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Abstract 
Brain–computer	music	 interfacing	 (BCMI)	 is	a	growing	 field	with	a	history	of	experimental	
applications	derived	from	the	cutting	edge	of	BCI	research	as	adapted	to	music	making	and	
performance.	BCMI	offers	some	unique	possibilities	over	traditional	music	making,	including	
applications	 for	 emotional	 music	 selection	 and	 emotionally	 driven	 music	 creation	 for	
individuals	 as	 communicative	 aids	 (either	 in	 cases	 where	 users	 might	 have	 physical	 or	
mental	 disabilities	 that	 otherwise	 preclude	 them	 from	 taking	 part	 in	 music	 making	 or	 in	
music	therapy	cases	where	emotional	communication	between	a	therapist	and	a	patient	by	
means	of	traditional	music	making	might	otherwise	be	impossible).	This	chapter	presents	an	
overview	of	 BCMI	 and	 its	 uses	 in	 such	 contexts,	 including	 existing	 techniques	 as	 they	 are	
adapted	to	musical	control,	from	P300	and	SSVEP	(steady-state	visually	evoked	potential)	in	
EEG	 (electroencephalogram)	 to	 asymmetry,	 hybrid	 systems,	 and	 joint	 fMRI	 (functional	
magnetic	 resonance	 imaging)	 studies	 correlating	 affective	 induction	 (by	 means	 of	 music)	
with	 neurophysiological	 cues.	 Some	 suggestions	 for	 further	 work	 are	 also	 volunteered,	
including	 the	development	of	 collaborative	platforms	 for	music	performance	by	means	of	
BCMI.	
 

10.1 Introduction 

The expression brain–computer music interfacing, or BCMI, was coined by Plymouth 
University’s Interdisciplinary Centre for Computer Music Research team to denote BCI 
systems for Musical applications, and it has since been generally adopted by the research 
community (Miranda and Castet 2014). Research into BCMI involves three major challenges: 
the extraction of meaningful control information from signals emanating from the brain, the 
design of generative music techniques that respond to such information, and the definition of 
ways in which such technology can be deployed effectively, for example, to improve the lives 
of people with special needs, to address therapeutic applications, or for artistic purposes. 
BCMI is a growing field, with a history of experimental applications derived from the cutting 
edge of BCI research as adapted to music making and performance. BCMI offers some 
unique possibilities over traditional music making, including applications for emotional 
music selection and emotionally driven music creation for individuals as communicative aids. 
Examples of this include cases where users might have physical or mental disabilities that 
otherwise preclude them from taking part in music making or in music therapy cases where 
emotional communication between a therapist and a patient by means of traditional music 
making might otherwise be impossible. We assume that the reader will already have a strong 
understanding of the particular BCI methods documented in this chapter and their uses in 
other types of control signal generation. Therefore, we present an overview of BCMI and its 
uses in explicitly musical contexts, including existing techniques as they are adapted to 



 

 

musical control, from P300 and steady-state visually evoked potential (SSVEP) in 
electroencephalogram (EEG) to asymmetry, hybrid systems, and joint functional magnetic 
resonance imaging (fMRI) studies correlating affective induction by means of music with 
neurophysiological cues. Some suggestions for further work are also volunteered, including 
development of collaborative platforms for music performance by means of BCMI. The field, 
though small at first glance, is steadily growing, and this chapter focuses on a discrete group 
of research in the context of the field—inclusive but by no means exhaustive—a great variety 
of existing work is taking place at the time of writing. Music remains an exciting and 
challenging application, particularly at this time, for the BCI community. 
 

