
Self-ensembling for visual domain adaptation

French, G.
g.french@uea.ac.uk

Mackiewicz, M.
m.mackiewicz@uea.ac.uk

Fisher, M.
mark.fisher@uea.ac.uk

February 21, 2018

Abstract

This paper explores the use of self-ensembling for visual domain adap-
tation problems. Our technique is derived from the mean teacher vari-
ant [29] of temporal ensembling [14], a technique that achieved state of the
art results in the area of semi-supervised learning. We introduce a num-
ber of modifications to their approach for challenging domain adaptation
scenarios and evaluate its effectiveness. Our approach achieves state of
the art results in a variety of benchmarks, including our winning entry
in the VISDA-2017 visual domain adaptation challenge. In small image
benchmarks, our algorithm not only outperforms prior art, but can also
achieve accuracy that is close to that of a classifier trained in a supervised
fashion.

1 Introduction

The strong performance of deep learning in computer vision tasks comes at
the cost of requiring large datasets with corresponding ground truth labels for
training. Such datasets are often expensive to produce, owing to the cost of the
human labour required to produce the ground truth labels.

Semi-supervised learning is an active area of research that aims to reduce
the quantity of ground truth labels required for training. It is aimed at common
practical scenarios in which only a small subset of a large dataset has correspond-
ing ground truth labels. Unsupervised domain adaptation is a closely related
problem in which one attempts to transfer knowledge gained from a labeled
source dataset to a distinct unlabeled target dataset, within the constraint that
the objective (e.g.digit classification) must remain the same. Domain adapta-
tion offers the potential to train a model using labeled synthetic data – that is
often abundantly available – and unlabeled real data. The scale of the prob-
lem can be seen in the VisDA-17 domain adaptation challenge images shown in
Figure 1. We will present our winning solution in Section 4.2.

1

ar
X

iv
:1

70
6.

05
20

8v
3

 [
cs

.C
V

]
 2

0
Fe

b
20

18
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/151396323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(a) VisDa-17 training set images; the labeled source domain

(b) VisDa-17 validation set images; the unlabeled target domain

Figure 1: Images from the VisDA-17 domain adaptation challenge

Recent work [29] has demonstrated the effectiveness of self-ensembling with
random image augmentations to achieve state of the art performance in semi-
supervised learning benchmarks.

We have developed the approach proposed by Tarvainen et al. [29] to work
in a domain adaptation scenario. We will show that this can achieve excellent
results in specific small image domain adaptation benchmarks. More challeng-
ing scenarios, notably MNIST → SVHN and the VisDA-17 domain adaptation
challenge required further modifications. To this end, we developed confidence
thresholding and class balancing that allowed us to achieve state of the art re-
sults in a variety of benchmarks, with some of our results coming close to those
achieved by traditional supervised learning. Our approach is sufficiently flexble
to be applicable to a variety of network architectures, both randomly initialized
and pre-trained.

Our paper is organised as follows; in Section 2 we will discuss related work
that provides context and forms the basis of our technique; our approach is
described in Section 3 with our experiments and results in Section 4; and finally
we present our conclusions in Section 5.

2 Related work

In this section we will cover self-ensembling based semi-supervised methods that
form the basis of our approach and domain adaptation techniques to which our
work can be compared.

2.1 Self-ensembling for semi-supervised learning

Recent work based on methods related to self-ensembling have achieved excel-
lent results in semi-supervised learning scenarious. A neural network is trained
to make consistent predictions for unsupervised samples under different aug-
mentation [24], dropout and noise conditions or through the use of adversarial
training [18]. We will focus in particular on the self-ensembling based approaches
of Laine et al. [14] and Tarvainen et al. [29] as they form the basis of our ap-
proach.

2

Laine et al. [14] present two models; their Π-model and their temporal model.
The Π-model passes each unlabeled sample through a classifier twice, each time
with different dropout, noise and image translation parameters. Their unsuper-
vised loss is the mean of the squared difference in class probability predictions
resulting from the two presentations of each sample. Their temporal model
maintains a per-sample moving average of the historical network predictions
and encourages subsequent predictions to be consistent with the average. Their
approach achieved state of the art results in the SVHN and CIFAR-10 semi-
supervised classification benchmarks.

Tarvainen et al. [29] further improved on the temporal model [14] by using
an exponential moving average of the network weights rather than of the class
predictions. Their approach uses two networks; a student network and a teacher
network, where the student is trained using gradient descent and the weigthts
of the teacher are the exponential moving average of those of the student. The
unsupervised loss used to train the student is the mean square difference between
the predictions of the student and the teacher, under different dropout, noise
and image translation parameters.

2.2 Domain adaptation

There is a rich body of literature tackling the problem of domain adaptation.
We focus on deep learning based methods as these are most relevant to our
work.

Auto-encoders are unsupervised neural network models that reconstruct
their input samples by first encoding them into a latent space and then de-
coding and reconstructing them. Ghifary et al. [6] describe an auto-encoder
model that is trained to reconstruct samples from both the source and target
domains, while a classifier is trained to predict labels from domain invariant fea-
tures present in the latent representation using source domain labels. Bousmalis
et al. [2] reckognised that samples from disparate domains have distinct domain
specific characteristics that must be represented in the latent representation to
support effective reconstruction. They developed a split model that separates
the latent representation into shared domain invariant features and private fea-
tures specific to the source and target domains. Their classifier operates on the
domain invariant features only.

