
This is a repository copy of Practical Homomorphic Encryption Over the Integers for
Secure Computation in the Cloud.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/127958/

Version: Accepted Version

Proceedings Paper:
Dyer, J, Dyer, M and Xu, J (2017) Practical Homomorphic Encryption Over the Integers for
Secure Computation in the Cloud. In: Lecture Notes in Computer Science. 16th IMA
International Conference on Cryptography and Coding (IMACC 2017), 12-14 Dec 2017,
Oxford, UK. Springer, Cham , pp. 44-76. ISBN 9783319710440

https://doi.org/10.1007/978-3-319-71045-7_3

© 2017, Springer International Publishing AG. This is an author produced version of a
paper published in Lecture Notes in Computer Science. Uploaded in accordance with the
publisher's self-archiving policy. The final authenticated version is available online at
https://doi.org/10.1007/978-3-319-71045-7_3.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Practical Homomorphic Encryption Over the Integers

for Secure Computation in the Cloud

James Dyer1, Martin Dyer2, and Jie Xu3

1 School of Computer Science, University of Manchester, UK.

james.dyer@postgrad.manchester.ac.uk
2 School of Computing, University of Leeds, UK.

m.e.dyer@leeds.ac.uk
3 School of Computing, University of Leeds, UK.

j.xu@leeds.ac.uk

Abstract We present novel homomorphic encryption schemes for integer arith-

metic, intended primarily for use in secure single-party computation in the cloud.

These schemes are capable of securely computing arbitrary degree polynomials

homomorphically. In practice, ciphertext size and running times limit the polyno-

mial degree, but this appears sufficient for most practical applications. We present

four schemes, with increasing levels of security, but increasing computational

overhead. Two of the schemes provide strong security for high-entropy data. The

remaining two schemes provide strong security regardless of this assumption.

These four algorithms form the first two levels of a hierarchy of schemes which

require linearly decreasing entropy. We have evaluated these four algorithms by

computing low-degree polynomials. The timings of these computations are ex-

tremely favourable by comparison with even the best of existing methods, and

dramatically out-perform running times of directly comparable schemes by a

factor of up to 1000, and considerably more than that for fully homomorphic

schemes, used in the same context. The results clearly demonstrate the practical

applicability of our schemes.

Keywords: Cryptography, symmetric encryption, homomorphic encryption,

computing on encrypted data, secure computation in the cloud.

1 Introduction

With services like Amazon’s Elastic MapReduce and Microsoft’s HDInsight of-

fering large-scale distributed cloud computing environments, computation in the

cloud is becoming increasingly more available. Such services allow for compu-

tation on large volumes of data to be performed without the large investment in

local computing resources. However, where the data that is processed is sensit-

ive, such as financial or medical data, then uploading such data in its raw form

to such a third-party service becomes problematic.

To take advantage of these cloud services, we require a means to process

the data securely on such a platform. We designate such a computation, secure

computation in the cloud (SCC). SCC should not expose input or output data to

any other party, including the cloud service provider. Furthermore, the details

of the computation should not allow any other party to deduce its inputs and

outputs. Cryptography seems the natural approach to this problem.

However, it should be noted that van Dijk and Juels [23] show that crypto-

graphy alone cannot realise secure multi-party computation in the cloud. Since

our approach is via homomorphic encryption, we will restrict our attention to

what we will call secure single-party computation in the cloud (SSCC).

Homomorphic encryption (HE) seems to offer a solution to the SSCC prob-

lem. First defined by Rivest et al. [50] in 1978, HE allows a function to be

computed on encrypted inputs without ever decrypting the inputs. A somewhat

HE scheme (SWHE) is a scheme which is homomorphic for only limited inputs

and functions. Fully HE (FHE) is a scheme that is homomorphic for all func-

tions and inputs. This was first realised by Gentry in 2009 [30], and appeared to

be the ideal HE scheme.

However, despite the clear advantages of FHE, and many significant ad-

vances [12, 13], it remains largely impractical. Two implementations of FHE

schemes, HELib [34] and FHEW [24], both perform very poorly in practice,

both in their running time and space requirements (see section 2.6). Therefore,

we take the view in this paper that only SWHE is, for the forseeable future, of

practical interest. Our goal is to develop new SWHE schemes which are prac-

tically useful, and which we have tested with a realistic implementation.

In this paper, we present four novel SWHE schemes for encryption of in-

tegers that are additively and multiplicatively homomorphic. These schemes are

capable of computing arbitrary degree polynomials. In section 2, we present our

usage scenario, a summary of our results, and a discussion of related work. We

present our initial homomorphic scheme in section 3, in two variants, HE1 and

HE1N. HE1 (section 3.1) provides strong security for integers distributed with

sufficient entropy. This security derives from the assumed hardness of the partial

approximate common divisor problem (PACDP). HE1N (section 3.2) guarantees

strong security for integers not distributed with sufficient entropy or where the

distribution is not known, by adding an additional “noise” term. In addition to

the hardness assumption, we prove that HE1N is IND-CPA secure [5]. Section

4 describes a further two variants, HE2 and HE2N, which increase the entropy

of the plaintext by adding a dimension to the ciphertexts, which are 2-vectors.

This further increases the security of these schemes by effectively doubling the

entropy. HE2 (section 4.1) deals with integers of sufficient entropy, HE2N (sec-

tion 4.2) with integers without the required entropy or of unknown distribution.

HE2N also satisfies IND-CPA. We describe this in some detail, since it appears

to be practically useful, and is the simplest version of our general scheme. We

have performed extensive experimental evaluation of the four schemes presen-

ted in this paper. We report on this in section 5. Our results are extremely fa-

vourable when compared with other methods. In some cases, our algorithms

outperform the running times of directly comparable schemes by a factor of up

to 1000, and considerably more than that for fully homomorphic schemes, used

in the same context. Finally, in section 6, we conclude the paper.

This paper also contains three appendices. In appendix A, we generalise

HE2 and HE2N from 2-vectors to k-vectors, for arbitrary k, in the scheme HEk,

with noisy variant HEkN. These schemes may also be practical for small enough

k. In appendix B, we provide proofs of all theorems and lemmas in this paper.

Finally, in appendix C, we provide the derivation of the bounds on the security

parameters discussed in section 3.1.

2 Background

2.1 Scenario

As introduced above, our work concerns secure single-party computation in the

cloud. In our scenario, a secure client wishes to compute a function on a large

volume of data. This function could be searching or sorting the data, computing

an arithmetic function of numeric data, or any other operation. We consider here

the case where the client wishes to perform arithmetic computations on numeric

data. This data might be the numeric fields within a record, with non-numeric

fields being treated differently.

The client delegates the computation to the cloud. However, while the data

is in the cloud, it could be subject to snooping, including by the cloud provider.

The client does not wish to expose the input data, or the output of the compu-

tation, to possible snooping in the cloud. A snooper here will be a party who

may observe the data and the computation in the cloud, but cannot, or does

not, change the data or insert spurious data. (In our setting data modification

would amount to pointless vandalism.) The snooping may be casual, displaying

an uninvited interest, or malicious, intending to use data for the attacker’s own

purposes.

To obtain the required data privacy, the client’s function will be computed

homomorphically on an encryption of the data. The client encrypts the source

data using a secret key and uploads the encryption to the cloud, with a homo-

morphic equivalent of the target computation. The cloud environment performs

the homomorphic computation on the encrypted data. The result of the homo-

morphic computation is returned to the client, who decrypts it using the secret

key, and obtains the output of the computation.

In this scenario, the source data is never exposed in the cloud, but encryp-

tions of it are. A snooper may observe the computation of the equivalent ho-

momorphic function in the cloud environment. As a result, they may be able to

deduce what operations are performed, even though they do not know the inputs.

A snooper may also be able to inspect the (encrypted) working data generated by

the cloud computation, and even perform side computations of their own. How-

ever, snoopers have no access to the secret key, so cannot make encryptions of

their own.

2.2 Definitions and Notation

x
$←− S denotes a value x chosen uniformly at random from the discrete set S.

KeyGen : S → K denotes the key generation function operating on the

security parameter space S and whose range is the secret key space K.

Enc :M×K → C denotes the symmetric encryption function operating on

the plaintext spaceM and the secret key space K, whose range is the ciphertext

space C.

Dec : C×K →M denotes the symmetric decryption function operating on

the ciphertext space C and the secret key space K, whose range is the plaintext

spaceM.

Add : C×C → C denotes the homomorphic addition function whose domain

is C2 and whose range is C.

Mult : C × C → C denotes the homomorphic multiplication function whose

domain is C2 and whose range is C.

m,m1,m2, . . . denote plaintext values, and c, c1, c2, . . . denote ciphertext

values.

If k∗ =
(

k+1

2

)

, v⋆ = [v1 v2 . . . vk∗]
T denotes a k∗-vector which augments

the k-vector v = [v1 v2 . . . vk]
T by appending elements vi = fi(v1, . . . , vk)

(i ∈ [k + 1, k∗]), for a linear function fi. (All vectors are column vectors

throughout.)

ei denotes the ith unit vector (i = 1, 2, . . .), with size determined by the

context.

[x, y] denotes the integers between x and y inclusive, and [x, y) denotes

[x, y] \ {y}.
log denotes loge and lg denotes log2.

If λ is a security parameter, “with high probability” will mean with probab-

ility 1− 2−ǫλ, for some constant ǫ > 0.

Polynomial time or space will mean polynomial in the security parameter λ.

2.3 Formal Model of Scenario

We have n integer inputs m1,m2, . . . ,mn distributed in [0,M) according to a

probability distributionD. If X is a random integer sampled fromD, let Pr[X =
i] = ξi, for i ∈ [0,M). We will consider three measures of the entropy of X ,

measured in bits:

Shannon: H1(X) = −
∑M−1

i=0 ξi lg ξi, Collision: H2(X) = − lg
(
∑M−1

i=0 ξ2i
)

,

Min: H∞(X) = − lg
(

maxM−1
i=0 ξi

)

.

It is known that H1(X) ≥ H2(X) ≥ H∞(X), with equality if and only if X
has the uniform distribution on [0,M), in which case all three are lgM . We will

denote H∞(X) by ρ, so it also follows that H1(X), H2(X) ≥ ρ. We use the

term “entropy” without qualification to mean min entropy, H∞(X). Note that

H∞(X) = ρ ≥ lgM implies ξi ≤ 2−ρ, i ∈ [0,M), and that M ≥ 2ρ.

We wish to compute a multivariate polynomial P of degree d on these

inputs. A secure client A selects an instance EK of the encryption algorithm

E using the secret parameter set K. A encrypts the n inputs by computing

ci = EK(mi), for i ∈ [1, n]. A uploads c1, c2, . . . , cn and P ′ to the cloud

computing environment, where P ′ is the homomorphic equivalent of P in the

ciphertext space. The cloud environment computes P ′(c1, c2, . . . , cn). A re-

trieves P ′(c1, c2, . . . , cn) from the cloud, and computes

P (m1,m2, . . . ,mn) = EK−1(P ′(c1, c2, . . . , cn)).

A snooper is only able to inspect c1, c2, . . . , cn, the function P ′, and the

computation of P ′(c1, c2, . . . , cn), including subcomputations and working data,

and perform side-computations on these.4 Thus the snooper is passive or honest-

but-curious [31].

2.4 Observations from Scenario

Our encryption schemes are essentially symmetric key encryption, though there

is no key escrow or distribution problem. The public parameters of our schemes

are exposed to the cloud, but they do not provide an encryption oracle.

