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A B S T R A C T

Herein we investigate Life Cycle Cost (LCC) and Return on Investment (ROI) as potential decision variables for
evaluating the economic performance (ROI) and financial feasibility (LCC) of a set of flood mitigation strategies
over time. The main novelty of this work is the application of LCC and ROI analyses at the urban level to an asset
portfolio of flood-prone buildings. Reduced flood damage is treated probabilistically as avoided costs (LCC
analysis) and returns (ROI analysis), respectively. The proposed methodology is applied to the case of Dar es
Salaam, Tanzania, which suffers severe riverine flooding on a sub-annual basis. Specifically, LCC and ROI of five
mitigation scenarios that include large-scale catchment rehabilitation, settlement set-backs and waste man-
agement are compared with the current situation. The main result is that the highest-performing flood mitigation
option includes both conventional interventions and ecosystem rehabilitation.

1. Introduction

Riverine flooding is a worldwide threat to low-lying formal and
informal built environments near watercourses that annually causes
enormous human suffering, death and loss of livelihoods, damage to
infrastructure and interruptions to economic activity [1]. Developing
countries are particularly vulnerable to flooding impacts [2–5] for
many reasons, including fragile economies [2], lack of risk awareness
[6], preparedness and coping capacities [7], and lack of planning, im-
plementation and enforcement of urban development, zoning regula-
tions and building standards [8,9]. In many cities, this has led to largely
unplanned and unmanaged urban growth characterized by poor or de
facto non-existing construction standards [10,11], with informal set-
tlements usually located in high-risk areas such as river banks and flood
plains [12–14]. The result is large populations exposed to high hazard
but characterized by low levels of resilience to natural disasters, a
problem that is exacerbated by the increasing evidence of a correlation
between climate change and extreme weather events [15,16].

Given this situation, it is of paramount importance to move forward
from the classical flood protection paradigm to the new concept of flood
risk management [17]. Quantification and communication of flood risk
across an urban area and identification of potential mitigation strate-
gies are activities that are fundamental for disaster risk management

and for informing decisions by policy-makers and other stakeholders
(e.g., local and national governments; bi- and multilateral funding
agencies; civil society organizations, public planning, civil engineering
and protection agencies) [18–20]; they are also an effective tool for
reducing the gap between perceived and actual flood risk, in the short
and long term [21,22], and for flood-risk communication across present
and future stakeholders [23]. In this framework, the combination of risk
assessment and Life Cycle Cost (LCC) analysis —or “integrated LCC
analysis”— is an ideal instrument for quantifying the cost-effectiveness
of Disaster Risk Reduction (DRR) measures, but also a powerful tool to
communicate the results to stakeholders. LCC is a single benchmark
performance metric indicating the total expected lifetime cost of a
product, system, or structure [24]. The combination of risk assessment
and life cycle considerations is not new as an environmental manage-
ment system [25,26]; in fact, it has been used to quantify the en-
vironmental impact of mitigation strategies against natural hazards for
single buildings [27,28], and is strongly recommended for flood control
projects to ensure sustainability of the design outcomes [23]. Many
studies have implemented LCC analysis and provide methodological
approaches for its calculation in different civil engineering contexts and
for different natural hazards [29–34].

The novel aspects of the work presented here are (1) the application
of such an integrated LCC analysis to an entire flood-prone African
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urban area to select the best flood risk mitigation strategy from a set of
potential alternatives, and (2) the inclusion of conventional en-
gineering-based, nature-based, and composite interventions. Such an
assessment is the first step towards more sustainable urban develop-
ment [35] and improved community resilience [36]. While sustain-
ability and resilience encompass economic, environmental [37] and
social aspects [38], here the focus is only an economic-financial one,
which often is the binding constraint on projects especially in a lower-
income country context. LCC analysis is a particularly appropriate tool
for evaluating public investments in lower-income countries because it
makes visible the full cost of a program over its lifetime. This ensures
that decision-makers are aware of total financial commitments and can
help avoid selection of less cost-effective alternatives characterized by
lower initial but higher total costs that might result from a focus on
initial costs only.

We also show that for natural hazard mitigation strategies whose
benefits consist almost exclusively of avoided costs, LCC and Return on
Investment (ROI) analysis yield identical preference rankings of inter-
vention scenarios aimed at reducing flood damages. ROI analysis [39] is
routinely applied in both the private and public sectors to evaluate the
performance of competing investment opportunities and projects.
However, it is equally suited to assessing the financial attractiveness of
investments in natural infrastructure [40] and has been applied to
catchment and coastal restoration [41–43].

We demonstrate the application of probabilistic LCC and ROI ana-
lyses by assessing the impact of different combinations of ecosystem
rehabilitation, green engineering measures (collectively referred to as
Green Urban Development (GUD) measures [44]) and conventional
engineering interventions on probabilistically-estimated expected an-
nual losses (EAL) from flood damage to the built environment in a
section of Dar es Salaam, Tanzania, that is flooded on a sub-annual
basis. To evaluate EAL, we adopt the performance-based methodology
presented in De Risi et al. [3] and expand it to consider more than one
structural building type (formal and informal masonry, reinforced
concrete) and two limit states (LS), representing pre-defined damage
states of the structures and their contents. Two main uncertainty
sources are considered in this study: those related to the flood hazard
and those associated with the structural vulnerability.

The methodology proposed herein is a unique multidisciplinary
application and combination of methods that currently are generally
disjointed. Given the modularity of the approach, as new models or
improved data become available for individual steps in the metho-
dology or for different geographical contexts, our model can be further
improved or adapted to other sites. This compositional and spatial
adaptability of the analytical procedure is another novelty of the work
presented here, and the general principle of de-construction of risk
problems fits perfectly within the disaster risk reduction practice and
the performance-based engineering framework. Moreover, the metho-
dology presented in this research was developed specifically to be ap-
plicable in a data-constrained developing country context. In particular,
we identify several key open-source, freeware and government data
resources needed for our and similar analyses. We note that an analysis
like the one presented here should be complemented by an environ-
mental and social impact assessment (ESIA; [45]) to provide a complete
picture of all relevant impacts. While such an analysis is beyond the
scope of this paper, in Section 4.5 we provide a brief discussion of the
main expected environmental and social impacts of the scenarios
evaluated here and argue why we expect them to be net welfare-en-
hancing overall. Nevertheless, an ESIA would allow identifying any
risks of undesired distributional equity impacts that could be mitigated
by appropriate policy interventions.

The focus of the analysis is the Msimbazi River which represents a
constant flood threat to a large part of the center of Dar es Salaam,
Tanzania, as exemplified by the six disastrous flood events experienced
between 1995 and 2015 (1995, 1998, 2001, 2011, 2014, 2015) ac-
cording to the EM-DAT disaster database [46]. Mitigating this flood risk

is a key concern for the Kinondoni and Ilala district governments and
the overarching Dar es Salaam metropolitan government [12]. The
development of flood mitigation strategies for Dar es Salaam is also a
priority issue for international organizations such as the World Bank
and the U.K. Department for International Development [47]. We assess
six scenarios: (a) the baseline scenario, which is the current situation;
(b) creation of a setback zone around the river within the flood-prone
area, including relocation of buildings from this zone, (c) application of
GUD interventions in the Msimbazi catchment, (d) the combination of
the previous two scenarios, (e) scenario c combined with off-line
floodplain flood storage, and (f) a combination of scenarios b and e.

The paper is organized as follows. Sections 2 and 3 present the
methodology and the case study, respectively. Section 4 describes the
mitigation scenarios in detail and presents the results. Section 5 dis-
cusses the findings and presents conclusions.

2. Methodology

The two main inputs to LCC and ROI analyses for urban flood risk
reduction strategies are comprehensive flood risk (i.e., hazard, vulner-
ability and exposure) assessments for each strategy and strategy im-
plementation costs. Below we first present the methodology used for
urban flood risk assessment, followed by the integration of the risk
results into the decision variables.

