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Abstract 

Competition for resources including food, physical space, and potential mates is a fundamental 

ecological process shaping variation in individual phenotype and fitness.  The evolution of 

competitive ability, in particular social dominance, depends on genetic (co)variation among traits 

causal (e.g., behaviour) or consequent (e.g. growth) to competitive outcomes.  If dominance is 

heritable, it will generate both direct and indirect genetic effects (IGE) on resource dependent traits.  

The latter are expected to impose evolutionary constraint because winners necessarily gain 

resources at the expense of losers.  We varied competition in a population of sheepshead swordtails, 

Xiphophorus birchmanni, to investigate effects on behaviour, size, growth, and survival.  We then 

applied quantitative genetic analyses to determine (i) whether competition leads to phenotypic 

and/or genetic integration of behaviour with life history and (ii) the potential for IGE to constrain life 

history evolution.  Size, growth and survival were reduced at high competition.  Male dominance 

was repeatable and dominant individuals show higher growth and survival.  Additive genetic 

contributions to phenotypic covariance were significant, with the G matrix largely recapitulating 

phenotypic relationships.  Social dominance has a low but significant heritability and is strongly 

genetically correlated with size and growth.  Assuming causal dependence of growth on dominance, 

hidden IGE will therefore reduce evolutionary potential.  

 

 

Introduction 

An individual’s phenotype is determined by its genotype and the environment it experiences 

throughout life.  Competition with conspecifics for resources (e.g. food, space, mating opportunities) 

is one important environmental factor known to have large effects on phenotypic traits including 
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growth (Ruzzante and Doyle 1991) and life history traits (e. g, maturation, fecundity, longevity).  

Importantly, by producing winners and losers, competition generates variation in resource- 

dependent traits and ultimately in fitness.  Since winners increase their (relative) fitness at the 

expense of losers (Brockelman 1975), those traits contributing to competitive ability are also 

expected to be under strong selection.  If so, then the evolutionary consequences of this selection 

will depend on the genetic covariance structure between traits causal and consequent to social 

dominance (Wilson 2014).  In the particular case that dominance itself is heritable, this genetic 

covariance will include contributions from indirect genetic effects (IGE; Bijma and Wade 2008) that 

can constrain adaptation of resource-dependent traits (Wilson 2014).  Here, we use a quantitative 

genetic approach to characterise the genetic basis of social dominance in a population of the 

poeciliid fish Xiphophorus birchmanni and explore the extent that genetic and environmental effects, 

notably including the degree of competition itself, shape the multivariate phenotype.  Our goals are 

to assess the extent to which competition leads to phenotypic and/or genetic integration of 

behavioural and life history traits, and to evaluate the potential for constraining IGE on the latter. 

In animals, intraspecific competition takes different forms and occurs across many different 

social contexts – from pure scramble competition leading to density dependence (Hassel 1975), to 

dyadic contests that can escalate to become an important source of mortality (e.g. Liker and Szekely 

2005).  From an ecological perspective, competition reduces mean (absolute) fitness with 

consequences for regulation and determination of population demography (Schoener 1983; Sih et al. 

1985; Chase et al. 2002).  However, in evolutionary terms perhaps the most important role of 

competition is as a mechanism that generates among-individual variation in both phenotypes and 

fitness.  Within populations, individuals can vary in competitive ability, or social dominance, defined 

here as an individual’s repeatable tendency to win or hold resources under competition (Wilson et 

al. 2011a).  Note that this definition is simply phenomenological, and certainly does not imply 

dominance is determined solely by “intrinsic” factors.  Indeed the converse is true; winning 
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resources usually depends on both focal phenotype and the particular social context or environment 

provided by competitors.  

More competitive phenotypes should generally be favoured by selection, and this has 

implications for the evolution of traits both causal and consequent to competitive outcomes.  

Although social dominance is not necessarily without costs (e.g., Wong and Kokko 2005; Bell et al. 