Note that the n inputs do not necessarily need to be uploaded at once, but n
is an upper bound on the total number of inputs. For example, if the polynomial

is separable we might compute it in separate stages, and this might be useful in

more dynamic situations.

This model is clearly susceptible to certain attacks. We consider ciphertext

only, brute force, and cryptanalytic attacks. To avoid cryptanalytic attacks, we

must choose the parameters of the system carefully. Here, a brute force attack

will mean guessing the plaintext associated with a ciphertext. In our encryp-

tion schemes, it will be true that a guess can be verified. Since ξi ≤ 2−ρ for

i ∈ [0,M), the expected number µ of guesses before making a correct guess

satisfies µ ≥ 2ρ. Massey [43] gave a corresponding result in terms of the Shan-

non entropy H1(X).

Similarly, probability of any correct guess in 2ρ/2 guesses is at most 2−ρ/2.

This bound holds if we need only guess one of n inputs, m1,m2, . . . ,mn, even

4 However, note that our “N” schemes below provide security even against more malicious

snooping.

if these inputs are not independent. Therefore, if ρ is large enough, a brute force

attack is infeasible. An example of high entropy data is salaries for a large na-

tional or multinational business. Low entropy data might include enumerated

types, such as gender.

In our model, known plaintext attack (KPA) is possible only by brute force,

and not through being given a sample of plaintext, ciphertext pairs. Chosen

plaintext attack (CPA) or chosen ciphertext attack (CCA) do not appear rel-

evant to our model. Since EK is never exposed in the cloud, there is no realistic

analogue of an encryption or decryption oracle, as required by these attacks. In

public key encryption, an encryption algorithm is available as part of the sys-

tem, so CPA should be forestalled, though failure to satisfy IND-CPA [6] does

not imply that we can break the system.

Following [5], it is common in studying symmetric key encryption to sup-

pose that, in most practical settings, defence against CPA or CCA is necessary.

While IND-CPA and IND-CCA are clearly desirable properties for a cryptosys-

tem, their necessity, in the symmetric-key context, seems hard to justify. Both [4]

and [9] provide examples intended to support this convention. However, these

examples are unconvincing. Nevertheless, we show that the “N” variants of our

HE schemes below do satisfy IND-CPA.

We note that observation of the function P ′, which closely resembles P ,

might leak some information about its inputs. However, we assume that this

information is far too weak to threaten the security of the system, as is common

in the HE literature. However, if the threat is significant, “garbled circuits” [31]

are a possible solution.

Finally, we note that our model of SSCC is very similar to the model of

private single-client computing, described in [23]. Furthermore, they describe

an example practical application, a privacy preserving tax return preparation

program, which computes the relevant statistics on government servers without

revealing the client’s inputs. Another example, cited in [42], is a device which

collects health data which is streamed to the cloud. Statistics are computed on

the data and reported back to the device. To protect the patient’s privacy this

data is encrypted by the device and the computations are performed homo-

morphically. Erkin et al. [27] employ a similar scenario in the description of

their privacy-preserving face recognition algorithm.

2.5 Our Results

We describe new practical HE schemes for the encryption of integers, to be em-

ployed in a SSCC system inspired by the HE scheme CryptDB [46]. CryptDB

encrypts integers using the Paillier cryptosystem [45] which is additively homo-

morphic5. Similar systems ([52, 53]) use ElGamal [26] to support multiplica-

tions. The “unpadded” versions of these schemes must be used. These are not

secure under CPA [32], reducing the advantage of a public-key system. These

schemes do not support both addition and multiplication. Computing the in-

ner product function requires re-encrypting the data once the multiplications

have been done, so that the additions can be performed. In a SSCC system, this

requires shipping the data back to the initiator for re-encryption, a significant

communication overhead. We aim to support both addition and multiplication

without this overhead. It should also be noted that a hybrid scheme of Paillier

and ElGamal, for a given modulus, will be limited in the degree of polynomials

that can be computed. Should a product or sum exceed the modulus then the

result cannot be successfully decrypted.

Our scheme is inspired by the SWHE scheme of van Dijk et al. that is used

as the basis for a public-key system. As in their system, we add multiples of

integers to the plaintext to produce a ciphertext. However, [22] supports only

arithmetic mod 2. We generalise their scheme to larger moduli.

We showed above that the input data must have sufficient entropy to negate

brute force attacks. If the data lacks sufficient entropy, we will introduce more in

two ways. The first adds random “noise” of sufficient entropy to the ciphertext,

to “mask” the plaintext. This approach is employed in [22]. In our “N” variants

below, we add a random multiple (from 0 to κ) of a large integer, κ, to the

ciphertext, such that mi < κ, for all i ∈ [1, N]. If the entropy of the original data

was ρ, it becomes ρ+lg κ. Therefore, if κ is large enough, our data has sufficient

entropy. But there is a downside. If the noise term grows too large, the ciphertext

cannot be decrypted successfully. So we are restricted to computing polynomials

of bounded degree, but this does not appear to be a practical problem.

The other technique will be to increase the dimension of the ciphertext. We

represent the ciphertext as a k-vector, where each element is a linear function of

the plaintext. Addition and multiplication of ciphertexts use linear algebra. The

basic case k = 1 is described in section 3.1. Then we can increase the entropy by

creating a k-vector ciphertext. Then we must guess k plaintexts to break the sys-

tem. Assuming that the inputs m1,m2, . . . ,mn are chosen independently from

D, and the entropy is ρ, the entropy of a k-tuple (m1,m2, . . . ,mk) is kρ. Thus

the k-vectors effectively have entropy kρ. If k is chosen large enough, we have

sufficient entropy to prevent brute force attack. The assumption of independ-

ence among m1,m2, . . . ,mn can be relaxed, to allow some correlation, but we

will not discuss the details. On the upside, some cryptanalytic attacks for k = 1
do not seem to generalise even to k = 2. The downside is that ciphertexts are

5 Paillier supports computation of linear functions with known coefficients homomorphically

by repeated addition

k times larger, and each homomorphic multiplication requires Ω(k3) time and

space. For very large k, this probably renders the methods impractical. There-

fore, we consider the case k = 2 in section 4. The general case is considered in

appendix A.

Our work here supports computing arbitrary degree multivariate polynomi-

als on integer data. However, we expect that for many practical applications,

computing low-degree polynomials will suffice. See [42] for a discussion re-

garding this. In this paper, we present four variants of our scheme. Two provide

strong security under the assumption that the input data has high entropy. The

other two provide strong security regardless of this assumption. Appendix A

generalises these four schemes to dimension k ciphertexts.

2.6 Related Work

A comprehensive survey of somewhat and fully HE schemes is presented in [1].

In this section, we discuss those most related to our own work. Some related

work ([46, 52, 53]) has already been discussed in section 2.5.

Our scheme is inspired by that of van Dijk et al. [22]. In their paper they

produce an FHE scheme over the integers, where a simple SWHE scheme for

modulo 2 arithmetic is “bootstrapped” to FHE. Our scheme HE1N below (sec-

tion 3.2) may be regarded as a generalisation of theirs to arbitrary prime moduli.

In van Dijk et al. [22], their symmetric scheme is transformed into a public key

scheme. Though we could do this, we will not do so, since public key systems

appear to have little application to our model. In [19], Coron et al. develop a

similar encryption scheme, where the sum term in the ciphertext is quadratic

rather than linear.

Several implementations of SWHE and FHE schemes have been produced.

Lauter et al. [42] implement the SWHE scheme from [12]. However, they give

results only for degree two polynomials. Our schemes are capable of comput-

ing degree three and four polynomials for practical key and ciphertext sizes.

HELib [34] is an implementation of the BGV [13] FHE scheme. HELib-MP

[48] is an adaptation of HELib to support multi-precision moduli. At the cur-

rent time, it only supports basic SWHE features. The Homomorphic Encryption

Applications and Technology (HEAT) project’s Homomorphic Encryption Ap-

plication Programming Interface (HE-API) [56] has currently integrated HELib

and FV-NFLib [20], an implementation of the Fan and Vercauteren (FV) [28]

SWHE scheme, under a single API. The authors appear to have made signific-

ant improvements in circuit evaluation times, but few details have been made

available [10]. Microsoft’s SEAL library [41] also implements the FV scheme,

albeit, in a modified form. FHEW [25] implements the FHE scheme described

in [24]. The performance of these implementations is discussed in section 5.

Erkin et al. [27] exploit the linearly-homomorphic properties of Paillier

to compute feature vector matches in their privacy-preserving face recognition

algorithm. Our schemes can likewise compute known linear functions, simply

by not encrypting the coefficients of the function.

Catalano et al. [15] aim to extend a linearly-homomorphic system, such as

Paillier [45], to compute multivariate quadratics homomorphically. However,

their extension relies on pre-computing a product for each pair of plaintexts and

then applying a linear function on the encryption of these products. As such, it

does not extend the underlying linear encryption scheme and is not multiplic-

atively homomorphic. They claim that their system can compute any degree 2

polynomial with at most one multiplication. However, it is not clear how they

would compute the polynomial m1 · (m2+ . . .+mn) without performing n−1
offline multiplications. By contrast, our scheme would only require one multi-

plication. In [14], Catalano et al. extend their approach to cubics.

Zhou and Wornell [59] construct a scheme based on integer vectors, sim-

ilar, in some respects, to our HE2 (section 4.1) and HEk (appendix A) schemes.

Bogos et al. [8] demonstrate that the system displays some theoretical insecur-

ities. However, the question of whether these are of practical importance is not

addressed.

The symmetric MORE scheme [39] uses linear transformations, as do our

schemes but in a different way. MORE has been shown [57] to be insecure

against KPA, at least as originally proposed. However, whether KPA is relevant

in applications of the scheme is unclear.

Recent work on functional encryption [33] should also be noted. While these

results are of great theoretical interest, the scenario where such schemes might

be applied is rather different from our model. Also, the methods of [33] seem too

computationally expensive to be of practical interest in the immediate future.

3 Initial Homomorphic Scheme

3.1 Sufficient Entropy (HE1)

We have integer inputs m1,m2, . . . ,mn ∈ [0,M). (Negative integers can be

handled as in van Dijk et al. [22], by taking residues in [−(p−1)/2, (p−1)/2),
rather than [0, p).) We wish to compute a polynomial P of degree d in these

inputs. The inputs are distributed with entropy ρ, where ρ is large enough, as

discussed in section 2.3 above. In practical terms, ρ ≥ 32 will provide sufficient

entropy for strong security, since breaking the system would require more than a

billion guessses. Our HE scheme is the system (KeyGen,Enc,Dec,Add,Mult).

Key Generation. Let λ be a security parameter, measured in bits. Let p
and q be randomly chosen large distinct primes such that p ∈ [2λ−1, 2λ], and

q ∈ [2η−1, 2η], where η ≈ λ2/ρ − λ. Here λ must be large enough to negate

direct factorisation of pq (see [40]), and p and q are chosen to negate Cop-

persmith’s attack [18]. We will also require p > (n + 1)dMd to ensure that

P (m1,m2, . . . ,mn) < p, so that the result of the computation can be success-

fully decrypted. Our bounds are worst case, allowing for polynomials which

contain all possible monomial terms. For some applications, they will be much

larger than required to ensure that P (m1,m2, . . . ,mn) < p and smaller bounds

will suffice. Our function KeyGen will randomly select p and q according to

these bounds. Then p is the private symmetric key for the system and pq is the

modulus for arithmetic performed by Add and Mult. pq is a public parameter of

the system. We assume that the entropy ρ ≫ lg λ, so that a brute force attack

cannot be carried out in polynomial time.