2.1. Flood risk assessment in developing countries

2.1.1. Overview
Flood risk assessment encompasses hazard, exposure and vulner-

ability assessment [8,48]. Flood hazard is generally assessed through
physically-based hydraulic models that estimate flood depth and velo-
city for each point within the study area and account for the presence of
buildings and infrastructure and for soil characteristics (e.g. topo-
graphy, permeability, etc.) [49]. The procedure adopted in this work for
the hazard assessment is the same as in De Risi et al. [3] and is sche-
matically represented in Fig. 1. The first step is the statistical descrip-
tion of precipitation trough rainfall curves, or Intensity-Duration-Fre-
quency (IDF) curves (Fig. 1a), correlating rain duration, generally
expressed in hours, with maximum rainfall intensity, typically ex-
pressed in millimeters per hour (mm/h). By analyzing past rainfall
events, statistics of the recurrence of rainfall can be determined for
various return periods TR (e.g. 5, 10, 30, 50, 100, and 300 years), where
TR is the average time that passes between the occurrence of two rain
events of a given intensity. Rainfall, geomorphological and biophysical
data (topography, geo-lithology and land use, Fig. 1b) are used to
characterize the hydrograph (Fig. 1c) and calculate the input discharge
for different return periods. That volume is then propagated through
the urban area by means of a hydraulic model (Fig. 1d) to obtain in-
undation maps corresponding to different return periods (Fig. 1e).
These methods are generally computationally demanding and require
significant amounts of data and parameters to describe the morphology,
surface characteristics and drainage infrastructure of the modeling
domain. However, the required data and modeling capabilities are not
always available in lower-income countries [50]. Therefore, reasonable
simplifications in modeling hypotheses and assumptions are generally
accepted, especially in comparative scenario analyses that assess im-
pacts in relative rather than absolute terms and adopt the same basic
hypotheses across scenarios. For each single location, it is then possible
to obtain a flood hazard curve (Fig. 1f), that is, the inundation depth
versus its expected mean annual rate of occurrence, calculated as the
inverse of the return period.

The exposure assessment (Fig. 1g) requires the identification of the
human, built and natural elements at risk in the flooded area. Our
analysis focuses only on the built environment due to the lack of in-
formation needed to comprehensively assess human health and indirect
impacts. Nevertheless, to provide some perspective on the relative size
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of omitted flood impacts, we present findings from other studies (e.g.,
[51,52]) and construct lower-bound estimates of the cost of flood-re-
lated mortality and morbidity in Dar es Salaam.

Characterization of the built environment allows the application of
a vulnerability analysis to quantify the adverse effects of flooding. The
vulnerability analysis provides fragility functions (Fig. 1h), re-
presenting the probability of reaching or exceeding predefined damage
states, for a given level of flood intensity (i.e., depth or inundation
velocity) [53]. Applying the integration procedure proposed by De Risi
et al. [3], the combination of hazard and vulnerability yields the mean
annual rate of exceedance of a specific limit state, where limit state
refers to a threshold for a structure beyond which it no longer fulfills a
specified functionality. This rate can be further used to calculate the
probability of exceedance in a given time window, by adopting a rea-
sonable probability distribution describing the event occurrence. This
probability can then be combined with the exposed asset value to
quantify the flood damage risk in the predefined time window in terms
of economic losses or in terms of number of casualties. The result is
commonly expressed for a time interval of one year, as the Expected
Annual Loss (EAL).

In this study two limit states are considered: the Collapse Limit State
(CLS) and the Damage Limit State (DLS). The CLS represents a struc-
tural condition for which the bearing capacity of the building is no
longer guaranteed (i.e. the structure is expected to collapse under the
external actions). The DLS represents a situation in which the safety of
occupants is guaranteed, but limited damage to structural and non-
structural parts is expected (e.g. small or reparable cracks in the bearing
structure and damage of building contents).

2.1.2. The risk integral
De Risi et al. [3] characterize flood risk assessment using a single

equation:

∫= ⋅λ P LS h dλ h( | ) ( )LS (1)

where λLS denotes the risk expressed as the mean annual rate of ex-
ceedance of a given limit state (LS). λ(h) denotes the mean annual rate
of exceedance of a given flooding height h at a given point in the
considered area. P(LS|h) denotes the flooding fragility for limit state LS
expressed in terms of the probability of exceeding the limit state
threshold.

The risk λLS is calculated in terms of the mean annual frequency of
exceeding the limit state LS for each node of the lattice covering the
zone of interest by integrating fragility P(LS|h) and the (absolute value
of) hazard increment |dλ(h)| over all possible flood height values. The
mean annual frequency of exceeding the limit state λLS is then trans-
formed into the annual probability of exceeding the limit state as-
suming a homogenous Poisson process as a model for occurrence of
limit-state-inducing events:

= − − ⋅P LS λ t( ) 1 exp( )LS (2)

where t is the time in years. It should be noted that Eq. (1) divides the
flood risk assessment procedure into two main modules: the hazard
assessment module, which leads to the calculation of the mean annual
frequency λ(h) of exceeding a given flood depth h; and the vulnerability
assessment module, used to calculate the flooding fragility curve in
terms of the probability of exceeding a specified limit state P(LS|h).

2.1.3. Expected annual losses
The costs of flooding can be broadly categorized into market versus

non-market and direct versus indirect losses [54]. Direct market losses
are negative impacts of the disaster itself on goods and services com-
monly bought and sold and whose value therefore generally can be
fairly accurately determined using directly observable data (e.g., costs
of infrastructure repair or medical treatment; reduction in firm output
due to business interruption). Direct non-market losses are costs that
are caused by the disaster itself but whose economic value cannot be
readily quantified because they are not themselves traded on markets
(e.g., suffering caused by injury or by death of family members or

Fig. 1. The flood risk procedure.
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friends; loss of life). While economic valuation of direct non-market
impacts is possible (e.g. suffering from specific health effects) and in
many cases even fairly common (e.g., the value of a statistical life or of
disability-adjusted life years), the resulting values often are contentious
because they rely on indirect valuation approaches that utilize in-
dividuals’ stated rather than observed preferences, or because many
individuals are uncomfortable with assigning monetary values to these
impacts. Indirect losses are not caused by the immediate disaster itself
but rather by secondary effects. For example, if flooding damages in-
frastructure (e.g. transportation or utility networks), it often causes
business interruptions that continue far beyond the duration of the
actual flooding itself. Likewise, because of economic linkages among
businesses and economic sectors, flooding may cause indirect losses in
the form of negative effects on economic activity outside of the flooded
area. Our analysis only considers direct market losses from flooding in
the form of damage to buildings, which is relatively well-studied as it is
the most important parameter for the insurance industry [55]. In
Section 4.3 we discuss literature findings on how direct structural da-
mages to buildings compare to total flood damages.

The expected loss is calculated as the expected repair cost (per
building or per unit residential area), E[R], as a function of the limit
state probabilities (change in probability of exceedance) and by de-
fining the ith damage state as the structural state between limit states i
and i+1:

∑= − ⋅
=

+E R P LS P LS R[ ] [ ( ) ( )]
i

N

i i i
1

1

LS

(3)

where NLS is the number of limit states that are used in the problem in
order to discretize the structural damage, Ri is the repair cost corre-
sponding to the ith damage state, and =+P LS( ) 0N 1LS . In this study,
repair costs associated with the CLS are set equal to 100% of the value
of the total exposed asset, and the repair costs associated with the DLS
to 50% of that value. The distinction among the asset values associated
with the onset of the different limit states (i.e. 50% of the total asset in
the case of DLS; 100% in the case of CLS) is a well-established practice
in the risk assessment literature for many natural hazards, such as
floods [56,57], earthquakes [58] and tsunamis [59]. Finally, in the case
of collapse, a further cost of 10% of the entire asset [28,30] is con-
sidered for the dismantling of the collapsed building and removal and
disposal of debris [60]. The EAL then is obtained using probability
terms in Eq. (3) calculated considering a time window of one year in Eq.
(2).

