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Abstract: In this work, we use deep neural autoencoders to segment oil spills from Side-Looking1

Airborne Radar (SLAR) imagery. Synthetic Aperture Radar (SAR) has been much exploited for2

ocean surface monitoring, especially for oil pollution detection, but few approaches in the literature3

use SLAR. Our sensor consists of two SAR antennas mounted on an aircraft, enabling a quicker4

response than satellite sensors for emergency services when an oil spill occurs. Experiments5

on TERMA radar were carried out to detect oil spills on Spanish coasts using deep selectional6

autoencoders and RED-nets. Different configurations of these networks were extensively evaluated7

and the best topology significantly outperformed previous approaches, correctly detecting 100%8

of the spills and obtaining an F1 score of 93.01% at the pixel level. The proposed autoencoders9

perform accurately in SLAR imagery that has artifacts and noise caused by the aircraft maneuvers,10

in different weather conditions and with the presence of look-alikes due to natural phenomena such11

as shoals of fish and seaweed.12

Keywords: Oil spill detection; Side-Looking Airborne Radar; Neural networks; Supervised13

learning; Radar detection14

1. Introduction15

A quick response from governments is required in situations of marine pollution due to oil16

spills [1]. When an oil slick is detected, the authorities activate the emergency protocols in order17

to control the environmental impact and the ecological damage in the sea. The most relevant18

technologies and spaceborne sensors for oil-spill sensing are described in [2] and [3,4]. CleanSeaNet19

is an example of a monitoring service of oil spills and vessels provided by the European Maritime20

Safety Agency (EMSA). Governments use mainly two kinds of sensors to carry out the monitoring21

of the sea surface: Synthetic Aperture Radar (SAR) installed on satellites (ERS-1/2, JERS-1, Envisat22

ASAR, RADARSAT-1, RADARSAT-2, COSMO-SkyMed, Sentinel-1, Sentinel-2, ALOS-2, TerraSAR-X23

among others) as in CleanSeaNet, and Side-Looking Airborne Radar (SLAR) or another airborne24

miniaturized radar as in [5]. Both sensors can be used for oil slick detection.25

The SLAR used in this work is a SAR mounted on aircraft instead of a satellite and it has two26

radar antennas. SLAR and SAR sensors have some differences as mentioned in [6]. On the one27

hand, SLAR has a range and resolution smaller than SAR and, consequently, the complexity in the28

detection is higher due to the lower details in the acquired image. However, SLAR does not depend29

Submitted to Sensors, pages 1 – 17 www.mdpi.com/journal/sensors

http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Version February 28, 2018 submitted to Sensors 2 of 17

on the orbit because it is mounted on an aircraft, and therefore it has a better response time than30

SAR. As aircraft can modify their altitude and flight path during signal acquisition, SLAR images31

have different perspective and scale. In addition, these images have artifacts and noisy areas caused32

by the aircraft motion (turns, slips, etc.) and by the location of the two SLAR antennas under the33

aircraft wings. These artifacts and types of noise are not present in SAR images in which speckle34

(with granular appearance) is the most common noise.35

The oil-spill detection strategies using SAR can be categorized into two groups. The first36

contains all the approaches that use the raw signals of the radar as well as polarimetric (PolSAR) or37

interferometric features (InSAR), and so forth to discriminate the oil slicks [7,8]. The second includes38

the methods that use intensity images as a representation of the backscattering coefficient of the signal39

[9,10]. In addition, some works such as [11] combine image and polarimetric features extracted from40

oil spills and look-alikes in order to discriminate between both targets.41

In the state of the art there are many works which address oil spill detection using machine42

learning techniques. These methods include Tree Forests [12], Support Vector Machines (SVM)43

[13,14], Generalized Linear Models (GLM) and Boosting trees among others, as in [15,16] where44

both a Bayesian classifier and several evolutionary algorithms were used to select image features45

for classifying oil spills and look-alikes. Neural networks have also been used for this task, using as46

input different features from radar images characterizing an candidate oil slick [17,18]. The choice of47

the classifier architecture is dependent on the problem and when the features are properly selected48

there are no significant differences in the results, as shown in [19] with PolSAR data.49