Security Parameters. We can easily set the security parameters λ and η to

practical values. If n ≈
√
M , M ≈ 2ρ then we may take λ ≈ 3dρ/2 and

η ≈ 3dλ/2 − λ (see appendix C). For, example, if ρ = 32, d = 4, we can take

any λ > 192, η > 960.

Encryption. We encrypt a plaintext integer m as

Enc(m, p) = m+ rp (mod pq), where r
$←− [1, q).

Decryption. We decrypt the ciphertext c by Dec(c, p) = c (mod p).

Addition. The sum modulo pq of two ciphertexts, c = m + rp and c′ =
m′ + r′p, is

Add(c, c′) = c+ c′ = m+m′ + (r + r′)p (mod pq) .

This decrypts to m+m′, provided m+m′ < p.

Multiplication The product modulo pq of two ciphertexts, c = m+ rp and

c′ = m′ + r′p, is

Mult(c, c′) = cc′ = mm′ + (rm′ + r′m+ rr′p)p (mod pq),

which decrypts to mm′, provided mm′ < p.

Security. Security of the system is provided by the partial approximate com-

mon divisor problem (PACDP), first posed by Howgrave-Graham [36], but can

be formulated [16, 17] as:

Definition 1. (Partial approximate common divisor problem.) Suppose we are

given one input x0, of the form pr0, and n inputs xi, of the form pri +mi, i ∈
[1, n], where p is an unknown constant integer and the mi and ri are unknown

integers. We have a bound B such that |mi| < B for all i. Under what conditions

on the mi and ri, and the bound B, can an algorithm be found that can uniquely

determine p in time polynomial in the total bit length of the numbers involved?

A straightforward attack on this problem is by brute force. Consider x1.

Assuming that m1 is sampled from D, having entropy ρ, we successively try

values for m1 and compute gcd(x0, x1 −m1) in polynomial time until we find

a divisor that is large enough to recover p. Then we can recover mi as (xi mod
p) for i ∈ [2, n]. As discussed in section 2.3, the search will requires 2ρ gcd
operations in expectation. Note that publicly known constants, need not, and

should not be encrypted. Encrypting them provides an obvious guessing attack.

Several attempts have been made to solve the PACDP [16, 17, 36], resulting

in theoretically faster algorithms for some cases of the problem. The paper [16]

gives an algorithm requiring only
√
M polynomial time operations if D is the

uniform distribution on [0,M), and hence ρ = lgM . No algorithm running in

time subexponential in ρ is known for this problem, so the encryption will be

secure if ρ is large enough. See [29] for a survey and evaluation of attacks on

PACDP.

Our system is a special case of PACDP, since we use the residues mod-

ulo a distinct semiprime. A semiprime is a natural number that is the product

of two primes. A distinct semiprime is a semiprime where the primes are dis-

tinct. We call this the semiprime partial approximate common divisor problem

(SPACDP). It is a restriction, but there is no reason to believe that it is any easier

than PACDP.

Definition 2. (Semiprime factorisation problem.) Given a semiprime s, the product

of primes p and q, can p and q be determined in polynomial time?

The computational complexity of this problem, which lies at the heart of the

widely-used RSA cryptosystem, is open, other than for quantum computing,

which currently remains impractical. We will show that breaking HE1 is equi-

valent to semiprime factorisation. Therefore, our scheme is at least as secure as

unpadded RSA [49].

Theorem 1. An attack against HE1 is successful in polynomial time if and only

if we can factorise a distinct semi-prime in polynomial time.

With low entropy plaintexts, there is a brute force attack on this system,

which we call a collision attack. Suppose we have a pair of equal plaintexts

m1 = m2. The difference between their encryptions (c1 − c2) is an encryption

of 0, and KPA is possible. In fact, for n plaintexts m1,m2, . . . ,mn, if there

exist i, j ∈ [1, n] with mi = mj , then
∏

1≤i<j≤n(cj − ci) is an encryption of 0.

However, if there is sufficient entropy, this attack is not possible.

Lemma 1. If the inputs m have entropy ρ then, for any two independent inputs

m1,m2, Pr(m1 = m2) ≤ 2−ρ.

Thus, for n inputs, m1,m2, . . . ,mn the probability that there exist i, j ∈
[1, n] with mi = mj is at most

(

n
2

)

2−ρ. If n < 2−ρ/3, this probability is at most

2−ρ/3. Hence, for large enough λ, collision attack is infeasible.

3.2 Insufficient Entropy (HE1N)

Suppose now that the integer inputs mi, i ∈ [1, n], are distributed with entropy

ρ, where ρ is not large enough to negate a brute force guessing attack. There-

fore, we increase the entropy of the plaintext by adding an additional “noise”

term to the ciphertext. This will be a multiple s (from 0 to κ) of an integer κ,

chosen so that the entropy ρ′ = ρ+ lg κ is large enough to negate a brute force

guessing attack. As a result of the extra linear term in the ciphertext, we com-

pute P (m1, . . . ,mn, κ) instead. We can easily retrieve P (m1, . . . ,mn) from

P (m1, . . . ,mn, κ).

Key Generation. KeyGen now randomly chooses p and q as in HE1, but

with η = λ2/ρ′ − λ, and p > (n + 1)d(M + κ2)d so that P (m1 + s1κ,m2 +
s2κ, . . . ,mN +snκ) < p, when s1, s2, . . . , sn ∈ [0, κ). KeyGen also randomly

chooses κ, where κ > (n+1)dMd, so that P (m1,m2, . . . ,mn) < κ. The secret

key, sk, is now (κ, p).

Security Parameters. Again, we can set the security parameters λ and η to

practical values. If we assume M ≈ 2ρ and large enough n, as in section 3.1,

then we may take lg κ > d(lg n+ ρ), ρ′ = ρ+ lg κ, λ > d(lg n+2 lg κ). Then,

for example, if d = 3, lg n = 16, ρ = 8, then lg κ > 72, ρ′ = 80, λ > 480,

η > 2400. In the extreme case that the inputs are bits, so ρ = 1, and d = 3,

lg n = 16, then we can take lg κ ≈ 51 and ρ′ ≈ 52, and we have λ > 354,

η > 2056, which is only 15% smaller than for ρ = 8.

Encryption. We encrypt plaintext m as Enc(m, sk) = m + sκ + rp

(mod pq), where r
$←− [1, q) and s

$←− [0, κ).

Decryption. We decrypt ciphertext c as Dec(c, sk) = (c mod p) mod κ.

Arithmetic. Addition and multiplication of ciphertexts is as above.

Security. The use of random noise gives the encryption the following “indis-

tinguishability” property, which implies that the system satisfies IND-CPA [5,

6].

Theorem 2. For any encryption c, c mod κ is polynomial time indistinguish-

able from the uniform distribution on [0, κ). Thus HE1N satisfies IND-CPA,

under the assumption that SPACDP is not polynomial time solvable.

Therefore, HE1N is resistant to both the “guessing” and “collision” attacks

discussed in section 3.1.

Hybrid scheme. Note that mixed data, some of which has high entropy and

some low, can be encrypted with a hybrid of HE1 and HE1N. More generally,

we can choose s to be smaller for higher entropy and larger for lower entropy,

say s ∈ [0, χi), where 0 ≤ χi < κ, for the ith data type, rather than [0, κ). How-

ever, κ itself remains the same for all i, or we cannot decrypt. Then the entropy

increases to ρi + lgχi for data type i. The advantage is a smaller blow-up in

the noise. A possible disadvantage is that this mixed scheme may not necessar-

ily have the IND-CPA property of Theorem 2. The same idea can be applied to

HE2 and HE2N below, and to the HEkN schemes, for k > 2, described in the

appendix.

4 Adding a Dimension

In this section we discuss adding an additional dimension to the ciphertext,

which becomes a 2-vector. The purpose of this is to increase the level of security

beyond HE1 and HE1N. In both schemes presented below, HE2 and HE2N, we

add a further vector term, with two further secret parameters. The two schemes

presented below have a constant factor overhead for arithmetic operations. An

addition operation in the plaintext space requires two additions in the ciphertext

space, and a multiplication in the plaintext space requires nine multiplications

and four additions in the ciphertext space.

4.1 Sufficient Entropy (HE2)

As with HE1, it is assumed that the inputs mi (i ∈ [1, n]) are of sufficient

entropy.

Key Generation. p and q are randomly chosen by KeyGen according to the

bounds given in section 3.1. KeyGen sets a = [a1 a2]
T , where ai

$←− [1, pq)
(i ∈ [1, 2]) such that a1, a2, a1 − a2 6= 0 (mod p and mod q).6 KeyGen also

sets R, the re-encryption matrix (see “Multiplication”) as
[

1− 2α1 α1 α1

−2α2 α2 + 1 α2

]

,

where

α1 = β−1(σa1 + ̺p− a21), α2 = β−1(σa2 + ̺p− a22), (1)

such that β = 2(a2 − a1)
2, ̺

$←− [0, q] and σ
$←− [0, pq).

The secret key sk is (p,a) and the public parameters are pq and R.

6 The condition a1, a2, a1 − a2 6= 0, (mod p, mod q) fails with exponentially small probab-

ility 3(1/p+ 1/q). Thus, a1 and a2 are indistinguishable in polynomial time from a1, a2

$
←−

[0, pq).

Encryption. We encrypt a plaintext integer m as the 2-vector c,

c = Enc(m, sk) = (m+ rp)1+ sa (mod pq),

where 1 = [1 1]T , r
$←− [0, q), and s

$←− [0, pq). r and s are independent.

We note that two encryptions of the same plaintext are different with very high

probability.

Theorem 3. The encryption scheme produces ciphertexts with components which

are random integers modulo pq.

Note, however, that the components of the ciphertexts are correlated, and

this may be a vulnerability. We discuss this later in this section (“Cryptana-

lysis”).

Decryption. To decrypt, we eliminate s from c (modulo p), giving

Dec(c, sk) = γTc mod p,

where γT = (a2 − a1)
−1[a2 − a1]. We call γ the decryption vector.

Addition. We define the addition operation on ciphertexts as the vector sum

modulo pq of the two ciphertext vectors c and c′,

Add(c, c′) = c+ c′ (mod pq).

Therefore, if inputs m,m′ encrypt as (m+ rp)1+ sa, (m′+ r′p+)1+ s′a,

Add(c, c′) = c+ c′ = (m+m′ + (r + r′)p)1+ (s+ s′)a.

which is a valid encryption of m+m′.

Multiplication. If c = [c1 c2]
T , we construct the augmented ciphertext vec-

tor, c⋆ = [c1 c2 c3]
T , where c3 = 2c1−c2. Thus, c3 = (m+rp)+sa3 mod pq,

for a3 = 2a1 − a2. So,

Mult(c, c′) = c · c′ = R(c⋆ ◦ c′⋆) (mod pq),

where · is a product on Z2
pq and c⋆ ◦ c′⋆ is the Hadamard product modulo pq of

the two augmented ciphertext vectors c⋆ and c′
⋆
.

Theorem 4. If c is an encryption of m and c′ is an encryption of m′ then R(c⋆◦
c′
⋆
) (mod pq) is an encryption of mm′.

Observe that α1, α2 in R are public, but give only two equations for the four

parameters of the system a1, a2, σ, ̺p. These equations are quadratic mod pq,

and solving them is as hard as semiprime factorisation in the worst case [47].

Also, observe that, independently of a,

Rc⋆ = (m+ rp)R1⋆ + sRa⋆ = (m+ rp)1+ sa = c,

for any ciphertext c. Hence re-encrypting a ciphertext gives the identity opera-

tion, and discloses no information.

