency of the solutions on the mesh size
varied on the order 0.1%. Predictions of the flow fields within
the cross-slot were obtained by solving Eq. (18) along with the
boundary conditions. At the inlet uni-directional flow is imposed
and solved numerically along with the stress field. Along the lines
of symmetry we impose

u · n = 0, (σ · n) · t = 0. (19)

Zero surface traction was imposed across the channel outlet, i.e.

σ · n = 0. (20)

Here n and t are the normal and tangential vectors respectively.

4. Weak coupling expansion

Thus far we have derived the velocity for a Newtonian fluid
and have not considered any non-Newtonian effects. Of course,
if we can decouple the velocity field from the non-Newtonian
stress the problem simplifies dramatically. Common approaches to
decoupling the non-Newtonian stress use a second order fluid and
apply the Giesekus Tanner (GT) theorem [35] to decouple the flow
field. However, as the flow field is neither rectilinear nor planar
we cannot directly use the GT theorem. There is, however, another
limit which could be considered. Following the approach of Moore
et al. [36] one can assume that the polymer viscosity µp is small
in comparison to solvent viscosity. To be strictly rigorous onemust
use the dimensionless approach of [36], however, informally one
can search for a solution in the form u ∼ u(0) + µpu

(1) + · · · ,
p ∼ p(0)+µpp

(1)+· · · , and T = µpT
(0)+µ2

pT
(1)+· · · . Substituting

these series into (17) and taking leading order in µp gives

− ∇p(0) + ∇2u(0) = 0, ∇ · u(0) = 0, (21)

T (0) + λ
((

u(0) · ∇
)

T (0) − ∇u(0) TT (0) − T (0)∇u(0)
)

= γ̇
(0). (22)

To leading order the velocity field completely decouples from the
extra stress T (0). Hence we can use the expression (15) to obtain
u(0) and then solve Eq. (22) to obtain the extra stress. Unfortu-
nately, the velocity field and gradients are only implicitly a function
of spacial coordinates, as t cannot be easily inverted to give a
function of z. We can, however, locally invert t as a function of z
using the inverse power series to give

t(z) ∼ iπ −
πz

2h
−
π3z3

96h3
+

π7z7

143360h7
+ O(z9). (23)

It can be shown numerically that this series has a radius of conver-
gence of approximately z

h
< 1.42. Similarlywe can find expansions

for the velocity and velocity gradient fields. In order to do so
it is useful to note the following expressions, where ′ denotes
differentiation with respect to z:

w′(t) = U0
sinh(t)

(− cosh(t) + 1)
,

w′′(t) = −
U0π

h

cosh(t)

(1 − cosh(t))2
.

(24)

Thus locally at t = iπ the velocity field and gradients can be
written as

w′(t) ∼ U0

(

−
1

2
(t − iπ)+

1

24
(t − iπ)3 −

1

240
(t − iπ)5

)

+ O

(

(t − iπ)7
)

, (25)

w′′(t) ∼
U0π

h

(

1

4
−

1

64
(t − iπ )4 +

1

192
(t − iπ)6

)

+ O

(

(t − iπ )8
)

. (26)

Eq. (25) has an infinite radius of convergence. However, due to the
pole at t = 0, Eq. (26) has a radius of convergence of π . Combining
with the local inversion (23) allows one to form a power series for
the velocity and its gradient in terms of z explicitly:

w′(z) =
U0πz

4h
−

U0π
5z5

1520h5
+ O(z9),

w′′(z) =
U0π

4h
−

U0π
5z4

304h5
+ O(z8).

(27)

It is important to note that the constitutive equation (22) is now
hyperbolic and can be solved along any given streamline. The
choice of streamline can considerably simplify the problem and
allow one to focus on a point of physical interest. As cross-slot
devices are not focused on shearing effects, we will consider the
Oldroyd B fluid along the center plane x3 = d

2
, where, by the x3

symmetry, we can deduce that T
(0)
13 = T

(0)
23 = T

(0)
33 = 0. By design,

the key area of interest is the extension occurring at the stagnation
point. We thus further simplify the model by solving only along
the center streamline which passes through the stagnation point.
On this streamline symmetry enforces that T

(0)
12 = 0 and along the

outlet channel we are thus left with the simple decoupled ODEs for
T
(0)
11 , T

(0)
22 :

w′ dT
(0)
11

dz
−
(

2w′′ −
1

λ

)

T
(0)
11 −

2

λ
w′′ = 0,

w′ dT
(0)
22

dz
+
(

2w′′ +
1

λ

)

T
(0)
22 +

2

λ
w′′ = 0.