10.2 BCI and Music, an Overview 

Music can be considered the language of emotion (Lin and Cheng 2012) and shares two 
fundamental properties with BCI, more generally, communication and interaction. Music 
facilitates communication from the composer to the audience of listener/s, and interaction 
between an individual performer and other musicians, as well as interaction between the 
performer/s and the audience of listener/s. Listeners do not need any special musical 
education to understand communication made by musical means (Bailes and Dean 2009; 
Bigand and Poulin-Charronnat 2006). The dream of many musicians, particularly musicians 
who also engage in composition activity, is to be able to bypass the physical intermediary in 
the process; that of notation or transcribing ideas for subsequent performance. Highly 
talented musicians are able to do this to some extent through improvisation; they create and 
perform at the same impulse. However, this requires a significant degree of musical training 
and becomes infinitely more complex when other musicians are also involved. BCI offers the 
possibility of directly translating thought to performance in music making. We consider this 
mapping and will refer to it throughout this chapter according to the definition that mapping 
encompasses the process of bridging particular BCI data with auditory cues. These cues 
might be musical notes, complete pieces of prerendered music, smaller sound stimuli such as 
noises or test tones, or specific auditory filtering processes (frequency or time domain-based 
effects, such as frequency equalization, phasing, reverberation, dynamic time warping, etc.). 
An overview of different types of music mapping from complex biomedical data and 
subsequent evaluation strategies is given in Williams (2016). In layman’s terms, one might 
consider a BCMI goal to be, for the user, “Think of a tune,” and as you do so, the BCMI 
mapping would transcribe your thoughts into musical notation, or perhaps synthesize them 
directly as audio. Therefore, the evaluation strategy can be relatively simple in such a case. A 
further level of complexity might be achieved if the system could automatically generate 
accompaniment or other instrumentation on the fly, requiring more complex evaluation. 
Beyond traditional music making (i.e., composition and performance), the possibility of 
adapting BCMI to patients with physical disabilities who might otherwise be unable to 
participate in music making is clear (Miranda et al. 2011). However, BCMI systems remain a 
long way from this goal at the time of writing. 
 
The use of BCI for music has steadily been gaining traction over the past three decades. Yet, 
before this, early pioneers made use of the EEG to generate control data for musical 
performance. Alvin Lucier’s 1965 piece Music for Solo Performer (Lucier 1976) distributes 
amplified alpha waves around a real-world performance space, in which various types of 
percussion are triggered or stimulated by the amplified waves as the performer mediates their 
mental state by meditating and increasing the corresponding alpha wave output. The 
otherworldly effect was well suited to the experimental avant-garde composition movement 



 

 

of the time, such as the work of John Cage and contemporaries, whom Lucier had seen some 
years prior and would have likely been influenced by. David Rosenboom continued the early 
exploration with the release of Brainwave Music (1974), adapting the sensor/mapping 
strategy to incorporate biofeedback in the compositional process (Rosenboom 1990; 
Teitelbaum 1976). Much of this period of BCMI evolution can be characterized by the 
realization of the control of alpha in a participant and the subsequent adaptation of this 
control to music creation. The concept of adaptive biofeedback was explored by Eaton 
(1971), who combined visual and auditory stimuli in a manner that facilitated much of the 
later design of BCMI. Historically, BCMI systems would not seek to extrapolate direct 
meaning from brainwaves but rather force a semantic mapping between the stimulus and the 
generated musical output. The principal distinction is that the influence of music on 
brainwaves and other physiological readings might also be harnessed as some form of control 
signal to facilitate musical interaction. Should the system for musical interaction be designed 
with this in mind, the subsequent feedback loop could create useful applications in and of 
itself, for example, in the context of music therapy. Music therapy is a psychological therapy 
technique that aims to facilitate communication and improve the emotional state of a patient 
via musical interaction with the therapist (Aigen 2005). A typical session might involve a 
patient performing on an instrument in solo or in a duet with the therapist. A BCMI system 
might be useful for such work by facilitating patients who are not musically confident or 
competent enough to engage in traditional music-making activities as part of the therapeutic 
process, for example, performing or improvising new music that might otherwise be 
restricted by age or previous experience (Clair and Memmott 2008; Fagen 1982; Hanser 
1985). 
 
Significant progress toward functional BCMI was made in the 1990s in systems such as 
Biomuse (Knapp and Lusted 1990), which mapped the acquisition of low-level neuroelectric 
and myoelectric signals to the generation of musical structure in MIDI format in real time, 
after applying statistical feature extraction to the captured signals. This system also used 
other physiological readings, including eye tracking, muscle tension, and real-time audio 
input, and as such could be considered a “hybrid BCMI.”* At the time of publication, the 
creators of Biomuse directly acknowledged the possibility of adapting this technology to 
paralyzed or otherwise movement-impaired individuals, in order to give them access to music 
making—which in and of itself has been known to be a therapeutic process (Aldridge 2005; 
Hanser 1985)—and thus the importance of BCMI systems that only require brainwave 
control becomes clear in cases where the intended end user might be physically paralyzed 
such as “locked-in” patients (victims of amyotrophic lateral sclerosis or motor neurone 
disease). 
 