2.2. Life Cycle Cost

The LCC concept was developed as a financial technique for ranking
investments, and in the last thirty years has been gaining prominence in
the building and environment fields, too, since it has been linked to
resilience and sustainability [23]. In fact, civil structure and infra-
structure sustainability and resilience have been identified as grand
challenges for engineering in the 21st century [61].

ISO 15686 Part 5 [62] Life Cycle Cost Analysis specifies that for
buildings and other constructed assets, the LCC takes into account all
significant and relevant costs over the asset's life that are incurred to
achieve defined levels of performance, including reliability, safety and
availability over the period of analysis. Therefore, for a given structure,
LCC consist of the sum of the present value (PV) of all expected costs
from construction to the end of the life span of a structure, including
construction cost, inspection and maintenance cost, repair or replace-
ment cost and disposal costs.

Costs can be divided into four major categories, based on whether
they are planned or unplanned, and whether they are sustained by the
owner of the structure/infrastructure or its user. The latter distinction
often is complicated in the case of public infrastructure [63]. The
scenarios evaluated in our analysis comprise both public (GUD

interventions; setbacks) and private (housing structures) LCC compo-
nents. Planned costs arise from construction, maintenance, and retrofit;
unplanned costs are related to damage from exceptional events such as
natural hazards. Because of the many uncertainties in assessing the LCC
of buildings (e.g., the durability and aging of construction materials,
buildings, and their effect on maintenance costs; the occurrence and
severity of natural events impacting the structure and associated un-
planned costs; a change in the life-time of the asset due to, for example,
a change in functionality), LCC is evaluated in a probabilistic frame-
work as the expected value (E[·]) of costs (C) in a time interval (T) equal
to the life cycle (LC) of the structure:

= = + + + +Ε C T LC C C C C C[ | ] I M R D0 (4)

where C0 is the initial construction cost, CI is the inspection cost, CM is
the maintenance cost, CR is the repair/replacement cost, and CD is the
down-time cost (i.e. the cost associated with the suspension of the
economic activities related to the asset; omitted here).

Construction cost (C0) represents the initial investment. In the past,
and in many cases today, construction cost often was the only cost
considered in decision-making processes [63,64].

Inspection costs (CI) and maintenance costs (CM) are planned costs
incurred by users or owners. Those costs are expected to occur at reg-
ular time intervals and are necessary to keep the structure/infra-
structure functional during its lifetime; however, the length of these
intervals and the amount of recurrent inspection or maintenance varies
among different types of structures. One possible approach to esti-
mating CI and CM is to plan maintenance actions in advance using
empirically-based methodologies that draw on large databases to de-
termine the optimal maintenance plan given the specific characteristics
of a particular type of structure [65]. Once the expected number of
inspection and/or maintenance events is calculated, it is possible to
estimate mean annual inspection (Ci) and maintenance (Cm) cost. We
adopt the common practice of assuming Ci and Cm as a percentage of the
initial intervention cost [65]. Discounting and integration of mean
annual inspection and maintenance costs over T yields their estimated
present values CI and CM:

∑=
+=

C C
ξ(1 )I

t

T
i

t
1 (5)

∑=
+=

C C
ξ(1 )M

t

T
m

t
1 (6)

In Eqs. 5 and 6, the denominator is the cost discount factor used to
calculate PV cost, and ξ is the annual discount rate. A recent study [66]
estimates Tanzania's social consumption discount rate (the rate that
should be used for evaluating long-lived public investments) to be
4.9%, close to the 5% typically adopted for civil structures [67]. In this
study, we conservatively assume that ξ=6%. Because the choice of
discount rate can significantly affect both CI and CM [33] we include
this parameter in our sensitivity analysis considering two additional
discount values, 5%, and 7%, respectively.

Risk from natural hazards is integrated into LCC through CR which
are unplanned and correspond to the PV EAL:

∑=
+=

C EAL
ξ(1 )R

t

T

t
1 (7)

where EAL is the stream of equal expected annual expenditures ne-
cessary to repair/replace the structure in question and t is the time in
years up to the reference life T of the structure and is estimated as
described in De Risi et al. [3].

2.3. Return on Investment

We calculate ROI as the benefit-cost ratio of an investment:
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=ROI
Benefit

Cost (8)

where the benefit of implementing a flood mitigation strategy Si is the
difference between the PV EAL of the baseline (S0) and intervention (Si)
scenarios, respectively:

∑ ∑= − =
+

−
+= =

Benefit PV EAL t PV EAL t EAL
ξ

EAL
ξ

( , ) ( , )
(1 ) (1 )Si S Si

t

T
S

t
t

T
Si

t0
1

0

1

(9)

As in LCC analysis, the costs of Si include not only initial im-
plementation cost C0 but also ongoing inspection (CI) and maintenance
(CM) costs:

= + + = + + =

= + ∑
+

+ ∑
+= =

Cost C C C C PV C t PV C t

C C
ξ

C
ξ

( , ) ( , )

(1 ) (1 )

Si S I S M S S i m

S t
T i

t t
T m

t

0, , , 0,

0, 1 1

i i i i

i (10)

Substituting Eqs. (9) and (10) into (8), ROI can be expressed as

= −
+ +

ROI PV EAL t PV EAL t
C PV C t PV C t

( , ) ( , )
( , ) ( , )

S Si

S i m

0

0, i (11)

The payback period (TROI = 1) is the time necessary for intervention
ROI to reach unity. This is the point at which the PV of the cumulative
benefits surpasses the PV of the cumulative costs of the intervention.
The ROI is less than unity if the PV of implementation costs of the in-
tervention exceeds the reduction the intervention produces in the PV of
expected annual losses. Because ROI does not indicate the absolute size
of net benefits, a complete analysis must also calculate the Net Present
Value (NPV) of the scenarios (i.e. the difference between discounted
streams of annual costs and benefits).

2.4. Comparison of LCC and ROI

Fig. 2 presents a schematic representation of the relationship be-
tween LCC and ROI for two hypothetical mitigation strategies S1 and
S2. The points at which LCCS1 and LCCS2 intersect the LCC of the
baseline scenario (S0) represent the payback periods of the intervention
scenarios. To the right of TROI(S1) and TROI(S2) the ROI exceeds unity
and the intervention scenarios produce net benefits.

This can readily be demonstrated analytically using Eq. (11). ROI
exceeds 1 if the numerator exceeds the denominator, that is, if the PV of
the avoided losses due to the mitigation exceeds the PV of mitigation
costs:

− > + +PV EAL t PV EAL t C PV C t PV C t( , ) ( , ) ( , ) ( , )S Si S i m0 0, i (12)

Likewise, the LCC of the baseline scenario (LCCS0) exceeds that of
the mitigation scenario (LCCSi) if

> + + +PV EAL t PV EAL t C PV C t PV C t( , ) ( , ) ( , ) ( , )S Si S i m0 0, i (13)

Eqs. 13 and 12 are identical, demonstrating the consistency of LCC
and ROI for ranking mitigation strategies.

Fig. 2 shows that even though hypothetical mitigation strategy S1
has a lower initial cost, strategy S2 is preferable on financial and eco-
nomic grounds since it requires a shorter payback time, has a lower LCC
and a greater ROI for any time period exceeding its payback period.

It is worth emphasizing that LCC and ROI analyses yield identical
rankings of alternatives only if the public policy or program being
evaluated produces benefits only in the form of avoided costs. The
presence of other types of benefits breaks the equivalence of LCC and
ROI. For example, if some of the policy alternatives produce pro-
ductivity gains, the latter would be reflected in their ROI, but not in
their LCC. Because public policies such as flood mitigation must be
evaluated on the basis of their full social impacts, if those impacts in-
clude benefits other than avoided costs, LCC generally will only be able
to identify the financially preferred (least-cost) but not the optimal (i.e.,
social welfare-maximizing) alternative. In cases where some policy al-
ternatives produce sizeable benefits beyond avoided cost, LCC therefore
must be complemented by a social ROI analysis, that is, a social benefit-
cost analysis. Furthermore, because ROI is the benefit-cost ratio and
thus does not indicate the size of the net benefits a policy alternative
produces, any evaluation of flood mitigation policies should also in-
clude their net present value (NPV), that is, the difference between the
sums of discounted streams of benefits and costs over time.

