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Phylogenomics illuminates the 
backbone of the Myriapoda Tree of 
Life and reconciles morphological 
and molecular phylogenies
Rosa Fernández1,3, Gregory D. Edgecombe2 & Gonzalo Giribet   1

The interrelationships of the four classes of Myriapoda have been an unresolved question in arthropod 
phylogenetics and an example of conflict between morphology and molecules. Morphology and 
development provide compelling support for Diplopoda (millipedes) and Pauropoda being closest 
relatives, and moderate support for Symphyla being more closely related to the diplopod-pauropod 
group than any of them are to Chilopoda (centipedes). In contrast, several molecular datasets have 
contradicted the Diplopoda–Pauropoda grouping (named Dignatha), often recovering a Symphyla–
Pauropoda group (named Edafopoda). Here we present the first transcriptomic data including a 
pauropod and both families of symphylans, allowing myriapod interrelationships to be inferred from 
phylogenomic data from representatives of all main lineages. Phylogenomic analyses consistently 
recovered Dignatha with strong support. Taxon removal experiments identified outgroup choice as 
a critical factor affecting myriapod interrelationships. Diversification of millipedes in the Ordovician 
and centipedes in the Silurian closely approximates fossil evidence whereas the deeper nodes of the 
myriapod tree date to various depths in the Cambrian-Early Ordovician, roughly coinciding with recent 
estimates of terrestrialisation in other arthropod lineages, including hexapods and arachnids.

The evolutionary interrelationships between and within major arthropod groups were subject to much instability 
in the early years of molecular phylogenetics. Some hypotheses to emerge from that era – such as crustacean 
paraphyly with respect to Hexapoda (including insects) – have stood the test of time, whereas others have fallen 
by the wayside. Controversial results were exposed to be artefacts of insufficient amounts of data, flawed analyt-
ical methods, or systematic error. In recent years, phylogenomic approaches drawing on vastly expanded gene 
and taxon coverage, combined with improved analytical approaches, have seen stable, well supported molecular 
hypotheses being recovered1–5, and these have eliminated several instances of incongruence with morphological 
trees that were introduced in earlier molecular studies.

Transcriptome-based phylogenies drawing on hundreds or thousands of orthologues have assisted with phy-
logenetic analyses for the major groups of millipedes6,7 and centipedes7,8 but relationships between the four main 
myriapod groups have not been as rigorously tested (Fig. 1). A particular limitation is that only Sanger-sequenced 
data are available for pauropods—a group that lies at the crux of a molecular and morphological conflict within 
Myriapoda—probably due to their small size, difficulty in finding them, and cryptic behaviour. Analyses based on 
62 nuclear protein coding genes9,10 underpin a formal taxonomic proposal that Pauropoda is most closely related 
to Symphyla, a putative clade named Edafopoda11. This grouping, also recovered using nuclear ribosomal genes12 
and mitochondrial genomes13, is highly unexpected from the perspective of morphology because an alternative 
grouping of Pauropoda and Diplopoda has been widely accepted for more than a century14–16. This hypothesis 
is named Dignatha (=Collifera), referring to the mandibles and first maxillae being the only functional mouth-
parts, with the postmaxillary segment being limbless, parts of it forming a tergite called the collum and not incor-
porated into the head. Other shared morphological characters include a first maxilla coalesced with a sternal 

1Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 
Oxford St., 02138, Cambridge, MA, USA. 2Department of Earth Sciences, The Natural History Museum, Cromwell 
Road, London, SW7 5BD, UK. 3Present address: Bioinformatics & Genomics, Centre for Genomic Regulation, Carrer 
del Dr. Aiguader 88, 08003, Barcelona, Spain. Correspondence and requests for materials should be addressed to R.F. 
(email: rfernandezgarcia@g.harvard.edu)

Received: 21 July 2017

Accepted: 14 December 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-5467-8429
mailto:rfernandezgarcia@g.harvard.edu


www.nature.com/scientificreports/

2SCiENTifiC REPorTs |  (2018) 8:83  | DOI:10.1038/s41598-017-18562-w

intermaxillary plate, the vas deferens opening to the tips of conical penes between the second trunk leg pair, and 
the spiracles opening to a tracheal pouch that functions as an apodeme. Early post-embryonic development 
unites Dignatha based on a motionless pupoid stage immediately after hatching, followed by a hexapodous first 
free-living stage. The Dignatha hypothesis has also been supported by a few smaller molecular data sets17, but it 
has been contradicted by Edafopoda in the analysis of larger data sets [e.g., ref.11].

