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ARTICLE

Assembly of 913 microbial genomes from
metagenomic sequencing of the cow rumen
Robert D. Stewart1, Marc D. Auffret2, Amanda Warr1, Andrew H. Wiser3, Maximilian O. Press 3,

Kyle W. Langford3, Ivan Liachko3, Timothy J. Snelling4, Richard J. Dewhurst 2, Alan W. Walker 4,

Rainer Roehe2 & Mick Watson 1

The cow rumen is adapted for the breakdown of plant material into energy and nutrients, a

task largely performed by enzymes encoded by the rumen microbiome. Here we present 913

draft bacterial and archaeal genomes assembled from over 800 Gb of rumen metagenomic

sequence data derived from 43 Scottish cattle, using both metagenomic binning and Hi-C-

based proximity-guided assembly. Most of these genomes represent previously unsequenced

strains and species. The draft genomes contain over 69,000 proteins predicted to be

involved in carbohydrate metabolism, over 90% of which do not have a good match in public

databases. Inclusion of the 913 genomes presented here improves metagenomic read clas-

sification by sevenfold against our own data, and by fivefold against other publicly available

rumen datasets. Thus, our dataset substantially improves the coverage of rumen microbial

genomes in the public databases and represents a valuable resource for biomass-degrading

enzyme discovery and studies of the rumen microbiome.
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Cattle and other food-producing ruminants are of vital
importance for human food security. The FAOSTAT
database from 2013 reports over 296 million beef cattle

and 273 million dairy cattle worldwide, and a further 468 million
milk-producing ruminants (buffalo, goat and sheep). Therefore,
understanding how ruminants convert their food into energy, and
subsequently milk and muscle protein, is of obvious importance.
If we can improve the efficiency of food digestion by ruminants,
we may be able to produce more food while using fewer
resources, a key aim of improving global food security.

The rumen contains a microbial ecosystem in which a dense
and complex mixture of bacteria, archaea, protozoa and fungi
convert carbohydrates to short-chain, volatile fatty acids
(VFAs). Despite tremendous industrial and scientific interest,
the rumen remains an under-characterized environment, con-
taining many microbial species and strains that have not been
cultured. In 2011, Hess et al.1 found that only 0.03% of their
assembled rumen metagenome had hits to sequenced organisms.
Despite the fact that many thousands of sequenced bacterial
genomes have been deposited into public repositories since then,
metagenomic sequencing of the rumen still produces highly
novel sequences, which are significantly divergent from public
collections2,3. The microbes within the rumen are also of
interest to the biofuels and biotechnology industries, and
metagenomics enables the identification of novel proteins of
industrial interest4.

Metagenomic binning is a bioinformatics technique that
enables near-complete microbial genomes to be assembled
directly from metagenomic sequencing data. Tyson et al.5 were
the first to recover near-complete genomes from a metagenome,
in this case a natural acidophilic biofilm, and Hess et al.1 were the
first to apply binning techniques to the rumen, recovering 15
microbial genomes with >60% completeness. Since then, while
some rumen metagenomic studies have been published2,6, only
Svartström et al.7 attempted metagenomic binning, recovering 99
metagenome-assembled genomes (MAGs) from just six moose
samples. Additionally, Parks et al.8 report almost 8000 MAGs
binned from over 1500 public datasets (which includes four
rumen datasets).

Another powerful tool for the culture-free recovery of near-
complete microbial genomes from complex environmental
samples is Hi-C-based proximity-guided assembly. The Hi-C9,10

method cross-links DNA molecules that are in close physical
proximity within intact cells. Followed by enzymatic digestion,
proximity ligation and sequencing, this method yields paired
reads that encapsulate ultra-long-range genomic contiguity,
capturing interactions between multiple chromosomes as well as
plasmids with their host genomes. These paired reads only link
DNA molecules that co-existed in the same cell, and therefore
can be used for metagenomic deconvolution and assembly.

Here we report the assembly of 913 near-complete and draft
bacterial and archaeal genomes from a large rumen metage-
nomic sequencing study involving 43 Scottish cattle. We show
that the addition of these genomes drastically improves our
ability to quantify the taxonomic structure of the rumen
microbiome, and many of the resultant genomes encode novel
carbohydrate-active enzymes (CAZys) that represent candidates
of potential use in the biofuels and biotechnology industries. We
go on to characterize the polysaccharide utilization loci (PUL) of
some of the genomes, identifying genomic patterns associated
with particular carbohydrate substrates. Finally, by examining
some of the less characterized genomes, we identify 31 genomes
from the order Erysipelotrichales, members of which are now
postulated to play an important role in animal physiology and
disease11.

Results
913 draft microbial genomes assembled from the cow rumen.
We produced 768 Gb of Illumina sequencing data from 42 rumen
microbiomes of Scottish cattle, carried out a metagenomic
assembly of each sample individually and all samples collectively,
creating a set of dereplicated putative genome bins with estimated
completeness ≥80% and estimated contamination ≤10%. Our
analyses resulted in 850 MAGs. The distribution of the 850
MAGs across the 42 metagenomic sample can be seen in Sup-
plementary Data 1.

In addition, we sequenced a 43rd sample on the Illumina
platform and used Phase Genomics’ ProxiMeta Hi-C technol-
ogy10 to cluster assembled contigs into genomes. Our Hi-C
analysis resulted in a further 63 draft genomes with completeness
≥80% and contamination ≤10%. Hereafter, these two sets of
genomes are referred to as RUGs (Rumen Uncultured Genomes)
and hRUGs (Hi-C Rumen Uncultured Genomes), respectively.