(28)

One could integrate these equations numerically. However, we
will continue with our search for an approximate analytic result.
Let us assume regularity in T

(0)
11 and T

(0)
22 , that is, that the stresses

can be expressed locally around the stagnation point as T
(0)
11 ∼

a0 + a1z + · · · , T
(0)
22 ∼ b0 + b1z + b2z

2. Using expressions (27)
and (28), whilst requiring a consistent balance to O(1), leads to
a0 = 2πU0

2h−πλU0
, b0 = − 2πU0

πλU0+λ−1 . We can continue this approach to
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find that, to higher orders in z, the general solution can be written
as

T
(0)
11 =

πU0

2h − πU0λ
+

π5U0z
4

128
(

π2U2
0λ

2 − 4h2
)

h3

+ · · · + homogeneous term, (29)

T
(0)
22 = −

πU0

πU0λ+ 2h
+

π5U0z
4

128 (3πU0λ+ 2h) (πU0λ+ 2h) h3

+ · · · + homogeneous term. (30)

The homogeneous solutions to leading order in z behave as

C11z
2− 4h

U0πλ , C22z
−2− 4h

U0πλ . In the Newtonian limit as λ → 0 these
terms become singular at the stagnation pointwhich clearly is non-
physical, thereby we set C11 = C22 = 0. The powers of these
singularities are analogous to those found by Cruz and Pinho [17].

Although the above expansion is only valid locally around the
stagnation point one can extend the series using the continuous
fraction approximation, but we need to consider what form this
approximation should take. From (15) we can see that t ∼ z and
considering the Newtonian case, where T ∝ w′′, the stresses decay
exponentially as z → ∞. One cannot expect a polynomial fraction
to decay as quickly as this, however, we could achieve polynomial
decay as z → ∞. We also expect the stress to be monotonically
decreasing in z. We thus search for a Padé approximate in the form
P1
8 . After rescaling byµp we find that the approximate simplifies to

T11 =
U0h

−1A0

A1

(

z
h

)8 + A2

(

z
h

)4 + A3

,

T22 =
U0h

−1B0

B1

(

z
h

)8 + B2

(

z
h

)4 + B3

,

(31)

where the parameters for T11 are given by:

A0 = 163840µpπ
(

3πλ̄+ 2
) (

πλ̄+ 2
)2
,

A1 = π8
(

πλ̄− 2
) (

7π2λ̄2 − 8πλ̄− 4
)

,

A2 = −1280π4
(

πλ̄− 2
) (

3πλ̄+ 2
) (

πλ̄+ 2
)

,

A3 = −163840
(

πλ̄− 2
) (

3πλ̄+ 2
) (

πλ̄+ 2
)2
.

Here λ̄ is the Weissenberg number U0λ

h
. Similarly for T22,

B0 = 163840µpπ
(

5πλ̄+ 2
) (

3πλ̄+ 2
)

,

B1 = π8
(

πλ̄+ 2
) (

15π2λ̄2 − 16πλ̄− 4
)

,

B2 = −1280π4
(

5πλ̄+ 2
) (

3πλ̄+ 2
) (

πλ̄+ 2
)

,

B3 = −163840
(

πλ̄+ 2
)

(5πλ+ 2)
(

3πλ̄+ 2
)2
.

Although one is mainly interested in the predicted stress, one
should note that the Padé approximations for the stress can be
used to explicitly approximate the velocity field, instead of using
themore cumbersome implicit description in Eq. (15). The velocity
gradient can readily be obtained from consideration of the Newto-
nian case:

w′′(z) ≈ P1
8 = f (z) =

81920U0π/h
(

πz
h

)8 + 1280
(

πz
h

)4 + 327680
. (32)

We can integrate the above to give the expression for the velocity
field:

w′(z) = 81920U0

⎧

⎨

⎩

−
1

4(r1 − r2)r
3
4
1

ln

⎛

⎝

πz + r
1
4
1

r
1
4
1 − πz

⎞

⎠

+
1

4(r1 − r2)r
3
4
2

ln

⎛

⎝

πz + r
1
4
2

r
1
4
2 − πz

⎞

⎠+

−
1

2(r1 − r2)r
3
4
1

tan−1

⎛

⎝

πz

r
1
4
1

⎞

⎠

+
1

2(r1 − r2)r
3
4
2

tan−1

⎛

⎝

πz

r
1
4
2

⎞

⎠

⎫

⎬

⎭

, (33)

where r1, r2 are the roots of the quadratic, in z4, from the de-
nominator of (32), r1 = −640 + 128

√
5, r1 = −640 − 128

√
5.