In order to investigate the conflicting support for Dignatha versus Edafopoda – and therefore to shed light on 
the backbone of the Myriapoda Tree of Life – we present the first transcriptomic data set including a pauropod 
and both families of symphylans. The new data are evaluated in a phylogenomic context specifically designed 
to test these hypotheses. Furthermore, we expand on previous efforts to date the myriapod phylogenetic tree 
by coding a morphological character set for the same set of species as sampled transcriptomically as well as key 
fossil species for their preserved morphological characters in order to estimate the age of diversification within 
Myriapoda, particularly with reference to the likely timing of terrestrialisation.

Results and Discussion
Pauropoda is the sister group to Diplopoda.  All the analyses (with the exception of two, in which 
Pauropoda was attracted to the outgroups, see below) recovered Pauropoda as the sister group to Diplopoda with 
high support (Fig. 2a,b). Notably, support for Dignatha is strong when the most complete taxonomic sampling 
of non-myriapod outgroups is used (Fig. 2a). Given the unanimity of support for Dignatha/Collifera in morpho-
logical studies, this stable, well-supported result reconciles classical morphological studies with molecules. In 
analyses based on more intensively sampled or closely related outgroups (discussed below), the sister group of 
Dignatha is Symphyla, together forming the traditional clade Progoneata. The only two analyses not recovering 
Dignatha (both maximum likelihood analyses not accounting for among-site rate heterogeneity and including the 
most distant outgroups) positioned Pauropoda at the base of the ingroup due to a long branch attraction artefact 
(LBA) (Fig. 2c,d). In fact, one of them even recovered Myriapoda as non-monophyletic (Fig. 2d), with the pauro-
pod spuriously clustering within Pancrustacea, highlighting the potential of LBA in this data set. Edafopoda was 
not recovered in either of these two analyses, as symphylans fall as the sister group of Diplopoda + Chilopoda in 
both cases (although without strong support in one of the analyses; Fig. 2c). The attraction of symphylans and 
pauropods as Edafopoda (the only hypothesis exclusively based on molecular information) is therefore probably 
due to artefacts during phylogenetic reconstruction, as discussed below.

Figure 1.  The four main groups of myriapods. (A) Otostigmus (Parotostigmus) pococki (Northern Range, 
Trinidad, Trinidad and Tobago) (Chilopoda, Scolopendromorpha). (B) Hanseniella sp. (South Island, 
New Zealand) (Symphyla, Scutigerellidae). (C) Pauropus huxleyi (Massachusetts, USA) (Pauropoda, 
Tetramerocerata). and (D) Platydesmus sp. (La Selva, Costa Rica) (Diplopoda, Platydesmida). Pictures by 
Gonzalo Giribet.
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Outgroup selection impacts on myriapod phylogeny.  Despite Dignatha being recovered in most of 
our analyses, a result not often found in prior molecular studies, the interrelationships between it and the other 
two main groups of myriapods varied across analyses, being sensitive to outgroup choice. In the PhyloBayes 
analyses, matrices 1 and 3 recovered Progoneata, whereas in matrix 2 (in which only the more distantly allied 
chelicerates were selected as outgroups) symphylans appeared as sister group of the other Myriapoda instead of 
centipedes, as in the previous cases (Fig. 2a,b). The latter clade formed by these three groups was also recovered 
in the ML analyses (with or without strong support, though; Fig. 2c,d). This is not the first study in which this 
result was obtained: in Miyazawa et al.18 symphylans were likewise recovered as sister group to all other myria-
pods, followed by pauropods as sister group to millipedes plus centipedes. However, that study was based on just 
three Sanger sequenced genes, and conflicts with other well resolved nodes in our phylogeny (e.g., Dignatha). 
The present study and Fernández et al.7 suggest that outgroup selection is a major factor affecting phylogenetic 
reconstruction in myriapods. In addition, the latter study found that the most complete matrices were enriched 
in ribosomal proteins, and both factors strongly compromised the estimated relationships within the ingroup. In 
the present study, biases from ribosomal proteins were minimized by using a different orthology inference proce-
dure, which ensures that only single copy genes are selected. In spite of this, it remains the case that the selection 
of only distant outgroups (chelicerates in this case) yields interrelationships of the myriapod classes that are 
less congruent with morphology than when closer and more comprehensively sampled outgroups are included. 
This study also highlights the importance of accounting for site-specific heterogeneity (through the CAT-GTR 
model of PhyloBayes) at least when taxon sampling is not dense for some of the groups, as even when only closer 
outgroups are included the long-branched pauropod is attracted to the equally long-branched Pancrustacea. The 
inclusion of more pauropods may alleviate this effect.

