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Abstract

This paper proposes a test to determine whether ‘big data’ nowcasting methods, whicih hayve become
an important tool to many public and private institutions, are monotonically improving. as new
information becomes available. The test is the first to formalise existing evaluaticn procedures from
the nowcasting literature. We place particular emphasis on models involvirg estitnated factors, since
factor-based methods are a leading case in the high-dimensional empirical newcasting literature,
although our test is still applicable to small-dimensional set-ups like bridge equations and MIDAS
models. Our approach extends a recent methodology for testing miany moment inequalities to the
case of nowcast monotonicity testing, which allows the numiber of ineqgualities to grow with the
sample size. We provide results showing the conditions underwhich both parameter estimation
error and factor estimation error can be accommodated in this high dimensional setting when
using the pseudo out-of-sample approach. The finite sample-performance of our test is illustrated
using a wide range of Monte Carlo simulations, and we ¢onclude with an empirical application of
nowcasting U.S. real gross domestic product (GDR) growth and five GDP sub-components. Our
test results confirm monotonicity for all bui.one sub-component (government spending), suggesting

that the factor-augmented model may be misspesified for this GDP constituent.
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1 Introduction

Nowecasting methods have been introduced as a way to provide timely predictions of the current state
of the economy. This is important as key policy variables such as GDP are typically published at a
low frequency and with a significant publication lag. These methods address important irregularities
of macroeconomic datasets, specifically the problems of mixed frequency predictors and the so-cailea
‘ragged edge’ problem of the staggered release of data series by different statistical agencies:” Cne of
the most desirable features of nowcasting methods is that they can be used to revise predictions ct the
target variable multiple times per quarter, as soon as any new piece of information becomes available.
However, while there has been a significant body of literature devoted to developing néw nowcasting
methods, there has been very little work on how to formally assess their performance,

Recent empirical nowcasting studies indicate that the evaluative criteria of nowcast methods have

moved in a different direction to the traditional forecast evaluation testing literature which dates back

to Diebold and Mariano| (1995) and West| (1996). Since a major advantage of nowcasting methods

is to use big data in making very timely predictions of the-economy, as noted in [Banbura et al.

, it is not as relevant to assess whether a nowcasting method is capable of outperforming
naive benchmarks like autoregressions, or surveys:oi professional forecasters, which potentially only
produce one prediction per quarter. As such; it-has hecome common for nowcasters to check whether
nowcasts based on a particular method are monotonically improving as new information is added,
using statistics like mean squared ferecast error (MSFE). Nowcast monotonicity has been used as an

evaluative criterion at policy-maxing institutions such as the Atlanta Fed and in empirical papers

dating back to |Giannone et al.| (2008) and many more recently (see for example Banbura et al., [2013]

[Aastveit et al., 2014, Luciani-and Riccl, 2014, Marcellino et al.l 2016, [Knotek and Zamanl|, 2017,

Bragoli and Fosten|, 2018).

Nowecast. monotenicity is also an interesting evaluative criterion as it has links to the literature

on forecester rationality. In the context of long-horizon forecasting, Patton and Timmermann, (2012)

demonstrate that if forecasters are rational and employ a correct model specification, and in the
absence of measurement error, then MSFE declines with the forecast horizon. In the nowcasting
context, this would imply that MSFE decreases when more information is added and the nowcast
horizon shrinks up until the publication date of the target variable. By providing a test for nowcast
monotonicity the results may thus be interpreted as a check for correct nowcast model specification.
Alternatively, if the test is used to evaluate externally-made predictions taken from institutional

nowcasters, the test can take on the interpretation as a test for ‘nowcaster rationality’.

2

ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

In this paper, we provide a formal and robust test for nowcast monotonicity based on the many

moment inequalities procedure of |Chernozhukov et al.| (2014]). Our test is the first rigorous procedure

to assess nowcast performance, and can be used in very general settings. This improves upon the

majority of the aforementioned empirical studies, such as Marcellino et al. (2016), which simply use

graphical evidence of declining nowcast MSFE and do not formally test for monotonicity. It algo

improves on some existing papers that do test for monotonicity, such as [Banbura et al.| (2013)) who

apply the test of Patton and Timmermann| (2012)), which are only set up to deal with a small huimber

of moment inequalities. Our paper, instead, allows for high-dimensional sets of momeiit inequalities
driven by the recent interest in ‘big data’ nowcasting methods.

Relative to the existing econometric literature of forecast evaluation testing, our paper provides
several new contributions: our first and main contribution is that we allow for the pessibility that the
number of nowcasts per quarter, S, grows to infinity (S — oo) and therefore so does the number of

moment inequalities. That is, while our method is still applicable in finite-dimensional nowcast model

approaches such as bridge equations (Schumacher] 2016) or MIDAS models (Clements and Galvaol

2008, 2009) where the number of moment comparisons is typically small (relative to the sample size),

it additionally accommodates big data approaches such as theuse of factor models which have become

widely used for nowcasting (Babura et al.,[2613| [Foreuni and Marcellino), 2014, [Baitbura and Modugnol

2014 and others). Specifically, we extend the mmany moment inequalities framework of |Chernozhukov
(2014)), originally geared towards microeconomic applications, to the case of nowcasting. In

doing so, we focus on the case of factor-bbased nowcasting methods as the issue of factor estimation in
nowcast evaluation is of separate econometric interest.

A second contribution of the paper is that we consider the issue of parameter as well as factor
estimation error.. We deal with parameter estimation error resulting from the use of the pseudo out-of-
sample approach of , and derive rate conditions under which it does not affect the validity
of critical values from the high-dimensional moment inequality testing procedure of
, More specifically, we find that, in allowing for S — oo, there is a cost to pay through a
stronger rate condition relative to papers such as . Likewise, we provide the conditions

required for using factor-augmented models of [Stock and Watson| (2002ab)) and Bai and Ng (2006) in

this nowcast monotonicity test, with the factors estimated by Principal Components Analysis (PCA),
after solving the issue of the ‘ragged edge’. This is important as existing papers on the estimation
of dynamic factor models with missing observations, such as the Kalman filtering approach of
, have focused on the properties of the factor estimates themselves and give no guidance
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in our nowcast evaluation context. In a similar way to the case of parameter estimation error, we find

that the rates of Bai and Ng (2006) have to be tightened in order for factor estimation error not to

contribute asymptotically to the critical values of the test.

Finally, we investigate the performance of our test in finite samples through an extensive range of
Monte Carlo simulations. These allow for non-monotonicity to occur from different forms of model mjs-
specification and investigate sensitivity to parameter and factor estimation error, as well as varying the
number of moment inequalities and out-of-sample splits. Our findings suggest that our test. performs
well across different scenarios, even in the presence of estimation error. We then appiy cur test to

nowcasting the aggregate GDP growth rate in the United States, as well as five GDP subcemponents,

using a data specification similar to that of Banbura and Modugno| (2014). As a preview of the

results, our test confirms that there is no statistical evidence of non-monctonicity in the aggregate

GDP growth rate. This is in line with previous studies such as Banbura et al. (2013]), which use

a different factor estimation procedure and time period, and seems tc indicate that the finding of
monotonicity is robust. On the other hand, in the government spending sub-component of GDP
our test finds significant violations of monotonicity. ‘This suggests that a different model should be
employed for nowcasting government spending. ‘The results-are very robust to different data spans,
dataset configurations and estimation schemes:

The rest of the paper is organised as follows. Section [2| describes the nowcast monotonicity set-up
of the paper, and provides details of the factor-augmented model set-up we consider in the theoretical
results. Section [3contains an introduction to the the test statistic, defines the bootstrap critical values
and states their formal vaiidity. Section [4] provides the Monte Carlo simulation settings and results.
Section [f] gives the empirical application of the test. Finally, Section [6] concludes the paper. There
is also a separate document of Supplementary Material which details the proofs of the results of the

paper and provides additional Monte Carlo and empirical results not presented in the main text.

