
Complementarity problems,
Variational inequalities and
Extended Lorentz cones

by

Guohan Zhang

Main Supervisor: Dr S. Z. Németh
Co-supervisor: Michal Ko£vara

Proposed internal examiner: Yunbin Zhao
for the degree of
PhD thesis)

School of Mathematics
The University of Birmingham
February 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Archive, E-theses Repository

https://core.ac.uk/display/151396166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



Abstract

In this thesis, we introduced the concept of extended Lorentz cones. We discussed the

solvability of variational inequalities and complementarity problems associated with an

unrelated closed convex cone. This cone does not have to be an isotone projection cone.

We showed that the solution of variational inequalities and complementarity problems

can be reached as a limit of a sequence de�ned in an ordered space which is ordered

by extended Lorentz cone. Moreover, we applied our results in game theory and conic

optimization problems. We also discussed the positive operators. We showed necessary

and su�cient conditions under which a linear operator is a positive operator of extended

Lorentz cone. We also showed su�cient and necessary conditions under which a linear

operator in a speci�c form is a positive operator.

i



Contents

Acronyms vii

Notations viii

1 Introduction 1

2 Convex analysis and Ordered Euclidean space 20

2.1 Convex and Nonlinear analysis . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Introduction of ordered space and isotonicity . . . . . . . . . . . . . . . . . 25

2.3 Isotonicity of the projection with respect to extended Lorentz cones . . . . 26

2.4 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Variational inequalities and related problems 39

3.1 The de�nition of Variational Inequalities and Complementarity problems . 39

3.2 Related problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Conic optimization and complementarity problems 53

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Practical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ii



CONTENTS

4.4 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Complementarity problems and extended Lorentz cones 67

5.1 Complementarity problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Mixed complementarity problems . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 How wide is the family of K-isotone mappings? . . . . . . . . . . . . . . . 78

5.5 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Extended Lorentz Cones and Variational Inequalities on Cylinders 81

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Variational inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Variational Inequalities on cylinders . . . . . . . . . . . . . . . . . . . . . . 84

6.4 A�ne Variational Inequalities on Cylinders . . . . . . . . . . . . . . . . . . 87

6.5 Unbounded box constrained variational inequalities . . . . . . . . . . . . . 90

6.6 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Applications of Extended Lorentz cones 102

7.1 Applications in Game theory . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 Applications to conic optimization problems . . . . . . . . . . . . . . . . . 108

7.3 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 Positive operators of the Extended Lorentz cones 114

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

iii



CONTENTS

8.4 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.5 Notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9 Conclusion and future works 125

Appendix 129

List of papers 131

Index 132

Bibliography 134

iv



Acknowledgements

I am very grateful to a number of people for their support and encouragement in making

this thesis possible. In fact it is di�cult to bring the full extent of my appreciation to life

in these written acknowledgements. Nonetheless, I will try.

First and foremost, I gratefully acknowledge the help of my supervisor, my collaborator

and my friend, Dr S. Z. Németh. Without his patient instruction, insightful criticism

and expert guidance, it would have been impossible for me to complete this large thesis.

Moreover, Sándor's attitude towards study and career highly a�ects me. Under his super-

vision, I learnt how to do research rigorously and how to be a good teacher and supervisor.

In addition, I would like to thank Prof Michal Ko£vara and Dr Yunbin Zhao, who are

top researchers in the corresponding area. During these fours years, I bene�t a lot from

the communication with them.

I also owe a special debt of gratitude to Prof Peter Butkovic, Dr Susana Guitierrez, Prof

Daniela Kühn, Dr David Leppinen, Dr Daniel Loghin, Dr Olga Maleva, Dr Alessio Mar-

tini and Prof Deryk Osthus in the School of Mathematics from whose devoted teaching

and enlightening lectures I have bene�ted academically in preparing the thesis. I would

v



CONTENTS

also be grateful to Prof Roman Sznajder. I bene�ted a lot from the dicussion with him

about Chapter 8.

In addition, I would like to thank Mrs Janette Lowe for her help. She is the most

e�cient administrator I have ever met. Without her excellent work, these four-years life

would have been more di�cult.

Next, I am also grateful to Wenxin Zhang and Jialiang Xu. In my last year in Birm-

ingham, I enjoyed a very happy period with them that helped me complete my thesis

smoothly .

Finally, I should �nally like to express my gratitude to my beloved parents and my �ancé

Jinyu Liu who have always been helping me out of di�culties and have been supporting

me without a word of complaint.

vi



Acronyms

AV I A�ne variational inequality

CO Conic optimization problem

CP Complemenatarity problem

ICP Implicit complemenatarity problem

KKT Karush-Kuhn-Tucker

LCP Linear complementarity problem

MiCP Mixed complementarity problem

MLCP Mixed linear complementarity problem

V I Variational inequality

vii



Notations

Spaces

H Hilbert space

Rn n-dimensional Euclidean space

Rn
+ nonnegative orthant of the n-dimensional Euclidean

space

Rn×m the set of n×m real matrices

Sn+ the cone of n×n symmetric positive semide�nite matri-

ces

spF Linear span of the set F

Matrices

diag(y) the diagonal matrix whose diagonal entries are the en-

tries of the vector y

I Identity mapping(matrix)

JF Jacobian determinant of function F

‖M‖ ‖M‖ = min{c ≥ 0 : ‖Mx‖ ≤ c‖x‖ for all x ∈ Rm}

Problem classes

viii



CONTENTS

AV I(q,M,K) A�ne variational inequality de�ned by a vector q, a ma-

trix M and a polyhedron C

V I(F,K) Variational inequality de�ned by a mapping F and a set

K

V I(q,M,K) := V I(F,K) with F (x) = q +Mx

CP (F,K) Complementarity problem de�ned by a mapping F and

a cone K

FEA(F,K) Feasible set of the variational inequality de�ned by a

mapping F and a set K

Fix(D) the �xed point problem de�ned by D

MiCP (G,H,C, n1, n2) n1+n2-dimensional mixed complementarity problem de-

�ned by mappings G, H and a cone C

SOL(F,K) Solution set of the variational inequality de�ned by a

mapping F and a set K
Vectors

∇if the partial derivative of the function f with respect to

the i-th variable

∇φ Gradient vector of the mapping φ

e = (1, . . . , 1)> the vector with each entry 1

I Identity mapping

JF Jacobian determinant of function F

‖x‖ :=
√
〈x, x〉 the Euclidean norm of vector x

x> the tranpose of the vector x;

〈x, y〉, x>y inner product (scalar product) of the vectors x, y

PC(x) Projection mapping from the point x to the set C

ix



CONTENTS

Sets

∂S Boudary set of the set S

intK The interior of the set K

cone{u1, . . . , um} := {λ1u
1 + · · ·+ λmu

m : λ1, . . . , λm ≥ 0}

K◦ polar cone of the cone K

K∗ dual cone of the cone K

L(p, q) (p, q)-type extended Lorentz cone

NX(x) the normal cone of the set X at a point x ∈ X

|P | the number of elements in the set P

x⊥ The orthogonal complement set of the vector x

Others

|a| the absolute value of the number a

∇2
uvf mixed second-order partial derivative of function f at

variables u and v

mid(a, b, x) median value of a, b and x

G := [P, Si, ui] a game with P players, i-th player's strat-

egy set Si and utility function ui

F nat
K the natural mapping associated with the pair (F,K).

Aut(K) the automorphism group of the cone K

x



Locations

Locations of De�nitions

De�nition 2.1.1 22

De�nition 2.1.2 24

De�ntion 3.1.1 39

De�ntion 3.1.2 41

De�ntion 3.1.3 43

De�ntion 3.2.1 39

De�ntion 3.2.2 49

De�nition 4.2.1 63

De�nition 7.1.1 103

De�nition 7.1.2 103

De�nition 7.1.3 103

De�nition 7.1.4 104

De�nition 4.2.1 63

De�nition 4.2.1 63

xi



CONTENTS

Locations of Theorems

Theorem 1.0.1 2

Theorem 1.0.2 3

Theorem 1.0.3 4

Theorem 1.0.4 8

Theorem 1.0.5 9

Theorem 1.0.6 9

Theorem 1.0.7 10

Theorem 1.0.8 11

Theorem 1.0.9 11

Theorem 1.0.10 14

Theorem 1.0.11 15

Theorem 2.1.1 24

Theorem 2.3.1 28

Theorem 2.3.2 29

Theorem 3.2.1 48

Theorem 3.2.2 51

Theorem 4.1.1 56

Theorem 4.1.2 56

Theorem 4.2.1 63

Theorem 4.3.1 64

Theorem 5.2.1 70

Theorem 6.3.1 85

xii



CONTENTS

Locations of Theorems (continued)

Theorem 7.1.1 106

Theorem 7.2.1 108

Theorem 8.1.1 115

Theorem 8.3.1 118

Theorem 8.3.2 119

Theorem 8.3.3 120

Locations of Propositions

Proposition 2.1.1 23

Proposition 1.0.1 12

Proposition 1.0.2 13

Proposition 2.3.1 26

Proposition 2.3.2 28

Proposition 3.1.1 41

Proposition 3.2.1 47

Proposition 4.1.1 53

Proposition 5.1.1 68

Proposition 6.2.1 83

Proposition 6.4.1 89

Proposition 6.5.1 91

Proposition 7.1.1 104

Proposition 7.1.2 105

xiii



CONTENTS

Locations of Lemmas

Lemma 2.1.1 23

Lemma 2.3.1 29

Lemma 2.3.2 29

Lemma 3.2.1 46

Lemma 3.2.2 46

Lemma 3.2.1 46

Lemma 5.1.1 68

Lemma 5.2.1 70

Lemma 6.2.1 82

Lemma 6.3.1 84

Lemma 6.4.1 87

Lemma 6.4.2 88

Lemma 8.3.1 117

Locations of Remarks

Remark 2.3.1 27

Remark 3.1.1 44

Remark 4.1.1 54

Remark 5.1.1 68

Remark 6.2.1 83

Remark 6.2.2 83

Remark 6.4.1 90

Remark 7.2.1 111

xiv



CONTENTS

Locations of Figures

Figure 2.1 34

Figure 2.2 35

Figure 2.3 36

Figure 2.4 37

Figure 2.5 38

xv



Chapter 1

Introduction

Variational inequalities and complementarity problems are models of various important

problems in physics, engineering, economics and other sciences. The classical Nash equi-

librium concept can also be reformulated by using variational inequalities (see [12]). They

describe essential properties and features of objective functions and variables. "The sys-

tematic study of �nite-dimensional NCP and VI began in the mid-1960s; in a span of four

decades, the subject has developed into a very fruitful discipline in the �eld of mathemat-

ical programming" [12].

The Lorentz cone (second-order cone) is a very important cone in optimization problems.

Many models in robust optimization, plant location problems and investment portfolio

manangement can be formulated as a second-order cone program [5]. In this thesis, we

generalized this cone to Extended Lorentz cones.

The investigation of complementarity problems and isotone projection mappings can

be dated back to 1990s. "The pioneer of this approach for complementarity problems are

G. Isac and A.B. Németh" [47]. In [20], G. Isac and A.B. Németh showed properties of

isotone projection cones in Euclidean and Hilbert spaces. We use (H, 〈·, ·〉) to denote a

1



Chapter 1.

real Hibert space. Let C ⊆ H be a closed convex set and PC(·) the metric projection onto

C. More explicitly, it is de�ned by a solution of the following optimization problem with

the constrained set C ⊆ Rm

Rm 3 x 7→ PC(x) = argmin{‖y − x‖ : y ∈ C}. (1.1)

Let K be a pointed closed convex cone (see Chapter 2 for de�nition). We say that K

is generating if H = K − K [22]. We recall that x ≤K y if y − x ∈ K. We say that

K is an isotone projection cone if and only if, for every x, y ∈ H, x ≤K y implies that,

PK(x) ≤K PK(y). We call the set K∗ = {x ∈ Rm : 〈x, y〉 ≥ 0, ∀y ∈ K} the dual of K.

De�nition 1.0.1. A complementarity problem (also called general complementarity prob-

lem or nonlinear complementarity problem) CP (f,K) for f : K → H is to �nd x ∈ K

such that f(x) ∈ K∗ and 〈x, f(x)〉 = 0, where K∗ denotes the dual cone of K.

De�nition 1.0.2. The implicit complementarity problem ICP (f, g,K) de�ned by f, g

and K is to �nd x ∈ K such that g(x) ∈ K, f(x) ∈ K∗ and 〈g(x0), f(x0)〉 = 0.

De�nition 1.0.3. A variational inequality V I(f, C) associated to a mapping f and a set

is to �nd a vector x ∈ C such that 〈x− y, f(x)〉 ≥ 0 for any y ∈ C.

In [20], with the aid of �xed point theory, the connection between complementarity

problems and isotone projection cone was investigated as well. The authors proved the

following theorem.

Theorem 1.0.1. Let (H, 〈·, ·〉) be a Hilbert space ordered by an isotone projection cone

K ⊆ H and let f : K → H be a continuous and monotone increasing mapping. Consider

the following statement:

(1) D = {x ∈ K : f(x) ≤K x} is nonempty.

2



Chapter 1.

(2) D∗ = {x ∈ K : f(x) ≤K∗ x} is nonempty.

(3) F = {x ∈ K : PK(f(x)) = x} is nonempty (which is equivalent to the fact that

CP (I − f,K) has a solution).

(4) the sequence {xn}n∈N de�ned by x0 = 0 and xn+1 = PK(f(xn)) is convergent and its

convergence point x∗ ∈ F ⊆ D∗ and x∗ is the least element of D.

Then (1) =⇒ (4) =⇒ (3) =⇒ (2).

This theorem showed that the solution of a complementarity problem can be found by an

iteration with respect to a projection mapping. In chapters 5 and 6, we will see two similar

types of theorems for some speci�ed problems. G. Isac and A.B. Németh developed their

result to solve complementarity problems (CP ) and implicit complementarity problems

(ICP ) in Hilbert spaces by iterative methods in [21].

De�nition 1.0.4. Given α ∈ R such that 0 < α < 1 and two mappings T1, T2 : H → H,

we say that T1 is α-concave if for evey x ∈ H and every λ such that 0 < λ < 1 we have

λαT1(x) ≤ T1(λx); T2 is −α-convex if for every x ∈ H and every λ such that 0 < λ < 1

we have T2(λx) ≤ λαT2(x).

In [21], G. Isac and A.B. Németh showed the following theorems:

Theorem 1.0.2. Let (H, 〈·, ·〉) be a Hilbert space ordered by an isotone projection cone

K ⊆ H and let f, h : K → H be two continuous monotone decreasing mappings. Given

x0, y0 ∈ K with x0 ≤ y0 consider the sequence {xn}n∈N, {yn}n∈N de�ned by

xn+1 = PK(xn − h(xn)− f(xn)) + h(yn),

yn+1 = PK(yn − h(yn)− f(yn)) + h(xn).

Suppose the following assumptions are satis�ed:

3



Chapter 1.

(1) x0 ≤ x1 and y1 ≤ y0,

(2) if dimH = ∞, the mapping Φ(x) = h(x) + PK(x − h(x) − f(x)) is nonexpansive or

condensing.

Then the problem ICP (f ◦ (I − h), K) has a solution x∗ ∈ K such that for any n,

xn ≤ x∗ ≤ yn. Moreover, if limn→∞ ‖yn − xn‖ = 0 then limn→∞ x
n = x∗.

Theorem 1.0.3. Let (H, 〈·, ·〉) be a Hilbert space ordered by an isotone projection cone

K ⊆ H. Suppose that the mapping Ψ(x) = PK(x) − f(PK(x)), associated to the comple-

mentarity problem CP (f,K), has a decompostion of the form Ψ(x) = T1(x)+T2(x), where

T1 is increasing and α-concave , and T2 is decreasing and −α-convex. Given u0 ∈ K and

µ0 > 1 such that µα−1
0 u0 ≤ T1(u0) + T2(u0) ≤ µ1−α

0 u0, consider the sequence {xn}n∈N,

{yn}n∈N de�ned by

xn = T1(xn−1) + T2(yn−1),

yn = T1(yn−1) + T2(xn−1),

where x0 = µ−1
0 u0 and y0 = µ0u0. Then the following holds:

(1) the sequence {xn}n∈N, {yn}n∈N are convergent,

(2) limn→∞ x
n = limn→∞ y

n,

(3) the element x∗ = limn→∞ x
n = limn→∞ y

n is a solution of the problem CP (f,K),

(4) ‖x∗ − xn‖ ≤ µ0(1− 1/µ2αn

0 )‖u0‖ for all n ∈ N.

Following these two papers (i.e., [20, 21]), researchers focused on two areas: one is the

properties of isotone projection cones in Hilbert spaces; the other is the relation between

the projection method and complementarity problems and variational inequalities.

4
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An order relation ≤K de�ned by K, is a re�exive, transitive and antisymmetric relation,

which is compatible with the vector structure of H. In this case we say that (H, K) is an

ordered vector space and K is its positive cone [22].

If for any two elements x, y ∈ H there exists sup{x, y} (which will be denoted by x∨y),

then the ordered vector spaces is called a vector lattice and its positive cone K is said to

be latticial [22]. In this case, inf{x, y} (denoted by x ∧ y) also exists for each x, y ∈ H

and x ∧ y = x+ y − x ∨ y.

A closed half-space of H through 0 is a subset of H of the form {x ∈ H : 〈x, p〉 ≤ 0}

where p ∈ H, p 6= 0. A polyhedral cone in H is the intersection of �nitely many closed

half-spaces of H through 0 [22].

We say that a subset F of the cone K is a face if it is a cone that satis�es the condition:

from x ∈ F , y ∈ K and y ≤K x, it follows that y ∈ F . The cone K ⊆ H is called correct

if for each of its face F we have that PspF (K) ⊆ F where spF denotes the linear span of

the set F [22].

In [19], G. Isac and A.B. Németh proved that if K is a generating isotone projection

cone in H then it is latticial and correct. Moreover, they showed in [22] that if K is a

closed generating cone in Rn, then the following assertions are equivalent:

(i) K is an isotone projection cone,

(ii) K is correct and latticial,

(iii) K is polyhedral and correct,

(iv) there exists a set of linearly independent vectors {ui|i = 1, . . . , n} with the property

that 〈ui, uj〉 ≤ 0 for any i 6= j and such that K = {x ∈ Rn| 〈x, ui〉 ≤ 0},

(v) K is latticial and PK(x) ≤ x+ for every x ∈ Rn, where x+ = x ∨ 0.

5



Chapter 1.

De�ne the following operations in Rn [15, 47]

x u y = Px−Ky,

x t y = Px+Ky,

x u∗ y = Px−K∗y,

x t∗ y = Px+K∗y.

The set M ⊆ Rn is said to be invariant with respect to the operation u if x, y ∈ M

implies that x u y ∈M . The invariance of M with respect to any of the operation t, u∗

and t∗ can be de�ned similarly.

In [47], A.B. Németh and S.Z. Németh proved that when K ⊆ Rn is a closed convex

cone, if C is invariant with respect to one of the operations t, t∗ and one of the operations

u, u∗, then C is invariant with respect to all the operations respect to all operations u, t,

u∗, and t∗. We can simply call a set M which is invariant with respect to the operations

u, t, u∗, and t∗ K-invariant .

When K is a nonzero closed convex cone, we say that a mapping ρ : Rm → Rm is

a K-isotone (K∗-isotone) mapping if x ≤K y implies ρ(x) ≤K ρ(y) (x ≤K∗ y implies

ρ(x) ≤K∗ ρ(y)). Then the closed convex set C ⊆ Rm is called a K-isotone (K∗-isotone)

projection set or simply K-isotone (K∗-isotone) if PC is K-isotone (K∗-isotone). G.

Isac, A.B. Németh and S.Z. Németh applied generalized lattice-like operations introduced

in [15] and showed that when K is a closed convex cone, a closed convex set C is K-

invariant if and only if PC is K-isotone in [47].

The convex conical hull cnM of a set M ⊆ Rn is the convex cone de�ned by

coneM = {t1m1 + · · ·+ tkm
k : k ∈ N,mi ∈M, ti ∈ R+; i = 1, . . . , k}

6
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In this case we say that M generates the convex cone coneM . The convex cone K is

called simplicial if it is the convex conical hull of n linearly independent vectors from Rn,

that is, if

K = cone{e1, . . . , en} = {t1e1 + · · ·+ tne
n : ti ∈ R+; i = 1, . . . , n}

with e1, . . . , en linearly independent elements in Rn. In Rn, the simplicial cones are exactly

the latticial ones [78].

Let K be a closed convex cone and ρ : H → H a mapping. Then ρ is called K∗-

subadditive if x ≤K y implies ρ(x + y) ≤K ρ(x) + ρ(y) for any x, y ∈ H. S.Z. Németh (

see [50]) proved that when K and K∗ are mutually dual closed convex cones in a Hilbert

space H, PK is K-isotone if and only if PK∗ is K∗-subadditive.

A.B. Németh and S.Z. Németh [46] showed that if H = Rn, then the following are

equivalent:

(i) PK is K-isotone

(ii) PK∗ is K∗-subadditive

(iii) K∗ is a simplicial cone generated by edges with mutually non-acute angles.

They also gave an algorithm to reduce a projection onto an isotone projection cone to a

�nite number of steps [45].

A number of papers [8, 23, 25, 33, 40, 49, 64, 66, 67, 69] considered the iterative methods

to solve complementarity problems and variational inequalities from di�erent iterative

viewpoints. However, neither of these works used the ordering de�ned by a cone for

showing the convergence of the corresponding iterative schemes. Instead, they used as

7
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a tool the Banach �xed point theorem and assumed Kachurovskii-Minty-Browder type

monotonicity (see [10,24,38,39]) and global Lipschitz properties.

Let H be a Hilbert space and K ⊆ H a closed convex cone. The mapping f : K → H

is called pseudomonotone decreasing if for every x, y ∈ K,

x ≤K y and 0 ≤K f(y) implies 0 ≤K f(x).

If l > 0, the mapping f is called projection order weakly l-Lipschitz if the mapping

K 3 x → PK(lx − f(x)) is monontone increasing where PK is projection mapping onto

K. S.Z. Németh showed an iterative method for complementarity problems on isotone

projection cones in Hilbert space in [49]:

Theorem 1.0.4. Let H be a Hilbert space, K ⊆ H be an isotone projection cone, l > 0

and let f : K → H be a pseudomonotone decreasing, projection order weakly l-Lipschitz

continuous mapping such that K∩f−1(K) 6= ∅. Let x̂ be a solution of the complementarity

problem CP (f,K). Then for any x0 ∈ (x̂+K) ∩ f−1(K), the recursion

xn+1 = PK

(
xn − f(xn)

l

)

starting from x0 is convergent and its limit x∗ is a solution of the CP (f,K) such that

x̂ ≤K x∗. In particular, if x̂ 6= 0, then the recursion is convergent to a nozero solution.

Let (H, 〈·, ·〉) be a Hilbert space and K,L ⊆ H be cones. The mapping ζ : H → H is

called (L,K)-isotone if x ≤L y implies that ζ(x) ≤K ζ(y). If PK : H → H is (K∗, K)-

isotone, then the cone K is called ∗-isotone projection cone. M. Abbas and S.Z.Németh

proved that the cone K is ∗-isotone projection cone, if and only if PK(u + v) ≤K u for

8
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any u ∈ K and any v ∈ K◦ where

K◦ = {x ∈ H : 〈x, y〉 ≤ 0,∀y ∈ K}

is the polar of K [1]. Moreover, they showed that in Rn a simplicial cone is ∗-isotone

projection cone if and only if it is the polar of an isotone projection cone [1]. This result

has been extended later to arbitrary cones (see Section 3 of [46] and [50]). The mapping

f : K → H is called ∗-increasing if f is (K,K∗)-isotone. The mapping f is called ∗-

decreasing if −f is ∗-increasing. The mapping f : K → H is called a ∗-pseudomonotone

decreasing if for every x, y ∈ K

y − x ∈ K and f(y) ∈ K∗ implies f(x) ∈ K∗.