In some previous works, image processing and computer vision algorithms were used to50

automatically extract features and segment regions from radar images. These data can be fed to a51

network such as in [20], in which two neural networks were proposed, one to detect dark formations52

and another to classify them as oil slicks or look-alikes. In the past, neural network architectures53

typically had only three layers (input, hidden and output) as in [21], where a Multilayer Perceptron54

(MLP) and the Radial Basis Function (RBF) networks were used. The classification can be performed55

at two levels of detail: classification of pixels representing oil slicks when the number of images in56

the dataset is small but they have a high resolution [22] or scenarios where the dataset contains many57

images [11].58

More recently, many approaches based on deep learning techniques have been proposed59

to increase the success rate in image classification tasks. The main motivation of using deep60

convolutional neural networks (CNN) is their ability to extract suitable features for the task at hand, as61

it is very difficult to properly select the features that can allow us to discriminate between oil spills and62

other natural phenomena due to the similarity of their representations as dark areas in the image. In63

this line, Chen et al. [23] selected and optimized the PolSAR features reducing the feature dimensions64

used as input of the classifier to distinguish oil spill and biogenic look-alikes through layer-wise65

unsupervised pre-training. For this task they use Stacked AutoEncoders (SAE, autoencoders with66

multiple layers) and Deep Belief Networks (DBN). In addition, Guo et al. [24] proposed a CNN to67

identify dark areas in SAR images as crude oil (oil slick), plant oil and oil emulsion (both look-alikes),68

reaching average success rates of 91% vs the 80% of a traditional neural network. In all these works,69

authors used SAR imagery.70

There are many oil slick detection methods that use SAR imagery as input. However, it is71

uncommon to find detection methods using SLAR imagery. Two recent works in this line were72

presented in [6] and [25]. The first one is based on traditional image segmentation techniques whereas73

the second one uses Recurrent Neural Networks (RNN) to perform the detection. Two decades ago,74

Ziemke [26] already proposed a RNN using SAR images for oil spill detection, showing robustness to75

variations in both weather conditions and illumination changes.76

Unlike the previous works using SLAR, we propose an approach that is able to detect oil77

slicks even in the presence of look-alikes. Our method, which is an extension of a previous study78

presented in [27], is focused on solving the oil-slick region segmentation problem using deep learning79
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techniques, particularly denoising autoencoders using Convolutional Neural Networks as encoder80

and decoder functions.81

The rest of the paper is structured as follows: Section 2 introduces background on autoencoders,82

Section 3 presents the proposed method, followed by the dataset description in Section 4, the83

evaluation in Section 5, and finally the conclusions and future work in Section 6.84

2. Autoencoder architecture85

Autoencoders were proposed decades ago by Hinton and Zemel [28], and since then they have86

been an active research field [29]. Autoencoders consist of feed-forward neural networks trained to87

reconstruct their input, that is, the input and the output must be exactly the same. This problem88

may seem trivial as their goal is to learn the identity function f (x) = x, but in practice we impose89

some restrictions in order to force it to generate a compressed intermediate representation. This is90

achieved by using intermediate layers with a size smaller than the inlet layer. This bottleneck forces91

the network to extract the most representative characteristics of the sample that allow its subsequent92

reconstruction, thus generating a meaningful intermediate representation.93

Figure 1 shows a graphical scheme of an autoencoder. This type of network is divided in94

two parts, the first part (called the encoder) receives the input and creates a latent (or encoded)95

representation of it, and the second part (the decoder) takes this intermediate representation and96

tries to reconstruct the input. Formally speaking, given an input x, the network must minimize the97

divergence L(x, g( f (x))), where f and g represent the encoder and decoder functions, respectively.98