2 —Set-up

2.1 Testing Nowcast Monotonicity

The objective is to evaluate nowcasts of a low-frequency target variable, 3, with T observations at
quarterly periods t = 1,...,T. Since data for 1 is not published until after the end of quarter ¢, we
make a set of S nowcasts at intervals ¢ = 1,...,.5, starting at the beginning of quarter ¢ and ending

when y; is published. This is achieved using a large set of N candidate predictors Xj;, for j =1,..., IV,
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which are observed at a higher frequency than y;. As an example, Xj; are taken to be monthly
predictors which are observed at 37" monthly periods ¢t = 1/3,2/3,1,...,T — 1/3,T. The extension to
higher frequencies is straightforward.

The S different nowcasting horizons are brought about by tracking the arrival of new information

in real-time, or the ‘data flow’ as termed by Banbura et al| (2013)). Assuming that the observations

X+ are released sequentially in the order of their j variable index and then in the order of their 7 time

index, the timeline of data releases appears as in Figure

Figure 1: Graphical Illustration of the Data Flow

S = 3N nowcasts

- ~
Nowcast Horizon : 1 - N N+1--- 2N. . 2N+1,-+ 3N
Data Release: Xl,t—% . 'XN,t—%Xl,t—% ANyl Xy XNt
: I I : I S : I I : 3
Month 1 Month 2 Month 3
Ne——— €N\ ¢
Quarter ¢

Several comments are useful here. Firstiy, this example simplifies the set-up without loss of gen-
erality so that y; is released at the end of quarter ¢, whereas in the empirical application we see, for
instance, that U.S. GDP data for quarter ¢ are, in practice, released some way into quarter ¢ + 1.
Secondly, as we move from ¢ = 1 through ¢ = S, the nowcast horizon shrinks as we approach the fixed
publication date of y;.” This is a slightly different set-up to forecasting studies where the forecast origin
is held fixed and the horizon is increased into the future. Finally, it can be seen that the so-called
“ragged edge” oceurs in the middle of this timeline, where the data are available for some months of
the first few variables but are not available for the remainder.

In the above example, the monthly set-up gives rise to a total number of S = 3N different nowcasts
per quarter. This number of nowcasts can be made arbitrarily large by increasing the number of
variables, N. This is particularly relevant for recent “big data” approaches to nowcasting which often
allow N — oo. The value of S can also be very large when daily predictors are used, or even higher
frequency financial series. On the other hand, S could be relatively small if the nowcaster chooses

to use one monthly predictor and make S = 3 nowcasts per quarter. Additionally, some empirical

5

ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

nowcasting papers choose a small number of cut-off dates (such as the end of each month) and make
only S = 3 nowcasts based on models which aggregate all of the available data for the previous month.
In this paper, we wish to allow for any of these scenarios, and will therefore allow a framework where
S — oo.

We define €;_;;/g for i« = 1,...,.5 as the collection of data releases at a point ¢ during quarter
t, which culminates with €2; at the end of quarter ¢ where i = S and all of the quarter’s data points
have been released. This information set corresponds to all data releases on the left of a given point in
the timeline in Figure [I} Then at each point ¢ the nowcaster makes a nowcast based cii-the available
data at point ¢ and an (m; x 1) vector of parameters 6;. We denote this nowcast, which is usually the
conditional mean E [yt|Qt,1+i /S Hi}, by i+ (0;) in the following.

Given the motivation in the introduction, the central hypothesis of interest is whether nowcast
performance is monotonically improving as we move through the quarter;-approaching the publication
date of the target variable. Given some loss function L(.), whose properties will be discussed in Section
below, we are interested in knowing whether the nowcast error loss at a point i 4+ k is lower than
some earlier point i. The null hypothesis is formed of S{,S —1)/2 moment inequalities for each pairwise

comparison of nowcast points i + k and i:

Ho : E[L(yt — Ykt (0itr)) — L(ye — it (0:))] <6 foralli=1,.,5-1; k=1,....5—i (1)
Versus:

Hy :E[L(y: — Yiprt(Pizr)) — E(yr—yi4(6:))] > 0 forsomei=1,...5—-1; k=1,...,8—1

The null hypothesis is violated when at least one point later in the prediction period has larger loss

than some earlier horizon.

Relative to pavers such as Patton and Timmermann| (2012)) for testing forecast monotonicity, we

consider-all pessible S(S — 1)/2 pairwise moment inequalities for the test, rather than just adjacent
inequalities, in order to detect any violation of Hy. Note that, by doing so, even in empirical appli-
cations where the number of nowcast points is relatively small, S(S — 1)/2 can be very large which
further motivates a high-dimensional set-up. We leave the functions L(.) and y; (6;) to be very gen-
eral in order to incorporate the vast majority of commonly used nowcasting methods, though it is
very typical that the MSFE loss function L(z) = 2% is used for nowcast evaluation. For y; (6;), as

mentioned in the introduction, we can easily incorporate different methods operating with a ‘small’
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or a ‘large’ number of regressors.

Since the population parameters 6, and 6; are unknown, we obtain estimates for the set of
moment conditions in Hg using a pseudo out-of-sample nowcasting experiment as in .
We split the sample of time series observations, T', into samples of size R and P. At each of the P
quarterly out-of-sample periods t = R+ 1,..., T, we make ¢ = 1,..., S different nowcasts of y;. We
start out estimating the parameters with the first R observations, and then for each ¢ and i, we nse an
expanding window of observations using the information set {2, 1, /S}g:p known as the recursive
scheme. We focus on the recursive rather than the rolling scheme (where the estimation window is
fixed at length R), though the extension of our theoretical results to the latter is straightforward. The
focus on the recursive scheme is partly as it is widely used in empirical studies and paitiy as we use

factor models which are known to be quite robust to structural instabilities  with the latter being one

of the main reasons for using the rolling scheme (Clark and McCracken, 2009).

We take the ragged edge at point ¢ into account, and use oniy the information available at point @
to estimate 6;;. Therefore, in comparing horizons i and 7 +#&, we use sequences of parameter estimates
{Hit}tT: Ry and {9i+k’t}zﬂ: re1- This gives rise to a sample analegue of the moment conditions considered

in Hy:
1 & . )

Yy [L(yt — YiintBina)) — Ly — yi,t(eﬁ))} fori=1,..S—1; k=1,....S—4, (2)
which we will use in Section 3| below for our test statistic.

2.2 Nowcasting with Factor-Augmented Models

In forming the nowcast .oss difterentials defined above, of particular interest is when we make nowcasts

of the target variable y using the factor augmented model of [Stock and Watson (2002alb) and [Bai and|

(2006)), adapted to the case of nowcasting. The simplest version is the unrestricted factor-MIDAS

model used by Kim and Swanson| (2017)) amongst others:

yr =Y Wi+ BoFy + B1F—1y3 + BoFygys +er t=1,2,..,T (3)

This is a quarterly regression model of y; on W3, which is is a set of ‘must-have regressors’ such as a
constant and lags of y;, and monthly lags of F}, the r unobserved factors based on the monthly static

factor model:

X;=AF,+u  t=1/3,2/3,1,..,T—2/3,T —1/3,T (4)

7
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where X; is an N x 1 vector of observed variables, A is an N x r matrix of factor loadings, F} is an r x 1
vector of unknown factors and u; is an N x 1 vector of idiosyncratic disturbances. Note that for the

theoretical results of the paper we treat the number of factors, r, as known whereas in practice this

can be consistently estimated by the information criteria of Bai and Ng| (2002) and others. We also

abstract from structural breaks in these models, as is common in the forecast evaluation literature.