Bowers et al.12 recently defined high-quality draft MAGs as
having completeness >90% and contamination <5%, and 491 of
our genomes meet these criteria; 215 are >95% complete, with
<5% contamination, and 30 genomes have >97% completeness
and 0% contamination.

Supplementary Data 2 describes the assembly characteristics
and predicted taxon of each genome, and Fig. 1 shows a
phylogenetic tree of the draft genomes alongside selected public
genomes and the 15 binned genomes from Hess et al1.
Supplementary Data 3 shows a linear representation of the same
tree. Supplementary Data 4 shows the results of a comparison of
the draft genomes with public genomes using MinHash13

signatures, and Supplementary Data 5 provides summary results
comparing the RUG proteomes with UniProt TrEMBL14. All of
the above were used to predict the most likely taxon of each
genome (see Methods).

Several large clades are visible in Fig. 1. The tree is dominated
by two large clusters representing Clostridiales and Bacteroidales,
a significant cluster of the latter representing Prevotellaceae.
Smaller clades represent the Proteobacteria, Archaea, Actinobac-
teria, Spirochaetes and Fibrobacteres. The remaining nodes and
branches represent miscellaneous bacteria.

We can confidently resolve seven of the RUGs to species.
RUG346 is a strain of Bacillus licheniformis, RUG287 a strain of
Kandleria vitulina, RUG405 a strain of Acidaminococcus
fermentans, RUG618 a strain of Megasphaera sp. (most similar
to strain DJF_B143), RUG133 a strain of Bifidobacterium
merycicum and RUG664 a strain of Streptococcus equinus.
Bacillus licheniformis encodes both hemicellulolytic and cellulo-
lytic enzymes15 as well as serine proteases and other important
enzymes. Kandleria vitulina, relatively recently renamed16, is a
little-studied organism, although the family Erysiopelotrichaceae
(of which it is a member) has been positively correlated with milk
yield17 and negatively correlated with methane emissions18.
Acidaminococcus fermentans is a Gram-negative diplococcus that
uses citrate as an energy source, producing hydrogen and
hydrogen sulphide19, which may explain its association with
methane production in cattle2 (methanogens convert H2 with
CO2 to CH4). Acidaminococcus fermentans has also been shown
to decrease the accumulation of tricarballylate, a toxic end
product of ruminal fermentation, by oxidizing trans-aconitate20.
Megasphaera spp. have been found in cattle, sheep and other
ruminants. Megasphaera elsdenii’s ability to produce a variety of
VFAs is of interest to the chemical industry21. Supplementation
of the diet of dairy cows with M. elsdenii, which utilizes lactate as
an energy source, has potential benefits for energy balance and
animal productivity22. Bifidobacterium merycicum was first
isolated from the rumen in 199123, has been shown to ferment
starch with the production of acetic and lactic acid24 and has been
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implicated in acidosis25. As the name suggests, S. equinus was
first isolated from the horse; however, the related S. bovis is
considered one of the key lactic acid-producing bacteria in the
rumen, and has also been associated with acidosis26. Finally,
RUG422 is a strain of Thermobifida fusca27, a likely contaminant
from soil during grazing. We include it here for completeness and
to improve the coverage of Thermobifida genomes in the public
databases.

Of the remaining 906 RUGs, 158 were resolved to at least
Genus, 416 to at least Family, 841 to Order, 845 to Class, 895 to
Phylum and 906 to Kingdom. Twenty-eight of the RUGs
represent archaea, and Supplementary Data 6 shows these in
the context of 597 public archaeal genomes. We predict that all
represent methanogens due to their position in the tree. In each
case, the closest matched organisms represent the most abundant
and metabolically active methanogens in ruminants28. Twenty-
five of the RUGs cluster with other Methanobrevibacter species,
with similarity to known ruminant methanogens such as
Methanobrevibacter ruminantium29, Methanobrevibacter mill-
erae30 and Methanobrevibacter boviskoreani (previously isolated
from the rumen of Korean cattle31). RUG779 and hRUG898 are
most closely related to Candidatus Methanomethylophilus, a
methanogen originally isolated from human faeces that contains
genes necessary for methanogenesis from methanol and
trimethylamine, dimethylamine and monomethylamine32.
RUG761 clusters closely with several Methanosphaera species.
Methanosphaera strain WGK6, which RUG761 is most closely
related to, was originally isolated from kangaroos33, and like the
closely related Methanosphaera stadtmanae34, lacks many

enzymes common to methanogens, and relies on acetate for
synthesis of ATP.

Of the RUGs resolvable to phylum level, Firmicutes dominated
(50%), followed by Bacteroidetes (36%), Actinobacteria (3.5%),
Proteobacteria (3.1%), Euryarchaeota (3.1%) and Spirochaetes
(1%), representing in general the most dominant microbial phyla
identified in the rumen. The distributions of phyla across the
MAGs and the Hi-C genomes are very similar.

Thousands of novel CAZys. The CAZy database35 defines six
classes of enzyme involved in carbohydrate metabolism. Glyco-
side hydrolases (GHs) hydrolyse the glycosidic bonds of complex
carbohydrates and, within microbes, often assist in the degrada-
tion of cellulose, hemicellulose and starch; glycosyl transferases
catalyse the formation of glycosidic bonds, utilizing sugar phos-
phates as donors, and transferring a glycosyl group to a nucleo-
philic group (together these two classes of enzyme form the major
machinery for the breakage and synthesis of glycosidic bonds).
Polysaccharide lyases (PLs) cleave glycosidic bonds in poly-
saccharides; and carbohydrate esterases (CEs) catalyse deacyla-
tion of polysaccharides. Finally, the auxiliary activities (AAs) class
within CAZy describes a number of enzymes that act in con-
junction with the first four classes, and the carbohydrate-binding
(CB) modules describe proteins that adhere to carbohydrates.