The encoder function provides a meaningful compact representation which might be of great interest99

as regards feature learning or dimensionality reduction [30].100

Some variations of autoencoders have been proposed in the literature to solve other kind of101

problems. For example, denoising autoencoders [31] are an extension trained to reconstruct the input102

x from a corrupted version (usually generated using Gaussian noise) of it, denoted as x̂. Thus,103

these networks are trained to minimize the divergence L(x, g( f (x̂))), therefore they not only focus104

on copying the input but also on removing the noise [31–33].105

Autoencoders, and particularly denoising autoencoders, have been successfully used in many106

fields such as music, character recognition or medical image segmentation, but in addition they107

are currently being used in remote sensing to perform recognition and scene classification. For108

example, Zhao et al. [34] combined Stacked Autoencoder (SAE) and Extreme Machine Learning (ELM)109

techniques for target recognition from raw data of High-Resolution Range Profile (HRRP) acquired110

from three different aircraft, achieving a faster time response than other deep learning models. Others111

authors such as Kang et al. [35] used 23 baseline features and three-patch Local Binary Pattern (LBP)112

features that were cascaded and fed into a SAE for recognition of 10-class SAR targets. In addition,113

Liang et al. [36] presented a classification method based on Stacked Denoising Autoencoders (SDAE)114

in order to classify pixels of scenes (acquired from GF-1 high resolution satellite) into forest, grass,115

water, crop, mountains, etc.116

In this paper we propose to use autoencoders which receive as input the signal of SLAR sensors117

and return as output the areas detected as oil spills.118

3. Proposed method119

Based on the idea of denoising autoencoders, we use a type of segmentation autoencoder as120

proposed in [37] but specifically designed for oil spill detection. In this case, we do not aim to learn121

the identity function as autoencoders do, nor an underlying error as in denoising autoencoders, but122

rather a codification that maintains only those input pixels that we select as relevant. This is achieved123

by modifying the training function so that the input is not mapped identically at the output. Instead,124

we train it with a ground truth of the input image pixels that we want to select. From here on, we125

will refer to this model as Selectional AutoEncoder (SelAE). The SelAE is trained to perform a function126
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Figure 1. Example of a RED-Net topology. The number of layers can change according to the chosen
topology. The symbol ⊕ denotes element-wise sum of feature maps. F represents the number of
selected filters and (K× K) the size of the kernel.

such that s : R(w×h) → [0, 1](w×h), or in other words, a binary map over a w× h image that preserves127

the input shape and outputs the decision in the range of [0, 1].128

Following the autoencoder scheme, the network is divided into encoding and decoding stages,129

where the encoder and decoder functions can be seen as a translator between the input, the130

intermediate representation, and the desired segmentation. The topology of an SelAE can be quite131

varied. However, we have considered only convolutional models because they have been applied132

with great success to many kinds of problems with structured data, such as images, video, or audio,133

demonstrating a performance that is close (or even superior in some cases) to the human level [38].134

The topology of the network consists of a series of convolutional plus Max Pooling layers until135

reaching an intermediate layer in which the encoded representation of the input is attained. It then136

follows a series of convolutional plus upsampling layers that generates the output image with the137

same input size. All layers have Batch Normalization [39] and Dropout [40], and use ReLU as activation138

function [41].139

The last layer consists of a set of neurons with sigmoid activations that predict a value in the140

range of [0, 1]. Those pixels whose selection value exceeds the selectional level δ – which can be seen141

as a threshold– are considered to belong to an oil spill, whereas the others are discarded.142

In addition, in this work we incorporate into this architecture a series of residual connections143

as proposed in [42]. This type of topology, called RED-Net (Very deep Residual Encoder-Decoder144

Network), includes residual connections from each encoding layer to its analogous decoding layer145

(see Figure 1), which facilitates convergence and leads to better results. Moreover, down-sampling146

is performed by convolutions using stride, instead of resorting to pooling layers. Up-sampling147

is achieved through transposed convolution layers, which perform the inverse operation to a148

convolution, to increase rather than decrease the resolution of the output.149

We applied a grid-search technique [43] in order to find the network architecture with the best150

configuration of layers and hyperparameters (filters of each convolution, the size of the kernel, and151

the dropout value). The results of this experimentation are included in Section 5.4, although we152

anticipate the best topologies for each network in Table 1.153
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Figure 2. Example of a SLAR sequence from our dataset (left) and its corresponding ground truth
(right) with the oil spills labeled at the pixel level. The SLAR image shows an island on the left side,
a vertical zone of noise caused by junction of the signal from the two antennas of TERMA radar, and
two horizontal bands of noise at the top produced by aircraft maneuvers.