Ganin et al. [5] propose a bifurcated classifier that splits into label classifica-
tion and domain classification branches after common feature extraction layers.
A gradient reversal layer is placed between the common feature extraction lay-
ers and the domain classification branch; while the domain classification layers
attempt to determine which domain a sample came from the gradient rever-
sal operation encourages the feature extraction layers to confuse the domain
classifier by extracting domain invariant features. An alternative and simpler
implementation described in their appendix minimises the label cross-entropy
loss in the feature and label classification layers, minimises the domain cross-
entropy in the domain classification layers but maximises it in the feature layers.
The model of Tzeng et al. [30] runs along similar lines but uses separate feature

3

extraction sub-networks for source and domain samples and train the model in
two distinct stages.

Saito et al. [22] use tri-training [32]; feature extraction layers are used to
drive three classifier sub-networks. The first two are trained on samples from
the source domain, while a weight similarity penalty encourages them to learn
different weights. Pseudo-labels generated for target domain samples by these
source domain classifiers are used to train the final classifier to operate on the
target domain.

Generative Adversarial Networks [7] (GANs) are unsupervised models that
consist of a generator network that is trained to generate samples that match
the distribution of a dataset by fooling a discriminator network that is simulta-
neously trained to distinguish real samples from generates samples. Some GAN
based models – such as that of Sankaranarayanan et al. [25] – use a GAN to
help learn a domain invariant embedding for samples. Many GAN based do-
main adaptation approaches use a generator that transforms samples from one
domain to another.

Bousmalis et al. [1] propose a GAN that adapts synthetic images to better
match the characteristics of real images. Their generator takes a synthetic
image and noise vector as input and produces an adapted image. They train
a classifier to predict annotations for source and adapted samples alonside the
GAN, while encouraing the generator to preserve aspects of the image important
for annotation. The model of [26] consists of a refiner network (in the place of
a generator) and discriminator that have a limited receptive field, limiting their
model to making local changes while preserving ground truth annotations. The
use of refined simulated images with corresponding ground truths resulted in
improved performance in gaze and hand pose estimation.

Russo et al. [21] present a bi-directional GAN composed of two generators
that transform samples from the source to the target domain and vice versa.
They transform labelled source samples to the target domain using one generator
and back to the source domain with the other and encourage the network to
learn label class consistency. This work bears similarities to CycleGAN [33].

A number of domain adaptation models maximise domain confusion by min-
imising the difference between the distributions of features extracted from source
and target domains. Deep CORAL [28] minimises the difference between the
feature covariance matrices for a mini-batch of samples from the source and tar-
get domains. Tzeng et al. [31] and Long et al. [17] minimise the Maximum Mean
Discrepancy metric [8]. Li et al. [15] described adaptive batch normalization, a
variant of batch normalization [12] that learns separate batch normalization
statistics for the source and target domains in a two-pass process, establishing
new state-of-the-art results. In the first pass standard supervised learning is
used to train a classifier for samples from the source domain. In the second
pass, normalization statistics for target domain samples are computed for each
batch normalization layer in the network, leaving the network weights as they
are.

4

Figure 2: The network structures of the original mean teacher model and our
model. Dashed lines in the mean teacher model indicate that ground truth
labels – and therefore cross-entropy classification loss – are only available for
labeled samples.

3 Method

Our model builds upon the mean teacher semi-supervised learning model [29],
which we will describe. Subsequently we will present our modifications that
enable domain adaptation.

The structure of the mean teacher model [29] – also discussed in section 2.1
– is shown in Figure 2a. The student network is trained using gradient descent,
while the weights of the teacher network are an exponential moving average of
those of the student. During training each input sample xi is passed through
both the student and teacher networks, generating predicted class probability
vectors zi (student) and z̃i (teacher). Different dropout, noise and image trans-
lation parameters are used for the student and teacher pathways.

During each training iteration a mini-batch of samples is drawn from the
dataset, consisting of both labeled and unlabeled samples. The training loss is
the sum of a supervised and an unsupervised component. The supervised loss
is cross-entropy loss computed using zi (student prediction). It is masked to 0
for unlabeled samples for which no ground truth is available. The unsupervised
component is the self-ensembling loss. It penalises the difference in class predic-
tions between student (zi) and teacher (z̃i) networks for the same input sample.
It is computed using the mean squared difference between the class probability
predictions zi and z̃i.

Laine et al. [14] and Tarvainen et al. [29] found that it was necessary to apply
a time-dependent weighting to the unsupervised loss during training in order to
prevent the network from getting stuck in a degenerate solution that gives poor
classification performance. They used a function that follows a Gaussian curve
from 0 to 1 during the first 80 epochs.

In the following subsections we will describe our contributions in detail along
with the motivations for introducing them.

5

3.1 Adapting to domain adaptation

We minimise the same loss as in [29]; we apply cross-entropy loss to labeled
source samples and unsupervised self-ensembling loss to target samples. As in
[29], self-ensembling loss is computed as the mean-squared difference between
predictions produced by the student (zTi) and teacher (z̃Ti) networks with dif-
ferent augmentation, dropout and noise parameters.

The models of [29] and of [14] were designed for semi-supervised learning
problems in which a subset of the samples in a single dataset have ground truth
labels. During training both models mix labeled and unlabeled samples together
in a mini-batch. In contrast, unsupervised domain adaptation problems use two
distinct datasets with different underlying distributions; labeled source and un-
labeled target. Our variant of the mean teacher model – shown in Figure 2b –
has separate source (XSi) and target (XTi) paths. Inspired by [15], we process
mini-batches from the source and target datasets separately (per iteration) so
that batch normalization uses different normalization statistics for each domain
during training.1. We do not use the approach of [15] as-is, as they handle the
source and target datasets separtely in two distinct training phases, where our
approach must train using both simultaneously. We also do not maintain sep-
arate exponential moving averages of the means and variances for each dataset
for use at test time.