Although the velocity gradients decay exponentially for large z,
the approximation (32) predicts polynomial decay like z−8. As the
gradients in this regime are small the effect on the viscoelastic
stress should be negligible. We can also investigate how well the
weak-coupling assumption holds. The Padé approximation of the
velocity field is compared to the finite element result in Fig. 6 for
λ = 0, 0.1 and 0.2. For increasing λ there is a slight reduction in the
velocity gradient, as streamlines are deflected from the stagnation
point due to hoop-stresses, though this effect is small, even for
µs = 0.5. The Padé flow field does slightly underpredict the
velocity field near the stagnation point, though generally it gives
a good a prediction of the velocity field having only 0.2% error for
large z.

4.1. Inversion of normal stress

The approximate model captures the behavior of the full nu-
merical model for the components T11, T22. However, these com-
ponents cannot be deduced directly from experiments. The first
normal stress difference N1 can be found from birefringence ex-
periments. To O(µp) this is given by

N1 = 2µs

(

u(0)
x1

− v(0)x2

)

+ µp

(

T
(0)
11 − T

(0)
22

)

+ 2µsµp

(

u(1)
x1

− v(1)x2

)

.

It is helpful to note that the elastic stress components at the
stagnation point can be written as

T
(0)
11 =

πU0

2h − πλU0

, T
(0)
22 = −

πU0

πλU0 + 2h
. (34)

We can see that the normal stress difference depends on the
corrected velocity u(1) through the Newtonian stress. For the sake
of closure we will assume that the contribution from the elastic
stress is larger than that from the Newtonian stress modified by
the corrected velocity field.

Viscoelastic parameters are often found from fitting PDE sim-
ulations to the experimental data. As we now have an explicit
expression for the normal stress difference along the center line
of the channel, we can invert to obtain the fluid parameters (µp, λ)
in terms of measurables quantities. The question is what physical
measurables should we map the parameters to? The first normal
stress difference at the stagnation point (Nstag) is readily observable
and sensitive to the fluid parameters. For the second measurable
quantity we will use the variance of the first normal stress dif-
ference along the center line (Var ). Although the integral can be
evaluated analytically by use of the residue theorem the result is
transcendental. We thus expand the integral for small U0λ/h and
recover the expression

Var = 2

∫ ∞

0

x2N1dx ∼
U0

h

(

6.35
(

µs + µp

)

+ 10.79
U0µpλ

h
+ 61.56µp

(

U0λ

h

)2

+ O

(

(

U0λ

h

)3
))

.

(35)
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Fig. 6. Themagnitude of the velocity along the center line. The numerical results for
µp = 0.5 and δ = 0.1 for λ = 0, 0.1 and 0.2 are given by the solid, dashed and dot
dashed lines respectively. The velocity given by the Padé approximation is given by
asterisks.

Similarly, for small λ, the normal stress at the stagnation point is
given by

Nstag =
πU0

(

µs + µp

)

h
+
µpπ

3U3
0λ

2

4h3
+ O

(

(

U0λ

h

)4
)

. (36)

We can invert by iteration to give:

λ ≈ K − 45.88
h

U
K 2 + O

(

(

U0λ

h

)3
)

, (37)

where R, K are given by

R =
Var − 6.43µsU0

h

Nstag − 2πU0µs

h

, K =
h

10.79U0
(R − 6.35) . (38)

Once λ is known the polymer viscosity can be easily found by
inverting Eq. (36). Thus the viscoelastic parameters can be approx-
imated given the variation and strength of the first normal stress
difference around the stagnation point.

4.2. Second order fluid

Thus farwehave used aweak-coupling limit to solve our system
approximately. Alternatively we could have used the second order
fluid (SOF) model to calculate the stresses, although this does not
satisfy momentum conservation. In spite of this the solution for a
SOF is purely algebraic and readily solved without approximation.
Use of the relation w′(z) = u1 − iu2, along with the Cauchy–
Riemann equations and the property that w and all of its deriva-
tives are harmonic functions, allows one to construct all of the
partial derivatives of the velocity field by considering, in turn, the
real (ℜ) and imaginary (ℑ) parts of (24). Upon doing so, one can
obtain Eqs. (39) and (40) for the normal stress components of the
extra viscoelastic stress:

T11 = 2µℜ
{

w′′(t)
}

− 2Weµ
(

ℜ
{

w′(t)
}

ℜ
{

w′′′(z)
}

+ ℑ
{

w′(t)
}

ℑ
{

w′′′(t)
})

+ 4Weµ

(

ℜ
{

w′′(t)
}2 + ℑ

{

w′′(t)
}2
)