Figure 10.1 shows an overview of a generic BCMI. This signal flow diagram can be applied 
to most BCMIs. Typically, a real-time input is analyzed and subjected to some signal 
processing. The exact processing varies; it could be as simple as filtering or a more 
complicated statistical reduction such as principal component analysis. Machine learning 
techniques are now becoming common for adaptive processing of control signals for music 
generation and performance (AlZoubi et al. 2008, 2009; Kirke et al. 2012, 2013). In such 
cases, the processed signal is used as a control signal to inform mapping to musical structure, 
or a specific range of musical features that might combine to make a musical structure of 

                                                

* See Section 10.4 for the distinction between this and a BCMI that combines both active and 
passive control solely from brainwave input. 



 

 

some description (note that this is not necessarily “music’ at this stage of the process). An 
overview of specific mapping techniques for digital instrument design is given by 
Goudeseune (2002). Various combinations of mapping strategies exist, including one-to-one, 
one-to-many, and many-to-many combinations (Hunt and Kirk 2000). Typically, the mapping 
is predetermined at the stage of system design, but an adaptive mapping is indicated in this 
figure by the dashed lines (systems that use neurofeedback to adapt in this manner are 
discussed later in this chapter). It is in the mapping stage that most BCMIs derive their 
variety. Both the format of the output and the particular individual musical features and ratios 
between filtered control signal and given musical feature are valid, and many different types 
of mappings have been experimented with (Brouwer and van Erp 2010; Chew and Caspary 
2011; Daly et al. 2014c). The linear mapping of alpha waves to particular acoustic 
instruments in Music for Solo Performer is significantly different to the mapping in later 
systems such as Miranda’s BCMI, which maps the control signal to the control of amplitude 
of specific musical sequence playback (Miranda 2010). Further variety can be given at the 
performance stage; oftentimes, BCMI systems have been married with sound synthesis to 
facilitate real-time performance (Hinterberger and Baier 2005). These systems have been 
used to generate musical scores for human performers or to trigger playback of pre-recorded 
musical material from a database or library (Eaton et al. 2014). The use of the resulting 
musical stimulus to mediate or entrain the listeners’ brain activity (i.e., neurofeedback) is also 
a fertile area for research activity (Daly et al. 2014a, 2016a; Hinterberger and Baier 2005) 
and forms the last generic functionality shown in Figure 10.1. 
 
Neurofeedback is becoming increasingly common in the design of BCMI for specific 
purposes such as the therapeutic applications described above. Recent advances in 
electroencephalography have made these platforms more affordable and accessible to BCMI 
designers. Next, we might expect to see fully realized BCMI systems that provide full control 
over the generation and playback of electronic music, the creation of the score for acoustic 
instrumental music, or multibrain systems facilitating the kinds of interactions that musicians 
who are used to performing in groups can already experience. This chapter will explore 
historical approaches first, before illustrating some of these applications to music creation 
and offering some suggestions as to what might happen next in the field. 
 

10.3 Historical Approaches 

Three types of BCMI approaches have been formally documented: user oriented, computer 
oriented, and mutually oriented approaches (Miranda et al. 2003). User-oriented approaches 
attempt to derive meaning directly from the input, giving the user complete control within the 
boundaries of the mapping. This often relies on a one-to-one mapping, as more complex 
mappings can be less readily interpretable by a casual user assuming the user is not also the 
determiner of the mapping in question. As well as the early experiments documented in the 
introduction to this chapter by Lucier and Rosenboom, Richard Teitelbaum demonstrated the 
use of a user-oriented one-to-one mapping in a BCMI in his 1967 piece Spacecraft 
(Teitelbaum 1976), which used amplified EEG as a control signal for an analog sound 
synthesizer in an improvised performance. One of the technical challenges to this approach is 
in the classification of meaning from EEG, though as many chapters of this book explore this 
classification process has advanced significantly in recent years. Computer-oriented systems 
require the user to adapt their own interactions toward the functions of the computer to 
achieve musical control. Most BCMI systems fall into this category. Particular frequencies 
might be mapped to fixed musical parameters, so that the forms are required to mediate their 