2012) overall, dominant individuals win resources and thus ultimately gain relative fitness at the 

expense of subordinates.  This in turn allows increased investment in, for instance, growth, earlier 

maturation or reproductive effort (Bernstein 1976; Huntingford et al. 1990; Fox et al. 1997).  Where 

fitness is tightly linked to competitive outcome, traits determining dominance might be under strong 

directional selection (Kruuk et al. 2002; Benson and Basolo 2006; Prenter et al. 2008).  Simple 

evolutionary theory predicts that, all else being equal, this should erode genetic variance (Fisher 

1958).  If so, then at equilibrium phenotypic variation in traits determining dominance (and so 

dominance itself) will largely be due to environmental effects (Kruuk et al. 2002).  However, 

directional selection on contest outcome can also generate disruptive selection on, and so 

maintenance of variation in, quantitative traits that mediate competitive outcomes (e.g., Abrams et 

al 2008).  

Although the limited number of studies conducted to date have generally found relatively 

low heritabilities for measures of social dominance (Wilson et al. 2011b; Sartori and Montavani 

2012), this may reflect high environmental variance rather than an absence of genetic effects.  For 

instance, much of our understanding of dominance comes from dyadic animal contest studies where 

winning is often causally dependent on heritable aspects of morphology such as body size and/or 

weapons (e.g. horns, Preston et al. 2003).  More recently, there has been growing recognition that 

social dominance can also depend on an individual’s (repeatable) behavioural phenotype, or 

personality (Reale et al. 2010).  Evidence is now accumulating that personality traits linked to 

competition, such as aggression and boldness (loosely defined as a willingness to take risks) are also 
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heritable (e.g., Drent et al. 2003; Sinn et al. 2006; Ariyomo et al. 2013).  Integration of multiple 

behavioural and morphological traits could result in alternative “strategies” for success in 

competition having equal fitness and/or being maintained by frequency dependent selection.  This 

may contribute to the maintenance of genetic variance in traits causal to dominance (as we broadly 

define it) and could occur if, for example, large aggressive individuals succeed in contest 

competition, but smaller and bolder (or more exploratory) individuals do well in more scramble-like 

competition.  Such a scenario could potentially explain the maintenance of sneaker male morphs in 

systems with male-male competition for females (e.g., Ryan et al. 1992).  However, across taxa the 

emerging - albeit certainly imperfect - pattern is one of positive covariance between boldness and 

aggression (e.g., Johnson and Sih 2005; Pintor et al. 2008; Ariyomo and Watt 2012).  Furthermore, 

both these personality traits are commonly positively associated with social dominance, resource-

dependent life history traits and fitness measures (e.g., Biro and Stamps 2008; Ariyomo and Watt 

2012; Rudin and Briffa 2012).  

Regardless of the relative importance of morphological and behavioural traits, it seems likely 

that social dominance will often be determined by genetically variable components of phenotype 

and so can be viewed as a heritable trait in its own right.  If so, this has important implications for 

our understanding of life history evolution.  This is because genes that increase dominance will allow 

individuals to succeed in competition, gain more resources, and so invest more in all resource-

dependent life history traits.  Genetic variance in dominance will therefore be a source not only of 

heritable variation in downstream traits, but also of positive genetic covariance (defined with 

respect to fitness consequences) between traits subject to resource-dependent trade-offs (Wilson 

2014).  Positive genetic correlations are a common empirical finding in natural populations (Kruuk et 

al. 2008) and seemingly pose a challenge to the view that trade-offs, expected to manifest as 

negative genetic correlations, ubiquitously impose evolutionary constraint.   
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However, genetic variance in dominance, or competitive ability, is also expected to generate 

indirect genetic effects (IGE).  IGE occur when the phenotype of one individual is causally dependent 

on the genotype of another, and are inevitable in the case that dominance is genetically variable.  

IGEs can have important implications for predicting evolutionary responses, and in particular are 

predicted to dampen the response of resource dependent traits when they arise from competitive 

interactions.  This is because selection on these trait(s) is expected to result in the correlated 

evolution of a more competitive social environment that offsets the expected phenotypic change 

(Hadfield 2010; Wolf et al. 1998; Bijma and Wade 2008; Wilson et al. 2011b).  Consequently, while 

genetic (co)variance is the raw material for adaptive evolution, understanding the extent that it is 

independent of social competition (and thus constraining IGE) may be a prerequisite for predicting 

selection responses (Hadfield et al. 2011; Wilson 2014). 

