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Affective states influence decision-making under ambiguity in humans and

other animals. Individuals in a negative state tend to interpret ambiguous

cues more negatively than individuals in a positive state. We demonstrate

that the fruit fly, Drosophila melanogaster, also exhibits state-dependent

changes in cue interpretation. Drosophila were trained on a Go/Go task to

approach a positive (P) odour associated with a sugar reward and actively

avoid a negative (N) odour associated with shock. Trained flies were then

either shaken to induce a purported negative state or left undisturbed

(control), and given a choice between: air or P; air or N; air or ambiguous

odour (1 : 1 blend of P : N). Shaken flies were significantly less likely to

approach the ambiguous odour than control flies. This ‘judgement bias’

may be mediated by changes in neural activity that reflect evolutionarily

primitive affective states. We cannot say whether such states are consciously

experienced, but use of this model organism’s versatile experimental tool kit

may facilitate elucidation of their neural and genetic basis.

1. Introduction
Animal affective (emotional) states can be operationally defined as ‘states

elicited by rewards and punishers’ where rewards are stimuli that animals

work to acquire and punishers are stimuli that they work to avoid [1]. This be-

haviourally grounded definition allows systematic study of animal affect

despite lack of knowledge about whether such states, which we assume to be

instantiated in neural activity, are consciously experienced.

Recently, there has been growing interest in the possibility that affective

states, or their evolutionary precursors, exist in invertebrates [2–10]. For

example, Anderson & Adolphs [4] identify what they call ‘emotion primitives’,

general properties of affective states such as scalability, valence, persistence and

generalization. Gibson et al. [5] argue that such characteristics can be observed

in spontaneous responses of Drosophila to a repeated threatening visual cue.

Likewise, the spontaneous behaviour of shocked crayfish in a variant of the

elevated plus maze [3], or of Drosophila treated with diazepam in an open

field test [9] appear similar to, respectively, ‘anxious’ or ‘relaxed’ behaviour

shown by rodents in these tests.

Affective valence (positivity/negativity) is arguably the key defining

characteristic of emotion. The ‘judgement bias’ (JB) test offers a way of measur-

ing this that is generalizable across species [11,12]. Animals in positive affective

states are predicted to show more positive judgements of ambiguous stimuli
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Figure 1. T-maze apparatus. A pump draws odours (red arrows) or air (green arrow) through the apparatus. (a) Training and (b) testing configuration for judgement
bias assay (see text for details).
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than those in negative states, a cognitive or judgement bias

that is observed in humans [13] and may have adaptive

value [14]. The JB test [15] has been used in many vertebrate

species and, more recently, in social insects, with predicted

judgement biases being observed in honeybees [2,10] and

bumblebees [6]. Here we investigate whether such biases

may also be observed in a non-hymenopteran insect,

Drosophila melanogaster. If so, this would indicate that affect-

related judgement biases may occur in insect species that

lack a complex social organization, suggesting that this inter-

play between affect and decision-making is preserved across

a wide phylogeny and hence, as hypothesised [14], is likely to

have adaptive value. Moreover, it would open the way for

studies of the neural basis of affective valence in this geneti-

cally tractable organism for which sophisticated tools

including numerous inducible promoters, opto- and thermo-

genetics, and the potential for engineered mutations in every

gene, are readily available.

We adapted well-established learning assays [16,17] to

develop a JB test for Drosophila. Flies learnt to avoid an

odour (negative; N) associated with shock and approach an

odour (positive; P) associated with a sucrose reward. One

group of flies were then shaken for 1 min while a second

group were left undisturbed. Flies were tested to see whether

they judged an ambiguous 1 : 1 blend of odours P and N

positively (approach) or negatively (avoid). Shaking induces

avoidance of associated colours in Drosophila [18,19]; there-

fore, it was predicted that shaking would induce a negative

state resulting in a negative judgement bias as previously

observed in honeybees [2,10].
2. Material and methods
(a) Flies and apparatus
Subjects were 1–3-day-old white-eyed wild-type flies of the

Canton-S-white strain. A well-established Drosophila T-maze clas-

sical conditioning apparatus [16,17] was used, consisting of two

Plexiglas vertical columns containing a movable Plexiglas piece

that housed a central compartment (lift) in which flies could be

transferred between test tubes at upper and lower levels

(figure 1). Flies were trained in the upper level tube to associate

specific odours with either a positive (sucrose) or negative

(shock) stimulus (figure 1a). Testing took place at the lower

level (figure 1b), where flies were given a choice between two
odours (initial testing), or an odour and air ( judgement bias

assay) presented simultaneously in two tubes to see which they

approached. See electronic supplementary material for details.