3. Case study

Dar es Salaam, the largest city in Tanzania, has experienced rapid
population growth with a current estimated population of 4.4 million.
Most of this growth has taken the form of unplanned and informal re-
sidential areas, with 75% of the area under informal development, and
many houses being built in areas previously considered unsuitable, such
as below flood lines on floodplains and abutting river edges. City in-
frastructure has not been able to keep up with population growth, with
the majority of residents lacking access to public services including
sanitation and waste collection [47]. During the rainy season, intense
rainfall events often cause severe flooding in parts of the city. Flooding
problems are greatest along the Msimbazi river, which floods part of the
city center and is the focus of this case study.

3.1. Flood hazard

3.1.1. Available data
In this study, historical rainfall data (Fig. 3a) were obtained from

the single existing meteorological station in the catchment, located at
Dar es Salaam international airport at 55m above sea level, 6°86'S and
39°20’E. A detailed description of the data and the statistical treatment
applied to derive the intensity duration curves (Fig. 3b) can be found in
De Paola et al. [68].

Fig. 2. Schematic representation of LCC and ROI for two alternative mitigation strategies S1 and S2.
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The geomorphological data used in this analysis are topographic
(digital elevation model (DEM), Fig. 4a), land use (Fig. 4b), geologic
(Fig. 4c) and geo-lithologic (Fig. 4d). The adopted DEM has a 2-m
horizontal resolution and is obtained by combining in a mosaic three
datasets: (i) a 30-m resolution DEM obtained from the U.S. National
Aeronautics and Space Agency (NASA) Shuttle Radar Topography
Mission (SRTM) project website (http://gdex.cr.usgs.gov/gdex/); (ii) a
contour map with 2-m vertical resolution covering only the central part
of the city, acquired from the Dar es Salaam city council; and (iii) ten
50-cm resolution LIDAR surveys for strategic areas in the city of Dar es
Salaam, obtained from a previous research project. Details on the
constructed DEM can be found in [47]. The final DEM is used to identify
the catchments feeding the river system (upstream of the outlets)
considered in the analyses, and as basic information for the inundation
simulations (downstream of the outlets). Three catchments are identi-
fied, C1, C2 and C3 (Fig. 4a), feeding the main Msimbazi, the Kibangu,
and the Ng’ombe water courses, respectively.

We use two resources to characterize land use: (i) a coarse-resolu-
tion map made available by the International Livestock Research
Institute (http://192.156.137.110/gis/search.asp?id=543) showing
the land use for the entire country in 2002; and (ii) a finer-resolution
map of the city of Dar es Salaam obtained from the Climate Change and
Urban Vulnerability (CLUVA) project (www.cluva.eu). The latter is a
map of Urban Morphology Type (UMT), which is a powerful tool for the
representation of the built and natural environment because it brings
together facets of urban form and functions [69]. The use of these two
land use data sets was necessary because the main catchments feeding
the Msimbazi river extend beyond the limit of the more refined UMT
map, which is confined to the political boundaries of Dar es Salaam.

The source data for the geologic and geo-lithologic maps were ac-
quired from the Geological Survey of Tanzania's Geological and Mineral
Information System (http://www.gmis-tanzania.com/). These maps
have a resolution of 1:2 M, are the official maps recognized by the
Republic of Tanzania and represent the best data available for the
country; moreover, they are in good accordance with the ISRIC – World
Soil Information data (http://www.soilgrids.org/).

3.1.2. The hydrographs
Several rainfall-runoff methods can be used to construct hydro-

graphs: the Rational Method [70], the Curve number Method [71], or
more sophisticated approaches such as distributed/semi-distributed
models [72]. The more sophisticated the method, the more data is re-
quired to calibrate model parameters [73]. One of the main advantages
of distributed models is that they allow predictions of hydrologic
variables at interior points [73]. However, in our study we are only
interested in streamflow near the flood-prone outlet. Importantly,

comparing a complex distributed model, a lumped conceptual model,
and an intermediate complexity model in data-sparse catchments in
Zimbabwe, Refsgaard and Knudsen [74] found that without calibration,
the distributed models performed only marginally better than the
lumped model, concluding that their results could not strongly justify
the use of the complex distributed model. There is one fully-distributed
model, WaterWorld [75], that runs on remotely-sensed global data sets
and thus does not require local gauge and meteorological data. How-
ever, WaterWorld only predicts mean water balance and only at a
monthly time step, making it unsuitable for flood modeling.

In lower-income countries, model choice often is constrained by the
lack of data necessitating use of relatively simple approaches. For un-
gauged basins (i.e. where discharge measurements are unavailable)
such as those of Dar es Salaam, the classic Curve Number Method
(CNM) is considered suitable for modeling the hydrograph. The main
advantages of the CNM are that: (a) it is the simplest conceptual method
for estimating the direct runoff amount from a rainfall event, and is well
supported by empirical data; (b) it relies only on one number, the curve
number CN, which is an integrated representation of the main wa-
tershed characteristics affecting runoff; (c) it is fairly well documented
for its inputs, that is, data needed to calculate CN generally are readily
available (soil, land use, surface conditions, and antecedent moisture
conditions); and finally (d) its features are readily grasped, well es-
tablished, and accepted not only in the U.S. (where the methodology
originally was developed) but also other countries around the world.

The principal limitations of the CNM are that (a) rainfall is con-
sidered spatially and temporally uniform; (b) there is a lack of clear
guidance on how to set antecedent soil moisture conditions (AMC) to
reflect empirical conditions, especially for lower CN and rainfall
amounts; and finally, (c) the method was originally developed for
agricultural areas, and while it generally also performs well in other
contexts, it performs less well for forests. Fig. 5a-c show the hydrograph
obtained for the three catchments considering a soil with moderate
infiltration rate (soil category B) and AMC III (wet condition), the
second-most common condition in the Msimbazi watershed during the
growing season according to Jalayer et al. [16] (Fig. 5d). In De Risi
et al. [3] the detailed procedure employed to obtain such hydrographs
is explained. We use AMC III rather than the most common condition,
AMC I (dry), in order to generate conservative estimates of intervention
impacts. Under wet soil conditions, the increment in soil infiltration
capacity produced by the land cover change (bare, low vegetation,
crops or pasture to forested) declines [76], because unlike under bare
[77] or agricultural cover [78], under forest cover surface runoff only
occurs with much higher rainfall and soil moisture content [79].

To simulate the effect of the interventions on the hydrograph, we
first calculate the weighted mean CN of each catchment using the

Fig. 3. (a) Historical rainfall data and (b) IDF curves.
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current percent shares and CNs of each land cover/use and soil category
B, with standard CNs adjusted to AMC III. We then recalculate mean
weighted CNs for each catchment for a situation where land cover/use
has been modified by the GUD interventions described in Section 4. The
resulting estimated change in weighted mean CNs is approximately
equivalent to a change in infiltration rate from moderate to high [71].
Fig. 5e shows how beneficial effects induced by interventions (ex-
plained in the following) are modeled. Increase in soil permeability is
modeled by changing the infiltration rate from moderate to high (i.e.
changing soil category from B to A). The red curves in Fig. 5e show the
modified hydrographs for catchment 1 due to soil permeability im-
provement. Similarly to [16], the hydrologic improvement is modeled
by changing AMC from III to II instead of changing the soil type from B
to A to reflect increased permeability. The effect on the final hydro-
graphs is comparable to that of varying soil type (black curves in
Fig. 5e).

