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Abstract

Previous work on three-dimensional shakedown analysis of cohesive-frictional materials
under moving surface loads has been entirely for isotropic materials. As a result, the effects
of anisotropy, both elastic and plastic, of soil and pavement materials are ignored. This paper
will, for the first time, develop three-dimensional shakedown solutions to allow for the
variation of elastic and plastic material properties with direction. Melan’s lower-bound
shakedown theorem is used to derive shakedown solutions. In particular, a generalised,
anisotropic Mohr-Coulomb yield criterion and cross-anisotropic elastic stress fields are
utilised to develop anisotropic shakedown solutions. It is found that shakedown solutions for
anisotropic materials are dominated by Young’s modulus ratio for the cases of subsurface
failure and by shear modulus ratio for the cases of surface failure. Plastic anisotropy is mainly
controlled by material cohesion ratio, the rise of which increases the shakedown limit until a
maximum value is reached. The anisotropic shakedown limit varies with frictional coefficient

and the peak value may not occur for the case of normal loading only.

Keywords

Shakedown analysis; Mohr-Coulomb criterion; cross-anisotropy; plastic anisotropy; moving

loads

1. Introduction

Shakedown is known as a phenomenon at which an elastic-plastic structure would respond
purely elastically to a cyclic load (which is above the yield limit and below a shakedown load
limit) after the initial build-up of some plastic deformation. Alternatively, if the load applied
is above the shakedown load limit, the structure will finally fail due to fatigue or unlimited

incremental plastic deformation or instantaneous collapse [1].

In the field of geotechnical engineering, it has been recognised through experimental and
numerical work that shakedown theory has potential applications in solving problems of road
pavements under moving traffic loads [2-6]. A key task of applying shakedown theory to
pavement design is to determine theoretically the shakedown limit for a given pavement
structure. Two fundamental theorems can be used for this purpose: kinematic or upper-bound
shakedown theorem [7], and static or lower-bound shakedown theorem [8]. While the upper-
bound shakedown theorem has been used for pavement shakedown analysis in consideration

of both two-dimensional and three-dimensional surface loads [9-11], the use of lower-bound
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shakedown theorem was mainly limited to two-dimensional cases [4, 5, 12-16]. The lower
bound solutions had not been fully extended to three-dimensional cases until the analytical
work of [17-18]. The most recent lower-bound shakedown solutions presented by Yu and
Wang [18] were based on an assumption that the cohesive-frictional half-space is isotropic. In
reality, however, it has been widely accepted that soils and pavement materials exhibit some
degree of anisotropy, because particles deposited vertically tends to be oriented in the
horizontal direction [19-21]. And it has been found that ignoring soil anisotropy may result in

an overestimation of ultimate bearing capacity and thus lead to an unsafe design [19, 22-24].
1.1. FElastic Anisotropy

For many ground deformation problems, soils are assumed to have a single vertical axis of
symmetry with the same properties in any horizontal direction but different properties in the
vertical direction [25]. This kind of anisotropy is known as cross-anisotropy or transverse

isotropy. In the elastic range, the behaviour of a cross-anisotropic material can be described

as follows:
_58“_ I 1/E'h _Uh /Eh _th /Ev i _50-)05_
%, | |-v,/E, 1/E, -v,/E, 5o,
5822 _ _Uhv / Eh _Uhv / E, h 1 / E v é‘Uzz 5 ( 1 )
d, 1/2G, s,
%, 1/2G, do.
_5gyz 1L 1/2G,, | _50}7 |

where the stress increments do;; and strain increments Je;; are referred to Cartesian axes (i.e. i
and j denote x axis, y axis or z axis), with the z axis being vertical; £, is Young’s modulus in
horizontal (H) direction; E, is Young’s modulus in vertical (V) direction; G, is shear modulus
in horizontal plane; G,; is shear modulus in VH plane; v, is Poisson’s ratio (effect of
horizontal strain on complementary horizontal strain); v, is Poisson’s ratio (effect of vertical
strain on horizontal strain); vy, is Poisson’s ratio (effect of horizontal strain on vertical
strain).There are two correlations between these parameters (Eq.2 — Eq.3), so that a cross

anisotropic material can be fully defined by five independent parameters.