Table 1. Best architectures found after the grid-search process.

Autoencoder type: SelAE RED-Net

Input image size: 256x256 px 384x384 px

Number of layers: 4 6

Residual connections: No Yes

Filters per layer: 128 128

Kernel size: 5x5 5x5

Down-sampling: MaxPool(2x2) Stride(2x2)

Dropout (%): 0 0

Selectional threshold δ: 0.5 0.8

3.1. Training stage154

As autoencoders are feed-forward networks, they can be trained by using conventional155

optimization algorithms such as gradient descent. In this case, the tuning of the network parameters156

is performed by means of stochastic gradient descent [44] considering the adaptive learning rate157

proposed by Zeiler [45]. The loss function (usually called reconstruction loss in autoencoders) can158

be defined as the squared error between the ground truth and the generated output. In this case,159

we use the cross-entropy loss function to perform the optimization of the network weights during a160

maximum of 100 epochs, with a mini-batch size of 8 samples. The training process is stopped if the161

loss does not decrease during 10 epochs.162

In order to train the network we generated a ground truth marking those pixels of the SLAR163

input images which correspond to oil spills. Figure 2 shows an example of a SLAR sequence (left)164

and its corresponding ground truth (right) with the oil spills labeled in black.165

In this work, the network is fed with the raw data and the ground truth segmentations, so it166

must learn to discriminate the areas with oil spills from the rest of the data. That is, no preprocessing167

is performed on these images to eliminate the noise, as happens in other approaches such as in [46],168

nor any postprocessing is done to refine the detection.169

The next section details all the information about the dataset and the SLAR images used.170

4. Dataset171

In order to validate the effectiveness of the proposed method, we used a dataset containing172

38 flight sequences supplied by the Spanish Maritime Safety and Rescue Agency (SASEMAR).173

SASEMAR is the public authority responsible for monitoring the Exclusive Economic Zones (EEZ)174

in Spain and its procedures are based on reports from the European Maritime Safety Agency (EMSA).175
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The data provided by the SLAR sensor of each of these sequences was digitized in images with a176

resolution of 1,150×481 pixels.177

The SLAR samples were acquired by a TERMA SLAR-9000 mounted on a variant of the178

EADS-CASA CN-235-300 aircraft for search-and rescue missions (see Figure 3). This aircraft model179

reaches a maximum cruise speed of 236 kn, a flight range of 1,565 nmi and around 2,700 nmi with180

and without payload, respectively. Its flight endurance is close to 9 hours. The SLAR samples are181

digitalized as 8-bit integers due to the constraints of the monitoring equipment installed on the182

aircraft. Our autoencoder architecture uses as input these SLAR images in the same format in which183

they were generated by the TERMA software.184

The dataset was captured by the aircraft on Spanish coasts at an approximate average altitude185

of 3,271 feet (although the most common altitude for our missions was around 4,550 feet) and with a186

wind speed ranging between 0 and 32 kn, the most usual being 14 kn.187

Figure 3. SASEMAR 102 (Variant of CN-235-300 aircraft model for search-and-rescue missions) used
to obtain the SLAR sequences, manufactured by EADS-CASA.

As stated before, for the ground truth we used a binary mask for each SLAR image, delimiting188

the pixels corresponding to oil spills. It is important to note that this labeling is performed at a pixel189

level since the goal is to evaluate both the detection and the precise location of the spills. This way190

we can provide relevant information such as the position, the size and the shape of oil slicks in order191

to track them.192

Figure 4 shows four examples of SLAR images from our dataset. They contain several oil spills193

(marked with a bounding box in Figures 4a and 4b), along with other types of artifacts such as boats194

(small bright points), coast (Figure 4d), look-alikes, and noise. Figures 4b and 4c contain many195

examples of look-alikes, with elongated shapes that are very similar to those of actual spills. All196

figures show a central band of noise, which is produced by the union of the information from the two197

