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Abstract. The need for adaptive systems is growing with the increasing number 
of autonomous entities such as software systems and robots. A key characteris-
tic of adaptive systems is that their environment changes, possibly in ways that 
were not envisaged at design-time. These changes in requirements, model and 
context mean the functional behaviour of a system cannot be fully defined in 
many cases, and consequently formal verification of the system is not possible. 
In this research, we propose a fuzzy representation to describe the result of re-
quirement verification. We use an adaptive assisted living system as the case 
study. The RELAX language is used to create a flexible system specification. 
We model and simulate the system using UPPAAL 4 and use a fuzzy approach 
to translate the simulation result into fuzzy requirement satisfaction. The result 
shows the benefit of a more flexible representation by describing the degree of 
requirement satisfaction rather than a strict yes/no Boolean judgment. 

Keywords: fuzzy, requirement satisfaction, adaptive system. 

1 Introduction 

The trend towards intelligent and autonomous systems (such as assistive robots, au-
tonomous vehicles, network controllers and other intelligent software agents) has led 
to a need to create software that is increasingly adaptive. An adaptive system is de-
fined as one that can alter its behaviour to suit changes in its environment [1] such as 
sensor failures, human factors, or network condition. The adaptation subsequently 
modifies requirements, models, and context making it harder to verify, particularly 
when changes may have not have been fully anticipated by designers.  

RELAX is a requirements engineering language for adaptive systems, able to cap-
ture the uncertainty in adaptive system requirements [2] so that the verification pro-
cess can become easier. RELAX was combined with SysML/KAOS which is a goal 
oriented requirement engineering to model self-adaptive system in UML modelling 
language [3]. Unfortunately, RELAX is only a requirement language to describe sys-
tem specification and is unable to assess requirement satisfaction. 

Verification is a way to prove or to disprove requirement satisfaction in a system 
[4]. The classic way of describing requirement satisfaction is using Boolean values, 
i.e. a yes or no answer. Using this approach, we only know whether a requirement is 
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satisfied or not - we are unable to know that a requirement was almost always satis-
fied, or that it was almost satisfied in all cases.  

Thus, in this research we utilize a fuzzy approach to describe the degree to which 
a requirement is satisfied, when the requirement is specified in RELAX. We used 
UPPAAL [5] to model and simulate the system. The simulation result is translated 
into a fuzzy representation showing the degree to which the requirement is satisfied. 
The application is adapted from the RELAX description [2] and is intended to demon-
strate the principles of our approach rather than to be a fully realistic system. 

2 Background 

2.1 Fuzzy Sets 

Classical set theory uses Boolean truth values (0 for false and 1 for true) to represent 
set membership. On the other hand, as noted by Zadeh [6], many concepts used in 
natural language are loosely defined and admit elements according to a scale of mem-
bership rather than according to an absolute yes/no test. Since requirements are initial-
ly expressed in natural language, and concepts can be regarded as labels for sets of 
entities, it makes sense to use a fuzzy representation for flexible requirements. The 
key idea of a fuzzy set is that its elements are members of a set to some degree, and 
that a specific element can belong to a greater (or lesser) degree than another element. 
This is obvious when the membership is based on a numerical measurement (e.g. tall 
people or expensive restaurants) and is equally valid in more complex concepts such 
as socially-responsible company, or reliable software.  Fuzzy set theory, in its sim-
plest form, expresses set membership as a real number between 0 and 1. By using a 
fuzzy approach, we can represent requirements in a more flexible way [6].  

For example, consider a set of coffee drinks. Instead of assessing the sweetness in 
a crisp format such as sweet or bitter, a fuzzy approach describes it in a more flexible 
way such as sweet, rather sweet, rather bitter (or slightly sweet) and bitter (not sweet). 
This flexible representation is more commonly used in human language.  

A fuzzy set can be represented by a membership function which maps elements in 
the universe U to a membership value between 0 and 1 as shown in equation 1. 

 f:U→[0,1] (1) 

For the coffee drinks example, we may measure sweetness based on how many 
spoons of sugar are added. Let us say that 3 spoons are sweet and no sugar added is 
bitter. Then we can represent coffee sweetness by a fuzzy membership as shown in 
Table 1. 

