
Quantised inertia from relativity and the

uncertainty principle.

M.E. McCulloch∗

October 13, 2016

Abstract

It is shown here that if we assume that what is conserved in nature
is not simply mass-energy, but rather mass-energy plus the energy uncer-
tainty of the uncertainty principle, and if we also assume that position
uncertainty is reduced by the formation of relativistic horizons, then the
resulting increase of energy uncertainty is close to that needed for a new
model for inertial mass (MiHsC, quantised inertia) which has been shown
to predict galaxy rotation without dark matter and cosmic acceleration
without dark energy. The same principle can also be used to model the
inverse square law of gravity, and predicts the mass of the electron.

1 Introduction

Although special relativity and quantum mechanics have been partially merged
in quantum �eld theories, some aspects, and general relativity and quantum
mechanics are still incompatible. For example, relativity is based on a smooth
spacetime and demands locality, whereas quantum mechanics is modelled using
discrete particles and quantum experiments seem to demand non-locality [1-5].

In some instances it has been possible to combine general relativity and quantum
mechanics, at least partially, for example [6] proposed that the event horizons
caused by the strong gravity within black holes would seperate pairs of particles
produced by the quantum vacuum, leaving one to fall into the black hole and
one to escape, giving rise to a new kind of radiation called Hawking radiation
that originates from a combination of relativity (curved space) and quantum
mechanics on a large scale. There is now some evidence that at least analogues
of this process occur [7].

[8], [9] and [10] showed that when an object accelerates, say, to the left, an infor-
mation horizon, very like an event horizon, forms to its right since information
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which is limited to the speed of light by relativity cannot now get to the object
from behind that horizon. They showed that this horizon can seperate paired
virtual particles in a similar way to a black hole event horizon, leading to the
production of acceleration-dependent Unruh radiation. This conclusion is now
generally accepted, but see [11] for remaining controversies. It is possible that
Unruh radiation has already been observed [12].

An early inspiring attempt to implicate quantum mechanics and the zero point
�eld in inertial mass was made by [13]. However, they required an arbitrary
cuto� to make their scheme work. Also, [14] questioned whether Unruh radi-
ation might account for inertial-MoND (Modi�ed Newtonian Dynamics), but
concluded that Unruh radiation was unlikely to be the cause of inertia because
it was isotropic.

A new model for inertia was proposed by [15, 16]. It is called Modi�ed inertia
by a Hubble-scale Casimir e�ect, MiHsC or quantised inertia. This model as-
sumes that the inertia of an object is due to the Unruh radiation it sees when
it accelerates. The relativistic Rindler horizon that appears in the opposite di-
rection to its acceleration damps the Unruh radiation on that side of the object
producing an anisotropic radiation pressure that looks like inertial mass [16].
So inertia arises in this model from the interplay of relativity (horizons) and
quantum mechanics (Unruh waves). Also, when accelerations are extremely low
the Unruh waves become very long and are also damped, this time equally in
all directions, by the Hubble horizon (Hubble-scale Casimir e�ect) [15]. This
leads to a new loss of inertia as accelerations become tiny. So MiHsC modi�es
the standard inertial mass (m) to a modi�ed one (mi) as follows:

mi = m

(
1− 2c2

|a|Θ

)
(1)

where c is the speed of light, Θ is the diameter of the observable universe and '|a|'
is the magnitude of the acceleration of the object relative to surrounding matter.
Eq. 1 predicts that for terrestrial accelerations (eg: 9.8m/s2) the second term
in the bracket is tiny and standard inertia is recovered, but in low acceleration
environments, for example at the edges of galaxies (when a is tiny) the second
term in the bracket becomes larger and the inertial mass decreases in a new way
so that quantised inertia (MiHsC) can explain galaxy rotation without the need
for dark matter [17] and cosmic acceleration without the need for dark energy
[15,18]. There are also anomalies seen in Solar system probes [19] that can be
explained by this model [15,20]. Quantised inertia does not signi�cantly a�ect
the predictions of general relativity for high accelerations and only becomes
signi�cant for very low accelerations or upon a change in acceleration.

Similarly, applying quantum mechanics on a large scale [21] derived Newtonian
gravity from the uncertainty principle. The main aim of this paper is to extend
[21] and show that both gravity and quantised inertia can be derived by allowing
large-scale dynamics or horizons to determine the position uncertainty in the
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Heisenberg uncertainty principle, and allowing the resulting energy uncertainty
to become real.