 

 

own brainwave frequencies to achieve the desired musical output from the system (e.g., 
meditating or otherwise actively controlling the state of mind to change the brainwave 
amplitudes and frequencies as collected by the EEG). This approach is exemplified by Music 
for Solo Performer as discussed in the introduction of this chapter, or more latterly by 
ensemble performance in examples by the Biomuse Trio (Knapp et al. 2009; Lyon et al. 
2014) (see, e.g., their 2011 piece Music for Sleeping and Waking Minds). The third category, 
mutually oriented, combines both the user-oriented and computer-oriented functions, 
allowing a more complex degree of user control over the resulting music. Mutually oriented 
systems combine the functions of both user and computer orientation whereby the two 
elements adapt to each other, so that more sophisticated musical mappings can be inferred 
from the EEG data. The mutually oriented system learns an individual’s responses over a 
time series and then creates primary and secondary mappings. This increases the likelihood of 
useable and accurate EEG as the input and output effectively calibrates for an individual. 
This was the approach used in Eaton’s The Warren. Here, the system requires the user to 
learn how to generate specific commands and features mappings that adapt depending on the 
behavior of the user (Miranda and Castet 2014). 
 
Various commercially available systems allow EEG detection to command musical functions, 
albeit often with rudimentary mapping. Two types of EEG data are common in BCMI 
systems, event-related potentials (ERP) and spontaneous input. The P300 ERP (or “oddball 
paradigm”) has been used to allow active control over note selection for real-time synthesis 
(Grierson 2008; Grierson and Kiefer 2011) using methods that are not dissimilar to the ERP 
typing or spelling systems that have become more common in the BCI world but adapted to 
musical notes rather than text input. Stimulus-responsive input measures, for example, the 
SSVEP (Middendorf et al. 2000), have been adapted to real-time score selection and other 
controls of musical features such as volume (Miranda 2010). One system developed by 
Miranda and colleagues made use of such measurement from the visual cortex in response to 
flashing stimuli and subsequently mapped these to particular selections of pre-composed 
musical score. Users were able to make the selection by focusing their gaze on a particular 
icon flashing at a given rate. The system looked for amplitude changes across the four 
frequencies presented as visual stimuli and then correlated these amplitude changes to 
musical feature selection. A second level of control was also shown to be useful and possible 
in the system as the amplitude response in the corresponding wave could gradually increase 
in proportion to the duration of the viewers’ gaze, thereby giving mapping control for musical 
features that were not linear (e.g., volume control of a particular passage or instrument). This 
combination represented a breakthrough in that real-time explicit control of a BCMI was 
shown to be practical, albeit with a limited selection of musical mappings. A photograph of 
the system in performance is shown in Figure 10.2. For a full treatment of this process, and 
others like it, the reader is referred to Eaton and Miranda (2014). Whether this specific 
example should be classified as a “pure” BCI or not could be the subject of some debate as 
the interface required an EEG interpretation of eye position, rather than explicit brainwave-
only measurement. 

There is a marked difference between systems for direct musical control by means of BCI, as 
documented above, and systems for sonification or musification of brainwave data (typically 
EEG) (Baier et al. 2007a,b; Hinterberger and Baier 2005). Sonification is a process whereby 
data are directly transmitted by auditory means: 

 



 

 

Sonification conveys information by using non-speech sounds. To listen 
to data as sound and noise can be a surprising new experience with 
diverse applications ranging from novel interfaces for visually impaired 
people to data analysis problems in many scientific fields (Toharia et al. 
2014). 