The timing of myriapod diversification.  Diversification of Chilopoda (i.e., the basal split in the crown 
group) is dated to the Early Silurian (Fig. 3), not much earlier than the oldest fossil chilopods in the Late Silurian, 
these already being representatives of the chilopod crown group. Diversification of Diplopoda dates to the Middle 
Ordovician (autocorrelated rates)–earliest Silurian (uncorrelated rates). Though this is considerably older than 
the first millipede body fossils (from the Wenlock Series of the Silurian), it closely approximates the age of trace 
fossils that have been attributed to Diplopoda and especially compared to locomotion in Penicillata19,20. In con-
trast, deeper nodes associated with the divergences between myriapod classes are substantially older than availa-
ble fossil data. No plausible total-group myriapod body fossils are known from the Cambrian, but as in previous 
studies dating Myriapoda3,17, some deep splits are estimated to be of Cambrian age. Diversification of Dignatha is 

Figure 2.  (A) Phylogenetic hypothesis of myriapod interrelationships (PhyloBayes, matrix 1). (B). DensiTree 
visualization of the four most congruent analyses (PhyloBayes, matrices 2 and 3; PhyML, matrix 3). (C,D). Main 
conflicting alternative hypotheses (C) PhyML, matrix 2; (D) PhyML, matrix 1. (E) Phylogenetic hypothesis 
of Myriapoda based on 187 morphological characters coded for both extant and extinct species (see Methods 
for further details); strict consensus of 105 trees of 257 steps; fossil taxa are identified with a dagger symbol. 
Black circles in nodes represent high support (>0.95 posterior probability, >90% bootstrap support). CHE: 
Chelicerata. PAN: Pancrustacea. CHI: Chilopoda. SYM: Symphyla. PAU: Pauropoda. DIP: Diplopoda. Colour 
codes for each clade are maintained in all figures.
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inferred to date to the latest Cambrian-Early Ordovician, Progoneata to the mid-late Cambrian, and Myriapoda 
to the early-middle Cambrian (auto- and uncorrelated rates, respectively). The shared terrestrial adaptations of all 
extant myriapods (e.g., tracheae, Malpighian tubules, uniramous trunk limbs) suggest that the common ancestor 
of each of these estimated Cambrian nodes was terrestrial, coinciding (although being slightly younger) with esti-
mates of terrestrialisation for other arthropod lineages, including arachnids and hexapods3,5. Although the trace 
fossil record is consistent with amphibious arthropods by the mid Cambrian21,22, and some such traces are poten-
tially made by stem-group myriapods, current molecular estimates for early or middle Cambrian crown-group 
myriapods, earlier than the expected terrestrial flora, continue to pose an unanswered question in arthropod 
terrestrialisation.

Towards a fully-resolved Myriapoda Tree of Life.  The branching pattern of the four main groups of 
myriapods has been one of the unresolved questions in arthropod phylogenetics, together with the interrelation-
ships of the chelicerate orders and the exact sequence of crustaceans that led to the origins of hexapods. With the 
advent of phylogenomic methods, myriapod phylogeny has attracted attention during the last few years, with 
several studies devoted to shedding light on the interrelationships of the millipede6 and centipede8 orders, and 
more recently expanding taxon sampling to include most centipede families, most millipede orders and a couple 
of symphylans7. The different analyses of large data matrices combined in all these studies (as well as the current 
one) have allowed us to discern the main artefacts affecting phylogenetic reconstruction in this group of arthro-
pods. The tree, its deep nodes congruent with traditional hypotheses based on morphology and development, can 
now be seen as a well-resolved backbone phylogeny with only a handful of untested placements, including the 
unsampled pauropod order Hexamerocerata, and the unexplored position of the diplopod orders Siphoniulida, 
Siphonophorida and Siphonocryptida. Some cases of incongruence between morphological and molecular data 
remain at shallower nodes, such as the interrelationships of the three orders of pentazonian millipedes23, and the 
position of the centipede orders Craterostigmomorpha and Lithobiomorpha relative to each other and to Scolop
endromorpha + Geophilomorpha7.