E,

= 2
"2+, )

Y _E
Uhv Eh . (3)
2
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Elastic properties of anisotropic soils have been widely explored. For example, typical values
of E,/E), for clays may range from 0.25 to 1.11 [25-27]. Experimental results for sands [28, 29]
and gravel [30] also show some degree of inherent anisotropy with E,/E, from 1.06 to 2.
Graham and Houlsby [21] proposed that the elastic anisotropy of natural clays can be
described by three parameters: E'and v" and a by giving the following definitions: E, = E',
E,= azE*, o= 1)*, Vyp = v*/a, Gy = aE*/(2+21)*), Gy = oczE*/(2+2v*).

1.2.  Plastic Anisotropy

Laboratory tests performed on soil specimens cut at different orientations have also
demonstrated the directional dependence of soil shear strength (eg. [20, 31-33]). It has been
shown that the variation of soil cohesion with direction due to inherent anisotropy is much
more significant than the effect of anisotropy on the friction angles (eg. [20, 33, 34]). Various
failure criterions have also been suggested to describe this anisotropic behaviour of soils (eg.

[35, 36]). However these models are usually too sophisticated to be used in practice.

The main purpose of this paper is to develop lower-bound shakedown solutions for
anisotropic soils under three-dimensional moving surface loads. Following Yu [17] and Yu
and Wang [18], Melan’s static shakedown theorem will be used to derive the lower-bound
shakedown solutions. Melan’s shakedown theorem states that an elastic-perfectly plastic
structure will shakedown if the combination of load induced elastic stress field and self-
equilibrated residual stress field does not violate the yield criterion. In this paper, a
generalised, anisotropic Mohr-Coulomb yield criterion will be utilised, which accounts for
the effect of anisotropic cohesion. The elastic anisotropy will also be considered by using

elastic stresses in a cross-anisotropic half-space.

2. Problem definition

This paper considers a homogeneous half space of a cohesive-frictional soil that is cross-
anisotropic with a vertical axis of symmetry, as shown in Figure 1. As mentioned earlier, the
strength anisotropy of soils will also be considered by using a generalized, anisotropic yield
criterion. A three-dimensional surface contact load, including a normal pressure p and a
surface traction g, moves along x-direction. p and ¢ are assumed to be distributed according

to the following equations within a circle of radius a (x*+* < a%):

p= 3P (az—xz—yz)m’ 4)
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- 30 (az_xz_yz)”z’ (5)

- 3
2ra

where P is the total normal force in the z-direction and Q is the total shear force in the x-

direction. This load distribution is also known as the three-dimensional Hertz load

O©CoO~NOUTA,WNPE

10 distribution. It has a maximum pressure py = 3P/2ma” at the centre of contact area (x = y=z=
0). The normal and shear loads are assumed to be correlated by a frictional coefficient 4 =

13 o/P.

16 3. Elastic stress field in a cross-anisotropic half space

18 Hanson [37] derived closed-form expressions for elastic stresses in a cross-anisotropic half

20 space z > 0, due to the three-dimensional Hertz load distribution, defined in Eq.4 — Eq.5. Five

elastic constants 4, 4,5, 4;;, 4,,, A, were used to define the material behavior as below:

24 (oo, | [ 4 A —24 A [ e, |

xx 11 11~ <466 13 xx
26 éb-yy A =24 4, Ay 58,»1»‘
27 5o A A A 23

28 = | _ 13 13 33 = | (6)
29 oo A66 5‘9@’

Xy

30 éo A, O

Xz

32 oo A, || o

Yz | L a vz |

These five constants correlate with Young’s modulus, shear modulus and Poisson’s ratio as

1-v,0 v, +0,L 1-v’ E
vh " hy _ “hy h"hy _ h _ _ h
- > A33 - > Ay = 2th > A66 _2Gh - 1
+ v,

37 follows: A4 >
E A

38 " EEA TP E}
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9

where A (1+v,)(1-v, —2v,v,,)
41 E;Ev ’

44 Using stress combinations o, =0, +0,

s O, =0, —0, +2c , 1 =0, +ic, , the

xy?