The 913 RUGs contain 1,979,391 predicted proteins. These
were searched against the CAZy database using dbCAN and
filtered using suggested cut-offs36 (Supplementary Data 7). A
total of 69,678 sequences were predicted to have at least one
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Fig. 1 Phylogenetic tree of 913 draft genomes from the cow rumen, and closely related public genomes including 15 binned genomes from Hess et al1.
Coloured circles represent the RUGs. White circles represent public genomes and have corresponding labels
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carbohydrate-active function. The proteins were compared to nr,
env_nr, m5nr37, UniProt TrEMBL14 and the Hess et al.1 gene
predictions to check for novelty (Supplementary Data 8), and
against Pfam38 to detect other domains (Supplementary Data 9).
Of the 69,678 proteins, only 6061 (8.7%) had a highly similar
match in any of the above databases (⩾95% identity), indicating
that 63,617 of our predicted carbohydrate-active proteins can be
considered novel. To detect redundancy in our novel protein set,
we clustered the protein sequences using CD-HIT at 99%, 95%
and 90% identity, producing 51,117, 44,171 and 41,185 clusters,
respectively.

In total, and including proteins with multiple domains, the
RUGs contain 40,140 GHs, 19,722 glycosyl transferases, 1121 PLs,
9119 CEs, 154 proteins with AAs and 2545 CB proteins. The
distribution of these enzymes across the 913 RUGs can be seen in
Fig. 2 and Supplementary Data 10. GHs and glycosyl transferases
(GTs) are enriched in the Prevotellaceae and other Bacteroidales,
Fibrobacteres and some of the Clostridiales, while being largely
absent from the Archaea, and Proteobacteria.

To understand how different the RUG proteins are from those
in the public databases, we plotted the percentage amino-acid
identity of the best hit for each CAZy enzyme class (Fig. 3). On
average, the predicted GHs, GTs, PLs, CEs and CB proteins are
between 65 and 72% identical at the amino-acid level with current
publicly available sequences. The AAs class are more conserved,
with a median amino-acid identity around 83%.

We also investigated the ability of any of the RUGs to produce
cellulosomes, multi-enzyme complexes responsible for the
degradation of lignocellulosic biomass39. A key component of
the cellulosome is a scaffoldin protein, which acts as a scaffold for
the complex. The scaffoldin protein is characterized by multiple,
repeated cohesin domains that the members of the cellulosome
bind to40. There are 15 RUGs that contain proteins with multiple
predicted cohesin domains: hRUG867 has one protein with five
cohesin domains and another with two; both RUG167 and
RUG148 encode proteins with six cohesin domains, and RUG738,
RUG783 and RUG007 encode proteins with five. RUG640
encodes one protein with three cohesin domains, a further seven
RUGs contain proteins with two cohesin domains (RUG291,
RUG074, RUG394, RUG606, RUG393, RUG425, RUG502) and
RUG817 contains two proteins with two predicted cohesin
domains. According to our phylogenetic tree (Fig. 1 and
Supplementary Data 3) 9 of the 15 RUGs with potential for
producing cellulosomes cluster closely with Ruminococcus
flavefaciens, a known cellulosome-encoding species, and one of
the most dominant cellulolytic bacteria in the rumen41,42.
However, many of these RUGs show an average protein identity
of only between 70 and 80% with R. flavefaciens, indicating that
these genomes are significantly different to existing Ruminococ-
caceae at the protein level. Five of the remainder are classified as a
members of the Clostridiales order, and RUG606 is classified as a
member of the Prevotellaceae family.

Analysis of PUL. CAZys are often organized in PUL43, which
represent series of linked genes that encode all activities necessary
for the binding and degradation of complex polysaccharides, and
which may be specific to a particular substrate, or target multiple
substrates. The presence of particular PUL can therefore be used
to predict the substrate specificity of microbial strains. We
examined members of the Prevotellaceae family for PUL by first
searching for tandem susC-susD-like pairs, followed by a moving
window search for enzymes involved in carbohydrate binding and
metabolism44.

Using this method, we identified 1743 putative PUL from 203
of the RUGs. A summary can be found in Supplementary Data 11
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Fig. 2 Distribution of carbohydrate-active enzyme classes across the 913
RUGs. GH glycoside hydrolase, GT glycosyl transferase, PL polysaccharide
lyases, CE carbohydrate esterases, AA auxiliary activities, CB carbohydrate
binding. White= absent, dark red= abundant
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and full details in Supplementary Data 12. One hundred and
eighty-seven of 203 RUGs contained more than one PUL, and the
number of PUL per genome varied between 37 and 1. RUG144
and RUG423 contain 37 and 35 PUL, respectively, and are closely
related in the phylogenetic tree. These two, along with other
RUGs with large numbers of PUL, cluster together with Prevotella
multisaccharivorax45, an anaerobic Gram-negative bacterium
known for being able to utilize multiple polysaccharides as
substrates. This branch of the tree therefore may be a fertile
hunting ground for efficient and novel carbohydrate-active
enzymes and microbes. A second clade of Prevotella RUGs with
multiple PUL cluster around Prevotella ruminicola, one of the
most abundant microbes cultured from the ruminant gut. The
RUGs in this clade tended to have fewer PUL than those clustered
with P. multisaccharivorax, suggesting a lower polysaccharide
degradation potential. Enzymes present in PUL associated with P.
multisaccharivorax include glucosidases, fucosidases, galactosi-
dases, xylanases, arabinases, cellulases, levanases and mannosi-
dases; and enzymes present in PUL associated with P. ruminicola
include pectate lyases and pectin esterases, glucosidases, arabi-
nases, galactosidases and mannosidases. These results suggest that
both clades make use of multiple substrates, with a large overlap
but some substrates unique to each clade.