As seen in the ‘MT+TF’ row of Table 1, the model described thus far achieves
state of the art results in 5 out of 8 small image benchmarks. The MNIST →
SVHN, STL→ CIFAR-10 and Syn-digits→ SVHN benchmarks however require
additional modifications to achieve good performance.

3.2 Confidence thresholding

We found that replacing the Gaussian ramp-up factor that scales the unsuper-
vised loss with confidence thresholding stabilized training in more challenging
domain adaptation scenarios. For each unlabeled sample xTi the teacher net-
work produces the predicted class probabilty vector z̃Tij – where j is the class
index drawn from the set of classes C – from which we compute the confidence
f̃Ti = maxj∈C(z̃Tij); the predicted probability of the predicted class of the sam-

ple. If f̃Ti is below the confidence threshold (a parameter search found 0.968 to
be an effective value for small image benchmarks), the self-ensembling loss for
the sample xi is masked to 0.

Our working hypothesis is that confidence thresholding acts as a filter, shift-
ing the balance in favour of the student learning correct labels from the teacher.
While high network prediction confidence does not guarantee correctness there
is a positive correlation. Given the tolerance to incorrect labels reported in
[14], we believe that the higher signal-to-noise ratio underlies the success of this
component of our approach.

1This is simple to implement using most neural network toolkits; evaluate the network
once for source samples and a second time for target samples, compute the supervised and
unsupervised losses respectively and combine.

6

The use of confidence thresholding achieves a state of the art results in
the STL → CIFAR-10 and Syn-digits → SVHN benchmarks, as seen in the
‘MT+CT+TF’ row of Table 1. While confidence thresholding can result in
very slight reductions in performance (see the MNIST ↔ USPS and SVHN →
MNIST results), its ability to stabilise training in challenging scenarios leads
us to recommend it as a replacement for the time-dependent Gaussian ramp-up
used in [14].

3.3 Data augmentation

We explored the effect of three data augmentation schemes in our small image
benchmarks (section 4.1). Our minimal scheme (that should be applicable in
non-visual domains) consists of Gaussian noise (with σ = 0.1) added to the pixel
values. The standard scheme (indicated by ‘TF’ in Table 1) was used in [14] and
adds translations in the interval [−2, 2] and horizontal flips for the CIFAR-10↔
STL experiments. The affine scheme (indicated by ‘TFA’) adds random affine
transformations defined by the matrix in (1), where N (0, 0.1) denotes a real
value drawn from a normal distribution with mean 0 and standard deviation
0.1. [

1 +N (0, 0.1) N (0, 0.1)
N (0, 0.1) 1 +N (0, 0.1)

]
(1)

The use of translations and horizontal flips has a significant impact in a
number of our benchmarks. It is necessary in order to outpace prior art in the
MNIST↔ USPS and SVHN→ MNIST benchmarks and improves performance
in the CIFAR-10 ↔ STL benchmarks. The use of affine augmentation can
improve performance in experiments involving digit and traffic sign recognition
datasets, as seen in the ‘MT+CT+TFA’ row of Table 1. In contrast it can
impair performance when used with photographic datasets, as seen in the the
STL → CIFAR-10 experiment. It also impaired performance in the VisDA-17
experiment (section 4.2).

3.4 Class balance loss

With the adaptations made so far the challenging MNIST→ SVHN benchmark
remains undefeated due to training instabilities. During training we noticed that
the error rate on the SVHN test set decreases at first, then rises and reaches high
values before training completes. We diagnosed the problem by recording the
predictions for the SVHN target domain samples after each epoch. The rise in
error rate correlated with the predictions evolving toward a condition in which
most samples are predicted as belonging to the ‘1’ class; the most populous class
in the SVHN dataset. We hypothesize that the class imbalance in the SVHN
dataset caused the unsupervised loss to reinforce the ‘1’ class more often than
the others, resulting in the network settling in a degenerate local minimum.
Rather than distinguish between digit classes as intended it seperated MNIST
from SVHN samples and assigned the latter to the ‘1’ class.

7

We addressed this problem by introducing a class balance loss term that
penalises the network for making predictions that exhibit large class imbalance.
For each target domain mini-batch we compute the mean of the predicted sample
class probabilities over the sample dimension, resulting in the mini-batch mean
per-class probability. The loss is computed as the binary cross entropy between
the mean class probability vector and a uniform probability vector. We balance
the strength of the class balance loss with that of the self-ensembling loss by
multiplying the class balance loss by the average of the confidence threshold
mask (e.g. if 75% of samples in a mini-batch pass the confidence threshold,
then the class balance loss is multiplied by 0.75).2

We would like to note the similarity between our class balance loss and the
entropy maximisation loss in the IMSAT clustering model of Hu et al. [11];
IMSAT employs entropy maximisation to encourage uniform cluster sizes and
entropy minimisation to encourage unambiguous cluster assignments.

4 Experiments

Our implementation was developed using PyTorch ([3]) and is publically avail-
able at http://github.com/Britefury/self-ensemble-visual-domain-adapt.

4.1 Small image datasets

Our results can be seen in Table 1. The ‘train on source’ and ‘train on target’ re-
sults report the target domain performance of supervised training on the source
and target domains. They represent the exepected baseline and best achievable
result. The ‘Specific aug.‘ experiments used data augmentation specific to the
MNIST → SVHN adaptation path that is discussed further down.

The small datasets and data preparation procedures are described in Ap-
pendix A. Our training procedure is described in Appendix B and our network
architectures are described in Appendix D. The same network architectures and
augmentation parameters were used for domain adaptation experiments and the
supervised baselines discussed above. It is worth noting that only the training
sets of the small image datasets were used during training; the test sets used
for reporting scores only.