Here we tested the genetic basis of dominance, and characterised both genetic and 

environmental contributions to covariance in and between dominance, personality, size and growth, 

and survivorship in a laboratory population of the sheepshead swordtail, Xiphophorus birchmanni.  

Swordtails have been widely used in studies of social dominance (e.g., see Earley 2006 for an 

historical review; Walling et al. 2007; Boulton et al. 2012), while previous work on this particular 

population has found evidence of stable personality traits including aggressiveness (Wilson et al. 

2013) and boldness (Boulton et al. 2014).  In adult males, aggressiveness has been shown to be a 

better predictor of dyadic contest outcome than body size (Wilson et al. 2013).  The ability to win 

food in dyadic contests is repeatable in adults of both sexes, while dominant individuals (i.e. those 

that consistently win) tend to gain weight at the expense of subordinates (Wilson et al. 2013).  

In our experiment we use density manipulations to increase the expected intensity of 

competition in the sheepshead swordtail.  After testing for competition effects on mean growth, 

personality and survival, we estimate the among-individual and genetic covariance structures 

between traits related to social dominance.  We manipulate competition by subjecting a captive 
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bred generation of fish to contrasting low (L) and high (H) competition treatments in both early and 

later life.  We hypothesise that high competition (i.e. high density), particularly if experienced in 

early life, will reduce growth rates and negatively impact fitness components (e.g. survival).  Having 

shown direct effects of competition on phenotypic expression, we use a multivariate modelling 

approach to estimate the relationships among traits at the individual and additive genetic levels.  We 

predict that personality differences will predict social dominance with bolder individuals tending to 

be dominant.  We also expect that social dominance will positively predict growth and survival.  If 

heritable variation for dominance is present, then similar correlation structure is expected at the 

(direct additive) genetic level.  Importantly, if this is this case the (direct) genetic (co)variance 

structure among resource-dependent traits (G) will be insufficient to predict selection responses.  

More specifically, G will give an upwardly biased expectation of the potential for adaptive evolution 

because it does not account for IGE that will necessarily arise if dominance is heritable.  

 

Materials and methods 

Data analysed here were from a broader study (Boulton et al. 2014; Boulton et al. 2016). Previously 

described methods are thus kept accordingly brief.  Behavioural data from open field trials (OFT) 

have been previously published (Boulton et al. 2014) but not subjected to genetic analyses. 

 

Husbandry and density treatments   

Briefly, one hundred adult fish (60 female and 40 male Xiphophorus birchmanni) were caught from 

the Río Coacuilco, in the municipality of San Felipe Orizatlán, Hidalgo, Mexico, and imported to the 

UK.  Between August 2010 and May 2011, these fish were crossed to produce 384 offspring 

comprising 61 families nested within a half-sib structure (with 19 male and 32 female parents 

represented).  Families of ≤8 individuals were raised in one half of a brood tank (37 x 37 x 22 cm 

capacity partitioned into two equal volumes with a mesh divider).  Full-sib families of >8 individuals 
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were divided equally across two partitions (in different tanks).  Groups of six brood tanks (and eight 

experimental housing tanks; described below), henceforth referred to as stacks shared a single 

recirculating water supply.  Offspring were fed twice daily (fresh brine shrimp nauplii and a mix 

comprising equal quantities of crushed spirulina and brine shrimp flake).  At an average age of 16 

weeks (range 12-27) and length 27 mm (20-35), fish were tagged below the dorsal fin with coloured 

elastomer and assigned to mixed family groups (n=8).  Each group was subject to one of two initial 

density treatments; low (L) density groups were housed in a full tank (37 x 37 x 22 cm), while high 

(H) density groups in a partitioned tank (i.e. half the volume).  Six stacks were set up sequentially, 

(each comprising four L and four H groups) as sufficient fish (64 per stack) reached sufficient size to 

enable individual identification by use of elastomer tags.  Sex ratio was not controlled as external 

sexing of juveniles is not possible.  All groups received the same food ration (commercial flake and 

frozen tropical fish food) twice daily.  After 28 weeks (subsequently referred to as part 1), density 

treatments were reversed for four randomly chosen groups within each stack.  All groups were 

maintained for a further 22 weeks (part 2 of the study).  Thus within each stack, four density regimes 

were experienced (LL, LH, HL, HH), with two groups per regime.  Natural mortality over the course of 

the experiment resulted in some variation in group size (initially 8) through time, although survival 

was high (368 of 384) over the first density treatment period (i.e. part 1 of the study).  