We counted the occurrence of particular enzymes and the
number of unique PUL they were associated with, and this can be
seen in Supplementary Data 13. The most common enzymes were
β-glucosidase and α-glucosidase involved in the breakdown of
cellulose and starch, respectively, followed by β-galactosidase,
which is involved in the breakdown of lactose into monosacchar-
ides. Lactose is a major component of whey, which is sometimes
fed to cattle, and is utilised by rumen bacteria during
fermentation. Other common enzymes include arabinanase
involved in the breakdown of arabinan, a component of sugar
beet, a common dietary ingredient for cattle; xylanases involved
in the breakdown of hemicellulose and plant cell walls; levanases

which are part of the fructan production pathway; and also
enzymes involved in the breakdown of pectins and mannans.

Supplementary Figure 1 shows a range of PUL. PUL41
(Supplementary Figure 1A) is representative of the most common
PUL in the dataset—a single susC/D pair, and 526 of the PUL we
predicted have this simple configuration. Svartström et al.7

discovered a similar result in the moose rumen, and speculated
that some of the surrounding unclassified genes may be as-yet-
undiscovered classes of CAZys. PUL 416, 1060, 1118 and 2240
(Supplementary Figure 1B–E) all show a similar configuration and
are associated with xylan degradation, as they contain at least one
copy of endo-1,4-β-xylanase. These PUL are characterized by a
GH67-GH35-susC-susD-unc-GH10 pattern on one strand, pre-
ceded by a GH43-GH10 pattern on the opposite strand. The four
PUL here show slight differences, but the pattern is obvious across
all four PUL and may represent a configuration optimized for xylan
degradation. PUL2240 is of further note as it is identical in structure
to 'Predicted PUL 6' from 106_bin21 of Svartström et al7. Finally,
two PUL with an identical configuration were identified as being
involved in pectin degradation, both of which contain a pectate
lyase and pectinesterase protein (Supplementary Figure 1F–G).

Expansion of the Erysipelotrichales order. Of the RUGs that
checkM could only resolve to the Bacteria kingdom, we noticed
that 31 of them had significant numbers of protein hits to the
Solobacterium, Coprobacillus and Kandleria genera, which are all
members of the Erysipelotrichales order. Members of the Erysi-
pelotrichales have been isolated from the human11, mouse46 and
insect gut47 and pig manure48. We hypothesized that some of the
31 RUGs may represent new clades within Erysipelotrichales . The
31 genomes were placed into the microbial tree of life using
PhyloPhlAn (Supplementary Data 14), and the sub-tree repre-
senting Erysipelotrichales is shown in Supplementary Data 15.

Sixteen of the RUGs cluster closely with Solobacterium moorei,
first isolated from human faeces49. On the basis of the tree and
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the low average protein identity, we propose that these RUGs are
putative novel Solobacterium species, and we have named them
accordingly in Supplementary Data 16 ('uncultured rumen
Solobacterium'). RUGs 521 and 747 sit between the Solobacter-
ium/Bulleidia clade and that of Holdemania filiformis; therefore,
both of these genomes may represent novel genera within the
Erysipelotrichaceae family, although more data are required on
their physical and phenotypic properties before this can be
determined—we therefore propose the name 'uncultured rumen
Erysipelotrichaceae'. A further ten RUGs cluster quite separately
from the other members of the Erysipelotrichaceae, with only one
public genome, Coprobacillus sp. CAG_826 (another MAG from
the human microbiome), nearby. The coprobacilli are a diverse
and somewhat ill-defined group. Indeed, many former members
of the Erysipelotrichaceae have been suggested to be members of a
new family, Coprobacillaceae47, within the Erysipelotrichales
Order, and the above RUGs cluster more closely with this clade.
We therefore propose the name 'uncultured rumen Coprobacilla-
ceae' for these RUGs. Finally, three RUGs cluster closely with K.
vitulina. RUG287 appears very closely related to four other
sequenced K. vitulina genomes and we propose the name
Candidatus K. vitulina strain RUG287 for this organism. RUGs
319 and 246 cluster separately, and we propose names C.
Kandleria sp. strain RUG319 and C. Kandleria sp. strain RUG246
for these organisms.

Overall, the addition of 31 MAGs to this branch of the tree of
life represents a significant expansion of the Erysipelotrichaceae
and Coprobacillaceae families in reference databases.

Improved metagenomic classification. Reads from this study,
Hess et al.1 and Shi et al.6 were taxonomically assigned to seven
different sequence databases using Kraken50 (see Methods). The
base reference database consisted of bacterial, archaeal, fungal
and protozoan genomes from RefSeq51 (BFAP). Then, each of
GEBA52 (BGEB), the hRUG genomes (BHIC), the Hungate
100053 genomes (BHUN) and the RUGs (BRUG) were added;
finally, all hRUGs and RUGs (BRHI) and all hRUGs and RUGs
plus Hungate were added (BRHH). The effects on classification
rate can be seen in Fig. 4. In all three datasets, the base RefSeq
database classifies fewer than 10% of the reads, and addition of
the GEBA genomes has only a marginal effect. Addition of the
Hungate 1000 genomes increases classification around twofold;
however, addition of the RUGs increases the classification rate
considerably, by around sevenfold in our own data, and by
around fivefold in the two other publicly available rumen meta-
genome datasets; the addition of the Hi-C genomes alone has
only a marginal effect in the two public datasets, yet has a larger
effect in our own data; and addition of both sets of rumen gen-
omes performed best in all datasets; however, the addition of the
410 Hungate 1000 genomes only improved on the RUGs by
2–4%. Overall classification rates were improved by fivefold to
sevenfold when adding rumen-specific bacteria and archaea from
this study and the Hungate 1000 project, with classification rates
in some cases approaching 80% against our own data.