MNIST ↔ USPS (see Figure 3a). MNIST and USPS are both greyscale
hand-written digit datasets. In both adaptation directions our approach not
only demonstrates a significant improvement over prior art but nearly achieves
the performance of supervised learning using the target domain ground truths.
The strong performance of the base mean teacher model can be attributed to
the similarity of the datasets to one another. It is worth noting that data
augmentation allows our ‘train on source’ baseline to outpace prior domain
adaptation methods.

2We expect that class balance loss is likely to adversely affect performance on target
datasets with large class imbalance.

8

http://github.com/Britefury/self-ensemble-visual-domain-adapt

(a) MNIST ↔ USPS (b) CIFAR-10 ↔ STL

(c) Syn-digits → SVHN (d) Syn-signs → GTSRB

(e) SVHN → MNIST (f) MNIST (specific augmentation) → SVHN

Figure 3: Small image domain adaptation example images

CIFAR-10 ↔ STL (see Figure 3b). CIFAR-10 and STL are both 10-class
image datasets, although we removed one class from each (see Appendix A.2).
We obtained strong performance in the STL → CIFAR-10 path, but only by
using confidence thresholding. The CIFAR-10→ STL results are more interest-
ing; the ‘train on source’ baseline performance outperforms that of a network
trained on the STL target domain, most likely due to the small size of the STL
training set. Our self-ensembling results outpace both the baseline performance
and the ‘theoretical maximum’ of a network trained on the target domain, lend-
ing further evidence to the view of [24] and [14] that self-ensembling acts as an
effective regulariser.

Syn-Digits→ SVHN (see Figure 3c). The Syn-Digits dataset is a synthetic
dataset designed by [5] to be used as a source dataset in domain adaptation
experiments with SVHN as the target dataset. Other approaches have achieved
good scores on this benchmark, beating the baseline by a significant margin.
Our result improves on them, reducing the error rate from 6.9% to 2.9%; even
slightly outpacing the ‘train on target’ 3.4% error rate achieved using supervised
learning.

Syn-Signs → GTSRB (see Figure 3d). Syn-Signs is another synthetic
dataset designed by [5] to target the 43-class GTSRB [27] (German Traffic Signs
Recognition Benchmark) dataset. Our approach halved the best error rate of
competing approaches. Once again, our approaches slightly outpaces the ‘train
on target’ supervised learning upper bound.

SVHN → MNIST (see Figure 3e). Google’s SVHN (Street View House
Numbers) is a colour digits dataset of house number plates. Our approach
significantly outpaces other techniques and achieves an accuracy close to that
of supervised learning.

MNIST → SVHN (see Figure 3f). This adaptation path is somewhat
more challenging as MNIST digits are greyscale and uniform in terms of size,
aspect ratio and intensity range, in contrast to the variably sized colour digits
present in SVHN. As a consequence, adapting from MNIST to SVHN required
additional work. Class balancing loss was necessary to ensure training stability
and additional experiment specific data augmentation was required to achieve
good accuracy. The use of translations and affine augmentation (see section 3.3)
results in an accuracy score of 37%. Significant improvements resulted from ad-

9

ditional augmentation in the form of random intensity flips (negative image),
and random intensity scales and offsets drawn from the intervals [0.25, 1.5] and
[−0.5, 0.5] respectively. These hyper-parameters were selected in order to aug-
ment MNIST samples to match the intensity variations present in SVHN, as
illustrated in Figure 3f. With these additional modifications, we achieve a re-
sult that significantly outperforms prior art and nearly achieves the accuracy
of a supervised classifier trained on the target dataset. We found that apply-
ing these additional augmentations to the source MNIST dataset only yielded
good results; applying them to the target SVHN dataset as well yielded a small
improvement but was not essential. It should also be noted that this augmen-
tation scheme raises the performance of the ‘train on source’ baseline to just
above that of much of the prior art.

4.2 VisDA-2017 visual domain adaptation challenge

The VisDA-2017 image classification challenge is a 12-class domain adaptation
problem consisting of three datasets: a training set consisting of 3D renderings
of sketchup models, and validation and test sets consisting of real images (see
Figure 1) drawn from the COCO [16] and YouTube BoundingBoxes [20] datasets
respectively. The objective is to learn from labeled computer generated images
and correctly predict the class of real images. Ground truth labels were made
available for the training and validation sets only; test set scores were computed
by a server operated by the competition organisers.

While the algorithm is that presented above, we base our network on the
pretrained ResNet-152 [10] network provided by PyTorch ([3]), rather than using
a randomly initialised network as before. The final 1000-class classification
layer is removed and replaced with two fully-connected layers; the first has
512 units with a ReLU non-linearity while the final layer has 12 units with a
softmax non-linearity. Results from our original competition submissions and
newer results using two data augmentation schemes are presented in Table 2.
Our reduced augmentation scheme consists of random crops, random horizontal
flips and random uniform scaling. It is very similar to scheme used for ImageNet
image classification in [10]. Our competition configuration includes additional
augmentation that was specifically designed for the VisDA dataset, although we
subsequently found that it makes little difference. Our hyper-parameters and
competition data augmentation scheme are described in Appendix C.1. It is
worth noting that we applied test time augmentation (we averaged predictions
form 16 differently augmented images) to achieve our competition results. We
present resuts with and without test time augmentation in Table 2. Our VisDA
competition test set score is also the result of ensembling the predictions of 5
different networks.

10

5 Conclusions

We have presented an effective domain adaptation algorithm that has achieved
state of the art results in a number of benchmarks and has achieved accuracies
that are almost on par with traditional supervised learning on digit recognition
benchmarks targeting the MNIST and SVHN datasets. The resulting networks
will exhibit strong performance on samples from both the source and target
domains. Our approach is sufficiently flexible to be usable for a variety of
network architectures, including those based on randomly initialised and pre-
trained networks.