 

Phenotyping methods 

Behavioural data were collected on boldness and dominance.  Boldness was determined using open 

field trials (OFT) described fully in Boulton et al (2014).  Individuals were subject to a total of four 

OFT: two in part 1 (weeks 13 and 21) and two in part 2 (weeks 33 and 41).  At each trial a fish was 

introduced to a 45 x 25 x 25 glass tank filled to a depth of 8 cm with room temperature water (22oC).  

After 30 s acclimation, a five minute observation period was filmed and a suite of traits putatively 

indicative of boldness extracted from the video using the Biobserve Viewer tracking software.  Our 
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previous analysis shows the among-individual (i.e. repeatable) component of multivariate variation 

is dominated by a single major axis of variance, broadly matching expectations of a shy-bold 

continuum (Boulton et al. 2014).  Thus, here we selected a single trait, activity (percentage time in 

trial spent moving at >1.5 cm.s-1) for use as a proxy for boldness.  

Social dominance was assayed for males only using in-tank observations (ITO).  Behaviour of 

each male in each group was recorded for five minutes, at up to 5 occasions during the experiment: 

two at the initial density treatment during part 1 of the study (weeks 18 and 25), and three at the 

final density treatments during part 2 of the study (30, 38, 44 weeks).  Remaining males at the end of 

part 2 were pooled with others from their stack in a large tank (45 x 120 x 30 cm) containing 

previously un-encountered stock females and observed on a minimum of five further occasions 

(consecutive days where possible).  Within groups, focal males (identifiable from natural markings 

and elastomer tags) were watched sequentially in a haphazard order by a recorder seated in front of 

the tanks in full view of the fish.  Fish were accustomed to researcher presence and our judgement 

was that this did not impact behaviour.   

While we acknowledge that aggression (actual, threat or signal of attack, Hand 1986, Francis 

1988) and dominance are not equivalent, the former is often used to assert the latter (Bernstein 

1976).  Here, we have previously shown that aggressive behaviours predict feeding dominance 

among male X. birchmanni (Wilson et al. 2013) while male dominance is known to determine access 

to females in swordtails generally (Magellan and Kaiser 2010).  For each five minute observation 

period, a within-group dominance score was therefore assigned to each focal male as the total 

number of aggressive actions toward other males (attacks, dorsal fin displays, chases), plus the 

number of courting attempts (displaying to female, shepherding away from other males), minus the 

number of submissions (retreating or fleeing from another male) and aggressive acts received (see 

Wilson et al. 2013 for further description of these behaviours).   
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Finally, standard length (SL) and live mass (WT) were measured at tagging (measure 1) and 

subsequent four-weekly intervals.  Up to 13 measures were made on each fish (with measure eight 

corresponding to the end of part 1, and measure 13 the end of part 2).  We also recorded longevity 

as the age at death in days (regardless of whether death was natural or by euthanasia), and right-

censored to age at the end of part 2 of the experiment (for fish alive at measure 13).  

 

Statistical analyses 

Following graphical exploration of the raw data, density treatment and genetic effects on 

behaviour, size and growth were tested using (univariate) linear mixed effect models, including 

pedigree-based animal models (Wilson et al. 2010) fitted by restricted maximum likelihood (REML) in 

ASReml-R.  Conditional F-tests were used for inference on fixed effects in the univariate models, 

with sequential dropping of non-significant terms (but retaining main effects in the presence of 

significant interactions).  Starting fixed effects were included to control for potentially confounding 

effects, and to test for density treatment effects.  Inference on random effects was by likelihood 

ratio test (LRT).  We follow Self and Liang (1987) by assuming the test statistic is distributed as a 

50:50 mix χ2
0 and χ2

1 (denoted χ2
0,1) for tests of a single variance component.  For comparing models 

differing in more parameters (e.g. random regressions and multivariate models described below) we 

adopted the more conservative strategy of setting DF equal to the number of additional covariance 

components in the more complex model.  