The classification rate for Hess et al.1 is noticeably lower than
the other two datasets. We note that both our data and the Shi
et al.6 data come from rumen fluid, whereas the Hess et al.1 data
are specifically switchgrass-associated, raising the possibility that
these two microbiomes are significantly different. We re-classified
all samples using Centrifuge54, an efficient metagenomic classifier
capable of indexing the entirety of nt. While the Kraken databases
contain only microbial sequences, the nt database contains non-
redundant sequences from all sequenced clades of life, and may
be informative about the presence of non-microbial DNA in the
Hess et al.1 samples. However, classification results against nt

need be interpreted with care as many entries are mis-labelled or
contain contamination. These analyses identified a number of
factors, which may explain the lower classification rates in the
Hess et al.1 data. First, the Hess et al.1 data have reads of length
100 bp, whereas both our and the Shi et al.6 data are reads of
length 150 bp. The shorter read lengths may influence Kraken’s
ability to find matches in the database. Second, as may be
expected, the Hess et al.1 data included more reads originating
from wheat and switchgrass (Supplementary Figure 2). Finally,
Prevotella were generally more abundant in our data and the Shi
et al.6 data, and Fibrobacter more abundant in the Hess et al.1

data (Supplementary Figure 3). Fibrobacter succinogenes is a
ruminant bacterial species that is known to associate with fibrous
plant material42.

Analysis of Hi-C clustering. We have the opportunity to analyse
the benefits of using Hi-C clustering over and above single-
sample metagenomic binning. As previously described, the Hi-C
analysis produced 63 genomes with ≥80% completeness and
≤10% contamination. We used the same assembly as input to
MetaBAT2 and carried out metagenomic binning. This resulted
in 76 genomes using the same cut-offs (Supplementary Data 17).
We hypothesized, however, that the Hi-C genomes may contain
more copies of genetic elements that do not conform to the origin
cell’s genomic norms—for example, plasmids often exist in
multiple copies, and often have a different base-composition to
that of the core genome. As binning algorithms such as MetaBAT
use both base-composition and coverage, plasmids are often
missing from MAGs.

Boxplots of the coverage of each contig within each bin can be
seen in Supplementary Figure 4. There are no gross differences of
the median coverage statistics between the Hi-C and SPAdes/
MetaBAT clusters; however, there is a very noticeable difference
in the range, with the Hi-C clusters showing a far greater range of
coverage values. This is to be expected—MetaBAT by design
clusters contigs that are similar in coverage value, whereas Hi-C
clustering has no such limitation.

To look for the presence of multi-copy plasmids, we extracted
from each set of genomes (the 63 Hi-C genomes and the 76
SPAdes/MetaBAT genomes) those contigs that had >2× the mean
average coverage for their respective genome. This resulted in 243
contigs from the Hi-C genomes and 37 from the SPAdes/
MetaBAT genomes. These were searched against the nt database
using NCBI BLAST+55. After filtering out short hits, there were
no contigs in the SPAdes/MetaBAT set that could be annotated as
'plasmid', whereas there were ten contigs (from ten different
genomes) in the Hi-C set that could (Supplementary Data 18).

Supplementary Figure 5 shows a heatmap of the number of Hi-
C links between the 10 putative plasmid contigs and the 63 Hi-C
genomes. Two of the contigs, NODE_52225_length_2785_-
cov_42.9597 and NODE_49376_length_2919_cov_46.8415, have
BLAST hits to plasmid pRUMAL02, originally discovered in
Ruminococcus albus and found to code for dockerin-containing
proteins56. These two contigs appear to be shared across four of
the hRUG genomes, three in the large Clostridiales cluster
(hRUG877, hRUG853, hRUG861), and a fourth which clusters
closely with R. flavefaciens (hRUG867). While very preliminary in
nature, these results suggest that plasmids encoding proteins
responsible for carbohydrate degradation may be shared between
these different species.

Discussion
Beef cattle, dairy cattle and other milk-producing ruminants
provide food and nutrition to billions of people worldwide. It is
the rumen microbiome that is largely responsible for the
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extraction of energy and nutrients from the diverse diets fed to
farmed ruminants, and it is vital that we understand the structure
and function of this important microbiome. Despite this impor-
tance, the rumen microbiome remains to a large extent under-
characterized, and very few rumen microbial genomes exist in the
public databases.

The RefSeq database now contains well over 75,000 prokaryotic
genomes57, driven by decreasing sequencing costs58, improve-
ments in bioinformatics techniques59 and large projects focused
on specific environments.

In this study, we show that current RefSeq genomes are very
poor at aiding the classification of reads from the rumen
microbiome, and only by sequencing microbes specifically from
the rumen do we begin to see improvements in classification, with
the genomes from this study and that of the Hungate 1000
improving classification rates fivefold to sevenfold. However, the
greatest impact on classification came from the 850 RUGs, which
had a dramatic effect, increasing classification rates up to
sevenfold higher than the base BFAP database. Adding Hungate
1000 on top of the RUGs increased rates by a further 2–4%. Of

course, the Hungate 1000 collection has other advantages—being
cultured, they can be studied in vitro and in vivo, and are clas-
sified to the species level. Nevertheless, publication of the 913
MAGs presented here could transform the way we interpret
rumen metagenomics data, a field where 50–80% read classifi-
cation rates have rarely, if ever, been achieved.