In the empirical application we explore the results using data spans guided by factor loading hreak

dates, which can be determined using methods such as |Breitung and Eickmeier| (2011)) arid Corradi

land Swanson| (2014).

We make out-of-sample nowcasts for quarters ¢ = R+ 1,...,T and nowcast points4 = 1....,.S by
repeatedly estimating the factors by PCA in expanding monthly windows froni obsetvation 1/3 until
the end of the quarter ¢, at the various nowcast points ¢. This proceeds in tiaree stages.

In the first stage, we take account of the “ragged-edge” which eccurs-at the end of the recursive
window estimation sample. Specifically, at points t = R+1,.... 7", we use a 3t X N window of monthly
observations in the matrix X® = [X1/3, Xo/3, .-, X¢]', where the ragged edge only occurs in the last
3 monthly observations of each window. For example;if i < /N, then only information is available for
month 1 of quarter ¢ up to variable ¢, and no otherinformation is available for the rest of the quarter.
In that case, the panel is unbalanced and we cannot directly apply PCA to estimate the factors. We
therefore make predictions of the missing observations up to month ¢ and variable N which gives a

recursive data matrix:

X171/3 ooe o ot P PR XN71/3
Sl R - B y
‘?,g(xlN) = | Kipoops oo Xigmops Xiyipoys - Xnyooyg | fort=R+1,.Tii<N (5)
' Xivas - Xiees Xipie—iys - Xngoi/s
X .. Xy Xisie - Xt

with typical element {X\") : ¢ = R+ 1,..,T;j = 1/3,2/3,1,..,t — 2/3,¢t — 1/3,;i = 1,...,S}.
Analogously, when N < ¢ < 2N, the predicted observations only appear in the second-to-last and

last row of X (i) and when i > 2N they only appear in the last row. This data matrix differs from

the out-of-sample factor estimation approaches of (Gongalves et al.| (2017) and (2016)) due to

these predicted observations in the last three rows to solve the ragged edge. There have been different

suggestions of how to balance the panel in the literature. [Stock and Watson| (2002b) suggest to use an

8
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EM algorithm to fill in missing observations. A state space approach was suggested by

Modugno (2014) using the Kalman filtering method of Doz et al. (2011). Other alternatives include

using interpolations to predict missing observations before using PCA (Kim and Swanson, 2017) and

vertical alignment (Altissimo et al., [2010)).

In the second stage, we estimate the factors by PCA on the data matrix in Equation . For
every out-of-sample window ¢t = R+ 1, ..., T and every nowcast point ¢ = 1, ...,.S the PCA optimisation
problem is:

<€t(i’:), 1?\\;;?) = arg mln {3thtr ()?(i’t) — F(t)A’> ()?(i’t) — F(t)A'>/} (6)
subject to the normalizations that F®/F®) /3t = I, for all ¢ and that A’A/N is diagonal, where
FO = [F} /3505 Fy)" is a 3t x r recursive matrix of monthly factors in each quarter ¢, in an analogous
way to X®. The solution is to set F@D a5 the r eigenvectors corresponding to the r largest eigenvalues
of the 3t x 3t covariance matrix X (9 X (i) /3tN. These eigenvalues are denoted by the r x r diagonal
matrix V() for each i and t. Then since F'(&:)/ (i) ) /3t = I, under the normalisation for the factors,
we obtain a simple expression for the estimated loadings, A% = X @0/ F@t) /3¢ The difference to
existing papers on factor estimation is the additionz! dependence of the estimated factors and loadings
on 7, the nowcast point.

The final stage is to make the noweast. For this'we obtain OLS estimates using recursive regressions
of y; onto W, and the estimated Tactors {ﬁj:i’t) ct=R+1,...,T;5 =1/3,2/3,....,t;i = 1,...,5}. For
unrestricted factor-MIDAS model as in”Equation , the estimated factors are skip-sampled from
the monthly frequency and inserted into the regression in a quarterly fashion. In other words, ﬁt(i’t)

contains periods 7= 1,2,...,t, while F FY)  contains observations on the second month of every

t—1/3
quarter (periodsj =2/3,5/3,...,t—1/3) and FUY on the first month (periods j =1/3,4/3,...,t—

t—2/3
~(4,t) (F(zt) F(zt)

2/3). Then, collecting F, 130

7t 2 e 2 e
Ft(iQ)/?))’ and By, = (Bl Bl Bhi)s the nowcasts are
written:

A(ivt) 5 A~ 7 7, 7,
Yit (Ft aﬁm’Yz‘t) YieWs + ﬁoth( ) + Bltht i/g + /BtaFt ;)/3 (7)

fort = R41,...,Tand i =1, ..., S. These nowcasts are then used directly in Equation to calculate
the loss differential series.

Note that, in the absence of measurement error, if we have correctly specified the model for the
data generating process, we expect the null hypothesis of monotonicity to hold. Heuristically this is

so because, as ¢ grows towards S and we add more and more information, the predictions used to

9
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solve the ragged edge in XD are increasingly replaced with actual observations. This implies that
the effect of the factors being contaminated with ragged edge predictions vanishes throughout the
prediction period, meaning that measures like MSFE are expected to decline as we move towards the

end of the nowcast period.

3 Test Statistic and Critical Values

3.1 Test Statistic

To test the null hypothesis Hy in Equation we use a statistic which is based cn-the empirical
moment inequalities introduced in Equation . That is, the test statistic/is chosen to be a max

statistic of the following form:

T
Ut = max <= > [Lly = viensBrarn) ~ By = i) (8)

where the max could be taken over different sets of moment inequaiity comparisons, for example the
set of all possible S(S — 1)/2 pairwise comparisons Cg =i, k:i=1,...,S—1,k=1,...,5 — i}, or
the set of only adjacent comparisons Cg = {i.k :i'=1,...,5 — 1,k =i+ 1}. The null hypothesis of
monotonicity, Hy, in Equation is then rejected if U* > c(a) with ¢(a) denoting a corresponding
critical value at significance level a. Reiection of the null implies that there is at least one point later
in the quarter which has significantly iarger nowcast error loss than at some earlier horizon.

Before describing how te construct the critical values, there is a remark to be made with respect to

the set of moment inequalities to be-used. Note that in order to apply the results of|[Chernozhukov et al.|

formally weneed that for every given ¢ and k£ combination, the variance of L(y: —yiyrt(0itr)) —
L(y: — yit(0:)),1.e 'U?H i = Var (L(yt — Yitht(0itr)) — L(ys — vi(65))), is bounded away from zero
(a consequence 6f Assumption SM2 in the Supplementary Material). If we use the factor-based
approach. of the previous section and re-estimate on every data release, the factors estimated using
adjacent releases differ only by the new data point on a single variable out of the total set of N
variables. Therefore in the limit as N — oo, adjacent horizons’ factors become perfectly correlated
and L(y: — Yi+1,t(0i+1)) — L(yt — vi,+(0:)) = 0 almost surely for every ¢, which implies that U?Jrkﬂ. =0.

