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Abstract Herd immunity, a process in which resistant individuals limit the spread of a pathogen9

among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have10

evolved multiple immune systems against their phage pathogens, herd immunity in bacteria11

remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage12

epidemics in structured and unstructured Escherichia coli populations consisting of differing13

frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a14

mathematical model that quantifies how herd immunity is affected by spatial population structure,15

bacterial growth rate, and phage replication rate. Using our model we infer a general16

epidemiological rule describing the relative speed of an epidemic in partially resistant spatially17

structured populations. Our experimental and theoretical findings indicate that herd immunity may18

be important in bacterial communities, allowing for stable coexistence of bacteria and their phages19

and the maintenance of polymorphism in bacterial immunity.20
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Introduction22

The term “herd immunity” has been used in a variety of ways by different authors (see Fine23

et al., 2011). Here, we define it as a phenomenon where a fraction of resistant individuals in a24

population reduces the probability of transmission of a pathogen among the susceptible individuals.25

Furthermore, if the fraction of resistant individuals in a population is sufficiently large the spread of26

a pathogen is suppressed. Experimental research into the phenomenon has focused mostly on27

mammals (Jeltsch et al., 1997;Mariner et al., 2012), birds (Boven et al., 2008;Meister et al., 2008),28

and invertebrates (Konrad et al., 2012;Wang et al., 2013). In human populations the principles of29

herd immunity were employed to limit epidemics of pathogens through vaccination programs (Fine30

et al., 2011), which in the case of smallpox lead to its eradication between 1959 and 1977 (Fenner,31

1993).32

Alongside advances in vaccination programs, the formalization of a general theory of herd33

immunity was developed. The theory is based on a central parameter, R0, which describes the34

fitness of the pathogen, as measured by the number of subsequent cases that arise from one35

infected individual in a population (for a historical review of R0 see (Heesterbeek, 2002)). Thus, R036

indicates the epidemic spreading potential in a population. Given R0 the herd immunity threshold37

is defined as,38

H =
R0 − 1

R0

, (1)

which determines the required minimum fraction of resistant individuals needed to halt the spread39

of an epidemic. R0 and subsequently also H are affected by the specific details of transmission40

and the contact rate among individuals (Grassly and Fraser, 2008). Many theoretical studies have41

addressed the influence of some of these details, in particular maternal immunity (Anderson and42

May, 1992), age at vaccination (Anderson and May, 1982; Nokes and Anderson, 1988), age related43

or seasonal differences in contact rates (Schenzle, 1984; Anderson and May, 1985; Yorke et al.,44

1979), social structure (Fox et al., 1971), geographic heterogeneity (Anderson and May, 1984; Lloyd45

and May, 1996; Real and Biek, 2007), and the underlying contact network of individuals (Ferrari46

et al., 2006).47

Interestingly, little work has focused on the potential role of herd immunity in microbial systems48

which contain a number of immune defense systems and have an abundance of phage pathogens.49

These defenses vary in their potential to provide herd immunity as they target various stages of the50
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Figure 1. Mechanism of CRISPR/Cas type II immunity. The CRISPR/Cas system provides immunity to

phages and its main features can be described by three distinct stages. (A) Acquisition. When a cell gets infected

by a phage, a protospacer on the invading phage DNA (indicated as a red bar) is recognized by Cas1 and Cas2.

The protospacer is cleaved out and ligated to the leader end (proximal to the Cas genes) of the CRISPR array as

a newly acquired spacer (red diamond). (B) Processing. The CRISPR array is transcribed as a Pre-crRNA and

processed by Cas9 (assisted by RNaseIII and trans–activating RNA, not shown) into mature crRNAs. (C)

Interference. Mature crRNAs associate with Cas9 proteins to form interference complexes which are guided by

sequence complementarity between the crRNAs and protospacers to cleave invading DNA of phages whose

protospacers have been previously incorporated into the CRISPR array. (D) A truncated version of the CRISPR

system on a low copy plasmid, which was used in this study lacks cas1 and cas2 genes and was engineered to

target a protospacer on the T7 phage chromosome to provide Escherichia coli cells with immunity to the phage.

The susceptible strain contains the same plasmid except the spacer does not target the T7 phage chromosome.

phage life cycle, from adsorption to replication and lysis. Early defense mechanisms include the51

prevention of phage adsorption by blocking of phage receptors (Nordström and Forsgren, 1974),52

production of an extracellular matrix (Hammad, 1998; Sutherland et al., 2004), or the excretion of53

competitive inhibitors (Destoumieux-Garzón et al., 2005). Alongside these bacteria have evolved54

innate immune systems that target phage genomes for destruction. These include host restriction-55

modification systems (RMS) (Blumenthal and Cheng, 2002), argonaute-based RNAi-like systems56

(Swarts et al., 2014), and bacteriophage-exclusion (BREX) systems (Goldfarb et al., 2015). In addition57
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to innate systems, bacteria have evolved an adaptive immune system called CRISPR-Cas (clustered58

regularly interspaced short palindromic repeat) (Sorek et al., 2013). In order for any of these59

immune systems to provide herd immunity, they must prevent further spread of the pathogen.60

Therefore, unless the phage particles degrade in the environment at a timescale comparable to61

the phage adsorption rate, the immune system must provide a ‘sink’ for the infectious particles62

reducing the average number of successful additional infections below one. Unlike the early defense63

mechanisms that may simply prevent an infection but not the further reproduction of infectious64

particles, the RMS, BREX, argonaute-based RNAi-like, and the CRISPR-Cas systems degrade foreign65

phage DNA after it is injected into the cell, and thus continue to remove phage particles from the66

environment, which increases their potential to provide herd immunity. In order for herd immunity67

to arise, the population must also be polymorphic for immunity, which can be achieved if immunity68

is plasmid borne. In addition to this, the CRISPR-Cas system is unique in that it is adaptive allowing69

cells to acquire immunity upon infection (see Fig 1A, B, and C), which can lead to polymorphism in70

immunity even if the system is chromosomal.71

In addition to immune system-specific factors, the reproductive rate of phage depends strongly72

on the physiology of the host bacterium (Hadas et al., 1997), and the underlying effective contact73

network which may vary greatly in bacterial populations depending on the details of their habitat.74

Thus, herd immunity will be influenced by the physiological state of the bacteria and the mobility75

of the phage in the environment through passive diffusion and movement of infected individuals.76

Taken together these details call into question the applicability of the traditional models of herd77

immunity from vertebrates to phage-bacterial systems. Thus, experimental investigation and78

further development of extended models that take into account the specifics of microbial systems79

are required.80

To investigate under which conditions herd immunity may arise in bacterial populations, we81

constructed an experimental system consisting of T7 phage and bacterial strains susceptible and82

resistant to it. Our experimental system can be characterized by the following features. First,83

we used two strains of Escherichia coli, one with an engineered CRISPR-based immunity to the T784

phage, and the other lacking it (Fig 1D). Second, we examined the dynamics of the phage spread in85

different environments – spatially structured and without structure. Furthermore, we developed86

and analyzed a spatially explicit model of our experimental system to determine the biologically87

relevant parameters necessary for bacterial populations to exhibit herd immunity.88
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Figure 2. Efficiency of bacterial resistance. (A) The probability that a resistant cell bursts, relative to a

susceptible cell, at three different initial multiplicities of infection (MOI). The probability that a resistant cell

bursts at MOI 1000 is significantly higher than at MOI 10 (p = 0.019, t4 = 3.031) or at MOI 100 (p = 0.022, t5 = 2.674).

The error bars show the standard deviations from the mean. Note that this measure is not a widely used

’efficiency of plating’ but it determines the probability of burst of single resistant cells (see Materials and

Methods for details). (B) The number of colony forming units (CFUs) post phage challenge (see Materials and

Methods). The mean number of CFUs after the bacterial cultures were exposed to the phage is not significantly

different between susceptible and resistant strains at MOI 10 (p = 0.239, t22 = 0.721) and (C) at MOI 100 (p = 0.27,

t30 = 1.124), indicating that the resistant cells’ growth is halted after the cells are infected by a phage. The error

bars show the standard deviations from the mean. There were no detectable CFUs in either susceptible or

resistant cell cultures at MOI 1000. It should be noted that the indicated MOI values do not correspond to the

average number of phages that adsorb to cells in the experiments. For MOI 10 we estimated the mean number

of phages per cell as 0.229 and for MOI 100 as 0.988 (see Materials and Methods for details). It was impossible

to determine the mean for MOI 1000 as there were no detectable CFUs under such conditions. The data

presented in this figure can be found in Figure 2-source data 1.

The following source data are available for Figure 2:

Source data 1. Efficiency of bacterial resistance.