We used two different approaches for the recovery of genomes
from metagenomes—metagenomic binning and Hi-C clustering.
The Hi-C data provide direct physical evidence that contigs ori-
ginate from the same genome, yet because they are used to cluster
an assembled metagenome, they suffer from some of the same
issues as any short-read assembly— collapsed repeats and the loss
of complex regions that simply do not assemble well. None-
theless, the Hi-C genome clusters are at least as good as the
MAGs, and in general have lower contamination values.

The read classification rates for the Hi-C data require further
examination. While the Hi-C genomes considerably improved (in
many cases) classification rates against our own data (from other
Scottish cattle), they had only a marginal effect on the two public
metagenomes. This would suggest that the Hi-C genomes are
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population or environment specific, or that they were not
numerous enough in this study of one sample. Increasing clas-
sification rates for particular populations is important - and in
seven of our samples, the Hi-C genomes increased classification
rates by more than the 410 Hungate 1000 genomes, a collection of
cultured ruminant microbe isolates collated by a global network.

The performance of the Hi-C data can be contrasted with that
of the 850 RUGs, which improved the read classification rates of
all samples from all three datasets. The RUGs were created from
42 single-sample assemblies, and a 42-sample co-assembly (fol-
lowed by dereplication) created from 768 Gb of data, whereas the
Hi-C genomes were generated with only 41.7 Gb from a single
individual. It is inevitable that the former contains more infor-
mation, will reflect a more general consensus set of rumen
microbes, and certainly will better represent low abundance
microbes. There may also be an advantage to co-assembly, in that
it assembles genomes present in multiple samples (and therefore
more likely to be derived from core-microbiome members),
compared to single-sample assemblies, which may preferentially
assemble sample-specific genomes. On the other hand, indivi-
dually assembling more samples using a method like Hi-C may
increase the overall genome database of rumen microbes at a
much-reduced amount of required sequencing and sampling.

There are now various methods for assembling MAGs direct
from sequence data without the need for culture. Assembly and
binning genomes from single samples results in genomes with
lower contamination values; however, by definition, these gen-
omes tend be biased towards more abundant microbes as the
relative quantity of sequence data is not sufficient to assemble the
low abundance members. Alternatively, assembly and binning of
sequence data from a co-assembly of multiple samples produces
genomes with higher contamination values, and often the
accessory genome from multiple similar strains is co-assembled
into a single genome. As CheckM only assesses the core genome,
this can be missed. However, the advantage of the co-assembly
approach is that a single assembly graph is created from all data,
which means that lower abundance microbes are fully repre-
sented. Supplementary Data 19 shows the 850 RUGs sorted by
average coverage, from lowest to highest. It is striking that almost
all of the low abundance genomes come from the co-assembly.
Best practice is therefore to combine single-sample assemblies
with a co-assembly, followed by dereplication, which we have
carried out in this paper. Finally, Hi-C clustering offers another
way to produce MAGs. While we show here that Hi-C clustering
does not necessarily produce more genomes than single-sample
assembly binning, it does allow for contigs with higher than
average abundance to be clustered into the host genome, and we
present here some preliminary evidence that Hi-C clustering
allows the clustering of plasmid sequences with their core gen-
ome, whereas single-sample assembly binning does not.

Eventually, if we are to fully understand the function of any
microbiome, we must aim for 100% classification—in other words,
to understand which genome each read comes from, and what
functions those genomes encode. By assembling 913 genomes from
our own dataset, and adding other rumen-specific genomes, some
of our samples showed a classification rate close to 80%. Therefore,
assigning taxonomies and functions to assemblies rather than the
reads themselves could provide far greater insight. We have
adopted a three-stage process in our microbiome research: stage 1
is discovery, simply sequencing what is there; stage 2 is association,
correlating traits of interest with changes in the microbiome; and
stage 3 is intervention, where we test microbial interventions to see
whether we can alter those traits. From our work in this and
previous studies2, it is clear that the rumen microbiome requires
investment in discovery in order to maximize our potential to
associate and intervene.

The rumen is of huge industrial interest due to its ability to
release energy and nutrition from plant material. We show here
that the 913 RUGs contain thousands of CAZys that differ sig-
nificantly from existing representatives in the public domain. The
RUGs contain over 69,000 proteins that are likely to be involved
in carbohydrate metabolism, and which share on average only 60
to 70% amino-acid identity with similar protein sequences in the
public domain. We identify 15 RUGs that potentially encode the
machinery to produce cellulosomes, multi-enzyme complexes
that have high cellulolytic activity and predict 1743 PUL from the
Prevotellaceae family, one of the dominant saccharolytic families
in the rumen, that contain proteins capable of binding and
digesting multiple carbohydrate substrates. Several of the RUGs
with the most PUL are related to P. multisaccharivorax, a bac-
terium capable of digesting several carbohydrate substrates, and
these RUGs are likely to have large saccharolytic potential and be
able to adapt to multiple diets and rumen environments. This
paper represents the first P. multisaccharivorax-like genomes
isolated from the rumen. We also identify RUGs with large
numbers of PUL related to P. ruminicola.

The Erysipelotrichales are thought to have an increasingly
important role in animal microbiomes. They have been found to
be highly immunogenic and associated with multiple human
diseases (reviewed by Kaakoush11). Shifts in the abundance of
Erysipelotrichaceae have been associated with monensin applica-
tion in cows60 (monensin is known to increase propionate in the
rumen and improve energy availability) and high grain feeds in
goats61, while studies in dogs show Erysipelotrichaceae are
involved in the digestion of protein and energy production62. In
this study, we identify and publish the sequence of 31 new
members of the Erysipelotrichaceae (and closely related Copro-
bacillaceae) family. This represents a large expansion of our
knowledge of these families' genomes, especially considering
those isolated from the rumen.