Miyato et al. [18] stated that the self-ensembling methods of [14] – on which
our algorithm is based – operate by label propagation. This view is supported by
our results, in particular our MNIST → SVHN experiment. The latter requires
additional intensity augmentation in order to sufficiently align the dataset dis-
tributions, after which good quality label predictions are propagated throughout
the target dataset. In cases where data augmentation is insufficient to align the
dataset distributions, a pre-trained network may be used to bridge the gap, as
in our solution to the VisDA-17 challenge. This leads us to conclude that effec-
tive domain adaptation can be achieved by first aligning the distributions of the
source and target datasets – the focus of much prior art in the field – and then
refining their correspondance; a task to which self-ensembling is well suited.

References

[1] Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Er-
han, and Dilip Krishnan. Unsupervised pixel-level domain adaptation with
generative adversarial networks. In CVPR, 2017.

[2] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Kr-
ishnan, and Dumitru Erhan. Domain separation networks. In NIPS, 2016.

[3] S. Chintala et al. Pytorch.

[4] Gabriela Csurka, Fabien Baradel, Boris Chidlovskii, and Stephane Clin-
chant. Discrepancy-based networks for unsupervised domain adaptation:
A comparative study. In ICCV, 2017.

[5] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation
by backpropagation. In ICML, 2015.

[6] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, David Balduzzi,
and Wen Li. Deep reconstruction-classification networks for unsupervised
domain adaptation. In ECCV, 2016.

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial nets. In NIPS, 2014.

11

[8] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard
Schölkopf, and Alexander Smola. A kernel two-sample test. JMLR, 2012.

[9] Philip Haeusser, Thomas Frerix, Alexander Mordvintsev, and Daniel Cre-
mers. Associative domain adaptation. In ICCV, 2017.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In CVPR, 2016.

[11] Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, and Masashi
Sugiyama. Learning discrete representations via information maximizing
self-augmented training. In ICML, 2017.

[12] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In ICML, 2015.

[13] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. In ICLR, 2015.

[14] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised
learning. In ICLR, 2017.

[15] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou.
Revisiting batch normalization for practical domain adaptation. arXiv
preprint arXiv:1603.04779, 2016.

[16] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO:
Common objects in context. In ECCV, 2014.

[17] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning
transferable features with deep adaptation networks. In ICML, 2015.

[18] Takeru Miyato, Schi-ichi Maeda, Masanori Koyama, and Shin Ishii. Vir-
tual adversarial training: a regularization method for supervised and semi-
supervised learning. arXiv preprint arXiv:1704.03976, 2017.

[19] Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of
the trade, pages 55–69. Springer, 1998.

[20] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan, and Vin-
cent Vanhoucke. Youtube-boundingboxes: A large high-precision human-
annotated data set for object detection in video. CoRR, abs/1702.00824,
2017.

[21] Paolo Russo, Fabio Maria Carlucci, Tatiana Tommasi, and Barbara Ca-
puto. From source to target and back: symmetric bi-directional adaptive
gan. arXiv preprint arXiv:1705.08824, 2017.

12

[22] Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada. Asymmet-
ric tri-training for unsupervised domain adaptation. arXiv preprint
arXiv:1702.08400, 2017.

[23] Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate Saenko. Ad-
versarial dropout regularization. arXiv preprint arXiv:1711.01575, 2017.

[24] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regularization
with stochastic transformations and perturbations for deep semi-supervised
learning. In NIPS, 2016.

[25] Swami Sankaranarayanan, Yogesh Balaji, Carlos D Castillo, and Rama
Chellappa. Generate to adapt: Aligning domains using generative adver-
sarial networks. arXiv preprint arXiv:1704.01705, 2017.

[26] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda
Wang, and Russell Webb. Learning from simulated and unsupervised im-
ages through adversarial training. In CVPR, 2017.

[27] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The
German Traffic Sign Recognition Benchmark: A multi-class classification
competition. In IJCNN, 2011.

[28] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep
domain adaptation. In ECCV 2016 Workshops, pages 443–450, 2016.

[29] Antti Tarvainen and Harri Valpola. Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learning
results. 2017.

[30] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial
discriminative domain adaptation. arXiv preprint arXiv:1702.05464, 2017.

[31] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell.
Deep domain confusion: Maximizing for domain invariance. arXiv preprint
arXiv:1412.3474, 2014.

[32] Zhi-Hua Zhou and Ming Li. Tri-training: Exploiting unlabeled data using
three classifiers. TKDE, 2005.

[33] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Un-
paired image-to-image translation using cycle-consistent adversarial net-
works. arXiv preprint arXiv:1703.10593, 2017.

A Datasets and Data Preparation

A.1 Small image datasets

The datasets used in this paper are described in Table 3.

13

A.2 Data preparation

Some of the experiments that involved datasets described in Table 3 required
additional data preparation in order to match the resolution and format of the
input samples and match the classification target. These additional steps will
now be described.

MNIST ↔ USPS The USPS images were up-scaled using bilinear inter-
polation from 16× 16 to 28× 28 resolution to match that of MNIST.

CIFAR-10 ↔ STL CIFAR-10 and STL are both 10-class image datasets.
The STL images were down-scaled to 32×32 resolution to match that of CIFAR-
10. The ‘frog’ class in CIFAR-10 and the ‘monkey’ class in STL were removed
as they have no equivalent in the other dataset, resulting in a 9-class problem
with 10% less samples in each dataset.

Syn-Signs→ GTSRB GTSRB is composed of images that vary in size and
come with annotations that provide region of interest (bounding box around the
sign) and ground truth classification. We extracted the region of interest from
each image and scaled them to a resolution of 40 × 40 to match those of Syn-
Signs.