 
Sonification in biomedical applications is a growing and progressive field, with many 
existing mappings from EEG (Väljamäe et al. 2013). The distinction between sonification 
and musification, both related forms of auditory display, is that in a musification, the data are 
not just auralized linearly, but instead, various constraints are created and applied in order to 
create a musical performance of the sonic data. This is an indistinct line and not easily 
delineated, but essentially the complexity and intent of the mapping involved determine 
whether the BCMI system is sonifying or musifying in its output. One example of EEG 
musification applied the rate of alpha to the cadence of the rhythm structure in a music 
segment, while mapping the variance of EEG to chords in a bar and the amplitude of waves 
to the note position of a melody (Wu et al. 2010). Rhythm is an interesting musical property 
with specific brain cortex associations (Baier et al. 2007c) and, as such, has also been utilized 
in EEG analysis of musical rhythm, for example, in the evoked gamma band (20–60 Hz) by 
rhythmic tone sequences (Snyder and Large 2005). However, evaluation strategies for such 
mappings, and musification in general, are not universally agreed upon and remain a 
significant area for further work. Nevertheless, musification allows the listener to engage 
with complex data in an intuitive way by exploiting their everyday listening experiences in 
the real world. This philosophy is common to many auditory display projects making use of 
multimodal techniques in the biomedical arena. 

The idea behind sonification is that synthetic non-verbal sounds can 
represent numerical data and provide support for information processing 
activities of many different kinds (Mihalas et al. 2012). 

The limitation is somewhat dependent on the complexity of the mappings and the number of 
meaningful, controllable features that might be extracted from the EEG. This might include 
overall EEG amplitude, the amplitude of specific frequencies, or the amplitude of frequencies 
at specific electrode placements on the scalp including dependent measures such as the level 
of asymmetry between electrodes on opposite sides of the cortex (Kirke and Miranda 2011). 

The simplistic level of control available with direct mapping has led to the adoption of more 
complicated mapping strategies—that is, many-to-many—where algorithmic composition 
techniques are correlated with specific control signals. Melodies might be controlled by 
comparing alpha and beta amplitudes across given electrodes, or rhythmic properties adapted 
from a probabilistic algorithmic composition system (Miranda and Soucaret 2008). This 
mapping has also been reversed, wherein the rhythmic properties of the resulting material are 
directly controlled by the BCMI (Daly et al. 2014c). In such systems, there is a separation 
between cognitive control and the deliberate mapping of algorithmic composition techniques 
or other generative music techniques in semantic response to this control. Music is perhaps 
particularly well suited to the presentation of brainwave states in this manner, given the 
parallels in temporal nature between the two mediums. See Figure 10.3 for an example of 
SSVEP in use for score selection in real time. 

 



 

 

10.4 Current: Hybrid Systems and Affective State Control 

The historic systems presented in the section above can be broadly separated into two types: 
those that offer active control, wherein the user makes deliberate cognitive choices that are 
then mapped to musical features, and passive control, wherein BCI is used to determine 
subconscious mental states that are then used to inform the musical feature mapping. Hybrid 
systems combining both approaches simultaneously are also possible, though it is important 
to make a clear distinction between these types of hybrid systems and hybrid systems that 
combine different types of input sensors, for example, combining acoustic features with EEG, 
or combining other biophysiological readings such as heart rate or galvanic skin response 
with EEG (Daly et al. 2014b, 2015b). One of the earliest examples of such a performance can 
be seen in Richard Tietelbaum’s In Tune (1967), which combined two EEG inputs with 
hearbeat and breathing sensors, to create one-to-one computer-oriented mappings for a 
musical performance (giving the users control of on and off switches and amplitude 
envelopes as they were passed to an analog sound synthesizer). Systems that combine both 
active and passive control might use passive affective state detection in combination with a 
degree of active control, for example, as afforded by the linear amplitude response of SSVEP 
as described above. 

Collaborative music generation has a rich history (Le Groux and Verschure 2009; Manzolli 
and Verschure 2005). The ability of BCI to determine affective states and the ability of music 
to communicate emotions suggest that affect-driven BCMI (aBCMI) could be a logical 
multidisciplinary application toward collaborative music making. One such example provides 
the ability for two users to collaborate—collaboration is one of the central tenets of ensemble 
music performance—by mapping BCI measures of affect to the control of amplitude of two 
separate musical features (Leslie and Mullen 2012). This aspect of collaboration is perhaps 
one of the most exciting outcomes of BCMI. Subsequent measures of detecting different 
levels of emotional states have been adapted to musical control by Ramirez and Vamvakousis 
(2012), who evaluated a database of emotionally charged sound stimuli by means of EEG 
analysis across a two-dimensional affect space. Russel’s two-dimensional space (Russell 
1980) is commonly, but not exclusively, used in emotional assessment of musical stimuli. 
These mappings have also been exploited by computer-aided composition systems, with the 
suggestion that such systems could be driven by neurophysiological readings from BCI in 
aBCMI implementations (Williams et al. 2014). 
 