As we and others have shown, metagenomic binning is a
powerful technique for the recovery of complete and near-
complete microbial genomes without the need to culture. How-
ever, the assemblies remain fragmented, and it would be bene-
ficial to completely assemble entire chromosomes. New
sequencing technologies such as that offered by Pacific Biosys-
tems and Oxford Nanopore63 are now able to produce long reads
at reasonable scale and cost, and hybrid approaches enable
complete chromosomal assemblies from complex bacterial gen-
omes64. There is every reason to expect that hybrid short-read
and long-read sequencing will enable the complete end-to-end
assembly of microbial chromosomes direct from metagenomic
samples, and these approaches could revolutionize our under-
standing of complex microbiomes.

Methods
Metagenomic samples. Animal experiments were conducted at the Beef and
Sheep Research Centre of Scotland’s Rural College (SRUC). The experiment was
approved by the Animal Experiment Committee of SRUC and was conducted in
accordance with the requirements of the UK Animals (Scientific Procedures) Act
1986.

The data were obtained from three cross breeds: Aberdeen Angus, Limousin
and Charolais and one pure breed: Luing. The animals were offered two complete
diets ad libitum consisting (g/kg DM) of either 500 forage to 500 concentrate or 80
forage to 920 concentrate. As previously described in Roehe et al.3, the animals
were slaughtered in a commercial abattoir where two post-mortem digesta samples
(approximately 50 mL) were taken immediately after the rumen was opened to be
drained. DNA extraction was carried out following the protocol of Yu and
Morrison65 and based on repeated bead beating plus column filtration. Illumina
TruSeq libraries were prepared from genomic DNA and sequenced on an Illumina
HiSeq 4000 by Edinburgh Genomics.

Hi-C sample. Post-mortem rumen digesta from one beef cattle was collected in 125
mL screw cap container at the abattoir and transferred on ice. Then, the equivalent
of 1.5 mL of sample was resuspended using 13.5 mL (10× volume or more) of 1%
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formaldehyde-phosphate-buffered saline (PBS) solution in a 15 mL Falcon tube.
The sample was incubated at room temperature for 30 min with periodic mixing or
vortexing followed by the addition of glycine to 1 g/100 mL or 125mM final con-
centration. A second incubation was performed at room temperature for 15min
with periodic mixing or vortexing. The final step involved a series of spin down and
rinses with PBS of the pellet. Briefly, the sample was spun down for 2 min at 6000
rpm, rinsed with PBS and spun down again (5min at 6000 rpm), prior to removing
the supernatant. The final pellet was kept frozen at −20 °C.

Cells were lysed with glass bead disruption in a detergent buffer, and DNA was
extracted using the ZymoBiomics DNA Mini Kit (Zymo Research). For shotgun
library creation, 100 ng was sheared to ~400 bp average insert length and used to
create a library using the HyperPrep kit (KAPA Biosystems). Approximately 200
μL of solid material from the same rumen sample was crosslinked for Hi-C using
standard protocols9 and split into two fractions. Each fraction was used to generate
a Hi-C library using the proprietary ProxiMeta Hi-C protocol developed by Phase
Genomics (similar Hi-C protocols have been published9). Each Hi-C sample was
fragmented using either the Sau3AI or MluCI restriction enzymes prior to
proximity ligation.

The shotgun and Hi-C libraries were sequenced on the Illumina HiSeqX
platform, generating 150 bp paired-end reads. Sequencing of the shotgun library
produced 139.6 million read pairs. Sequencing of the Hi-C libraries generated 86.2
million read pairs for the Sau3AI library and 59.3 million read pairs for the MluCI
library.

Bioinformatics. Adapters were trimmed from the Illumina data using Trimmo-
matic66 and the subsequent trimmed reads used as input for MEGAHIT67. A 42-
metagenome co-assembly was carried out using options --kmin-1pass, -m 60e+
10, --k-list 27,37,47,57,67,77,87, --min-contig-len 300, -t 16. In addition, 42 single-
sample assemblies were performed using idba_ud68 with the options --num_th-
reads 16 --pre_correction --min_contig 300. BWA MEM69 was used to map reads
back to the filtered assembly and Samtools70 was used to convert to BAM format.
Script jgi_summarize_bam_contig_depths from the MetaBAT2 package was used
to calculate coverage from the resulting BAM files.

Metagenomic binning was applied to both single-sample assemblies and the co-
assembly using MetaBAT294, with options --minContigLength 2000,
--minContigDepth 2. Coverage values across the 42-sample dataset were taken into
account. Single-sample binning produced a total of 4106 bins, and co-assembly
binning produced a further 3253. All 7359 bins were aggregated and then
dereplicated using dRep71. The dRep dereplication workflow was used with options
dereplicate_wf -p 16 -comp 80 -con 10 -str 100. Only the highest scoring MAG
from each secondary cluster is retained in the dereplicated set. For our dataset, 850
dereplicated MAGs were obtained, 699 from the single-sample assemblies and 151
from the co-assembly.

For the Hi-C sample, we trimmed adapter sequences from shotgun reads using
BBDuk with options k= 23, ktrim= r, mink= 12, hdist= 1, minlength= 50,
--tpe, --tbo. Next, we performed quality trimming of the reads using BBDuk and
options qtrim= rl, trimq= 10, minlength= 50, chastityfilter= True. We then
normalized read coverage using BBNorm with options target= 40, mindepth= 2.
With this trimmed and normalized dataset, we performed a de novo shotgun
assembly using metaSPAdes and default parameters72.