, (39)

T22 = −2µℜ
{

w′′(t)
}

+ 2Weµ
(

ℜ
{

w′(t)
}

ℜ
{

w′′′(t)
}

+ ℑ
{

w′(t)
}

ℑ
{

w′′′(t)
})

+ 4Weµ

(

ℜ
{

w′′(t)
}2 + ℑ

{

w′′(t)
}2
)

. (40)

We find that the discrepancy between the Hele–Shaw elongation
rate and the FEM result at the stagnation point is of the order of
2% for an aspect ratio of δ = 0.1. In Figs. 7 and 8, we can see that

(a)

(b)

Fig. 7. Diagonal viscoelastic stress components with polymer viscosity µp = 0.1
and δ = 0.1, (a) T11 , (b) T22 . The crossed, dotted and circularmarked lines denote the
SOF solution whereas the solid and dashed lines denote the FEM Oldroyd B model
and similarly theweak coupling Padé solution respectively. The curves are given for
We = 0, 0.1 and 0.2, which go from bottom to top in (a), and top to bottom in (b).

the behavior predicted by the complex potential theory is similar
to that predicted by the finite element model, however, the weak-
coupling approach does significantly better. The small error in the
velocity gradient can easily be attributed to non-zero δ. The effects
of changing the aspect ratio at the stagnation point are shown in
Fig. 9. This shows that in the limit of small δ, the FEM solution for
We = 0 tends to the analytic solution. However, this is not true
for non-zero We. This error is consistent with the use of a second
order fluid model to approximate the Oldroyd B model. Even with
an aspect ratio of δ = 0.05 we find that the error is only 3% for
We = 0.1. We note that the dependence at the stagnation point
of the first normal stress difference on the Weissenberg number
is of order W 2

e and thus cannot be predicted by the second order
fluid model as it is only accurate to order We. However it can be
predicted from use of the weak coupling approximation.

5. Unequal inlet and outlet channel widths

We now consider the geometry of the cross-slot as before, but
relax the condition that thewidths of the inlet channel (h) and out-
let channel (l) are equal. As the cross-slot geometry is commonly
used in experimental studies due to the region of pure elongational
flow, we will investigate the effect that changing the aspect ratio
will have on the elongation rates and normal stresses. We define
the ratio of outlet to inlet channel widths as α = h/l. Then, bymass
conservation it follows that αU0 = Uout, where U0 and Uout are the
inflow and outflow velocities respectively. Using the source term
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(a)

(b)

Fig. 8. Diagonal viscoelastic stress components with polymer viscosity µp = 0.5
and δ = 0.1, (a) T11 , (b) T22 . The crossed, dotted and circularmarked lines denote the
SOF solution whereas the solid and dashed lines denote the FEM Oldroyd B model
and similarly theweak coupling Padé solution respectively. The curves are given for
We = 0, 0.1 and 0.2, which go from bottom to top in (a), and top to bottom in (b).

as defined in Eq. (9), we can determine the boundary conditions at
the outlet and inlet in the form:

dw

dz
∼ −U0α as η → ±∞, (41)

dw

dz
∼ U0i as η → 0. (42)

This enables us to determine the constants in Eq. (6) to be K =
− h
απ
, b = α2, a = 1. This leads to

dw

dz
= −U0α

√

η + 1

η − α2
, (43)

dz

dη
= −

h

απ
η−1(η + 1)−

1
2 (η − α2)

1
2 . (44)

Eq. (44) can be solved to give

z(η) = −
h

απ
ln

(

1

2
(1 − α2) + η +

√

(η + 1)
√

(η − α2)

)

+
hi

2π
ln

(

(

−α2i +
1

2

(

1 − α2
)

iη +
√

η + 1
√

η − α2

)2
)

−
hi

2π
ln(η2)

+
h

απ
(1 − αi) ln

(

α2 + 1
)

, (45)

Fig. 9. T11 component of the extra stress at the stagnation point forWe = 0 (bottom
line), We = 0.1, We = 0.2 (top line) with µp = 0.1 for varying δ. The Hele-
Shaw (δ = 0) solutions are given by horizontal dashed lines for the weak-coupling
solution and the dotted line for the second order fluid approximation respectively.