SLAR sensors. In addition, the upper part of Figures 4a and 4d shows the noise generated by turning198

maneuvers of the airplane and the effect produced when the aircraft changes its altitude, respectively.199

From the 38 flight sequences, 22 contain examples of oil spills and 4 of look-alikes. Within these200

examples, the spots only represent 0.32% of the pixels in the image, which creates a very unbalanced201

dataset. To evaluate the method properly in the presence of unbalanced data we use the F1 and in202

addition other metrics described in section 5.1.203

In all the experiments we used an n-fold cross validation (with n = 5), which yields a better204

Monte-Carlo estimate than when solely performing the tests with a single random partition [47]. Our205

dataset was consequently divided into n mutually exclusive sub-sets, using the data of each flight206

sequence only in one partition and maintaining the percentage of samples for each class. For each207

fold, we used one of the partitions for test (20% of the samples) and the rest for training (80%).208
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(a) (b)

(c) (d)

Figure 4. Examples of SLAR images from our dataset showing oil spills (marked with a bounding
box), ships (small bright points marked with circles), look-alikes (elongated shapes in figures (b) and
(c)), the noise produced by the sensor (the central vertical band that appears in all the images) and the
aircraft maneuvers (the horizontal bands that appear in the upper part of figure (a)), and an example
of coast (on the right side of figure (d)). Figures (c) and (d) do not contain any example of oil spills,
however they have other artifacts that can lead to confusion.

For tuning the hyperparameters (see Section 5.4) the training partition was divided into two,209

assigning 10% of these samples for validation and the rest (70%) for training. The classifier was210

trained and evaluated n times using these sets, after which the average results plus the standard211

deviation σ were reported.212

5. Evaluation213

This section shows the experiments performed. First, we describe the metrics used for the214

evaluation, followed by the augmentation methodology and the type of normalization applied. Then215

we present the best hyperparameters found by the grid-search process and finally, the results obtained216

by the proposed method.217
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The following experiments were made on an SGI ICE XA system1 with two 2.1 GHz, 18-core218

Intel(R) Xeon E5-2695 (Broadwell) and 256GB RAM. The computational resources from this machine219

were mainly exploited to parallelize the grid-search process in order to explore several network220

configurations.221

5.1. Evaluation metrics222

Three evaluation metrics widely used for this kind of tasks were chosen to evaluate the223

performance of the proposed method: Precision, Recall, and F1, which can be defined as:224

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2 · TP

2 · TP + FN + FP
(3)

where TP (True Positives) denotes the number of correctly detected targets (pixels), FN (False225

Negatives) the number of non-detected or missed targets, and FP (False Positives or false alarms)226

the number of incorrectly detected targets.227

It should be noted that the F1 metric is suitable for unbalanced datasets but it is not the most228

adequate for this task since it measures the precision of the results at the pixel level but not whether229

the algorithm has detected the spill or not. For this reason, we also use the Intersection over Union230

(IoU) for evaluation, measuring whether the algorithm correctly detects all the spills present in the231

image and also how well it detects their size and location.232

In order to calculate the IoU, we map each object proposal (p) to the ground-truth (g) bounding233

box with which it has a maximum IoU overlap. Bounding boxes are calculated to include the groups234

of pixels (or blobs) marked as 1 in the network output after applying the selectional threshold or in235

the ground-truth images. A detection is considered as TP if the area of overlap (ao) ratio between the236

predicted bounding box (Bp) and the ground-truth bounding box (Bg) exceeds a certain threshold (λ)237

according to the following equation:238

ao =
area(Bp ∩ Bg)

area(Bp ∪ Bg)

TP = ao > λ

(4)

where area(Bp ∩ Bg) depicts the intersection between the object proposal and the ground truth239

bounding box, and area(Bp ∪ Bg) depicts its union. By convention, we use a threshold of λ = 0.5240

to set a TP candidate.241

5.2. Normalization242

Initially we conducted an experiment to determine the best type of normalization for the task243

at hand. The literature cites different ways to normalize the data to feed a network [48,49], but the244

most appropriate technique depends on the particular problem. The most common normalization245

methods are:246

1 Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk).