Results89

Properties of resistant individuals90

We engineered a resistant E. coli strain by introducing the CRISPR-Cas Type II system from Streptococ-91

cus pyogenes with a spacer targeting the T7 phage genome (see Material and Methods). We further92

characterized the ability of the system to confer resistance to the phage. We find a significant level93

of resistance as measured by the probability of cell burst when exposed to T7 (Fig 2A). However,94

resistance is not fully penetrant as approximately 1 in 1000 resistant cells succumb to infection. In95

addition, we observe that as phage load increases (multiplicity of infection, MOI) the probability96

that a cell bursts increases (Fig 2A). In order to determine the herd immunity threshold in our97
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experimental system, we constructed the resistant strain such that upon infection the cell growth98

is halted, yet the cell still adsorbs and degrades phages (Fig 2B,C). This feature is important as it99

prevents the action of frequency dependent selection which in naturally growing populations will100

favor the resistant strain until its frequency reaches the herd immunity threshold. Thus, in our101

system if the frequency of the resistant strain is below the herd immunity threshold, the resistant102

cells remain below the threshold and are unable to stop the epidemic and the whole population103

collapses. In contrast, if the frequency of resistant individuals in the population is above the herd104

immunity threshold, the resistant individuals provide complete herd immunity and the population105

survives. These properties allow us to quantify the expanding epidemic in both liquid media and on106

bacterial lawns (without and with spatial structure, respectively) using high throughput techniques.107

Specifically, it allows us to control for the complex dynamics of the system arising from frequency108

dependent selection and simultaneous changes in the physiological states of the cells (growth rates109

depending on the nutrient concentrations) and phage (burst size, latent period depending on the110

cell’s physiology).111

It should be noted that our model does not reflect this artificial property – it assumes that112

resistant bacteria keep growing after successfully overcoming a phage infection (see Eqn. (2d)).113

This discrepancy, however, does not affect the model prediction of the herd immunity threshold114

in our experimental system for the following reason: time scale of an epidemic spread through a115

population (double exponential phage growth) is substantially shorter than the time scale of bacte-116

rial population growth (exponential growth). Therefore, whether or not an epidemic is established117

does not depend on later dynamics of frequencies of resistant and susceptible individuals in the118

population, it only depends on the initial conditions. Similarly, the model correctly captures the119

dynamics of an epidemic in spatially structured populations as the phage spreads radially and in120

every time-point the epidemic front encounters a naive population with a constant ratio of resistant121

to susceptible individuals.122

Herd immunity in populations without spatial structure123

To understand the influence of spatial population structure, or lack thereof, we first measured the124

probability of population survival (i.e., whether the cultures are cleared or not) in well mixed liquid125

environments (no spatial structure) consisting of differing proportions of resistant to susceptible126

individuals and T7 phage. When the percentage of resistant individuals is in excess of 99.6% all127
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Figure 3. Fraction of surviving populations at 18ℎ post phage infection. Bacterial populations consisting

of various fractions of resistant to susceptible individuals infected with ≈ 50 phages, corresponding to a

multiplicity of infection (MOI) of ≈ 10−4, designed to resemble an epidemic initiated by the burst size from one

infected individual (see Table 3 for burst size estimates). Each population phage challenge is replicated 16 times.

The solid dark green line shows the model prediction, Eqn. (4), for the herd immunity threshold (H ), given latent

period (�), bacterial growth rate (�), and phage burst size (�). Shaded area indicates ±1 standard deviation. The

data presented in this figure can be found in Figure 3–source data 1.

The following source data are available for Figure 3:

Source data 1. Fraction of surviving populations at 18h post phage infection.

16 replicate populations survive a phage epidemic (i.e., show no detectable difference in growth128

profiles to the phage free controls; Fig 3). Populations with 99.2% and 98.4% resistant individuals129

show intermediate probabilities of survival – 10 out of 16 replicate populations and 4 out of 16130

replicate populations survive, respectively (Fig 3). The likely explanation as to why some populations131

survive and others collapse is due to the stochastic nature of phage adsorption after inoculation: If132

the population composition is close to the herd immunity threshold a stochastic excess of phage133

particles adsorbing to susceptible cells may trigger an epidemic, whereas if chance increases the134

number of phages adsorbing to resistant individuals, the epidemic is suppressed. However, when135

populations have fewer than 96.9% resistant individuals all 16 replicate populations fail to survive136

and collapse under the epidemic (Fig 3).137

As mentioned in the introduction, phage and bacterial physiology may affect the herd immunity138

threshold. To test this we altered bacterial growth by reducing the concentration of nutrients in139

the medium by mixing LB broth with 1X M9 salts in different ratios (Fig 6), which concurrently140

alters the T7 phage’s latent period and burst size (Fig 4A,B and Table 3). Indeed, we observe as141

bacterial growth rates decline the fraction of resistant individuals necessary for population survival142
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decreases (Fig 4C). When the populations are grown in a 50% diluted growth medium, the fraction143

of resistant individuals required for a 100% probability of survival is 99.2%; when the fraction of144

resistant individuals is 75% or less populations go extinct. In a 20% growth medium the fraction of145

resistant individuals required for survival decreases to 96.9%, while the fraction when all replicates146

collapse to 50%.147

From the experimental observations of the herd immunity threshold values we infer the phage148

R0 using Eqn. 1. In an undiluted growth medium the phage R0 falls between 32 and 256 and149

decreases to between 4 and 128 in 50% and between 2 and 32 in 20% nutrient medium. These data150

indicate that bacterial populations can exhibit herd immunity in homogeneous liquid environments.151

However, bacteria typically live in spatially structured environments such as surfaces, biofilms or152

micro-colonies, therefore we extended our experiments to consider the potential impact of spatially153

structured populations.154

Herd immunity in spatially structured populations155

In order to discern the role, if any, spatial structure plays in herd immunity we conducted a set of156

experiments in spatially structured bacterial lawns on agar plates. Spatially structured bacterial157

populations provide a more fine grained measure of herd immunity, compared to the population158

survival assays done in liquid culture. On bacterial lawns, phages spread radially from a single159

infectious phage particle and the radius of plaque growth on different proportions of resistant to160

susceptible individuals can be easily quantified. In addition, these data allow for estimating the161

speed of the epidemic wave front in these different regimes using real-time imaging (Fig 5A).162

We observe a decline in the number of plaque forming units (see Appendix figure 2) and a163

significant decrease in final plaque sizes as the proportion of resistant individuals in the populations164

increases (Fig 5B,C). A reduction in the final plaque size compared to a fully susceptible population165

was statistically significant with as few as 10% resistant individuals in a population (p = 0.004, t53 =166

2.744). In order to determine the effect of resistant individuals during the earlier phase of bacterial167

growth (until the bacterial density on the agar plate reaches saturation; Fig 6A), we analyze the168

velocities of plaque growth between 0 and 24 hours post inoculation (ℎpi). We find that the speed169

is significantly reduced after 11ℎpi when the population consists of as few as 10% of resistant170

individuals (p = 0.0317, t32 = 1.923). As the fraction of resistant individuals further increases, the171

speed declines significantly at earlier and earlier time points: 6ℎpi with 20% (p = 0.0392, t62 = 1.79),172
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Figure 4. Herd immunity threshold in liquid culture as a function of bacterial growth. (A) Phage burst

size (�) change as a function of nutrient concentrations. (B) Latent period (�) increase across the range of

nutrient concentrations. Values for � and � are given in Table 3. Nutrient concentration N is measured relative

to the standard protocol for LB medium. (C) Population survival analysis upon phage challenge as a function of

the fraction of resistant cells and the intrinsic growth rate (nutrient availability, N ). Bacteria survive the phage

infection (full circles), collapse (empty circles), or exhibit both outcomes (circled dots) in the 16 to 18 replicates,

done in 3 independent batches. Light green errorbars for measured data show the expected value and its

standard deviation ofH(�), Eq. (5), with standard error propagation of the measured �, � and �. In order to

interpolate herd immunity to concentrations N not probed in experiments (dark green line), we use a second

order polynomial in N to fit the data for both �∕� and �, which excellently matches the average measurements

(a naive linear fit displays non-negligible deviations and non-sensical negative values). In addition, the

dependence � = �(N) is obtained by numerically inverting the Monod growth rate dependence, see Eq. (9). The

data presented in this figure can be found in Figure 4–source data1 and Figure 4–source data 2.

The following source data are available for Figure 4:

Source data 1. Figure 4A and 4B source data: Phage burst sizes and latent period in different dilutions of the

growth medium.

Source data 2. Figure 4C: Fraction of surviving populations in different dilutions of the growth medium.

and 5.67ℎpi with 30% (p = 0.0286, t53 = 1.943). In fact, when the fraction of resistant individuals173

exceeds 40%, the reduction in the speed of the spread is statistically significant immediately after174

the plaques are visually detectable (Fig 7). It should be noted that all populations with such low175

percentages of resistant individuals in liquid environment collapsed, indicating that spatial structure176

plays a role in herd immunity.177

The results presented in this and the previous section would allow us to use Eq. (1) to infer a178

value for R0 from the observed threshold between surviving and collapsing bacterial populations,179
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Figure 5. Properties of expanding phage epidemics on bacterial lawns. (A) Example of plaque

morphology and size change over 48 hours for populations with 50% resistant cells (top) and a control with

100% susceptible cells (bottom). (B) Mean plaque size area through time. Colors indicate the different fraction

of resistant individuals (color coding as in panel C). Note the distinct two phases of plaque growth – initially,

phage grow fast with exponentially growing bacteria but slow once the nutrients are depleted (≈ 10 hours). The

plaque radius is reduced, relative to 100% susceptible population, even when only a small fraction of resistant

individuals are in the population. (C) Final plaque radius at 48 ℎpi. Green line shows the prediction from the

model for the plaque radius r. Grey numbers indicate the number of plaques measured. Error bars indicate the

standard deviations. The data presented in this figure can be found in Figure 5–source data1.

The following source data are available for Figure 5:

Source data 1. Plaque radii for all population compositions and time points.

Figs 3 and 4. We also observe that herd immunity is strongly influenced by spatial organization of180

the population, Fig 5. How the exact value ofH (and subsequently the “classical” epidemiological181

parameter R0) is affected by various factors such as bacterial growth rate, phage burst size and182

latent period is, however, difficult to resolve experimentally. Similarly, quantification of the effect of183

spatial structure is hardly achievable solely by experimental investigation. In order to disentangle184

the roles of all the factors mentioned above, we proceed with development and analysis of a185

mathematical model of the experimental system.186

Modelling bacterial herd immunity187

We developed a model of phage growth that takes several physiological processes into account:188

bacterial growth during the experiment, bacterial mortality due to phage infection, and phage189
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mortality due to bacterial immunity. Furthermore, we use the previously reported observation that190

phage burst size � and latent period � depend strongly on the bacterial growth rate � (see Table 2).191

The main processes in our model system can be defined by the following set of reactions,192

Bs + yN
�

⟶ 2Bs , (2a)

Br + yN
�

⟶ 2Br , (2b)

Bs + P
A

⟶

(
BsP

) 1∕�
⟶ � P , (2c)

Br + P
A

⟶

(
BrP

) ⎧⎪⎨⎪⎩

fast
⟶ Br ,

slow
⤏ � P .