If N is very large, a possible solution to this problem is to drop a subset of moment inequalities
which are close together, by bounding the release horizons sufficiently far apart by some fraction of

2

ki 1S 1Ot equal to zero. We use this general approach

N. This can be done in such a way that v

2

to prevent Vit

= (0 in comparing ¢ to ¢ + k by setting k to be at least equal to some deterministic

10
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sequence which we call k£¢. That is, for some S > 1, let:
k:g:min{k;e {1, S—i} 02, >e>0 Vi 1,...,5—1} 9)

Intuitively, kS is the smallest integer k for which the variance virk’i

is larger than some constant ¢ for
any ¢. Note that this still implies that we make use of every data release in the out-of-sample nowcasting
experiment, but merely drop some of the pairwise comparisons of these quantities in forming the test

statistic. A regularity condition (see below) then rules out the occurrence of pathological cases of

non-monotonicity, which may arise by ignoring the horizons between ¢ + kS and 4.

2
i+k,i

Finally, we point out that, while v = 0 might be a theoretical concern in the limit, our
simulation results as well as our empirical application support the view that ‘this spacing is of minor
practical relevance in finite sample settings. Indeed, even in the limit, v;_,” = is typically also not
an issue at all if the factors are re-estimated only on a fixed number of calendar dates such as the end

of each month, as described above.

3.2 Critical Values

Before we introduce the critical values for our test.aind establish their formal validity, we introduce

the shorthands ALy (04, 0:) = L(ye — yiski(0iix)) — L(ye — vir(0;)) and ALy(0;444,0i) = L(ys —
yi+k7t(§i+k,t)) — L(ys — ylt(@t)) for auiyi=1,...,S—1and k =1,...,5 — i combination. Moreover,
let k denote the cardinality of Cs,i.e. i = [Cg].

In order to establish critical values for the statistic in such that the test has asymptotic

size a € (0,1), we adopt-the approach to testing many moment inequalities recently introduced by

|Chernozhukov et ai.|(2014). This procedure does not refer to the asymptotic distribution of the test

statistic, but relies on finite sample approximations of the (unknown) asymptotic distribution of the

test statistic. under Hy through the use of the Block Multiplier Bootstrap (BMB) procedure. That

is, (Chernozhukov et al.| (2014) show that, under certain regularity conditions, the distribution of

MAX; kel ﬁ Z?:R_H <ALt(€i+k, 0;)—E [ALt(GiJrk, 91)] ), the statistic evaluated at the true (6;,6;, )’
and re-centered by E [ALt(GHk, «91-)}, can be approximated directly by that of maxj<j<, Y; with ¥ =
(Y1,...,Y,), a centered normal random vector of dimension x (recall that x denotes the cardinality
of the set Cg) with covariance matrix E[YY’ }, in Kolmogorov distance. This approximation holds
for a given sample size T' (and other fixed parameter values) up to some bound C’ P*C/, where ¢’ and

C' are constants which exclusively depend on some unique constants ¢, C1, and ¢z (see below for a

definition). Since the covariance structure of max;<;<, Y; is unknown, a similar approximation with
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maxi<i<, Y; can also be established for the BMB bootstrap statistic described in the following. Our
theoretical results in Theorem [I| below then suggest that the actual test statistic, which under Hy

satisfies:

T
1 ~ ~
* < ) N ) .
U 71%252 tERHALt it t Zt) ifilgé\/»t:ERH<ALt(01+k,t,0zt) E[ALt(91+k,91)D

can indeed be approximated by max; recg # Zf:RH (ALt(GHk, 0;) — E[ALt(HHk, Hl)D In other
words, Theorem [1| below establishes that parameter and factor estimation error in the test as well
as in the bootstrap statistic can be bounded by C7;P~%, where the bound hoids again for fixed
values of T, k, and the other parameters. This suggests that both, the approximation erior with the

max of a Gaussian process as well as the factor and parameter estimation error; bécome negligible

asymptotically as P — oo.

Paralleling |Chernozhukov et al. (2014]), we apply the ‘small’ and ‘iarge’ blocks technique widely

attributed to the paper of Bernstein| (1927). That is, let g > rp dencte the ‘large’ and ‘small’ blocks

respectively and assume that gp+7rp < P/2. In analogy to their paper, define Iy = {R+1,..., R+qp},
Ji={R+qp+1,..., Rtqp+rp}, ... Imp = {Rt{mp=1jlgp-rrp)+1,.... R+(mp—1)(gp+rp)+qpr},

» ={R+(mp—1)(gp+rp)+qp+1,..., R+inp(¢p+rr)}, and Jp, 41 = {R+mp(gp+rp)+1,...,T}.
Thus m = mp defines the number of blocks as the integer part of m = P/(qp + rp) and so (¢p + rp)
characterizes an independent block

The algorithm of the block maultiplier'bootstrap is now as follows:
1. Generate standard normal random variables €1, . . ., €, independent of the data {ALt(§i+k,t, é\zt)}tT: Ryl

2. Retaining only the large blocks I, h = 1,..., mp, construct the BMB statistic:

Wene = max < NGO Z €h Z
2, S mp P

Jely

<AL Z+’€]70,j P Z ALt l+kt791t)>>

t=R+1

3. Calculate cBMB(a) as the conditional (1 — «) quantile of Wpy/p given {ALt(@+k7t, é\it)}tT:RH‘

The-above algorithm has been designed for a fixed large block-small block combination, and size as

well as power of the test may be sensitive to the actual choice. As standard selection methods of the

block size for dependent data such as Bithlmann and Kiinsch| (1999) or Hall et al. (1995) have not

yet been extended to high-dimensional data, in the Supplementary Material we propose an ad-hoc

nested bootstrap procedure suggested by |Zhang and Cheng| (2014) to estimate the optimal small-large
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block combination. Without claiming optimality of any kind, this choice can then subsequently be
employed to perform the moment inequality test of interest on the original sample. The proposed
method appears to perform well in Monte Carlo and empirical settings.

For the regularity conditions outlined below, let ¢, ¢/, C, and C’ denote generic positive constants
that may vary throughout the rest of the paper and that are assumed to depend exclusively con
0<c¢ <Cp <ooandon0 < cy < 1/4. Also, define the k-th mixing coefficient for S-mixing data

{AL()}, as:

br = br (AL = e Bo(AL1O):- o ALa()): 0 (ALasr (), ALr()) (1S TST 1,

where o(AL(-),t € T) with 7 C {1,...,T} is the sigma field generated by A7L;{-), t € T. We impose

the following regularity conditions:

Assumption 1. For every i,k € Cg, the data {ALi(0;1y,0;)}L

A=D

is strictly stationary (across t) and

B-mizing where the size of the T — th mizing coefficient is determined in Assumption [§] below.

Assumption 2. Assume that:

E ALy(Bisr:05) — B ALiibr,97)|

max
i,k€Cs

S
] < C1 1<s<4.
as well as:
B(IIVrAL (014,097 < C and  B|IVsAL(6ir, 07| < C,

forallt=1,...,T and i,k € Cs, where d,, is again defined in Assumption below.

PRl

Assumption 3. #oreveryt =1,...,T, and i,k € Cg, in an open neighbourhood of 6,1y and 0;, the
function AL (6., 0;) is measurable and continuously differentiable with respect to all elements of 0;

and ;5. with probability one.

Assumption 4. Let R, P, N — 0o as T' — 0o and assume that there exists a sequence (p1 — 0

as 2 — o00. Recalling co defined above, we impose the following conditions: let P/R% — o0 and

P/N = O(1), and assume that

1+co Lt
C'maX{P ,PQ}§CP1< Gy

R N = Pe
Moreover, assume that the block sizes satisfy qp = o(P), rp = o(qp) as P — oo. The mix-
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ing coefficient by, and the block sizes rp and qp together with the number of blocks mp satisfy
max{mpb,,, (rp/qp) log? k} < C1P~ and qu'logg(fsP) < C’lP%_@, where by, = o (rEerP/(dTP*l))

and dp, > 1.