http://www.cirrus.ac.uk
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Zstandard =
M−mean(M)

std(M)
(5)

Zmin−max =
M−min(M)

max(M)−min(M)
(6)

Zmean = M−mean(M) (7)

Znorm = M/255 (8)

where M is the input matrix containing the raw image pixels from the training set. For the247

normalization of the test set we used the same mean, deviation, max, and min values calculated248

for the training set. It is also important to note that the range of values obtained depends on the249

equation used, however this is not an issue since the configuration of the network allows it, and as250

stated before, this can lead to a better result.251

We evaluated these types of normalization on the two networks, including the option of not252

normalizing the data. For this we considered a base configuration (with 32 filters per layer, a kernel253

size of 3× 3, a dropout of 0.25, and a selectional threshold δ of 0.5), and then we varied the input size254

(subsampling the input images to 128x128px and 256x256px) and the number of hidden layers of each255

network (from 4 to 8), in order to obtain an statistically significant average result. The networks were256

trained using a data augmentation of 20 (see Section 5.3) on the training set, and for the evaluation257

we used the validation set.258

The results of this experiment (in terms of F1, see Equation 3) are shown in Table 2, where each259

cell shows the average of 30 experiments (6 network configurations per 5 folds). As can be seen, the260

best F1 for the two types of networks are obtained using the standard normalization, followed by261

the mean norm. The type of data normalization considerably affects the result obtained, since the262

differences in some cases reach up to 25%. For this reason, in the following experiments we use the263

standard normalization.264

Table 2. Average F1 (%) plus σ when applying different types of normalization on the input data, and
without normalization.

None ZStandard Zmin−max Zmean Znorm

SelAE 54.33 ±2.23 70.02 ±1.26 44.65 ±3.14 69.84 ±1.67 44.10 ±3.57

RED-Net 65.25 ±1.97 75.12 ±1.07 53.66 ±2.75 74.91 ±1.35 59.67 ±2.91

5.3. Data augmentation265

Data augmentation is applied in order to artificially increase the size of the training set [49,50].266

As the experimental results show, augmentation systematically improves the accuracy.267

To this end, we randomly applied different types of transformations on the original images,268

including horizontal and vertical flips, zoom (in the range [0.5, 1.5] times the size of the image),269

rotations (in the range [-10◦, 10◦]), and shear (between [-0.2◦, 0.2◦]).270

In order to evaluate the improvement obtained with this augmentation process, we carried out271

an experiment in which we gradually increased the number of random transformations applied to272

each image from our training set, and evaluated it using the validation set. As before, we performed273

this experiment for both architectures fixing the configuration to 32 filters per layer, a kernel size of 3×274

3, a dropout of 0.25, and a selectional threshold δ of 0.5, and only varying the input size (subsampling275

the input images to 128x128px and 256x256px) and the number of hidden layers of each network276

(from 4 to 8). The input data was normalized using standard normalization.277

Figure 5 shows the average results of such experiment, where the horizontal axis indicates the278

augmentation size and the vertical axis the F1 obtained. As can be seen, for the two models evaluated279
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the highest improvement is obtained at the beginning, after which the results begin to stabilize and280

stop improving after 20 augmentations. For this reason, in the following we set to this value the281

number of augmentations applied to each image.282

50

55

60

65

70

75

80

0 5 10 15 20 25 30

F 1

# augmentations

SelAE
RED-Net

Figure 5. Average results of the data augmentation process. The horizontal axis represents the
number of augmentations and the vertical axis the average F1 (in percentage) obtained for each of
the networks.