Let f : K → H be a mapping and l > 0. The mapping f is called ∗-order weekly

l-Lipschitz if

f(x)− f(y) ≤K∗ l(x− y).

M.Abbas and S.Z. Németh proved the following theorems in [1]:

Theorem 1.0.5. Let H be a Hilbert space, K ⊆ H be a regular ∗-isotone projection

cone and f : K → H be a continuous mapping such that f−1(K∗) 6= ∅. Let xn+1 =

PK(xn − f(xn)) starting from x0 ∈ f−1(K∗). If f is ∗-pseudomonotone decreasing, then

the sequence {xn}n∈N is convergent and its limit x∗ is a solution of the complementarity

problem CP (f,K).

Theorem 1.0.6. Let H be a Hilbert space, K ⊆ H be a regular ∗-isotone projection

cone, l > 0 and f : K → H be a ∗-pseudomonotone decreasing, projection order weekly

l-Lipschitz continous mapping such that f−1 6= ∅. Let x̂ be a solution of the complemen-

9
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tarity problem CP (f,K). Then, for any x0 ∈ (x̂+K) ∪ f−1(K∗) the recursion

xn+1 = PK

(
xn − f(xn)

l

)

starting from x0 is convergent and its limit x∗ is a solution of the complementarity prob-

lem CP (f,K) such that x̂ ≤K x∗. In particular, if x̂ 6= 0, then the above recursion is

convergent to a nonzero solution.

The set {x ∈ K : g(x) ≤K x} is called the upper �xed point set of g and is denoted

(UF )g. Let K ⊆ Rn be a simplicial cone and f, g : K → Rn two mappings. The mapping

f is called ∗-order Lipschitz with respect to g if there is an l > 0 such that

f(x)− f(y) ≤K∗ l(g(x)− g(y))

for all x, y ∈ Rn with y ≤K x. The mapping f is called projection order Lipschitz with

respect to g if there is a constant l > 0 such that

PK(lg(x)− f(x)) ≤K PK(lg(y)− f(y))

for all x, y ∈ Rn with x ≤K y. The number l is called a projection order Lipschitz

constant of f . M. Abbas and S. Z. Németh extended Theorem 1.0.4 and 1.0.5 and proved

the following results in [2]:

Theorem 1.0.7. Let K ⊆ Rn be a ∗-isotone projection cone and f, g : K → Rn be

continuous mappings such that f−1(K∗) 6= ∅ and f−1(K∗) ⊆ (UF )g ∩ g−1(K). Consider

the recursion

xn+1 = xn − g(xn) + PK(g(xn)− f(xn)), n ∈ N

10
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starting from an x0 ∈ f−1(K∗). If f is ∗-pseudomonotone decreasing, then the sequence

{xn}n∈N is convergent and its limit x∗ is a solution of the implicit complementarity problem

ICP (f, g,K).

Theorem 1.0.8. Let K ⊆ Rn be a ∗-isotone projection cone and f, g : K → Rn be

continuous mappings such that f−1(K∗) 6= ∅ and I − g is K-isotone with f−1(K∗) ⊆

(UF )g ∩ g−1(K). Suppose that f is ∗-pseudomonotone decreasing, projection order Lips-

chitz map with respect to g with l > 0 a projection order Lipschitz constant. Then, there

exists a solution x̂ of ICP (f, g,K). Consider the following recursion:

xn+1 = xn − g(xn) + PK

(
g(xn)− f(xn)

l

)

starting from x0 ∈ (x̂ + K) ∩ f−1(K∗). Then the sequence {xn}n∈N is convergent and

its limit x∗ is a solution of the implicit complementarity problem ICP (f, g,K) such that

x̂ ≤K x∗. In particular, if x̂ 6= 0, then the recursion is convergent to a nonzero solution.

In [3] they generalized Theorem 1.0.7 and showed the following theorem:

Theorem 1.0.9. Let H be a Hilbert space, K ⊆ H be an isotone projection cone and f, g :

K → Rn be continuous mappings such that f−1(K∗) 6= ∅ and f−1(K∗) ⊆ (UF )g∩g−1(K).

Consider the recursion

xn+1 = xn − g(xn) + PK(g(xn)− f(xn)), n ∈ N

starting from an x0 ∈ f−1(K∗). If f is pseudomonotone decreasing, then the sequence

{xn}n∈N is convergent and its limit x∗ is a solution of the implicit complementarity problem

ICP (f, g,K).

An iteration similar to the above theorem will be applied in Chapters 5, 6, 7 and 8.

11
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Gabay and Moulin showed the relationship between Nash equilibrium and variational

inequalities in [14]. H.Nishimura and E.Ok provided a systematical development of the

solvability of (general) variational inequalities on Hilbert lattices by applying the �xed

point theory and isotonicity properties of the projection mapping in [55]. Since the Nash

equilibrium is equivalent to variational inequalities, they proved the existence of Nash

equilibrium in some special cases. Similar approach will be applied in Chapter 7.

Note that in the above papers, the limits of the corresponding iterations, which are

solutions of CP (f,K), are based on isotonicity properties of the projection onto the

cones K. In Chapters 5 and 6, we will study the solvability of V I(f,K) and CP (f,K)

associated to a pointed closed convex cone L where L is not necessarily related to the

closed convex set K and the closed convex cone K, respectively. Let {xn}n∈N is de�ned

by

xn+1 = PK(xn − F (xn)). (1.2)

We say the set Ω ⊂ Rm is called K-bounded from below (K-bounded from above) if there

exists a vector y ∈ Rm such that y ≤K x (x ≤K y), for all x ∈ Ω. In this case y is called

a lower K-bound (upper K-bound) of Ω. If y ∈ Ω, then y is called the K-least element

(K-greatest element) of Ω. We will prove the following propositions:

Proposition 1.0.1. Let L be a pointed closed convex cone, K ⊂ Rm be a closed convex

cone such that K∩L 6= ∅ and K∗ be its dual, and F : Rm → Rm be a continuous mapping.

Consider the sequence {xn}n∈N de�ned by (1.2). Suppose that the mappings PK and I−F

are L-isotone and x0 = 0 ≤L x1. Denote by I the identity mapping. Let

Ω = K ∩ L ∩ F−1(L) = {x ∈ K ∩ L : F (x) ∈ L}

12
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and

Γ = {x ∈ K ∩ L : PK(x− F (x)) ≤L x}.

Consider the following assertions:

(i) Ω 6= ∅.

(ii) Γ 6= ∅.

(iii) The sequence {xn}n∈N is convergent and its limit x∗ is a solution of CP (F,K).

Moreover, x∗ is the L-least element of Γ and a lower L-bound of Ω.

Then, Ω ⊂ Γ and (i) =⇒ (ii) =⇒ (iii).

Proposition 1.0.2. Let K ⊂ Rm be a closed convex set, F : Rm → Rm be a continuous

mapping and L be a cone. Consider the sequence {xn}n∈N de�ned by (1.2). Suppose

that the mappings PK and I − F are L-isotone and x0 ≤L x1. Denote by I the identity

mapping. Let

Ω = {x ∈ K ∩ (x0 + L) : F (x) ∈ L},

Γ = {x ∈ K ∩ (x0 + L) : PK(x− F (x)) ≤L x}.

Consider the following assertions:

(i) Ω 6= ∅.

(ii) Γ 6= ∅.

(iii) The sequence {xn}n∈N is convergent and its limit x∗ is a solution of V I(F,K).

Moreover, x∗ is the L-least element of Γ.

Then, Ω ⊂ Γ and (i) =⇒ (ii) =⇒ (iii).

13
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Then we will set L to be the extended Lorentz cone L(p, q). Then we get the following

theorems:

Theorem 1.0.10. Let K = Rp × C, where C is a closed convex cone, K∗ be the dual of

K, G : Rp × Rq → Rp and H : Rp × Rq → Rq be continuous mappings, F = (G,H) :

Rp × Rq → Rp × Rq, and L = L(p, q) be the extended Lorentz cone de�ned by (2.9). Let

x0 = 0 ∈ Rp, u0 = 0 ∈ Rq and consider the sequence {(xn, un)}n∈N de�ned by (1.2). Let

x, y ∈ Rp and u, v ∈ Rq. Suppose that y − x ≥ ‖v − u‖e implies

y − x−G(y, v) +G(x, u) ≥ ‖v − u−H(y, v) +H(x, u)‖e,

and x1 ≥ ‖u1‖e (in particular this holds when −G(0, 0) ≥ ‖H(0, 0)‖e).

Let

Ω = {(x, u) ∈ Rp × C : x ≥ ‖u‖e, G(x, u) ≥ ‖H(x, u)‖e},

and

Γ = {(x, u) ∈ Rp × C : x ≥ ‖u‖e, G(x, u) ≥ ‖u− PC(u−H(x, u))‖e}.

Consider the following assertions:

(i) Ω 6= ∅.

(ii) Γ 6= ∅.

(iii) The sequence {(xn, un)}n∈N is convergent and its limit (x∗, u∗) is a solution of

MiCP (G,H,C, p, q). Moreover, (x∗, u∗) is a lower L(p, q)-bound of Ω and the

L(p, q)-least element of Γ.

Then, Ω ⊂ Γ and (i) =⇒ (ii) =⇒ (iii).
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Theorem 1.0.11. Let K = Rp × C, where C is a nonempty, closed and convex subset

of Rq. Let G : Rp × Rq → Rp, H : Rp × Rq → Rq be continuous mappings, F =

(G,H) : Rp×Rq → Rp×Rq. Let (x0, u0) ∈ Rp×C and consider the sequence (xn, un)n∈N

de�ned by (1.2). Let x, y ∈ Rp and u, v ∈ Rq. Suppose that x1 − x0 ≥ ‖u1 − u0‖e (in

particular, by Remark 6.2.2, this holds if u0 ∈ C and −G(x0, u0) ≥ ‖H(x0, u0)‖e) and

that y − x ≥ ‖v − u‖e implies

y − x−G(y, v) +G(x, u) ≥ ‖v − u−H(y, v) +H(x, u)‖e.

Let

Ω = {(x, u) ∈ Rp × C : x− x0 ≥ ‖u− u0‖e , G(x, u)− x0 ≥ ‖H(x, u)− u0‖e}

and

Γ = {(x, u) ∈ Rp × C : x− x0 ≥ ‖u− u0‖e,

G(x, u)− x0 ≥ ‖u− u0 − PC(u−H(x, u))‖e}.

Consider the following assertions

(I) Ω 6= ∅.

(II) Γ 6= ∅.

(III) The sequence {(xn, un)}n∈N is convergent and its limit (x∗, u∗) is a solution of

V I(F,K). Moreover, (x∗, u∗) is the smallest element of Γ with respect to the partial

order de�ned by the extended Lorentz cone L(p, q) de�ned by (2.9).

Then, Ω ⊂ Γ and (I) =⇒ (II) =⇒ (III).
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It is easy to see that the theorems in the papers mentioned earlier required some "extra"

conditions. Namely the cone K is required to be a isotone projection cone or a ∗-isotone

projection cone. In Theorems 1.0.10 and 1.0.9, C is just required to be closed and convex.

In Chapter 3, we will see that any complementarity problem can be formulated as a

mixed complementarity problem. That means, we can solve CP (f, C) by formulating it

as a MiCP (G,H,C, p, q) and then applying the above theorem. Hence our results can be

used for a much wider class of problems.

We de�ne the set of complementarity pair as

C(K) = {(x, s) : x ∈ K, s ∈ K∗, 〈x, s〉 = 0}.

A matrix A is said to be Lyapunov-like on K if

〈Ax, s〉 = 0 for all (x, s) ∈ C(K).

The set of the Lyapunov-like matrices on K forms a vector space denoted by LL(K),

whose dimension β(K) is called the Lyapunov rank ofK. Following our paper, R. Sznajder

(see [70]) proved that the Lyapunov rank of extended Lorentz cone is

β(L(p, q)) =
q2 − q + 2

2
.

In addition, he showed that L(p, q) is irreducible. These results can be considered as

further properties of the extended Lorentz cones and complement the results of Chapter

8.

The thesis is structured on chapters and sections. The main purpose of the thesis is to

present isotonicity results based on the order de�ned by a cone and use them for showing
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the convergence of the corresponding iterative schemes.

Chapter 2 is devoted to convex analysis and ordered Euclidean space. We will introduce

terminologies and notations used throughout the thesis. In Section 2.3, we will de�ne the

notion of K-isotone mappings with resppect to a pointed closed convex cone K. In

Section 2.3, we will extend the notion of Lorentz cones (also called "second order cones"

or "ice cream cones" in the literature) and show that the projection mapping PK onto

K = Rp × C, where C is a closed convex set (in particular any closed convex cone) is

L-isotone with respect to the extended Lorentz cone L. Morevover, we will determine all

sets K for which PK is L-isotone. The L-isotonicity of PK , K = Rp × C, will be crucial

for Section 5.1 to generate an iterative sequence, which is convergent to a solution of a

general mixed complementarity problem.

Chapter 3 deals with the de�nitions and elementary properties of variational inequalities

and complementarity problems. It is mainly based on concepts de�ned in [12]. The

de�nition of CP andMiCP extend those considered in [12] from the nonnegative orthant

to a general closed convex cone.

Chapter 4 is aiming to present the duality between optimization problems and comple-

mentarity problems in a more clear-cut way than usually found in the literature and is

based on our preprint [52]. Although the Karush-Kuhn-Tucker (KKT) conditions suggest

a connection between constrained optimization and complementarity problems, it is di�-

cult to �nd this connection explained in a perspicuous way, easily accessible to beginners

of the �eld as well. The connection is more in the domain of the mathematical folklore,

assuming that it should be clear that the complementary slackness condition corresponds

to a complementarity problem (see [52]). Due to the recent development of conic opti-

mization and the applications of cone-complementarity problems, it is desirable to make

this connection for more general cones, while still keeping it accessible to a wider audi-
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ence. Especially because apparently all applications of cone-complementarity problems

de�ned by cones essentially di�erent from the nonnegative orthant are based on this cor-

respondence. There are several such applications in physics, mechanics, economics, game

theory, robotics [4, 6, 11,26,31,56,57,77,80,82].

Chapters 5 and 6 include our main results from [51] and [53], my joint work with S.

Z. Németh. We showed that a convergence point of an isotone projection mappings, as

stated above, is a solution of some variational inequalities. Section 5.1 plays a transitional

role from the complementarity problems to the mixed complementarity problems, in the

sense that the isotonicity properties of Section 2.3 will be directly used for nonlinear

complementarity problems on which the mixed complementarity problems are based. In

Section 5.3, we will show a numerical example corresponding to previous sections. Section

5.4 is aiming to convince the reader that the family of K-isotone mappings is very wide.

In Section 6.1, we will �nd solutions of a variational inequality by analyzing the mono-

tone convergence with respect to a cone of the Picard iteration corresponding to the

equivalent �xed point problem. In Section 6.2, we will specialize these results to vari-

ational inequalities de�ned on cylinders, by using the extended Lorentz cone for the

corresponding monotone convergence above. In this case we can drop the condition of

Proposition 5.1.1 that the projection onto the closed and convex set in the de�nition of

the variational inequality is isotone with respect to the extended Lorentz cone, because

this condition is automatically satis�ed, obtaining the more explicit result of Theorem

5.2.1. The latter result extends the results of Nemeth and Zhang [51] for mixed comple-

mentarity problems. In Section 6.3, a large class of a�ne mappings and cylinders which

satisfy the conditions of Theorem 5.2.1 is presented. In Section 6.5, we further specialize

the results for unbounded box constrained variational inequalities. In Section 6.6, we test

the numerical examples of Chapter 5 from the viewpoint of variational inequalities and

18



Chapter 1.

show the iteration processes.

Next, we will apply the results of Chapter 5 and Chapter 6 to game theory and conic

optimization in Chapter 7. Game theory is now not only an attractive research �eld for

mathematicians but also a powerful tool in many other areas such as economics [32, 75],

politics [37] and even biology [65]. The original systematic study in game theory dates

back to the year of 1945 [76]. Many extraordinary mathematicians and economists made

signi�cant contribution in both theoretical and applied game theory [41�44, 62, 63, 68].

Many economists also used the game theory as a crucial tool in the study in many related

and important area [18,71]. Their works were recognised to be essential and some of them

such as John Nash (1994), Leonid Hurwicz (2007), Lloyd Shapley (2012) and Jean Tirole

(2014), were awarded the Nobel prize. In Section 7.1 we will derive a new results in Nash

equilibrium. Following this, in Section 7.2, we will apply the results of Chapters 4 and 5.

Chapter 8 is based on [54]. The research on positive operators of extended Lorentz

cone was motivated by [30] and the isotonicity conditions of Section 6.4. In Section 8.1,

we will review the existing results of positive operators of a Lorentz cone. Then, we will

introduce some notations used in this chapter. Section will illustrate the main results

of this chapter. We will show necessary conditions and su�cient conditions for positive

operators of extended Lorentz cones. Moreover, we will show the necessary and su�cient

conditions in a special class of the positive operators and will show the reason why the

conditions of [30] do not work for extended Lorentz cones.

The �nal chapter will summarize the thesis.
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Convex analysis and Ordered Euclidean

space

2.1 Convex and Nonlinear analysis

Denote by N the set of nonnegative integers. Let m ∈ N. Identify Rm with the set of

column vectors with m real components. The canonical scalar product in Rm is de�ned

by 〈x, y〉 = x>y, for any x, y ∈ Rm. Let ‖ · ‖ be the norm corresponding to the scalar

product 〈·, ·〉, that is, ‖x‖ =
√
〈x, x〉, for any x ∈ Rm. For any m ∈ N denote

Rm
+ = {x = (x1, . . . , xm)> ∈ Rm : x1 ≥ 0, . . . , xm ≥ 0}

and call it the nonnegative orthant of Rm. Let p, q ∈ N. De�ne the Cartesian product

Rp × Rq as the set of the pair of vectors (x, u), where x ∈ Rp and u ∈ Rq. Any vector

(x, u) ∈ Rp × Rq can be identi�ed with the vector
(
x>, y>

)> ∈ Rp+q. The scalar product
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in Rp × Rq is given by

〈(x, u), (y, v)〉 =
〈(
x>, u>

)>
,
(
y>, v>

)>〉
= 〈x, y〉+ 〈u, v〉 .

A set M ⊆ Rm is called a�ne if (1 − λ)x + λy ∈ M for every x ∈ M , y ∈ M and

λ ∈ R [58]. The smallest a�ne set containing M is called the a�ne hull of M and is

denoted by aff M . The relative interior of a convex set M ⊆ Rm denoted by relintM is:

relintM = {x ∈ aff M : ∃ε > 0, B̄(x, ε) ∩ (aff M) ⊆M},

where B̄(x, r) = {y : ‖y − x‖ ≤ r}. The a�ne hyperplane with the normal u ∈ Rm \ {0}

and through a ∈ Rm is the set de�ned by

H(u, a) = {x ∈ Rm : 〈x− a, u〉 = 0}. (2.1)

An a�ne hyperplane H(u, a) determines two closed halfspaces H−(a, u) and H+(u, a) of

Rm, de�ned by

H−(u, a) = {x ∈ Rm : 〈x− a, u〉 ≤ 0},

and

H+(u, a) = {x ∈ Rm : 〈x− a, u〉 ≥ 0}.

An a�ne hyperplane through the origin will be simply called hyperplane. A supporting

halfspace to C is a closed halfspace which contains C and has a point of C in its boundary.

A supporting hyperplane to C, is a hyperplane which is the boundary of a supporting

halfspace to C [58].

Let V be a real vector space. A set K ⊂ V is a cone if for any x ∈ K, λx ∈ K for any
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λ ≥ 0. A cone K ⊂ V is called a convex cone if x+ y ∈ K, whenever x, y ∈ K. It is easy

to show that every convex cone is a convex set.

A convex cone K ⊂ Rm which is a closed set is called a closed convex cone. A closed

convex cone K ⊂ Rm is called pointed if K ∩ (−K) = {0}, where 0 is the origin of Rm.

For two vectors x, y ∈ Rm, we say that x ⊥ y if x>y = 0. Let K ⊂ Rm be a cone. K∗

consists of the zero vector and all non-zero vectors that make a non-obtuse angle with

every vector in K. Then, the set

K∗ = {x ∈ Rm : 〈x, y〉 ≥ 0, ∀y ∈ K}

is called the dual cone of K and it is easy to see that it is a closed convex cone. In Figure

3.1, we will show an example for K and K∗ when m = 2. Meanwhile, the set

K◦ = {a ∈ Rm : 〈a, v〉 ≤ 0,∀v ∈ K}.

is called the polar cone of K. Clearly, K◦ = −K∗. K◦ consists of the zero vector and

all non-zero vectors that make a non-acute angle with all vector in K. It is known that

(K∗)∗ = K. In Figure 3.2, we will show an example for K and K◦ when m = 2. It is easy

to prove that the dual cone of Rm
+ is itself.

Next, let us introduce the projection mapping:

De�nition 2.1.1. Given a closed convex set C, PC denotes the metric projection onto

C. More explicitly, it is de�ned by a solution of the following optimization problem with

the constrained set C ⊆ Rm

Rm 3 x 7→ PC(x) = argmin{‖y − x‖ : y ∈ C}. (2.2)
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Since C is convex, the point PC(x) is unique. Indeed if not, then there exists at least

two di�erent points z(1) ∈ C and z(2) ∈ C such that‖z(1)− x‖ = ‖z(2)− x‖ is the shortest

distance from x to C. Then the point 0.5z(1) + 0.5z(2) ∈ C by the convexity, and by the

triangle inequality :

‖0.5z(1) + 0.5z(2) − x‖ ≤ ‖0.5z(1) − 0.5x‖+ ‖0.5z(2) − 0.5x‖ ≤ ‖z(2) − x‖.

According to the de�nition of the projection point, the point 0.5z(1) + 0.5z(2) is also a

projection point and the equality will be held in the above inequality. The equality holds

if and only if z(1) = z(2), then this proves the uniqueness of the projection point. The

following proposition and lemma illustrate some important properties of the projection

mapping:

Proposition 2.1.1 (The characterization of projection mapping). Given x ∈ Rm and

x /∈ C, a vector z ∈ C is equal to PC(x) if and only if:

(y − z)>(x− z) ≤ 0 (2.3)

for any y ∈ C.

The following lemma illustrates the nonexpansivity of projection mapping(see [79]):

Lemma 2.1.1. Let PC and ‖ · ‖ be the projection mapping and induced norm function

de�ned above, respectively. Then, for any x, y ∈ Rm, we have:

‖PC(x)− PC(y)‖ ≤ ‖x− y‖. (2.4)
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From the de�nition above it follows that

Py+C(x) = argminz{‖z − x‖ : z ∈ y + C}

= y + argmint{‖x− y − t‖ : t ∈ C}

= y + PC(x− y)

(2.5)

for any x, y ∈ Rm. The projection mapping in Euclidean space will also be discussed in

next chapters.

So far the de�nitions of cone, dual cone, closed convex cone and projection mapping are

given, then we can introduce the Moreau Theorem which is widely used in optimization:

Theorem 2.1.1 (Moreau Theorem). Given a closed convex cone K in the Hilbert space

(Rm, 〈·, ·〉) and K◦ be its polar cone. Then for x, y, z ∈ Rm, the following two assertions

are equivalent:

1. z = x+ y, x ∈ K, y ∈ K◦ and 〈x, y〉 = 0,

2. x = PK(z) and y = PK◦(z).

Then let us de�ne the normal cone

De�nition 2.1.2. Consider a closed and convex set X ⊆ Rn and a point x ∈ X. The set

NX(x) ≡ {d ∈ Rn : dT (y − x) ≤ 0,∀y ∈ X}. (2.6)

is called the normal cone of X at x.