Assumption 5. For some c defined before, the sequence k' defined in @ exists for every S =1,2,...,

and for every 1,

Pr { max ALt(0i+k,0i)>0}ﬂ{ max ALt(HHk,Gi)gO} 50
1<t<T k<kg 1<t<Tk>kg

as S, T — oo.

Assumption [] characterizes the time dependence in the data, while Assumption [2] requires the ex-
istence and finiteness of certain moment expressions. Note that the moraeént conditions in Assumption
involve the loss function, and thus the set of admissible nowcast errer<distributions which satisfy
Assumption [2| will in fact depend on the actual loss function ernployed. We point out, however, that
when nowcast errors are for instance normally distributed wwith finite mean and variance for every
i=1,...,S, then the moment conditions in the first pait of Assumption 2] are satisfied for commonly-
used loss functions such as the symmetric squared error loss or the asymmetric linear exponential
(Linex) loss. Assumption 3| on the other hand-requires differentiability of AL (6;4x,0;), which rules

out loss functions such as mean absolkite deviation loss, but could, in principle, be weakened along

the lines of [McCracken| (2000). Assumption [4| modifies the asymptotics as in (1996) with new

rates due to our nowcasting seé¢-1p: By using big-data approaches allowing the number of moment
inequalities, kK = k(N), to grow to iufinity with the number of variables N and with the sample size
split into T' = R +/P; this assumption governs the interplay of these three sequences. Also noting
that with calerdar release dates linked to the number of variables, meaning x will at most be of order
O(N?), the first part of Assumption |4| requires R to grow slower than P2, but faster than P*2¢2
where ) < ¢4 < 1/4. This is slightly stricter than P/R — 0, the requirement imposed by

1996|) to ignore parameter estimation error asymptotically, and, when ¢y = % for instance, allows for
Re (CP% ,CP?). Similarly, we allow the number of variables N to grow as fast as P, but require that
( patle /N) — 0, a condition which is again slightly stricter than the out-of-sample analogue of
who require vP/N — 0 to eliminate factor estimation error asymptotically. This tight-
ening of the growth rates may be viewed as the ‘price to pay’ to let the number of moment inequalities
grow with the sample size. For instance, if again ¢y = %, we can allow for N € (CP%, CP), which in

turn implies that N/T — 0. The second part of Assumption [4] determines the rate of the small (rp)
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and large block (gp) sizes, respectively, and sets the mixing size to be of order —2d,,/(d,, — 1). It
postulates that the rate of the large block size ¢p is at most of order pie (if co = %: gp < C’P%),
while rp in this case may only grow up to rate pi—2e (if co = %: rp < CPi). Finally, note that
the mixing condition is slightly weaker than in who imposes a mixing coefficient of size
—3d/(d—1) and thus allows for less time dependence in the data. Finally, Assumptionrules out that,
as S and T grow to infinity, any violations of monotonicity remain undetected by spacing moraent
comparisons kg periods apart from each other. This ensures that the null hypothesis Hy remains
unaffected in the limit by using this spacing.

Before we state the main theoretical result, we point out that there are two additional azsumptions
in the Supplementary Material, Assumptions SM1 and SM2, which are required for-the statement in
Theorem [I|below. More specifically, Assumption SM1 contains rather standard factor model regularity

conditions adapted to the recursive parameter estimation case, many of which are similar or even

identical to |Gongalves et al| (2017). By contrast, Assumption SM2 is needed to formally relax a

bounded support assumption made by |(Chernozhukov et al{2014) for the case of dependent data for

illustrative purposes. However, these are not presented here due to their long and mainly technical
nature. The following Theorem establishes the validity of the bootstrap critical values using the BMB

procedure:

Theorem 1. Recall the definition of the constants and assume that Assumptions[1, [3 [3, [4 [J hold,
as well as SM1 and SM2 from the Suppleraentary Material. Then, there exist positive constants ¢, C
such that under Hy:

Pr{ Uu* > cBMB(oz)> <a+CP™° (10)

where ¢BMB () .ic_the corresponding critical value at level a from the Block Multiplier Bootstrap

procedure described before. If E[ALy(0;1,0;)] =0 for all i,k € Cg, then:

<cope. (11)

PT‘(U* > CBMB(a)> -«

T heorem yields critical values for U* in such a way that the test has asymptotic size « € (0, 1).
Note however that the bounds in Theorem [1| are non-asymptotic in the sense that the bound C'P~¢
holds for a fixed value of P and « (and the fixed parameters). The second part of Theorem (1} namely
Equation , shows that when all moment inequalities are binding, the asymptotic size of the test

coincides with the nominal size a.
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3.3 Ciritical Values with Moment Inequality Selection

When the number of non-binding and thus uninformative moment inequalities with E [AL; (011, 0;)] <
0 is large, one-step critical values described in the previous section may become too conservative. A
possible solution to this problem is the application of moment selection procedures which do not
consider inequalities in the calculation of the critical values that are unlikely to be binding, i.e. -in-
equalities whose estimated counterpart lies below a certain threshold value. This selection procedure
is similar in spirit to the Superior Predictive Ability test of , which overcomes potential
conservativeness of (2000)’s reality check test for comparing a (finite) number of forecast models

by ignoring irrelevant models in the construction of the limiting distribution.

For the moment selection, we adopt a two-step method proposed by [Chernozhukov et al.| (2014))

for the Multiplier Bootstrap to the BMB used in that paper. Let 0 <. 8p < /2 be some constant
which may depend on the out-of-sample size P. Then let ¢?™B(fp) analogously denote the one-step
critical values calculated using the procedure above, for size ' 8p rather than «. Finally denote the

moment inequality selection set T BMB as:

T

- . 1 AV

JpMB = {Z,k €Cs: NGz > LB, 00) > —QCBMB(BP)} -
t=R+1

Then the two-step critical values with moment inequality selection, which we denote ¢PMB:25(q), can
be calculated using the following procedure:

1. Generate standard normal randein variables g, . . ., €, independent of the data {Lt(§i+k,t, @t)}f: Ril:

2. Construct the BMB statistic W as:

BMB
/ 1 m ) ) 1« ) ) e T
max l S S h:Pl €n ZjEIh ALj (e’i-‘rk,jyei,j) -5 E ALt(HHk,t, Hi,t) if Jpp B not empty
i, k€SB NiR \‘\ ' t=R+1
0 if jBMB empty

3 Calcuiate CBMB,ZS(Q) as the conditional (1—a+28p) quantile of WjBMB given {Lt(é\i+k,t7 @7t)}?:R+1.

Given this two-step procedure for the computation of critical values, the following result establishes

their theoretical validity:

Theorem 2. Recall the definition of the constants and suppose that the assumptions of Theorem []]

hold. Moreover, suppose that sup Sp < «/2 and log(1/8p) < Cylog P, where Bp was defined above.
P>1
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Then, there exist positive constants ¢ and C depending only on ¢ and Cy such that under Hy:
PT(U* > (PMB25 (a)> <a+CP°, (12)

where ¢BMB23(q)

is the corresponding critical value at level o from the two-step Block Multiplier
Bootstrap procedure with moment selection described before. If E[AL(0;4x,60;)] = 0 for all i,k € Cg,
then:

Pr(U* > CBMB’2S(a)> <a-38p—CP¢ (13)

so that, if in addition Bp < C1 P, then ‘PT’(U* > CBMB’QS(a)> - a’ <CP“

Similar to Theorem [T} results are sub-divided into two parts: the first-part of Theorem [2] addresses
the case where only some inequalities are binding, while the second pait consicers the case when all
moments are zero, in other words E [AL;(6;4,0;)] = 0 for all 1 < < k. As expected, the possibility
of dropping some inequalities from the set of moment restrictions used for the computation of critical
values when they are actually informative, leads to an additional error of order 38p. This error,
however, becomes negligible when Sp < C1 P~ and the same convergence rate as in Theorem [l is

obtained.