46 following elastic stress expressions were given by Hanson [37].

The elastic stresses due to the normal load P are given below:

51 > 2 2 ]
52 o, = 6H]ZA66 Z{y" (L+m)7; |:Zk arcsin[mj— a’ -1 (a) (7

53 a | r(m-1) P

| ——

{ Ve [2a3—(112k(a)+2a2) a2_sz(a)_}, ®)
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. _Lpewi{_)m {mm[w)j oty (o) ]}

And’ (1,~7,) p Li(a)

The elastic stresses due to the tangential load Q are given below:

o :%(W +e”"") p:l {%{—m@n(mj +£2a) p =1 (a) }}’

p ) P

1_1) {e % parcsin(Lpa)J—M pZ-z;(a)}

2p

o, = 3H1ut {(

a k=1

3Q7172 i{ kﬂ [_Zk arcsin[llk (a)j+m _ 24 —(llzk (a) +2a22) a -, (a) ]}

47ra k 1 P 3p
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where

7i=n, (k=12)
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n, are the two (real or complex conjugate) roots of the quadratic equation:
‘6[11‘444’72 + |:A13 (A13 +24, ) - A11A33} n+ 4,4, =0,

H= (71"'72)‘411
= A
2”(A11A33 _A13)

z
z,=—

Vi
p:\]x2+y2 >

0 ify=0&x=0
@ =1arcsin(y/ p) ifx>0

-arcsin(y/p)+7r ifx<0

(@)= (loray vz —y(o-a) +22)

ZZk(a)zé(\/(era)erzf +\/(p—a)2+zf).

The elastic stresses that are relevant to this study can be obtained using o _ =[q +rea1(02)]/ 2,

o =real(r,), o =real(c,)(the imaginary part of o was found to be very small).

4. Plastic anisotropy

Lo [32] assumed that the directional strength, in particular the variation of cohesion with

direction, can be described by the following mathematical expression:
c,=c,+(c,—c,)sin’ 9, (15)

where ¢, and ¢, are the values of cohesion on the horizontal and vertical planes respectively

and ¢, represents the cohesion measured on a plane inclined at an angle 6 to the horizontal

plane.

http://mc.manuscriptcentral.com/nag



O©CoO~NOUTA,WNPE

International Journal for Numerical and Analytical Methods in Geomechanics

For an anisotropic material, the conventional isotropic Mohr-Coulomb failure criterion is no
longer valid. According to Yu and Sloan [24], if compressive stresses are treated as positive,

the shear strength developed on the plane ab (shown in Figure 2) can be found as:

s=c,—o, tang=c, +(c,—c,)sin’@—c, tang, (16)
with normal and shear stress components on plane ab:
o,=0,_sin’0+c_cos’d-c_sin20, (17)
7=-0_sinfcos@+o_sinfcosd@+o _ cos20. (18)
where ¢ is material friction angle.

The shear stress must be smaller than the shear strength (i.e. 7—s5<0), so that:

[0 sinfcosf+o_sinfcosf+o, cos26]

(19)
-~ [ch +(c, —c,)sin* 6 —tan ¢ (O'xx sin’ @+ o cos’ @ —o_sin 29)] <0.
Using the following equation for the orientation of the critical plane,
or— e —

ol ¢,—c,+20_—0, tang+o._tang’
the failure criterion considering directional strength variation can then be written as:
f=(0.-0,-20_tang)' +(c, ~¢, +20, —0, tang+o_ tang)’ —(c, +¢, o, tang—o_ tang)’ <0. (21)