It is easy to conclude from the de�nition that v ∈ NX(x) if and only if

〈v, y − x〉 ≤ 0 (2.7)
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for all y ∈ X. Moreover, if X is a closed convex cone in Rn, then

NX(x) = (−X∗) ∩ x⊥ (2.8)

where x⊥ = {y ∈ Rn : y ⊥ x} denotes the orthogonal complement of x. Indeed, if

v ∈ (−X∗) ∩ x⊥, for any y ∈ X, then 〈v, y − x〉 = 〈v, y〉 − 〈v, x〉 = 〈v, y〉 ≤ 0, hence

v ∈ NX(x).

Conversely, if v ∈ NX(x), then by taking y = (1/2)x ∈ X and y = 2x ∈ X, we get

〈v, x〉 ≤ 0 ≤ 〈v, x〉, so v ⊥ x. Thus, for any y ∈ X,〈v, y−x〉 = 〈v, y〉 ≤ 0, hence v ∈ −X∗.

In conclusion, v ∈ (−X∗) ∩ x⊥.

2.2 Introduction of ordered space and isotonicity

Let K ⊂ Rm be a pointed closed convex cone. Denote ≤K the relation de�ned by

x ≤K y ⇐⇒ y − x ∈ K and call it the order relation de�ned by K. The relation

≤K is re�exive, transitive, antisymmetric and compatible with the linear structure of Rm

in the sense that x ≤K y implies that tx+ z ≤K ty + z, for any z ∈ Rm and any t ∈ R+.

Moreover, ≤K is continuous at 0 in the sense that if xn → x when n → ∞ and 0 ≤K xn

for any n ∈ N, then 0 ≤K x. Conversely any re�exive, transitive and antisymmetric

relation ≤ which is compatible with the linear structure of Rm and continuous at 0 is

de�ned by a pointed closed convex cone. More speci�cally, ≤ is equivalent to ≤K , when

K = {x ∈ Rm : 0 ≤ x} is a pointed closed convex cone.

Let K ⊂ Rm be a pointed closed convex cone. The mapping F : Rm → Rm is called

K-isotone if x ≤K y implies F (x) ≤K F (y).

The nonempty closed convex set C ⊆ Rm is called K-isotone projection set if PC is

K-isotone.
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The set Ω ⊂ Rm is called K-bounded from below (K-bounded from above) if there exists

a vector y ∈ Rm such that y ≤K x (x ≤K y), for all x ∈ Ω. In this case y is called a

lower K-bound (upper K-bound) of Ω. If y ∈ Ω, then y is called the K-least element

(K-greatest element) of Ω.

Let I ⊂ N be an unbounded set of nonnegative integers. The sequence {xn}n∈I is called

K-increasing (K-decreasing) if xn1 ≤K xn2 (xn2 ≤K xn1), whenever n1 ≤ n2.

The sequence {xn}n∈I is called K-bounded from below (K-bounded from above) if the

set {xn : n ∈ I} is K-bounded from below (K-bounded from above).

A closed convex cone K is called regular if any K-increasing (K-decreasing) sequence

which is K-bounded from above is convergent. It is easy to show that this is equivalent

to the convergence of any K-decreasing sequence which is K-bounded from below. It is

known (see [36]) that any pointed closed convex cone in Rm is regular.

2.3 Isotonicity of the projection with respect to ex-

tended Lorentz cones

For a, b ∈ Rm denote a ≥ b if all components of a are at least as large as the corresponding

components of b, or equivalently b ≤Rm
+
a. Let p, q be positive integers. Denote by e ∈ Rp

the vector whose all components are 1. Let

L(p, q) = {(x, u) ∈ Rp × Rq : x ≥ ‖u‖e} (2.9)

and

M(p, q) = {(x, u) ∈ Rp × Rq : 〈x, e〉 ≥ ‖u‖, x ≥ 0}. (2.10)

Proposition 2.3.1. M(p, q) = L(p, q)∗.
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Proof. Let (x, u) ∈ L(p, q) and (y, v) ∈ M(p, q) be arbitrary. Then, by using the Cauchy

inequality, we get

〈(x, u), (y, v)〉 = 〈x, y〉+ 〈u, v〉 ≥ 〈‖u‖e, y〉+ 〈u, v〉

= ‖u‖ 〈e, y〉+ 〈u, v〉 ≥ ‖u‖‖v‖+ 〈u, v〉 ≥ 0.

Hence,M(p, q) ⊂ L(p, q)∗. Conversely, let (x, u) ∈ L(p, q)∗ be arbitrary. We have (ei, 0) ∈

L(p, q). Hence, 0 ≤ 〈(x, u), (ei, 0)〉 = 〈x, ei〉 + 〈u, 0〉 = xi. Thus, x ≥ 0. We also have

(e,−u/‖u‖) ∈ L(p, q). Hence, 0 ≤ 〈(x, u), (e,−u/‖u‖)〉 = 〈x, e〉−‖u‖. Thus, 〈x, e〉 ≥ ‖u‖.

Therefore, (x, u) ∈M(p, q) which implies L(p, q)∗ ⊂M(p, q).

Remark 2.3.1. The mutually dual (p+q)-dimensional extended Lorentz cone L(p, q) and

M(p, q) de�ned by (2.9) and (2.10) are pointed closed convex (and hence regular) cones.

The cone L(p, q) is a polyhedral cone if and only if q = 1. If q = 1, then the minimal

number of generators of L is (p+2)(1−δp1)+2δp1, where δ denotes the Kronecker symbol .

If q = 1, p = 1, then a minimal set of generators of L(p, q) is {(1, 1), (1,−1)}, and if q = 1,

p > 1, then a minimal set of generators of L(p, q) is {(e, 1), (e,−1), (ei, 0) : i = 1, . . . , p}.

If q = 1, then M(p, q) = L(p, q)∗ is a p+ 1 dimensional polyhedral cone with the minimal

number of generators 2p and a minimal set of generators of L(p, q)∗ is {(ei, 1), (ei,−1) :

i = 1, . . . , p}. If q = 1 and p > 1, then note that the number of generators of L(p, q) and

M(p, q) coincide if and only if they are 2 or 3-dimensional cones. The cone L(p, q) is a

subdual cone and L(p, q) is self-dual if and only if p = 1, that is, L(1, q) is the (q + 1)-

dimensional Lorentz cone. L(p, q) is a self-dual polyhedral cone if and only if p = q = 1.

At the end of this chapter, we will show �gures of extended Lorentz cones L(1, 2), L(2, 1)

and M(2, 1).

We will prove only two of the properties of Remark 2.3.1 in the next proposition. The
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rest are left to the reader.

Proposition 2.3.2. L(p, q) is subdual and L(p, q) is self-dual if and only if p = 1.

Proof. Let (x, u) ∈ L(p, q). It is easy to see that x ≥ 0. Equation (2.9) multiplied scalarly

by e gives 〈x, e〉 ≥ p‖u‖ ≥ ‖u‖, which implies that (x, u) ∈M(p, q), where M(p, q) is the

cone given by (2.10). Hence, by Proposition 2.3.1, it follows that (x, u) ∈ L(p, q)∗. In

conclusion, L(p, q) is subdual. If p = 1, then L(p, q) is the (q + 1)-dimensional Lorentz

cone and hence it is self-dual. Suppose that p > 1. Let u ∈ Rq such that 1 < ‖u‖ < p.

Then, Proposition 2.3.1 and the equation (2.10) imply that (e, u) ∈ L(p, q)∗. On the other

hand, the equation (2.9) shows that (e, u) /∈ L(p, q). Hence, L(p, q) is self-dual if and only

if p = 1.

Consider L(p, q) de�ned by (2.9). It is easy to see that L(p, q) is a pointed closed convex

cone. Due to the fact that L(p, q) and M(p, q) coincides with the (q + 1)-dimensional

Lorentz cone for p = 1 (see Remark 2.3.1), we will call them mutually dual extended

Lorentz cones.

Recall that an a�ne hyperplane H is called tangent to a closed convex set C ⊂ Rm at

a point x ∈ C if it is the unique supporting a�ne hyperplane to C at x (see pages 100

and 169 of [58]).

The following result has been showed in [47].

Theorem 2.3.1. The closed convex set C ⊂ Rm with nonempty interior is a K-isotone

projection set if and only if it is of the form

C = ∩i∈NH−(ui, ai),

where each a�ne hyperplane H(ui, ai) is tangent to C and it is a K-isotone projection
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set.

Lemma 2.3.1. Let H ⊂ Rm be a hyperplane with a normal vector a ∈ Rm \ {0}. Then,

H is a K-isotone projection set if and only if

‖a‖2 〈x, y〉 ≥ 〈a, x〉 〈a, y〉 ,

for any x ∈ K and y ∈ K∗.

Proof. Since PH is linear, it follows that PH is isotone if and only if

PHx = x− 〈a, x〉
‖a‖2

a ∈ K, (2.11)

for any x ∈ K. By the de�nition of the dual cone, it follows that relation (2.11) is

equivalent to

‖a‖2 〈x, y〉 = 〈a, x〉 〈a, y〉+ ‖a‖2

〈
x− 〈a, x〉

‖a‖2
a, y

〉
≥ 〈a, x〉 〈a, y〉 ,

for any x ∈ K and y ∈ K∗.

The next lemma follows easily from (2.5):

Lemma 2.3.2. Let z ∈ Rm be a vector, K ⊂ Rm be a closed convex cone and C ⊂ Rm be

a nonempty closed convex set. Then, C is a K-isotone projection set if and only if C + z

is a K-isotone projection set.

Theorem 2.3.2.

1. Let K = Rp × C, where C is an arbitrary nonempty closed convex set in Rq and

L(p, q) be the extended Lorentz cone de�ned by (2.9). Then, K is an L(p, q)-isotone

projection set.
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2. Let p = 1, q > 1 and K ⊂ Rp×Rq be a nonempty closed convex set. Then, K is an

L(p, q)-isotone projection set if and only if K = Rp×C, for some C ⊂ Rq nonempty

closed convex set.

3. Let p, q > 1, and

K = ∩`∈NH−(β`, γ`) ⊂ Rp × Rq,

where γ` = (a`, u`) is a unit vector. Then, K is an L(p, q)-isotone projection set if

and only if for each ` one of the following conditions hold:

(a) The vector a` = 0.

(b) The vector u` = 0, and there exists i 6= j such that a`i =
√

2/2, a`j = −
√

2/2

and a`k = 0, for any k /∈ {i, j}.

Proof. 1. Suppose that K = Rp × C, where C is a closed convex set in Rq. Let

(x, u), (y, v) ∈ Rp×Rq such that (x, u) ≤L (y, v). Then, the nonexpansitivity of the

projection (2.4) implies

y − x ≥ ‖v − u‖e ≥ ‖PCv − PCu‖e.

Thus, (y, PCv)− (x, PCu) ∈ L. Hence, PK(x, u) = (x, PCu) ≤L (y, PCv) = PK(y, v).

2. The cone becomes a Lorentz cone of dimension at least 3. This item was proved

in [46,47].

3. By Theorem 2.3.1 and Lemma 2.3.2, we can suppose without loss of generality that

K is a hyperplane. Let γ = (a, u) be the unit normal vector of K. Suppose that

one of the following conditions hold

(a) The vector a = 0.
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(b) The vector u = 0, and there exists i 6= j such that ai =
√

2/2, aj = −
√

2/2

and ak = 0, for any k /∈ {i, j}.

We need to show that K is an L(p, q)-isotone projection set. If (a) holds, then this

follows easily from item 1. Hence, suppose that (b) holds. By Lemma 2.3.1 we need

to show that

〈ζ, ξ〉 ≥ 〈γ, ζ〉 〈γ, ξ〉 , (2.12)

for any ζ := (x, v) ∈ L(p, q) and ξ := (y, w) ∈ M(p, q). Condition (2.12) is equiva-

lent to

〈x, y〉+ 〈v, w〉 ≥ 1

2
(xi − xj)(yi − yj),

or to
1

2
(xi + xj)(yi + yj) +

∑
k/∈{i,j}

xkyk + 〈v, w〉 ≥ 0. (2.13)

Hence, it is enough to show (2.13). By (x, v) ∈ L(p, q), (y, w) ∈ M(p, q) and the

Cauchy-Schwarz inequality, we get

1

2
(xi + xj)(yi + yj) +

∑
k/∈{i,j}

xkyk + 〈v, w〉 ≥ 1

2
(‖v‖+ ‖v‖)(yi + yj)

+
∑
k/∈{i,j}

‖v‖yk + 〈v, w〉 = ‖v‖ 〈y, e〉+ 〈v, w〉 ≥ ‖v‖‖w‖+ 〈v, w〉 ≥ 0.

Conversely, suppose that K is an L(p, q)-isotone projection set. By Lemma 2.3.1,

condition (2.12) holds. Let x ∈ Rp
+ and v ∈ Rq. Then, by (2.9), (2.10) and Proposi-

tion 2.3.1, it is easy to check that ζ := (‖v‖e, v) ∈ L(p, q), ξ := (‖v‖x,−〈e, x〉 v) ∈
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M(p, q) and 〈ζ, ξ〉 = 0. Hence, condition (2.12) implies

0 ≥ (〈a, e〉 ‖v‖+ 〈u, v〉)(〈a, x〉 ‖v‖ − 〈e, x〉 〈u, v〉). (2.14)

If in (2.14) x = e and we choose v 6= 0 such that 〈u, v〉 = 0, we get 0 ≥ 〈a, e〉 ‖v‖2,

and hence 〈a, e〉 = 0. Hence, (2.14) becomes

0 ≥ 〈u, v〉 (〈a, x〉 ‖v‖ − 〈e, x〉 〈u, v〉). (2.15)

First, suppose that u 6= 0. Let vn ∈ Rq be a sequence of points such that ‖vn‖ = 1,

〈u, vn〉 > 0 and limn→+∞ 〈u, vn〉 = 0. Let n be an arbitrary positive integer. If in

(2.15) we choose λ > 0 su�ciently large such that x := a+λe ≥ 0 and v = vn, then

we get 0 ≥ 〈u, vn〉 (‖a‖2 − λp 〈u, vn〉), or equivalently ‖a‖2 ≤ λp 〈u, vn〉. By letting

n→ +∞ in the last inequality, we obtain ‖a‖2 ≤ 0, or equivalently a = 0.

Next, suppose that u = 0. Let x, y ∈ Rp
+ and w ∈ Rq such that 〈x, y〉 = 0,

〈y, e〉 ≥ ‖w‖. Then, by (2.9), (2.10) and Proposition 2.3.1, it is easy to check that

ζ := (x, 0) ∈ L(p, q), ξ := (y, w) ∈ M(p, q) and 〈ζ, ξ〉 = 0. Hence, equation (2.12)

implies

0 ≥ 〈a, x〉 〈a, y〉 , (2.16)

for any x, y ∈ Rp
+ with 〈x, y〉 = 0. Let x = er and y = es, where r 6= s. Then, (2.16)

becomes aras ≤ 0. This together with 〈e, a〉 = 0 and 1 = ‖γ‖2 = ‖a‖2 gives that

∃i 6= j such that ai =
√

2/2, aj = −
√

2/2 and ak = 0, ∀k /∈ {i, j}.
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2.4 Notes and comments

In this chapter, we introduced the mutually dual extended Lorentz cone L(p, q) and

M(p, q). More properties of these cones were shown by R. Sznajder in [70].

The set Γ(C) of positive operators of a cone C is de�ned in [30]

Γ(C) = {A ∈ R(p+q)×(p+q) : AC ⊆ C}.

The set of positive operator is a cone in Rn×n [30]. It can be easily checked that A is

a positive operator of C if and only if A> is a positive operator of C∗. In Chapter 8

we will discuss the positive operators for the mutually dual extended Lorentz cones. We

will show necessary conditions and su�cient conditions for the positive operator of the

mutually dual extended Lorentz cones.

Related to the papers mentioned in Chapter 1, we investigated the properties of isotone

projection sets. We focused on the extended Lorentz cone. We proved Theorem 2.3.2

which provides the necessary and su�cient conditions for a set K to be L(p, q)-isotone

projection set. These results will be fundemental for Chapters 5 and 6.
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The following are examples of a cone, its dual cone and its polar cone:

Figure 2.1: K = {x ∈ R2
+ : 1

3
x1 ≤ x2 ≤ 3x1} (blue area)

K∗ = {x ∈ R2
+ : x2 ≥ 1

3
x1, x2 ≥ −3x1} (red area and blue area)
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Figure 2.2: K = {x ∈ R2
+ : −1

3
x1 ≤ x2 ≤ 3x1} (blue area)

K◦ = {x ∈ R2
+ : x2 ≤ −1

3
x1, x2 ≤ −3x1} (green)
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The following are �gures of L(1, 2) and L(2, 1):

Figure 2.3: (Extended) Lorentz cone L(1, 2) = {(x, u) ∈ R× R2 : x ≥
√
u2

1 + u2
2}
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Figure 2.4: Extended Lorentz cone L(2, 1) = {(x, u) ∈ R2 × R : x1 ≥ |u|, x2 ≥ |u|}
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Figure 2.5: Extended Lorentz cone M(2, 1) = {(x, u) ∈ R2 × R : x1 + x2 ≥ |u|, x1 ≥
0, x2 ≥ 0}
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Chapter 3

Variational inequalities and related

problems

The study of the �nite dimensional variational inequalities and its related problems started

in the mid-1960s. During these years, there was a signi�cant development in this subject

which made a great contribution in the �eld of mathematical programming (see [27,81]).

As a result, the study of VI also beni�ts from contribution of the associated area made

by mathematicians, computer scientists, engineers and economists of diverse expertise

(see [72�74]). In this chapter, we will introduce the de�nitions and some applications of

the variational inequalities and the other related problems based on [12] and the joint

papers [51] and [53].

3.1 The de�nition of Variational Inequalities and Com-

plementarity problems

First, let us de�ne the Variational inequalities.
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De�nition 3.1.1. For a given subset K of Rn and a given mapping F : K → Rn, the

variational inequality, denoted V I(F,K), is to �nd a vector x ∈ K such that

(y − x)>F (x) ≥ 0 (3.1)

for any y ∈ K. Its solution set is denoted by SOL(F,K).

Throughout this dissertation, the set K is always closed and convex and the function F

is continuous. Because of this, we can conclude that the SOL(F,K) is closed. A simple

geometric interpretation of a V I is that a point x ∈ K is the solution of V I if and only

if F (x) = 0 or F (x) forms non-obtuse angles with every vector of the form y − x for all

y ∈ K\{x}.

Then we can formalize the above using the concept of normal cone in De�nition 2.1.2

at x ∈ K which is de�ned by:

NK(x) = {d ∈ Rn : d>(y − x) ≤ 0,∀y ∈ K}. (3.2)

Note that NK(x) is a closed convex cone. The vectors in this set are called normal vectors

to the set K at x. Hence, x is a solution of (3.1) if and only if −F (x) is a normal vector

to K, or equivalently

0 ∈ F (x) +NK(x). (3.3)

As a very important class of equilibrium problems, the V I includes many di�erent sub-

classes. Indeed, if x ∈ K and F (x) = 0, obviously x ∈ SOL(K,F ). Thus F−1(0) ∩K ⊆

SOL(K,F ) always holds. Hence the simplest class is the nonlinear equations, when K =

Rn. If K = Rn, x ∈ SOL(F,Rn) if and only if F (x) = 0, that is, SOL(F,Rn) = F−1(0).
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Indeed, when K = Rn, if x ∈ SOL(F,Rn) we have

F (x)>d ≥ 0, ∀d ∈ Rn .

Let d = −F (x), then we deduce that F (x) = 0. Therefore SOL(F,Rn) = F−1(0).

A more general condition to derive F (x) = 0 is SOL(F,K) ∩ intK 6= ∅. Let x ∈

SOL(K,F ) ∩ intK. Since x is an interior point of K, there exists a su�ciently small

scalar τ ≥ 0 such that y = x − τF (x) is in K. Substituting this into (3.1), we get

−F (x)>F (x) ≥ 0 which implies F (x) = 0.

IfK is a cone, V I(F,K) is equivalent to the complementarity problem CP (F,K) de�ned

as follows:

De�nition 3.1.2. For a given cone K of Rn and a given mapping F : K → Rn, the

complementarity problem, denoted CP (F,K), is to �nd a vector x ∈ Rn satisfying the

following conditions:

K 3 x ⊥ F (x) ∈ K∗, (3.4)

where K∗ is the dual cone of K, that is,

K∗ = {x ∈ Rn : 〈x, y〉 ≥ 0, ∀y ∈ K}.

Now we need to prove the equivalence of (3.4) and (3.1) when K is a cone. This is

based on the following proposition which is a classical result in CP theory and can be

found in [12].
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Proposition 3.1.1. Let K be a cone in Rn. A vector x solves V I(F,K) if and only if x

solves CP (F,K).

Proof. Suppose that x solves V I(F,K). Clearly x ∈ K. As K is a cone, 0 ∈ K and

2x ∈ K. Then, by taking y = 0 and y = 2x in (3.1), we get

x>F (x) ≤ 0,

x>F (x) ≥ 0.

Combining these two inequalities, we conclude that x>F (x) = 0. This implies y>F (x) ≥ 0

for all y ∈ K, which means F (x) ∈ K∗. So x solves the CP (K,F ). Conversely, if x is a

solution of CP (K,F ), it is trivial to show that x solves V I(K,F ).

Note that in this thesis when speaking of CP (F,K), the set K is always supposed to

be a cone. From De�nition 3.4, the solution of the complementarity problem CP (F,K)

must satisfy three conditions: x ∈ K, F (x) ∈ K∗ and x>F (x) = 0. Then the feasibility

can be de�ned by the �rst two conditions, that is, an n-dimensional vector x is feasible

to the CP (F,K) if

x ∈ K and F (x) ∈ K∗ . (3.5)

Suppose intK∗ 6= ∅. The vector x is called strictly feasible if

x ∈ K and F (x) ∈ int(K∗) . (3.6)

Note that in this de�nition the nonemptiness of intK is not required. If we add that

intK 6= ∅ and F is continuous, the complementarity problem is strictly feasible if and
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only if there exists a vector x such that

x ∈ intK and F (x) ∈ int (K∗) . (3.7)

We say the CP (F,K) is (strictly) feasible if it has a (strictly) feasible vector. The set of

feasible vectors is called feasible region of CP (F,K) and it is denoted by FEA(F,K). It

can be easily seen that

SOL(F,K) ⊆ FEA(F,K) = K ∩ F−1(K∗) .

So the feasibility is a necessary condition of solvability. When F is an a�ne function and

K is a polyhedral cone, the feasibility of CP (K,F ) can be determined by solving a linear

programming problem. Further discussion about this can be found in the next subsection.

If K = Rn
+, then K = K∗ = Rn

+. Since every entry of the two vectors x and F (x) is

nonnegative, the perpendicularity can be expressed more explicitly as follows:

xi ≥ 0, Fi(x) ≥ 0 and xiFi(x) = 0 ,

where Fi(x) represents the ith entry of the vector F (x). The term complementarity is

motivated by the following observation: If one of xi and Fi(x) is positive, the other must

be zero.

A class of complementarity problems is the mixed complementarity problems(MiCP ).

In MiCP , the cone K is a special subset in Rn1 × Rn2 with n1 + n2 = n.

De�nition 3.1.3. Let K = Rn1 × C where C is an arbitrary nonempty closed convex
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cone in Rn2. Let F = (G,H) : Rn1 × Rn2 → Rn1 × Rn2 where G : Rn1 × Rn2 → Rn1 and

H : Rn1 × Rn2 → Rn2 are two mappings. The MiCP (G,H,C, n1, n2) is to �nd a vector

(u, v) ∈ Rn1 × Rn2 such that

G(u, v) = 0, u free and C 3 v ⊥ H(u, v) ∈ C∗ . (3.8)

Remark 3.1.1. The relation of the MiCP with CP can be explained as follows. If a

vector w is in the dual cone of Rn1 in Rn1, then by the de�nition of a dual cone, for any

nonzero vector v ∈ Rn1, v>w ≥ 0. If v ∈ Rn1, then −v ∈ Rn1. Hence, −v>w ≥ 0. Since

v is arbitrary, w must be 0 ∈ Rn1. Therefore the dual cone of Rn1 in Rn1 is {0} ⊆ Rn1.