(2d)

Susceptible (Bs) and resistant (Br ) cells grow at a rate � (no significant difference in growth rate193

between strains, �(Bs) = 0.551 ± 0.045ℎ−1, �(Br) = 0.535 ± 0.023ℎ−1, t70 = 1.867, p = 0.066), (2a) and194

(2b), by using an amount y of the nutrientsN . Phage infection first involves adsorption to host cells,195

(2c) and (2d), with the adsorption term A specified below. Infected susceptible bacteria produce on196

average � phage with a rate inversely proportional to the average latency �. In contrast, resistant197

bacteria either survive by restricting phage DNA via their CRISPR-Cas immune system or – less likely198

– succumb to the phage infection. However, when the MOI is large even resistant cells become199

susceptible to lysis resulting in the release of phage progeny (see Fig 2) (Westra et al., 2015; Chabas200

et al., 2016).201

In our system, bacteria eventually deplete the available nutrients, N(t > Tdepl) = 0, resulting in202

the cessation of growth. This decline in bacterial growth affects phage growth – latency increases203

and burst size decreases, such that phage reproduction declines dramatically (see Table 3). We204

define the critical time point at which cells transition from exponential growth to stationary phase205

as,206

Tdepl ≈
1

�
log

(
B∞

B0

)
. (3)

Here, B0 and B∞ are the initial and final bacterial densities, respectively. In the initial exponential207

growth phase, our estimates from experimental data for growth parameters are � = 0.63ℎ−1, � =208

85.6 phages∕cell and � = 0.60ℎ, for bacteria and phages, respectively (Table 2 and Table 3). After time209

Tdepl, bacterial growth rate is set to zero (� = 0) and phage growth is reduced to �depl = 3.0 phages∕cell210

and �depl = 1.69ℎ. Such a two state model – constant growth rate while nutrients are present and no211

growth after depletion – describes the observed population trajectories in experiments sufficiently212

well (see Fig 6).213
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Modelling herd immunity in populations without structure214

An important parameter for estimating herd immunity is the fraction S of susceptible bacteria215

in the population. As a first estimate, a phage infection spreads in well mixed bacterial cultures216

if �S > 1, which leads to a continuous chain of infections: the product of burst size � of phage217

particles and the probability S of infecting a susceptible host has to be larger than one. As a first218

approximation, one could identify R0 with the burst size �, which is compatible with the observed219

herd immunity thresholds when inverting Eq. (1).220

However, the growing bacterial population could outgrow the phage population if the former221

reproduces faster (e.g., in the case of RNA coliphages, van Duin, 1988), which introduces deviations222

from the simple relation between R0 andH as shown in (1). We capture this dynamical effect in a223

correction to the previous estimate as �S > 1 + �� (see Materials and Methods): more phages have224

to be produced for the chain of infections to persist in growing populations. The correction �

1∕�
is225

the ratio of generation times of phages over bacteria – usually, such a correction is very small for226

non-microbial hosts and can be neglected. Ultimately, herd immunity is achieved if the threshold227

defined byH = 1 − Sc is exceeded, with Sc the critical value in the inequality above. Rearranging,228

we obtain an expression for the herd immunity threshold229

H =
� − 1 − ��

�
. (4)

This estimate ofH coincides to a very good extent with the population compositions of susceptible230

and resistant bacteria where we observe the transition from surviving and collapsed populations in231

experiments (see Fig 3). Moreover, simulations presented in the Appendix (section Simulation of232

recovery rate) show a range in the bacterial population composition with non-monotonic trajectories233

for Bs and Br (see Appendix figure 1B), which is comparable to the range in composition we find234

in both outcomes, i.e., some surviving and some collapsing populations in experiments. For such235

parameter choices, stochastic effects could then decide the observed fates of bacteria. As presented236

above, the herd immunity threshold changes when the bacterial cultures grow in a diluted growth237

medium. In a set of independent experiments we measured bacterial growth rate �, phage burst238

size � and phage latent period � under such conditions (see Fig 6B and Table 3). From these data239

we estimated the dependence of the phage burst size on the bacterial growth rate, �(�), using a240

numerical quadratic fit (Fig 4A). Similarly, we estimated the dependence of the phage latent period241

on the bacterial growth rate, �(�) (Fig 4B). Using these estimates we calculated the expected growth242
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rate–dependent herd immunity threshold243

H(�) =
�(�) − 1 − �(�)�

�(�)
, (5)

which gives a very good prediction of the shift in the herd immunity threshold to lower values244

for slower growing populations (green line in Fig 4C). This verification of our model shows that it245

correctly captures the dependence of the herd immunity threshold on bacterial and phage growth246

parameters.247

The deviations from the herd immunity threshold depicted by the green area in Fig 3 and green248

error bars in Fig 4C are derived from uncertainty in measurements in �, � and �. The inherent249

stochasticity of the adsorption process thus provides additional uncertainty, which is not captured250

by the depicted error bars. This additional stochasticity can explain wider transition zone in251

experiments with slower growing populations (N = 0.5 and 0.2), because the fate of the population252

is more prone to stochastic effects as the phage replication rate is slower than in a fast growing253

population. This stochastic effect might be reduced by larger phage inocula. This could, however,254

also shift the observed transition between collapsing and surviving populations towards higher255

frequencies of resistant bacteria (and away from the actual herd immunity threshold) as protection256

by the immune system is less effective with increasing number of phages per cell (see Fig 2A).257

Modelling herd immunity in spatially structured populations258

The dynamics of phage spread differ between growth in unstructured (e.g., liquid) and structured259

(e.g., plates) populations. In order to quantify the effect of spatial structure in a population, we260

extend our model to include a spatial dimension. In structured populations growth is a radial261

expansion of phages defined by the plaque radius r and the expansion speed v, for which several262

authors have previously derived predictions (Kaplan et al., 1981; Yin and McCaskill, 1992; You and263

Yin, 1999; Fort and Méndez, 2002a; Ortega-Cejas et al., 2004; Abedon and Culler, 2007; Mitarai264

et al., 2016).265

We assume phage movement can be captured by a diffusion process characterized with a266

diffusion constantD, which we estimate in independent experiments asD = 1.17 (± 0.26)⋅10−2 mm2∕ℎ267

(see Materials and Methods, Fig 8). However, we assume that only phages disperse and bacteria are268

immobile as the rate of bacterial diffusion does not influence the expanding plaque on timescales269

relevant in the experiment. Adsorption of phages on bacteria is modeled with an adsorption270

constant �⋆.271
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Taking these considerations together, allows to write a reaction-diffusion dynamics for growth272

of phages P on the growing bacterial population as273

)tP = D)2
x
P + �⋆

(
�S − 1 − ��

)
P . (6)

The first term accounts for the diffusive spread of phages, while the second term describes phage274

growth. This second term includes the correction �� which arises due reproduction of bacteria,275

derived in the unstructured liquid case.276

The spreading infection will sweep across the bacterial lawn with the following speed277

v = 2
√
D�⋆

√
�S − 1 − �� , (7)

which is computed in more details in the Materials and Methods. This expression (7) indicates that278

the population composition crucially influences the spreading speed at much lower fractions of279

resistant bacteria than the herd immunity threshold (4), where phage expansion stops completely.280

Consequently, the resulting plaque radius r decays with increasing fractions of resistants and281

reaches zero atH . A prediction for r can be obtained by integrating (7) over time.282

In our (simplified) model, time-dependence of the speed only enters via the fraction of suscep-283

tibles S, which is assumed to stay at the initial S0 value until it encounters the epidemic wave of284

phages. Furthermore, we use the experimental observation that plaque expansion ceases upon de-285

pletion of nutrients, coinciding with a cessation of bacterial growth. This leads to the approximation286

r ≈ vTdepl, with Tdepl given by Eq. (3). Using this expression we estimated the adsorption constant287

�⋆ from the growth experiments as it is difficult in practice to measure on plates. The green line288

in Fig 5B is the best fit, yielding the value �⋆ = 4.89(±0.19) ⋅ 10−2 bacteria∕phageℎ for the adsorption289

constant.290

Our results for spatially structured populations allows us to speculate on a general epidemiolog-291

ical question: If an infection is not stopped by herd immunity in a partially structured population, by292

how much is its spread slowed down? By generalizing (7) we can derive a relative expansion speed,293

compared to a fully susceptible population,294

vrel =

√
1 −

1 − S

H
. (8)

This expression, (8), is devoid of any (explicit) environmental conditions, which are not already295

contained in the herd immunity threshold H itself. Thus, it could apply to any pathogen-host296

system. Ultimately, this relative speed approaches zero with a universal exponent of 1∕2, when297
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the fraction of resistant individuals 1 − S approaches the herd immunity thresholdH . However, a298

few caveats exist when using (8), as several conditions have to be fulfilled: Obviously, a pathogen299

is expected not to spread in a population exhibiting complete herd immunity – the relative speed300

should only hold for populations below the herd immunity threshold. Moreover, if dispersal cannot301

be described by diffusion, but rather dominated by large jumps (Hallatschek and Fisher, 2014),302

the diffusion approach we used for traveling waves is not applicable, and thus also renders (8)303

inadequate.304

An increase in the number of long range jumps of phages can be considered as a transition305

between the two cases we treated here – spatially explicit dynamics on plates and completely mixed306

populations in liquid culture, respectively. Potential long range jumps of phages can be mediated by307

host cells moving distances that the phages cannot achieve on their own. In such cases, dispersal308

of the phages is a convolution of movement of their hosts with their own ability to spread locally.309