MNIST ↔ SVHN The MNIST images were padded to 32× 32 resolution
and converted to RGB by replicating the greyscale channel into the three RGB
channels to match the format of SVHN.

B Small image experiment training

B.1 Training procedure

Our networks were trained for 300 epochs. We used the Adam [13] gradient
descent algorithm with a learning rate of 0.001. We trained using mini-batches
composed of 256 samples, except in the Syn-digits → SVHN and Syn-signs →
GTSRB experiments where we used 128 in order to reduce memory usage. The
self-ensembling loss was weighted by a factor of 3 and the class balancing loss
was weighted by 0.005. Our teacher network weights ti were updated so as to
be an exponential moving average of those of the student si using the formula
ti = αti−1 + (1 − α)si, with a value of 0.99 for α. A complete pass over the
target dataset was considered to be one epoch in all experiments except the
MNIST → USPS and CIFAR-10 → STL experiments due to the small size of
the target datasets, in which case one epoch was considered to be a pass over
the larger soure dataset.

We found that using the proportion of samples that passed the confidence
threshold can be used to drive early stopping ([19]). The final score was the tar-
get test set performance at the epoch at which the highest confidence threshold
pass rate was obtained.

14

C VisDA-17

C.1 Hyper-parameters

Our training procedure was the same as that used in the small image experi-
ments, except that we used 160× 160 images, a batch size of 56 (reduced from
64 to fit within the memory of an nVidia 1080-Ti), a self-ensembling weight of
10 (instead of 3), a confidence threshold of 0.9 (instead of 0.968) and a class
balancing weight of 0.01. We used the Adam [13] gradient descent algorithm
with a learning rate of 10−5 for the final two randomly initialized layers and
10−6 for the pre-trained layers. The first convolutional layer and the first group
of convolutional layers (with 64 feature channels) of the pre-trained ResNet were
left unmodified during training.

Reduced data augmentation:

• scale image so that its smallest dimension is 176 pixels, then randomly
crop a 160× 160 section from the scaled image

• No random affine transformations as they increase confusion between the
car and truck classes in the validation set

• random uniform scaling in the range [0.75, 1.333]

• horizontal flipping

Competition data augmentation adds the following in addition to the above:

• random intensity/brightness scaling in the range [0.75, 1.333]

• random rotations, normally distributed with a standard deviation of 0.2π

• random desaturation in which the colours in an image are randomly de-
saturated to greyscale by a factor between 0% and 100%

• rotations in colour space, around a randomly chosen axes with a standard
deviation of 0.05π

• random offset in colour space, after standardisation using parameters spec-
ified by PyTorch implementation of ResNet-152

D Network architectures

Our network architectures are shown in Tables 6 - 8.

15

USPS MNIST SVHN MNIST CIFAR STL Syn Syn
Digits Signs

– – – – – – – –
MNIST USPS MNIST SVHN STL CIFAR SVHN GTSRB

TRAIN ON SOURCE

SupSrc* 77.55 82.03 66.5 25.44 72.84 51.88 86.86 96.95
±0.8 ±1.16 ±1.93 ±2.8 ±0.61 ±1.44 ±0.86 ±0.36

SupSrc+TF 77.53 95.39 68.65 24.86 75.2 59.06 87.45 97.3
±4.63 ±0.93 ±1.5 ±3.29 ±0.28 ±1.02 ±0.65 ±0.16

SupSrc+TFA 91.97 96.25 71.73 28.69 75.18 59.38 87.16 98.02
±2.15 ±0.54 ±5.73 ±1.59 ±0.76 ±0.58 ±0.85 ±0.20

Specific aug.b – – – 61.99 – – – –
±3.9

RevGrada [1] 74.01 91.11 73.91 35.67 66.12 56.91 91.09 88.65

DCRN [2] 73.67 91.8 81.97 40.05 66.37 58.65 – –

G2A [3] 90.8 92.5 84.70 36.4 – – – –

ADDA [4] 90.1 89.4 76.00 – – – – –

ATT [5] – – 86.20 52.8 – – 93.1 96.2

SBADA-GAN [6] 97.60 95.04 76.14 61.08 – – – –

ADA [7] – – 97.6 – – – 91.86 97.66
OUR RESULTS

MT+TF 98.07 98.26 99.18 13.96c 80.08 18.3 15.94 98.63
±2.82 ±0.11 ±0.12 ±4.41 ±0.25 ±9.03 ±0.0 ±0.09

MT+CT* 92.35 88.14 93.33 33.87c 77.53 71.65 96.01 98.53
±8.61 ±0.34 ±5.88 ±4.02 ±0.11 ±0.67 ±0.08 ±0.15

MT+CT+TF 97.28 98.13 98.64 34.15c 79.73 74.24 96.51 98.66
±2.74 ±0.17 ±0.42 ±3.56 ±0.45 ±0.46 ±0.08 ±0.12

MT+CT+TFA 99.54 98.23 99.26 37.49c 80.09 69.86 97.11 99.37
±0.04 ±0.13 ±0.05 ±2.44 ±0.31 ±1.97 ±0.04 ±0.09

Specific aug.b – – – 97.0c – – – –
±0.06

TRAIN ON TARGET

SupTgt* 99.53 97.29 99.59 95.7 67.75 88.86 95.62 98.49
±0.02 ±0.2 ±0.08 ±0.13 ±2.23 ±0.38 ±0.2 ±0.32

SupTgt+TF 99.62 97.65 99.61 96.19 70.98 89.83 96.18 98.64
±0.04 ±0.17 ±0.04 ±0.1 ±0.79 ±0.39 ±0.09 ±0.09

SupTgt+TFA 99.62 97.83 99.59 96.65 70.03 90.44 96.59 99.22
±0.03 ±0.17 ±0.06 ±0.11 ±1.13 ±0.38 ±0.09 ±0.22

Specific aug.b – – – 97.16 – – – –
±0.05

[1] [5], [2] [6], [3] [25], [4] [30], [5] [22], [6] [21], [7] [9]
a RevGrad results were available in both [5] and [6]; we drew results from both papers to obtain results
for all of the experiments shown.
b MNIST → SVHN specific intensity augmentation as described in Section 4.1.
c MNIST → SVHN experiments used class balance loss.