5.4. Hyperparameters evaluation283

In order to select the best hyperparameters for the two types of CNN evaluated, we have284

performed a grid-search [43] using the training and validation sets. The configurations evaluated285

include variations in the network input size (from 32px to 512px per side), in the number of layers286

(from 4 to 8), the number of filters (between 16 and 128), the kernel size (between 3 and 7), the287

percentage of dropout (from 0 to 0.5), and the selectional threshold δ (between 0 and 1). Overall,288

6,480 experiments were made, using 1,296 configurations × 5 folds. In all cases we applied an289

augmentation of 20 and the standard normalization.290

Figure 6 shows the results of this experiment. The average F1 when varying the input size is291

shown in Figure 6a. As can be seen, larger inputs are beneficial for this task. The SelAE architecture292

obtains the higher F1 with a 256x256px size, whereas the most suitable size for RED-Net is 384x384px.293

Figure 6b shows the results when varying the number of layers. The SelAE architecture obtains the294

best F1 with four layers, whereas RED-Net requires 6 layers. This may happen because pooling layers295

lose information for the reconstruction, whereas RED-Net mitigates this loss through residual layers.296

Figure 6c shows the average F1 obtained when varying the number of filters per layer. Using more297

filters increases the F1, and this improvement is noticeable from 16 until 64 filters, only increasing298

marginally with 128 filters. Figure 6d shows the average F1 for the three kernel sizes evaluated, and299

both architectures obtained the best results with 5x5 filters. Figure 6e shows the average F1 obtained300

by varying the dropout percentage applied to each layer. The best result for both architectures in this301

experiment was obtained without using dropout. The RED-Net results remain stable but they lightly302

worsen when increasing the dropout, whereas with SelAE the F1 is significantly lower when dropout303

grows. Finally, Figure 6f shows the result by varying the selectional threshold δ. RED-Net remains304

fairly stable to changes in this value, obtaining its maximum for a threshold of 0.8. SelAE seems to be305

more affected by changes, obtaining better results with an intermediate threshold of 0.5.306

In conclusion, the final architecture chosen for each network is with 128 filters with 5x5 size307

and without dropout. The SelAE uses an input size of 256x256px, 4 layers, and a threshold of 0.5,308

whereas RED-Net uses 384x384px with 6 layers and a threshold of 0.8. Table 1 shows a summary of309

the topologies that were eventually chosen.310
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Figure 6. Average F1 (%) of the grid-search process when varying (a) the input image size, (b) the
number of layers, (c) the number of filters per layer, (d) the kernel size of the convolutional filters, (e)
the percentage of dropout, and (f) the selectional threshold δ.

5.5. Results311

Once the best configuration and parameter settings for each network were selected, we evaluated312

the results using the different metrics. Moreover, we compared these results with three state-of-the-art313

methods for oil slick segmentation in SLAR images:314

• “Graph-based method” [51]: It is an adaptation for SLAR images of the method proposed in [52].315

It uses progressive intensity gradients for extracting regions with variable intensity distribution.316

• “JSEG method” [51]: It is also an extension to SLAR images of a previous work [53], where the317

input image is quantized according to the number of regions to be segmented. Pixel intensities318
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are replaced by the quantized label building a class-map called J-image. Later, a region-growing319

technique is used to segment the J-image.320

• “Segmentation guided by saliency maps (SegSM)” [6]: It first applies a pre-process of the noise321

caused by aircraft movements using Gabor filters and Hough Transform. Then, the saliency322

map is computed and used as seeds of a region-growing process that segments the regions that323

represent oil slicks.324

Details regarding the implementation and the parameters used in these methods can be found325

in the corresponding references.326

Table 3 shows the final result obtained with the proposed approach as well as the comparison327

with the state-of-the-art methods using the test set for the evaluation. It should be noted that the test328

set had not been used in previous experiments to avoid adjusting the network architecture for this329

set.330

The best results were obtained in all cases using the RED-Net architecture, which shows a higher331

F1 (see Equation 3) for all the tested images. On the one hand, the best RED-Net configuration332

increases up to 3.7 % the F1 of the SelAE autoencoder, and between a 37 % and a 64 % the other333

methods of the state of the art. The SegSM method has a high precision and a low recall, which334

indicates that it accurately detects some parts of the spills but producing many FN. On the other335

hand, both JSEG and Graph-based methods have a high recall and a low precision, since in this case336

they are producing many false positives. The proposed method obtains a more balanced result in the337

detection of oil-spill pixels. This fact can be confirmed by looking at the IoU metric (see Equation338

4), where RED-Net also improved significantly the results with respect to the other methods, which339

indicates a better precision in the detection of the shape and the position of the oil slicks.340

Table 3. Evaluation results including the standard deviation for the two architectures using the chosen
parameters after grid-search.