Methods
Sample collection and molecular techniques.  Fourteen species representing the four major groups 
of myriapods (Chilopoda, Diplopoda, Pauropoda and Symphyla) were included in this study. Building upon 
previous work6,7, our sampling was designed to maximize representation of all groups, including all orders of 
centipedes, both families of symphylans, the main clades of millipedes, and pauropods. New sequence data were 

Figure 3.  Chronogram of myriapod evolution based on matrix 1 (PhyloBayes analysis) with 95% highest 
posterior density (HPD) bars for the dating under the uncorrelated (blue) or autocorrelated (pink) model. 
Nodes that were calibrated with fossils are indicated with a diamond placed at the age of the fossil.
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generated from organisms targeted for their instability or lack of representation in prior analyses: a pauropod 
(Pauropus huxleyi) and a symphylan from the family Scolopendrellidae (Scutigerellidae was already represented 
in earlier studies). Information on sampling localities and accession numbers in the Sequence Read Archive 
database for each transcriptome can be found in Table 1. The remaining 12 myriapods from Brewer and Bond6 
and our own published data7 were available from the Sequence Read Archive (SRA). The following taxa were 
included as outgroups: a crustacean (Daphnia pulex), two hexapods (Drosophila melanogaster, Folsomia candida),  
and three chelicerates (Limulus polyphemus, Liphistius malayanus and Centruroides vittatus). The new sequenced 
cDNA libraries are accessioned in SRA (Table 1). Tissue preservation and RNA sequencing are as described 
in Fernández et al.8. All molecular data included in this study were sequenced with the Illumina HiSeq 
2500 platform.

Phylogenomic analyses.  Single copy genes in arthropods were identified in our data sets with BUSCO v1.124  
based on hidden Markov model profiles. The homologous genes detected were screened to identify multiple hits 
(i.e., paralogues). Only one homologue per BUSCO single copy gene was selected in each case, assuming that 
they were single copy in our samples as well, and therefore orthologs. The genes were parsed from each sample 
and combined into individual files (i.e., one file per gene) with custom python scripts. Alignment, trimming and 
concatenation were done as in Fernández et al.7. As the selection of outgroups may be critical in resolving myria-
pod relationships we constructed three matrices with different outgroup composition: matrix 1 (300 genes, 49,576 
amino acids), including all outgroups (i.e., chelicerates, hexapods and crustaceans); matrix 2 (same as matrix 1, 
only with chelicerate outgroups); and matrix 3 (299 genes, 61,611 amino acids, only with pancrustacean out-
groups). All matrices are provided as Suppl. Mat. In all cases, we selected a high level of gene occupancy to ensure 
the selection of a relatively large amount of genomic information while minimizing missing data and computa-
tional burden (75% gene occupancy in matrices 1 and 2 and 88% in matrix 3). Bayesian analyses were conducted 
with PhyloBayes MPI 1.7a25 selecting the site-heterogeneous CAT-GTR model of amino acid substitution26.  
Two independent Markov chain Monte Carlo (MCMC) chains were run for 5000–10,000 cycles. The initial 25% 
of trees sampled in each MCMC run prior to convergence (judged when maximum bipartition discrepancies 
across chains were <0.1) were discarded as burn-in. Convergence of chains was assessed both at the level of the 
bipartition frequencies (with the command bpcomp) and the summary variables displayed in the trace files (with 
the command tracecomp). We considered that convergence was achieved when (i) the maximum difference of 
the frequency of all the bipartitions observed in the chains was <0.1, and (ii) when the maximum discrepancy 
observed for each column of the trace file was <0.1 and the minimum effective size of 100. A 50% majority-rule 
consensus tree was then computed from the remaining trees. In order to further test for the effect of heterotachy 