Table 1: Small image benchmark classification accuracy; each result is presented as
mean ± standard deviation, computed from 5 independent runs. The abbreviations
for components of our models are as follows: MT = mean teacher, CT = confidence
thresholding, TF = translation and horizontal flip augmentation, TFA = translation,
horizontal flip and affine augmentation, * indicates minimal augmentation.

16

VALIDATION PHASE TEST PHASE
Team / model Mean class acc. Team / model Mean class acc.

OTHER TEAMS

bchidlovski [1] 83.1 NLE-DA [1] 87.7
BUPT OVERFIT 77.8 BUPT OVERFIT 85.4

Uni. Tokyo MIL [2] 75.4 Uni. Tokyo MIL [2] 82.4
OUR COMPETITION RESULTS

ResNet-50 model 82.8a ResNet-152 model 92.8ab

OUR NEWER RESULTS (all using ResNet-152)

Minimal aug.* 74.2 ±0.86 Minimal aug.* 77.52 ±0.78

Reduced aug. 85.4 ±0.2 Reduced aug. 91.17 ±0.17
+ test time aug. 86.6 ±0.18a + test time aug. 92.25 ±0.21a

Competition config. 84.29 ±0.24 Competition config. 91.14 ±0.14
+ test time aug. 85.52 ±0.29a + test time aug. 92.41 ±0.15a

[1] [4], [2] [23]
a Used test-time augmentation; averaged predictions of 16 differently augmentations versions
of each image
b Our competition submission ensembled predictions from 5 independently trained networks

Table 2: VisDA-17 performance, presented as mean ± std-dev of 5 independent
runs. Full results are presented in Tables 4 and 5 in Appendix C.

train # test # classes Target Resolution Channels
USPSa 7,291 2,007 10 Digits 16× 16 Mono
MNIST 60,000 10,000 10 Digits 28× 28 Mono
SVHN 73,257 26,032 10 Digits 32× 32 RGB
CIFAR-10 50,000 10,000 10 Object ID 32× 32 RGB
STLb 5,000 8,000 10 Object ID 96× 96 RGB
Syn-Digitsc 479,400 9,553 10 Digits 32× 32 RGB
Syn-Signs 100,000 – 43 Traffic signs 40× 40 RGB
GTSRB 32,209 12,630 43 Traffic signs varies RGB

a Available from http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/zip.

train.gz and http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/zip.

test.gz
b Available from http://ai.stanford.edu/~acoates/stl10/
c Available from Ganin’s website at http://yaroslav.ganin.net/

Table 3: datasets

17

http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/zip.train.gz
http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/zip.train.gz
http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/zip.test.gz
http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/zip.test.gz
http://ai.stanford.edu/~acoates/stl10/
http://yaroslav.ganin.net/

Plane Bicycle Bus Car Horse Knife

COMPETITION RESULTS

ResNet-50 96.3 87.9 84.7 55.7 95.9 95.2
NEWER RESULTS (ResNet-152)

Minimal aug 92.94 84.88 71.56 41.24 88.85 92.40
±0.52 ±0.73 ±3.08 ±1.01 ±1.31 ±1.14

Reduced aug 96.19 87.83 84.38 66.47 96.07 96.06
±0.17 ±1.62 ±0.92 ±4.53 ±0.28 ±0.62

+ test time aug 97.13 89.28 84.93 67.67 96.54 97.48
±0.18 ±1.45 ±1.09 ±4.66 ±0.36 ±0.43

Competition config. 95.93 87.36 85.22 58.56 96.23 95.65
±0.29 ±1.19 ±0.86 ±1.81 ±0.18 ±0.60

+ test time aug 96.89 89.06 85.51 59.73 96.59 97.55
±0.32 ±1.24 ±0.83 ±1.96 ±0.13 ±0.48

M.cycle Person Plant Sk.brd Train Truck Mean Class Acc.

COMPETITION RESULTS

ResNet-50 88.6 77.4 93.3 92.8 87.5 38.2 82.8
NEWER RESULTS (ResNet-152)

Minimal aug 67.51 63.46 84.47 71.84 83.22 48.09 74.20
±1.79 ±1.72 ±1.22 ±5.40 ±0.73 ±1.41 ±0.86

Reduced aug 90.49 81.45 95.27 91.48 87.54 51.60 85.40
±0.27 ±0.90 ±0.36 ±0.76 ±1.16 ±2.35 ±0.20

+ test time aug 90.99 83.33 96.12 94.69 88.53 52.54 86.60
±0.37 ±0.91 ±0.32 ±0.71 ±1.20 ±2.82 ±0.24

Competition config. 90.60 80.03 94.79 90.77 88.42 47.90 84.29
±1.08 ±1.23 ±0.35 ±0.65 ±0.87 ±2.16 ±0.24

+ test time aug 91.00 81.59 95.58 94.29 89.28 49.21 85.52
±1.17 ±1.20 ±0.38 ±0.63 ±0.85 ±2.26 ±0.29

Table 4: Full VisDA-17 validation set results

18

Plane Bicycle Bus Car Horse Knife

COMPETITION RESULTS (ensemble of 5 models)

