
 1 

The paper has been published on: 

International Journal of Mechanical Sciences 89: 476-481, Dec 2014.  

 

Web-flange distortional buckling of partially restrained cold-formed steel purlins 

under uplift loading 

 

Wei-bin Yuana, Shanshan Chengb*, Long-yuan Lib, Boksun Kimb 

a) College of Civil Engineering and Architecture, Zhejiang University of Technology, 

Hangzhou, China 

b) School of Marine Science and Engineering, University of Plymouth, Plymouth, UK 

*) corresponding author 

 

Abstract - It is well-known that cold-formed steel (CFS) members of open section can 

buckle locally, distortionally and/or lateral-torsionally. Since they are usually used as the 

secondary structural members in buildings to support roof and side cladding or sheeting, 

CFS beams are mostly treated as the restrained beams either fully or partially in its lateral 

and/or rotational directions. For a thin-walled channel- or zed-section beam subjected to 

uplift loading, if its upper flange is fully restrained in its lateral and rotational directions, 

the beam will not buckle lateral-torsionally, but may have a web-flange distortional 

buckling. In literature there is limited information on the web-flange distortional buckling 

and currently the critical stress for the web-flange distortional buckling is calculated 

mainly by using numerical methods. In this paper an analytical model is presented to 

describe the web-flange distortional buckling behaviour of the partially restrained CFS 

beams when subjected to uplift loading. Formula used to calculate the critical stress of 

web-flange distortional buckling is derived. Comparisons of the predicted critical stresses 

with those obtained using finite strip and finite element methods are provided to 

demonstrate the appropriateness of the model proposed.  
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1. Introduction 

 

Thin-walled, cold-formed steel (CFS) sections are mostly used as the intermediate 

members between the main structural frame and the corrugated roof or wall sheeting in 

which the upper flange of the section is connected to the sheeting by self-drilling or self-

tapping screw fasteners, while the lower flange remains free. The most common sections 

are the channel, zed and sigma shapes, which may be plain or have lips. The lips are 

small additional elements provided to a section to improve its efficiency under 

compressive loads. The main features of the CFS section beams are the thin-thickness, 

open cross-section and large ratio between the two second moments of the cross-section 

area. These make the section susceptible to local, distortional and lateral-torsional 

buckling [1].  

 

The local buckling is characterized by the ripples of relatively short half-wavelength of 

the order of magnitude of individual plate elements in the section and the buckling 
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displacements only perpendicular to plane elements while the fold lines remain straight. 

The critical stress of the local buckling can be calculated using the formula of buckling of 

plates [1,2]. The distortional buckling occurs only in the structural members of open 

cross sections. Distortional buckling involves both translation and rotation at the sectional 

fold lines of a member leading to a distortion of the cross section. The half-wavelength of 

the distortional buckling mode is typically several times larger than the largest 

characteristic dimension of the cross-section. Unlike the local buckling in which the 

critical stress is dependent only on the ratio of the width to thickness of the plate element, 

the distortional buckling is much more complicated and its critical stress is dependent on 

the dimensions of not only the buckled flange and lip but also other parts of the section 

[2-5].  

 

In contrast to the local and distortional buckling, the lateral-torsional buckling generally 

occurs when a beam which is bent about its major axis develops a tendency to twist 

and/or displace laterally. Since roof purlins and sheeting rails, in most cases, are 

restrained against lateral movement by roof or wall cladding, such restraints reduce the 

potentiality of the lateral buckling of the whole section, but do not necessarily eliminate 

the problem completely [6]. For example, roof purlins are generally restrained against 

lateral displacement by the cladding, but under wind uplift which induces compression in 

the unrestrained flange, lateral-torsional buckling is still a common cause of failure [7]. 

This occurs due to the flexibility of the restraining cladding and to the distortional 

flexibility of the section itself which permits lateral movement to occur in the 

compression flange even if the other flange is restrained. However, there is a case where 

the lateral-torsional buckling may be prevented, which is that the cladding can also 

provide a rotational restraint to the purlin. In this case the rotational restraint turns the 

lateral-torsional buckling mode to a web-flange distortional mode. Note that the web-

flange distortional buckling is different from the flange-lip distortional buckling. The 

former is characterized by the translation and rotation of a system consisting of the 

compression flange and lip plus part of the web, whereas the latter is characterized by the 

rotation of the compression flange and lip system about the lower flange-web junction. In 

addition, the wavelength of the web-flange distortional buckling mode is much longer 

than that of the flange-lip distortional mode. In this paper, investigation will be focused 

on the web-flange distortional buckling, particularly on the calculation of the critical 

stress of the web-flange distortional buckling of zed-section purlins with different 

restraints applied at the upper flange-web junction when subjected to a pure bending 

about its major axis. 