(b) Odours
We used odours that are widely employed in Drosophila studies:

4-methylcyclohexanol (MCH) and 3-octanol (OCT) diluted in

mineral oil (Sigma-Aldrich) [16] at concentrations at which flies

showed no preference for OCT versus MCH. After conducting

initial aversive and appetitive learning tests, MCH was always

paired with shock (negative odour; N) and OCT with sucrose

(positive odour; P) for the judgement bias assay (details in the

electronic supplementary information).

(c) Judgement bias assay
After 90 s acclimatization in the upper tube, flies were trained by

receiving MCH (N) paired with shock for 1 min, followed by 30 s

in the lift, followed by OCT (P) paired with sucrose for 1 min.

Flies were then moved to the lift for 30 s before being transferred

into their original vials for 1 min. Of note, 50% of vials (shaken

group; n ¼ 15 vials) then experienced 1 min of shaking (Vortex-T

Genie 2, Scientific Industries; 2800 r.p.m., approximately

1.17 m s21, 1 s rest every 6 s) while the other 50% were not

shaken (control; n ¼ 15 vials). After a further 1 min in the vials,

flies were transferred to the lower level of the apparatus and

given a 120 s choice between: (a) air or P; (b) air or N; (c) air or

a 1 : 1 blend of P and N (P : N). Each vial of flies completed one

choice test only.

(d) Statistical analysis
After testing, the number of flies in each tube was counted to

determine whether they approached the odour presented (P, N,

P : N) or air. The dependent variable was: (no. flies approaching

odour/total no. of flies making a choice) � 100. Each vial was the

unit of analysis. The proportion of flies tested that did not choose

(remained in the lift) was recorded. Data were analysed using

two-way ANOVA with main effects of odour, cue (P, N, P : N)

and treatment (shaken, control) and a cue � treatment inter-

action. Post hoc tests consisted of simple main effects analysis

with Bonferonni correction.
3. Results and discussion
As expected, Drosophila learnt to associate one odour

with either shock or sucrose in the respective standard

http://rsbl.royalsocietypublishing.org/
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Figure 2. Judgement bias assay. Mean (+1 s.e.m.) percentage of control
and shaken flies approaching P (sugar-associated), P : N (ambiguous blend)
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single-odour assays (electronic supplementary material,

figure S1A,B). They also learnt to discriminate between one

odour (MCH) associated with shock and another (OCT)

associated with sucrose in a double-odour assay (electronic

supplementary material, figure S1C). This allowed us to

develop an active choice Go/Go judgement bias task in

which flies had to choose to approach either an ambiguous

odour (MCH : OCT mixture) or air, in contrast to Go/NoGo

tasks previously used in insects [2,6,10]. Non-affect-related

decreases in activity, or extinction of responses to cues, may

favour NoGo responses in the latter tasks which can then

be erroneously interpreted as a negative judgement. Go/Go

tasks avoid this problem [20,21].

Choice in the Go/Go task was influenced by a cue �
treatment interaction (F2,24 ¼ 3.93, p ¼ 0.03; figure 2).

A lower percentage of shaken flies approached the ambigu-

ous P : N odour than control flies (mean difference+
s.e.m. ¼ 18.92+ 7.94, F1,24 ¼ 5.68, p ¼ 0.025), in support of

our hypothesis. There was a non-significant trend for the

same effect in P (sucrose-associated) odour tests (mean

difference+ s.e.m. ¼ 15.68+ 7.94, F1,24¼3.90, p ¼ 0.060), but

no difference for the N (shock-associated) odour (mean

difference + s.e.m. ¼ 9.81+ 7.94, F1,24 ¼ 1.53, p ¼ 0.228).