These long range jumps would therefore increase the overall expansion speed and area of the310

epidemic. We expect that in our setup bacterial motility does not substantially contribute to phage311

spread because (i) bacteria become motile only in late exponential / early stationary phase (Amsler312

et al., 1993) when phage reproduction drops to very low levels, and (ii) the soft agar concentration313

used in our experiments (≈ 0.525%) effectively blocks bacterial motility (Croze et al., 2011). However,314

we would not expect that long range jumps change the herd immunity thresholdH(�) itself. Spread315

of pathogens still stops when the fraction of susceptible hosts S is small such that �S < 1 + ��, and316

will continue as long as �S > 1 + �� is fulfilled.317

Discussion318

The spread of a pathogen may be halted or slowed by resistant individuals in a population and319

thus provide protection to susceptible individuals. This process, known as herd immunity, has320

been extensively studied in a wide diversity of higher organisms (Jeltsch et al., 1997;Mariner et al.,321

2012; Boven et al., 2008; Meister et al., 2008; Konrad et al., 2012; Wang et al., 2013). However,322

the role of this process has largely been ignored in microbial communities. To delve into this we323

set out to determine under what conditions, if any, herd immunity might arise during a phage324

epidemic in bacterial populations as it could have profound implications for the ecology of bacterial325

communities.326

We show that herd immunity can occur in phage-bacterial communities and that it strongly de-327
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pends on bacterial growth rates and spatial population structure. Average growth rates of bacteria328

in the wild have been estimated as substantially slower than in the laboratory (generation time is ≈329

6.5 fold longer (Gibson et al., 2016)), a condition that we have shown to facilitate herd immunity.330

Furthermore, bacterial populations in the wild are also highly structured, as bacteria readily form331

micro-colonies or biofilms (Hall-Stoodley et al., 2004) and grow in spatially heterogeneous environ-332

ments such as soil or the vertebrate gut (Fierer and Jackson, 2006), a second condition we have333

shown to facilitate herd immunity. These suggest that herd immunity may be fairly prevalent in low334

nutrient communities such as soil and oligotrophic marine environments.335

In an evolutionary context, herd immunity may also impact the efficacy of selection as the336

selective advantage of a resistance allele will diminish as the frequency of the resistant allele in337

a population approaches the herd immunity threshold, H . This has two important implications.338

First, while complete selective sweeps result in the reduction of genetic diversity at linked loci, herd339

immunity may lead to only partial selective sweeps in which some diversity is maintained. Second,340

herd immunity has a potential to generate and maintain polymorphism at immunity loci, as has341

been shown for genes coding for the major histocompatibility complex (MHC) (Wills and Green,342

1995). Polymorphism in CRISPR spacer contents have been demonstrated in various bacterial (Tyson343

and Banfield, 2008; Sun et al., 2016; Kuno et al., 2014) and Archaeal (Held et al., 2010) populations344

and communities (Pride et al., 2011; Zhang et al., 2013; Andersson and Banfield, 2008). While these345

studies primarily explain polymorphisms in CRISPR spacer content as a result of rapid simultaneous346

independent acquisition of new spacers, we suggest that observed polymorphisms may result from347

frequency-dependent selection on resistance loci arising from herd immunity. In such a case, herd348

immunity is likely to maintain existing polymorphism in CRISPR spacer content in 1 −H fraction of349

the population, unless the current major variant goes to fixation due to drift. However, considering350

the large population sizes of bacteria, drift is unlikely to have a strong effect, allowing herd immunity351

to maintain a large fraction of immunity polymorphism.352

It has also been suggested that herd immunity might favor coexistence between hosts and353

their pathogens (Hamer, 1906), which can lead to cycling in pathogen incidence and proportions of354

resistant and susceptible individuals over time, e.g., in measles before the era of vaccination (Fine,355

1993). This cycling is caused by the birth of susceptible individuals, which, once their proportion356

exceeds the epidemic threshold (1 −H), lead to recurring epidemics. CRISPR-based immunity is,357

however, heritable meaning that descendants of resistant bacteria remain resistant. One might358
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speculate that analogous cycling in phage epidemics may occur if immunity is costly. In turn, a359

computer simulation study of coevolution of Streptococcus thermophilus and its phage found both360

cycling and stable coexistence of different CRISPR spacer mutants and phage strains (Childs et al.,361

2014). The extent to which herd immunity facilitates maintenance of CRISPR spacer polymorphism362

and coexistence with phage requires further experimental and theoretical investigation.363

We also developed a mathematical model and show how the herd immunity threshold H364

(Eqn. (4)) depends on the phage burst size � and latent period �, and on the bacterial growth rate �.365

This dependence arises as phages have to outgrow the growing bacterial population, as host and366

pathogen have similar generation times in our microbial setting. In addition to these parameters,367

we also describe how the speed v (Eqn. (7)) of a phage epidemic in spatially structured populations368

depends on phage diffusion constant D, phage adsorption rate �⋆, and the fraction of resistant and369

susceptible individuals in the population. All of which are likely to vary in natural populations. We370

also derived the relative speed of spread for partially resistant populations, as measured relative to371

a fully susceptible population, and show that it can be parametrized solely with the herd immunity372

thresholdH (Eqn. (8)). This relative speed of the spread of an epidemic should be applicable to any373

spatially structured host population where the spread of the pathogen can be approximated by374

diffusion. Both our experiments and the modelling show that even when the fraction of resistant375

individuals in the population is below the herd immunity threshold the expansion of an epidemic376

can be substantially slowed, relative to a fully susceptible population.377

In conclusion, we have presented an experimental model system and the connected theory that378

can be usefully applied to both microbial and non-microbial systems. Our theoretical framework379

can be useful for identifying critical parameters, such asH (and to some extentR0), from the relative380

speed of an epidemic expansion in partially resistant populations so long as the process of pathogen381

spread can be approximated by diffusion. This approximation has been shown to be useful in such382

notable cases as rabies in English foxes (Murray et al., 1986), potato late blight (Scherm, 1996), foot383

and mouth disease in feral pigs (Pech and McIlroy, 1990), and malaria in humans (Gaudart et al.,384

2010).385
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Materials and Methods386

Key Resources Table

Reagent type (species)

or resource

Designation Source or reference Identifiers Additional information

gene (Streptococcus

pyogenes SF370)

cas9
National Center for

Biotechnology Information

NCBI:NC_002737.2;

gene_ID:901176;

RRID:SCR_006472

Gene symbol SPy_1046

strain, strain background

(Escherichia coli)

E. coli K12 MG1655 Own collection NA

strain, strain background

(Bacteriophage T7)

E. coli bacteriophage T7 ATCC Collection
ATCC:BAA-1025-B2;

RRID:SCR_001672

recombinant DNA reagent pCas9 Addgene Vector Database
Addgene:42876;

RRID:SCR_005907

pCas9 plasmid was a gift

from Luciano Marraffini

recombinant DNA reagent pCas9T7resistant this paper NA Plasmid derived from pCas9

commercial assay or kit
PureYield Plasmid

Miniprep System

Promega
Promega:A1223;

RRID:SCR_006724

chemical compound, drug Chloramphenicol Sigma-Aldrich
Sigma-Aldrich:C0378-5G;

RRID:SCR_008988

software, algorithm PerkinElmer Volocity v6.3 RRID:SCR_002668
Volocity 3D Image Analysis

Software

software, algorithm Fiji v1.0 doi: 10.1038/nmeth.2019 RRID:SCR_002285
Image processing package

of ImageJ

software, algorithm RStudio 1.0.153 RRID:SCR_000432
Software for the R statistical

computing

software, algorithm Python 3.6.3 RRID:SCR_008394
Python programming

language

software, algorithm Model source code doi: 10.5281/zenodo.1038582 RRID:SCR_004129 Zenodo repository

Table 1. Table of key strains, reagents and software used in this study.

Experimental methods387

Engineering resistance388

Oligonucleotides AAACTTCGGGAAGCACTTGTGGAAG and AAAACTTCCACAAGTGCTTCCCGAA were389

ordered from Sigma-Aldrich, annealed and ligated into pCas9 plasmid (pCas9 was a gift from390

Luciano Marraffini, Addgene plasmid #42876) carrying a Streptococcus pyogenes truncated CRISPR391

type II system and conferring chloramphenicol resistance. For the detailed protocol see (Jiang et al.,392

2013). The oligonucleotides were chosen so that the CRISPR system targets an overlap of phage393

T7 genes 4A and 4B. Therefore, the CRISPR system allows the gene 0.7, coding for a protein which394

inhibits the RNA polymerase of the cell, to be expressed before the T7 DNA gets cleaved (García and395
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Molineux, 1995). The subsequent growth of the cells is halted and phage replication is inhibited.396

The plasmid was electroporated into Escherichia coli K12 MG1655 (F- lambda- ilvG- rfb-50 rph-1). The397

T7 wildtype phage was used in all experiments.398

Efficiency of the CRISPR-Cas system399

Efficiency of the engineered CRISPR-Cas system was tested using the following protocol: Overnight400

cultures grown in LB containing 25 �g∕ml chloramphenicol were diluted 1 in 10 in the samemedium,401

cells were infected with the T7 phage (MOI 10, 100, and 1000) and incubated for 15min in 30◦C.402