 

Web-flange distortional buckling of CFS sections has been discussed by several 

researchers [7-9] by using numerical methods. Hancock defined the web-flange 

distortional buckling as the lateral-distortional buckling in order to distinguish it from the 

flange-lip distortional buckling [7]. Early attempt was made to apply the analytical model 

proposed for the flange-lip distortional buckling to the web-flange distortional buckling 

but without success [10]. An analytical model was also developed by Svensson [11] and 

Sokol [12] in which the web-flange distortional buckling was modeled by using an 

elastically supported column subjected to an axial compression force. The cross section 

of the column was assumed to consist of the compression flange and lip plus part of the 
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web. However, the model was not properly validated.  

 

In this paper an analytical model is presented to describe the web-flange distortional 

buckling behaviour of partially restrained CFS section beams when subjected to uplift 

pure bending. Formula used to calculate the critical stress of the web-flange distortional 

buckling is derived. Comparisons of the predicted critical stresses with those obtained 

using finite strip and finite element methods are provided to demonstrate the 

appropriateness of the model proposed.  

 

 

2. Web-flange distortional buckling model 

 

Web-flange distortional buckling occurs in a purlin when its lateral-torsional buckling is 

partially or fully prevented. Figure 1 shows the typical buckling curves of a zed-section 

purlin with different restraints applied at the upper flange-web junction when subjected to 

a pure bending about its major axis. The results were obtained using the finite strip 

method. It is evident from the figure that the rotational restraint has significant influence 

on the lateral-torsional buckling of the purlin. When the rotational restraint is strong 

enough, it can turn the lateral-torsional buckling mode to a web-flange distortional mode.  

 

Consider a zed-section purlin-sheeting system shown in Figure 2a. The load on the 

sheeting is transferred to the purlin through the self-drilling screws and/or the contact 

between the sheeting and upper flange. The sheeting provides lateral restraints to the 

purlin in both the translational and rotational directions. The translational restraint is due 

to the membrane stiffness of the sheeting, whereas the rotational restraint is provided 

because of a resisting couple produced by the contact stresses. For most types of sheeting, 

the translational restraint is much strong and therefore the lateral displacement at the 

fixing point may be assumed to be fully restrained. The rotational restraint, however, is 

dependent on several factors. These include the dimensions of sheeting and purlin, 

number, type and positions of the screws. If the stiffness of the rotational restraint 

provided by the sheeting is known, then the purlin-sheeting system may be idealized as a 

purlin with lateral displacement fully restrained and rotation partially restrained at the 

flange-web junction [13,14], as shown in Figure 2b. 

 

When the purlin has lateral-torsional buckling and/or web-flange distortional buckling 

due to uplift loading, the restrained flange and lip system, which is in tension, rotates 

about its web-flange junction and the free flange and lip system, which is in compression, 

not only moves laterally but also rotates about its web-flange junction (see Figure 2c). 

The main difference of the model presented in Figure 2c from that proposed by Svensson 

[11] and Sokol [12] is that the web and the free flange and lip system can buckle in a 

combined torsional and flexural buckling mode, whereas in Svensson and Sokol model 

the system consisting of free flange and lip plus part of the web can buckle only in a 

flexural mode about the axis parallel to web line [15]. To determine the critical load 

which can generate such buckling displacements shown in Figure 2c, the change of the 

total potential energy of the system due to the buckling displacements is to be examined. 

For simplicity of the presentation, the zed section is split into three components, the 
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restrained flange and lip system, the free flange and lip system, and the web. It is 

assumed that during the lateral-torsional buckling and/or web-flange distortional buckling 

both the restrained and free flange and lip systems behave like a beam and the web 

behaves like a plate. According to the displacements defined in Figure 2c, the translation 

displacements of the restrained and free flange and lip systems can be expressed as 

follows, 

 

For the free flange and lip system 

11 bvs            (1)  

11 wws            (2)  

For the restrained flange and lip system 

22 bvs            (3)  

02 sw           (4)  

where vs1 and ws1 are the translation displacements of the free flange and lip, vs2 and ws2 

are the translation displacements of the restrained flange and lip, b is the flange width, 1 

and 2 are the angles of the rotation of the free and restrained flange and lip systems, 

respectively. Note that all translation displacements are defined in their local coordinate 

systems as shown in Figure 2d, where the origin is the centroid for the free/restrained 

flange and lip systems.  