ResNet-152 96.9 92.4 92.0 97.2 95.2 98.8
NEWER RESULTS (ResNet-152)

Minimal aug 88.44 84.80 75.08 84.08 79.95 72.62
±1.37 ±1.81 ±1.63 ±2.28 ±1.93 ±7.98

Reduced aug 95.63 89.90 91.44 96.18 94.17 96.51
±0.61 ±0.64 ±0.34 ±0.63 ±0.25 ±0.41

+ test time aug 96.72 91.67 92.21 96.41 94.72 98.03
±0.59 ±0.73 ±0.45 ±0.65 ±0.21 ±0.40

Competition config. 95.13 90.09 91.21 96.94 94.39 96.87
±0.39 ±0.37 ±0.82 ±0.34 ±0.48 ±0.33

+ test time aug 96.48 91.96 91.92 97.22 95.12 98.44
±0.31 ±0.38 ±0.65 ±0.36 ±0.52 ±0.13

M.cycle Person Plant Sk.brd Train Truck Mean Class Acc.

COMPETITION RESULTS (ensemble of 5 models)

ResNet-152 86.3 75.3 97.7 93.3 94.5 93.3 92.8
NEWER RESULTS (ResNet-152)

Minimal aug 63.60 56.59 95.40 73.79 77.57 78.33 77.52
±1.55 ±1.73 ±0.52 ±5.43 ±1.76 ±3.12 ±0.78

Reduced aug 85.02 71.31 97.35 91.11 92.42 93.03 91.17
±0.83 ±0.97 ±0.49 ±1.05 ±0.46 ±0.36 ±0.17

+ test time aug 85.40 73.19 97.84 93.53 93.31 93.91 92.25
±1.08 ±0.86 ±0.45 ±0.71 ±0.35 ±0.39 ±0.21

Competition config. 85.12 70.78 97.22 90.39 93.18 92.38 91.14
±1.30 ±1.53 ±0.19 ±0.64 ±0.49 ±0.52 ±0.14

+ test time aug 85.75 74.06 97.77 92.91 94.21 93.09 92.41
±1.20 ±1.69 ±0.16 ±0.45 ±0.52 ±0.44 ±0.15

Table 5: Full VisDA-17 test set results

Description Shape
28× 28 Mono image 28× 28× 1
Conv 5× 5× 32, batch norm 24× 24× 32
Max-pool, 2x2 12× 12× 32
Conv 3× 3× 64, batch norm 10× 10× 64
Conv 3× 3× 64, batch norm 8× 8× 64
Max-pool, 2x2 4× 4× 64
Dropout, 50% 4× 4× 64
Fully connected, 256 units 256
Fully connected, 10 units, softmax 10

Table 6: MNIST ↔ USPS architecture

19

Description Shape
32× 32 RGB image 32× 32× 3
Conv 3× 3× 128, pad 1, batch norm 32× 32× 128
Conv 3× 3× 128, pad 1, batch norm 32× 32× 128
Conv 3× 3× 128, pad 1, batch norm 32× 32× 128
Max-pool, 2x2 16× 16× 128
Dropout, 50% 16× 16× 128
Conv 3× 3× 256, pad 1, batch norm 16× 16× 256
Conv 3× 3× 256, pad 1, batch norm 16× 16× 256
Conv 3× 3× 256, pad 1, batch norm 16× 16× 256
Max-pool, 2x2 8× 8× 256
Dropout, 50% 8× 8× 256
Conv 3× 3× 512, pad 0, batch norm 6× 6× 512
Conv 1× 1× 256, batch norm 6× 6× 256
Conv 1× 1× 128, batch norm 6× 6× 128
Global pooling layer 1× 1× 128
Fully connected, 10 units, softmax 10

Table 7: MNIST ↔ SVHN, CIFAR-10 ↔ STL and Syn-Digits → SVHN archi-
tecture

Description Shape
40× 40 RGB image 40× 40× 3
Conv 3× 3× 96, pad 1, batch norm 40× 40× 96
Conv 3× 3× 96, pad 1, batch norm 40× 40× 96
Conv 3× 3× 96, pad 1, batch norm 40× 40× 96
Max-pool, 2x2 20× 20× 96
Dropout, 50% 20× 20× 96
Conv 3× 3× 192, pad 1, batch norm 20× 20× 192
Conv 3× 3× 192, pad 1, batch norm 20× 20× 192
Conv 3× 3× 192, pad 1, batch norm 20× 20× 192
Max-pool, 2x2 10× 10× 192
Dropout, 50% 10× 10× 192
Conv 3× 3× 384, pad 1, batch norm 10× 10× 384
Conv 3× 3× 384, pad 1, batch norm 10× 10× 384
Conv 3× 3× 384, pad 1, batch norm 10× 10× 384
Max-pool, 2x2 5× 5× 384
Dropout, 50% 5× 5× 384
Global pooling layer 1× 1× 384
Fully connected, 43 units, softmax 43

Table 8: Syn-signs → GTSRB architecture

20

	1 Introduction
	2 Related work
	2.1 Self-ensembling for semi-supervised learning
	2.2 Domain adaptation

	3 Method
	3.1 Adapting to domain adaptation
	3.2 Confidence thresholding
	3.3 Data augmentation
	3.4 Class balance loss

	4 Experiments
	4.1 Small image datasets
	4.2 VisDA-2017 visual domain adaptation challenge

	5 Conclusions
	A Datasets and Data Preparation
	A.1 Small image datasets
	A.2 Data preparation

	B Small image experiment training
	B.1 Training procedure

	C VisDA-17
	C.1 Hyper-parameters

	D Network architectures