Cells were spun down for 2 min in room temperature at 21130g. Supernatant was discarded and403

the cell pellet was resuspended in 950 �l of 1X Tris-HCl buffer containing 0.4% (≈ 227�M ) ascorbic404

acid pre-warmed to 43◦C and incubated in this temperature for 3 min to deactivate free phage405

particles (Murata and Kitagawa, 1973). Cultures were serially diluted and plated using standard406

plaque assay protocol on a bacterial lawn of susceptible cells to detect bursting infected cells. The407

supernatant was tested for free phage particles, which were not detected in the corresponding408

dilutions used for plaque counting. Each experiment was replicated three or four times (MOI 10409

three times, MOI 100 four times and MOI 1000 three times) while samplings from each treatment410

were performed in quadruplicates. The probability that a resistant cell bursts was calculated as a411

ratio of bursting resistant to bursting susceptible cells for each experiment (means of corresponding412

quadruplicates). All LB agar plates and soft agar used throughout this study was supplemented413

with 25 �g∕ml chloramphenicol. These CRISPR-Cas system efficiencies at different MOIs were tested414

if they are statistically different from each other using two-tailed unequal variances t-test at 0.05415

confidence level using RStudio (R Core Team, 2013).416

Determining the mean number of phages per cell417

The cultures that were plated using standard plaque assays in the “Efficiency of the CRISPR-Cas418

system” experiment were also plated on LB agar plates containing 25 �g∕ml chloramphenicol to419

determine the number of surviving CFUs. The numbers of bursting and surviving susceptible cells420

were subsequently used to determine the actual mean number of adsorbed phages per cell. The421

fraction of susceptible cells surviving the phage challenge experiment was assumed to correspond422

to the Poisson probability that a cell does not encounter any phage, which was than used to423

determine the mean of the Poisson distribution, which corresponds to the mean number of phages424

per cell.425
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Herd immunity in a liquid culture426

Herd immunity in a liquid culture was tested in 200 �l of LB broth supplemented with 25 �g∕ml427

chloramphenicol in Nunclon flat bottom 96 well plate in a Bio-Tek Synergy H1 Plate reader. Bacterial428

cultures were diluted 1 in 1000 and mixed in the following ratios of resistant to susceptible cells:429

50:50, 75:25, 87.5:12.5, 93.75:6.25, 96.88:3.13, 98.44:1.56, 99.22:0.78, 99.61:0.39, 99.8:0.2, 99.9:0.1,430

99.95:0.05, 100:0 %. T7 phage was added at a multiplicity of infection (MOI) of ≈ 10−4 (≈ 50 plaque431

forming units (pfu) per culture) to resemble an epidemic initiated by the burst size from one infected432

cell and the cultures were monitored at an optical density 600 nm for 18 hours post inoculation (ℎpi).433

Each population composition was replicated 16 times. Herd immunity in diluted LB was measured434

in LB broth mixed with 1X M9 salts in ratios 1:1 (50% LB) and 1:4 (20% LB) using the same protocol435

as for 100% LB broth. Each population composition was replicated 18 times.436

Time-lapse imaging of plaque growth437

Soft LB agar (0.7%) containing 25 �g∕ml chloramphenicol was melted and 3 ml were poured into438

glass test tubes heated to 43◦C in a heating block. After the temperature equilibrated, 0.9 ml of439

a bacterial culture consisting of resistant and susceptible cells (ratios 10% – 100% of susceptible440

cells, 10% increments) were diluted 1 in 10 and added to the tubes. Then, 100 �l of bacteriophage441

stock, diluted such that there would be ≈10 plaques per plate, was added to the solution. Tubes442

were vortexed thoroughly and poured as an overlay on LB agar plates containing 25 �g∕ml chlo-443

ramphenicol. The plates were placed on scanners (Epson Perfection V600 Photo Scanner) and444

scanned every 20 minutes in ”Wide Transparency mode“ for 48 hours in 30◦C . A total of 3 scanners445

were employed with a total of 12 plates, plus a no phage control plate and 100% resistant control446

outside the scanners (see Appendix figure 3). No plaques were detected in the 100% resistant447

controls. Time-lapse images were used to calculate the increase of individual plaque areas using448

image analysis software PerkinElmer Volocity v6.3 and Fiji v1.0 (Schindelin et al., 2012).449

Bacterial growth on soft agar450

Growth rate of susceptible bacteria in soft LB agar (0.7%) was measured by sampling from a petri451

dish with a soft agar overlay with bacteria prepared in the same way as the plaque assays except452

an absence of the phage. Sampling was performed in spatially randomized quadruplicates at the453

beginning of the experiment and subsequently after 2, 4, 6, 8, 10, 12, 14, 16, 24, 32, 40, and 48454

20 of 44



Manuscript submitted to eLife

Estimate Units

�max 0.720 (± 0.011)
[
ℎ−1

]

Kc 0.257 (± 0.012) Relative Nutrient Concentration, N
[
0…1

]

Table 2. Estimated parameters for bacterial growth using Monod kinetics. Undiluted LB medium (N = 1)

is assumed to have 15mg∕ml nutrients (10mg∕ml Tryptone, 5mg∕ml yeast extract). The full dataset is shown in

Fig 6.

hours using sterile glass Pasteur pipettes (Fisherbrand art.no.: FB50251). Samples were blown455

out from the Pasteur pipette using an Accu-jet pro pipettor into 1 ml of M9 buffer pre-warmed456

to 43◦C , vortexed for 15 seconds and incubated for 10 minutes in 43◦C with two more vortexing457

steps after 5 and 10 minutes of incubation. Samples were serially diluted and plated on LB agar458

plates containing 25 �g∕ml chloramphenicol. How bacterial densities change over time, measured459

as CFU∕ml, is shown in Fig 6A.460

Bacterial growth rates in liquid culture461

Nutrient-dependent growth rate of susceptible bacteria was measured in Nunclon flat bottom 96462

well plate in Bio-Tek Synergy H1 Plate reader in 30◦C. Overnight LB cultures were diluted 1:200 in463

media consisting of LB broth mixed with 1X M9 salts in ratios 10:90, 20:80, 30:70, 40:60, 50:50, 60:40,464

70:30, 80:20, 90:10 and 100:0. Final volume was 200 �l. Optical density at 600 nm was measured465

every 10 min. Every treatment was replicated eight times. Natural logarithm of the optical density466

values was calculated to determine the growth rate using a maximal slope of a linear regression of467

a sliding window spanning 90 min.468

The resulting growth rates for various nutrient concentrations fit well with Monod’s growth469

kinetics,470

� = �max

N

Kc +N
. (9)

Results for the two fitting parameters, �max and Kc , are listed in Table 2. The whole dataset, including471

the fit, is displayed in Fig 6B.472

Test for a difference in growth rates of resistant and susceptible bacteria was done in LB broth473

in the same manner as nutrient-dependent growth rate measurements. Two-sample t-test was474

performed on acquired growth rate data at 0.05 confidence level using RStudio (R Core Team, 2013).475

All growth media used in growth rate measurements were supplemented with 25 �g∕ml chlo-476
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Figure 6. Measuring bacterial growth without phage. (A) Trajectory of population size on agar plates over

time. For modeling, we assume two states of growth (dashed brown curve): first, the bacterial population grows

exponential until the time Tdepl, when nutrients are depleted. From this time on, growth rate is assumed to be

zero and the population saturates at a maximal size Bf inal. Experimental observations fit this proposed growth

curve to a very good extent. After all, half of all nutrients are used up in the last generation indicating that the

switch between growth and no-growth should be fast. (B) Growth rates of bacteria in diluted medium follow

closely Monod’s empirical law, given by expression (9). Fit parameters are found to be �max ≈ 0.720ℎ−1 and

Kc ≈ 0.257 (with the latter in dimensionless units as relative concentrations of standard LB medium), see also

Table 2. The data presented in this figure can be found in Figure 6–source data1.

The following source data are available for Figure 6:

Source data 1. Bacterial growth on soft agar plates (tab Fig 6A) and bacterial growth in LB medium of various

concentrations (tab Fig 6B).

Medium Rel. Nutr. Conc. Latent period Burst size Burst size/hour

N � [min] � �∕� [ℎ−1]

LB 0 0.0 101.1 (± 10.9) 3.0 (± 1.9) 1.8 (± 1.1)

LB 20 0.2 43.4 (± 3.9) 12.0 (± 4.2) 16.6 (± 6.0)

LB 50 0.5 40.0 (± 3.0) 35.6 (± 16.4) 53.4 (± 24.9)

LB 100 1.0 36.1 (± 6.1) 85.6 (± 47.3) 142.1 (± 82.1)

Table 3. Estimated parameters for phage growth. See also Fig 4A,B.

ramphenicol.477

Phage burst sizes478

Phage burst sizes in bacteria growing at different growth rates were measured by one-step phage479

growth experiments in LB mixed with 1X M9 salts in the following ratios 0:100, 20:80, 50:50 and480

100:0. The burst sizes were calculated as the ratio of average number of plaques before burst to481
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Figure 7. Speed of phage epidemic expansion on bacterial lawns. (A) Speed of expanding phage

epidemics for all population compositions is initially high, before it drops once nutrients are depleted at around

10ℎpi (hours post infection). (B) Plaque speed significance. Comparing speeds of plaque spread with the 100%

susceptible control. Linear regression of a sliding window spanning 4 hours of the radius sizes was calculated

for all individual plaques and all compositions of the populations between t0 and t24. Slopes of the linear

regressions for all compositions of the populations were compared using a two-sided heteroscedastic t-test

against the 100% susceptible dataset. The data presented in this figure can be found in Figure 7–source data1.

The following source data are available for Figure 7:

Source data 1. Speed of plaque expansion in populations consisting of varying proportions of resistant to

susceptible bacteria.

average number of plaques after burst. Consecutive samplings before and after burst were used482

for the calculation if they were not significantly different from each other (two sided t-test, p > 0.05).483

All experiments were performed in triplicates.484

Phage latent periods485

Phage latent periods were determined from the phage burst size experiments as the time interval486

between the first and the last significantly different consecutive sampling between those used for487

phage burst size calculations.488

Speed of phage expansion489

The speed of the phage expansion was measured as difference in radii of plaques over time.490

Statistical tests allowed to infer that the reduction of expansion speed is significant already for491

small deviations from the 100% susceptible control experiment, as described and shown in Fig 7.492

Phage diffusion in soft agar493

Soft M9 salts soft agar (0.5%) was supplemented with SYBR safe staining (final conc. 1%) and494

poured into glass cuvettes (VWR type 6040-OG) to fill ∼ 2 cm of the cuvette height. After soft495
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Figure 8. Estimating diffusion constant of phages. (A), (B) Phage are slowly expanding on agar which can be

observed via their fluorescence. Pictures are taken 5ℎ apart. (C) The diffusion constant D can be estimated as

best-fit parameter in a heat kernel K(D): K(D) propagates the fluorescence profile L(t) at time t forward (via a

convolution to “smear” out the signal) to the profile L(t+Δt) at the next measured time point. The difference

between the expected change and the actual profile is quantified as total squared deviation, see Eqn. (10),

which we minimize to obtain D. Consequently, we can estimate the diffusion constant as D ≈ 1.17 ⋅ 10−2 mm2∕ℎ.