 

The lateral displacement of the web can be expressed as follows, 

2312113 )()()(  yNyNwyNw         (5)  

where N1(y), N2(y) and N3(y) are the interpolation functions defined as follows, 
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where h is the web depth and y is the local coordinate defined for the web shown in 

Figure 2d. The strain energy in each component due to the buckling displacements can be 

calculated as follows, 
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where U1 and U2 are the strain energies of the free and restrained flange and lip systems, 

U3 is the strain energy of the web, E is the Young’s modulus, G is the shear modulus,  is 

the Poisson’s ratio, t is the thickness, l is the beam length, 
)1(12 2

3




Et
D is the flexural 

rigidity of the web plate, k is the rotational spring constant, Iy1 is the moment of inertia 

of the free flange and lip system about y-axis, Iz1 = Iz2 is the moment of inertia of the 

free/restrained flange and lip system about z-axis, Iyz1 is the product moment of cross-

section area of the free flange and lip system, J1 = J2 is the torsional constant of the 

free/restrained flange and lip system, and ez1  is the z-coordinate of the shear centre of the 

free flange and lip system in the local coordinate system. All properties are defined in the 

local coordinate systems shown in Figure 2d.  

 

For the case of pure bending, the free flange and lip are in compression and the restrained 

flange and lip are in tension. Ignoring the stress variation in lips, the potential energy of 

the pre-buckling axial stresses in the free and restrained flange and lip systems can be 

expressed as follows [16,17], 
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where W1 and W2 are the potential energies of the pre-buckling stresses in the free and 

restrained flange and lip systems, cr is the critical stress, ey2 = ey1 and ez2 = ez1 are the y- 

and z-coordinates of the shear centre of the restrained/free flange and lip system in the 

local coordinate system, A1 = A2 is the area of the free/restrained flange and lip system, 

and rc1 = rc2 is the polar radius of gyration of the free/restrained flange and lip system. 

The potential energy of the pre-buckling axial stress in the web can be calculated as 

follows, 
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where W3 is the potential energy of the pre-buckling stress in the web. Assume that the 

displacements of the beam when it buckles can be described as follows, 
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where C1, C2 and C3 are the constants to be determined, and k is the number of half-

waves. The condition when the buckling occurs is the total potential of the system has a 

stationary condition with respect to the constants C1, C2 and C3, that is,  
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Substituting Eqs. (15)-(17) into (1)-(5), then into (9)-(14), it yields 
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Eq. (21) is an eigenvalue equation from which the critical stress cr can be determined. 

 

 

3. Numerical examples 

 

As numerical examples, three zed-sections are analyzed, representing small, medium and 

large size sections. The purlins are fully restrained in lateral direction and partially 

restrained in rotational direction, subjected to pure bending. The corresponding critical 

stresses calculated from the present model for three different rotational spring constants 

[18] are presented in Figures 3-5, respectively. To demonstrate the present model, results 

obtained from the finite strip method [19,20] are also superimposed in the figures. It can 

be seen from the figures that the critical stresses predicted from the present model are in 

good agreement with those obtained from the finite strip method. It is only for the beams 

shorter than 3.5 m for the small size section (h = 150 mm), 4.5 m for the medium size 

section (h = 250 mm), and 5.0 m for the large size section (h = 350 mm) where the 

predicted critical stresses are slightly higher than those obtained from the finite strip 

method. This is due to the deformation assumption for the web plate using a cubic 

interpolation function, which has limited degrees of freedom. Nevertheless, the 

differences between them are not significant. For example, the relative error of the 

critical stress between the present and finite strip methods is less than 10% for a 2 m long 

beam of h = 150 mm, a 3 m long beam of h = 250 mm, and a 4 m long beam of h = 350 

mm. This demonstrates that the combination of the beam model for the flange and lip 

systems and the plate model for the web employed in the present model is appropriate 

and able to represent the web-flange distortional buckling behaviour of partially 

restrained purlins. It can also be seen from the figures that, for beams with no rotational 

restraint the critical stress decreases constantly with the beam length; whereas for beams 

with rotational restraint the critical stress decreases initially but afterwards it increases 

with a further increased beam length. Whether or not there exists a minimum point in the 

critical curve is dependent on the value of the rotational spring constant. To eliminate the 

possibility of lateral-torsional buckling the rotational spring constant has to reach a 

certain value, in which case the lateral-torsional buckling is replaced completely by the 

web-flange distortional buckling. Similar to the local and distortional buckling of most 

CFS members, the web-flange distortional buckling has a minimum critical stress with a 

certain wavelength. Therefore, for partially restrained purlins, if the rotational restraint is 

sufficient large, the buckling design of the purlins can be done based on the minimum 

critical stresses of local, distortional and web-flange distortional buckling, all of which 

can be characterized by their wavelengths that are independent of the beam length. Also, 

it can be observed from Figures 3-5 that, for the same section the critical stress difference 

between two rotational spring constants increases with the beam length. This indicates 

that the rotational spring has more influence on the critical stress of longer beams. Note 

that the normal span length of a purlin is between 3 and 6 m. Purlins with span longer 

than 6 m often have anti-sag bars that provide additional lateral restrains, which will 
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influence the web-flange distortional buckling behavior of the purlin, which is not 

covered by the present study.       