Measurement of affective state changes in response to music takes its lead, as in most other 
cases of BCMI development, from the startling advances in BCI, in this case in defining 
affective (emotional) states from EEG (Chanel et al. 2006, 2007). The distinction is that 
emotional responses to music can be state dependent or independent in the same way that 
BCMI systems might be user or computer oriented—in other words, an emotional response to 
music (Lin et al. 2010). The ability of music to communicate emotions makes affective state 
measurement in order to inform musical feature selection a particularly strong candidate for 
BCMI applications. Recent research has highlighted a number of benefits when emotionally 
charged music is used to improve the listeners’ cognitive performance (Franco et al. 2014). A 
significant amount of further work remains in quantifying listener responses to affectively 
charged music and in measuring the impact on a given affective state that music might have, 
as individual preferences and other environmental factors such as cultural expectations and 
musical training make emotional responses to musical stimuli highly variable (Scherer 2004). 
Nevertheless, the possibility of developing affectively responsive BCMI means that these 
individual variations might be mediated by BCI technology in ways that had previously been 



 

 

thought impossible by musicologists and music psychologists. 
 
An example of affective state mapping to musical feature selection can be seen in the world 
of musical information retrieval (Eaton et al. 2014; Lin and Cheng 2012). Here, affective 
state measures are adopted from the mainstream BCI world and used to select music from a 
database that has already been tagged with emotional descriptors (“calm,” “energetic,” 
“happy,” “sad,” etc.). There is an interesting point to be made while determining listeners’ 
emotional responses to certain types of music, because “sad” music has been shown to be 
enjoyable in some cases (Vuoskoski and Eerola 2012; Vuoskoski et al. 2012) and indeed to 
have similar neural correlates when measured by EEG (Daly et al. 2014b). It is also important 
in such work to acknowledge the difference between “perceived” and “induced” emotions. 
Perceived emotions refer to the emotional meaning the listener understands the music is 
supposed to convey, while induced responses refer to the emotion, or emotions, actually felt 
by the listener while listening (Juslin and Laukka 2004). In this manner, a piece of music may 
be perceived as intending to communicate “sadness” by the listener, while at the same time 
giving them a pleasurable feeling (i.e., they enjoy listening to the sad music). This seeming 
paradox has been well explored in musicological research (Hunter et al. 2010; Huron 2011; 
Manuel 2005). The ability of music to match or influence a listener’s emotions has been 
exploited by, among other disciplines, music therapy, facilitating communication and 
improving the emotional state of a patient via musical interaction with the therapist. By 
enabling the generation of music that matches the emotional state of a patient, an aBCMI 
might potentially be of use as an expressive tool for patients to express their emotional state 
to the therapist regardless of physical ability or communicative handicap, for example, 
patients with autism, Asperger’s syndrome, or even locked-in patients with little or no 
physical mobility. 
 
The theoretical advantage of this approach over conventional music therapy approaches is 
that the BCMI is able to directly monitor the users’ emotional state via physiological indices 
of emotion, which have the potential to be more robust and objective measures of emotion 
than user reports or even the expertise of the music therapist. Finally, the design and 
implementation of a successful aBCMI for music therapy might also facilitate modulation of 
a user’s emotion by means of an affective feedback loop. This application would be unique to 
an aBCMI—which might, for example, generate music that gradually improves the mood of 
the patient in an autonomic process without the need for a therapist (Daly et al. 2014b, 
2016b). 
 

10.5 Next Steps 

This chapter has presented a brief overview of the growing field of applications harnessing 
the power of BCI for music. From a somewhat fantastical science-fiction plot just a few 
decades ago to real-time control of musical feature generation for synthesis or playback by 
real musicians, the dream of going from imagining music to hearing it performed instantly, 
along with all of the benefits that such a realization might bring for patients with particular 
physical disabilities or those in music therapy practice, is drawing ever closer. 