5. Shakedown solution techniques

Based on Melan’s shakedown theorem, the essence of shakedown analysis is to find the
maximum admissible load within which a self-equilibrated residual stress field can be found
so that the total stress state will not violate the yield criterion. Residual stresses are such that
they can remain in the half-space after load application as a result of plastic deformation. In a
three-dimensional half-space, there may be all the six components of residual stresses at a
general material point. However, symmetry and other considerations impose some constrains.
For the problem considered here, in which the material is homogeneous and cross-anisotropic
with a vertical axis of symmetry, the resulting permanent deformation and therefore the

residual stress field will be independent of the travel (x) direction. It has also been

7
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demonstrated by Yu [17] and Yu and Wang [18] that, under a moving three-dimensional
Hertz load distribution, the most critical plane in the half-space is the central xz plane,

defined by y = 0. On this plane, the only possible residual stress is the horizontal residual
stress o', because the self-equilibrium and boundary conditions eliminate the possibility of
residual shear stress o and residual vertical stress o, . Therefore, the total stress field owing

to a moving Hertz load distribution for an element on the y = 0 plane at any given moment

can be defined as the sum of elastic stresses and residual stresses:

O-xx = ﬂlo-;x + O-xrx (22)
o..=Ac’, (23)
o.=Ac, (24)

where A is a dimensionless load parameter and O'; is the elastic stress field due to unit

pressure p,.

In the y-direction, a non-zero residual stress O_er may well exist, thus the total stress normal

to the y = 0 plane is 0, ZZGW +G)ry. Since O'}ry is an arbitrary function of depth z, it can be

chosen so that 0, is always the intermediate principle stress. In other words, the major and

minor principle stresses are always on the y = 0 plane.

If the generalised, anisotropic Mohr-Coulomb yield criterion Eq. 21 is utilised to describe the
material yield condition and 0, is the intermediate stress, Eq. 22 — Eq. 24 then are

substituted to the yield criterion Eq. 21 to satisfy the requirement of Melan’s shakedown

theorem and this gives:

[ =405~ 205, ~0l,~ 240" tan ) +(c, ¢, +210%, ~ A", tan g~ tan g+ Ac”, tan g

(25)
—(cv +¢,— Ao tang—o tang— Ao’ tan¢)2 <0,
The above shakedown condition can be rewritten as follows:
f=(cl,+M) +N+P<0 (26)
8
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where o, is self-equilibrated,

M =Jo! - Ao: +2(c, — Ao’ tang)tang ,
N= 4(tan2 o+ 1)[(/10; )2 —(ch - Ao, tan ¢)2] ,

P=4(c, ¢, )[}Lo-fﬁz - (ch — Ao, tan ¢)] .

It should be noted that if ¢, equals to ¢, , then P is zero and Eq. 26 becomes equivalent to the
shakedown condition of Yu and Wang [18] for the special case of isotropic materials.

In order to satisfy Eq. 26, one condition must be met:

N+P<0 27)
The above condition Eq. 27 can be rewritten as:

AxB<0 (28)
with

A=Ac —(c,— Aot tang),

n

B=(tan’g+1)[ 205 +(c, — Ao tang) |+, —c,.
Table 1 summarises conditions of A in order to satisfy Eq. 28, where
a=o0, tang+o,, (29)

1+tan’ ¢

b:(UZez tal’l¢—0'§z)cv/0h+—tanz¢.

(30)

At any point (x, y, z) in the half-space, @ and b can be either positive or negative subject to
elastic stresses at that point. For different combination of signs of a and b, there are different
conditions for the load parameter A4 in order to satisfy Eq. 28. Since each point in the half-
space give one condition for A, the overall shakedown condition for the half-space must be

the intersection of all conditions, so that:

http://mc.manuscriptcentral.com/nag
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A < min| min| <& ,min S ,min| min c—h,i . 31
casel a case2 b case3 a b

The above condition can be rewritten as:

S

A< (32)

max [max(a),rnax (b), max (a,b)} ,

casel case2 case3

By searching through every location in the half-space for the maximum value of

[max(a),max (b),max(a,b)} , this condition can provide a necessary shakedown limit A,

casel case2 case3

defined by:
A, = S : (33)
max | max (a),max (b). max (a. )|

Eq. 33 does not impose self-equilibrium condition of residual stress and therefore it provides
a maximum boundary to the rigorous lower-bound shakedown limit. It is quite difficult to
obtain the lower-bound shakedown limit without the known residual stress. However, Eq. 26

and the self-equilibrium condition impose some constrains on the residual stress field:

(1) Eq. 26 requires that at any point 7 in the half-space, the residual stress o/ must be

between two roots of f'= 0:

M, —J-N, =P, <o’, <-M, +/-N, P, , (34)

where —N, — P, must be non-negative if the necessary shakedown condition Eq. 32 is

satisfied.

(2) The self-equilibrium condition requires that the residual stress o/ at any specific

depth z = j must be unique. Therefore, the possible residual stress at depth z = j must

be within the following criterion:

max(-M, —\/-N, -P,) <o, <min(-M, +,/-N, -P,), (35)
z=J z=j

10
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where o =min(-M, +-N,-P,) (referred to as ‘minimum larger root’) and
z=J
o, =max(-M, —/-N, -P,) (referred to as ‘maximum smaller root’) are defined as
z=J

critical residual stresses.

Given a load parameter 4 equal or less than the shakedown limit, if the critical residual stress

(either the minimum larger root or the maximum smaller root) is substituted into Eq. 26, it

will lead to max(f) =0. However, when 4 is larger than the shakedown limit, max(f) will be
z=j =]

larger than zero. This is because when 4 is above the shakedown limit, it is impossible to find
a common residual stress that makes f < 0 at all points at the same depth. The present

shakedown problem now can be written as a mathematical formulation:

maximise A,
flow(40).20°) <0 (36)

o’ (4o )= min(-M, +y-N,—P,) or o7, (10°) = max(-M, —-N, =P,).

subject to

Eq. 36 can be reduced to the following expression with only one variable 4 when the load

form and the materials are determined:

maximise A,

subject to /(1) <0 (37

By using the elastic stress solutions Eq. 7 — Eq. 14, the maximum load parameter that makes
fi2) < 0 at all points in the half-space is the rigorous lower-bound shakedown limit 4., for the

present anisotropic problem.

6. Numerical procedure and results

In this section, a procedure is suggested first to find the maximum load parameter for Eq. 36.
This and elastic stress solutions have been programmed into FORTRAN. The elastic stress
fields have been verified by comparing with finite element results using ABAQUS. Results
are presented and discussed first for soils with elastic anisotropy only, and then for cases with

plastic anisotropy.

11
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6.1 Shakedown solution procedure

A simple procedure to solve Eq. 36 and obtain the lower-bound shakedown limit A, is
outlined in Figure 3. First, using the necessary shakedown limit A ,, possible residual stresses

-M, +,/-N,-P, and -M, —/-N,—P, are calculated for each point i in the half-space. In

numerical applications, the points were chosen with 0.01a intervals in each axis direction (x-
direction, y-direction, z-direction) in a Cartesian coordinate system. Then, a critical residual
stress field is obtained by calculating either the minimum larger root or the maximum smaller

root at each depth. This step reduces the residual stress field as a function of depth z.
Shakedown condition under this load parameter can be checked by substituting A, and the
critical residual stress field into Eq. 31. If the maximum value of f among all points is
found to be very close to 0 (said 1e-3 here), the present lower-bound shakedown solution 4,
coincides with the necessary shakedown condition 4. Otherwise, if max(f) is larger than
le-3, a smaller load parameter is required. In the latter case, the problem becomes how to
determine the maximum permissible load parameter A, at which the sum of corresponding
elastic stresses and critical residual stresses fulfils the generalised Mohr Coulomb yield
condition at every location in the half-space. Noticing that the load parameters have to lie
between A, and 0, a method of bisection is utilised to find the optimum shakedown limit
efficiently. It was also found in the numerical practices that a very small change of load
parameter A, (said le-3) around the lower-bound shakedown limit results in a significant
change of max(f), from le-7 to le-3 and consequently the condition le-4 < max(f) < le-3 is

able to provide an accurate shakedown limit. At the shakedown load limit, the point

providing the maximum value of f'can be identified as the critical point.