4 Monte Carlo

In this section we investigate the finite.sample properties of the test statistic in Equation . Of
particular interest is the pérformiance of the test across different sample sizes, with different specifi-
cations of parameter and factor estimation. We therefore propose two set-ups: the first specifies y;
to be a function of a small set of non-factor regressors. This allows us to assess the performance of
the test in a lower-dimensional set-up more similar to the MIDAS and bridge equation approaches,
and also allovws us to shut down the factor estimation component of the results. The second set-up
bhagboth parameter and factor estimation which allows us to investigate the test in high dimensions
with factor estimation error. We will check sensitivity to the in-sample and out-of-sample splits, R
and P also when the test is constructed using different sets of moment inequalities: the full set of

S(S —1)/2 inequalities, the restricted set using spacings of width k¢ described in Section and the

adjacent-only inequalities version akin to the A® test of Patton and Timmermann| (2012).

17

ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

4.1 Set-up 1: Parameter Estimation Only

In the first Monte Carlo set-up, y; is a function of a vector of S non-factor variables Z; = [Z14, ..., Zs]':

v =77+¢e (14)

for t = 1,..,T where Zy; ~ i.i.d.N(0,0%) and & ~ i.i.d.N(0,02). The variables in Z; are, {or
simplicity, taken to be at the same frequency as y; but released at staggered intervals in. the order
1,...,S in a similar way as depicted in Figure [] We assume that the nowcaster makes nowcasts at
each of these points ¢ = 1,...,5 using a misspecified one-variable model which orly uses variable 1,

namely:

Yt = ViZit + €it i=1,...,8 (15)

The nowcasting model in Equation , which omits all-‘but.one of the S variables in the true
DGP for y;, gives a MSFE; at pointsi = 1, ..., S of MSF; = 0. +E#i ’yjza%. We can therefore vary
the relative magnitudes of the sequence of parameter values vy, ...,7vs in order to generate different
scenarios according to the null and alternative hypotheses.

In order to simulate the least favourabie case under the null, where the inequalities in the null

hypothesis in Equation all hold with equality, we use the parameterisation:

DGPZ-N: v, =1foralli =19

which gives equal M SFE; {for each i Under the alternative hypothesis we use the parametersations:
DGPZ-A1: ~; =1 dor'i= |S/2] and 7; = 0 for i # |S/2]

DGPZ-A2: ;= /exp(—i) foralli =1,..., S

These give two different types of violations of monotonicity similar to existing studies in the

monotenicity testing literature such as Ghosal et al. (2000). Specifically, in DGPZ-A1 there is a one-

oft spike in the v; coefficients around the (integer part of) point S/2 which causes a drop down and
immediate jump up in the MSFFE; profile. In DGPZ-A2 the ~; coefficients decline as 4 increases,
which implies that M SFE; is smoothly increasing across the whole profile.

For the various DGP parameters and sample sizes, we use a number of variables S € {5,10} which
allows us to assess the performance of the test in a relatively small-dimensional case. For the all-

inequalities version of the test this still yields a total of S(S —1)/2 € {10,45} moment inequalities,
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although we will compare the performance to the adjacent-only version which uses only S —1 € {4, 9}
inequalities. We let 0% = 1 and therefore set o2 = Zis:l 72-2 which fixes the signal-to-noise ratio
in Equation to be 1:1. The nowcaster uses recursive OLS to estimate the models described in
Equation . We let the total sample size be T' € {200,300} and for the sample split T'= R+ P we
use ratios P/R € {1/2,2} to allow cases where R < P and P > R, and so R and P vary between 67
and 200.

For the bootstrap, we considered a grid of values for the small and large blocks equal 1o 7p €

{0,1,2} and gp € {4,5,6,7,8}, though we only display some of these combinations for brevity. We

make use of the warp speed bootstrap of |Giacomini et al.| (2013]) which allows us ta make just B = 1

bootstrap draw over M = 999 Monte Carlo replications and reduce the computatiornal complexity of

the problem.

4.2 Set-up 2: Parameter and Factor Estimation

In this next set-up we simulate both the factor model and-facior-augmented model in Section 2| to
give both parameter and factor estimation in the out-of-samiple estimation approach. The quarterly

factor-augmented regression model is a simplified versiorni of Tquation :

ye = BoFt + B1Fi-iys + BoFy—o)3 + €4 (16)

for quarters t = 1,2, ...,7" which-bas ne additional regressors W;. The monthly factor model has 3T
observations on the N x 1 wvector of variables X; which is exactly as in Equation (4). As above, the

variables Xj; are released at distinct times in the order j = 1,..., N, yielding S = 3N nowcasts per

quarter. The set-up is interesting relative to existing simulations such as|Gongalves et al.| (2017)) which

do not allow forthe ragged edge or consider multiple updates of factor estimates.

The nowcaster forins nowcasts on each data release through the three months of each quarter. The
factors are estimated by recursive PCA after solving the ragged edge using an AR(1) interpolation. The
estimated tactors are then used in the second-stage where recursive OLS is used to estimate the nowcast
medel. ¢xactly as described in Section We take a simple specification of the data generating
processes in Equations and @) where the idiosyncratic errors are uy ~ i.i.d.N'(0,02), there is a
single factor » = 1 which follows the AR(1) process F; = ppFi—1 + vy where v; ~ i.i.d.N(0,1 — p%)
so that the unconditional variance of the factors is fixed at unity. We let the factor loadings be the
non-stochastic vector A = 17 and finally the factor-augmented model errors are & ~ i.i.d.N (0, 03).

In the results which follow, we do not present simulations under the null. As mentioned in Section
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a correct nowcast model specification in this set-up leads to a strictly declining MSFE profile as
the contamination to the factors due to the ragged edge interpolation vanishes throughout the period
as we add information from ¢ = 1 to ¢ = S. Thus, this downward-sloping MSFE is in the interior of
the null space (with E[AL(.)] < 0 rather than the least favourable case where E[AL:(.)] = 0) and we
therefore expect the rejection rates to be close to zero under this specification. We confirmed this by
running results for the case where (5, 81, S2) = (0.25,0.25,0.25) which are available from the antliors
on request.