Hardness. We can show that this system is at least as hard as SPACDP. In

fact,

Theorem 5. SPACDP is of equivalent complexity to the special case of HE2

where δ = a2 − a1 (0 < δ < q) is known.

Without knowing the parameter δ = a2 − a1, HE2 cannot be reduced to

SPACDP in this way, so HE2 is more secure than HE1.

Cryptanalysis. Each new ciphertext c introduces two new unknowns r, s
and two equations for c1, c2. Thus we gain no additional information from a

new ciphertext. However, if we can guess, m, m′ for any two ciphertexts c, c′,
we can determine

(c1 −m) = rp+ sa1, (c2 −m) = rp+ sa2,

(c′1 −m′) = r′p+ s′a1, (c′2 −m′) = r′p+ s′a2,

so (c1 −m)(c′2 −m′)− (c2 −m)(c′1 −m′) = (a2 − a1)(rs
′ − r′s)p (mod pq)

Since a2 6= a1, and sr′ 6= s′r with high probability, this is a nonzero multiple

of p, νp say. We may assume ν < q, so p = gcd(νp, pq). We can now solve the

linear system γT [c c′] = [m m′] mod p to recover the decryption vector. This

effectively breaks the system, since we can now decrypt an arbitrary ciphertext.

We could proceed further, and attempt to infer a1 and a2, but we will not do so.

Note that to break this system, we need to guess two plaintexts, as opposed

to one in HE1. The entropy of a pair (m,m′) is 2ρ, so we have effectively

squared the number of guesses needed to break the system relative to HE1. So

HE2 can tolerate smaller entropy than HE1. We note further that HE2 does not

seem immediately vulnerable to known cryptanalytic attacks on HE1 [16, 17,

36].

4.2 Insufficient Entropy (HE2N)

In this section we extend HE1N above (section 3.2) to two dimensions.

Key Generation. KeyGen randomly chooses p, q and κ according to the

bounds given in section 3.2. 1 is defined as in section 4.1. a, and R are generated

as in section 4.1. The secret key is (κ, p,a), and the public parameters are pq
and R, defined in section 4.1.

Encryption. We encrypt a plaintext integer m ∈ [0,M) as a 2-vector c,

Enc(m, sk) = c = (m+ rp+ sκ)1+ ta mod pq,

where r is as in section 4.1, s
$←− [0, κ), and t

$←− [0, pq).

Decryption. We decrypt a ciphertext c by Dec(c, sk) = (γTc mod p)
mod κ, where γT is defined as in 4.1.

Arithmetic. Addition and multiplication of ciphertexts are as in section 4.1.

Security. HE2N has all the properties of HE1N. However, it is more secure,

since there is an additional unknown parameter in the ciphertext. We also note

that HE2N satisfies Theorem 2, so it inherits the IND-CPA property.

4.3 Generalisation of HE2 and HE2N to k Dimensions

The integer vector based approach of HE2 and HE2N can be generalised to

vectors of dimension k. We do not have space to present this material here, but

it may be found in appendix A.

5 Experimental Results

HE1, HE1N, HE2, and HE2N have been implemented in pure unoptimised

Java using the JScience mathematics library [21]. Secure pseudo-random num-

bers are generated using the ISAAC algorithm [37], seeded using the Linux

/dev/random source. This prevents the weakness in ISAAC shown by Aumas-

son [3].

The evaluation experiment generated 24,000 encrypted inputs and evalu-

ated a polynomial homomorphically on the inputs, using a Hadoop MapReduce

(MR) algorithm. On the secure client side, the MR input is generated as pseudo-

random ρ-bit integers which are encrypted and written to a file with d inputs

per line, where d is the degree of the polynomial to be computed. The security

parameters λ and η were selected to be the minimum values required to satisfy

the conditions give in sections 3.1, 3.2, 4.1, and 4.2. In addition, the unencryp-

ted result of the computation is computed so that it may checked against the

decrypted result of the homomorphic computation. On the Hadoop cluster side,

each mapper processes a line of input by homomorphically multiplying together

each input on a line and outputs this product. A single reducer homomorphically

sums the products. The MR algorithm divides the input file so that each mapper

receives an equal number of lines of input, ensuring maximum parallelisation.

Finally, on the secure client side, the MR output is decrypted.

Our test environment consisted of a single secure client (an Ubuntu Linux

VM with 16GB RAM) and a Hadoop 2.7.3 cluster running in a heterogeneous

OpenNebula cloud. The Hadoop cluster consisted of 17 Linux VMs, one master

and 16 slaves, each allocated 2GB of RAM. Each experimental configuration of

algorithm, polynomial degree (d), integer size (ρ), and effective entropy of in-

puts after adding “noise” (ρ′, for the ‘N’ variant algorithms only), was executed

10 times. The means are tabulated in Table 1.

There are some small anomalies in our data. JScience implements arbitrary

precision integers as an array of Java long (64-bit) integers. This underlying

representation may be optimal in some of our test configurations and suboptimal

Table 1. Timings for each experimental configuration (n = 24000 in all cases, λ > 96). Init is the

initialisation time for the encryption algorithm, Enc is the mean time to encrypt a single integer,

Exec is the total MR job execution time, Prod is the mean time to homomorphically compute the

product of two encrypted integers, Sum is the mean time to homomorphically compute the sum

of two encrypted integers.

Alg. Parameters Encryption MR Job Decrypt
d ρ ρ′ Init(s) Enc(µs) Exec(s) Prod(µs) Sum(µs) (ms)

HE1 2 32 n/a 0.12 13.52 23.82 54.41 9.06 0.21
HE1 2 64 n/a 0.12 16.24 23.85 60.38 8.04 0.49
HE1 2 128 n/a 0.15 25.73 23.77 84.69 8.43 0.28
HE1 3 32 n/a 0.17 22.98 23.65 87.75 11.46 0.35
HE1 3 64 n/a 0.19 34.63 24.72 95.68 12.37 0.45
HE1 3 128 n/a 0.42 54.83 26.05 196.71 14.07 0.55
HE1 4 32 n/a 0.28 43.36 24.48 108.72 13.75 0.5
HE1 4 64 n/a 0.53 58.85 26.41 227.44 15.85 3.59
HE1 4 128 n/a 1.36 104.95 28.33 484.95 16.92 5.67
HE1N 2 1 32 0.22 32.99 22.94 88.38 8.53 3.35
HE1N 2 1 64 0.39 52.63 26.24 168.54 12.39 3.56
HE1N 2 1 128 1.2 89.01 26.18 226.2 13.16 8.1
HE1N 2 8 32 0.6 57.88 25.9 177.36 11.17 7.18
HE1N 2 8 64 0.32 43.93 26.53 96.78 12.18 2.27
HE1N 2 8 128 1.13 78.11 24.42 212.75 11.07 8.4
HE1N 2 16 64 0.33 53.97 27.15 168 13.67 4.47
HE1N 2 16 128 0.63 68.73 25.22 194.42 11.01 7.65
HE1N 3 1 32 8.54 183.19 24.24 522.07 12.06 9.09
HE1N 3 1 64 3.67 125 29.49 467.36 18.22 11.43
HE1N 3 1 128 27.84 313.76 26.94 1235.77 15.04 11.75
HE1N 3 8 32 115 462.45 32.61 1556.17 21.11 19.79
HE1N 3 8 64 9.75 180.08 25.87 500.62 15.03 10.39
HE1N 3 8 128 36.05 259.15 30.1 836.27 20.68 11.45
HE1N 3 16 64 30.96 378.99 28.24 1338.33 15.51 13.3
HE1N 3 16 128 8.13 226.32 27.92 621.95 18.01 10.89
HE2 2 32 n/a 0.16 85.79 26.82 305.52 11.68 4.83
HE2 2 64 n/a 0.17 95.92 29.71 354.79 16.9 3.26
HE2 2 128 n/a 0.22 132.53 32.84 540.78 22.83 4.92
HE2 3 32 n/a 0.23 130.3 31.18 513.93 23.77 6.52
HE2 3 64 n/a 0.29 145.62 32.84 615.9 24.61 6.3
HE2 3 128 n/a 0.52 249.47 29.54 1443.82 16.56 18.34
HE2 4 32 n/a 0.39 175.63 29.5 733.23 20.69 6.01
HE2 4 64 n/a 0.7 255.3 29.55 1578.39 18.29 16.24
HE2 4 128 n/a 2.7 465.51 37.47 2943.91 22.15 15.41
HE2N 2 1 32 0.27 147.83 29.74 571.94 16.58 5.66
HE2N 2 1 64 0.43 202.74 33.36 1291.68 18.3 13.23
HE2N 2 1 128 1.58 354.19 33.76 1977.51 17.13 12.46
HE2N 2 8 32 0.59 234.83 31.42 1413.31 15.21 14.92
HE2N 2 8 64 0.33 163.78 27.42 635.64 13.6 6.18
HE2N 2 8 128 0.9 307.68 36.32 1850.83 21.71 15.79
HE2N 2 16 64 0.42 208.1 29.96 1230.56 13.41 13.16
HE2N 2 16 128 0.73 274.48 30.82 1585.1 14.85 15.04
HE2N 3 1 32 5.72 651.1 36.49 3438.96 18.67 19.05
HE2N 3 1 64 4.45 477.52 35.33 3073.46 18.75 19.77
HE2N 3 1 128 26.83 1192.79 43.23 6416.43 22.48 25.12
HE2N 3 8 32 87.38 1658.36 49.63 8139.19 23.71 27.24
HE2N 3 8 64 5.21 607.75 36.54 3337.1 22.28 17.39
HE2N 3 8 128 17.14 945.64 40.49 4620.69 25.91 22.41
HE2N 3 16 64 39.19 1368.18 44.88 7005.7 24.1 28.3
HE2N 3 16 128 11.39 774.07 36.05 3845.1 20.29 20.74

in others, causing anomalous results. Another possibility is that the unexpected

results are due to garbage collection in the JVM heap, which may be more pre-

valent in certain test configurations.

We may compare these results with those reported in the literature. Our res-

ults compare extremely favourably with Table 2 of [42]. For encryption, our

results are, in the best case, 1000 times faster than those presented there, and,

in the worst case, 10 times faster. For decryption, our results are comparable.

However, it should be noted that to decrypt our results we take the moduli for

large primes rather than 2 as in [42], which is obviously less efficient. For homo-

morphic sums and products, our algorithms perform approximately 100 times

faster. [42] only provides experimental data for computing degree 2 polynomi-

als. We provide experimental results for higher degree polynomials.

Similarly, compared with Fig. 13 of Popa et al. [46], our encryption times

for a 32-bit integer are considerably faster. While a time for computing a homo-

morphic sum on a column is given in Fig. 12, it is unclear how many rows ex-

ist in their test database. Nevertheless, our results for computing homomorphic

sums compare favourably with those given. Since CryptDB [46] only supports

homomorphic sums and cannot compute an inner product, we can only compare

the homomorphic sum timings.

Table 1 of [52] is unclear whether the timings are aggregate or per opera-

tion. Even assuming that they are aggregate, our results are approximately 100

times faster for homomorphic sum and product operations. Crypsis [52] uses

two different encryption schemes for integers, ElGamal [26] and Paillier [45],

which only support addition or multiplication but not both. No discussion of

computation of an inner product is made in [52] but we expect that the timings

would be considerably worse as data encrypted using ElGamal to compute the

products would have to be shipped back to the secure client to be re-encrypted

using Paillier so that the final inner product could be computed.

Varia et al. [55] present experimental results of applying their HETest frame-

work to HELib [35]. Varia et al. show timings 104 to 106 times slower than that

of computations on unencrypted data. Although it is unclear exactly which cir-

cuits are being computed, the timings given are in seconds, so we believe that

HELib will not be a serious candidate for SSCC in the immediate future.