It is very important to underline that in the absence of additional

data (infiltration capacity; higher spatial resolution precipitation;
stream flow), and using the CN method, the improvements can be
modeled only in such a lumped way by modifying the input hydro-
graph.

3.1.3. Inundation maps
In this study, two-dimensional flood routing is accomplished

through the numerical integration of the equations of motion and
continuity (dynamic wave momentum equation) for flow. The numer-
ical simulation is implemented using the commercial software FLO-2D
[49], a flood volume conservation model based on general constitutive
fluid equations of continuity and flood dynamics, that is, shallow water
equations or Saint-Venant equations. The flow is considered variable in
space and in time, and the bottom friction is evaluated using Manning's
formula. The Manning's coefficients were assigned to computational
cells based on a literature review. Conservative estimates of 0.04 and
0.02 were assumed for natural and urban areas, respectively [80].

Fig. 4. The city of Dar-es-Salaam: (a) elevation, considered rivers and their catchments; (b) land use; (c) geology and (d) geo-lithology.
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Drainage infrastructure not captured in the DEM (e.g., the sewage
system) was omitted due the lack of available data on these systems.
The simulation duration for each sub-domain is equal to the time ne-
cessary to exhaust the related hydrograph. Given the large size of the
case study area, the analysis domain was divided into five sub-domains
in order to reduce computation time (Fig. 6a).

The first, second and third sub-domains correspond to the three
main water courses; the last two sub-domains are defined areas
downstream of the junctions of those main water courses. In each
drainage outlet, the respective modeled hydrograph was applied; in
each junction, a hydrograph was obtained as the sum of the flows from
the upstream water courses. Fig. 6b shows the inundation scenario for a
return period of 300 years. The inundation results in terms of flood
depth and velocity for all sub-domains can be found in [47]. In all

analyzed sub-domains, a large part of the built environment is affected
by flood events. The next section presents the methods used to identify
and classify the exposed assets.

3.2. Exposure

The inundation domain covers a large part of the city center in
which residential structures and economic activities are concentrated
(Fig. 7a). In this study, all buildings in the inundation domains are
included in the exposure analysis.

Building-by-building spatial identification (black polygons in
Fig. 7a) benefits from Volunteered Geographic Information (VGI);
specifically, OpenStreetMap (OSM, www.openstreetmap.org), one form
of crowdsource big data, which is very useful in lower-income countries

Fig. 5. Hydrographs for (a) catchment 1, (b) catchment 2, and (c) catchment 3; (d) histogram of the AMC classes for the growing season; (e) hydrographs for the improved catchment C1.

Fig. 6. (a) Analysis sub-domains, and (b) inundation map for TR = 300 years.
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often characterized by a lack of data on exposed assets. By intersecting
the land cover map with building footprints, it is possible to identify the
type of each building. Fig. 7b shows the buildings in the inundation
domain (a total of 209124) and the distribution of footprints by
building type.

The buildings at risk in the inundation domain are identified by
intersecting the building map with the maximum extent of the baseline
flood inundation corresponding to the maximum return period con-
sidered (300 years in this study). A total of 12,744 buildings fell within
this area (Fig. 8a).

Information on building characteristics led to the identification of
three main structural typologies (Fig. 8b-d): informal masonry (IM);
formal masonry (FM); and reinforced concrete frames (RCF). Based on a
recent survey of building values in Dar es Salaam (Appendix A),

building values by structural typology and use type are calculated and
presented in Table 1. More details on the procedure used can be found
in [47].

Fig. 8d shows the distribution of building structural types, in-
dicating that almost 90% of all buildings in the flood domain are
classified as Informal masonry.

3.3. Vulnerability

The structural vulnerability is described using fragility functions. A
fragility function evaluates the probability of reaching or exceeding
specific damage states (ds) for a given hazard intensity [53]. Such re-
lationships between hazard and potential damage play a vital role in
quantifying damage and losses associated with flood events. In this

Fig. 7. (a) Land use in the case study area, and (b) building typology. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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study, specific fragility models considered suitable for Dar es Salaam
are adopted; fragilities are modeled as log-normal functions completely
defined by the median (η) and the logarithmic standard deviation (β).
Eq. (14) shows the classical formulation where Φ(·) denotes the stan-
dard Gaussian (Normal) cumulative probability distribution.

⎜ ⎟≥ = ⎛
⎝

− ⎞
⎠

P DS ds h Φ
h η

β
( | )

ln ln
(14)

We use Jalayer et al.’s [81] flooding collapse fragility functions for
typical low-standard structures in Dar es Salaam for describing the
vulnerability of IM buildings in the city. To obtain the damage fragility
function, according to the results presented in De Risi [82], the median
value corresponding to the collapse limit state is divided by two, and
the logarithmic standard deviation is kept the same. For the FM struc-
tures, Reese et al. [83] developed empirical fragility functions for re-
sidential masonry buildings with respect to the hydraulic action

induced by tsunamis. The use of tsunami fragility curves can be con-
sidered valid since the empirical fragility curves are obtained con-
sidering aggregated data for which the median flow velocity values are
usually not very high, ranging from 2m/s to 5m/s [84], values that are
comparable with the velocity values obtained with the current simu-
lations in Dar es Salaam. In Reese et al. [83], fragility curves are ob-
tained for five different damage states that include two that correspond
to the two limit states considered here, DS3 (equivalent to DLS) and
DS5 (equivalent to CLS). Finally, for RCF structures, Suppasri et al. [85]
developed empirical fragility functions for RC buildings for the action
induced by tsunamis. We average the statistics for their 1-storey and 2-
storey buildings. Among the six damage states presented, only the
curves associated with DS3 (i.e., DLS) and DS5 (i.e., CLS) are con-
sidered. Table 2 lists the statistical characteristics of the three sets of
fragility curves, and Fig. 9 shows the fragility curves for the three

Fig. 8. (a) Buildings at risk, (b) structural typology of buildings at risk, (c) pictures and (d) distribution of the three main structural categories.

Table 1
Unit construction costs for different building typologies in Dar es Salaam.

Building type US$/m2

Informal Masonry residential 120
Formal Masonry residential 150
Informal Masonry commercial 472
Formal Masonry commercial 374
Reinforced Concrete Frame commercial or residential 745
Reinforced Concrete Industrial 858

Table 2
Fragility curve parameters by structural type and limit state.

Type Limit state η [m] β

IM DLS 0.42 1.52
CLS 0.84 1.52

FM DLS 1.28 0.35
CLS 2.49 0.50

RCF DLS 1.20 0.79
CLS 5.60 0.81
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structural typologies analyzed and the hazard curves obtained by in-
terpolating inundation maps with building locations and types.

3.4. Expected annual loss

Integrating the fragility and hazard curves leads to an EAL of US$
47.30 million in the baseline scenario S0.

4. Mitigation strategies: scenarios and results

This section presents potential mitigation strategies, discusses their
implementation in the model and their effect on the hazard, and eval-
uates their LCC and ROI.