A significant effect of cue (F2,24 ¼ 24.31, p , 0.001)

reflected that flies were more likely to approach odour P

than N (mean difference+ s.e.m. ¼ 32.83+5.61, p , 0.001)

and hence that they discriminated between positive and

negative cues. A lower percentage of flies approached

odour N than ambiguous odour P : N (mean difference+
s.e.m. ¼ 34.84+ 5.61, p , 0.001), but approaches to odours

P and P : N did not differ (mean difference+ s.e.m. ¼

2.01+ 5.61, p ¼ 1.00). This latter finding could indicate that

(i) appetitive memory had not been formed or was disrupted,

resulting in flies treating both P and P : N cues as ambiguous,

or (ii) flies did associate odour P with rewarding sucrose, but

perceived odour P : N (1 : 1 OCT/MCH blend) to be more

similar to odour P (OCT) than to N (MCH). Explanation

(i) appears unlikely because significantly more flies trained

to associate odour P (OCT) with sucrose (control and

shaken flies in the JB assay) chose OCT relative to air in com-

parison with naive untrained flies given a choice between

OCT and air (odour preference data in the electronic sup-

plementary material), suggesting that the former had
indeed learnt the association (t-tests: control versus naive:

t7 ¼ 4.32, p ¼ 0.003; shaken versus naive: t7 ¼ 5.01, p ¼
0.002). Furthermore, the approximate velocity of shaken

flies in this study (approx. 1.17 m s21) was lower than that

(2.1 m s21) used to induce mild traumatic brain injury in

Drosophila (a model of mild repetitive head injuries sustained

during sport [22]) and any associated memory impairment.

Moreover, flies shaken at similar velocities were able to

associate shaking itself with colour discriminative cues, indi-

cating that learning and memory mechanisms function

effectively during this type of treatment [18,19]. Explanation

(ii) thus appears more plausible (see [10] for a similar percep-

tual asymmetry), and future experiments would benefit from

using a range of OCT : MCH blends to investigate which

odour mixtures are treated as perceptually intermediate

by flies.

The proportion of non-choosing flies was also affected by

a cue � treatment interaction (F2,24 ¼ 4.03, p ¼ 0.03). A lower

proportion of shaken flies made a choice in N tests (mean

difference+ s.e.m. ¼ 0.08+ 0.018, p , 0.001) compared with

non-shaken flies. A similar trend was seen in P tests (mean

difference+ s.e.m. ¼ 0.036+ 0.018, p ¼ 0.051), but there was

no difference in P : N tests (mean difference+ s.e.m. ¼

0.009+0.018, p ¼ 0.602). Shaking may thus have increased

uncertainty and decreased active choices in the trained con-

ditions (P,N), but not when there was already inherent

uncertainty (ambiguous P : N cue).

As in honeybees [2,10], short-term mechanical shaking

induced a negative judgement of an ambiguous cue. Because

a Go/Go task was used, this does not reflect an effect on

activity levels but rather an alteration in the proportion of

flies choosing to approach or avoid the ambiguous odour.

This was also observed in response to the trained positive

cue (cf. negative judgement of negative cue in honeybees

[2]). The latter finding may indicate that, in addition to a

lowered expectation of reward/increased expectation of pun-

ishment under ambiguity, shaken flies also showed a

decreased valuation of reward predicted by the non-ambiguous

positive cue. Further studies are needed to discriminate

between these two possibilities (cf. [23]).

Our study provides the first evidence that a non-social

insect, Drosophila melanogaster, shows judgement biases

similar to those observed in Hymenoptera, and adds to

data on spontaneous behaviour that may also indicate affec-

tive processes in this species [4,5,9]. We assume that these

biases and behaviours are mediated by changes in molecu-

lar pathways and neural activity that may represent

evolutionarily primitive affective states and are amenable

to detailed genetic investigation in Drosophila, but we

cannot say whether they are accompanied by conscious

experience [7,24].
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