As reported in [24], the current performance of FHEW [25] is poor com-

pared with unencrypted operations. The authors report that FHEW processed a

single homomorphic NAND operation followed by a re-encryption in 0.69s and

using 2.2GB of RAM. Therefore, we also believe that FHEW is not a candidate

for SCCC, as it currently stands.

Although claims regarding its performance have been made in the press

[54], no benchmarking statistics have been made publicly available for Mi-

crosoft’s SEAL library [41]. However, in [2], it is reported that, for SEAL v1,

the time to perform one multiplication is approximately 140ms.

With regard to FV-NFLib [20], Bonte et al. [10] recently reported a signific-

ant decrease in the time to evaluate a four layer Group Method of Data Handling

(GMDH) neural network [11] from 32s to 2.5s, as a result of their novel encod-

ing of the inputs.

Aguilar-Melchor et al [2] report their experimental findings regarding HELib-

MP [48]. They show that HELib-MP outperforms FV-NFLib for large (2048-bit)

plaintexts. They further go on to benchmark HELib-MP by computing RSA-

2048 and ECC-ElGamal-P256. An exponentiation in RSA-2048 takes between

157ms and 1.8s depending on the window size and number of multiplications re-

quired. For ECC-ElGamal-P256, an elliptic curve multiplication takes between

96ms and 242ms depending on window size and number of elliptic curve addi-

tions.

Catalano et al. [15] provide experimental results for their work. For 128-

bit plaintexts, our algorithms are approximately 10 to 1000 times faster at per-

forming a multiplication operation and our most complex algorithm, HE2N, is

roughly equal to their fastest, an extension of Joye-Libert [38], for additions.

Yu et al. [58] give experimental results for their implementation of the Zhou

and Wornell scheme [59]. From their Figures 3 to 5, it is hard to compare our

scheme with theirs directly but it would appear that our vector based schemes

are at least comparable in performance to theirs.

6 Conclusion

In this paper we have presented several new homomorphic encryption schemes

intended for use in a practical SSCC system. We envisage that the majority of

computation on integer big data, outside of scientific computing, will be com-

puting low degree polynomials on integers, or fixed-point decimals which can

be converted to integers. Our somewhat homomorphic schemes are perfectly

suited to these types of computation.

Our evaluation has only concerned one- or two-dimensional ciphertexts and

polynomials of degree up to four. We intend to investigate higher degree polyno-

mials in future work. We believe that HE1N and HE2N provide strong security,

even for low-entropy data, as they satisfy the desirable IND-CPA property. If a

user has a high confidence in the entropy of the input data, HE2 may provide

sufficient security.

As they are only somewhat homomorphic, each of these schemes require

that the computational result cannot grow bigger than the secret modulus. In the

case of the “noise” variants, we also have to consider the noise term growing

large. So, as they stand, these schemes can only compute polynomials of suit-

ably bounded degree. However, we believe this is adequate for most practical

purposes.

The schemes presented in sections 3 and 4 extend to a hierarchy of systems,

HEk, with increasing levels of security. These are presented in appendix A and

may be investigated further in future work.

We have implemented and evaluated the HE1, HE1N, HE2 and HE2N schemes

as part of an SSCC system as discussed in section 5. Our results are extremely

favourable by comparison with existing methods. In some cases, they outper-

form those methods by a factor of 1000. This clearly demonstrates the practical

applicability of our schemes. Furthermore, our MapReduce job execution times

remain low even when using the largest set of parameters for HE2N. We believe

that this demonstrates the advantages of our schemes for encrypted computa-

tions on fixed-point data in the cloud.

A Generalisation to k Dimensions

In this appendix, we generalise HE2 and HE2N to k-vectors. HE1 and HE1N

are the cases for k = 1 and HE2 and HE2N are the cases for k = 2.

A.1 Sufficient Entropy (HEk)

We generalise HE2 to k dimensions.

Key Generation. KeyGen randomly chooses p and q according to the bounds

given in section 4.1. KeyGen sets aj
$←− [1, pq)k, ∀j ∈ [1, k − 1], and R (de-

tailed in “Multiplication” below). The secret key sk is (p,a1, . . . ,ak−1), and

the public parameters are pq and R.

Computational Overhead. The computational overhead increases, the num-

ber of arithmetic operations per plaintext multiplication is O(k3), and the space

requirement per ciphertext is O(k), by comparison with HE1.

Encryption. A plaintext, m ∈ [0,M], is enciphered as

Enc(m, sk) = c = (m+ rp)1+
∑k−1

j=1 sjaj mod pq

where c is a k-vector, r
$←− [0, q), and ∀j, sj $←− [0, pq). Let a0 = 1, and

Ak = [a0 a1 . . . ak−1]. We wish the columns of Ak to be a basis for Zk
pq. We

can show that they do so with high probability. If they do not, we generate new

vectors until they do.

Lemma 2. Pr(a0,a1, . . . ,ak−1 do not form a basis) ≤ (k − 1)(1/p+ 1/q).

We extend our definition of an augmented vector v⋆, for a k-vector, v, such

that v⋆ is a
(

k+1

2

)

-vector, with components vi (1 ≤ i ≤ k) followed by 2vi − vj
(1 ≤ i < j ≤ k). In general, for ℓ > k, vℓ = 2vi−vj , where ℓ =

(

i
2

)

+k+j−1.

Note that v⋆ = Ukv for a
(

k+1

2

)

×k matrix with entries 0,±1, 2, and whose first

k rows form the k × k identity matrix Ik. Note that v⋆ = Ukv implies that 1⋆
is the

(

k+1

2

)

vector of 1’s, and that ∗ is a linear mapping, i.e. (r1v1 + r2v2)⋆ =
r1v1∗ + r2v2∗.

Decryption. Dec(c, sk) = γT c mod p, where γT = (A−1
k)1 is the first

row of A−1
k . We call γ the decryption vector, as in HE2.

Addition. Addition is the vector sum of the ciphertext vectors as in HE2.

Multiplication. Consider the Hadamard product of two augmented cipher-

text vectors, c⋆ ◦ c′⋆. For notational brevity, let m̃ = m+ rp.

c⋆ ◦ c′⋆ =
(

m̃1⋆ +
∑k−1

j=1 sja⋆j

)

◦
(

m̃′
1⋆ +

∑k−1
j=1 s

′
ja⋆j

)

= m̃m̃′
1⋆ +

∑k−1
j=1(m̃s′j + m̃′sj)a⋆j +

∑k−1
j=1 sjs

′
ja⋆j ◦ a⋆j

+
∑

1≤i<j≤k−1(sis
′
j + s′isj)a⋆i ◦ a⋆j ,

since 1⋆ ◦ v⋆ = v⋆ for any v. There are
(

k
2

)

product vectors, which we must

eliminate using the re-encryption matrix R, a k ×
(

k+1

2

)

.

Lemma 3. Let A⋆k = [a⋆0 a⋆1 . . . a⋆,k−1], where the columns of Ak form a

basis for Zk
pq. If RA⋆k = Ak, then Rv⋆ = v for all v ∈ Zk

pq.

The condition RA⋆k = Ak can be written more simply, since it is RUkAk =
Ak. Postmultiplying by A−1

k gives RUk = Ik. Now, since RA⋆k = Ak, we have

R(c⋆ ◦ c′⋆) = (mm′ + r̂p)1+
∑k−1

j=1 ŝjaj +
∑

1≤i≤j≤k−1 ŝijR(a⋆i ◦ a⋆j),

where r̂, ŝj and ŝij (1 ≤ i < j ≤ k − 1) are some integers.

There are k(
(

k+1

2

)

− k) = k
(

k
2

)

undetermined parameters Riℓ, 1 ≤ i ≤ k,

k < ℓ ≤
(

k+1

2

)

. We now determine these by setting

R(a⋆i ◦ a⋆j) = ̺ijp1+
∑k−1

l=1 σijlal (2)

Thus we have k
(

k
2

)

new unknowns, the ̺’s and σ’s, and k
(

k
2

)

linear equations for

the k
(

k
2

)

unassigned Riℓ’s. Let A◦2
⋆k be the

(

k+1

2

)

×
(

k+1

2

)

matrix with columns

a⋆i ◦ a⋆j (0 ≤ i < j < k), and let Ck be the k ×
(

k
2

)

matrix with columns

̺ijp1 +
∑k−1

l=1 σijlal (0 < i < j < k). Then the equations for the Riℓ can be

written as

RA◦2
⋆k = [Ak | Ck] . (3)

giving k
(

k+1

2

)

linear equations for the k
(

k+1

2

)

Riℓ’s in terms of quadratic func-

tions of the k(k−1) aij’s (1 ≤ i ≤ k, 1 ≤ j ≤ k−1), which are undetermined.

Thus the system has k(k − 1) parameters that cannot be deduced from R.

The system of equations (3) has a solution provided that A◦2
⋆k has an inverse

mod pq. We prove that this is true with high probability. Again, in the unlikely

event that this is not true, we generate new vectors a1, . . . ,ak−1 until it is.

Theorem 6. A◦2
⋆k has no inverse mod pq with probability at most (k2−1)(1/p+

1/q).

Note that Theorem 6 subsumes Lemma 2, since the first k columns of A◦2
⋆k

contain Ak as a submatrix, and must be linearly independent.

Each c introduces k new parameters rp, s1, . . . , sk−1 and k equations, so

the number of undetermined parameters is always k(k − 1).

Cryptanalysis. Note that p can be determined from mi for k ciphertexts. Let

C = [c1 −m11 . . . ck −mk1], Ak = [1 a1 . . . ak−1]

and let

W =











r1p r2p . . . rkp
s1,1 s2,1 . . . sk,1

...
...

s1,k−1 s2,k−1 . . . sk,k−1











, W ′ =











r1 r2 . . . rk
s1,1 s2,1 . . . sk,1

...
...

s1,k−1 s2,k−1 . . . sk,k−1











,

where ri, sij refer to ci. Then C = AkW , and so detC = detAk detW . Note

that detW = p detW ′, so detC is a multiple of p. Now detC can be determ-

ined in O(k3) time and, if it is nonzero, p can be determined as gcd(detC, pq).

Lemma 4. Pr(detC = 0 mod pq) ≤ (2k − 1)(1/p+ 1/q).

Once we have recovered p, we can use the known mi to determine the de-

cryption vector γ, by solving linear equations. Let C0 = [c1 c2 . . . ck], m
T =

[m1 m2 . . . mk].

Lemma 5. Pr(detC0 = 0 mod pq) ≤ (2k − 1)(1/p+ 1/q).

Thus, with high probability, we can uniquely solve the system γTC0 = mT

mod p, to recover γ and enable decryption of an arbitrary ciphertext. However,

encryption of messages is not possible, since we gain little information about

a1, . . . ,ak. Note also that, if we determined p by some means other than using

k known plaintexts, it is not clear how to recover γ.

To break this system, we need to guess k plaintexts. The entropy of a k-tuple

of plaintexts (m1,m2, . . . ,mk) is kρ, so effectively we need µk guesses, where

µ is the number of guesses needed to break HE1. So HEk can tolerate much

smaller entropy than HE1, provided k is large enough. If k is sufficiently large,

the scheme appears secure without adding noise, but does not have the other

advantages of adding noise.

Fixing an Insecurity for k > 2 The decryption vector for HEk is γT =
(A−1

k)1. Note that γT
1 = 1 and γTai = 0 (i ∈ [1, k − 1]), since γTai = I1i

(i ∈ [0, k − 1]).