 

To further validate the present analytical solution, linear buckling analysis using the finite 

element method has also been carried out by using the commercial software ANSYS. 

Four-node rectangular shell element with elastic material properties was used. Because of 

symmetry only a half of the purlin length was modelled. All nodes on the symmetric 

section were assumed to have zero axial displacement, zero rotations about lateral and 

transverse axes. All nodes on the end section were assumed to have zero displacements in 

lateral and transverse axes. The pure bending moment about the major axis was added on 

the end section by using linearly distributed axial stresses. All nodes on the junction line 

between web and upper flange were assumed to have zero lateral displacement. The 

comparison of the critical stresses of web-flange buckling between the finite element 

analysis and the present solution is shown in Figure 6. Figure 7 shows a typical mode of 

the web-flange buckling of a purlin analyzed. Again, a good agreement between the finite 

element analysis and the present analytical solution is demonstrated. 

 

Eq. (21) provides a general case in which the buckling mode could be the combination of 

the lateral-torsional buckling and web-distortional buckling modes. A special case of it is 

when the web plate has no bending deformation along the web line. In this case the 

rotations of two flanges and the translation displacement of bottom flange are longer 

independent, and instead, they have the relationships of wi = h1 = h2. Thus, the critical 

stress can be directly expressed as follows, 

231312332211

2

231312332211

2

2)(2

2)(2

BBBhBBBh

AAAhAAAh
cr




      (34) 

 

 

4. Conclusions 

 

This paper has presented an analytical study on the web-flange distortional buckling of 

partially restrained zed-section purlins subjected to pure bending. The formula of 

calculating critical stress of web-flange distortional buckling has been derived using 

energy method. The critical stresses predicted using the present model have been 

validated using both the finite strip and finite element methods for purlins with small, 

medium and large size sections. From the obtained results the following conclusions can 

be drawn: 

 

 Rotational restraint applied at the tension flange has a significant influence on the 

lateral-torsional buckling of purlins. It can turn the lateral-torsional buckling into 

a web-flange distortional buckling if the rotational spring constant reaches a 

certain value. 

 Unlike the lateral-torsional buckling for which the critical stress decreases 

continuously with the beam length, the web-flange distortional buckling has a 

critical stress that decreases initially with the beam length, but increases 

afterwards with further increased beam length. 
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 The minimum critical stress of web-flange distortional buckling occurs at a 

particular wavelength, which decreases with the increase of rotational spring 

constant, which is usually less than the beam length. 

 The critical stress of lateral-torsional buckling or web-flange distortional buckling 

increases with the rotational spring constant. However, for an identical rotational 

spring constant the longer the beam, the more the increase of the critical stress.  
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Figure 1. Buckling curves and lateral-torsional buckling/web-flange distortional buckling 

modes of a zed-section purlin with different restraints applied at the upper flange-web 

junction (tension zone) when subjected to a pure bending (h = 270 mm, b = 70 mm, c = 

20 mm, t = 2.5 mm, y = 390 MPa). 

 

 

 
 

Figure 2. (a) Purlin-sheeting system. (b) Analysis mode. (c) Displacements representing 

web-flange distortional buckling. (d) Coordinate systems used in individual components. 
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Figure 3. Critical stress of web-flange distortional buckling of a zed-section (a small 

section: h = 150 mm, b = 50 mm, c = 20 mm, t = 2.0 mm, y = 390 MPa). 
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Figure 4. Critical stress of web-flange distortional buckling of a zed-section (a medium 

section: h = 250 mm, b = 70 mm, c = 20 mm, t = 2.5 mm, y = 390 MPa). 
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Figure 5. Critical stress of web-flange distortional buckling of a zed-section (a large 

section: h = 350 mm, b = 100 mm, c = 30 mm, t = 3.0 mm, y = 390 MPa). 
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Figure 6. Comparison of critical stresses of web-flange distortional buckling of small, 

medium and large zed-section purlins between FEA and present analytical solution. 
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Figure 7. The critical mode of web-flange buckling of the small size section purlin (h = 

150 mm, b = 50 mm, c = 20 mm, t = 2.0 mm, l = 2.5 m). 

 