(a)

(b)

Fig. 10. (a) The streamlines for α = 1
2
. (b) The velocity magnitude along the center

line for α = 1, 1
2
, 1

3
which are denoted by the solid, dashed and dot-dashed lines

respectively. The positive x values have the convention of being downstream of
the stagnation point whilst the negative x values are upstream from the stagnation
point.

where the constant is again assigned such that z = 0 at η = −1.
Using a Newton–Raphson scheme to find η(z), we can plot the
streamlines and the velocity profiles along the center line (Fig. 10).
The velocity gradients can be obtained from the equation

d2w

dz2
= −

U0α
2πη

(

α2 + 1
)

2h
(

η − α2
)2

. (46)
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(a) (b)

(c) (d)

Fig. 11. The normal stress components for α = 1
3
are shown in (a) and (b) and those for α = 2 are shown in (c) and (d). The polymer viscosity is taken to be µp = 1

2
and the

results forWe = 0, 0.1 and 0.2 are given by the solid, dashed and dot-dashed lines respectively.

Evaluating the above equation at the stagnation point gives a
simple expression for the elongation rate for a given aspect ratio,

ε̇stag =
U0πα

2

2h(1 + α2)
. (47)

We can thus expect the elongation rate to behave as α2 for small
α. We also obtain the result that the maximum elongation rate
achievable at the stagnation point for potential flow is U0π

2h
. One

might have expected themaximum elongation to become singular
as the outlet channel is contracted, as the flow is being forced into
an infinitely small contraction. This rather surprising result can
be explained by observing that although the elongation rate does
become singular, the maximum value does not occur at the stag-
nation point. For α > 1 themaximum value occurs downstream of
the stagnation point and for α < 1 themaximumoccurs upstream.
FromEq. (46)we can see that themaximumoccurswhen η = −α2.
When α = 1, by the choice of mapping in (5), the location of
maximum elongation rate coincides with the stagnation point. We
can thus find the maximum elongation rate by substituting η =
−α2 into Eq. (46) to give

ε̇max =
U0π

(

α2 + 1
)

8h
, (48)

where, in this case, the elongation rate does become singular as
α → ∞ as expected.

For the asymmetric system we chose not to use the weak-
coupling approach. Although in the previous section it was shown

to be superior to the SOF approach, the requirement for the Padé
approximation to capture the asymmetry leads to rather cumber-
some expressions for the stresses T11, T12. Insteadwe introduce the
effect of viscoelasticity by using the SOF approach, by using Eqs.
(39) and (40) to model the normal stress. The results are given in
Fig. 11. The elongation rate can be deduced from the Newtonian
case, and it can be seen that the maximum elongation occurs
upstream for α < 1 and downstream for α > 1. One can also
see that viscoelasticity has a much smaller effect for α < 1 due to
themuch smaller velocity gradients. Downstreamof the stagnation
point these effects are negligible. Using the exact elongation rate
gives normal stress components as:

T11 =
U0µπα

2

(1 + α2)h
+

WeµU
2
0π

2α4

(1 + α2)h2
,

T22 = −
U0µπα

2

(1 + α2)h
+

WeµU
2
0π

2α4

(1 + α2)h2
.

Having derived an analytical velocity field we now consider
whether or not greater uniformity of the elongation rate along the
channel can be achieved by simply changing the aspect ratio. This
is of key importance for extensional flow studies. Let us suppose
that wewish to achieve a fixed elongation rate ε̇0 at the stagnation

point, which, by Eq. (47), forces the condition U0π

2h
= 1+α2

α2
ε̇0 . We

nowscale z by the inletwidth h/π andw′′ by ε̇0. The total curvature
of the velocity field, S, is used as a metric for the uniformity of the
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elongation rate

S =
∫

C

|κ(z)|dz =
∫ 0

−∞

⏐

⏐

⏐

⏐

⏐

⏐

w′′′

(

1 + w′′2
)

3
2

⏐

⏐

⏐

⏐

⏐

⏐

dz

dη
dη, (49)

where C is a contour traversing the center line which is readily
converted into a real integral by using the mapping (5). Evaluation
of the above integral leads to the expression

S =
2
(

1 + α2
)2

√
α8 + 4α6 + 22α4 + α2 + 1

. (50)

S has a minimum value when α = 1. Thus greater uniformity
cannot be achieved by simply changing inlet–outlet aspect ratios.

6. Conclusions

We have derived the Hele–Shaw flow solution for a two-
dimensional cross-slot device. The principle result of the paper is
that the viscoelastic normal stresses derived using weak-coupling
theory can be used to predict behavior that is shown to accurately
reproduce the stress to match that computed from a fully cou-
pled numerical model. This leads to an expression for the stresses
which accurately reproduces the diagonal stress components. The
viscoelastic parameters can then be expressed in terms of the peak
and spread of the first normal-stress difference. The results were
generalized to give an explicit solution for the normal stresses
at the stagnation point for inlet and outlet channels of different
widths.
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