The equations R(a⋆i ◦ a⋆j) = p̺ij 1+
∑k−1

l=1 σijlal,
(4)

define a product · on Zk
pq so that c · c′ = R(c⋆ ◦ c′⋆). This product is linear,

commutative and distributive, since R and ⋆ are linear operators, and ◦ is com-

mutative and distributive. So we have an algebra Ak, with unit element 1 [51].

The ̺ij , σijl (i, j, l ∈ [1, k − 1]) are the structure constants of the algebra. In

general,Ak will not be associative, i.e. we can have (c1 · c2) · c3 6= c1 · (c2 · c3)
This leads to a potential insecurity. We must have

γT ((c1 · c2) · c3) = γT (c1 · (c2 · c3)) (mod p), (5)

in order to have correct decryption. The associator for Ak is

[ci, cj , cl] = ci · (cj · cl)− (ci · cj) · cl = rp1+
∑k−1

l=1 slcl (mod pq).

Thus [ci, cj , cl] is an encryption of 0. If we can find k associators from c1, . . . , cn
which violate (5), with high probability we have k linearly independent associ-

ators. We can use these to make a collision attack on HEk, similar to that de-

scribed in section 3.1. We use the gcd method to determine p, and then γ, as

described in section A.1. In fact all we need is that (5) holds for any associator.

That is, for all c1, c2, c3, we need

γT ((c1 · c2) · c3) = γT (c1(·c2 · c3)) (mod pq),

or, equivalently, using the Chinese Remainder Theorem,

γT ((c1 · c2) · c3) = γT (c1 · (c2 · c3)) (mod q). (6)

By linearity, (6) holds if and only if it holds for all basis elements, excluding the

identity. That is, for all i, j, l ∈ [1, k − 1], we need

γT (ai · (aj · al)) = γT ((ai · aj) · al) (mod q). (7)

The associator for Ak is

[ai,aj ,al] = ai · (aj · al)− (ai · aj) · al = rp1+
∑k−1

l=1 slal (mod pq),

for some integers r, s1, . . . , sk−1, and so γT [ai,aj ,al] = rp.

If Ak is associative, the problem does not arise, since (7) will be satisfied

automatically. Associativity holds if k ≤ 2. All we have to check is that a · (a ·
a) = (a · a) · a, which is true by commutativity. Thus HE1, HE2 cannot be

attacked in this way.

Requiring associativity in Ak overconstrains the system, imposing k
(

k+1

2

)

equations on the k
(

k+1

2

)

structure constants. With only k(k − 1) undetermined

parameters, this is too much. But all we need is that (7) holds. We have

Lemma 6. Equation (7) holds if and only if
∑k−1

t=1 σjlt̺it =
∑k−1

t=1 σijt̺lt
(mod q), ∀i, j, l ∈ [1, k − 1].

Now we can ensure (7) by giving the ̺ij a multiplicative structure.

Lemma 7. Let τ, ̺i
$←− [0, q) (i ∈ [1, k − 1]), let ̺ij = ̺i̺j mod q, and let

the σijl satisfy
∑k−1

l=1 σijl̺l = τ̺i̺j (mod q) for all i, j ∈ [1, k−1]. Then, for

all i, j, ℓ ∈ [1, k − 1], γT (ai · (aj · al)) = τ̺i̺j̺l mod q, the symmetry of

which implies (7).

Thus the conditions of Lemma 7 are sufficient to remove the insecurity. The

price is that we now have (k−1)
(

k
2

)

+(k−1)+k(k−1) = (k+1)
(

k
2

)

+k−1

parameters and k
(

k
2

)

equations. There are
(

k
2

)

+ (k − 1) = (k + 2)(k − 1)/2
independent parameters. This is fewer than the original k(k − 1), but remains

Ω(k2).

A.2 Insufficient Entropy (HEkN)

We generalise HE2N to k dimensions.

Key Generation. KeyGen, randomly chooses κ, p and q as outlined in sec-

tion 4.2, and sets aj ∀j and R as in A.1. The secret key, sk, is (κ, p, a1, . . .,
ak−1), and the public parameters are pq and R. Note that, as a result of adding

the “noise” term, defence against non-associativity is not required.

Encryption. A plaintext, m ∈ [0,M], is enciphered as

Enc(m, sk) = c = (m+ rp+ sκ)1+
∑k−1

j=1 tjaj (mod pq)

where r, s are as in section 4.2, and tj
$←− [0, pq) ∀j ∈ [1, k).

Decryption. If γT is defined as in section A.1, a ciphertext is deciphered by,

Dec(c, sk) = (γT c mod p) mod κ.

Arithmetic. Addition and multiplication of ciphertexts are as in section A.1.

Security. The effective entropy of HEkN is ρ′ = k(ρ+lg κ). Thus, as we in-

crease k, the “noise” term can be made smaller while still providing the requisite

level of entropy.

Clearly HEkN also inherits the conclusions of Theorem 2, so this system

also satisfies IND-CPA.

B Proofs

Theorem 1. An attack against HE1 is successful in polynomial time if and only

if we can factorise a distinct semi-prime in polynomial time.

Proof. Suppose that we have an unknown plaintext m, encrypted as c = m+rp

mod pq, where r
$←− [1, q).

If we can factor pq in polynomial time, we can determine p and q in poly-

nomial time, since we know p < q. Therefore, we can determine m = c mod p.

If we can determine m given c for arbitrary m, then we can determine rp =
c − m. We are given qp, and we know 0 < r < q, so gcd(rp, qp) must be p,

and we can compute p in polynomial time. Now, given p, we can determine q as

qp/p. Hence, we can factorise pq in polynomial time. ⊓⊔

Lemma 1. If the inputs m have entropy ρ then, for any two independent inputs

m1,m2, Pr(m1 = m2) ≤ 2−ρ.

Proof. Pr(m1 = m2) =
∑M−1

i=0 ξ2i = 2−H2 ≤ 2−ρ, since H2 ≥ H∞ = ρ. ⊓⊔

Theorem 2. For any encryption c, c mod κ is polynomial time indistinguish-

able from the uniform distribution on [0, κ). Thus HE1N satisfies IND-CPA,

under the assumption that SPACDP is not polynomial time solvable.

Proof.
c = m+ sκ+ rp = m+ rp mod κ,

where r
$←− [1, q). Thus, for i ∈ [0, κ),

Pr
(

c mod κ = i) = Pr(m+ rp = i mod κ
)

= Pr
(

r = p−1(i−m) mod κ
)

∈
{

⌊q/κ⌋1/q, ⌈q/κ⌉1/q
}

∈ [1/κ− 1/q, 1/κ+ 1/q],

where the inverse p−1 of p mod κ exists since p is a prime. Hence the total

variation distance from the uniform distribution is

1
2

κ−1
∑

i=0

|Pr
(

c mod κ = i)− 1/κ| < κ/q.

This is exponentially small in the security parameter λ of the system, so the

distribution of c mod κ cannot be distinguished in polynomial time from the

uniform distribution. Note further that c1 mod κ, c2 mod κ are independent for

any two ciphertexts ci = mi+siκ+rip (i = 1, 2), since r1, r2 are independent.

To show IND-CPA, suppose now that known plaintexts µ1, . . . , µn are en-

crypted by an oracle for HE1N, giving ciphertexts c1, . . . , cn. Then, for ri
$←−

[0, q), si
$←− [0, κ), we have an SPACDP with ciphertexts ci = mi + siκ+ rip,

and the approximate divisor p cannot be determined in polynomial time in the

worst case. However, the offsets in this SPACDP are all of the form µi + siκ,

for known mi, and we must make sure this does not provide information about

p. To show this, we rewrite the SPACDP as

ci = µi + siκ+ rip = µ′
i + s′iκ, (i = 1, 2, . . . , n), (8)

where s′i = si + ⌊(mi + rip)/κ⌋, and µ′
i = µi + rip (mod κ). Now we may

view (8) as an ACDP, with “encryptions” µ′
i of the µi, and approximate divisor

κ. Since ACDP is at least as hard as SPACDP, and the offsets µ′
i are polynomial

time indistinguishable from uniform [0, κ), from above, we will not be able to

determine κ in polynomial time. Now, the offsets m′
1,m

′
2 of any two plaintexts

m1,m2 are polynomial time indistinguishable from m′
2,m

′
1, since they are in-

distinguishable from two independent samples from uniform [0, κ). Therefore,

in polynomial time, we will not be able to distinguish between the encryption

c1 of m1 and the encryption c2 of m2. ⊓⊔

Theorem 3. The encryption scheme produces ciphertexts with components which

are random integers modulo pq.

Proof. Consider a ciphertext vector which encrypts the plaintext, m, and the

expression m + rp + sa mod pq which represents one of its elements. Then

r
$←− [0, q), s

$←− [0, pq).
Consider first m + sa. We know that a−1 mod pq exists because a 6= 0

(mod p and mod q). Thus, conditional on r,

Pr[m+ rp+ sa = i mod pq] =

Pr[s = a−1(i−m− rp) mod pq] =
1

pq
.

Since this holds for any i ∈ [0, pq), m+ra+sp mod pq is a uniformly random

integer from [0, pq). ⊓⊔

Theorem 4. If c is an encryption of m and c′ is an encryption of m′ then R(c⋆◦
c′
⋆
) (mod pq) is an encryption of mm′.

Proof. Consider the Hadamard product modulo pq, c⋆ ◦ c′⋆, of the two augmen-

ted ciphertext vectors c⋆ and c⋆
′:

z⋆ = c⋆ ◦ c′⋆ =





c1c
′
1

c2c
′
2

c3c
′
3



 mod pq

Therefore, if inputs m,m′ are encrypted as (m+ rp)1+ sa, (m′+ r′p)1+
s′a, we first calculate

z⋆ = (m+ rp)(m′ + r′p)1⋆ + [(m+ rp)s′ + (m′ + r′p)s]a⋆

+ ss′a◦2
⋆ = (mm′ + r1p)1⋆ + s1a⋆ + ss′a◦2

⋆ mod pq,

where r1 = mr′ + m′r + rr′p, s1 = (m + rp)s′ + (m′ + r′p)s, and a◦2
⋆ =

[a21 a22 a23]
T .

As we can see, z⋆ is not a valid encryption of mm′. We need to re-encrypt

this product to eliminate the a◦2
⋆ term.

We achieve this by multiplying z⋆ by R. It is easy to check that R1⋆ = 1

and Ra⋆ = a, independently of a1, a2. Now

(Ra◦2
⋆)1 = (1− 2α1)a

2
1 + α1a

2
2 + α1(2a1 − a2)

2

= a21 + α1((2a1 − a2)
2 + a22 − 2a21)

= a21 + 2α1(a2 − a1)
2

= a21 + α1β

= ̺p+ σa1

(Ra◦2
⋆)2 = −2α2a

2
1 + (α2 + 1)a22 + α2(2a1 − a2)

2

= a22 + α2((2a1 − a2)
2 + a22 − 2a21)

= a22 + 2α2(a2 − a1)
2

= a22 + α2β

= ̺p+ σa2

Thus, we obtain the identity Ra◦2
⋆ = ̺p1+ σa.

So, applying R to z⋆, i.e. z′ = Rz⋆, gives

z′ = (mm′ + r1p)R1+ s1Ra+ ss′Ra◦2

= (mm′ + r1p)1+ s1a+ ss′(σa+ ̺p1)

= (mm′ + r2p)1+ (s1 + σrr′)a

= (mm′ + r2p)1+ s2a (mod pq)

for some integers r2, s2. So z′ is a valid encryption of mm′. ⊓⊔

Theorem 5. SPACDP is of equivalent complexity to the special case of HE2

where δ = a2 − a1 (0 < δ < q) is known.