It is easy to see that (K1 × K2)∗ = K∗1 × K∗2 for any cones K1 ⊆ Rn1 and K2 ⊆ Rn2,

where K∗1 denotes the dual cone of K1 in Rn1, K∗2 denotes the dual cone of K2 in Rn2

and (K1 × K2)∗ denotes the dual cone of K1 × K2 in Rn1 × Rn2, then the dual cone of

Rn1 × C is {0} × C∗. It is easy to verify that the MiCP (G,H,C, n1, n2) is a special

case of CP (F,K) with K = Rn1 × C. On the other hand, let x ∈ Rm be an arbitray

vector and E : Rm × Rn → Rm be a zero function, that is, E(x, u) = 0 for any x ∈ Rm.

Suppose F̂ : Rm × Rn → Rn such that F̂ (x, u) = F (u). Then the CP (F,K) is equivalent

to MiCP (E, F̂ ,K,m, n).

3.2 Related problems

In the following, several special cases of V I(K,F ) where either K or F has some partic-

ular properties will be introduced.

To start with, let F be an a�ne function de�ned as:
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F (x) ≡ q +Mx, ∀ x ∈ Rn , (3.9)

where q ∈ Rn and M ∈ Rn×n is a square matrix. In this situation, we use the notation

V I(q,M,K) instead of V I(F,K). IfK is a polyhedral set at the same time, then V I(F,K)

is called a�ne variational inequality and is denoted by AV I(q,M,K). Moreover, if the set

K is polyhedral but F is not necessarily a�ne, the V I(F,K) is called linearly constrained.

A simple (maybe the simplest) and important class of linearly constrained V I is the

box constrained V I(F,K), where the constrained set K is a "box" de�ned as

K ≡ {x ∈ Rn : ai ≤ xi ≤ bi, i = 1, . . . , n}, (3.10)

where ai and bi are allowed to be ±∞ respectively, that is,

−∞ ≤ ai < bi ≤ ∞, ∀i. (3.11)

We will discuss the box constrained V I in detail later. We can also de�ne the linear case

for MiCP and CP . If G and H are both a�ne functions in MiCP , the MiCP is called

mixed linear complementarity problem(MLCP ). A CP which is with an a�ne function

F is called linear complementarity problem(LCP ). When F is an a�ne function de�ned

by a vector q and a matrix M , the CP (F,K) will be denoted LCP (q,M,K):

Rn
+ 3 x ⊥ q +Mx ∈ Rn

+.

The solution set of LCP (q,M,K) is naturally written as SOL(q,M,K). The linear
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case plays a very fundemental role in the study of CP and V I. In some of the most

e�cient algorithms, the linearization is applied for solving complicated CP s and V Is.

The variational inequalities and complementarity problems are equivalent to speci�c �xed

point problems. Let us formally de�ne what a �x point problem is:

De�nition 3.2.1. Given a set B and a mapping D : B 7→ B, The �xed point problem

Fix(D) de�ned by D is to �nd a point x ∈ B such that:

x = D(x)

Next we are able to prove an equivalence between the variational inequality V I(F,K)

(or the complementarity problem CP (F,K)) and a �x point problem.

Lemma 3.2.1. (Proposition 1.5.8 [12]). Let K ⊆ Rm be closed and convex and F : Rm →

Rm be arbitrary. Then, x ∈ SOL(F,K) if and only if x is a �xed point of the mapping

PK ◦ (I − F ) where I : Rm → Rm is the identity mapping de�ned by I(x) = x and PK is

the projection mapping to the set K.

We now provide a proof for a particular case of the above lemma which is stated as

Lemma 3.2.2. The general proof for the above lemma will be given in the proof of

Proposition 3.2.1 which is a reformulation of Lemma 3.2.1.

Lemma 3.2.2. Consider a closed convex cone K in the Euclidean space (Rm, 〈·, ·〉) and

a mapping F : Rm → Rm. Then the CP (F,K) is equivalent to the Fix(PK ◦ (I − F ))

where I : Rm → Rm is the identity mapping de�ned by I(x) = x and PK is the projection

mapping to the set K.

Proof. For any x ∈ Rm, let z = (I − F )(x) = x− F (x) and y = −F (x). Then z = x+ y.
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So if x is a solution of CP (F,K), then by the de�nition of CP (F,K), we get x ∈ K

and y ∈ K◦ (as F (x) ∈ K∗) and 〈x, y〉 = 0. Thus, by Moreau Theorem (Theorem 2.1.1),

we get x = PK(z). Therefore, x is a solution of Fix(PK◦(I − F )).

Conversely, if x is a solution of Fix(PK◦(I − F )), then, x ∈ K and by Theorem 2.1.1

we can get

z = PK(z) + PK◦(z) = x+ PK◦(z).

Thus, z − x = PK◦(z) = y and 〈x, y〉 = 0. So y ∈ K◦, F (x) = −y ∈ K∗. All in all,

we get that x ∈ K, F (x) ∈ K∗ and 〈x, F (x)〉 = 0 which implies that x is a solution of

CP (F,K).

By this lemma, if the sequence {xn}n∈N of the Picard iteration

xn+1 = PK(xn − F n), (3.12)

where F n = F (xn) is convergent to x∗ ∈ K and the mapping F is continuous, then a

simple limiting process in (3.12) yields that x∗ is a �xed point of the mapping K 3 x→

PK(x − F (x)), or equivalently a solution of the complementarity problem de�ned by K

and F .

Here based on the above we have the following proposition:

Proposition 3.2.1. ( [12] Proposition 1.5.9 Page 83) Given a closed convex set K ⊆ Rn

and an arbitrary mapping F : K 7→ Rn, Then x ∈ SOL(F,K) is equivalent to F nat
K = 0

where the natural mapping F nat
K : Rn 7→ Rn with respect to the set K and the mapping F

47



Chapter 3. 3.2. RELATED PROBLEMS

is de�ned as:

F nat
K (z) = x− PK(x− F (x)) (3.13)

Proof. Recall the De�nition 3.1.1, x ∈ SOL(F,K) ⊆ K if and only if

(y − x)>F (x) ≥ 0, ∀y ∈ K

This can be rewritten as:

(y − x)>((x− F (x))− x) ≤ 0, ∀y ∈ K

So by the equivalence given in the Proposition 2.1.1, the above inequality holds if and

only if x is the projection point from x− F (x) to K, that is, x = PK(x− F (x)). This is

equivalent to:

F nat
K (x) = 0

Moreover, we get the following theorem:

Theorem 3.2.1. ( [12] Theorem 2.2.3 Page 146) Consider a closed convex subset K ⊂ Rn

and a continuous mapping F : K 7→ Rn. Consider the following three assertions

(a) There exists a vector xb ∈ K which makes the following set:

S< ≡ {x ∈ K : (x− xb)>F (x) < 0}

bounded.
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(b) There exists a set Λ which is bounded and open and a vector xb ∈ K ∩ Λ such that :

(x− xb)>F (x) ≥ 0, ∀x ∈ K ∩ ∂Λ

where ∂Λ denotes the boundary of the set Λ.

(c) SOL(K,F ) 6= ∅

Then (a) =⇒ (b) =⇒ (c). Furthermore, similar to the set S<, de�ne the:

S≤ ≡ {x ∈ K : (x− xb)TF (x) ≤ 0}

If the S≤ 6= ∅ and is bounded, then SOL(F,K) 6= ∅ and is compact.

A corollary can be directly deduced:

Corollary 3.2.1. ( [12] Corollary 2.2.5 Page 148) Given a compact convex set K ⊆ Rn

and a continuous mapping F : K → Rn, the set SOL(K,F ) is nonempty and compact.

In addition, we can introduce an extension of optimization, saddle problems, which are

also related to the V Is and CP s. A remarkable feature of the saddle problems is that

the saddle problems are de�ned by a scalar function of two arguments. The initial study

in this problems was strongly suggested by the programming duality theory. Meanwhile,

the saddle problems is important in modelling some extensions of optimization problems.

Let us �rst de�ne the saddle problem:

De�nition 3.2.2. Let L : Rn+m → R denote a scalar funtion; The given sets X ⊆ Rn

and Y ⊆ Rm are closed. Then the saddle problems de�ned by (L,X, Y ) is to �nd vector

(x, y) ∈ X × Y which is de�ned as saddle points, such that

L(u, y) ≤ L(x, y) ≤ L(x, v), ∀(u, v) ∈ X × Y. (3.14)
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It is easily seen in (3.14) that x is the maximum point for the function L(·, y) for a

given y and y is the minimum point for a given x. Particularly, if L(·, y) is concave for

any given but arbitrary y ∈ Y and L(x, ·) is convex for any given but arbitrary x ∈ X,

we call L(x, y) is concave-convex . The saddle problem can be formulated as a variational

inequality when L is a continuously di�erentiable and concave-convex. From the above,

we can obtain that if L is concave-convex and X and Y are closed and convex, (x, y) is a

saddle point if and only if it solves the V I(F,X × Y ) where:

F (u, v) ≡

 −∇uL(u, v)

∇vL(u, v)

 , (u, v) ∈ Rn+m. (3.15)

A crucial case of the saddle point problem is when both X and Y are polyhedral and L

is quadratic:

L(x, y) = a>x+ b>y − x>M1x+ y>M2y + x>Ay, (x, y) ∈ Rn+m (3.16)

for some vectors a ∈ Rn and b ∈ Rm, symmetric positive semide�nite matices M1 ∈

Rm×m and M2 ∈ Rn×n and a matrix A ∈ Rm×n. Generally, if L(u, v) is twice contin-

uously di�erentiable (its twice mixed di�erentiation is equal, that is, ∂2L(u, v)/∂u∂v =

∂2L(u, v)/∂v∂u), then F (u, v) de�ned by (3.15) is a continuously di�erentiable function,

the Jacobian matrix is :

JF =

−∇2
uuL(u, v) −∇2

uvL(u, v)

∇2
uvL(u, v) ∇2

vvL(u, v)

 . (3.17)

By the de�nition of L, we know that JF (u, v) is antisymmetric. This terminology comes

from the LCP theory and can be used to describe a partitioned matrix with the structure
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like JF . Moreover, by this antisymmetric, rather than symmetric property, the saddle

point is not the stationary point of the optimization problem on X × Y .

Following the above (L,X, Y ) is a pair of dual optimization problems

sup
x∈X

φ(x) and inf
y∈Y

ψ(y), (3.18)

where

φ(x) ≡ inf{L(x, v), : v ∈ Y } and ψ(y) ≡ sup{L(u, y) : u ∈ X}.

Note that it is allowed to have that φ(x) = +∞ or ψ(y) = −∞. We could write the pair

of problems in the form of a maximin problem and a minimax problem respectively:

sup
y∈Y

inf
x∈X

L(x, y) and inf
y∈Y

sup
x∈X

L(x, y).

Then we could get the following theorem:

Theorem 3.2.2. ( [12] 1.4.1 Page 22) Let X ⊆ Rm and Y ⊆ Rn. Given a scalar funtion

L : X × Y 7→ R, we have:

sup
x∈X

inf
y∈Y

L(x, y) ≤ inf
y∈Y

sup
x∈X

L(x, y) (3.19)

Furthermore, given (x∗, y∗) ∈ X × Y ), the following three assertions are equivalent:

(i) (x∗, y∗) is a saddle point of the function L in X × Y ,

(ii) x∗ is a maximizer of φ(x) on X, y∗ is a minimizer of ψ(y) on Y and then the equality

of (3.19) holds,
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(iii) φ(x∗) = ψ(y∗) = L(x∗, y∗).

Note that in this theorem, the continuity and di�erentiability of L will not in�uence

the equivalence of the assertions. It doesn't tell us whether the saddle point exists or not.
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Conic optimization and

complementarity problems

4.1 Preliminaries

The research of variational inequality and complementarity problems can be applied in

optimization. Recall the De�nition 3.1.1 , it can be reformulated to

y>F (x) ≥ x>F (x), ∀y ∈ K.

Clearly, this problem is equivalent to the following optimization problem [12]

min
y∈K

y>F (x)

if we suppose x is �xed. Moreover, we have the following proposition which plays a very

fundemental role in optimization problems.

Proposition 4.1.1 ( [60], Theorem 2.67, Page 51 ). Let m be a positive integer. Provided
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that a function f ∈ C1(Rm,R), then f is convex if and only if

f(x) ≥ f(y) +∇f(y)>(x− y), ∀x, y ∈ Rm. (4.1)

Moreover, if f is convex and x is the minimum point, then

∇f(y)>(x− y) ≤ 0, ∀y ∈ Rm. (4.2)

Replace Rm by a general closed convex set K ⊆ U ⊆ Rm where U is an open set

and suppose that φ : Rm → R is a continuously di�erentiable function, and consider the

following constrained optimization problem:

min
x∈K

φ(x). (4.3)

By the minimum principle in nonlinear programming( [60]), we have that the local mini-

mizer x will satisfy:

(y − x)>∇φ(x) ≥ 0, ∀y ∈ K. (4.4)

Obviously, this is V I(∇φ,K). The inequality (4.4) is called stationary point problem

associated with the optimization problem (4.3).

Remark 4.1.1. Based on Proposition 4.1.1 and (4.1) and (4.2), we can observe that if

φ is di�erentiable and x∗ is the solution of the above optimization problem, then x∗ is a

solution of V I(∇φ,K) or CP (∇φ,K), where K is a closed convex set or a closed convex

cone, respectively. If φ is convex and di�erentiable, x∗ is the solution of the optimization

problem 4.3 if and only if it is a solution of V I(∇φ,K) or CP (∇φ,K), where K is a

closed convex set or a closed convex cone, respectively.

54



Chapter 4. 4.1. PRELIMINARIES

Next, we show how complementarity is related to optimization problems. Let's consider

a simple optimization problem:

min f(x) s. t. x ≥ 0

where f : R → R is a di�erentiable function all over the real line. If this problem is

solvable and the solution is x∗ ≥ 0, then we will have

x∗f ′(x∗) = 0.

Generally, consider the following optimization problem:

minF (x)

x ∈ K (or x <K 0)

,

where x <K 0 is a standard notation in conic optimzation for 0 ≤K x, F : Rm → R is a

di�erentiable function and K ⊆ Rm is a convex cone. We can easily prove that if x∗ ∈ Rm

is a solution of this problem, then we will have x∗T∇F (x∗) = 0, and

K 3 x∗ ⊥ ∇F (x∗) ∈ K∗.

By De�nition 3.1.2, this means that x∗ a solution of CP (∇F,K). In the following, we

will give several examples where complementarity occurs. Suppose a linear programming

problem is

min c>x

s.t. Ax ≥ b.

(P)
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Its dual problem will be

max b>y

s.t. A>y = c

y ∈ Rn
+.

(D)

where x ∈ Rm and y ∈ Rn are two vector variables and c ∈ Rm, b ∈ Rn and A ∈ Rn×m

are given. Then the following theorems are well-known.

Theorem 4.1.1 (Weak Duality Theorem [7] Page 21). If x ∈ Rm is feasible for (P) and

y ∈ Rn is feasible for (D), then

b>y ≤ y>Ax ≤ c>x.

Hence if (P) is unbounded, then the (D) is necessarily infeasible, and if (D) is unbounded,

then the (P) is necessarily infeasible. Moreover, if b>y∗ = c>x∗ with x∗ and y∗ feasible for

(P) and (D), respectively, x∗ and y∗ must be the solutions of (P) and (D), respectively.

Theorem 4.1.2 (Strong Duality Theorem [7] Page 23). If either (P) or (D) has a �nite

optimal value, then so does the other, the optimal value exists. Suppose the optimal points

are x∗ and y∗, respectively, then the optimal value c>x∗ = b>y∗.

Then (P) is solvable if and only if (D) is solvable. The duality gap

c>x− b>y = y>Ax− y>b = y>(Ax− b) ≥ 0.

will be nonnegative for any feasible pair (x, y) . If (x∗, y∗) are solutions of (P) and (D)
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respectively, then the optimality will indicate the complementary slackness, that is,

y∗>(Ax∗ − b) = 0.

Moreover, by changing the constraint condition from ≥ 0 to �K 0 with respect to some

cone K, we get linear conic programming problem

min c>x

s.t. Ax− b �K 0.

(CP)

Its dual problem will be

max b>λ

s.t. A>λ = c

λ �K∗ 0.

(CD)

Then the (CP) is solvable if and only if the (CD) is solvable. The complementary condition

in this case becomes

λ∗>(Ax∗ − b) = 0

where x∗ and λ∗ are optimal solutions for (CP) and (CD) respectively. When K is Rn
+, the

(CP) is just (P). Note that K may be a matrix cone. A classical example is semide�nite

programming (SDP). Here, the cone K is the set of n × n positive semide�nite matrices

Sn+. It can be easily proved that Sn+ is self-dual with respect to Frobenius inner product.

Then the primal semide�nite problem is

min
x∈Rn
{c>x : Ax−B � 0} (4.5)

where Ax − B = x1A1 + · · · + xnAn − B for some given n × n matrices A1, . . . , An. Its
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dual problem is

max
Λ∈Sn+
{tr(BΛ) : A∗Λ = c, Λ � 0}. (4.6)

Then the complementarity slackness condition is Λ(Ax − B) = Ax − B = 0 where 0

denotes the n-dimensional zero matrix.

Although the complementarity problem idea occurs here, the connection between opti-

mization and complementarity is implicit. A more explicit connection will be shown in

the next section.

4.2 Practical examples

In the following, we will give some practical examples to show that many optimization

problems can be interpreted as complementarity problems for not only Rn but some other

cones such as second-order cone and positive semide�nite cones.

Example 4.2.1 (Cassel-Wald model [28] Section 5.1 Page 51). Suppose there are n com-

modities and m pure factors of production. Let ck denotes the price of the k-th com-

modity, bi denotes total inventory of the i-th factor, and aij denotes the consumption

rate of the i-th factor which is required for producing one unit of the j-th commodity.

Let c = (c1, . . . , cn)>, b = (b1, . . . , bm)> and A = (aij)m×n. Next, xj denotes the out-

put of the j-th commodity and pi denotes the (shadow) price of the i-th factor so that

x = (x1, . . . , xn)> and p = (p1, . . . , pm)>. Let the vector b be �xed and let c(x) : Rn
+ :→ Rn

+.

Denote F (x, p) = ((A>p − c(x))>, (b − Ax)>)>. Then the pair (x∗, p∗) is said to be in

equilibrium if it is a solution to CP (F,Rn+m
+ ):
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x∗ ≥ 0, p∗ ≥ 0

A>p∗ − c(x∗) ≥ 0, b− Ax∗ ≥ 0

(x∗)>[A>p∗ − c(x∗)], (p∗)>[b− Ax∗] = 0.

(4.7)

Example 4.2.2 (Robust linear programming [7] Section 2.4.1 Page 101). Consider a

linear programming

min
x
{c>x : Ax− b ≥ 0}

In many pratical circumstances, the data c, A and b are uncertain. but we know that they

belong to a given set U . Then the problem can be formulate as:

{min
x
{c>x : a>i x− bi ≥ 0, i = 1, . . . ,m}|(c, A, b) ∈ U}.

where a>i is the i-th row of A, bi is the i-th entry of b and the set U is given as:

U = {(c, A, b) : ∃({ui, u>i ui ≤ 1}mi=0) : c = c∗+P0u0, (a
>
i , bi) = (a∗i

>, b∗i )+Piui, i = 1, . . . ,m}

where c∗, a
∗
i and b∗i are the "nominal data " and Piui, i = 0, 1, . . . ,m represent the

data perturbations; the restrictions u>i ui ≤ 1 enforce these perturbations to vary in the

ellipsoids. The robust counterpart can be formulated as a conic quadratic programming

(details can be seen in [7]):

min
x,t
{t : ‖P>0 x‖2 ≤ −c>∗ x+ t; ‖P>i (x>,−1)>‖2 ≤ a∗i

>x− b∗i , i = 1, . . . ,m}
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Let

A0 =

 P>0 ; 0

−c>∗ ; 1


and

Ai =

Q>i ; 0

a∗i
>; 0

 , i = 1, . . . ,m,

where Qi is obtained by deleting the last row of Pi. Let qi denote the last row of Pi. So

its dual problem is:

max
µ,ν

m∑
i=1

(qiµi + νib
∗
i )

s. t.
m∑
i=1

A>i λi = (0, . . . , 0, 1)> ,

λi =

µi
νi

 ∈ Lm
where Lm denotes m-dimensional Lorentz (second-order) cone. So if the conditions of

strong duality theorem are satis�ed, we will have the following complementarity relation:

Lm 3 λi ⊥ Ai

x
t

−
q>i
b∗i

 ∈ Lm.
Furthermore, suppose fr(λ) =

∑m
i=1(qiµi + νib

∗
i ) which is the objective function of the

maximum problem and let

G(x, t;λ) =
m∑
i=1

A>i λi − (0, . . . , 0, 1)>

Hi(x, t;λ) = Ai

x
t

−∇fr(λi).
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Then (x∗, t∗;λ∗) is a solution of the primal and dual problems respectively if and only if it

is a solution to MiCP (G,Hi, L
m, dimx+ 1, 1), i = 1, . . . ,m when strong duality theorem

is satis�ed.

Example 4.2.3 (MAXCUT [7] Section 3.4.1 Page 175). Consider the maximum cut

problem: Let G be an n-node graph, and let the arcs (i, j) of the graph be associated

with nonnegative "weights" aij. The problem is to �nd a cut of the largest possible weight,

i. e. to partition the set of nodes in two parts S, S ′ in such a way that the total weight

of all arcs "linking S and S ′" (i.e. with one incident node in S and the other one in S ′)

is as large as possible. It can be formulated in the following way: let x ∈ Rn and the i-th

entry of x, xi = 1 for i ∈ S, xi = −1 for i ∈ S ′. The quantity 1
2

∑n
i,j=1 aijxixj is the

total weight of arcs with both ends either in S or S ′ minus the weight of the cut (S, S ′);

consequently, the quantity

1

2

[
1

2

n∑
i,j=1

aij −
1

2

n∑
i,j=1

aijxixj

]
=

1

4

n∑
i,j=1

aij(1− xixj) (4.8)

is the weight of the cut (S, S ′). Then the optimization problem is

max
x

{
1

4

n∑
i,j=1

aij(1− xixj) : x2
i = 1, i = 1, . . . n

}

For this problem, the semide�nite relaxation is:

max
1

4

n∑
i,j=1

aij(1− xixj)

s. t. X = [Xij]
n
i,j=1 = X> � 0,

Xii = 1, i = 1, . . . , n,

(4.9)
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where Xij = xixj. The optimial value is an upper bound for the optimal value of the

maximum cut problem. Note that aij is given. The objective function can be regarded as

1
4

∑n
i,j=1 aijxixj. Denote A = (aij). Since the positive semide�nite cone is self-dual, the

dual problem of above is:

min
y∈Rn

(1, ..., 1)y

s. t. diag(y1, . . . , yn) +
1

4
A � 0.

(4.10)

If both (4.9) and (4.10) are strictly feasible, then we have the following complementarity

problems:

X

[
diag(y1, . . . , yn) +

1

4
A

]
= 0 (4.11)

Similar to the above example, suppose that fm(X) = −1
4

∑n
i,j=1 aijxixj, then by the calculus

of matrix-value functions (for example, see [29] Theorem 2 Page 124), ∇fm(X) = −1
4
A.

Then let

G(X; y) = tr(A− I)− (1, ..., 1)>

H(X; y) = diag(y)−∇fm(λi).