Urban drainage management has evolved significantly over the last
few decades, from a conventional ‘rapid disposal’ approach to a more
integrated and sustainable ‘design with nature’ approach. Examples of
this new approach include Integrated Urban Water Management
(IUWM), Water Sensitive Urban Design (WSUD), urban storm-water
Best Management Practices (BMPs), Sustainable Urban Drainage
Systems (SUDS) and Low Impact Development (LID). All of these
comprise portfolios of measures to address flooding and/or water
quality problems. These tend to be categorized into passive and active
structural and non-structural measures. Active measures, which seek to
reduce the effects of urbanization on the quantity and quality of
catchment runoff, can be further categorized into source, local and
regional controls [86]. With the feasibility of source controls (perme-
able pavement, infiltration trenches, green roofs, subsurface soakaways,
rainwater harvesting) in our study area limited by lack of available
space, soil and building characteristics as well as comparative cost-ef-
fectiveness, non-structural measures were identified as the most sui-
table flood management options. Specifically, we considered the pro-
tection, restoration and/or enhancement of natural systems, a river
cleaning program and the improvement of solid waste management
[47]; these measures are collectively referred to as Green Urban De-
velopment (GUD) measures here. There are substantial areas of de-
graded forest in the catchment that could be restored, and floodplains
lower in the catchment have been artificially disconnected from the
river, greatly reducing their potential for flood mitigation and co-ben-
efits. Restoring the natural hydrological connectivity of the river system
would provide numerous ecological benefits and the deepening of the
floodplain in the lower catchment provides an opportunity to develop a
wetland park which would provide inner city recreational green open
space. Furthermore, there are several floodplain areas in the mid-lower
catchment that could be enhanced to improve their water holding ca-
pacity while at the same time providing other benefits such as erosion
control and provision of areas for agriculture and wetlands. The idea of

a mixed use enhanced riparian and floodplain area was developed
based on the concept of a combination of riparian zone rehabilitation
and floodplain enhancement measures that store and retard flows but
that could easily include opportunities for other beneficial uses, in-
cluding sports fields, agricultural lots and parks as well as active ri-
parian buffer zones or conservation corridors. Whilst these beneficial
floodplain uses raise initial costs, it is expected that they are likely to
reduce opportunities for unplanned resettlement of the floodplain. In
addition, a community-based river cleaning program was included as
an essential measure to help deal with the problem of solid waste in the
river system that leads to the clogging of drainage infrastructure such as
culverts and channels. This could be considered as an interim measure
until improved municipal waste collection and management services
are implemented.

4.1. Intervention scenarios

The five intervention scenarios analyzed herein are: (I) Riparian
setbacks in the flood-prone area; (II) green urban development mea-
sures (GUD); (III) GUD measures combined with riparian setbacks in the
flood prone area; (IV) GUD measures combined with an off-line de-
tention basin; and (V) GUD measures combined with the detention
basin and the riparian setbacks in the flood-prone area. These scenarios
reduce exposure to flooding, flood hazard, or both (Table 3). Removing
people from flood-prone areas within riparian setback buffers reduces

Fig. 9. Fragility curves and hazard curves for (a) IM buildings, (b) FM buildings, and (c) RCF buildings. The dark grey part of hazard curves is calculated; the light grey part is
extrapolated.

Table 3
Estimated initial costs and expected annual losses of scenarios.

Exposure reduction →

No setbacks in
flood-prone areas

People and structures
removed from flood-
prone areas in setbacks

↓ Hazard
reduction

No intervention Scenario 0 Scenario 1
C0 – C0 US$ 62.6

million
EAL US$ 47.30

million
EAL US$ 37.24

million
GUD interventions Scenario 2 Scenario 3

C0 US$ 84.2
million

C0 US$ 138.5
million

EAL US$ 28.87
million

EAL US$ 23.16
million

GUD combined
with flood-plain
storage

Scenario 4 Scenario 5
C0 US$ 124

million
C0 US$ 178.5

million
EAL US$ 27.78

million
EAL US$ 21.64

million
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the number of people and structures exposed to flooding. Implementing
GUD and additional storage interventions lowers the flood hydrograph
and reduces flood hazard.

Table 3 shows initial costs (C0) and EAL for each scenario, with EAL
calculated as described in Section 3, by either implementing the miti-
gation strategies in the hydrological-hydraulic routine or changing the
exposed assets.

4.1.1. Scenario 1: resettlement from flood-prone areas
This scenario consists of relocating structures from flood-prone

areas along the Msimbazi river in the flood modeling domain.
Relocation away from riparian areas historically has been a traditional
flood damage mitigation strategy. Direct relocation costs can readily be
quantified using World Bank compensation costs for the value of
dwellings and other structures and land improvements (tree crops,
agriculture) plus an 8% disturbance allowance to support households
during the resettlement process [47]. We do not consider any psycho-
logical suffering or anxiety such relocation may impose on the affected
individuals, or any reduction in flooding-related suffering avoided as a
result of the relocation. There are 2422 structures at risk in the buffer
zone that would be relocated, or approximately 20% of the entire
portfolio of 12,744 structures at risk in the flood modeling domain.
Direct relocation cost plus demolition cost (assumed to be 10% of the
value of structures) is estimated at US$62.6 million. This scenario re-
sults in an EAL that is 21% lower than in Scenario 0.

4.1.2. Scenario 2: green urban development
The flood mitigation measures implemented in this scenario aim to

reduce the heights of the hydrographs entering the flood modeling
domain (green dots in Fig. 7b); their impact is modeled as described in
Section 3.1.2.

The locations and extent of each physical intervention was esti-
mated using landcover and the DEM. The costing of the selected in-
terventions was based on a wide range of information sources collated
from literature and various green urban development projects from
other parts of the world. A detailed presentation of implementation
characteristics, hydrologic impacts and costs for the GUD scenario can
be found in Turpie et al. [47]. The total initial investment cost of the
GUD interventions was estimated to be approximately $40 million with
annual maintenance costs of about $1.6 million, with an additional 1%
and 5% of the initial cost for inspection and maintenance, respectively.
Mixed-use enhanced riparian and floodplain areas, which cover almost
500 ha and would detain 5 million m3 of runoff, account for slightly
more than 40% of the total cost of the GUD scenario. These interven-
tions also require a resettlement of housing structures currently located
in the intervention areas, with estimated resettlement costs, calculated
analogously to Scenario 1, of US$ 44 million resulting in total initial
costs of approximately US$ 84 million. Table 4 shows the breakdown of
the extent and estimated costs of the individual GUD intervention
components.

The reduction in discharge volume due to the improved soil in-
filtration and floodplain storage results in a reduction of the number of

buildings at risk and, consequently, of EAL by approximately 39%
compared to Scenario 0.

4.1.3. Scenario 3: green urban development and resettlement from flood-
prone areas

This scenario combines Scenarios 1 and 2 and has an estimated
initial cost of US$ 138.5 million. Total intervention cost is less than the
sum of the costs of Scenarios 1 and 2 because in this scenario, the GUD
interventions reduce the extent of the flood-prone area and therefore
the number of structures at risk in the flood-prone areas compared to
Scenario 1, resulting in fewer structures requiring relocation. Inspection
and maintenance costs are the same as in Scenario 2. Scenario 3 reduces
EAL by an estimated 51% compared to Scenario 0.

4.1.4. Scenario 4: green urban development and flood-storage basin
The lower part of the Msimbazi river catchment features an un-

developed area in the floodplain that we identified as a potential site for
an off-line flood storage basin. We designed this basin based on Topa
et al. [87]. With a 6-m depth, the 50-ha area allows the storage of 3
million cubic meters at an estimated initial cost (calculated using local
construction costs; see Appendix B) of US$ 40 million (Table 5), in-
cluding a contingency and indirect cost multiplier of 36% (Appendix B).

Scenario 4 has an initial estimated cost of US$ 124 million.
Inspection and maintenance costs are higher than in Scenario 3, with an
additional 1% and 5%, respectively, of the initial cost of the flood
storage basin.

The implementation of the storage basin is modeled by reducing the
discharge volume in the final part of the first inundation subdomain.
Scenario 4 reduces EAL by 41% compared to Scenario 0.

4.1.5. Scenario 5: green urban development, resettlement from riverine
buffer, and flood-storage basin

This Scenario is the combination of Scenarios 1 and 4, and its total
initial cost is the sum of the cost of Scenario 3 and the cost of the flood
storage basin, or US$ 178.5 million. Maintenance and inspection costs
are the same as in Scenario 4. Scenario 5 reduces EAL by 54% compared
to Scenario 0.

Table 4
Breakdown of the estimated extent and cost of the proposed GUD interventions.