Proof. Suppose we have a system of n approximate prime multiples, mi + rip

(i = 1, 2, . . . , n). Then we generate values a, s1, s2, . . . , sn
$←− [0, pq), and we

have an oracle set up the cryptosystem with a1 = a, a2 = a+ δ. The oracle has

access to p and provides us with R, but no information about its choice of ̺ and

σ. We then generate the ciphertexts ci (i = 1, 2, . . . , n):
[

ci1
ci2

]

=

[

mi + rip+ sia
mi + rip+ si(a+ δ)

]

(mod pq). (9)

Thus ci1 − sia = ci2 − si(a + δ) = mi + rip. Thus finding the mi in (9) in

polynomial time solves SPACDP in polynomial time.

Conversely, suppose we have any HE2 system with a2 = a1 + δ. The

ciphertext for mi (i = 1, 2, . . . , n) is as in (9). so si = δ−1(ci2 − ci1). Since

0 < δ < q < p, δ is coprime to both p and q, and hence δ−1 mod pq ex-

ists. Thus breaking the system is equivalent to determining the mi mod p from

mi+δ−1(ci2−ci1)a+rip (i = 1, 2, . . . , n). Determining the mi+δ−1(ci2−ci1)a
from the mi+δ−1(ci2−ci1)a+rip (i = 1, 2, . . . , n) can be done using SPACDP.

However, we still need to determine a in order to determine mi. This can be done

by “deciphering” R using SPACDP. We have

2δ2α1 = σa− a2 + ̺p, 2δ2α2 = σ(a+ δ)− (a+ δ)2 + ̺p,

so σ = 2δ2(α2−α1)−2ka−δ2. Now a can be determined by first determining

m0 = a(2δ2(α2 − α1) − (2δ + 1)a − δ2) from m0 + ̺p = 2δ2α1. This can

be done using SPACDP. Then a can be determined by solving the quadratic

equation m0 = a(2δ2(α2 − α1) − (2δ + 1)a − δ2) mod p for a. This can be

done probabilistically in polynomial time using, for example, the algorithm of

Berlekamp [7]. So the case a = [a a+δ]T , with known δ, can be attacked using

SPACDP on the system

m0 + ̺p, m1 + δ−1(c11 − c12)a+ r1p,

. . . , mn + δ−1(cn1 − cn2)a+ rnp. ⊓⊔

Lemma 2. Pr(a0,a1, . . . ,ak−1 do not form a basis) ≤ (k − 1)(1/p+ 1/q).

Proof. The a’s are a basis if A−1
k exists, since then v = Akr when r = A−1

k v,

for any v. Now A−1
k exists mod pq if (detAk)

−1 mod pq exists, by con-

structing the adjugate of Ak. Now (detAk)
−1 mod pq exists if detAk 6= 0

mod p and detAk 6= 0 mod q. Now detAk is a polynomial of total de-

gree (k − 1) in the aij (0 < i ≤ k, 0 < j < k), and is not identically

zero, since detAk = 1 if ai = ei+1 (1 < i < k). Also aij
$←− [0, pq) im-

plies aij mod p
$←− [0, p) and aij mod q

$←− [0, q). Hence, using the Schwartz-

Zippel Lemma (SZL) [44], we have Pr(detAk = 0 mod p) ≤ (k − 1)/p and

Pr(detAk = 0 mod q) ≤ (k − 1)/q, and it follows that Pr(∄ (detAk)
−1 mod

pq) ≤ (k − 1)(1/p+ 1/q). ⊓⊔

Lemma 3. Let A⋆k = [a⋆0 a⋆1 . . . a⋆,k−1], where the columns of Ak form a

basis for Zk
pq. If RA⋆k = Ak, then Rv⋆ = v for all v ∈ Zk

pq.

Proof. We have v = Akr for some r ∈ Zk
pq. Then A⋆k = UkAk and v⋆k =

Ukv, so Rv⋆ = RUkv = RUkAkr = RA⋆kr = Akr = v. ⊓⊔

Theorem 6. A◦2
⋆k has no inverse mod pq with probability at most (k2−1)(1/p+

1/q).

Proof. We use the same approach as in Lemma 2. Thus A◦2
⋆k is invertible provided

detA◦2
⋆k 6= 0 mod p and detA◦2

⋆k 6= 0 mod q. Let A denote the vector of

aij’s, (aij : 1 ≤ i ≤ k, 1 ≤ j < k). The elements of A◦2
⋆k are quadratic poly-

nomials over A, except for the first column, which has all 1’s, and columns

2, 3, . . . , k which are linear polynomials. So detA◦2
⋆k is a polynomial over A of

total degree 2
(

k
2

)

+ k − 1 = k2 − 1. Thus, unless detA◦2
⋆k is identically zero

as a polynomial over A, the SZL [44] implies Pr(∄ (detA◦2
⋆k)

−1 mod p) ≤
(k2 − 1)/p and Pr(∄ (detA◦2

⋆k)
−1 mod q) ≤ (k2 − 1)/q. Therefore we have

Pr(∄ (detA◦2
⋆k)

−1 mod pq) ≤ (k2 − 1)(1/p+ 1/q).
It remains to prove that detA◦2

⋆k is not identically zero as a polynomial over

A in either Zp or Zq. We prove this by induction on k. Consider Zp, the argu-

ment for Zq being identical. Since Zp is a field, detA◦2
⋆k is identically zero if and

only if it has rank less than
(

k+1

2

)

for all A. That is, there exist λij(A) ∈ Zp

(0 ≤ i ≤ j < k), not all zero, so that

L(A) =
k−1
∑

0≤i≤j

λija⋆i ◦ a⋆j

= α+ a⋆,k−1 ◦ β + λk−1,k−1a
◦2
⋆,k−1 = 0,

where α =
∑k−2

0≤i≤j λija⋆i ◦ a⋆j and β =
∑k−2

i=0 λi,k−1a⋆i are independent of

a⋆,k−1.

Clearly λk−1,k−1 = 0. Otherwise, whatever α,β, we can choose values for

ak so that L 6= 0, a contradiction. Now suppose λi,k−1 6= 0 for some 0 ≤ i <

k − 1. The matrix Â⋆ with columns a⋆i (0 ≤ i < k − 1) contains Ak−1 as

a submatrix, which has rank (k − 1) with high probability by Lemma 2. Thus

β 6= 0 and, whatever α, we can choose values for ak so that L 6= 0. Thus

λi,k−1 = 0 for all 0 ≤ i < k. Thus λij 6= 0 for some 0 ≤ i ≤ j < k − 1.

Now the matrix Â◦2
⋆ with

(

k
2

)

columns a⋆i ◦ a⋆j (0 ≤ i ≤ j < k − 1) contains

A◦2
⋆,k−1 as a submatrix, and therefore has rank

(

k
2

)

by induction. Hence α 6= 0,

implying L 6= 0, a contradiction. ⊓⊔
Lemma 4. Pr(detC = 0 mod pq) ≤ (2k − 1)(1/p+ 1/q).

Proof. From Lemma 2, detA = 0 mod p or detA = 0 mod q with prob-

ability at most (k − 1)(1/p + 1/q). So detA is not zero or a divisor of zero

modpq. The entries of W ′ are random [0, pq), and detW ′ is a polynomial

of total degree k in its entries. It is a nonzero polynomial, since W ′ = Ik
is possible. Hence, using the SZL [44], Pr(detW ′ = 0 mod p) ≤ k/p and

Pr(detW ′ = 0 mod q) ≤ k/q. So detW ′ is zero or a divisor of zero mod pq
with probability at most k(1/p + 1/q). So detA detW ′ = 0 modpq with

probability at most (2k − 1)(1/p + 1/q). So detC 6= 0 with high probabil-

ity. ⊓⊔
Lemma 5. Pr(detC0 = 0 mod pq) ≤ (2k − 1)(1/p+ 1/q).

Proof. Note that C0 = C if m1 = m2 = · · · = mk = 0. Since Lemma 4 holds

in that case, the result follows. ⊓⊔

Lemma 6. Equation (7) holds if and only if
∑k−1

t=1 σjlt̺it =
∑k−1

t=1 σijt̺lt
(mod q), ∀i, j, l ∈ [1, k − 1].

Proof. Since γT
1 = 1 and γTai = 0, i ∈ [1, k−1], γT (ai ·aj) = γT

(

p̺ij 1+
∑k−1

l=1 σijlal

)

= p̺ij . Thus

ai · (aj · al) = ai ·
(

p̺jl1+

k−1
∑

t=1

σjltat

)

= p̺jlai +
k−1
∑

t=1

σjltai · at,

and hence γT [ai · (aj · al)] = p
∑k−1

t=1 σjlt̺it. Similarly γT [(ai · aj) · al] =

p
∑k−1

t=1 σijt̺lt, and the lemma follows. ⊓⊔

Lemma 7. Let τ, ̺i
$←− [0, q) (i ∈ [1, k − 1]), let ̺ij = ̺i̺j mod q, and let

the σijl satisfy
∑k−1

l=1 σijl̺l = τ̺i̺j (mod q) for all i, j ∈ [1, k−1]. Then, for

all i, j, ℓ ∈ [1, k − 1], γT (ai · (aj · al)) = τ̺i̺j̺l mod q, the symmetry of

which implies (7).

Proof. We have γT (aj · al) = p̺ij = p̺j̺l for all j, ℓ ∈ [1, k − 1]. Hence,

mod q,

γT (ai · (aj · al)) = p

k−1
∑

t=1

σjlt̺it

= p
k−1
∑

t=1

σjlt̺i̺t

= p̺i

k−1
∑

t=1

σjlt̺t

= p̺iτ̺j̺l = pτ̺i̺j̺l. ⊓⊔

C Derivation of Bounds

To recap, n is the number of inputs, M is an exclusive upper bound on the

inputs, d is the degree of the polynomial we wish to calculate. We take p ≈ 2λ

and then q ≈ 2η, where η = λ2/ρ− λ, to guard against the attacks of [17, 36].

For HE1, we assume M ≈ 2ρ, n ≤
√
M . Therefore,

p > (n+ 1)dMd ≈ (nM)d for large n.

So, we may take

p = 2λ > M3d/2 ≈ 23dρ/2 i.e. λ ≈ 3dρ/2

and η ≈ λ2

ρ
− λ =

3dλ

2
− λ =

3dρ

2

(

3d

2
− 1

)

For HE1N, we assume M ≈ 2ρ, and we have ρ′ = ρ+ lg κ. Now,

κ > (n+ 1)dMd ≈ (nM)d for large n, i.e. lg κ ≈ d(lg n+ ρ)

Therefore, since ρ = ρ′ − lg κ,

lg κ > d lg n+ d(ρ′ − lg κ) i.e. lg κ ≈ d(lg n+ ρ′)

d+ 1
Since κ is much larger than M , we also have

p = 2λ > (n+ 1)d(M + κ2)d ≈ (nκ2)d for large n i.e. λ ≈ d(lg n+ 2 lg κ),

and η ≈ λ2

ρ′
− λ =

3dλ

2
− λ =

3dρ′

2

(

3d

2
− 1

)

Then we can calculate η as for HE1 above. Note that, in both HE1 and HE1N,

λ scales linearly with d, and η scales quadratically. These bounds carry over to

HE2, HE2N, HEk and HEkN.

References

[1] A. Acar et al. A Survey on Homomorphic Encryption Schemes: Theory and Implementa-

tion. 2017. arXiv: 1704.03578 [cs.CR].