Then (X∗; y∗) is a solution of the primal and dual problem respectively if and only if it is

a solution of MiCP (G,H, n, n×n,Sn+) when the conditions of strong duality theorem are

satis�ed.

Consider the nonlinear optimization problem

min f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

x ∈ X0,

(4.12)
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where the function f : Rn 7→ R, gi : Rn 7→ R, i = 1, . . . ,m, and hi : Rn 7→ R, i = 1, . . . , p

are continuously di�erentiable, and that the set X0 ⊆ Rn is convex and closed. Slater's

condition is as follows: there exists a point xs ∈ X0 such that gi(xs) < 0, i = 1, . . . ,m,

hi(xs) = 0, i = 1, . . . , p and xx ∈ intX0, if p > 0.

Theorem 4.2.1. ( [60] Theorem 3.34, Page 127) Assume that x̂ is the minimum of prob-

lem (4.12), the function f is continuous at some feasible point x0, and Slater's condition

is satis�ed. Then there exist λ̂ ∈ Rn
+ and µ̂ ∈ Rp such that

0 ∈ ∇f(x̂) +
m∑
i=1

λ̂i∇gi(x̂) +

p∑
i=1

µ̂i∇hi(x̂) +NX0(x̂) (4.13)

and

λ̂igi(x̂) = 0, i = 1, . . . ,m. (4.14)

Conversely, if for some feasible point x̂ of (4.12) and some λ̂ ∈ Rm
+ and µ̂ ∈ Rp conditions

(4.13) and (4.14) are satis�ed, then x̂ is the global minimum of the problem.

De�nition 4.2.1. Let f : Rq 7→ R be a function, K ⊂ Rm be a cone, A be a p× q matrix

and b ∈ Rp. Then, the problem

CO(f, A, b,K, p, q) :


min f(x)

subject to Ax = b,

x ∈ K

(4.15)

is called conic optimization problem.
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4.3 The main result

In the previous sections, we stated the complementarity problems and the complemen-

tarity relation in linear (conic) programming problems. We also presented the Karush-

Kuhn-Tucker condition which illustrated the properties of optimal solutions. Based on

these results, we will prove the equivalence of a conic optimization problem and a mixed

complementarity problem.

Theorem 4.3.1. Let f : Rq 7→ R be a di�erentiable convex function at v ∈ Rq \ {0},

K ⊆ Rq be a cone with a smooth boundary, A be a p× q matrix of full rank (rank(A) =

min{p, q}) and b ∈ Rp. Suppose that the intersection of the interior of K and the linear

subspace {v ∈ Rq : Av = b} is nonempty. Then, v̂ is a solution of CO(f, A, b,K) if and

only if (ŷ, v̂) is a solution of MiCP (G,H,K, p, q), where G(y, v) = b − Av, H(y, v) =

∇f(v)− A>y, which can be written explicitly as

Av̂ = b,K 3 v̂ ⊥ ∇f(v̂)− A>ŷ ∈ K∗.

Proof. If v̂ is a solution of CO(f, A, b,K), by the preceding theorem, let X0 = K, h(v) =

b− Av and λ̂ = ŷ. The equation (4.13) can be transformed to

0 ∈ ∇f(v̂)− A>y +NK(v̂).

By (2.8), we have that

∇f(v̂)− A>ŷ ∈ K∗ and ∇f(v̂)− A>ŷ ⊥ v̂. (4.16)

The conditions v̂ ∈ K and Av̂ = b are obvious. Conversely, suppose that (ŷ, v̂) is a
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solution of MiCP (G,H,K). For any feasible solution v in CO(f, A, b,K), we have

0 ≤ 〈∇f(v̂)− A>ŷ, v〉 = 〈∇f(v̂)− A>ŷ, v − v̂〉 = 〈∇f(v̂), v − v̂〉 − 〈A>ŷ, v − v̂〉. (4.17)

Because Av = Av̂ = b and 〈A>ŷ, v − v̂〉 = 〈ŷ, Av − Av̂〉 = 0, by the convexity of f , the

inequality (4.17) and Proposition 4.1.1, we have

0 ≤ 〈∇f(v̂), v − v̂〉 ≤ f(v)− f(v̂). (4.18)

Hence f(v̂) ≤ f(v) for any v feasible. Therefore, v̂ is a solution of CO(f, A, b,K).

Example 4.3.1. Consider the KKT system (Proposition 1.2.1 in [12])

Let ∆ be de�ned as

∆ ≡ {v ∈ Rn : Av = b, Cv ≤ d}, (4.19)

where the matrix A ∈ Rp×q have full rank, C ∈ Rl×q and vectors b ∈ Rp and d ∈ Rl are

given. A vector x is the solution of V I(∆, F ) if and only if there exist two vectors λ ∈ Rp

and µ ∈ Rl such that 
0 = F (x) + C>µ+ A>λ,

0 = b− Ax,

0 ≤ µ ⊥ d− Cx ≥ 0.

(4.20)

The MiCP resulted by the V I(K,F ) where K is de�ned by (4.19) is called the Karush-

Kuhn-Tucker (KKT) system of the V I. In this system, let C = 0, d = 0, λ = −y and

F (x) = ∇f(x). It is obvious that the dual cone of Rp is {0}. Then it can be transformed

to  0 = b− Ax,

Rp 3 x ⊥ F (x)− A>y ∈ {0},
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which coincides with the mixed complementarity problem in Theorem 4.3.1.

4.4 Notes and comments

In this chapter, we showed connections between complementarity problems and con-

strained optimization problems. The nonnegativity of variables is de�ned by a cone

ranging from the nonnegative orthant (corresponding to KKT conditions) to some special

cones such as positive semide�nite cones and Lorentz cones. Since the restriction of C in

Theorem 5.2.1 is just to be a closed convex cone, this MiCP formulation of constrained

optimization problems will be a bridge for us to apply iterative methods to solve con-

strained optimization problems by using Theorem 5.2.1. Details will be given explicitly

in Section 7.2.
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Complementarity problems and

extended Lorentz cones

In this chapter, we will call a closed convex set isotone projection set with respect to a

pointed closed convex cone if the projection onto the set is isotone (i.e., monotone) with

respect to the order de�ned by the cone. We showed in Theorem 2.3.2 that a Cartesian

product between an Euclidean space and any closed convex set in another Euclidean space

is an isotone projection cone with respect to an extended Lorentz cone. We will use this

property to �nd solutions of general mixed complementarity problems in an iterative way.

This chapter and the next one are mainly from my joint work with S. Z. Németh [51,53].

5.1 Complementarity problems

Recall the notion of a complementarity problem and the corresponding Picard iteration

(3.12). It is natural to seek convergence conditions for xn. This will be done by �nding

pointed closed convex cones L and conditions to be imposed on F such that the sequence

{xn}n∈N to be L-increasing and L-bounded from above. These conditions will imply that
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{xn}n∈N is convergent and its limit is a solution of CP (F,K).

Denote by I the identity mapping.

Lemma 5.1.1. Let K ⊂ Rm be a closed convex cone, K∗ be its dual, F : Rm → Rm

be a continuous mapping and L be a pointed closed convex cone. Consider the sequence

{xn}n∈N de�ned by (3.12). Suppose that the mappings PK and I − F are L-isotone,

x0 ≤L x1, and there exists a y ∈ Rm such that xn ≤L y, for all n ∈ N su�ciently large.

Then, {xn}n∈N is convergent and its limit x∗ is a solution of CP (F,K).

Proof. Since the mappings PK and I − F are L-isotone, the mapping x 7→ PK ◦ (I − F )

is also L-isotone. Then, by using (3.12) and a simple inductive argument, it follows that

{xn}n∈N is L-increasing. Since any pointed closed convex cone in Rm is regular, {xn}n∈N

is convergent and hence its limit x∗ is a solution of CP (F,K).

Remark 5.1.1.

1. The condition x0 ≤L x1 in Lemma 5.1.1 is satis�ed when x0 ∈ K∩F−1(−L). Indeed,

if x0 ∈ K ∩ F−1(−L), then −F (x0) ∈ L and x0 ∈ K. Thus x0 ≤L x0 − F (x0), and

hence by the L-isotonicity of PK we obtain x0 = PK(x0) ≤L PK(x0 − F (x0)) = x1.

2. The condition x0 ≤L x1 in Lemma 5.1.1 is satis�ed when x0 = 0 and −F (0) ∈ L.

Indeed, this is a particular case of the item above.

Proposition 5.1.1. Let L be a pointed closed convex cone, K ⊂ Rm be a closed convex

cone such that K ∩ L 6= ∅ and K∗ be its dual, and F : Rm → Rm be a continuous

mapping. Consider the sequence {xn}n∈N de�ned by (3.12). Suppose that the mappings

PK and I − F are L-isotone and x0 = 0 ≤L x1. Let

Ω = K ∩ L ∩ F−1(L) = {x ∈ K ∩ L : F (x) ∈ L}
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and

Γ = {x ∈ K ∩ L : PK(x− F (x)) ≤L x}.

Consider the following assertions:

(i) Ω 6= ∅,

(ii) Γ 6= ∅,

(iii) The sequence {xn}n∈N is convergent and its limit x∗ is a solution of CP (F,K).

Moreover, x∗ is the L-least element of Γ and a lower L-bound of Ω.

Then, Ω ⊂ Γ and (i) =⇒ (ii) =⇒ (iii).

Proof. Let us �rst prove that Ω ⊂ Γ. Indeed, let y ∈ Ω. Since the mappings PK and

I − F are L-isotone, the mapping PK ◦ (I − F ) is also L-isotone. Hence, y − F (y) ≤L y

implies PK(y − F (y)) ≤L PK(y) = y, which shows that y ∈ Γ. Hence, Ω ⊂ Γ. Thus,

(i) =⇒ (ii) is trivial now.

we now prove (ii) =⇒ (iii):

Suppose that Γ 6= ∅. Since the mapping PK and I − F are L-isotione, the mapping,

PK ◦ (I − F ) is also L- isotone. Similarly to the proof of Lemma 5.1.1, it can be shown

that {xn}n∈N is L-increasing. Let y ∈ Γ be arbitrary but �xed. We have x0 = 0 ≤L y.

Now, suppose that xn ≤L y. Since the mapping PK ◦ (I−F ) is L-isotone, xn ≤L y implies

that xn+1 = PK(xn − F (xn)) ≤L PK(y − F (y)) ≤L y. Thus, we have by induction that

xn ≤L y for all n ∈ N. Then, Lemma 5.1.1 implies that {xn}n∈N is convergent and its

limit x∗ is a solution of CP (F,K). Since x∗ is a solution of CP (F,K), we have that

PK(x∗ − F (x∗)) = x∗ and hence x∗ ∈ Γ. Moreover, taking the limit in xn ≤L y, we get

x∗ ≤L y for any y ∈ Γ. Therefore, x∗ is the L-least element of Γ. Since Ω ⊂ Γ, x∗ is the

L-bound of Ω.

69



Chapter 5. 5.2. MIXED COMPLEMENTARITY PROBLEMS

We note that from the second item of Remark 5.1.1, it follows that condition x0 = 0 ≤L

x1 of Proposition 5.1.1 holds if x0 = 0 and −F (0) ∈ L. We also remark that since the

de�nition of Ω does not contain the projection onto K, (for a given F and K) it is easier

to show that Γ 6= ∅ by �rst showing that Ω 6= ∅.

5.2 Mixed complementarity problems

The following lemma extends the mixed complementarity problem in [12] by replacing Rq
+

with an arbitrary nonempty closed convex cone in Rq.

Lemma 5.2.1. Let K = Rp × C, where C is an arbitrary nonempty closed convex cone

in Rq. Let G : Rp × Rq → Rp, H : Rp × Rq → Rq and F = (G,H) : Rp × Rq →

Rp × Rq. Then, the nonlinear complementarity problem CP (F,K) is equivalent to the

mixed complementarity problem MiCP (G,H,C, p, q) de�ned by (3.8)

Proof. It follows easily from the de�nition of the nonlinear complementarity problem

CP (F,K), by noting that K∗ = {0} × C∗.

By using the notations of Lemma 5.2.1, the Picard iteration (3.12) can be rewritten as:

 xn+1 = xn −G(xn, un)

un+1 = PC(un −H(xn, un)).
(5.1)

Consider the order de�ned by the extended Lorentz cone (2.9). Then, we obtain the

following theorem.

Theorem 5.2.1. Let K = Rp × C, where C is a closed convex cone, K∗ be the dual of

K, G : Rp × Rq → Rp and H : Rp × Rq → Rq be continuous mappings, F = (G,H) :
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Rp × Rq → Rp × Rq, and L = L(p, q) be the extended Lorentz cone de�ned by (2.9). Let

x0 = 0 ∈ Rp, u0 = 0 ∈ Rq and consider the sequence {(xn, un)}n∈N de�ned by (5.1). Let

x, y ∈ Rp and u, v ∈ Rq. Suppose that y − x ≥ ‖v − u‖e implies

y − x−G(y, v) +G(x, u) ≥ ‖v − u−H(y, v) +H(x, u)‖e,

and x1 ≥ ‖u1‖e (in particular this holds when −G(0, 0) ≥ ‖H(0, 0)‖e).

Let

Ω = {(x, u) ∈ Rp × C : x ≥ ‖u‖e, G(x, u) ≥ ‖H(x, u)‖e}

and

Γ = {(x, u) ∈ Rp × C : x ≥ ‖u‖e, G(x, u) ≥ ‖u− PC(u−H(x, u))‖e}.

Consider the following assertions:

(i) Ω 6= ∅,

(ii) Γ 6= ∅,

(iii) The sequence {(xn, un)}n∈N is convergent and its limit (x∗, u∗) is a solution of

MiCP (G,H,C, p, q). Moreover, (x∗, u∗) is a lower L(p, q)-bound of Ω and the

L(p, q)-least element of Γ.

Then, Ω ⊂ Γ and (i) =⇒ (ii) =⇒ (iii).

Proof. First observe that K ∩ L(p, q) 6= ∅. By using the de�nition (2.9) of the extended

Lorentz cone, it is easy to verify that

Ω = K ∩ L(p, q) ∩ F−1(L(p, q)) = {z ∈ K ∩ L(p, q) : F (z) ∈ L(p, q)}
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and

Γ = {z ∈ K ∩ L(p, q) : PK(z − F (z)) ≤L z}.

Let x, y ∈ Rp and u, v ∈ C. Since y − x ≥ ‖v − u‖e implies

y − x−G(y, v) +G(x, u) ≥ ‖v − u−H(y, v) +H(x, u)‖e,

it follows that I − F is L(p, q)-isotone. Also, x1 ≥ ‖u1‖e means that (x0, u0) = (0, 0) ≤L

(x1, u1) (in particular if −G(0, 0) ≥ ‖H(0, 0)‖e, or equivalently −F (0, 0) ∈ L(p, q), then

by the second item of Remark 5.1.1, it follows that (x0, u0) = (0, 0) ≤L (x1, u1)). Hence,

by Theorem 2.3.2, Proposition 5.1.1 (with m = p + q) and Lemma 5.2.1, it follows that

Ω ⊂ Γ and (i) =⇒ (ii) =⇒ (iii).

By Remark 3.1.1 and Theorem 5.2.1, we can get the following corollary:

Corollary 5.2.1. Let L = L(p, q) be the extended Lorentz cone de�ned by (2.9). Let

C is a closed convex cone in Rp and F : Rq → Rq is a continuous mapping.Suppose

E : Rp × Rq → Rp is a zero function, that is, E(x, u) = 0 for any (x, u) ∈ Rp × Rq

and F̂ : Rp × Rq → Rq is de�ned by F̂ (x, u) = F (u). Let x0 = 0 ∈ Rp, u0 = 0 ∈ Rq

and consider the sequence {(xn, un)}n∈N de�ned by (5.1). Let x, y ∈ Rp and u, v ∈ Rq.

Suppose that y − x ≥ ‖v − u‖e implies

y − x ≥ ‖v − u− F (v) + F (u)‖e,

and x1 ≥ ‖u1‖e (in particular this holds when F̂ (0, 0) = F (0) = 0).

Let

Ω = {(x, u) ∈ Rp × C : x ≥ ‖u‖e, F (u) = 0}
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and

Γ = {(x, u) ∈ Rm × C : x ≥ ‖u‖e, u = PC(u− F̂ (x, u))}.

Consider the following assertions:

(i) Ω 6= ∅,

(ii) Γ 6= ∅,

(iii) The sequence {(xn, un)}n∈N is convergent and its limit (x∗, u∗) is a solution of

MiCP (E, F̂ , C, p, q). Then u∗ is the solution of CP (F,C)

Then by Remark 3.1.1, Ω ⊂ Γ and (i) =⇒ (ii) =⇒ (iii).

5.3 An example

Let L = L(2, 2) be the extended Lorentz cone de�ned by (2.9). By using the notations

of Theorem 5.2.1, suppose that C = {(u1, u2) : u2 ≥ u1, u1 ≥ 0} and K = R2 × C. Let

f1(x, u) = 1/12(x1 + ‖u‖ + 12) and f2(x, u) = 1/12(x2 + ‖u‖ − 7.2). Then it is easy

to show that these two functions are L(2, 2)-monotone. Let w1 = (1, 1, 1/6, 1/3) and

w2 = (1, 1, 1/3, 1/6) so w1 and w2 are in L(2, 2). For any two vectors (x, u) and (y, v)

in K, suppose (x, u) ≤L (y, v), we have y1 − x1 ≥ ‖v − u‖ ≥ ‖u‖ − ‖v‖ by the triangle

inequality. Hence,

f1(y, v)− f1(x, u) =
1

12
(y1 − x1 − (‖u‖ − ‖v‖)) ≥ 0.

Similarly, we can prove that if (x, u) ≤L (y, v), then f2(y, v)−f2(x, u) ≥ 0. Provided that

K is convex, and w1, w2 ∈ L(2, 2), if (x, u) ≤L (y, v) holds, then

(f1(y, v)− f1(x, u))w1 + (f2(y, v)− f2(x, u))w2 ∈ L(2, 2).
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Thus, f1(x, u)w1 + f2(x, u)w2 ≤L f1(y, v)w1 + f2(y, v)w2. Therefore, the mapping f1w
1 +

f2w
2 is L(2, 2)-isotone. Hence, choose the function

G(x, u) =

(
11

12
x1 −

1

12
x2 −

1

6
‖u‖ − 2

5
,− 1

12
x1 +

11

12
x2 −

1

6
‖u‖ − 2

5

)
,

H(x, u) =

(
u1 −

1

72
x1 −

1

36
x2 −

1

24
‖u‖+

1

30
, u2 −

1

36
x1 −

1

72
x2 −

1

24
‖u‖ − 7

30

)
,

so that to have

(x−G, u−H) = f1w
1 + f2w

2 =

(
f1 + f2, f1 + f2,

1

6
f1 +

1

3
f2,

1

3
f1 +

1

6
f2

)
, (5.2)

L(2, 2)-isotone, where G, H, f1 and f2 are considered in the point (x, u). It is necessary

to check that all the conditions in Theorem 5.2.1 are satis�ed. First, since

−G(0, 0; 0, 0) = (f1(0, 0; 0, 0) + f2(0, 0; 0, 0), f1(0, 0; 0, 0) + f2(0, 0; 0, 0)) = (0.4, 0.4)

and ‖H(0, 0; 0, 0)‖ =
√

2/6, it is clear that −G(0, 0; 0, 0) ≥ ‖H(0, 0; 0, 0)‖e. Next, we will

show that Ω is not empty. Consider the vector (x̄, ū) = (31, 31, 3, 4) ∈ K. Obviously,

x̄ = (31, 31) ≥
√

32 + 42e, and since

G(31, 31, 3, 4) = (31, 31)− (f1 + f2, f1 + f2) = (24.6, 24.6)

and

H(31, 31, 3, 4) = (3, 4)−
(

1

6
f1 +

1

3
f2,

1

3
f1 +

1

6
f2

)
=

(
23

15
,
34

15

)
,

where the functions f1 and f2 are considered in the point (x̄, ū) = (31, 31, 3, 4), it is

straightforward to check that G(31, 31, 3, 4) ≥ ‖H(31, 31, 3, 4)‖e. Thus, (x̄, ū) ∈ Ω, which
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shows that Ω 6= ∅.

Now, we begin to solve the MiCP (G,H,C, p, q). Suppose that (x, u) is its solution.

Since G(x, u) = 0, and

x−G(x, u) = (f1 + f2, f1 + f2),

where fi = fi(x, u), i = 1, 2, we have x1 = x2 = f1 + f2. Moreover, since

x1 =
1

12
(x1 + x2) +

1

6
‖u‖+ 0.4,

we get

x1 = x2 =
1

5
‖u‖+

12

25
. (5.3)

The perpendicularity u ⊥ H(x, u) implies

〈u,H(x, u)〉 = u1(u1 −
1

6
f1 −

1

3
f2) + u2(u2 −

1

3
f1 −

1

6
f2) = 0.

Thus,

u2
1 + u2

2 = ‖u‖2 = f1

(
1

6
u1 +

1

3
u2

)
+ f2

(
1

3
u1 +

1

6
u2

)
. (5.4)

We will �nd all nonzero solutions on the boundary of C.

Case1: u1 = u2, u1 > 0. Then, ‖u‖ =
√

2u1 =
√

2u2.

Hence, from (5.4), we get

2u1 =
1

2
(f1 + f2).

By (5.3), we can conclude

u1 = u2 =
120 + 6

√
2

995
, (5.5)
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which implies that

(x, u) =

(
480 + 24

√
2

995
,
480 + 24

√
2

995
,
120 + 6

√
2

995
,
120 + 6

√
2

995

)
. (5.6)

Case 2: u1 = 0, i.e., ‖u‖ = u2. Equation (5.4) can be transformed into

u2

(
u2 −

1

3
f1 −

1

6
f2

)
= 0. (5.7)

By using (5.4) again, we get u2 = 4/15, so u = (0, 4/15) and

(x, u) =

(
8

15
,

8

15
, 0,

4

15

)
. (5.8)

If the Picard iteration shown in (5.1) is applied and (0, 0, 0, 0) is the starting point, then

we obtain


xn+1 = xn −G(xn, un) = (fn1 + fn2 )e,

un+1 = PC(un −H(xn, un)) = PC

(
1

6
fn1 +

1

3
fn2 ,

1

3
fn1 +

1

6
fn2

)
,

(5.9)

where fni = fi(x
n, un), i = 1, 2. So, we have xn+1

1 = xn+1
2 . As we start from (0, 0, 0, 0),

xj1 = xj2 ≥ 0 for all j ∈ N. Furthermore, de�ne the set S by

S =

{
(x, u) ∈ R2 × R2 : 0 ≤ x1 = x2 <

8

15
, u1 = 0, 0 ≤ u2 <

4

15

}
. (5.10)

We will prove by induction that (xn, un) ∈ S, for all n ∈ N. We have (x0, u0) =

(0, 0, 0, 0) ∈ S, and we need to show that as long as (xn, un) ∈ S, (xn+1, un+1) de�ned by

(5.9) is in S.
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Indeed, by using the above analysis, xn1 = xn2 . By u
n
1 = 0, ‖un‖ = un2 . If 0 ≤ xn1 = xn2 <

8/15 and 0 ≤ un2 < 4/15, we have

0 < xn+1
1 = xn+1

2 = fn1 + fn2 =
1

6
(xn1 + un2 ) +

2

5
<

1

6

(
4

15
+

8

15

)
+

2

5
=

8

15
.

On the other hand, it can be deduced that,

un −H(xn, un) =

(
1

24
(xn1 + un2 )− 1

30
,

1

24
(xn1 + un2 ) +

7

30

)
.