Finally, when the load does not exceed the shakedown limit, the residual stress field itself

calculated through the present procedure should satisfy the yield condition inherently (i.e.

f (a;_ (/IY dae))ﬁ()) once the chosen boundary is large enough. This is because when far-off

points are taken into account during calculation, elastic stresses at those points are negligible
so that only the residual stress holds their f'values which then contribute to max( /') . This can

be checked by substituting the critical residual stress only into the condition Eq. 31.

12
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6.2 Results and discussion
In the following results, the lower-bound shakedown limit obtained through this program is

defined in terms of the maximum pressure p, in a dimensionless form: k,, =A,p,/c,. The

load limit obtained by the necessary shakedown condition Eq. 33 is also defined in an

analogous form: £ =4,p,/c,.

6.2.1 Special case - isotropic half-space

First, in order to verify the validity of the proposed shakedown solution, the half-space is
assumed to be isotropic so that the numerical result can be compared with others. The
numerical result of the shakedown limit of a half-space under moving pressure is presented in

Figure 4, where the variation of material friction angle ¢ is also considered. The present

shakedown solutions are close to the numerical lower-bounds obtained by Shiau [38] using
finite elements and nonlinear programming techniques. It also shows that the shakedown

limits increase significantly with the rising of the friction angle.

6.2.2 Effect of elastic cross-anisotropic parameters

Analyses were then presented in consideration of elastic anisotropy only. As mentioned
before, the elastic stress fields for a cross-anisotropic material are dependent on five elastic
parameters, and here the following parameters were used: £y, E/E;, Gu/Gy, v, and v,,. Table
2 compares the theoretical shakedown limits based on the isotropic assumption and those
obtained using anisotropic parameters. Those anisotropic elastic parameters were calculated
from real test data of Graham and Houlsby [21] for Winnipeg Clay. It demonstrates that the
use of conventional isotropic assumption overestimates the shakedown limit by as much as
20%. As a result, ignoring elastic soil anisotropy in shakedown analysis may lead to unsafe

pavement design.

Further investigations show that for the problem of a homogeneous half-space, the
shakedown limit is not influenced by Young’s modulus in a particular direction (i.e. £, or E,),
but affected by Young’s modulus ratio E,/E;. This agrees with shakedown solutions in an
isotropic homogeneous half-space which do not vary with Young’s modulus. In addition, the
change of Poisson’s ratio only leads to a slightly variation of shakedown limits as presented

in Figure 5.

Figure 6 and Figure 7 show the variations of shakedown limit with respect to frictional

coefficient x4 for different values of Young’s modulus ratio E\/E, and shear modulus ratio
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G.i/Gy. In these figures, the trend observed for the anisotropic solutions (i.e. E/E, # 1 or
G,/Gy, # 1) follows that for the isotropic solutions where the shakedown limit decreases with
increasing frictional coefficient u. Also, it is accompanied by the move of critical point
location, from a point below the surface (referred to as ‘subsurface failure’) towards a point
on the surface (referred to as ‘surface failure’). The turning point splitting subsurface failure
cases and surface failure cases tends to occur at a larger value of x4 for a smaller value of
E,/E, or for a larger value of G,;,/Gj;. This implies that subsurface failure is more likely to
occur when E, < Ej, and G,; > Gj;. When subsurface failure is critical, the shakedown limit
can be raised by increasing E,/Ej or decreasing G,;/G) until it reaches a peak value. When
surface failure is critical, shakedown limit can be increased by rising G,,/Gj, especially in the

case of cohesive-frictional material (Figure 7b).