Table 1.  Representation of coffee sweetness membership function f(x)
Spoon of sugar x Fuzzy value f(x) 

3 1 
2 0.67 
1 0.33 
0 0 

 
U: {0, 1, 2, 3} 
f:U → [0,1] 

𝑓(𝑥)



The X-µ representation of fuzzy sets [7] focuses on the degree of membership and 
views a fuzzy set as a collection of objects with a loosely defined boundary. At differ-
ent membership grades, we have different sets. Thus, if asked to define sweet coffee, 
we would accept coffee containing 3 spoons of sugar as a definite member. By relax-
ing the definition slightly (i.e. lowering the membership threshold) we would accept 
coffee with 2 or 3 spoons; by relaxing it even more, we might accept 1, 2, or 3 spoons 
of sugar. The strength of X-µ lies in its focus on crisp sets, which can be processed by 
standard methods; these sets vary according to the membership threshold.  
 
2.2 RELAX Requirement Language 

A dynamically adaptive system (DAS) can have large uncertainty due to continuous 
change of the system by the modification of its environment. Subsequently, satisfying 
the system requirement becomes more challenging and hence, a tolerance of require-
ment satisfaction is necessary. To facilitate this toleration, the requirement language 
called RELAX was proposed [2]. 

RELAX allows requirement specifications to be written in a structured natural lan-
guage. Requirements are written using the SHALL operator. For non-invariant re-
quirements, the SHALL operator will be followed by a temporal operator to handle its 
flexibility. The RELAX grammar is shown below (see formulae (2)).  

ϕ ∷= 𝑡𝑟𝑢𝑒  𝑓𝑎𝑙𝑠𝑒  𝑃  𝑆𝐻𝐴𝐿𝐿 ϕ  MAY ϕ! OR MAY ϕ! 

 𝐸𝑉𝐸𝑁𝑇𝑈𝐴𝐿𝐿𝑌 ϕ  ϕ!UNTIL ϕ!  𝐵𝐸𝐹𝑂𝑅𝐸 𝑒 ϕ   

AFTER e ϕ  IN t ϕ  AS CLOSE AS POSSIBLE f ϕ | 

AS EARLY, LATE,MANY, FEW  AS POSSIBLE ϕ                (2) 

RELAX semantics are expressed using fuzzy branching temporal logic (FBTL)[8]. 
Moreover, FBTL describes requirement satisfaction using a standard fuzzy member-
ship scale of real numbers between [0, 1] instead of saying the requirements are satis-
fied or not. The semantics of RELAX are shown in Fig. 1. 

3 Fuzzy for Requirement Satisfaction Representation 

To show how we can represent fuzzy requirement satisfaction, we use the example 
given in [2], of an adaptive assisted living system, focusing on R1.1 and R1.2. The 
RELAX requirements we use are shown in Table 2. UPPAAL 4 was used to model 
and simulate the system [9].  

Table 2. AAL requirements used as example 
R1.1 The fridge SHALL detect and communicate information with AS MANY food pack-

ages AS POSSIBLE 
R1.2 The fridge SHALL suggest a dietplan with total calories AS CLOSE AS POSSIBLE 

TO the daily ideal calories 
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Fig. 1.  Semantics of RELAX expressions[2] 

The model of the food information detection sub system is shown in Fig. 1. A sen-
sor in the fridge will detect food information once a day. We used probability 1:9 to 
model unforeseen situations that make the food information sensor unable to gather 
the information on all packages. This is represented in the subsystem diagram by the 
dotted lines labelled 9 and 1. The success of the system depends on how many food 
packages are not detected. We use a variable r in the model to represent the number of 
undetected food packages, to be relaxed in accordance with the requirement “as many 
as possible”. The system does not meet the requirement if it fails to detect food pack-
ages r or more times, otherwise it meets this requirement. RELAX-ing R1.1 allows us 
to incorporate flexibility, which means that this system requirement is considered 
satisfied to a degree even though a certain number of food packages are not detected. 
The fuzzy membership function f(x) is used to represent the fuzzy requirement (see 
Equation (3)), where r is the (relaxed) threshold value and ∆x is the number of unde-
tected food packages. The X-µ interpretation is that at membership 1, the system must 
detect all 10 food packages to satisfy “as many as possible”, at membership 0.75, 
either 9 or 10 packages must be detected, etc. 

𝑓 ∆𝑥 =  
𝑖𝑓 ∆𝑥 ≤ 𝑟,   (!!!)!∆!

!!!