Then, the �rst entry of un−H(xn, un) is smaller than (1/24)(8/15+4/15)−1/30 = 0 and

the second entry is positive and smaller than (1/24)(8/15 + 4/15) + 7/30 = 4/15. Thus,

the projection of it onto C must be on the line {(u1, u2) : u1 = 0, u2 ≥ 0}. Moreover,

un+1
2 = (un −H(xn, un))2 <

4
15
. Hence, by the equation (5.9),

un+1 = (un+1
1 , un+1

2 ) = PC(un −H(xn, un)) =

(
0,

1

3
fn1 +

1

6
fn2

)
.

Therefore, equation (5.9) can be transformed into


xn+1

1 = xn+1
2 =

1

6

(
xn1 + un2 +

12

5

)

un+1
2 =

1

24

(
xn1 + un2 +

28

5

) (5.11)

Observing that

xn+1
1 = 4un+1

2 − 8

15
, (5.12)

and by substituting (5.12) (with n + 1 replaced by n) into (5.11)1, we get un+1
2 =
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(5/24)un2 + 19/90 and xn+1
1 = (5/24)xn1 + 19/45. Hence,


xn+1

1 − 8

15
=

5

24

(
xn1 −

8

15

)
=

(
5

24

)n(
x1

1 −
8

15

)
,

un+1
2 − 4

15
=

5

24

(
un2 −

4

15

)
=

(
5

24

)n(
u1

2 −
4

15

)
.

(5.13)

Therefore, when n goes to in�nity, the sequence (xn, un) converges to

(8/15, 8/15, 0, 4/15) which is a solution shown in Case 2.

5.4 How wide is the family of K-isotone mappings?

The section is entirely for the purpose of convincing the reader that the family of K-

isotone mappings which occur in the condition �I − F is K-isotone� of Proposition 5.1.1

and the corresponding condition in Theorem 5.2.1 is very wide.

LetK,S ⊂ Rm be pointed closed convex cones such thatK ⊂ S. The function f : Rm 7→

R is called K-monotone if x ≤K y implies f(x) ≤ f(y). Both the K-monotone functions

and the K-isotone mappings form a cone. If f1, . . . , f` : Rm 7→ R are K-monotone and

w1, . . . , w` ∈ K, then it is easy to see that the mapping F : Rm 7→ Rm de�ned by

F (x) = f1(x)w1 + · · ·+ f`(x)w` (5.14)

is K-isotone. It is obvious that any S-monotone function is also K-monotone. Hence, if

f1, . . . , f` : Rm 7→ R are S-monotone, then the mapping F de�ned by (5.14) is K-isotone.

The pointed closed convex cone S is called simplicial if there exists linearly independent
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vectors u1, . . . , um ∈ Rm such that

S = cone{u1, . . . , um} := {λ1u
1 + · · ·+ λmu

m : λ1, . . . , λm ≥ 0}. (5.15)

The vectors u1, . . . , um are called the generators of S and we say that S is generated by

u1, . . . , um. It can be shown that the dual S∗ of a simplicial cone S is simplicial. Moreover,

if U := (u1, . . . , um) (that is an m × m matrix with columns u1, . . . , um) and U−> =

(v1, . . . , vm) where U−> = (U>)−1 , then S∗ = cone{v1, . . . , vm} [9]. Let {e1, . . . , em} be

the set of standard unit vectors in Rm. Obviously, we have Rm
+ = {λ1e

1 + · · · + λme
m :

λ1, . . . , λm ≥ 0} where Rm
+ is the nonnegative orthant. Let S be the simplicial cone

de�ned by (5.15). If f : Rm → R is Rm
+ -monotone, then f̂ : Rm 7→ R de�ned by

f̂(x1u
1 + · · · + xmu

m) = f(x1e
1 + · · · + xme

m) is S-monotone. Let U−1 = (w1, . . . , wm),

f̂(x1e
1+· · ·+xmem) = f(x1w

1+· · ·+xmwm). g1, . . . , gm : R 7→ R are monotone increasing,

then obviously g : Rm → R de�ned by

g(x1u
1 + · · ·+ xmu

m) = g1(x1) + · · ·+ gm(xm) (5.16)

is S-monotone. So g(x1e
1 + · · · + xme

m) = g1((e1)>((x1w
1 + · · · + xmw

m)) + · · · +

gm((em)>((x1w
1 + · · ·+ xmw

m)). Moreover, if f : Rm 7→ R is S-monotone and ψ : R 7→ R

is monotone increasing, then it is straightforward to see that ψ ◦ f is also S-monotone.

Hence, if all mappings fi in (5.14) are formed by using a (not necessarily linear) combina-

tion of (5.16), the previous property and the conicity of the S-monotone functions, then

the mapping F de�ned by (5.14) is K-isotone for any pointed closed convex cone con-

tained in S. For any such cone K it is easy to construct a simplicial cone S which contains

K. From the de�nition of the dual of a cone it follows that Rm = {0}∗ = (K ∩ (−K))∗ =

K∗ + (−K)∗ = K∗ −K∗. Thus, the smallest linear subspace of Rm containing K∗ is Rm
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and hence the interior of K∗ is nonempty (see [58] Theorem 1.1 Page 4). Therefore, there

exist m linearly independent vectors in K∗, that is, K∗ contains a simplicial cone T . Let

S be the dual of T . Then, obviously K ⊂ S.

The above constructions show that for any pointed closed convex cone the family of K-

isotone mappings, used in Proposition 5.1.1 and Theorem 5.2.1 is very wide. Moreover,

there may be many K-isotone mappings which are not of the above type. This topic is

worth to be investigated in the future.

5.5 Notes and comments

A main result of this thesis is provided in this chapter. Although we still considered

the L-isotonicity, we solved a mixed complementarity problem with respect to a general

closed convex cone C by an order de�ned by the extended Lorentz cones rather than us-

ing simplicial cones particularly restricted by isotonicity properties of the projection onto

them. This is the main di�erence between this chapter and the previous papers solving

complementarity problems by using the isotonicity of the projection. As shown in the

previous chapters, a variety of optimization problems can be formulated as complemen-

tarity problems. In Chapter 7, we will show these complementarity problems in detail.

Moreover, we will show an iterative method to solve some conic optimization problems

using Theorem 5.2.1.
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Chapter 6

Extended Lorentz Cones and

Variational Inequalities on Cylinders

6.1 Preliminaries

Solutions of a variational inequality problem de�ned by a closed and convex set and a

mapping are found by imposing conditions for the monotone convergence with respect to

a cone of the Picard iteration corresponding to the composition of the projection onto the

de�ning closed and convex set and the di�erence of the identity mapping and the de�ning

mapping. One of these conditions is the isotonicity of the projection onto the de�ning

closed and convex set. If the closed and convex set is a cylinder and the cone is an extented

Lorentz cone, then this condition can be dropped because it is automatically satis�ed.

In this case a large class of a�ne mappings and cylinders which satisfy the conditions of

monotone convergence above is presented. The obtained results are further specialized

for unbounded box constrained variational inequalities. In a particular case of a cylinder

with a base being a cone, the variational inequality is reduced to a generalized mixed
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complementarity problem which has been already considered in �Németh, S.Z., Zhang, G.

Extended Lorentz cones and mixed complementarity problems. J. Global Optim., 62(3):

443-457 (2015)� and previous chapters. This chapter is mainly based on my joint paper

with S.Z. Németh [53].

6.2 Variational inequalities

Let K ⊂ Rm be a closed convex set and F : Rm → Rm be a mapping. It is known that

x∗ is a solution of the variational inequality V I(F,K) de�ned by F and K(see De�nition

3.1.1) if and only if it is a �xed point of the mapping I − F nat
K = PK ◦ (I − F ), where I

is the identity mapping of Rm and F nat
K is the natural mapping associated to V I(F,K)

de�ned by F nat
K = I − PK ◦ (I − F ) [12]. Recall the Picard iteration de�ned by

xn+1 = PK(xn − F (xn)). (6.1)

If F is continuous and {xn}n∈N is convergent to x∗, then it follows that x∗ is a �xed point

of the mapping PK ◦ (I − F ) and hence a solution of V I(F,K). Therefore, it is natural

to seek convergence conditions for xn. Let us �rst state the following simple lemma:

Lemma 6.2.1. Let K ⊂ Rm be a closed convex set, F : Rm → Rm be a continuous

mapping and L be a pointed closed convex cone. Consider the sequence {xn}n∈N de�ned

by (6.1). Suppose that the mappings PK and I − F are L-isotone, x0 ≤L x1, and there

exists a y ∈ Rm such that xn ≤L y, for all n ∈ N su�ciently large. Then, {xn}n∈N is

convergent and its limit x∗ is a solution of V I(F,K).

Proof. Since the mappings PK and I − F are L-isotone, the mapping x 7→ PK ◦ (I − F )

is also L-isotone. Then, by using (6.1) and a simple inductive argument, it follows that

{xn}n∈N is L-increasing. Since any cone in Rm is regular, {xn}n∈N is convergent and hence
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its limit x∗ is a �xed point of PK ◦ (I − F ) and therefore a solution of V I(F,K).

Remark 6.2.1. Consider the assumptions of Lemma 5.1.1. If we further suppose that

I−F is nonexpansive, then PK ◦ (I−F ) is also nonexpansive. Hence the limit in Lemma

5.1.1 is robust in the sense that if the starting points x0 and y0 are close to each other,

then the corresponding limits x∗ and y∗ are also closed to each other.

Remark 6.2.2. The condition x0 ≤L x1 in Lemma 6.2.1 is satis�ed when x0 ∈ K ∩

F−1(−L). Indeed, if x0 ∈ K ∩F−1(−L), then −F (x0) ∈ L and x0 ∈ K. Thus x0 ≤L x0−

F (x0), and hence by the isotonicity of PK we obtain x0 = PK(x0) ≤L PK(x0−F (x0)) = x1.

Proposition 6.2.1. Let K ⊂ Rm be a closed convex set, F : Rm → Rm be a continuous

mapping and L be a pointed closed convex cone. Consider the sequence {xn}n∈N de�ned

by (6.1). Suppose that the mappings PK and I − F are L-isotone and x0 ≤L x1. Denote

by I the identity mapping. Let

Ω = {x ∈ K ∩ (x0 + L) : F (x) ∈ L},

Γ = {x ∈ K ∩ (x0 + L) : PK(x− F (x)) ≤L x}.

Consider the following assertions:

(i) Ω 6= ∅,

(ii) Γ 6= ∅,

(iii) The sequence {xn}n∈N is convergent and its limit x∗ is a solution of V I(F,K).

Moreover, x∗ is the L-least element of Γ.

Then, Ω ⊂ Γ and (i) =⇒ (ii) =⇒ (iii).
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Proof. Let us �rst prove that Ω ⊂ Γ. Indeed, let y ∈ Ω. Since PK is L-isotone, y−F (y) ≤L

y implies PK(y − F (y)) ≤L PK(y) = y, which shows that y ∈ Γ. Hence, Ω ⊂ Γ. Thus,

(i) =⇒ (ii) is trivial now.

(ii) =⇒ (iii):

Suppose that Γ 6= ∅. Since the mappings PK and I − F are L-isotone, the mapping

PK ◦ (I − F ) is also L-isotone. Similarly to the proof of Lemma 6.2.1, it can be shown

that {xn}n∈N is L-increasing. Let y ∈ Γ be arbitrary but �xed. We have y− x0 ∈ L, that

is x0 ≤L y. Suppose that xn ≤L y. We show, by induction, that xn ≤L y for all n ≥ 0.

Since the mapping PK ◦ (I − F ) is L-isotone, xn ≤L y implies that

xn+1 = PK(xn − F (xn)) ≤L PK(y − F (y)) ≤L y.

Thus, xn ≤L y for all n ∈ N. Then, Lemma 6.2.1 implies that {xn}n∈N is convergent and

its limit x∗ ∈ K ∩ (x0 + L) is a solution of V I(F,K). Since x∗ is a solution of V I(F,K),

we have that PK(x∗ − F (x∗)) = x∗ and hence x∗ ∈ Γ. Moreover, the relation xn ≤L y in

limit gives x∗ ≤ y. Therefore, x∗ is the smallest element of Γ with respect to the partial

order de�ned by L.

6.3 Variational Inequalities on cylinders

Let p, q be positive integers and m = p+ q. By a cylinder we mean a set K = Rp × C ⊂

Rp×Rq ≡ Rm, where C is a nonempty, closed and convex subset of Rq. In this section we

will specialize the results of the previous section for variational inequalities on cylinders.

Lemma 6.3.1. Let K = Rp × C, where C is an arbitrary nonempty closed convex set in
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Rq. Let G : Rp × Rq → Rp, H : Rp × Rq → Rq and

F = (G,H) : Rp × Rq → Rp × Rq.

Then, the variational inequality V I(F,K) is equivalent to the problem of �nding a vector

(x, u) ∈ Rp × C such that

G(x, u) = 0, 〈v − u,H(x, u)〉 ≥ 0, ∀v ∈ C (6.2)

for any v ∈ C.

Proof. The variational inequality V I(F,K) is equivalent to �nding an (x, u) ∈ Rp × C

such that

〈y − x,G(x, u)〉+ 〈v − u,H(x, u)〉 ≥ 0, ∀(y, v) ∈ Rp × C. (6.3)

Let (x, u) ∈ Rp × C be a solution of (6.3). If we choose v = u ∈ C in (6.3), then we

get 〈y − x,G(x, u)〉 ≥ 0 for any y ∈ Rp. Hence, G(x, u) = 0 and 〈(v − u), H(x, u)〉 ≥ 0.

Conversely, if (x, u) ∈ Rp × C is a solution of (6.2), then it is easy to see that it is a

solution of (6.3).

By using the notation of Lemma (6.3.1), the Picard iteration (3.12) can be rewritten as

 xn+1 = xn −G(xn, un)

un+1 = PC(un −H(xn, un)).
(6.4)

Consider the partial order de�ned by the extended Lorentz cone (2.9). Then, we obtain

the following proposition.

Theorem 6.3.1. Let K = Rp × C, where C is a nonempty, closed and convex subset
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of Rq. Let G : Rp × Rq → Rp, and H : Rp × Rq → Rq be continuous mappings, and

F = (G,H) : Rp × Rq → Rp × Rq. Let (x0, u0) ∈ Rp × C and consider the sequence

(xn, un)n∈N de�ned by (6.4). Let x, y ∈ Rp and u, v ∈ Rq. Suppose that x1−x0 ≥ ‖u1−u0‖e

(in particular, by Remark 6.2.2, this holds if u0 ∈ C and −G(x0, u0) ≥ ‖H(x0, u0)‖e) and

that y − x ≥ ‖v − u‖e implies

y − x−G(y, v) +G(x, u) ≥ ‖v − u−H(y, v) +H(x, u)‖e.

Let

Ω = {(x, u) ∈ Rp × C : x− x0 ≥ ‖u− u0‖e , G(x, u)− x0 ≥ ‖H(x, u)− u0‖e}

and

Γ = {(x, u) ∈ Rp × C : x− x0 ≥ ‖u− u0‖e,

G(x, u)− x0 ≥ ‖u− u0 − PC(u−H(x, u))‖e}

Consider the following assertions

(I) Ω 6= ∅,

(II) Γ 6= ∅,

(III) The sequence {(xn, un)}n∈N is convergent and its limit (x∗, u∗) is a solution of

V I(F,K). Moreover, (x∗, u∗) is the smallest element of Γ with respect to the partial

order de�ned by the extended Lorentz cone L(p, q) de�ned by (2.9).

Then, Ω ⊂ Γ and (I) =⇒ (II) =⇒ (III).

Proof. Let L be the extended Lorentz cone de�ned by (2.9). First observe that K ∩ (x0 +

86



Chapter 6. 6.4. AFFINE VARIATIONAL INEQUALITIES ON CYLINDERS

L(p, q)) 6= ∅. By using the de�nition of the extended Lorentz cone, it is easy to verify

that

Ω = K ∩ ((x0, u0) + L(p, q)) ∩ F−1(L) = {z ∈ K ∩ ((x0, u0) + L(p, q)) : F (z) ∈ L}

and

Γ = {z ∈ K ∩ ((x0, u0) + L) : PK(z − F (z)) ≤L(p,q) z}.

Let x, y ∈ Rp and u, v ∈ C. Since y − x ≥ ‖v − u‖e implies

y − x−G(y, v) +G(x, u) ≥ ‖v − u−H(y, v) +H(x, u)‖e,

it follows that I − F is L(p, q)-isotone. Hence, by Proposition 6.2.1 (with m = p + q),

Lemma 6.3.1 and Theorem 2.3.2, it follows that Ω ⊆ Γ and (I) =⇒ (II) =⇒ (III).

6.4 A�ne Variational Inequalities on Cylinders

Throughout this section, we will use the notation of Proposition 5.1.1, and we will suppose

that int(L) is nonempty and PK is L-isotone, which is true for the extended Lorentz

cone L = L(p, q). We will present a large class of monotone solvable a�ne variational

inequalities for which (5.1) is monotone and convergent.

Lemma 6.4.1. If

1. the mapping I − F is L-isotone, x0 ∈ K and F (x0) ∈ −L

and if there exists an x ∈ Rm such that

2. we have the inclusions x ∈ K, F (x) ∈ L and x− x0 ∈ L,

then (6.1) is convergent ( (6.4) is convergent if L = L(p, q)).
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Proof. By Remarks 6.2.2 and Condition 1 of the lemma we have x0 ≤L x1, and Condition

2 of the lemma means that x ∈ Ω, that is, Ω is nonempty. Hence, the result follows from

Proposition 5.1.1.

For any m×m matrixM and set Λ ⊆ Rm denote by int Λ the interior of Λ and by ‖M‖

the operator norm of M , i.e.,

‖M‖ = min{c ≥ 0 : ‖Mx‖ ≤ c‖x‖ for all x ∈ Rm},

and let MΛ := {Mx : x ∈ Λ}.

Lemma 6.4.2. Suppose that F is an a�ne mapping, that is, F (z) = Az + b, ∀z ∈ Rm,

where A is a constant m ×m nonsingular matrix and b ∈ Rm is a constant vector. Let

x0 ∈ A−1(−b−L). If (I−A)L ⊆ L and AL∩int(L) 6= ∅, then there exists an x ∈ Rm such

that F (x) ∈ L and x − x0 ∈ L and if K is a closed and convex set such that x, x0 ∈ K,

then (6.1) ( (6.4) if L = L(p, q)) is convergent.

Proof. Note that x0 ∈ A−1(−b − L) means that F (x0) ∈ −L and (I − A)L ⊆ L is

equivalent to I − F is L-isotone (as remarked by one of the reviewers of [53], in case of

L = Rm
+ , this implies that A has the Z-property, that is, it has nonpositive o�-diagonal

entries). Let

Ay ∈ AL ∩ int(L).

Then, y ∈ L and Ay ∈ int(L). Hence, there exists a su�ciently large positive real number

λ such that (1/λ)(Ax0 + b) + Ay ∈ L. Then, Ax + b ∈ L, where x = x0 + λy. Hence,

F (x) ∈ L and x− x0 ∈ L. Choose K to be a closed and convex set such that K contains

x0 and x (for example in case of the box constrained variational inequalities of the next

section choose the box large enough to contain x0 and x). Then, Conditions 1-2 of Lemma
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6.4.1 are satis�ed and therefore (6.1) ((6.4) if L = L(p, q)) is convergent.

In conclusion, satisfying Conditions 1-2 of Lemma 6.4.1 reduces to �nding nonsingular

matrices A such that (I−A)L ⊆ L and AL∩ int(L) 6= ∅. Let us concentrate on the latter

problem for L = L(p, q), the extended Lorentz cone, when the conditions of Proposition

5.1.1 become the conditions of Theorem 5.2.1.

Usually Ir denotes the identity matrix in Rr. However, in our case the notation I will

always be unambigous and therefore we omit the index r.

Proposition 6.4.1. Let α ∈]0, 1[ be a real constant, S be a p × p positive matrix with

all entries in the main diagonal from the interval ]α, 1[ and the sum of the elements

in each of its row less than 1, T be a q × q matrix such that ‖T‖ ≤ α, and A be the

block diagonal matrix given by A := ( I−S 0
0 I−T ). Then, (I − A)L(p, q) ⊆ L(p, q) and

AL(p, q) ∩ int(L(p, q)) 6= ∅.

Proof. For any (x, u) ∈ Rp × Rq we have

A(x, u) = ((I − S)x, (I − T )u).

Hence, (x, u) ∈ L(p, q) is equivalent to x ≥ ‖u‖e and A(x, u) ∈ int(L(p, q)) is equivalent

to (I − S)x > ‖(I − T )u‖e where x > y for x, y ∈ Rp means xi > yi for each i = 1, . . . , p.

From the restrictions imposed on S, it follows that both inequalities will be satis�ed if

the components of x are equal and large enough. Hence, (x, u) ∈ int(L(p, q)) 6= ∅ and

therefore AL(p, q) ∩ int(L(p, q)) 6= ∅. We have I − A = ( S 0
0 T ) and thus

(I − A)(x, u) = (Sx, Tu),

for any (x, u) ∈ L(p, q) (i.e., x ≥ ‖u‖e which implies x ≥ 0). Since S − αI is a positive
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matrix and x ≥ 0 we get

Sx ≥ αx ≥ ‖T‖x ≥ ‖T‖‖u‖e ≥ ‖Tu‖e.

Therefore, (I − A)(x, u) = (Sx, Tu) ∈ L(p, q), which shows that

(I − A)L(p, q) ⊆ L(p, q).

Remark 6.4.1. Going back to a general cone L with nonempty interior, in the literature

the matrices I − A for which (I − A)L ⊆ L are called L-positive and form the cone

P (L). It is known that P (L) has a nonempty interior as well (see Lemma 5 of Schneider

and Vidyasagar [61]). Hence, the inclusion (I − A)L(p, q) ⊆ L(p, q) also holds for some

open set in any neighbourhood of the matrices of the type ( I−S 0
0 I−T ) constructed above. By

continuity reasons, this open set can be chosen so that to satisfy AL(p, q)∩int(L(p, q)) 6= ∅

as well. We conclude that the set of a�ne mappings F satisfying the condition of Theorem

6.3.1 is large.

6.5 Unbounded box constrained variational inequali-

ties

Let p, q be positive integers, m = p + q and K =
∏m

`=1[a`, b`] be a box, where a`, b` ∈

R∪{−∞,∞} and a` < b`, for all ` ∈ {1, . . . ,m}. The i-th entry of the projection mapping
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is (see Example 1.5.10 in [12]):

(PK(x))i = P[ai,bi](xi) = mid(ai, bi, xi) =


ai if xi ≤ ai,

xi if ai ≤ xi ≤ bi,

bi if bi ≤ xi.

(6.5)

Let B =
∏p

i=1[ai, bi] ⊆ Rp and C =
∏q

j=1[ap+j, bp+j] ⊆ Rq. So we have

PK(y, v) = (PB(y), PC(v)) (6.6)

and the Picard iteration (6.1) becomes

xn+1
i = mid(ai, bi, (x

n − F (xn))i). (6.7)

Let L(p, q) be the extended Lorentz cone de�ned by (2.9). The next proposition shows

that the L(p, q)-isotonicity of a box is equivalent to the box being a cylinder.

Proposition 6.5.1. Let L(p, q) be the extended Lorentz cone. Then, the projection map-

ping PK is L(p, q)-isotone if and only if K = Rp × C where C =
∏q

j=1[ap+j, bp+j].

Proof. The su�ciency follows easily from item 1 of Theorem 2.3.2. For the sake of com-

pleteness we provide a proof here. Suppose that B = Rp. If (x, u) ≤L(p,q) (y, v), that is,

y − x ≥ ‖v − u‖e, then by the nonexpansivity of PC we get

PB(y)− PB(x) = y − x ≥ ‖v − u‖e ≥ ‖PC(v)− PC(u)‖e,
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which is equivalent to

PK(x, u) = (PB(x), PC(u)) ≤L(p,q) (PB(y), PC(v)) = PK(y, v).