2 Gravity from Uncertainty

Imagine there are two Planck masses orbiting each other. With Planck masses,
we are still, just, in the quantum realm, Heisenberg's uncertainty principle ap-
plies to their mutual position uncertainty (∆x) given by the distance between
them, and momentum (∆p), and the total uncertainty is twice that for a single
particle

∆p∆x ∼ ~ (2)

Now E = pc so

∆Ē∆x̄ ∼ ~c (3)

If a bigger mass M has N Planck masses in it, and another big mass m has
n of them, then we can add up all the possible interactions (all the various
uncertainties: ~c) between the various Planck masses

∆Ē∆x̄ =

N∑
i=1

n∑
j=1

(~c)ij (4)

The double summation on the right hand side is equal to the number of Planck
masses in mass m (m/mP ) times the number in M (M/mP ), where mP is the
reduced Planck mass, so

∆Ē =
~cmM
m2

P ∆x̄
(5)

Now let us imagine that the Planck masses within m and M are being bu�eted
from all sides by particles from the zero point �eld and moving at random. The
net e�ect, forgetting horizons for a moment, will be zero. Sometimes random
motion will increase the distance between the two objects, ∆x, so their un-
certainty in energy, ∆E, decreases, and sometimes it will decrease ∆x, so the
uncertainty in energy, ∆E, will increase. This latter event means that energy
will suddenly be available that wasn't before, extracted from the decrease in
position uncertainty, and if the objects continue to move together then more
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energy will be released in this way allowing the motion to continue. What if
we assume that the sum of the kinetic energy and the energy uncertainty is
conserved?

1/2m(∆v)2 +
~cmM
m2

P ∆x̄
= constant (6)

Di�erentiating

m∆v
d(∆v)

dt
=

~cmM
m2

P ∆x2
d(∆x)

dt
(7)

Since the right-most fraction can be written as ∆v we get

m(∆a) =
~cmM
m2

P ∆x2
(8)

Now we assume that m(∆a) = F (force) and that the uncertainty of the average
position (4x) is the orbital radius r

F ∼ ~c
m2

P

mM

r2
(9)

This looks like Newton's gravity law, and if we insert the value of the Planck
mass, for which the value of G must be assumed, we get

F =
GMm

r2
(10)

The force required to drive the motion only becomes available for objects moving
closer together since this reduces ∆x and increases ∆E (the inevitability of
attraction was not discussed in [21]). In this model, gravity is a process by which
quantum mechanics applies at this large scale and converts position uncertainty
to energy uncertainty, which shows up as an acceleration-dependent heat (Unruh
radiation) and so it satis�es the second law of thermodynamics: increasing
entropy. It has therefore been shown that Newton's gravity law can be produced
if a summation is made for all interactions between masses equal to the Planck
mass, but this requires an assumption of the value of G [21].
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3 Quantised Inertia from Uncertainty

Again, using Heisenberg's momentum-position uncertainty principle we get

∆p∆x ∼ ~ (11)

Since E = pc we can write

∆E∆x ∼ ~c (12)

The energy uncertainty is then ∆E ∼ ~c/∆x. The new proposal here is that if
the particle in question accelerates and a relativistic Rindler horizon forms then
this destroys knowledge of all positions beyond the horizon and decreases the
uncertainty in position ∆x. From Eq. 12 we would then expect the uncertainty
in energy to go up. Now, as above we assume that what is conserved in nature is
not mass-energy, but rather mass-energy plus the energy uncertainty identi�ed
above, as follows

m1c
2 +

~c
∆x1

= m2c
2 +

~c
∆x2

(13)

where the m1 and m2 are the initial and �nal inertial masses and ∆x1 and
∆x2 are the initial and �nal positional uncertainties. Note that the energy
uncertainty terms are usually many orders of magnitude smaller than the mass-
energy terms. Rewriting we get

m2 −m1 = dm =
~
c

(
1

∆x2
− 1

∆x1

)
(14)

Now we can start to consider relativistic horizons. For an minimally-accelerated
object (a zero acceleration cannot exist in MiHsC) the maximum uncertainty
in position has to be due to the cosmic horizon, and equal to the radius of the
cosmos, so ∆x1 = Θ/2 so that

dm =
~
c

(
1

∆x2
− 2

Θ

)
(15)

If an object then is subjected to an acceleration, a, then a Rindler horizon
forms at a distance d = c2/a away. So the new uncertainty in position is smaller
∆x2 = c2/a so that
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dm =
~
c

(
a

c2
− 2

Θ

)
(16)

Rearranging we get

dm =
~a
c3

(
1− 2c2

aΘ

)
(17)