Species Data Source MCZ Voucher SRA #

Chilopoda

Scutigera coleoptrata Transcriptome Fernández et al.8 IZ-204015 SRR1158078

Craterostigmus crabilli Transcriptome Fernández et al.7 IZ-71256 SRR3232915

Cryptops hortensis Transcriptome Fernández et al.8 IZ-130583 SRR1153457

Strigamia maritima Genome Chipman et al.35 —

Eupolybothrus cavernicolus Transcriptome Stoev et al.36 — ERX311347

Symphyla

Hanseniella sp. Transcriptome Fernández et al.8 IZ-133580 SRR6217953

Scutigerella sp. Transcriptome Fernández et al.7 IZ-46890 SRR3458649

Symphylella sp. Transcriptome Illumina HiSeq (this study) IZ-141598 SRR6144316

Pauropoda

Pauropus huxleyi Transcriptome Illumina HiSeq (this study) IZ-141222 SRR6145369

Eudigraphis taiwanensis Transcriptome Fernández et al.7 IZ-128912 SRR3458640

Glomeris marginata Transcriptome Fernández et al.7 IZ-43690 SRR3233211

Cyliosoma sp. Transcriptome Fernández et al.7 IZ-44064 SRR3458641

Brachycybe sp. Transcriptome Brewer & Bond6 — SRX326776

Narceus americanus Transcriptome Fernández et al.7 IZ-44069 SRR3233222

Outgroups

Limulus polyphemus Transcriptome Sharma et al.37 IZ:29738 SRX450966

Liphistius malayanus Transcriptome Sharma et al.37 IZ-29742 SRX450965

Centruroides vittatus Transcriptome Sharma et al.37 IZ-49754 SRX451012

Daphnia pulex Genome —

Folsomia candida Genome Faddeeva-Vakhrusheva38 —

Drosophila melanogaster Genome —

Table 1.  List of taxa included in the present study. Location, Museum of Comparative Zoology (MCZ) and SRA 
accession numbers are indicated.
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and heterogeneous substitution rates, the matrices were also analysed in PhyML v.3.0.3 implementing the inte-
grated length (IL) approach27,28. In this analysis, the starting tree was set to the optimal parsimony tree and 
the FreeRate model29 was selected. Congruence between the different topologies was visualized with DensiTree 
v2.2.530.

Molecular Dating.  Divergence times for myriapods were estimated through molecular dating, constrained 
by the position of critical fossils using a morphological data set. Six Palaeozoic and Mesozoic myriapod fossils 
(three centipedes and three millipedes; Table 2) were included in our morphological data set of 187 characters. 
One fossil diplopod used for coding, Cowiedesmus eroticopodus, has since been redated as Early Devonian rather 
than mid Silurian31; another Silurian diplopod, Casiogrammus ichthyeros, replaces it as the earliest minimum 
age for crown-group Diplopoda and is coded as well.We also included three fossil outgroups: the crustacean 
Rehbachiella kinnekullensis, the scorpion Proscorpius osborni, and the collembolan Rhyniella praecursor. The 
matrix is available as Morphobank project P2762 (http://morphobank.org/permalink/P2762) and is provided 
as Supp. Mat. Multistate characters were scored as non-additive except for characters 57, 68, 81, 95 and 102, 
which were additive. The morphological data set was analysed under parsimony with TNT32. Traditional heuris-
tic searches with 10,000 stepwise addition sequences resulted in 105 trees of 257 steps. Consistency Index 0.84, 
Retention Index 0.83 (Fig. 2e). No shorter trees were found using New Technology search strategies in TNT. 
Absolute dates follow the International Chronostratigraphic Chart v 2015/01. Justifications for age assignments 
of the fossils (Table 2) follow Wolfe et al.33. Divergence dates were estimated using the Bayesian relaxed molecular 
clock approach as implemented in PhyloBayes v.3.325. Both an auto-correlated and uncorrelated relaxed clock 
model were applied to our dataset. The calibration constraints specified above were used with soft bounds34 under 
a birth-death prior in PhyloBayes. Two independent MCMC chains were run for 5000–7,000 cycles, sampling 
posterior rates and dates every 10 cycles. The initial 25% were discarded as burn-in. Posterior estimates of diver-
gence dates were then computed from the remaining samples of each chain.
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