Hence, PK is L(p, q)-isotone. Although, the necessity could also be derived from item 3

of the same theorem, it is more clear to prove this directly as follows. Suppose that PK

is L(p, q)-isotone. We need to prove that ai = −∞, bi = ∞, for any i = 1, . . . p. Assume

to the contrary, that there exist at least one k ∈ {1, . . . , p} such that either ak or bk is a

�nite real number.

Assume that bk is a �nite real number. The case ak is a �nite real number can be treated

similarly. Let u and v be two di�erent vectors in C. Then, PC(u) = u and PC(v) = v.

It is easy to choose x, y ∈ Rp such that yi − xi ≥ ‖v − u‖ and bi ≤ xi ≤ yi for all

i ∈ {1, . . . , p}. For example, we may choose xi = δikbk and yi = δikbk + ‖v − u‖, for all

i = {1, . . . , p}, where δik is the Kronecker symbol, that is, δik = 0 when i 6= k and δii = 1.

Then, (x, u) ≤L (y, v) and by (6.5) we have (PK(y, v))k = (PK(x, u))k, or equivalently

(PB(y))k = (PB(x))k. Hence, by (6.6) and the L-isotonicity of PK we get

0 = (PB(y)− PB(x))k ≥ ‖PC(v)− PC(u)‖ = ‖v − u‖ > 0,

which is a contradiction.

Hence, let K = Rp × C where C =
∏q

j=1[ap+j, bp+j], so the Picard iteration (6.4) can
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be transformed to xn+1 = xn −G(xn, un),

un+1
i = mid(ai, bi, u

n
i −Hi(x

n, un)); i = 1, . . . , q,

where Hi(x
n, un) denotes the ith entry of H(xn, un). Then results of Theorem 6.3.1 will

hold. In the next section we will present an example for this particularized result.

6.6 Numerical example

Let K = R2 × C where C = [0, 10]× [0, 10]. Let L be the extended Lorentz cone de�ned

by (2.9). Let f1(x, u) = 1/12(x1 + ‖u‖ + 12) and f2(x, u) = 1/12(x2 + ‖u‖ − 7.2). Then

it is easy to show that these two functions are L-monotone. Let w1 = (1, 1, 1/6, 1/3) and

w2 = (1, 1, 1/3, 1/6) so w1 and w2 are in L. For any two vectors (x, u) and (y, v) in K,

suppose (x, u) ≤L (y, v), we have y1−x1 ≥ ‖v−u‖ ≥ ‖u‖−‖v‖ by the triangle inequality.

Hence,

f1(y, v)− f1(x, u) =
1

12
(y1 − x1 − (‖u‖ − ‖v‖)) ≥ 0.

Similarly we can prove that if (x, u) ≤L (y, v), then f2(y, v) − f2(x, u) ≥ 0. It is obvious

that K is convex, and w1, w2 ∈ L. If (x, u) ≤L (y, v) holds, then

(f1(y, v)− f1(x, u))w1 + (f2(y, v)− f2(x, u))w2 ∈ L.

Thus, f1(x, u)w1 + f2(x, u)w2 ≤L f1(y, v)w1 + f2(y, v)w2. Therefore, the mapping f1w
1 +

f2w
2 is L-isotone. Hence, choose the function

(x−G, u−H) = f1w
1 + f2w

2 =

(
f1 + f2, f1 + f2,

1

6
f1 +

1

3
f2,

1

3
f1 +

1

6
f2

)
, (6.8)
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where G, H, f1 and f2 are considered at the point (x, u). It is necessary to check that all

the conditions in Theorem 6.3.1 are satis�ed. First, since

−G(0, 0; 0, 0) = (f1(0, 0; 0, 0) + f2(0, 0; 0, 0), f1(0, 0; 0, 0) + f2(0, 0; 0, 0)) = (0.4, 0.4)

and ‖H(0, 0; 0, 0)‖ =
√

2/6, it is clear that −G(0, 0; 0, 0) ≥ ‖H(0, 0; 0, 0)‖e. Next, we will

show that Ω is not empty, where

Ω = {(x, u) ∈ Rp × C : x− x0 ≥ ‖u− u0‖e , G(x, u)− x0 ≥ ‖H(x, u)− u0‖e}

Consider the vector (x̄, ū) = (31, 31, 3, 4) ∈ K. Obviously, x̄ = (31, 31) ≥
√

32 + 42e, and

since

G(31, 31, 3, 4) = (31, 31)− (f1 + f2, f1 + f2) = (24.6, 24.6)

and

H(31, 31, 3, 4) = (3, 4)−
(

1

6
f1 +

1

3
f2,

1

3
f1 +

1

6
f2

)
=

(
23

15
,
34

15

)
,

where the functions f1 and f2 are considered at the point (x̄, ū) = (31, 31, 3, 4), it is

straightforward to check that G(31, 31, 3, 4) ≥ ‖H(31, 31, 3, 4)‖e. Thus, (x̄, ū) ∈ Ω, which

shows that Ω 6= ∅.

Now, we begin to solve the V I. Suppose that (x, u) is a solution. First consider the

case F (x, u) = 0. Since G(x, u) = 0, and

x−G(x, u) = (f1 + f2, f1 + f2),
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where fi = fi(x, u), i = 1, 2, we have x1 = x2 = f1 + f2. Moreover, since

x1 =
1

12
(x1 + x2) +

1

6
‖u‖+ 0.4,

we get

x1 = x2 =
1

5
‖u‖+

12

25
. (6.9)

Since H(x, u) = 0, we have:

 u1 = 1
6
f1 + 1

3
f2

u2 = 1
3
f1 + 1

6
f2.

(6.10)

Then we can simplify the equations (6.10) by using (6.9), to obtain:

 u1 = 1
20
‖u‖ − 1

75

u2 = 1
20
‖u‖+ 19

75
.

(6.11)

So u2 = u1 + 4
15
. Substiting into (6.10), we have

u1

(
u1 −

28

995

)
= 0. (6.12)

But (6.11) can be transformed to

19u1 + u2 = ‖u‖,

or equivalently, by squaring both sides

361u2
1 + u2

2 + 38u1u2 = u2
1 + u2

2.
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Hence,

2u1(180u1 + 19u2) = 0. (6.13)

So, if u1 = 28
995

in (6.6), then u2 = u1 + 4
15

and (6.13) will not hold. Therefore, in this case,

the only solution is

(x, u) =

(
8

15
,

8

15
, 0,

4

15

)
.

Now, consider the case F (x, u) 6= 0. By using the variational inequality in (6.3) and

equation (6.9), we get

(v1 − u1)(300u1 − 15‖u‖+ 4) + (v2 − u2)(300u2 − 15‖u‖ − 76) ≥ 0. (6.14)

Note that the solution in this case should be on the boundary of K. If u1 = 10, then

10 ≤ ‖u‖ ≤ 20. So, the �rst term of (6.14) is always negative. For any �xed u2 we can

always �nd a v2 close enough to u2 such that (6.14) doesn't hold. If u2 = 0, the second

term of (6.14) is always negative. Similarly we could also �nd a v1 close enough to u1 such

that (6.14) doesn't hold. Then the only possibility left is the case when u1 = 0. Hence,

u2 = ‖u‖, and (6.14) can be simpli�ed to

(19v2 − v1 − 19u2)(15u2 − 4) ≥ 0

for any v = (v1, v2) ∈ C. Then the only solution is u = (0, 4
15

) which is the same as the

former case.

The Picard iteration can be completed by using Microsoft Excel. Note that since the

variational inequality is box constrained, the iteration shown by (6.7) will be calculated

by using the median function as shown in the following table. More precisely, we gave

the original value in the �rst row for n = 1 and calculated the value in the following row
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where the column for un1 and un2 were obtained by taking the median of the upper bound,

lower bound and un − H(xn, un). In the following four tables, we will iterate from four

points in di�erent directions of the set C.

n xn1 xn2 un1 un2

1 2 10 11 6

2 295
98

697
719

81
133

7
8

3 14
55

125
344

12
89

2
5

4 50
77

463
713

19
655

21
71

5 7
13

7
13

1
785

15
56

6 31
58

101
189

0 4
15

7 8
15

159
298

0 4
15

8 8
15

8
15

0 4
15

9 8
15

8
15

0 4
15

10 8
15

8
15

0 4
15

11 8
15

8
15

0 4
15

12 8
15

8
15

0 4
15
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n xn1 xn2 un1 un2

1 -6 -10 6 11

2 121
43

1251
514

122
511

47
93

3 63
85

232
313

29
558

29
91

4 56
97

474
821

9
818

5
18

5 51
94

389
717

2
869

7
26

6 38
71

372
695

0 4
15

7 8
15

356
667

0 4
15

8 8
15

423
793

0 4
15

9 8
15

8
15

0 4
15

10 8
15

8
15

0 4
15

11 8
15

8
15

0 4
15

12 8
15

8
15

0 4
15
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n xn1 xn2 un1 un2

1 -5 4 -12 7

2 115
17

1187
212

321
952

32
53

3 63
76

63
76

32
433

16
47

4 31
52

127
213

12
763

24
85

5 47
86

47
86

2
607

17
63

6 52
97

52
97

0 23
86

7 8
15

63
118

0 4
15

8 8
15

295
553

0 4
15

9 8
15

8
15

0 4
15

10 8
15

8
15

0 4
15

11 8
15

8
15

0 4
15

12 8
15

8
15

0 4
15
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n xn1 xn2 un1 un2

1 8 -19 -9 -15

2 424
37

4109
168

125
866

113
44

3 141
91

1296
657

36
157

1
2

4 11
15

463
713

39
782

25
79

5 19
33

96
131

4
379

23
83

6 45
83

80
139

1
453

25
93

7 38
71

45
83

0 4
15

8 8
15

213
398

0 4
15

9 8
15

372
697

0 4
15

10 8
15

447
838

0 4
15

11 8
15

8
15

0 4
15

12 8
15

8
15

0 4
15

6.7 Notes and comments

In this chapter, we extended the results of Chapter 5. Note that V I(F,K) is de�ned

on a set K rather than a cone K. We also considered the a�ne variational inequalities

on cylinders. In the corresponding section, we used properties involving such positive

operators of extended Lorentz cones. In Chapter 8, we will show more detailed results

about positive operators. In [14], Gabay and Moulin proved the following lemma:

Lemma 6.7.1. Let G = [P, {Si, ui}i∈P ] be a strategic game such that Si is a closed and

convex subset of a Hilbert space Xi and ui is Fréchet di�erentiable and pseudo-concave

with respect to its own actions, for each i. If S =
∏

i∈P Si, X =
∏

i∈P Xi and F : S → X
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is de�ned by

F (x) = (−∇1u1(x), . . . ,−∇|P |uI(x)),

then x∗ is a Nash equilibrium of G if and only if it is a solution of V I(F, S).

This results built a bridge between variational inequalities and Nash equilibrium. In

Chapter 7, we will adapt the results of this chapter to Nash equilibrium and formulate a

theorem corresponding to Theorem 6.3.1.

101



Chapter 7

Applications of Extended Lorentz cones

In this chapter, we will introduce some application of previous chapters.

7.1 Applications in Game theory

A well-known application of the saddle point is in Game theory. In this chapter, we

will just discuss noncooperative games. Before introducing that more deeply, let's �rst

introduce the seminal concept, Nash equilibrium (see [41, 42]) which is the corner stone

of modern economics. The Nash equilibrium point is a choice of strategies of two players

such that no player can be better o� by a unilateral change of his strategy. More explicitly,

suppose that P is the set of players. Let the strategy set of player i be Ki ⊆ Rni . Note

that Ki can be a countably or uncountably in�nite set and Ki is independent of the other

player's. The player i's cost function is ci(x) where x = (xi, i = 1, 2, . . . , |P |) describes the

players' strategies and xi ∈ Rni . Then the player i's task is to determine his strategy under

the condition that the other players' strategies are �xed but arbitrary. In the following,

we will see that variational inequality and complementarity problems have a very wide

range of application in game theory. Let us �rst introduce some basic de�nitions. Here
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for economists and mathematical economists, the payo� was measured mostly by a class

of utility functions [35]:

De�nition 7.1.1. Let O be a set of outcomes and % be a preference relation over O which

satis�es the following axioms

(A1) Completeness, that is, for any x, y ∈ O, either x % y or y % x, or both

(A2) Re�exivity, that is, for any x ∈ O, x % x

(A3) Transitivity, that is, if x % y and y % z then x % z

A function u : O → R is called a utility function representing % if for all x, y ∈ O

x % y ⇔ u(x) ≥ u(y)

Then we can de�ne the strategy set [34]:

De�nition 7.1.2. Let Hi denote the collection of the information set of player i, A the

possible actions in the game, and C(H) ⊆ A the set of actions possible at the information

set H. A strategy for player i is a function si : Hi → A such that si ∈ C(H) for all

H ∈Hi

Then we can de�ne a game in the normal form [34] and the Nash equilibrium [35]:

De�nition 7.1.3. For a game with players set P , the normal form representation G

speci�es for each player i a set of strategies Si and a payo� function ui(s1, . . . s|P |) giving

the (expected) utility function arising from strategies (s1, . . . , s|P |). Formally, we write

G = [P, {Si, ui}i∈P ].
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De�nition 7.1.4. A strategy vector s∗ = (s∗1, . . . , s
∗
|P |) is a Nash equilibrium if for each

player i and each strategy si ∈ Si the following inequality holds:

ui(s
∗) ≥ ui(si, s

∗
−i),

where (si, s
∗
−i) = (s∗1, . . . , s

∗
i−1, si, s

∗
i+1, . . . , s

∗
|P |).

For example, let us consider the following pro�t matrix simpli�ed from Prisoner's

Dilemma [35, p. 88]:

C D

C 2, 2 0, 3

D 0, 3 1, 1

In this game, the �rst column and �rst row denote the strategy sets of player 1 and

player 2, respectively. So the strategy set S1 = {C,D} (cooperation or defection). The

numbers in each entry denote the utility for player 1 and 2, respectively. For example,

u1(C,D) = 0 and u2(C,D) = 3. It is easy to verify that the Nash equilibrium point is

s∗ = (D,D). Sometimes, the utility function is continuous and di�erentiable. The Nash

equilibrium can be transformed to a solution of a variational inequality:

Proposition 7.1.1. ( [12] Proposition 2.2.9Page 156) Let each strategy set of player i,

Si ⊆ Rni, be compact and convex and each ui be continuously di�erentiable. Suppose that

for each �xed s∗−i, the function −ui(si, s∗−i) is convex in si. Then s∗ = (s∗1, . . . , s
∗
|P |) is a

Nash Equilibrium if and only if x ∈ SOL(F, S) where

S =
∏
i∈P

Si , F (s) = −(∇iui(s))i∈P .
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Proof. By the de�nition of Nash equilibrium, the function −ui(xi, x∗−i) will get its mini-

mum point on x∗i for each i = 1, . . . , |P |. Then by the Propsition 4.1.1, we have

(xi − x∗i )>∇xici(x
∗) ≤ 0, ∀xi ∈ Si. (7.1)

If we concatenate the individual variational inequalities, it is very clear that x∗ solves

V I(F, S) as long as it is the Nash equilibrium point.

Conversely, if x∗ is the solution of V I(F, S), we have

(y − x∗)TF (x∗) ≥ 0, ∀y ∈ S. (7.2)

Let yj, the j-th entry of y, be x∗j when j 6= i and keep the ith entry yi ∈ S arbitrary.

Then (7.2) implies (7.1).

By Corollary 3.2.1, we have the following proposition ( [12]).

Proposition 7.1.2. Let each strategy set of player i, Si ⊆ Rni, be compact and convex

and each ui be continuously di�erentiable. Suppose that for each �xed s∗−i, the function

−ui(si, s∗−i) is convex in si. Then the set of Nash equilibrium is nonempty and compact.

Proof. By Proposition 7.1.1, under this conditions, the Nash equilbrium problem is equiv-

alent to the V I(F, S) where

S =
∏
i∈P

Si and F (x∗) = (−∇xiui(x
∗))i∈P .

Because each Ki is compact and convex, it is easy to check that their Cartesian product

K is compact and convex. Meanwhile, F is continuous since each ui is continuously
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di�erentiable. By Corollary 3.2.1, we obtain the required conclusion.

Recall the Picard iteration (5.1):

 xn+1 = xn −G(xn, un),

un+1 = PC(un −H(xn, un)).

By applying Theorem 6.3.1, the reformulation of the Nash equilibrium as a variational

inequality, we get:

Theorem 7.1.1. Let G = [P, {Si, ui}i∈P ] be a strategic game such that each strategy

set of player i, Si ⊆ R, is compact and convex, P = {1, . . . , |P |} is the set of players,

|P | = p + q, and ui is di�erentiable. Denote F (s) = −(∇iui(s))i∈P = (G,H) where

G : Rp×Rq → Rp, H : Rp×Rq → Rq are continuous mappings. Let K = Rp×C, where C

is a nonempty, closed and convex subset of Rq and
∏p+q

i=p+1 Si ⊆ C. Let (x0, u0) ∈ Rp ×C

and consider the sequence (xn, un)n∈N de�ned by (6.4). Let x, y ∈ Rp and u, v ∈ Rq.

Suppose that x1 − x0 ≥ ‖u1 − u0‖e (in particular, by Remark 6.2.2, this holds if u0 ∈ C

and −G(x0, u0) ≥ ‖H(x0, u0)‖e) and that y − x ≥ ‖v − u‖e implies

y − x−G(y, v) +G(x, u) ≥ ‖v − u−H(y, v) +H(x, u)‖e.

Let

Ω = {(x, u) ∈ Rp × C : x− x0 ≥ ‖u− u0‖e , G(x, u)− x0 ≥ ‖H(x, u)− u0‖e}.

If Ω is nonempty, then the sequence {(xn, un)}n∈N is convergent and its limit (x∗, u∗) ∈

SOL(F,K). Moreover, if its limit (x∗, u∗) is an element of S =
∏p+q

i=1 Si, then (x∗, u∗) is

a Nash equilibrium.
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Proof. By Theorem 6.3.1, we know that (x∗, u∗) is the solution of V I(F,K). Then, by

Proposition 7.1.1 it is a Nash equilibrium point since S ⊆ K.

Remark 7.1.1. Note that in some circumstances, the Nash equilibrium point is not

unique. But in this theorem, we cannot �nd more than one Nash equilibrium point, since

the limit of a sequence is unique.

Example 7.1.1. Let us consider a classical example in Game theory, the Cournot model

[75] . Suppose there are only two �rms, �rm 1 and �rm 2 in the markets. These two

�rms produce same product. Both of them want to maximize their pro�t by setting their

quantities simutaneously. The price P (Q1, Q2) of the market is given by

P (Q1, Q2) =
a−Q1 −Q2

4
,

where Q1 and Q2 are quantities of �rm 1 and 2, respectively. Obviously, [0, a], which is

compact and convex, is the strategy set for each of them, we suppose their cost is zero.

Then their utility (pro�t) functions are

πi =
Qi(a−Q1 −Q2)

4
, i = 1, 2.

Hence p = q = 1, then it is easy to show that F = (−∇1π1,−∇2π2) is L(1, 1)-isotone. Let

(x0, u0) = (a/20, a/10) and C = R, we have (x1, u1) = (a/4, a/80), x1 − x0 ≥ |u1 − u0|.

All conditions of Theorem 7.1.1 are satis�ed. Then by the (6.4), we have

 xn+1 = 2xn−un+a
4

,

un+1 = 2un−xn+a
4

.
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Hence, we have:

xn = un +

(
3

4

)n
(x0 − u0).

Then we get:

un+1 +

(
3

4

)n+1(
1

2

)
(x0 − u0)− a

3
=

1

4

[
un +

(
3

4

)n(
1

2

)
(x0 − u0)− a

3

]
.

It implies that

un+1 = −
(

3

4

)n+1(
1

2

)
(x0 − u0) +

a

3
+

(
1

4

)n+1[
u0 + (

1

2
)(x0 − u0)− a

3

]
.

Therefore, when n→∞, we get u∗ = a/3, similarly, x∗ = a/3. Then (a/3, a/3) is a Nash

equilibrium point which is also shown in [75].

7.2 Applications to conic optimization problems

In Theorem 4.3.1, we showed that a class of constrained optimization problems can be

reformulated as mixed complementarity problems. In Theorem 5.2.1, we showed that a

mixed complementarity problem de�ned on the Cartesian product of a Euclidean space

and a closed convex cone can be solved by the Picard's iteration. Based on these two

theorems, we obtain the following:

Theorem 7.2.1. Let f : Rq 7→ R be a continuously di�erentiable convex function at

v ∈ Rq \ {0}, K ⊆ Rq be a closed convex cone with smooth boundary, A be a p× q matrix

of full rank and b ∈ Rp. Suppose that the intersection of the interior of K and the linear

subspace {v ∈ Rq : Av = b} is nonempty. Let L = L(p, q) be the extended Lorentz cone

de�ned by (2.9). Let x0 = 0 ∈ Rp, u0 = 0 ∈ Rq and consider the sequence {(xn, un)}n∈N

de�ned by (5.1) with G(x, u) = Au − b and H(x, u) = ∇f(u) − A>x. Let x, y ∈ Rp and
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u, v ∈ Rq. Suppose that y − x ≥ ‖v − u‖e implies

y − x+ A(u− v) ≥ ‖v − u+∇f(u)−∇f(v) + A>(y − x)‖e,

and x1 ≥ ‖u1‖e (in particular this holds when b ≥ ‖∇f(0)‖e).

Let

Ω = {(x, u) ∈ Rp × C : x ≥ ‖u‖e, Au− b ≥ ‖∇f(u)− A>x‖e}

and

Γ = {(x, u) ∈ Rp × C : x ≥ ‖u‖e, Au− b ≥ ‖u− PC(u−∇f(u) + A>x)‖e}.

Consider the following assertions:

(i) Ω 6= ∅,

(ii) Γ 6= ∅,

(iii) The sequence {(xn, un)}n∈N is convergent and its limit (x∗, u∗) is a solution of

CO(f, A, b,K). Moreover, (x∗, u∗) is a lower L(p, q)-bound of Ω and the L(p, q)-

least element of Γ.

Then, Ω ⊂ Γ and (i) =⇒ (ii) =⇒ (iii).

Proof. By Theorem 4.3.1, u∗ is a solution of CO(f, A, b,K) if and only if there exists x∗

such that (x∗, v∗) is a solution of MiCP (G,H,K, p, q). Hence, Theorem 5.2.1 implies our

result.

Example 7.2.1. Consider the following nonlinear optimization problems where p = 1
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and q = 2

min
1

2
‖u‖2

s. t. u1 + u2 = 2,

u ∈ R2
+.

(7.3)

It is easy to conclude that the optimal solution is u = (1, 1)>. However, here y − x ≥

‖v− u‖ doesn't imply y− x+A(v− u) ≥ ‖v− u+∇f(u)−∇f(v) +A>(y− x)‖e, where

A = (1, 1) and b = 2. Let us transform the above problem to an equivalent form:

min
1

2
‖u‖2

s. t.
1

5
(u1 + u2) =

2

5
,

u ∈ R2
+.

Here, A = (1/5, 1/5), b = 2/5, H(x, u) = ∇f(u) − A>x = (u1 − 1/5x, u2 − 1/5x)>.

Therefore, if y − x ≥ ‖v − u‖, then

y − x+ A(v − u) = y − x+
[(v1 − u1) + (v2 − u2)]

5

≥ y − x− 2

5
(y − x)

=
3

5
(y − x)

and

‖v − u+∇f(u)−∇f(v) + A>(y − x)‖ ≤ 2

5
(y − x).

Hence, y − x+ A(v − u) ≥ ‖v − u+∇f(u)−∇f(v) + A>(y − x)‖e and

Ω =

{
(x, u) ∈ Rp × C : x ≥ ‖u‖e, 1

5
u1 +

1

5
u2 −

2

5
≥ ‖u1 −

1

5
x, u2 −

1

5
x‖
}
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Then (x, u) = (5, 1, 1) ∈ Ω. It is obvious that b ≥ ‖∇f(0)‖ where b = 2
5
. Thus we have

 xn+1 = xn + 2
5
− 1

5
un1 − 1

5
un2 ,

un+1 = PR2
+

((1
5
xn, 1

5
xn)>).