It is instructive to reveal the interactive effect of E,/E) and G,;/G;, on the shakedown limit, as
shown in Figure 8. The results are presented in a logarithmic scale. When the frictional
coefficient u is zero, failure always initiates below the surface (i.e. subsurface failure), and
the shakedown limit changes more quickly with E,/E, than with G,;/G;, until a peak value is
reached. In these figures, the peak value is around 5 for ¢= 0° and around 22 for ¢ = 30°.
When the frictional coefficient u = 0.5, the critical points mostly lie on the surface (i.e.
surface failure) and the change of shakedown limit is dominated by the variation of G,;,/Gj,
not E\/E;, except those at the lower-right corner of which the shakedown limit is controlled

by subsurface critical points. A maximum value k,, =2 is also observed for the case ¢= 0°.

These results implies that when elastic anisotropy is taken into account, the shakedown
solutions for cohesive-frictional materials under a three-dimensional Hertz load tend to be

controlled by E\/E;, for subsurface failure cases but by G,;/G;, for surface failure cases.

6.2.3 Effect of plastic anisotropy

Figure 9 presents the shakedown limit against frictional coefficient u for different values of
cohesion ratio ¢,/c;, while the soil friction angle ¢ is taken as 0°, 15°, 30°, 45° respectively.
Variation of shakedown solutions with respect to ¢,/c; is also plotted in Figure 10. Some

features can be drawn as follows:

(1) When c¢,/cj, is smaller than 1, the shakedown solution reduces as the frictional coefficient
increases. This trend follows that for the isotropic solutions (i.e. ¢,/c; = 1). When ¢,/c; is

larger than 1, there exists a peak value of shakedown solutions giving an optimum
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frictional coefficient x# (> 0). This is different from the isotropic solutions of which the
value is always maximum when u = 0 (i.e. normal load only).

(2) The rise of c¢,/c, does not always lead to an increase of the shakedown limit which is

defined as k_ =A,p,/c, . As shown in Figure 10, the shakedown limit rises
proportionally with increasing c,/c;, when the lower-bound shakedown limit k__ equals

the necessary shakedown condition k_ and its value is controlled by 1/b (refer to Eq.
30). However, this growth is not always proportional, such as those in Figure 10c, 10d
where k__is smaller than k__. If ¢,/c; is large enough, the shakedown limit will finally

reach a maximum value which is controlled by 1/a (refer to Eq. 29).

(3) Results in Figure 9 are divided into surface failure cases and subsurface failure cases by
a dash line and a dot line. The dot line represents subsurface failure cases of which value
is controlled by 1/a. On the left hand side of the dash line, the critical point initiates
below the surface and the lower-bound shakedown limit is controlled by 1/b. On the right
hand side, the shakedown limit is controlled by critical point on the surface.

(4) Surface failure is most likely to occur when c,/c;, is around 2. When c¢,/c;, is either very
large (e.g. ¢,/c, = 10) or very small (e.g. ¢,/c; = 0.1), failure tends to initiate below
surface.

(5) As the friction angle increases, the dot line becomes steeper and the dash line moves
towards left. This means surface failure tends to occur at a higher value of friction angle

in anisotropic materials.

6.2.4 Effect of combined elastic and plastic anisotropies

Previous analyses examined the influences of elastic and plastic anisotropies independently.
However, the elastic and plastic parameters in a real soil are somewhat related [30]. For
example, soils compacted more in the horizontal direction could have E, > Ej as well as ¢, >
¢;. Table 3 compares isotropic shakedown solutions with those of two anisotropic cases

which are closer to real situations:

(i) EV/Eh = 0.5, th/Gh = 0.7, Ly = 0.15, Dyp = 0.22, CV/Ch = 0.8;
(i) EJVE,=1.5, Gu/G,=12,0,=0.15,0,,=0.12, ¢,/c;, = 1.2.

It is clear that the isotropic solutions are larger than the shakedown solutions of case (i) by as

much as 38%, while they are smaller than the shakedown solutions of case (ii) by as much as
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42%. Therefore both elastic and plastic anisotropies should be taken into account in

calculating shakedown limits of soil half-space under moving surface loads.