In order to simulate under the alternative, as above we assume the nowcaster repeatedly. mis-
specifies the model for the true DGP in Equation . Again, they use a single-variabie version of

the model which in this case uses only the factor dated in the current month:

v = ByFi_ays + et i<N (17)
v =B Fi_1y3 + e N 1<4<2N (18)
vt = BoFy + €31 ON 4 1< i <3N (19)

Ignoring the effect of the ragged edge interpolation, the inonthly M SFE,, for m = 1,2, 3 are equal
to MSFE, = (82 + $?)0% + 02, MSFEy = (8} -+ 2)9% + 02 and MSFE; = (82 + 83)0% + o2
Therefore monotonicity is violated either wher o > 31 or 51 > [y (or both). We therefore consider

two different parameterisations for the alternative with differing magnitudes of non-monotonicity:
DGPF-A1: (5, 51, 82) = (C.05,1:5)
DGPF-A2: (Bo, ﬁl» Bg) = (0, 05, 3)

For the various DGP parameters and sample sizes, we let 02 = 1 and pr = 0.5 in the factor model.
For the noweast model errors we let 02 = (53437 +/33) which fixes the signal-to-noise ratio in Equation
to bz 1:1. The same quarterly sample sizes T' € {200, 300} are used, noting that this gives monthly
sample sizes 3T € {600,900} for X;. The same sample splits for R and P are maintained from the
previous section. For the number of variables in X;, we consider N € {10,20}. This gives a large
number of S € {30,60} nowcasts per quarter, which in turn yields a maximum number of moment
inequalities of S(S — 1)/2 € {435,1770}. Since there may be the issue of highly correlated factor
estimates, as outlined in Equation @D we will check the performance of the all-inequalities version of
the test with that of moment inequality spacings of kg = 5 (further combinations are considered in

the Supplementary Material).
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We note that, although N = 10 is at the lower bound of the number of series used in empirical factor

nowcasting studies, this will allow us to explore the performance of the test under factor estimation

error. The simulations of |Gongalves et al| (2017) show that the size and power of their test do not

vary significantly with IV, even if it is as low as 10. In our case we may expect more variation over N

because it implies large differences in the number of inequalities.

4.3 Results

Table displays the one-sided rejection rates for the set-up without factor estimation errer (DGPZ-N,
DGPZ-A1 and DGPZ-A2) for a nominal size of 5%. The results are displayed for the bleck choices
rp € {0,1,2} and gp € {4,5} and for the all-inequalities and adjacent-only versions of the test. The
results show that the test has good size properties for the least favourable case under the null. For
the all-inequalities version of the test, rejection rates tend to be close to the nominal size of 5%, in

many cases between 4% and 6%. We see that the test becomes -more conservative as the number of

inequalities increases, though this is of similar magnitude to-the resuits of Zhang and Cheng (2014]),

who consider a similar set-up.

In terms of the power, we also see that the test has good performance. For DGPZ-A1, for the
all-inequalities version on the left of Table [i| we see power above 90% everywhere for the T' = 200
case, increasing to unity as T increases to T ="300. For DGPZ-A2 the power is slightly lower at
around 70% when P = 67 but this improves significantly with increases in the sample size. However,

we find some more worrying results when asing the adjacent-only inequalities test similar to the A€

test of Patton and Timmerriann (2012)). Looking at the right hand side of Table [1} although the size

properties seem reascnable, we.see that the power of this version of the test is substantially lower for
DGPZ-A2 which exhibits smoothly upwards-sloping violation of monotonicity.

In general,<we conclude that the test works well in this set-up with a small number of non-factor
predictors. “We also suggest that it is preferable to use the full set of moment inequalities (and not
only the adjacent ones), particularly as the results of Theorem [1] allow this to be large relative to the
caimple size. We now turn our attention to the second case with factor predictors.

In the presence of factor estimates, the results in Table [2| show that the test retains good power
properties. The rejection rates are above 80% in all cases for both DGPF-A1 and DGPF-A2 where
the quarterly sample size is T = 200 and rise to unity when 7" = 300. In analysing the effect of
parameter and factor estimation error on the results, considering the case where T' = 200 in the top

half of Table [2, we are interested in what happens as (R, P) switches from (133,67) to (67,133). We
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see that the power of the test under DGPF-A1 and DGPF-A2 improves significantly as we move from
the (R, P) = (133,67) to the (R, P) = (67,133) case. This indicates that, although R is required to
be large relative to P for estimation error to be irrelevant asymptotically, in finite samples it appears
that increases in power come from the increase in the number of out-of-sample points, P, in spite of
larger estimation error.

Table [2|shows that the results do not change markedly when comparing the all-inequalities version
of the test to those with spacings kg = 5. This indicates that this may not be a serious issue in
practical applications. In the Supplementary Material, we provide a wide range of further simulations
which explore this in more detail, including an alternative set-up where monotonicity isviclated when

the nowcaster has a horizon-specific prediction bias.

5 Empirical Application

In this section we will present the results of our monotonicity test 1 nowcasting the United States
aggregate real GDP growth rate, and the growth rate of five GBP subcomponents. This builds on the
literature of nowcasting the individual components of GDP, studies of which are less common than the

large volume of empirical studies on nowcasting aggregate real GDP. Some examples include

(2004) who take a bottom-up approach ta-nowcasting aggregate GDP, and |Antolin Diaz et al.|

(2017) who nowcast real consumption separately to aggregate GDP. We find this to be an important
exercise as nowcasting the GDP sub-components to some extent mimics the way that the Bureau

of Economic Analysis (BEA comnstructs the first estimates of aggregate GDP, as mentioned in the

Working Paper for the Atlanta Fed’s GDPNow model, see (2014).

5.1 Description of Data and Nowcasting Method

The quarterly real GDP variable and its five sub-components (consumption, investment, government
expenditure, exports and imports) was accessed from the Haver Analytics database USECON. For

the monthiy variables, we select a dataset of N = 62 predictors from the FRED-MD database, all

transforimed to stationary using the transformations recommended by McCracken and Ngj (2016). A

fuil"description of these variables, along with information regarding their publication lag, can be found

in the Supplementary Material. The variables were selected to be similar to the “medium” case of

Banbura and Modugno| (2014) who show that factors estimated from the largest form of the Stock

and Watson-type dataset, like FRED-MD, tend to perform worse than smaller datasets in nowcasting

GDP as they contain too many price and financial series. Our database mostly contains data on
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production, surveys, employment, prices and housing series. This dataset is somewhat larger than

many existing factor model nowcasting studies for the U.S. such as Antolin Diaz et al. (2017).

Regarding the timeliness of the data flow, the first release of the target GDP series occurs just
under a month after the end of the reference quarter, for example Q1 is released near the end of April.
The most timely monthly data is the consumer sentiment index which the only variable to be released
before the end of the observation month. This is shortly followed by the financial series which-are
available without lag as they are aggregated from daily data. Employment data are also very timely,
whereas industrial production, housing and loans variables are released some weeks after the end of
the observation month.

This information is used to generate a calendar of releases which determines the sequence of
nowcasts we use to predict each quarter’s GDP growth. Starting from the first day of the quarter
and finishing around 118 days later when GDP is released, we consider every unique release of data.
This includes cases where data are released at different times i1 the same day, such is the case with
the retail sales and industrial production variables. Counting up the distinct releases in the 3 months
of the nowcast period and the 28 days of the backcast period before GDP is released gives a total of
S = 53 different nowcast updates per quarter.

We use data on all months and quarters-bhetween 1978Q2 and 2016Q1, which is the common
available sample for all variables. This gives a totalof T = 152 quarterly observations and 37T = 456
monthly observations. We use the recursive out-of-sample method described in Section [2.2] with
different splits of R and P, namely (22, P) € {(101,51),(87,65),(76,76), (65,87),(51,101)} which
correspond to ratios of P/R< {1/2,3/4,1,4/3,2}.

At every prediction point .= R+ 1,...,T and at every nowcast point ¢ = 1,...,.5, in the first step

we solve the ragged edge problem using a simple AR(1) interpolation as in [Kim and Swanson| (2017)).