The green line uses this estimated parameter D and shows the change between the profile at t = 10ℎ (orange

line) and the profile at t = 15ℎ (light brown line), assuming diffusive spread of phages. See Materials and

Methods for more information.

agar solidification, the same stained soft agar was supplemented with T7 phage particles to a496

final concentration 1011 pfu∕ml and poured on top of the agar without phages. The cuvettes were497

monitored in 30◦C every hour for 40 hours at the SYBR safe emission spectrum peak wave length498

524 nm illuminated with the SYBR safe excitation spectrum peak wave length 509 nm. The diffusion499

constant was estimated as the best fit parameter for the spread of fluorescent phages through the500

soft agar over time.501

First we computed the luminosity Li of fluorescence (a gray-scale value defined as L = 0.2126R+502

0.7152G + 0.0722B from the RGB image) as average over the width of the cuvette for pixel row i, and503

corrected the profiles of luminosity Li by subtracting the background value. This background value504

was estimated as a linear fit at the end of the profile without phages, where only the gray value505

of the agar was measured. Moreover, in our setup luminosity seems to saturate at values above506

∼ 0.4 where it does not have a simple linear dependence on fluorescence anymore: diffusion would507

lead to a decrease of the signal behind the inflection point of the profile and increase after the508

inflection point, but images only show increasing profiles – the bulk density does not decay. Thus,509

any estimate should only take the part of the profile that is below the threshold value of 0.4 into510

account (see Fig 8).511
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The diffusion constantD itself was estimated as the minimal value of the total squared deviation512

of the convoluted profile L(t) (at time t) with a heat kernel K(D) compared to the profile L(t+1) at513

time t + 1,514

D =

⟨
min
D

∑
i

((∑
j

e−(i−j)
2∕4D

√
4�D

L(t)
j

)
− L(t+1)

i

)2⟩
. (10)

Such a convolution with the heat kernel Kij(D) = (4�D)−1∕2 exp
(
−(i − j)2∕4D

)
assumes that the only515

change in the profile is due to diffusion for a time span of length 1 with i and j indices of pixels.516

Thus, expression (10) estimates the diffusion constant in units of pixel2∕frame, where frame is the517

time difference between two images. Several estimates are averaged over different snapshots in518

the whole experiment that spans 40ℎ in intervals of 1ℎ each.519

The final estimate in appropriate units is520

D ≈ 1.17 (± 0.26) ⋅ 10−2 mm2∕ℎ , (11)

which is in agreement with previous measures of phage diffusion (Stent and Wollman, 1952; Bayer521

and DeBlois, 1974; Briandet et al., 2008).522

Modelling523

Phage growth524

In the main text we stated that relevant processes for phages growing on bacteria are given by525

the set of reactions (2). In the following, we will analyze an extended version of our model, which526

takes all these processes into account. We try to justify our approximations and explain the527

reasoning behind leaving parts of the full model out. While reactions for single bacteria or phages528

are inherently stochastic in nature, we assume that the involved numbers are large enough such529

that the dynamics can be described with deterministic differential equations for the populations.530

Furthermore, reaction rates are identified with the inverse of the average time scale of the process.531

Thus, the full model is given by the coupled differential equations,532
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)tBs = �Bs − A[Bs, P |Bs, Br] , (12a)

)tBr = �Br − A[Br , P |Bs, Br] + �Ir , (12b)

)tIs = A[Bs, P |Bs, Br] − (1∕�)Is , (12c)

)tIr = A[Br , P |Bs, Br] − (1∕�)Ir − �Ir , (12d)

)tP = (�∕�)
(
Is + Ir

)
−

∑
i∈{s,r}

A[Bi, P |Bs, Br] −
∑

i∈{s,r}

A[Ii, P |Is, Ir] , (12e)

)tN = −�∕y
(
Bs + Br

)
. (12f)

Both bacterial populations Bi, i ∈ {s, r}, grow with rate � and decay via adsorption of phages533

A[Bi, P |Bs, Br], an expression that is specified below. Infected populations Ii gain numbers by534

adsorption and decrease via bursting. Resistant bacteria also can recover from their infected state535

with a recovery rate �. Phages grow by bursting cells, and lose numbers by adsorption to the various536

bacterial populations. Moreover, explicit dynamics for nutrients is considered, which are drained537

by each grown cell inversely proportional to the yield Y , the conversion factor between nutrient538

concentration and cell numbers. Essentially, this last equation acts as a timer, when we switch from539

abundant resources to the depleted state: all growth parameters change significantly upon nutrient540

depletion. Nevertheless, despite the possible deviations, we assume depletion time is given by the541

simple estimate (3) and only treat the two possible states of abundant and depleted nutrients.542

Adsorption of phages, given by the term A
[
Bi, P |Bs, Br

]
, can be influenced by the whole distribu-543

tion of populations within the culture. In liquid medium, a common assumption is that this term is544

proportional to the concentrations of both the phages and cells (Weitz, 2016),545

A
[
Bi, P |Bs, Br

]
= �BiP , (13)

with an adsorption constant �. This expression assumes constant mixing of the population and546

relatively short contact times between phages and bacteria. In general, this system of equations547

is akin to Lotka-Volterra dynamics, which has been analyzed in great detail, eg. (Hofbauer and548

Sigmund, 1998; Nowak, 2006).549

For our ensuing analysis, we neglect the population of infected resistant bacteria Ir . Upon550

examining (12d) we find that most cells to leave their infected state by reducing phage DNA via551

CRISPR/Cas instead of bursting if � ≫ 1∕�. If furthermore � ≫ �P , which is true at least in the552

initial stages of the experiment, essentially all infected resistant bacteria immediately recover from553
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a phage infection. Consequently, with both conditions, the resistant infected bacteria tend to554

vanish, Ir → 0, and their dynamics can be neglected. Only in the Appendix (section Simulation of555

recovery rate) we release this assumption to explicitly cover the full dynamics of (12) in simulations556

to estimate values for �.557

Exponentially growing bacteria lead to double exponential phage growth558

For convenience, we transform the populations to the total bacterial density B = Bs + Br and559

introduce the fraction of susceptible cells S = Bs∕B. The crucial assumption for the remainder560

of this section is that phages burst immediately after infection, � = 0, such that we can ignore all561

infected populations. While not a very biological condition, it allows to analyze the model in more562

detail. Using these simplifications, we obtain563

)tB = (� − �SP )B , (14a)

)tS = −S(1 − S)�P , (14b)

)tP = (�S − 1)�BP . (14c)

If we assume that in initial stages of phage growth the number of phages is small, ie. �P ≪ � ∼564

(1ℎ−1), the dynamics of bacteria and the fraction of susceptibles simplify to )tB = �B and )tS = 0.565

Note that this term �P also occurs in the linear phage dynamics, where it cannot be neglected. In566

this instance, we need to view �B as a coefficient, which is likely much larger initially. This set of567

simplified equations can be solved in closed form,568

S(t) = S0 , (15a)

B(t) = B0 exp(�t) , (15b)

P (t) = P0 exp
(
(S0� − 1)�B0(exp(�t) − 1)∕�

)
. (15c)

The structure of phage dynamics is particularly important here – it exhibits a double-exponential569

dependence on time t, which is a very fast, almost explosive, growth. Such double-exponential570

growth leads to very large population sizes within a short amount of time (but after an extended571

initial delay). This general behavior of the solution is independent of the actual growth rate of572

phages, which only has to be positive. Thus, inspecting the exponent in (15c) yields the condition573

�S0 > 1 (16)
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for phage growth to be positive. Incidentally, relation (16) is the naive estimate for the number of suc-574

cessful additional infections arising from a single burst. The double exponential time-dependence575

is central for our arguing that the dynamics can be described by threshold phenomena, given by576

conditions like (16): Usually, phages are negligible in the dynamics until they grow fast enough to577

large enough size, such that it is too late for the bacterial population to deal with the overwhelming578

phage population.579

An important question in the context of these solutions is whether nutrients run out before580

this double-exponential growth of phages occurs. Hence, we compute the time T� defined as when581

phages reach a population of P (T�) = 1∕� assuming phages grow as (15c) until then. After T� the582

assumptions that allowed to obtain (15c) are not valid anymore. Inverting (15c) for time leads to583

T� =
1

�
log

(
1 +

� log(1∕�P0)

(�S0 − 1)�B0

)
. (17)

Subsequently, we can compare this estimate T� to the depletion time Tdepl = (1∕�) log(B∞∕B0). When584

rearranging the inequality Tdepl > T� in terms of the (initial) fraction of susceptibles S0, we obtain585

�S0 > 1 +
� log(1∕�P0)

�(B∞ − B0)
. (18)

This expression (18) is a condition for phages to reach “large” population sizes before nutrients586

are depleted by bacteria. The final population density B∞ usually fulfills �B∞∕� ≫ 1, such that the587

correction given by the second term of (18) can be considered small. Thus, if phages grow (�S0 > 1),588

they also grow very fast with a double-exponential time-dependence and reach a considerably large589

population size before bacteria stop multiplying (for almost all parameter values).590

Extending analysis to finite burst times591

The analysis above only treated the case � → 0. However, we reported that the latency time �592

increases significantly when bacterial growth rate � declines, see Table 3. Considering finite latency593

times entails dealing with an infected bacterial population I . (However, we identify I ≡ Is and set594