[2] C. Aguilar-Melchor et al. ‘A Comparison of Open-Source Homomorphic Libraries With

Multi-Precision Plaintext Moduli’. WHEAT 2016. July 2016. URL: https://wheat2016.

lip6.fr/ricosset.pdf.

[3] J.-P. Aumasson. On the pseudo-random generator ISAAC. 2006. Cryptology ePrint Archive:

2006/438.

[4] M. Bellare and P. Rogaway. ‘Introduction to Modern Cryptography’. Lecture Notes.

2005.

[5] M. Bellare et al. ‘A Concrete Security Treatment of Symmetric Encryption’. In: Proc.

FOCS ’97. 1997, pp. 394–403.

[6] M. Bellare et al. ‘Relations Among Notions of Security for Public-Key Encryption Schemes’.

In: Proc. CRYPTO ’98. 1998, pp. 26–45.

[7] E. R. Berlekamp. ‘Factoring Polynomials Over Large Finite Fields’. In: Mathematics of

Computation 24.111 (1970), pp. 713–735.

[8] S. Bogos et al. Cryptanalysis of a Homomorphic Encryption Scheme. 2016. Cryptology

ePrint Archive: 2016/775.

[9] D. Boneh and V. Shoup. ‘A Graduate Course in Applied Cryptography’. Draft 0.2. 2015.

[10] C. Bonte et al. Faster Homomorphic Function Evaluation using Non-Integral Base En-

coding. 2017. Cryptology ePrint Archive: 2017/333.

[11] J. W. Bos et al. Privacy-friendly Forecasting for the Smart Grid using Homomorphic

Encryption and the Group Method of Data Handling. 2016. Cryptology ePrint Archive:

2016/1117.

[12] Z. Brakerski and V. Vaikuntanathan. ‘Fully Homomorphic Encryption from Ring-LWE

and Security for Key Dependent Messages’. In: Proc. CRYPTO 2011. 2011, pp. 505–524.

http://arxiv.org/abs/1704.03578
https://wheat2016.lip6.fr/ricosset.pdf
https://wheat2016.lip6.fr/ricosset.pdf
https://eprint.iacr.org/2006/438
https://eprint.iacr.org/2016/775
https://eprint.iacr.org/2017/333
https://eprint.iacr.org/2016/1117

[13] Z. Brakerski et al. ‘(Leveled) Fully Homomorphic Encryption Without Bootstrapping’.

In: Proc. ITCS ’12. 2012, pp. 309–325.

[14] D. Catalano and D. Fiore. Boosting Linearly-Homomorphic Encryption to Evaluate Degree-

2 Functions on Encrypted Data. 2014. Cryptology ePrint Archive: 2014/813.

[15] D. Catalano and D. Fiore. ‘Using Linearly-Homomorphic Encryption to Evaluate Degree-

2 Functions on Encrypted Data’. In: Proc. CCS ’15. ACM, 2015, pp. 1518–1529.

[16] Y. Chen and P. Q. Nguyen. ‘Faster Algorithms for Approximate Common Divisors:

Breaking Fully Homomorphic Encryption Challenges over the Integers’. In: Proc. EURO-

CRYPT ’12. 2012, pp. 502–519.

[17] H. Cohn and N. Heninger. ‘Approximate common divisors via lattices’. In: Proc. ANTS-

X. Vol. 1. 2012, pp. 271–293.

[18] D. Coppersmith. ‘Small Solutions to Polynomial Equations, and Low Exponent RSA

Vulnerabilities’. In: J. Cryptology 10.4 (1997), pp. 233–260.

[19] J.-S. Coron et al. ‘Fully Homomorphic Encryption over the Integers with Shorter Public

Keys’. In: Proc. CRYPTO ’11. 2011, pp. 487–504.

[20] CryptoExperts. FV-NFLib. URL: https://github.com/CryptoExperts/FV-NFLlib.

[21] J.-M. Dautelle. JScience. Version 4.3.1. Sept. 2014. URL: http://jscience.org.

[22] M. van Dijk et al. ‘Fully Homomorphic Encryption over the Integers’. In: Proc. EURO-

CRYPT ’10. 2010, pp. 24–43.

[23] M. van Dijk and A. Juels. ‘On the Impossibility of Cryptography Alone for Privacy-

Preserving Cloud Computing’. In: Proc. HotSec ’10. 2010, pp. 1–8.

[24] L. Ducas and D. Micciancio. ‘FHEW: Bootstrapping Homomorphic Encryption in Less

Than a Second’. In: Proc. EUROCRYPT ’15. 2015, pp. 617–640.

[25] L. Ducas and D. Micciancio. FHEW. A Fully Homomorphic Encryption Library. URL:

https://github.com/lducas/FHEW.

[26] T. ElGamal. ‘A Public Key Cryptosystem and a Signature Scheme Based on Discrete

Logarithms’. In: IEEE Trans. Inf. Theory 31.4 (1985), pp. 469–472.

[27] Z. Erkin et al. ‘Privacy-Preserving Face Recognition’. In: Proc. PETS ’09. 2009, pp. 235–

253.

[28] J. Fan and F. Vercauteren. Somewhat Practical Fully Homomorphic Encryption. 2012.

Cryptology ePrint Archive: 2012/144.

[29] S. D. Galbraith et al. ‘Algorithms for the approximate common divisor problem’. In: LMS

Journal of Computation and Mathematics 19.A (2016), pp. 58–72.

[30] C. Gentry. ‘Fully Homomorphic Encryption Using Ideal Lattices’. In: Proc. STOC ’09.

2009, pp. 169–178.

[31] O. Goldreich et al. ‘How to Play ANY Mental Game’. In: Proc. STOC ’87. 1987, pp. 218–

229.

[32] S. Goldwasser and S. Micali. ‘Probabilistic Encryption’. In: J. Comput. Syst. Sci. 28.2

(1984), pp. 270 –299.

[33] S. Goldwasser et al. ‘Reusable Garbled Circuits and Succinct Functional Encryption’. In:

Proc. STOC ’13. 2013, pp. 555–564.

[34] S. Halevi and V. Shoup. ‘Bootstrapping for HElib’. In: Proc. EUROCRYPT ’15. 2015,

pp. 641–670.

[35] S. Halevi and V. Shoup. HELib. URL: https://github.com/shaih/HElib.

[36] N. Howgrave-Graham. ‘Approximate Integer Common Divisors’. In: Cryptography and

Lattices. 2001, pp. 51–66.

[37] B. Jenkins. ISAAC: a fast cryptographic random number generator. 1996. URL: http:

//burtleburtle.net/bob/rand/isaacafa.html.

https://eprint.iacr.org/2014/813
https://github.com/CryptoExperts/FV-NFLlib
http://jscience.org
https://github.com/lducas/FHEW
https://eprint.iacr.org/2012/144
https://github.com/shaih/HElib
http://burtleburtle.net/bob/rand/isaacafa.html
http://burtleburtle.net/bob/rand/isaacafa.html

[38] M. Joye and B. Libert. ‘Efficient Cryptosystems from 2k-th Power Residue Symbols’. In:

Proc. EUROCRYPT ’13. 2013, pp. 76–92.

[39] A. Kipnis and E. Hibshoosh. Efficient Methods for Practical Fully Homomorphic Symmetric-

key Encryption, Randomization and Verification. 2012. Cryptology ePrint Archive: 2012/637.

[40] T. Kleinjung et al. ‘Factorization of a 768-bit RSA Modulus’. In: Proc. CRYPTO ’10.

2010, pp. 333–350.

[41] K. Laine et al. Simple Encrypted Arithmetic Library - SEAL. Version 2.2. 2017. URL:

https://sealcrypto.codeplex.com/.

[42] K. Lauter et al. ‘Can Homomorphic Encryption Be Practical?’ In: Proc. CCSW ’11. 2011,

pp. 113–124.

[43] J. L. Massey. ‘Guessing and Entropy’. In: Proc. ISIT ’94. 1994, p. 204.

[44] D. Moshkovitz. ‘An Alternative Proof of the Schwartz-Zippel Lemma.’ In: Electronic

Colloquium on Computational Complexity (ECCC). 2010, p. 96.

[45] P. Paillier. ‘Public-Key Cryptosystems Based on Composite Degree Residuosity Classes’.

In: Proc. EUROCRYPT ’99. 1999, pp. 223–238.

[46] R. A. Popa et al. ‘CryptDB: Protecting Confidentiality With Encrypted Query Processing’.

In: Proc. SOSP ’11. 2011, pp. 85–100.

[47] M. O. Rabin. Digitalized Signatures and Public-Key Functions as Intractable as Factor-

ization. Tech. rep. MIT/LCS/TR-212. 1979, p. 12.

[48] T. Ricosset. HElib-MP. URL: https://github.com/tricosset/HElib-MP.

[49] R. L. Rivest et al. ‘A Method for Obtaining Digital Signatures and Public-key Cryptosys-

tems’. In: Commun. ACM 21.2 (1978), pp. 120–126.

[50] R. L. Rivest et al. ‘On Data Banks and Privacy Homomorphisms’. In: Foundations of

Secure Computation 4.11 (1978), pp. 169–180.

[51] R. D. Schafer. An Introduction to Nonassociative Algebras. Vol. 22. Dover, 1966.

[52] J. J. Stephen et al. ‘Practical Confidentiality Preserving Big Data Analysis’. In: Proc.

HotCloud ’14. 2014, p. 10.

[53] S. D. Tetali et al. ‘MRCrypt: Static Analysis for Secure Cloud Computations’. In: Proc.

OOPSLA ’13. 2013, pp. 271–286.

[54] I. Thomson. Microsoft researchers smash homomorphic encryption speed barrier. 9th Feb.

2016. URL: https://www.theregister.co.uk/2016/02/09/researchers_

break_homomorphic_encryption/.

[55] M. Varia et al. HETest: A Homomorphic Encryption Testing Framework. 2015. Crypto-

logy ePrint Archive: 2015/416.

[56] S. Vivek. Homomorphic Encryption API Software Library. 21st Feb. 2017. URL: http:

//heat-h2020-project.blogspot.co.uk/2017/02/homomorphic-encryption-

api-software.html.

[57] D. Vizár and S. Vaudenay. ‘Cryptanalysis of Chosen Symmetric Homomorphic Schemes’.

In: Stud. Sci. Math. Hung. 52.2 (2015), pp. 288–306.

[58] A. Yu et al. Efficient Integer Vector Homomorphic Encryption. 2015. URL: https://

courses.csail.mit.edu/6.857/2015/files/yu-lai-payor.pdf.

[59] H. Zhou and G. Wornell. ‘Efficient homomorphic encryption on integer vectors and its

applications’. In: Proc. ITA ’14. 2014, pp. 1–9.

https://eprint.iacr.org/2012/637
https://sealcrypto.codeplex.com/
https://github.com/tricosset/HElib-MP
https://www.theregister.co.uk/2016/02/09/researchers_break_homomorphic_encryption/
https://www.theregister.co.uk/2016/02/09/researchers_break_homomorphic_encryption/
https://eprint.iacr.org/2015/416
http://heat-h2020-project.blogspot.co.uk/2017/02/homomorphic-encryption-api-software.html
http://heat-h2020-project.blogspot.co.uk/2017/02/homomorphic-encryption-api-software.html
http://heat-h2020-project.blogspot.co.uk/2017/02/homomorphic-encryption-api-software.html
https://courses.csail.mit.edu/6.857/2015/files/yu-lai-payor.pdf
https://courses.csail.mit.edu/6.857/2015/files/yu-lai-payor.pdf

	Practical Homomorphic Encryption Over the Integersfor Secure Computation in the Cloud-1ex