Interventions Extent (ha) Initial cost (106 US$) Maintenance (105 US$/yr)

Swales to improve drainage in flood prone areas 10 1.800 1.080
Catchment reforestation in Pugu Forest Reserve 776 0.845 0.170
Mixed use enhanced riparian and floodplain areas (~1m deep) 488 28.00 10.360
Rehabilitated floodplain; wetland park (~2m deep) 15 3.130 0.940
Enhanced floodplain-recessed gardens (~1m deep) 51 5.360 1.070
Community-based river cleaning project 1.000 2.500
Total without resettlement costs 1340 40.135 16.12
Resettlement from the intervention areas 44
Total with maximum resettlement costs 84.135 16.12

Table 5
Breakdown of the estimated costs of the off-line storage basin.

Cost component Unit Unit cost (US
$ / unit)

Component subtotal
(106 US$)

Purchase of land 50 ha 1000 $/ha 0.05
Excavation (90% of

total volume)
2.7 × 106 m3 8.6 $/m3 23

Concrete works 20 × 103 m3 255 $/m3 5.1
Labor force (730 days) 100 people 8.48 $/day 0.62
Total direct input cost ≈ 29
Total cost including indirect and contingency costs of

36%
≈ 40
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4.2. Comparison of LCC and ROI of scenarios

All intervention scenarios significantly reduce EAL from flooding in
the flood-prone areas of the lower Msimbazi catchment compared to the
base case, with average annual costs declining by between $10 million
and $26 million, or 21% and 54% of current EAL (Table 3). Fig. 10
shows LCC (Fig. 10a) and ROI (Fig. 10b) as a function of time for the
five intervention scenarios analyzed. Note that the time scale of ROI is
represented in log-scale to facilitate near-term performance compar-
isons.

While costs vary widely among the intervention scenarios, all have
relatively short payback periods ranging from less than 8 to less than 16
years (Fig. 10). Scenarios 2 and 1 have the shortest payback period and
the highest ROI, respectively, while Scenarios 3 and 4 have the lowest
and highest LCC and thus generate the highest and lowest net present
value, respectively.

These results underline the complementary nature of the LCC and
ROI metrics. While ROI identifies the efficient alternative, that is, the
one with the highest ratio of benefits to costs, it does not indicate the
absolute size of the net benefits (NPV) of each alternative. For example,
riparian setbacks with resettlement (Scenario 1) have the highest ROI of
the alternatives analyzed for time horizons exceeding 8 years. However,
the GUD measures bundle (Scenario 2) has a higher NPV than riparian
setbacks because the difference between its LCC and that of the base
case (Scenario 0) is larger than the difference between setback and base
case LCCs. The choice between scenarios will depend on the size of the
available initial intervention budget. Budget permitting, Scenario 3 is

the preferred alternative on economic grounds as it generates the
highest present value net benefits. In addition to the availability of fi-
nancial resources, factors such as the desired length of the payback
period, impacts on other ecosystem services in addition to flood miti-
gation and their respective values, and social equity concerns, should
also be considered at the actual intervention design stage. Note that the
NPVs of our scenarios are identical to the difference in the LCC costs of
scenarios compared to those of the baseline scenario only because we
do not include benefits other than avoided flood damages. Once any
additional benefits are included in the analysis, NPV becomes a crucial
additional metric to consider alongside LCC and ROI when selecting the
preferred policy alternative or combination.

4.3. Conservative bias in our LCC and ROI estimates

It is worth noting that our LCC and ROI estimates likely are con-
servative for two reasons: first, they only account for reduced flood
damages to buildings, ignoring other flood reduction benefits in the
form of reductions in business and traffic interruption losses, public
infrastructure damage, health costs and human suffering [88,89].
Second, they ignore the large projected future increases in urban flood
damages due to socio-economic development [90].

Available models for assessing the indirect costs of riverine flooding
at the city scale are fairly complex and data-demanding [89]. Conse-
quently, indirect losses from river flooding are notoriously difficult to
estimate [88], and very few damage assessments extend beyond direct
structural flood impacts. Nevertheless, here we attempt to provide some

Fig. 10. (a) LCC, (b) ROI, and (c) NPV curves of the scenarios analyzed as a function of time.
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perspective on the relative size of flood damages not captured in our
analysis.

A survey of river flood-affected households and business units in
Jakarta, Indonesia [91] found that structural damages accounted for only
14% of total damages while content damages (physical objects in and
around buildings) accounted for 63% and indirect damages (clean-up cost,
temporary housing, cost of illness, lost income) for 24%. Carrera et al. [92]
used a computable general equilibrium (CGE) model to estimate the direct
(structural damages) and indirect impacts (business interruption losses and
associated ripple effects through the economy) of the 2000 Po river flood
in Northern Italy. They estimated that indirect impacts were approxi-
mately 20% of direct impacts. Note however that their direct impacts
include damages to all infrastructure, not just to residential and com-
mercial buildings as in our and Wijavanti et al.’s [91] analyses, while their
indirect impacts exclude losses from traffic interruptions, mortality and
morbidity. Given the widespread annual flooding of Dar es Salaam's cen-
tral business district and key transport lines and the fatalities and disease
outbreaks related to flooding, impacts on both traffic and human life and
health likely are important in the city. While ratios of direct to indirect
flood damages depend on the local context, Wijayanti et al.’s [91] and
Carrera et al.’s [92] results suggest that the direct damages to buildings –
the only type of damage included in our analysis – may account for less
than half of the total costs of flooding in Dar es Salaam. Thus, the actual
ROI and NPV of our intervention scenarios may be twice as large as our
estimates.

A review of published reports and newspaper articles indicates that
during December 2011 and October 2017, an estimated 14 fatalities oc-
curred on average per year in Dar es Salaam that were directly flood-

related. Assuming that in Tanzania the shape of the value of remaining life
years function is similar to the US [93] and that most flood-related fatalities
occur in children and people of working age, the value of a statistical life
(VSL) can serve as a rough approximation of the value of remaining life
years. Using a VSL estimate for Tanzania of USD 158,000 [94], the total
economic value of directly flood-related deaths in Dar es Salaam in recent
years is an estimated USD 2.2 million per year on average.

Applying a cost-of-illness approach, it is also possible to construct an
approximate estimate of the morbidity cost of flood-related cholera out-
breaks in Dar es Salaam. Using high temporal resolution datasets on cholera
cases and precipitation (a commonly used proxy for flooding [95]), Picarelli
et al. [96] find a statistically highly significant (p=0.01) link between
extreme rainfall and cholera cases in Dar, with each additional week of top-
quartile precipitation increasing the number of effective cholera cases by
20.3% relative to a week with very light rain, and by 22% in wards at
greater risk of flooding. Importantly, Picarelli et al. [96] find no statistically
significant link between a dry week and cholera in Dar. Trærup et al. [97]
report an average public health care services cost per cholera case in Tan-
zania of USD 98 and an average stay of 5 days in isolation units. Using the
unweighted mean of the monthly Tanzanian wage rates of the self-em-
ployed (USD 56/month), formal employees (USD 72/month) and the un-
employed (USD 37/month) [97] and assuming 26 work days per month,
and further assuming the 5000 cholera cases reported in Dar es Salaam
during the 2015–2016 outbreak [96] are representative of the average
annual number of cholera cases in the city, the total morbidity-related cost
of illness from cholera in Dar is at least USD 0.55 million per year. This
number is a low estimate because it does not include any private medical
costs from cholera and only includes officially reported cholera cases.

Fig. 11. (a,c) LCC and (b,d) ROI curves for the proposed scenarios for different discount rates: (a,b) 5% and (c,d) 7%.
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The literature [51,52] suggests a correlation between human casualties
and damages to the built environment. If the reduction in cholera cases and
flood-related deaths in the intervention scenarios is roughly proportional to
the reduction in estimated annual losses to buildings, the preferred inter-
vention scenario (scenario 3) would be expected to reduce flooding-related
mortality and morbidity costs by about 50%, or USD 1.4 million per year.
This estimate does not include the cost associated with indirect deaths from
flood-related morbidity effects or unreported deaths due to flooding, deaths
due to cholera, or medical and productivity losses from flood-related in-
juries or illnesses other than cholera.