7. Concluding remarks

Based on Melan’s shakedown theorem, this paper develops lower-bound shakedown
solutions for an anisotropic cohesive-frictional half-space under three-dimensional surface
loads. Apart from cross-anisotropic elastic stress fields, a direction-dependent cohesion was
used to generalise the Mohr-Coulomb criterion so that plastic anisotropy is also considered.
Given a self-equilibrated critical residual stress field, the shakedown problem is reduced to a
function of load parameter, which can be solved by a proposed numerical procedure. The
anisotropic shakedown solutions can be reduced back to the solutions of Yu and Wang (2012)

for isotropic materials.

Although five parameters define the cross-anisotropic elastic behaviour, it was found that
lower-bound shakedown solutions for the present problem are mainly affected by the
Young’s modulus ratio E,/E; and the shear modulus ratio G,,/G,. Moreover, when subsurface
failure is critical, the shakedown limits are dominated by the Young’s modulus ratio; when

surface failure is critical, the shakedown limits are dominated by the shear modulus ratio.

With the rise of cohesion ratio c¢,/c;, the anisotropic shakedown limits are trending upwards
(the increase rate is equal or smaller than that of c,/c;); however, it flattens out when a
maximum value is reached. In general, the anisotropic shakedown limits are identical to the
necessary shakedown condition for subsurface failure cases (i.e. rolling with limited sliding);
otherwise, the shakedown limits are controlled by surface critical points (i.e. rolling with
significant sliding). In addition, subsurface failure tends to occur when c,/c; is either very
large or very small. For any cases of c¢,/c;, > 1, a peak point exists when shakedown limit
varying with frictional coefficient x4 (from 0 to 1). This is different from isotropic solutions

which are always largest at 4 = 0 (i.e. normal load only).
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Table 1. Necessary shakedown conditions

case a b possible conditions summary of conditions for
from Eq. 28 possible conditions each case
: " - i<l 0z 0<i<
a b a 0<i<s
or A2 N zs%’f NA ¢
a
2 B i Az na<se 0<i<<
a b b 0<i<<
or A< N /12%” NA b
a
¢ b a b /1<min{—h &}
or 4> 0 /12%’ ﬂZmaX[c—h,c—h} ab
a a b
4 - - Ch Ch
/12; N /12; A20
A2>0
or A<t N ﬁs% NA
a

(Note: 4 >0 is prerequisite; NA means not available)
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Table 2. Effect of elastic anisotropy on shakedown limit of Winnipeg Clay

Page 22 of 33

case E, (MPa) EJE, G,/ Gy, Uy Vv Shakedown limit difference
1 9.35 0.53 0.73 0.17 0.23 4.00 -15%
2 6.96 0.41 0.64 0.08 0.12 3.74 -20%
3 7.67 0.52 0.72 0.17 0.23 3.97 -15%
4 5.76 0.76 0.87 0.23 0.27 4.37 7%
isotropy 4.68
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Table 3. Comparison of isotropic and anisotropic shakedown solutions
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case u #(°) EJE, G,/G, op o ¢/c,  shakedown limit  difference
1 0 0 1 1 0.15 0.15 1 4.68
2 0 0 0.5 0.7 0.15 0.22 0.8 3.14 -33%
3 0 0 2 1.4 0.15 0.11 1.2 5.31 13%
4 0 30 1 1 0.15 0.15 1 13.47
5 0 30 0.5 0.7 0.15 0.22 0.8 8.37 -38%
6 0 30 2 1.4 0.15 0.11 1.2 19.15 42%
7 0.5 0 1 1 0.15 0.15 1 2.00
8 0.5 0 0.5 0.7 0.15 0.22 0.8 1.60 -20%
9 0.5 0 2 1.4 0.15 0.11 1.2 2.37 18%
10 0.5 30 1 1 0.15 0.15 1 2.93
11 0.5 30 0.5 0.7 0.15 0.22 0.8 2.42 -17%
12 0.5 30 2 1.4 0.15 0.11 1.2 3.74 28%
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