Now an acceleration 'a' is associated with Unruh radiation of wavelength λ
where, using Unruh's expression for the Unruh temerature T = ~a/2πck and
Wien's law T = βhc/kλ where β = 0.2, it follows that that a = 4π2c2β/λ. Also
E = hc/λ. Using these to replace the 'a' in the factor, we get

dm =
~
c3
× 4π2βcE

2π~
×
(

1− 2c2

aΘ

)
(18)

So that

dm =
4π2β

2π
× E

c2
×
(

1− 2c2

aΘ

)
(19)

Using E = mc2 we get

dm = 2πβm

(
1− 2c2

aΘ

)
(20)

This is the same as Eq. 1, except for the initial factor of 2πβ ∼ 1.26 which
could be due to the crudity of this model, which has treated the Rindler horizon
as being a sphere around the object whereas it is a more complex shape. The
important point is that Eqs. 1 and 20, by allowing quantum mechanics and
relativity to interact in this way, can model the observed anomalous galactic
rotation without dark matter [17] and the observed cosmic acceleration without
dark energy [15,18].

4 Applications

4.1 Particle masses

An electron can be regarded as a photon that has become con�ned to a particular
orbit and so Eq. 14 can be used to predict the mass-energy of the electron as
follows
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dm =
~
c

(
1

∆x2
− 1

∆x1

)
(21)

Initially the photon is con�ned to the cosmic scale so ∆x1 = Θ/2 and it is
known that for it to form an electron it must have the Compton wavelength
λC = 2.426× 10−12m so

dm =
~
c

(
1

λC
− 2

Θ

)
(22)

Neglecting the second term, which since Θ ∼ 1026m is about 38 orders of mag-
nitude smaller than the �rst, we get

dm =
~
cλc

= 9.1× 10−31kg (23)

This is very close to the mass of the electron measured in experiments. Similarly
we can consider the protons and neutrons which are con�ned to the nucleus of
radius rn = 1.75× 10−15m (for hydrogen) so that

dm =
~
c

(
1

rn
− 2

Θ

)
= 1.3× 10−27kg (24)

This is close to the observed masses of the proton and neutron which are 1.67×
10−27kg. Equation 24 also predicts a small correction to the proton mass given
by the second term in the bracket, which is about 41 orders of magnitude smaller
than the �rst term in the bracket.

If we use the Planck length 1.616× 10−35m instead this gives

dm =
~
c

(
1

lP
− 2

Θ

)
= 1.4× 10−7kg (25)

This is close to the Planck mass, which is 2.2176 × 10−8kg. The agreement is
very close if we use a scale of 2πlP

dm =
~
c

(
1

2πlP
− 2

Θ

)
= 2.2× 10−8kg (26)

Thus the assumption that what is conserved in nature is not mass-energy as
previously assumed, but mass-energy plus the energy uncertainty and assuming
the position uncertainty is determined by relativistic horizons, allows the cal-
culation of some particle masses in this way as well as Newtonian gravity and
quantised inertia (MiHsC).
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5 Discussion

These derivations can be explained more intuitively as follows. For gravity: As
the radius of an orbit decreases and so the uncertainty in position decreases,
then the momentum (dp = Fdx/c) or force (F ) on the orbiting body must
increase, producing an inverse square law. In the above gravitational derivation,
the correct value for the gravitational constant G can only be obtained when
it is assumed that the gravitational interaction occurs between whole multiples
of the Planck mass, but this last part of the derivation involves some circular
reasoning since the Planck mass is de�ned using the value for G (this was not
discussed in the precursor gravity paper, [21]). This paper also builds on [21] by
showing how this formalism speci�cally implies attraction rather than repulsion
(previously it could have been either).

For inertia: as an object accelerates, a relativistic Rindler horizon forms in the
opposite direction. This curtails the object's observable space and reduces its
uncertainty in position. The uncertainty principle then implies that the uncer-
tainty in momentum (or energy) must increase, and the energy released agrees
(within the uncertainty of the calculation) with the speci�c energy required
for quantised inertia (MiHsC) which allows the prediction of galaxy rotation
without dark matter and cosmic acceleration without dark energy.

6 Conclusion

The uncertainty principle of quantum mechanics states that if the uncertainty
in position reduces, then the uncertainty in momentum increases. Relativity
predicts that if an object accelerates, a Rindler horizon forms, curtailing its
observable space.

If we combine these two principles, the formation of the Rindler horizon reduces
position uncertainty, increasing energy uncertainty. It has already been shown,
in a similar way, that if we accept this energy as being real, Newtonian gravity
is the result, though a value for G has to be assumed.

It is shown here that using the same method, the model known as quantised
inertia or MiHsC can also be derived, solving the problems of galaxy rotation
and cosmic acceleration, and predicting the electron mass.
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