4.4. Sensitivity analysis

To assess the robustness of our results we conducted a sensitivity ana-
lysis of two key parameters, the discount rate and the inspection and
maintenance costs of interventions. Using alternative discount rates of 5%
and 7%, respectively (Fig. 11), does not affect the ranking of mitigation
strategies; therefore, the general conclusions presented in Section 4.2 re-
main valid. Higher discount rates will lower LCC, net present value and ROI
(due to the different time profiles of costs and benefits) and increase the
payback period, while lower rates have the opposite effect.

Halving (Figs. 12a and 12b) or doubling (Figs. 12c and 12d) in-
spection and maintenance costs strongly affects the LCC and ROI of
scenarios 2–5 and changes the LCC ranking except for Scenario 3, which
remains the alternative with the highest net present value. A doubling
of inspection and maintenance costs increases payback periods (sub-
stantially so for Scenarios 4 and 5) and LCC and reduces ROI, with
Scenario 4 no longer superior to the base case (Scenario 0) but Scenario

2 remaining the second-best alternative in terms of LCC. Under halving
of inspection and maintenance costs, Scenario 5 (all interventions
combined) displaces Scenario 2 as the second-best LCC performer.

4.5. Omitted environmental and social impacts

This study focuses on evaluating the financial feasibility of the flood
mitigation scenarios and their net benefits from avoided structural damages
to buildings. It should be complemented by an environmental and social
impact assessment (ESIA) to identify potential risks of undesirable dis-
tributional impacts especially on disadvantaged and vulnerable commu-
nities. Such assessments by now are widely applied by multilateral donors,
international agencies and private lending institutions [45] and have the
purpose of evaluating project impacts on biodiversity; risks to affected
communities from changes in ecosystem services and resulting human
welfare impacts; and risks arising from involuntary resettlement and eco-
nomic displacement. While an ESIA is beyond the scope of our analysis,
here we highlight the expected main environmental and social impacts of
the analyzed flood mitigation scenarios.

All but one of those scenarios include large-scale “nature-based”
interventions such as riparian and upland forest restoration and con-
servation, and “semi-natural” interventions such as reconnected, multi-
use vegetated floodplains with riparian forest buffers and a river
cleaning program. Compared to the business-as-usual scenario, these
interventions are expected to improve upland forest habitat and reduce
sediment, nutrient, bacterial and solid waste loadings of urban water-
ways, as well as providing significant amenity value. Thus, we expect
strictly positive environmental impacts (on biodiversity and water

Fig. 12. Present value (a,c) LCC and (b,d) ROI curves for the analyzed scenarios for (a,b) half and (c,d) double inspection and maintenance costs.
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quality) for the intervention scenarios that include nature-based com-
ponents – that is, the ones preferred on LCC, ROI and NPV grounds.

Reductions in recurring damages to life and health (see Section 4.3)
and to property from flooding produce welfare gains for local residents.
The reduced sediment, nutrient, bacterial and solid waste loadings ex-
pected under all intervention scenarios may or may not be sufficient to
reduce the incidence of waterborne diseases in people in direct contact
with the river, but they certainly will not increase it. Riparian forest
buffers and multi-use floodplains will enhance the scarce recreational
opportunities available for nearby residents as well as increase food
production, again positively impacting livelihoods. However, some of
these welfare and livelihood gains may be partially offset by any ne-
gative livelihood impacts sustained by households who are resettled
from flood-prone areas. Such impacts may occur for households who
experience net income losses from resettlement that are not offset by
their resettlement compensation. Clearly, this last issue points to the
need to complement our analysis by a social impact assessment.

5. Summary and conclusion

We present a new approach for quantifying and communicating
urban-scale flood risk and mitigation strategies in developing countries
that uses a performance-based engineering approach and probabilistic
Life Cycle Cost and Return on Investment as decision variables. We
apply this approach to a case study that demonstrates the usefulness
and complementarity of LCC and ROI as decision variables for selecting
flood risk mitigation strategies, and their superiority over decision
making that considers only the initial cost of mitigation interventions.

We analyze a range of green urban development interventions that
would mitigate flood damages in Dar es Salaam by reducing either
exposure to flooding, flood hazard, or both. All scenarios outperform
the status quo base case (reducing EAL by 21–54%) and generate net
welfare gains. Absolute benefits (avoided flood damages) increase with
scenarios that include successively more comprehensive bundles of the
analyzed mitigation measures, but so do intervention costs (with initial
costs ranging from US$ 62.6–178.5 million). Among individual mea-
sures, catchment rehabilitation was found to provide higher net bene-
fits, outperforming resettlement of people from flood-prone areas or
construction of a large flood storage basin, and had the shortest pay-
back period (7.9 years). The flood storage basin provided the lowest
flood damage reduction benefit, largely because opportunities for siting
such a basin were too far downstream in the catchment to be

particularly effective. Increasing the discount rate decreases the Life
Cycle Cost and increases the payback period while leaving the ranking
of alternatives unaffected. On the other hand, increasing the size of
inspection and maintenance costs increases both LCC and payback
period and affects the ranking of alternatives.

Our results suggest that a combination of measures designed to at-
tenuate flows and improve drainage should be implemented that in-
cludes improved solid waste management and community-based river
cleaning programs, reforestation in the upper catchment, the re-
habilitation of river buffers in the middle catchment and the re-
connection of floodplains in the lower reaches that are redesigned for
both flood storage and flooding-compatible additional uses including
agriculture and recreation. This could be part of an even broader
catchment-to-coast rehabilitation program for the Msimbazi River
system that also aims to address water quality problems and the need
for green open space within the rapidly-growing city.

Due to limited data availability, this study utilized simple models
and assumptions for the hydrologic analysis. Investment in the devel-
opment of better hydrological data, through establishment of high
temporal resolution stream flow and additional rainfall gauges, and
detailed spatial datasets on soils, land cover, the built environment and
the city's subsurface drainage systems are needed to reduce un-
certainties in our results. In addition, future work should focus on
mapping actual flood footprints and associated housing and infra-
structure damages to allow model calibration. While our results are
preliminary and warrant further study, they nevertheless strongly
suggest that catchment rehabilitation interventions are likely to yield
substantial economic net benefits in Dar es Salaam from reduced
building damages from flooding alone. This means there exists eco-
nomic justification for moving towards a greener flood management
approach for the city. While the latter likely would yield important
social and environmental co-benefits and associated welfare gains [44],
its implementation must be preceded by a social impact assessment to
identify and mitigate any negative impacts on disadvantaged and vul-
nerable urban sectors.
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Appendix A

Two main sources have been used: the National Construction Council of Tanzania (www.ncc.org.zm) and the 26th edition of annual African
Property and Construction Handbook (http://www.coolrooftoolkit.org/wp-content/uploads/2014/07/AEcomConstructionHandbookFinal_v2.pdf)
released by AECOM (Table A1).

Table A1
Unit costs for building type.

Building type Unit cost US$/m2

Swahili house 100
Bungalow, corrugated iron sheet roofing 120
Bungalow, tiled roof 150
Bungalow, slab roof 180
Maisonette double storey, slab roof 170
Flats 150
Residential average multi-unit high-rise 667
Residential Luxury unit high rise 894
Residential Individual prestige house 964
Commercial Standard office high rise 823
Commercial Prestige office high rise 1041
Commercial Major shopping center 765
Industrial light duty factory 616
Industrial heavy duty factory 1100
Car park 490
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Appendix B

This section focuses on the costs of construction, such as the land purchase, earthwork, etc. The values reported below present the information
collected from the Tanzania National Construction Council and from the study of different ongoing projects in Dar es Salaam.

The transport to the waste treatment plant of the removed soil/derbies is assumed having a percentage of 10% of the total earthwork cost.
To the input costs listed in Tables B1–B3 we added overhead costs expressed as a percentage of total input cost. Table B4 below lists these

overhead costs by type as a percentage of the total civil works input cost.
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