If we start from (x;u)> = (0; 0, 0), it is easy to see that xn is always positive, then the

iteration becomes  xn+1 = xn + 2
5
− 1

5
un1 − 1

5
un2 ,

un+1 = (1
5
xn, 1

5
xn)>.

Then we have:

xn+1 = xn +
2

5
− 2

25
xn−1.

Let an = xn − 5, Hence,

an+1 = an − 2

25
an−1.

The corresponding characteristic equation (see Appendix) will be

λ2 = λ− 2

25
.

The roots of the above equation are

λ1 =
5 +
√

17

10
and λ2 =

5−
√

17

10
.

Therefore, there exists two constants c1, c2, such that an = c1λ1
n + c2λ2

n. When n→∞,

we have an → 0. Then x∗ = 5 and u∗ = (1, 1)> which is the optimal solution.

Remark 7.2.1. Note that the iteration will not converge in some special cases. For

example, if we revise G(x, u) = b−Ax, then the corresponding conditions will be changed:
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the inequality y − x ≥ ‖v − u‖e must imply

y − x+ A(v − u) ≥ ‖v − u+∇f(u)−∇f(v) + A>(x− y)‖e,

and x1 ≥ ‖u1‖e (in particular this holds when −b ≥ ‖∇f(0)‖e). So we need to transform

the numerical example into

min
1

2
‖u‖2

s. t. − 1

5
(u1 + u2) = −2

5

u ∈ R2
+

to satisfy the above implications. Hence the iteration will be

 xn+1 = xn + 2
5
− 1

5
un1 − 1

5
un2 ,

un+1 = PR2
+

(−(1
5
xn, 1

5
xn)>).

Although (x, u) = (−5, 1, 1) is the �xed point of the above iteration, if we start from

(x0, u0) = (0, 0, 0), it is easy to check that when n increases, un will stay at (0, 0) and xn

will increase by step length 0.4. Hence, the iteration will not converge. Indeed, we have

Ω =

{
(x, u) ∈ Rp × C : x ≥ ‖u‖e, 1

5
u1 +

1

5
u2 −

2

5
≥ ‖u1 +

1

5
x, u2 +

1

5
x‖
}
,

which is easy to check that it is empty. So, we cannot apply Theorem 7.2.1. This exam-

ple shows that the condition Ω 6= ∅ is necessary for the convergence of the iteration in

Theorem 7.2.1.
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7.3 Notes and comments

Lemma 6.7.1 and Theorem 7.1.1 are based on the equivalence of Nash equilibrium and

the corresponding variational inequality problem. Originally, in [12], the function is given

by cost functions and the consumer i is aiming to minimize the cost function ci. In the

above lemma and Theorem 7.1.1, we used utility functions instead. Then, the consumer

i aims to maximize the utility function ui which is equivalent to minimize −ui.

Unlike the KKT conditions, Section 7.2 showed an iterative scheme for solving con-

strained optimization problems rather than solving a system of nonlinear equations. We

showed a simple example as well. In Theorem 7.2.1, the function f is de�ned on Rq → R.

In the future, we may consider the functions de�ned on some other cones such as Lorentz

cone or Sn+.
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Positive operators of the Extended

Lorentz cones

In the Sections 5.4 and 6.4 we encountered the isotonicity of mappings with respect to

Extended Lorentz cones related to complementarity problems and variational inequalities,

respectively. The mappings in Section 6.4 are linear. These motivates the study of positive

operators (i. e, linear isotone mappings) of extended Lorentz cones.

8.1 Introduction

Recall the mutually dual (p, q)-type extended Lorentz cones:

L(p, q) = {(x, u) ∈ Rp × Rq : x ≥ ‖u‖e}

and

M(p, q) = {(x, u) ∈ Rp × Rq : 〈x, e〉 ≥ ‖u‖, x ≥ 0},
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where e = (1, . . . , 1) ∈ Rp. The extended Lorentz cones L(p, q) and M(p, q) become

Lorentz cones exactly in the special case p = 1. This is the only case when L(p, q) is

self-dual.

Let m = p+ q. The set Γ(C) of positive operators ( [30]) of a cone C ⊆ Rp×Rq ≡ Rp+q

is de�ned by

Γ(C) = {A ∈ R(p+q)×(p+q) : AC ⊆ C}.

The set of positive operators is a cone in Rm×m [30]. It can be easily checked that A is a

positive operator of C if and only if A> is a positive operator of C∗. The authors of [30]

introduced the characteristic matrix of the Lorentz cones as:

Jm =



1 0 . . . 0

0 −1 . . . 0

...
...

. . .
...

0 0 . . . −1


and showed that the Lorentz cone can be represented as

L(1, q) = {x ∈ Rm : x>Jmx ≥ 0 and xm ≥ 0}.

Moreover, they proved the following theorem which characterizes a positive operator by

a positive semide�niteness condtion [30]:

Theorem 8.1.1. Let A ∈ Rm×m. If A ∈ Γ(L(1, q) ∪ Γ(−L(1, q)), then there exists a

µ ≥ 0

A>J1+qA � µJ1+q (8.1)
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Conversely, if rank(A) 6= 1 and there is a µ ≥ 0 such that (8.1) holds, then

A ∈ Γ(L(1, q)) ∪ Γ(−L(1, q)).

Since L(p, q) andM(p, q) are extensions of the second-order cone, the problem of �nding

the positive operators of L(p, q) and M(p, q) arises naturally. The aim of this chapter is

to �nd both necessary conditions and su�cient conditions for a linear operator to be a

positive operator of L(p, q) or M(p, q) and state the similarities and di�erences between

the case p = 1 and p > 1. In [70] Sznajder determined all automorphism operators of

L(p, q). In particular, these operators are also positive operators of L(p, q). This shows

that the problem of �nding all positive operators of L(p, q) (or M(p, q)) is more di�cult

than the one solved by Sznajder. Although this problem is still open, the present note

presents some partial results, by �nding necessary conditions and su�cient conditions for

a linear operator to be a positive operator of L(p, q) (or M(p, q)).

The structure of the chapter is as follows. First we introduce some notations. Then,

we will prove a lemma about the characterization of an extended Lorentz cone. Finally,

based on this lemma, we present necessariy conditions and su�cient conditions for a linear

operator to be a positive operator of an extended Lorentz cone.

8.2 Notations

The complementarity set of K is de�ned by

C(K) = {(x, s) : x ∈ K, s ∈ K∗, 〈x, s〉 = 0} [70].

A matrix A ∈ Rm×m is said to be Lyapunov-like on K if 〈Ax, s〉 = 0 for all (x, s) ∈ C(K)

(see [59]) . Such matrix (transformations) are also characterized by the condition (see
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[13], [61])

etA ∈ Aut(K) for all t ∈ R,

where Aut(K) denotes the automorphism group of the cone K (an automorphism group

of a cone K is a set of invertible operators A such that A(K) = K). Note that any

automorphism is a positive operator.

8.3 Main results

First we need to present a lemma.

Lemma 8.3.1. Let M(p, q) be the extended Lorentz cone de�ned by (2.10). Then,

M(p, q) = {z = (x, u) ∈ Rp × Rq : z>Jz ≥ 0, x ∈ Rp
+}, (8.2)

where

J =

ee> 0

0 −I


and e ∈ Rp is the vector with all entries 1.

Proof. Suppose Ω = {z = (x, u) ∈ Rp × Rq : z>Jz ≥ 0, x ∈ Rp
+}. We have z = (x, u) ∈ Ω

if and only if z>Jz ≥ 0 and x ≥ 0, or equivalently.

0 ≤ z>Jz = x>ee>x− u>u = 〈x, e〉2 − ‖u‖2

and x ≥ 0. Thus, z = (x, u) ∈ Ω if and only if 〈x, e〉 ≥ ‖u‖ and x ≥ 0. Hence,

Ω = M(p, q).

The next theorem states necessary conditions for a linear operator to be a positive
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operator of the extended Lorentz cone M(p, q) = (L(p, q))∗, where L(p, q) is de�ned by

(2.9) and M(p, q) is de�ned by (2.10).

Theorem 8.3.1 (Necessary conditions for positive operators of M(p, q)). Let p > 1 and

q > 0 be integers. Let A ∈ R(p+q)×(p+q). If A is a positive operator of M(p, q), then the

following hold:

(i) The transpose of the �rst p rows of A are in L(p, q).

(ii) The �rst p columns of A are in M(p, q).

(iii) by adding any i-th column i = 1, . . . , p to the linear combination of the columns

p + 1, . . . , p + q with coe�cients u1, . . . , uq such that the Euclidean norm of u =

(u1, . . . , uq)
> is one, we obtain an element in M(p, q).

(iv) The sum of any i-th column i = 1, . . . , p with any (p + j)-th column j = 1, . . . , q is

in M(p, q).

(v) If A is M(p, q)-Lyapunov like, then etA ∈ Aut(M(p, q)) and hence it is in particular

a positive operator of M(p, q), for any t ∈ R.

Proof. (i) Since A is a positive operator ofM(p, q), the �rst p entries of Az are nonneg-

ative for any z ∈ M(p, q). Hence, the inner product of z and any row vector of the

�rst p rows of A is nonnegative. Therefore these row vectors must be in the dual

cone of M(p, q), that is, in L(p, q).

(ii) Since AT is a positive operator of L(p, q) = (M(p, q))∗, (ii) follows similarly to (i).

(iii) Let

βi = αi +

q∑
j=1

ujαp+j,
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where αt is the t-th column of A. Then, for any z ∈ L(p, q)

〈z, βi〉 = 〈z, αi〉+

q∑
j=1

uj〈z, αp+j〉.

By the Cauchy-Schwarz inequality, we have:

√√√√ q∑
j=1

〈z, αp+j〉2 =

√√√√ q∑
j=1

〈z, αp+j〉2

√√√√ q∑
j=1

u2
i ≥ −

q∑
j=1

uj〈z, αp+j〉.

So

〈z, βi〉 ≥ 〈z, αi〉 −

√√√√ q∑
j=1

〈z, αp+j〉2.

As the matrix A is a positive operator ofM(p, q), A> is a positive operator of L(p, q)

and therefore A>z ∈ L(p, q). Since 〈z, αk〉 is the k-th entry of A>z, by the de�nition

of L(p, q), we have that the right hand side of the above inequality is nonnegative.

Thus, βi ∈M(p, q).

(iv) Obviously, it is a special case of the above assertion.

(v) See [13], [61].

Theorem 8.3.2 (A su�cient condition for positive operators). If there exists a λ ≥ 0

such that A>JA − λJ is positive semide�nite and the transpose of the �rst p rows of A

are in L(p, q), then A is a positive operator of M(p, q).

Proof. Since the transpose of the �rst p rows of A are in L(p, q), the �rst p entries of Az

are nonnegative for any z ∈M(p, q). Since A>JA− λJ is positive semide�nite, we have

0 ≤ z>(A>JA− λJ)z = (Az)>J(Az)− λz>Jz. (8.3)
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By Lemma 8.3.1, λz>Jz ≥ 0. So, from (8.3), we get (Az)>J(Az) ≥ 0, hence by lemma

8.3.1, Az ∈M(p, q). Thus, we have that A is a positive operator of M(p, q).

Similar necessary conditions and su�cient conditions can be given for the positive op-

erators of L(p, q).

Proposition 6.4.1 provides another su�cient condition for positive operators. However,

one of the conditions of that proposition is not related to positive operators, it serves

another purpose. Therefore, we state a more general result here:

Theorem 8.3.3. Let: A ∈ R(p+q)×(p+q)

A =

S 0

0 T


where S ∈ Rp×p, T ∈ Rq×q and ‖T‖ = α for some α > 0. Then,

(I) A is a positive operator of L(p, q) if and only if each entry of S is nonnegative and

the sums of each row of S are at least α.

(II) Moreover, there exist λ ≥ 0 such that A>JA − λJ is positive semide�nite if and

only if the sums of each column of S are the same and at least α.

Proof. (I) "⇐" : Suppose that (x, u) ∈ L(p, q), then xj ≥ ‖u‖ where xj is the jth

entry of x. Let (y, v) = A(x, u) ∈ Rp × Rq, then yi =
∑p

j=1 sijxj ≥ ‖u‖
∑p

j=1 sij ≥

‖T‖‖u‖ ≥ ‖Tu‖ = ‖v‖, for any ith entry of y. Then, A(x, u) ∈ L(p, q), and hence

A is a positive operator of L(p, q).

"⇒": Suppose that A is a positive operator of L(p, q). By Theorem 8.3.1, it is

obvious that each entry of S is nonnegative. Let u0 6= 0 be the vector such that

‖Tu0‖ = α‖u0‖ (this u0 always exists). The vector (‖u0‖e, u0) ∈ L(p, q). Suppose
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that the sum of the jth row of S, sj < α. Then, A(‖u0‖e, u0) = (‖u0‖Se, Tu0)

and the jth entry of this vector will be sj‖u0‖ < α‖u0‖ = ‖Tu0‖. That means,

A(‖u0‖e, u0) /∈ L(p, q), which is a contradiction.

(II) "⇐": By the assumptions, if the sum of each column of S is s, we can conclude

that A>JA− λJ is :S> 0

0 T>


ee> 0

0 −I


S 0

0 T

− λ
ee> 0

0 −I

 =

(s2 − λ)ee> 0

0 λI − T>T

 .
(8.4)

Since ee> is positive semide�nite, there exists a λ ∈ (α2, s2) such that the A>JA−

λJ is positive semide�nite.

⇒: Suppose the si 6= sj where si and sj are the sums of the ith and jth column,

respectively. Similar to the above equation, the right lower block of A>JA − λJ

will be λI−T>T . So if A>JA−λJ is positive semide�nite, then λ ≥ α2 > 0. Then

the upper left block of A>JA− λJ will be in this form:



. . .

s2
i − λ . . . sisj − λ
...

. . .
...

sisj − λ . . . s2
j − λ

. . .


If A>JA−λJ is positive semide�nite, then (s2

i −λ)(s2
j −λ)− (sisj−λ)2 ≥ 0. Thus

λ(si − sj)2 ≤ 0. Since si 6= sj, λ ≤ 0, which is contradictory to λ ≥ α2 > 0. Now

suppose the sums of each row of S are the same. Then, from equation (8.4), s must

be at least α.
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8.4 Numerical example

In this section, we will show some numerical examples. Let us �rst consider the following

matrix satisfying the condtions of both I and II. Let: A ∈ R4×4

A =

S 0

0 T

 =



0.25 0.45 0 0

0.45 0.25 0 0

0 0 0.2 0.3

0 0 0.3 0.2


.

Here S is a 2×2 constant matrix where the sums of each row is at least 0.55 and the sum

of each column is 0.7. T is a 2 × 2 matrix with ‖T‖ ≤ 0.5 < 0.55 since the eigenvalues

of T are 0.5 and −0.1. So by the result of Theorem 8.3.3 I, AL(p, q) ⊆ L(p, q). Since

A = A>, then A is a positive operator of M(p, q), too. On the other hand, since every

entry of S is positive, the �rst 2 lines of A are in L(p, q) and

A>JA− λJ =



0.49− λ 0.49− λ 0 0

0.49− λ 0.49− λ 0 0

0 0 λ− 0.13 −0.12

0 0 −0.12 λ− 0.13


.

Then for every λ ∈ [0.25, 0.49], A>JA − λJ is positive semide�nite, and from Theorem

8.3.2 we can also conclude that A is a positive operator of M(p, q).
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Now, consider a slightly di�erent example :

A1 =



0.25 0.45 0 0

0.3 0.4 0 0

0 0 0.2 0.3

0 0 0.3 0.2


.

By using Theorem 8.3.3 (I), it is easy to verify that A is a positive operator of L(p, q).

However,

A>1 JA1 − λJ =



0.3025− λ 0.4675− λ 0 0

0.4675− λ 0.7225− λ 0 0

0 0 λ− 0.13 −0.12

0 0 −0.12 λ− 0.13


.

If A>1 JA1−λJ is positive semide�nite, then 0.25 ≤ λ ≤ 0.3025 and det(S>ee>S−λee>) ≥

0. So

(0.3025− λ)(0.7225− λ)− (0.4675− λ)(0.4675− λ) ≥ 0.

Then λ ≤ 0, which is a contradiction. That means there is no λ such that A>1 JA1 − λJ

is positive semide�nite. Hence the conditions of Theorem 8.3.2 are not satis�ed which

shows that the theorem describes only a su�cient condition for positivity.

8.5 Notes and comments

Theorem 2.3 in [30] (Theorem 8.1.1 in this chapter) showed a necessary and su�cient

condition for a linear operator to be a positive operator of Lorentz cone. But when p > 1,

the study of positive operators of an extended Lorentz cone L(p, q) (or M(p, q)) is much
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more di�cult. In Theorem 8.3.3, we showed a necessary and su�cient condition for a

block diagonal linear operator A to be a positive operator of L(p, q). In general, if

A =

 S R

W T

 ,
where R ∈ Rp×q and W ∈ Rq×p, then A(x>, u>)> = (Sx + Ru,Wx + Tu)>. Hence,

each entry is determined by both x and u. It is di�cult to ensure the �rst p entries of

A(x>, u>)>, that is, Sx + Ru, to be all positive or all negative simutaneously. It seems

hard to �nd a uni�ed feature of such a positive operator A. The example A1 shows that

even if A>JA − λJ will not be positive semide�nite for λ ≥ 0, A may still be a positive

operator of the extended Lorentz cone.

To improve our results, we may consider some other direction to investigate the neces-

sary conditions and su�cient conditions for a linear operator to be a positive operator.

For example, we may consider that each entry of S is su�ciently larger than ‖R‖. Then

each entry of Sx + Ru will be positive. But we would still need to consider that these

entries are larger than ‖Wx+ Tu‖, which is a di�cult task.
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Conclusion and future works

In this thesis, we extended the notion of Lorentz cones and we showed that the projection

onto a set given as the Cartesian product between an Euclidean space and any closed

convex set C in another Euclidean space (called cylinder) is isotone (i.e., monotone)

with respect to the order de�ned by an extended Lorentz cone L. We called such sets

L-isotone projection sets and generated all of them. When C is a closed convex cone

we used the L-isotonicity of the above Cartesian product to show the convergence of

a Picard type iteration to a solution of a general mixed complementarity problem, and

we have given some examples. Moreover, we presented a Picard iteration for solving

a variational inequality on a cylinder via a �xed point formulation. The iteration is

monotonically convergent to the solution of the variational inequality with respect to the

partial order de�ned by an extended Lorentz cone. The monotone convergence is based on

the isotonicity of the projection onto a cylinder with respect to the partial order de�ned

by the extended Lorentz cone. Our iterative idea also works when C is a general closed

convex set which is not a closed convex cone.

A more ambitious plan would be to �nd all pairs of closed convex cones (K,L) (or more

125



Chapter 9.

generally, pairs of closed convex sets (K,L) with L a pointed closed convex cone), in a

Euclidean space such that K is L-isotone. An even more ambitious plan is to determine

all the triples (K,L,M) such that K is a closed convex set, L and M are pointed closed

convex cones and y − x ∈ L implies PKy − PKx ∈ M . Although these plans are quite

utopistic, any positive step in this direction could lead to interesting applications to

complementarity problems (variational inequalities).

Related to these problems we state

1. Given a cone, determine all closed and convex sets onto which the projection is

isotone with respect to the order de�ned by the cone.

2. Given a closed and convex set, determine all cones such that the projection onto

the closed and convex set is isotone with to respect the partial order de�ned by the

cone.

3. Determine the closed and convex sets for which there exists a cone, such that the

projection onto the closed and convex set is isotone with respect to the partial order

de�ned by the cone.

Although the above questions are di�cult to answer in general, any particular result about

them can be important for solving complementarity problems and/or variational inequal-

ities by using a monotone convergence. Moreover, any such result could be important in

statistics as well, where the isotonicity of the projection may occur in various algorithms

(see for example the algorithms considered in Guyader, Jegou, Németh and Németh [17]).

Some partial results related to Questions 1, 2 and 3 above can be found in Németh and

Németh [47,48] and in this thesis, but there is still much to be done.

Chapter 4 presented an explicit connection between conic optimization and comple-

mentarity problems, connection which comes from the complementary slackness relation
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of the Karush-Kuhn-Tucker conditions. Although the complementary slackness suggests

that such a connection should exist, it is di�cult to �nd it explicitly in the literature.

Hopefully, this chapter will be a useful reference for some readers.

In Chapter 7, we combined results from previous chapters and applied them in game

theory and conic optimization. In fact, Theorem 7.1.1 doesn't ensure that all the Nash

equilibrium points are found. So, how can we get all the Nash equilibrium points under

the circumstances of Theorem 7.1.1? Note that in Theorem 7.1.1 and Theorem 7.2.1, the

strategy set must be compact and convex. We can raise the following questions: If we drop

at least one of these two conditions (closed or convex), can we still �nd a class of variational

inequalities whose solution is equivalent to the Nash equilibrium points (for example,

where Ki is �nite for each i ∈ P )? Algorithmic game theory is a hot area nowadays;

how can Theorem 7.1.1 be applied in this area? In Theorem 7.1.1, we considered games

with the di�erentiable utility functions. In the future we aim to generalize this results to

continuous games de�ned in [55,68]. Moreover, in classical microeconomic theory, all the

assumptions of utility functions have corresponding economic interpretations. How can

we inteprete these conditions in Theorem 7.1.1? These open questions will be interesting

in our further studies. In the future, in Section 7.2 (similar to Section 7.1), we can consider

applying it to numerical optimization algorithms in terms of explicit functions G,H. In

Chapters 4 and 7, the constraint function G must be linear, how will the results change

if we drop this condition? We may �rst consider the case when G is quadratic. This is

an open question, too.

The positive operators on the Lorentz cone has been completely classi�ed in Loewy

and Schneider [30]. This classi�cation suggests that the class of a�ne mappings satisfy-

ing Theorem 5.2.1 is even much larger than the one presented in Section 6.4. However

the complete classi�cation of the a�ne mappings which satisfy the conditions of Theorem
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5.2.1 is still an open question. In Chapter 8, we showed necessary conditions and su�cient

conditions for a linear operator to be a positive operator of an extended Lorentz cone.

Since the �rst p entries (rather than the �rst entry only of vectors in L(1, q)) must all be

nonnegative, some extra conditions (such as the �rst p lines are in L) are needed to ensure

that A is a positive operator when A>JA−λJ is positive semide�nite. In Section 8.3, we

further studied the Proposition 6.4.1 and showed su�cient and necessary conditions for

a block diagonal operator to be a positive operator of an extended Lorentz cone. In the

future, we will consider a more general form of linear operators and wish to �nd the neces-

sary and su�cient conditions for them to be positive operators of extended Lorentz cones.
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Appendix

To solve a constant-recursive sequence of the form:

axn+2 + bxn+1 + cxn = 0,

we can consider the following characteristic equation (polynomial):

aλ2 + bλ+ c = 0.

If two (not necessarily real) roots are λ1 and λ2. For each n ∈ N, xn will take the form

of d1λ
n
1 + d2λ

n
2 where d1 and d2 are determined by the values of x1 and x2. For example,

consider the Fibonacci number:

xn+2 = xn+1 + xn,

where x1 = x2 = 1. Then its characteristic equation is λ2 − λ− 1 = 0. Then:

λ1 =
1 +
√

5

2
, λ1 =

1−
√

5

2
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and

xn = d1λ
n
1 + d2λ

n
2 .

Let n = 1 and n = 2, we get:

d1 =
1√
5
and d2 =

−1√
5
.

Then we have:

xn =
1√
5

[(
1 +
√

5

2

)n
−
(

1−
√

5

2

)n]
.

More details can be found in [16].
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