Ir = 0.)595

To this end, note that we can rearrange (12a) to
(
1 + �)t

)
I = ��SBP using the adsorption model596

in (13). Hence, we can use the differential operator (1+�)t) and apply it directly to (12e) to reduce the597

dependence on I in this equation at the cost of introducing higher order derivatives. In particular,598

we obtain599

�)2
t
P +

(
1 + ��B

)
)tP + �B(�S − 1 − ��)P = 0 , (19)
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where we also inserted )tB ≈ �B in the last term, as we aim again for a solution at initial times600

where �P ≪ �. The effects of the limit � → 0 are directly observable – no terms are undefined in601

this limit. In particular, we find that equation (19) and � = 0 lead directly to the dynamics of phages602

we just analyzed above, obtaining solution (15c).603

In principle, (19) is a hyperbolic reaction-diffusion-equation, which is known to occur upon604

transformation (or approximation) of time-delayed differential equations (Fort and Méndez, 2002b).605

For initial times we can use the solutions B(t) = B0 exp(�t) and S(t) = S0. To proceed, we introduce606

the auxiliary variable607

z(t) = −�B0 exp(�t)∕� , (20)

and assume P (z) as a function of this new variable z. We need to transform the differential operators608

of time derivatives, and obtain )t =
)z(t)

)t
)z = �z)z and )2

t
= (�z)z)(�z)z) = �2(z)z + z2)2

z
). Inserting609

these expressions in (19) and multiplying the whole equation with (�2�z)−1 yields the dynamics for610

phages,611

0 = z)2
z
P (z) + (b − z))zP (z) − aP (z) , (21)

where the two extant constants are a = 1 − (�S0 − 1)∕(��) and b = 1 + 1∕(��). Equation (21) is called612

“Kummer’s equation” with confluent hypergeometric functions 1F1 as solutions (Abramowitz and613

Stegun, 1964, pg. 504),614

P (z) = A 1F1

(
a, b; z

)
+ B z1−b1F1

(
a − b + 1, 2 − b; z

)
. (22)

The two integration constants A and B can be determined via the initial conditions P (t = 0) = P0 and615

()tP )(t = 0) = −�B0P0. Using these conditions, the shape of the solution is again similar to before616

with � = 0 (double exponential time-dependence), although � > 0 introduces some skew. The most617

important aspect of this solution (22) is to compute the parameter combination where it switches618

from a decreasing to increasing function over time. A careful analysis reveals that at the parameter619

value a = 0 the behavior of the solution changes. Consequently, we find the condition for growing620

phage populations,621

�S0 > 1 + �� , (23)

which is a non-trivial extension including finite latency times �.622

Note, however, that this relation (23) does not indicate a correction to the general epidemio-623

logical parameter R0, which can be identified with � in our model. Rather, it shows that a growing624

bacterial population requires the phage population to grow even faster for a continuous chain of625

29 of 44



Manuscript submitted to eLife

infections in an epidemic. The term �� denotes the ratio of generation times of pathogen over host,626

which in most cases is small and negligible compared to 1. For bacteria and phages, however, which627

have similar generation times, such a correction is needed to describe the effects of growing host628

population sizes. In contrast, many other epidemiological models assume the host population size629

constant and only pathogens are increasing (or decreasing) in number.630

While our result (23) suggest that it also should hold in the limit � → 0, it might not necessarily631

be so. This specific limit is actually quite important for the time when nutrients are depleted in the632

experiments. However, at several instances in the calculations above we implied a positive � > 0.633

The most important of these is the transformation to z(t) = −�B(t)∕�, which actually exhibits two634

problems: dividing by � should not be allowed and B(t) is essentially constant and cannot serve635

as a variable in a differential equation. We also neglected the second term in )tB = (� − �SP )B636

throughout our calculation. For � = 0 this second term is dominant in bacterial dynamics and would637

generate non-linear phage dynamics if inserted for )tB right before stating (19). However, we expect638

that albeit the process will run very slow, and might not be measurable in experiments, the simple639

condition �S0 > 1 could indicate phage expansion and bacterial decay.640

Growth of phages on plated bacterial lawn641

Spatial modelling of phage expansion has produced several predictions for how plaque radius r and642

expansion speed v are influenced by experimentally adjustable parameters (Kaplan et al., 1981;643

Yin and McCaskill, 1992; You and Yin, 1999; Fort and Méndez, 2002a; Ortega-Cejas et al., 2004;644

Abedon and Culler, 2007; Mitarai et al., 2016). Here, we try to use a minimal model to estimate645

these two observables, based on the considerations of previous sections.646

One of the main complications arises from the fact that all densities in (12) have a spatial647

dimension in addition to their time dependence, Bi = Bi(x⃗, t), i ∈ {s, r}. As explained in the main text648

we only consider phage diffusion, heterogeneities in all other densities are generated only by phage649

growth. The additional spatial dimension imposes a particular contact network between phages650

and bacteria, which are not entirely random encounters anymore: One can expect that the size of651

the bacterial neighborhood B̂ phages are able to explore is only slightly determined by the actual652

density B, and can be assumed constant for most of the experiment, B̂(B) ≈ const. Consequently,653

the adsorption term can be written in the following way,654

A
[
Bi, P |Bs, Br

]
= �⋆

Bi

Bs + Br

P , i ∈ {s, r} , (24)
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which only depends on the relative frequencies of bacterial strains. The adsorption constant �⋆ is655

both the rate of adsorption and inter-host transit time as determined by the diffusion constant D.656

Thus, one can expect the formal dependence �⋆ = �⋆
(
D, B̂(B)

)
. For our particular experimental657

setup, however, �⋆ will be treated as a constant. This adsorption term (24) leads to the dynamics of658

phages659

)tP = D∇2P + G[P , S] , (25)

where we collected all contributions to phage growth in G[P , S] and added the spatial diffusion660

term D∇2P . For simplicity, we consider only expansion in a single dimension (∇2 ≡ )2
x
), which has661

been found to coincide well with the dynamics of plaque growth (Yin and McCaskill, 1992). The662

growth term for phages is then defined as,663

G
[
P , S

]
= �⋆

(
S� − 1 − ��

)
P , (26)

where we also consider the correction �� obtained from the analysis in liquid culture. Due to the664

different absorption dynamics on plates, however, this correction might be a slight overestimate665

of the actual term that accounts for bacterial growth. Reaction-diffusion equations similar to (25)666

have been first analyzed about 80 years ago (Fisher, 1937; Kolmogorov et al., 1937) and since then667

treated extensively, e.g. (Murray, 2002; van Saarloos, 2003). They admit a traveling wave solution668

– here, this corresponds to phages sweeping over an uninfected bacterial lawn. In general, the669

asymptotic expansion speed for the traveling wave solutions is given by the following expression,670

v = 2

√
D()PG)

[
0, S

]

= 2
√
D�⋆

√
S� − 1 − �� . (27)

Only the linearized growth rate of phages at very low densities is relevant for the expansion speed,671

)PG
[
P = 0, S

]
. Thus, the fraction of susceptible individuals S should be unchanged from its initial672

value S0. It should be noted, that only for S0� > 1 + �� does Eqn. (27) remain valid, otherwise we673

have v = 0. Such a scenario is relevant when nutrients are depleted and phage growth parameters674

changes to �depl and �depl.675

The expression for the expansion speed also shows the need for the spatial adsorption model in676

(24), in contrast to the liquid case (13). If adsorption would directly depend on the bacterial density677

B, the additional linear dependence on B in (26) would lead to an exponentially increasing speed678

during the experiment. This is in clear contradiction to experimental observations.679
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The density of phages behind the expanding front is large and as previously noted at large680

MOIs the CRISPR-Cas system fails to provide effective immunity (see section Materials and Methods681

and appendix Infection load and efficiency of the CRISPR/Cas system). However, in comparison to682

an un-structured environment (e.g., liquid) the structured environment effectively limits transit of683

phage from within a plaque to the expanding front: The combined effect of growth and diffusion684

usually generates a much faster expansion of phages during plaque formation, than diffusion alone.685

Only when nutrients are depleted, can pure diffusion processes explain the slow decrease in speed686

observed in experiments (see Fig 7A). Our model assumes a sharp drop to v = 0 at Tdepl for small S.687

In order to derive an expression for the plaque radius r, we integrate the expansion speed (7)688

over time, r(t) = ∫ t

0
dt′v(t′). Employing the simplification that only two values of phage growth are689

necessary to describe the dynamics – before Tdepl phages grow normally with � and �, after Tdepl690

phage growth changes to �depl and �depl – we can evaluate the integral for the radius directly, arriving691

at,692

r(t) =

⎧
⎪⎨⎪⎩

2t
√
D�⋆

√
S� − 1 − �� , 0 < t < Tdepl ,

2
√
D�⋆

(
Tdepl

√
S� − 1 − �� +

(
t − Tdepl

)√
S�depl − 1

)
, Tdepl < t .