Tentative steps toward biofeedback from the 1960s and 1970s where alpha band control from 
EEG was exploited for one-to-one computer-centered BCMIs have exploded after the 
advances in other BCI technology, to accommodate affective state measurement, multiple 
user interfaces, a degree of live performance, and hybrid systems that combine both active 
and passive control, as well as hybrid systems that accommodate other physiological 



 

 

readings. A move toward aBCMI, affectively driven brain computer music interfacing, 
suggests that a freedom to explore the creative possibilities afforded by music, including 
emotional contagion, communication, and perhaps, most importantly, interaction with others, 
is on the near horizon in a developmental and commercial sense. It is fair to say that BCMI 
does not contribute enormously to the development of new BCI technologies in the main, 
being an engineering problem of implementation rather than advancement. On the other hand, 
significant advances in understanding particular responses that are only inherent in 
listening—for example, the emotional difference in 2D between “angry” and “afraid” 
sounding music, both of which would be classified traditionally as high arousal and low 
valence, yet both of which would encapsulate markedly different types of music regardless of 
an individual’s listening preferences—suggest that BCMI still has something to offer to both 
neuroscience and the BCI community in general. The distinction between perceived and 
induced emotion is one that is still challenging. While visual examples can help differentiate 
this, music offers perhaps one of the strongest ways to explore this affective phenomenon. 
The temporal nature of music also lends itself well to illustrating the changing pattern and 
transient nature of emotions and many neurophysiological responses in general. 

A tangential, but very related area to this chapter is the burgeoning field of work using non-
nervous physiological signals, such as heart rate, galvanic skin response, and so on. It would 
be remiss not to speculate on the possibility of combining such work with BCMI in a sensor-
fusion setting, especially given recent advances in biosignal interfacing for music making 
(Daly et al. 2015a; Nirjon et al. 2012; Pérez and Knapp 2008). However, it would be almost 
impossible here to explore the full range of possibilities afforded by BCI for music making as 
conducted to date, without looking to other biosignal interfacing. Nevertheless, looking to the 
future, one area that this chapter has not yet been able to explore in the context of 
neurophysiological interfacing is the future application of joint studies combining fMRI with 
EEG. This is particularly relevant to music given the spatial resolution issues that are 
currently inherent with EEG work. fMRI studies have been shown, in the context of affect 
measurement and, thus, subsequent aBCMI design, to be particularly useful in measuring and 
estimating induced affective states; yet, in a standalone context, they are not often employed 
by BCMI research. This is partly a practical concern of course not only because of the cost 
and size of facilities required but also partly because of the temporal resolution being 
inherently problematic when specific listening tasks are concerned. Musical features can 
often change radically in the duration of a second or two, which can be the smallest possible 
frame size afforded by some fMRI studies. Nevertheless, despite these concerns, fMRI does 
provide for a much greater spatial resolution for real-time musical control and adaptation. A 
combined approach comparing EEG and fMRI results to the adaptive control of music 
generation for affective induction has been proposed and is the subject of recent trials (Daly 
et al. 2016a; Miranda 2010). We may then, in the future, see these trials and other work like 
them be adapted to more generalizable portable models that might be controlled by EEG, 
using adaptive mappings derived by machine learning rather than prescribed by the designers 
of such systems, for musical collaboration regardless of physical ability or previous musical 
training. Anyone who has played an instrument in isolation will know that here, in the 
process of collaboration, might BCMI’s real future lie. 
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Figure 10.1 Overview of a generic BCMI. Most systems are differentiated by the mapping, 
which is typically fixed at the point system design but in the future might be adaptable to 
neurofeedback. 
 



 

 

Figure 10.2 SSVEP-based performance of a string quartet, under the active control of four 
patients with varying degrees of locked-in syndrome. Here, the patients perform “Activating 
Memory” (Eduardo Reck Miranda), a composition for eight performers: a string quartet and a 
BCMI quartet. In this performance, four severely motor-impaired patients at the Royal 
Hospital for Neurodisability (RHN), London, UK, use BCMI technology to generate musical 
scores in real time for the string quartet to play. 

 
Figure 10.3 Score being generated in real time according to SSVEP selection. Taken from 
the documentary film of “Activating Memory” by the Paramusical Ensemble at the RHN on 
July 17, 2015, directed by Tim Grabham. 
 
 