Model Precision Recall F1 IoU

Graph-based 32.99 ±1.62 97.25 ±0.33 48.28 ±1.87 32.55 ±0.16

JSEG 17.04 ±0.32 92.58 ±0.25 28.73 ±0.46 16.50 ±0.35

SegSM 98.54 ±0.27 39.55 ±1.21 55.78 ±1.18 87.33 ±0.51

SelAE 89.64 ±0.95 88.99 ±0.91 89.31 ±0.93 92.14 ±7.21

RED-Net 93.12 ±0.86 92.92 ±0.84 93.01 ±0.85 100.00 ±0.00

Figure 7 shows a graphic representation of the results obtained with the best approach, i.e. the341

RED-Net model. The first column of images shows the original input SLAR images (oil spills are342

marked with a bounding box), and the second column shows the prediction of the network. In the343

images of the second column, white and black areas depict correct detections of sea and oil spills,344

respectively, and red and blue pixels depict FP and FN of oil spills, respectively.345

These figures help to visualize the accuracy of the proposed model and to understand where346

the errors of each target class occur. As can be seen, wrong detections are typically made only at the347

contours of the oil spills.348

Figure 7a shows that the proposed method correctly detects the spill even in the presence of noise349

due to look-alikes (biological origin and weather conditions). In Figure 7c we can see a larger spill350

produced by a ship emptying its bilge tanks. This spill is correctly detected and there are only few351

mistakes at the edges. Figure 7e contains coast, but the method do not miss and it correctly detects352

just one small spill at the center. Figure 7g also shows a coast section in the upper-right part, and in353

this case the image contains an airplane turn. In this example, even when the spill is located at the354

center of the noise, the method is able to correctly perform the detection. Finally, the last example in355



Version February 28, 2018 submitted to Sensors 13 of 17

Figure 7i shows an image with high noise (caused by aircraft movements), including coast at the left356

side and without any spill. As can be seen, the method correctly concludes that the image does not357

contain any spill.358

6. Conclusions and Future Work359

In this work, we propose to use deep convolutional autoencoders for the detection of oil spills360

from SLAR imagery. Two different network topologies have been analyzed, conducting extensive361

experiments to get the best type of data normalization, to know the impact of data augmentation on362

the results, and to obtain the most suitable hyperparameters for both networks.363

A dataset with a total of 28 flight sequences was gathered on Spanish coasts using TERMA SLAR364

radar, labeling the ground-truth in order to train both selectional autoencoders and RED-Nets. It is365

composed of oil spills acquired in a wide variety of sea conditions dependent on weather (i.e. wind366

speed) and geographic location as well as of flight conditions such as altitude and type of motion.367

The proposed approach is able to segment accurately oil slicks despite the presence of other dark368

spots such as biogenic look-alikes, low wind which also introduces a lot of look-alikes, and noise369

due to bad radar measurements caused by the aircraft maneuvers. Results show that the RED-Net370

achieves an excellent F1 of 93.01% when evaluating the obtained segmentation at the pixel level. In371

addition, by analyzing the precision of the regions found using the Intersection over Union (IoU)372

metric, the proposed method correctly detects the 100% of the oil spills, even in the presence of373

artifacts and noise caused by the aircraft maneuvers, in different weather conditions and with the374

presence of look-alikes.375

Future work includes increasing the dataset size by adding more labeled samples from376

additional missions. In addition, Generative Adversarial Networks (GAN) such as Pix2Pix [54] could377

be used to deal with a reduced dataset by generating synthetic samples. Also, the detected oil slick378

locations could be used to initialize oil spill models for better oil spill prediction and response [55].379

A study correlating the F1 score with the wind speed or weather conditions could also be useful to380

understand to what extent the effectiveness of the proposed method depends on these factors.381
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