(28)

Using this expression we estimated the adsorption constant �⋆ from the growth experiments as693

it difficult to measure in practice. This estimate is done for radii exactly at the time of nutrient694

depletion Tdepl, and excluding the control experiment with only susceptible cells.695

Predictions of our model show a discrepancy from experimental results on plates after depletion.696

We independently estimated �depl = 3.0, which results in Hdepl =
(
�depl − 1

)
∕�depl ≈ 0.67. Thus, all697

experiments with S > 0.33 should exhibit expanding plaques after nutrients are depleted. In the698

experimental setup plaques stop expanding in all mixtures of resistant to susceptible cells (S ≤ 0.9),699

which would correspond to �depl < 1.1. This value is, however, still within experimental accuracy of700

our estimates of �depl.701
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Appendix: Additional theoretical considerations900

Simulation of recovery rate901

Throughout the main text we assumed that resistant bacteria are completely immune to phage902

infection as their CRISPR/Cas system immediately kills adsorbed phages. However, experimental903

observation suggest that for fractions close to what we predicted as herd immunity threshold, all904

bacteria eventually die. Thus, in the following section we use numerical simulations to investigate905

the full set of equations (12), with a particular focus on the question why the whole bacterial906

population goes extinct. As it turns out, this requires using finite values for the recovery rate �907

(instead of the � → ∞ approximation employed previously).908

A major difficulty in analyzing the full model (12) is finding appropriate parameter values.909

In particular, we need values for the adsorption constant �, the recovery rate � and the yield910

coefficient Y . Undiluted LB medium is known to support a population of 5 ⋅ 109 cells∕ml. Thus911

one can easily estimate Y as the inverse of this number, when nutrients are measured in units912

of relative concentrations of LB, which we already used throughout this publication (undiluted913

medium corresponds to N = 1). Parameter scans in simulations reveal that the actual value of914

the adsorption constant � does usually not influence the actual outcome (collapsed or surviving915

bacterial population), it only adjusts time scales. However, deviations in time scales are insignificant,916

even when � is changed by orders of magnitude, � ∼ 
(
10−6 …10−8

)
. They are roughly an hour or917

less, which is small compared to the expected duration of the experiment that lasts a few hours. For918

definiteness, we use the value of � = 10−7 ℎ−1 for our simulations. That the value of the adsorption919

constant has only a minor impact on phage growth on bacterial cultures, is also in line with previous920

findings (Mitarai et al., 2016).921

The most elusive parameter is the recovery rate �. A first indication of the value of � can be922

drawn from our experiments on bursting resistant cells, summarized in Fig 2. As the probability923

for bursting resistant cells is 3 orders of magnitude smaller than for susceptible bacteria, we can924

use 1∕� ∼ (1) to estimate � ∼ 
(
103

)
. However, our results also indicate that recovery via the925

CRISPR/Cas system heavily depends on MOI, implying that � depends on the actual densities of926
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Appendix figure 1. Simulated trajectories for all populations in liquid culture for the extended model,

including infected and recovering bacteria. Trajectories are obtained by numerically integrating equations

(12), using parameters listed in Table 4 and additionally N = 1, Y = 2 ⋅ 10−10 cells−1, � = 10−7 ℎ−1 and � = 1.5 ℎ−1.

(A) For population compositions with a large majority of resistant cells (S = 10−3), phages get wiped out fast. (B)

For intermediate S (close to parameters where we observe both, collapsed and surviving, populations, see

Fig 3), the populations exhibit a complex, non-monotonic trajectory. After fast initial growth of phages, bacterial

populations decay but ultimately can recover. (C) If the fraction of susceptibles is too large (S = 0.06), the whole

bacterial population is infected and succumbs to the overwhelming phage infection. See supporting text for

more detailed information.

phages and bacteria. Nevertheless, as experimental determination of recovery is complicated, even927

more so determining a functional dependence on dynamically changing densities B and P , we928

assume that � is constant.929

We ran parameter sweeps in simulations and compared the outcome – collapsed or surviving930

bacterial populations – to the observed experimental results (see Fig 3). The best agreement931

of simulations and experiments was reached with � ∼ 
(
1
)
. Lower values of � do not allow the932

resistant population to recover from phage infection, while for larger values of �, phages are drained933

from the culture very fast. Such a small value of � is most likely related to the recovery at very large934

MOI, when the densities involved in the dynamics are large, which dominate the overall observed935

dynamics. At this time phages repeatedly infect the same bacteria and their CRISPR/Cas immune936

system cannot deal with such an infection load (or only too slow). Thus, we can argue that our final937

choice � = 1.5 ℎ−1 is the recovery rate when the CRISPR/Cas system is heavily stressed, which is938

comparable to the actual burst rate 1∕� for phages.939

In Appendix figure 1 we show three exemplary sets of trajectories for bacteria and phage. For940

a tiny fraction of susceptibles, S = 10−3, which is well below the herd immunity threshold (see941

Fig 3), phages do not thrive on the limited number of favorable hosts and decay fast after a slight942
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increase initially. For intermediate fractions of susceptibles, S = 0.04, we observe more complex,943

non-monotonic trajectories of bacterial populations. For such values of S we also observe mixed944

outcomes in experiments, see Fig 3. When S is increased further (S = 0.06), enough susceptible945

bacteria exists to produce enough phages and ultimately the whole bacterial population goes946

extinct.947

The purpose of the extended model in this section was to justify the fact that phages can wipe948

out the whole bacterial population, which was not possible in the simplified model used in the main949

text. There, the resistant bacterial population was basically unaffected by phages and just acted as950

“sink” for phages. However, also in this extended model, we see a very similar behavior in terms of951

the threshold phenomena reported earlier in the manuscript.952

Infection load and efficiency of the CRISPR/Cas system953

In the section Modelling we showed that positive phage growth leads eventually to a very fast954

increase in the phage population, that occurs before nutrients are depleted (for almost all realistic955

parameters). This behavior of the dynamics was also observed in the extended simulation model956

presented in the last section. Moreover, as a condition we used that the phage population reaches957

a size P ∼ 1∕�, which is after all arbitrary – it only determines if we can employ useful simplifications958

and approximations to model equations. However, simulation results presented in the last section959

Parameter Value Units Comment

Bacterial growth rate a 0.63 1∕ℎ Table 2, Fig 6

Yield y 2 ⋅ 10−10 1∕cell Measured in fractions of N

Recovery rate � 1.5 1∕ℎ See this appendix

Adsorption constant � 10−7 1∕(ℎ cell) See this appendix

Diffusion constant D 1.17 ⋅ 10−2 mm2∕ℎ See Methods

Burst size � 85.6 phages∕cell Table 3, Fig 4

Latency time � 0.60 ℎ Table 3, Fig 4

Initial bacterial population B0 105 cells

Initial phage population P0 10 phages

Appendix 0 Table 4. Parameters used in simulations shown in Appendix figure 1.

41 of 44



Manuscript submitted to eLife

indicate that the bacterial population starts to decay soon after such a threshold P ∼ 1∕� is960

exceeded.961

In order to proceed, we investigate the system at time T� further. We assume that the phage962

population is large enough that it will not be degraded by the CRISPR/Cas immune system. The963

threat to immediate phage extinction is low at this point. The actual equations are hard to solve964

directly, hence we revert to simple balance equations, ignoring the dynamical component. Specif-965

ically, we compare the number of (present and eventually produced) phages to the number of966

infections needed to wipe out the whole population. To incorporate the effects of the bacterial967

immune system in resistant bacteria, we assume that they needM > 1 infections before they burst968

and produce only �� phages, which reduces the burst size by a (yet unspecified) factor 0 < � < 1.969

� = 1 implies that resistant cells produce the same number of phages as susceptible cells, while970

� = 0 indicates only cell death. Combining these considerations yields971

1∕�
⏟⏟⏟

phages present

+ �S0B(T�)
⏟⏞⏞⏟⏞⏞⏟

phage production Bs

+ ��(1 − S0)B(T�)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
phage production Br

> S0B(T�)
⏟⏞⏟⏞⏟
infections Bs

+M(1 − S0)B(T�)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

infections Br

, (29)

where the left side indicates the total number of phages, while the right side indicates the number of972

necessary infections to kill all bacteria. The number of bacteria B(T�) can be estimated by inserting973

the time T� from (18) into the exponential growth (15b). Subsequently, we can rearrange (29),974

obtaining a bound onM :975

M <
1∕�B(T�) + S0(� − 1)

1 − S0

+ �� . (30)

The first term 1∕�B(T�) indicates the ratio of phages to bacteria at time T� , and can be considered976

small for non-extremal parameters compared to the other terms. This fact justifies our assumption977

that the actual value of � is not crucial. This numberM might allow some insight into the effective-978

ness of the CRISPR/Cas immune system. For a fraction of susceptibles S = 0.03, which corresponds979

to theminimal value where we observe only collapsed bacterial populations in undiluted LBmedium980

(see Figs 3 and 4), we would obtain the relationM ≲ 3+86�. Thus, each resistant bacterial cell could981

degrade up to 
(
101 …102

)
phages before their CRISPR/Cas system cannot cope with the infection982

load anymore.983
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Appendix: Supplementary results984

Reduction in number of plaques in spatially structured populations985

The reduction in the number of plaques with increasing proportions of resistant bacteria is shown986

in Appendix figure 2.987

Appendix figure 2. Number of plaques declines faster than proportionally to the fraction of resistant

bacteria. Number of plaque forming units observed on a plate (y-axis) for different proportions of resistant

bacteria (x-axis). Grey numbers below each boxplot indicate the average number of phages inoculated in the

respective treatment. The numbers of phages inoculated were chosen to retain the expected number of

plaques on the plate (green dashed line) as in the 0% resistant treatment (red boxplot). Plates were prepared

using identical procedure as in Time-lapse imaging of plaque growth (see Materials and Methods). The data

presented in this figure can be found in Appendix figure 2–source data1.

The following source data are available for Appendix figure 2:

Source data 1. Measurements of plaque numbers in populations consisting of varying proportions of resistant

to susceptible bacteria.

Appendix: Additional information on experimental setup988

Our experimental setup for the scanner system is shown in Appendix figure 3.989

Appendix: Source data and code990

Time-lapse images of spread of T7 phage epidemics in Escherichia coli spatially structured popula-991

tions are available on the Dryad Digital Repository: https://doi.org/10.5061/dryad.42n44. Source992
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Appendix figure 3. Image of the scanner system. Photograph of the scanner system used for time-lapse

imaging of phage spread in spatially structured bacterial populations. Three scanners (Epson Perfection V600

Photo Scanner) simultaneously scanned 12 plates in total every 20 minutes in 30◦C for 48 hours per experiment.

code of the model presented here is available on GitHub (https://github.com/lukasgeyrhofer/993

phagegrowth) (Payne et al., 2018) and its archived version is accessible through Zenodo: https:994

//dx.doi.org/10.5281/zenodo.1038582.995
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