𝑒𝑙𝑠𝑒,    0
   (3) 

In this simple case, the process can also be treated analytically. Fig. 3 shows the re-
lationship between the degree of relaxation and the probability that the system detects 
all food packages for a range of detection probabilities. For the fully relaxed defini-
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tion of as many as possible (i.e. at least 7 out of 10 packages), a sensor success rate of 
0.9 or 0.98 will almost always detect "all" food packages. 

 

Fig. 2. UPPAAL model to detect food information 

 
Fig. 3. Probability of detecting all food packages vs relaxation of "all" definition. The y-axis 

shows the probability, the x-axis shows the degree of relaxation in the definition of all  

In general, we use extended simulation of the system to determine the degree to 
which the system satisfies the relaxed requirements. Fig. 4 shows the simulation re-
sult of the system model to gather food information. The system performs this task 
daily. The blue line represents the real food in the fridge and the red line shows the 
food info that was successfully detected. Moreover, the green one is the absolute min-
imum food information that should be detected by the system in order for the system 
to be considered as meeting requirements. In this case, the number of undetected 
packages is RELAX-ed by 3, so it is considered as a success (to some degree) if the 
number of undetected food packages is 3 or less. From the chart, we can see that the 
simulated system works well except at day 32. It means that out of 40 days, the sys-
tem fails only once in gathering minimum food information. Fig. 5 shows the (fuzzy) 
degree to which the requirement is met during 40 days’ simulation. 

The model of daily calorie intake in Fig. 6 assumes that Mary1 has three meals and 
two snacks time a day where each meal is suggested to be 400 calories and snack 200 
calories. The next meal calorie suggestion will be calculated based on how many 
                                                             
1 Mary is the subject of the assisted living system described in the RELAX paper 
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calories have been taken up to the current meal. If the system detects that Mary has 
not taken her meal, it will activate the alarm (3 times). At the end of the day, the sys-
tem computes total calorie intake and calorie deviation to 1600 calories. The value of 
1600 calories is based on calorie calculator 2 which is suggested the total calorie for 
65-year-old female, overweight and sedentary activity. The system will be relaxed by 
± r calories and will send a warning to the care-giver or other parties if the diet fails. 

 
Fig. 4. Simulation result on food information detection 

 
Fig. 5. Fuzzy requirement satisfaction of food detection for 40 days’ simulation 

The simulation result of calorie intake is shown in Fig. 7. The blue line is the daily 
calorie intake, whilst the green and red lines are the maximum and minimum relaxed 
calorie intake, respectively. The graph shows rough rises and falls because the deci-
sion on taking meals depends on Mary herself. The system can only remind her (acti-
vate alarm) and gives warnings if Mary fails to follow the ideal daily intake as shown 
in the model (see Fig. 6). 

 

                                                             
2 http://www.healthycalculators.com/calories-intake-requirement.php 
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Fig. 6. UPPAAL model to monitor calorie intake 

Equation (4) is the membership function f(x) used to convert the value of daily cal-
orie intake into fuzzy, where r is relaxing value of calorie deviation and ∆x is the 
actual calorie deviation indicating the difference of ideal daily calorie intake to real 
consumption. As for the fuzzy requirement satisfaction of calorie intake is described 
in Fig. 8. 

𝑓 ∆𝑥 =
−𝑟 ≤ ∆𝑥 ≤ 𝑟,    (!!!)! ∆!

(!!!)

𝑒𝑙𝑠𝑒,        0 
 (4) 

 
Fig. 7. The simulation result on daily calorie intake 

 

 

Fig. 8. Fuzzy satisfaction of calorie intake.  
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Fig. 5 and Fig. 8 describe the satisfaction of RELAX requirement. Fuzzy value 1 
indicates that the requirement is fully satisfied and 0 means it is unsatisfied, and val-
ues in between indicate that the requirement is satisfied to some degree. 

4 Conclusion 

This paper introduces a new way of representing requirement satisfaction using a 
fuzzy model of flexible requirements. We have modelled a simple system to illustrate 
the underlying ideas, with the requirement specification written in the RELAX lan-
guage and UPPAAL 4 used to model and simulate the system. The fuzzy approach 
has more flexibility than the classic crisp representation so we can describe the degree 
to which the requirement is satisfied. Simulations are included to illustrate the princi-
ples of the approach, and additional analysis will be undertaken to investigate the 
sensitivity and requirements for reliable simulation. 

Future work will examine the theoretical aspects of this approach in greater detail, 
and develop a fully integrated approach to modelling and refining flexible require-
ments so that we can verify that a system satisfies the requirements to some degree.  
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