Using the Hi-C read datasets generated as described above, we trimmed each
read to 75 bp to avoid discarding reads sequencing through a Hi-C junction. We
mapped each read dataset (MluCI and SauIII) to the shotgun assembly described
above using bwa aln73 while requiring perfect matches (option -n 0). We were able
to map forward and reverse reads to different contigs for a total of 3,668,548 read
pairs from the MluC1 dataset and 15,672,416 read pairs from the SauIII dataset.
These reads could therefore be used to link contigs for deconvolution.

We performed deconvolution of the shotgun assembly into genomes using the
proprietary ProxiMeta™ platform, which is similar to the previously described
MetaPhase technique9. We filtered out all reads that were not properly paired,
unmapped, non-uniquely mapped, had a MAPQ score <20, or were paired with a mate
with an identical position. We filtered out contigs that were <2 kb in size, or which
contained fewer than 10 restriction sites for the relevant enzyme. We combined
datasets of the two restriction enzymes into a graph, and applied a normalization to the
read counts connecting each pair of contigs by accounting for restriction site number
of each contig. We clustered contigs into genome clusters using a proprietary Markov
chain Monte Carlo-based algorithm based on their Hi-C linkages.

CheckM with options lineage_wf, -t 16, -x fa was used to assess the
completeness and contamination of all bins. After filtering for completeness ≥80%
and contamination ≤10%, we were left with 850 draft genomes from the 42 samples
and a further 63 from the Hi-C analysis.

The predicted proteomes from each bin are produced as part of the CheckM
process. The proteomes of each bin were compared to UniProt TrEMBL14 using
Diamond74, and the top hit, length and percentage identity recorded. This allowed
us to predict the most likely genus for each contig within each bin. Genera not
within the Bacteria or Archaea lineages were flagged as problematic (n= 150), and
contigs with these genera were removed from their respective bins. The resulting
'cleaned' bins were re-processed using CheckM, and the results can be seen in
Supplementary Data 2. ETE375 was used to expand the CheckM predicted taxon to

a full taxonomy list. Our MAG annotation pipeline is available as a reproducible
workflow76. Genomes and gene predictions were loaded into a Meta4 database77

The cleaned bins were compared, using MinHash sketches as implemented in
Sourmash78, to 100,000 genomes in GenBank; 410 genomes from the Hungate
1000 project;53 and 1003 genomes from the GEBA project52. The results can be
seen in Supplementary Data 4. The best hits from these analyses, combined with
top hits from the UniProt searches above, were used to select publicly available
genomes for comparison. This was a manual process. Initially a tree consisting of
the 913 RUGs, the 410 Hungate 1000 genomes and genomes from the Uniprot
results with >80% protein identity was calculated with PhyloPhlAn79 and
visualized using GraPhlAn80 and FigTree. This initial tree, which relates the RUGs
to their most closely related genomes, in combination with the outputs from
CheckM, UniProt and Sourmash searches, allowed us to assign a new taxon to each
of the bins, and these can be seen in Supplementary Data 2. The tree was
subsequently re-drawn, with the Hungate 1000 genomes removed, and selected
public genomes kept to help the viewer identify each clade. The updated taxonomic
assignments and can be seen in Fig. 1.

Predicted proteins were compared to Pfam38 using pfam_scan.pl; the CAZy35

database using dbCAN;36 and to nr, env_nr, md5nr37 and the Hess et al.1 predicted
proteins using Diamond74.

Reads were classified using Kraken, against six custom databases: BFAP,
consisting of 7318 complete bacterial genomes, 229 fungal genomes, 585 archaeal
genomes and 75 protozoan genomes (all from RefSeq); BGEB, consisting of the
genomes from BFAP but with the additional 1003 genomes from the GEBA
project;52 BHIC, consisting of BFAP+ the hRUGs; BRUG, consisting of BFAP+
the 850 RUGs; BHUN, consisting of the BFAP database plus 410 genomes from the
Hungate 1000 project; BRHI, consisting of the BFAP database plus all 913 genomes
presented in this study; and BRHH, consisting of BFAP, the 913 rumen genomes
from this study, and the 410 Hungate 1000 genomes.

PUL analysis. Prediction of PUL was carried out following a protocol similar to
PULDB44. Using the data we had generated already (comparison of all protein
predictions to Pfam and CAZy), we first identified susC/susD pairs in all assembled
contigs. We then searched, using a simple moving window consisting of five
protein predictions upstream and downstream, for proteins with a predicted
homologue in the CAZy database. If one was found, the sliding window was moved
in that direction, and the search repeated. The search ended when no more
homologues from CAZy were found. The PUL were drawn using BioPython81 and
GenomeDiagram82.

Hi-C plasmid analysis. The same metaSPAdes assembly that was used for Hi-C
clustering was also used for MetaBAT binning, using the single-sample protocol
described above. Subsequently, after filtering for completeness ≥80% and con-
tamination ≤10%, contigs with greater than twice their genome average were
extracted for analysis. NCBI BLAST+ version 2.4.0 was used to blastn search the
contig sequences against the nt database downloaded on Friday 17th November
2017. Options to blastn were -outfmt '7 qseqid qlen sseqid sacc stitle slen qstart
qend sstart send length evalue bitscore pident staxid' -evalue 0.01 -num_threads 16.
High scoring pairs <500 bp and <10% of the query length were filtered out using
awk. Hits that passed filter and contained the word 'plasmid' in the title are
reported in Supplementary Data 18.

Data availability. All raw sequence data have been submitted to the European
Nucleotide Archive under project PRJEB21624. RUG and hRUG assembled genomes
and proteomes are available from ENA and also from Edinburgh DataShare
(DOI:10.7488/ds/2296) All other relevant data are available in this article and
its Supplementary Information files, or from the corresponding author upon request.
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