We then estimate the factors by PCA as in Equation @ We estimate the number of factors r using

the IC) informaticn criterion of Bai and Ng (2002) based on the first window of data for the case

P/R =1 and fix this number throughout the out-of-sample experiment. This results in r = 4 factors

which 13 between the r = 8 factors found by McCracken and Ng| (2016) on the full set of N = 134

FRED-MD variables, and r = 1 used in the small-scale factor model of Antolin Diaz et al.| (2017)).

We make nowcasts using the quarterly regression model:

Yo = p+ pye—1 + BoFy + B1F 13 + BoF_gy3 + & (20)

which is equivalent to Equation with Wy = [1,4-1]', so the must-have regressors W; are just a
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constant and a lag of y,. Since the lagged quarter of GDP is not available in the first 28 days of the
nowcast period, as with the monthly variables we solve the ragged edge by substituting y;—1 with the
prediction from an AR(1) model until the data point is released.

In generating the sets of moment inequalities for our test, we measure nowcast error losses using
MSFE. We first consider using the full set of all S(S —1)/2 pairwise moment inequalities, which gives

a high-dimensional set-up with x = 1378. As in the Monte Carlo section, we will compare our results

to the adjacent-only version of the test, similar to the A® test of |[Patton and Timmermann| (2012); and

the version with inequality spacing of k¢ = 5 (we checked the results for kg € {1,2} which were very
similar and therefore omitted). We determine the block lengths using the optimal procedure outlined
in the Supplementary Material and generate B = 399 bootstrap draws.

We also ran other configurations to explore the robustness of the empirical results and assess how

the test performs. Firstly, the rolling estimation scheme is used in place ofthe recursive scheme. Next,

we consider a reduced dataset of N =9, similar to the “small” case of Banbura and Modugno| (2014)),

to observe any differences resulting from dataset compositicn. We also explore grouping data releases
together into days (not updating nowcasts within the day) and also in sets of 10 days, rather than

using each unique release timing. We next explore the sensitivity to the date span used by providing

results with a post-1984 sample, motivated by evidence such as Breitung and Eickmeier| (2011]) who

find a break in the factor loadings in around 1984, attributed to the ‘Great Moderation’. Finally, we

check the results when the asymmetric Linex loss function is used instead of squared error loss.

5.2 Results

The graphs in Figure [2]depict the evolution of MSFE for the aggregate real GDP growth variable and
the five GDP sub-components, for the scenario where (R, P) = (76,76). Upon graphical inspection
of the results, ¢he top-leit panel of Figure [2] shows that the nowcasts for aggregate real GDP growth
improve thiroughout the period, with the quarterly MSFE dropping from 0.35% to below 0.25% before
flattening in the backcast period.

For consumption, investment, exports and imports the MSFE profiles are also clearly downwards-
sieping. In some cases there are jumps such as for exports at ¢ = 13 when the previous quarter’s
exports data is released, and for investment at ¢ = 16 when a group of employment-related series
are released simultaneously. However in all of these series, including aggregate GDP, there are some
minor violations of monotonicity with small segments of rising MSFE. Our test is able to determine

whether or not these deviations from monotonicity are statistically significant or are merely features
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Figure 2: MSFE by Nowcast Horizon for the Sample with (R, P) = (76, 76)
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Notes: Horizon refers to the point throughout the prediction period at which we estimate the factor model
and forecasting model.

caused by small-sample heterogeneity in the daia.

The most striking feature is that of the gcvernment spending component, where MSFE is increasing
throughout most of the prediction period; from 0.5% to more than 0.65%. Since this increase seems
to be sizeable, we expect-our test 0 reject the null hypothesis of monotonicity.

We now turn to the resulis of our test, which can formally detect whether these MSFE profiles are
monotonically decliniiig rather than simply relying only on the graphical evidence in Figure 2] The
results are aisplaved in Table [3| where the first two sets of columns use our test with the full set of

inequalities and then with spacing k¢ = 5. The last set of columns uses the adjacent-only comparisons

as'in the A® test of Patton and Timmermann| (2012)).

The first thing to note is that the results of our test appear to be very stable, both across the
various (R, P) combinations and also as we move from the full set of moment inequalities to the spacing

kG = 5. For the headline aggregate GDP series, the test finds no evidence of non-monotonicity with

p-values around 0.7 in these versions of the test. This finding mirrors the result of Banbura et al|

(2013)), though using a different method for estimating the factors for the nowcasting model, and

over a different in-sample and out-of-sample period. This suggests that factor-based methods are
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able to generate monotonically improving nowcasts of U.S. real GDP growth irrespective of the factor
estimation method or data span. The results for consumption, investment, imports and exports are
very similar to the result for aggregate GDP, with large p-values as expected.

In the case of government spending the first two versions of the test find significant evidence of
non-monotonicity with many rejections at the 5% level, with the exception of the smallest sample size
with P = 51. This finding shows that our test is able to reject in scenarios where there are clear
violations of monotonicity. It is interesting to note that the adjacent-only version of the test; however,
does not reject the null at the 5% significance level in any configuration. This aligns with the results
of the Monte Carlo simulations where very low power was detected for upward-sloping MSEFE profiles.

Finally, we also find that our results are robust when switching to the rolling estimaticn scheme and
when reducing the dataset to N = 9. These results, all of which can be found in the Supplementary
Material, show even stronger rejection of the null in the government spending component with many
at the 1% significance level. The adjacent-only version of the test still feils to reject the null across
almost every configuration. The findings are also very similar when we only make S = 12 nowcasts
per quarter by updating the nowcasts every 10 days, €ven though the maximum number of moment
inequalities drops to K = 66. The idea of using the posi-1984 sample motivated by possible structural
breaks in the factor loadings also has very minimai bearing on the results. Lastly, even when the
nowcaster has asymmetric Linex loss with aversionto negative prediction errors, they come to the

same conclusion regarding nowcast monotonicity.

6 Conclusion

This paper proposés a test te formally assess the performance of ‘big data’ nowcasting methods.
In particular, we focus .on models involving estimated factors which have become a leading case in
the high-dimensional empirical nowcasting literature, though the test can readily deal with small-
dimensional s=t-ups like bridge equations and MIDAS models. The test uses moment inequalities
to/evalizate the monotonicity of metrics for nowcast accuracy such as MSFE. Our method differs
fream previous forecast accuracy tests not only in being able to accommodate this high-dimensional
riowcasting setting, but also because our interest is in evaluating the nowcasts of a single method at

various points in a quarter, rather than comparing two or more models at a single fixed point.

The main contribution of this paper is in extending the methodology of (Chernozhukov et al.| (2014)

for testing many moment inequalities to the case of nowcast monotonicity testing, which allows the

number of inequalities to grow with the sample size. We also show that their moment selection pro-
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cedure to rule out non-binding inequalities remains applicable in our context. We then provide the
conditions under which both parameter estimation error and factor estimation error are asymptot-

ically negligible in this high dimensional setting when using the pseudo out-of-sample approach of

(1996). We derive conditions required for using factor-augmented models of [Stock and Watson|

(2002alb) and Bai and Ng (2006) in this nowcast monotonicity test, with the factors estimated by

Principal Components Analysis (PCA), after solving the issue of the ‘ragged edge’.

We illustrate the finite sample performance of our test through Monte Carlo simulations; and
provide an in-depth empirical application to nowcasting the growth rate of U.S. aggregate real GDP,
and the growth rate of five GDP subcomponents. Our test confirms that there is no statistical
evidence of non-monotonicity in the MSFE of aggregate GDP growth as mare information is added
throughout the nowcast period. However, the test does pick up violations of morotonicity in the
government spending component of GDP. This result suggests that the factor-augmented model may

be misspecified for nowcasting government spending, and that alterniative models should be considered.
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