 

Determination of fixed effects in univariate models 

To test density treatment effects two-level factors were defined corresponding to early life density 

(ELD; L vs H in part 1) and late life density (LLD, L vs H in part 2).  Thus ELD:LLD defines a factor 

specifying the full regime (LL, LH, HL HH).  Since LLD treatment cannot influence phenotypic 

observations made during part 1 of the experiment, effects were fitted only to part-specific data 
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(denoted by subscript) where appropriate.  ELDpart1, LLDpart2 and ELD:LLDpart2 were therefore fitted for 

activity, dominance score, SL and WT. 

All starting models included fixed effects of stack (a six-level factor), sex (except dominance 

score since male-limited), sex ratio (SR) and group size (GS).  Group size (GS) and sex ratio (SR) 

experienced were defined for each individual (i) rather than each group.  GS was defined as the 

geometric mean number of fish in i’s group, averaged across months up to and including the 

observation, and included to control for effects of mortality (reducing group size from the starting n 

= 8).  SR was similarly defined as the geometric mean (across previous months) of the proportion of 

i’s tank mates that are mature males (see Boulton et al 2016).  Both variables were (arithmetic) 

mean-centered across all individuals to aid model interpretation.  For behaviours, additional fixed 

effects included: trial (factor, the number of previous assays experiences); order (zero-centred 

covariate, indicating the trialling sequence of individuals tested on a day); and observation type 

(within-group during main experiment versus in larger tank after) for dominance score.  For size 

traits (SL and WT) we included Measure (a factor with 13 levels) and Measure:Sex, allowing sex 

specific average growth patterns over the 13 months.  A linear effect of absolute Age (zero-centred) 

was also included to account for variation in age among fish entering the experiment.   

 

Random effect specification in univariate models 

Random additive genetic and permanent environment effects were fitted using a standard repeat 

measures animal model (Wilson et al 2010).  For SL and WT this model was extended to include 1st 

order (linear) random regressions on age (zero centred on the mean age of 294 days) for both 

additive and permanent environment effects (following e.g., Wilson et al. 2006).  This partitions each 

individual’s genetic deviation from the mean trajectory of size over age into a random intercept, and 

a random slope.  Variance in the former represents genetic variance in size (at average age), the 

latter genetic variance in growth.  Environmental deviations from the mean size are treated 
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analogously to partition the non-genetic component of among-individual variation in size (at average 

age) and growth.  Repeatability (R) was estimated as the ratio of among-individual variance (VI) to 

phenotypic variance (VP) conditional on fixed effects using a simple repeat measures mixed model 

containing identity and (for SL and WT only), identity x age as random effects.  Narrow sense 

heritabilities, h2 were estimated from the animal models as the ratio of VA to VP.  We did not 

generate R or h2 estimates for Growth (as inferred from either SL or WT) because among-individual 

and additive genetic variances in reaction norm slopes are estimated from the random regression 

models but residual variances are not.  

 

Analysis of survival data 

Right censored age of death data were analysed using a proportional hazards regression model 

implemented by coxph in the R library survival (Therneau and Grambsch 2000; Therneau 2015).  

Predictors of Stack, Sex, GSi, SRi  and ELD:LLD were included.  Note that mortality occurred almost 

exclusively in part 2 so separate effects of ELD and LLD were not modelled.  A small number of fish 

that died with indeterminate sex were excluded.  Heritable variation in survival, defined as zero 

(dead before measure 13) or one was also tested for using a univariate animal model and the same 

fixed predictors with an addition linear effect of age at Measure 1.  We assumed a Gaussian error 

structure in order to obtain an estimate of heritability on the observed (i.e. 0/1) data scale, but note 

that statistical inferences from this model parameters should be treated caution as a consequence.   

 

Multivariate models to estimate ID, G and selection through longevity 

Multivariate mixed models were then used to estimate ID, the among-individual phenotypic 

variance-covariance matrix, and the additive genetic matrix G.  These were fitted in the standalone 

implementation of ASReml (v4) assuming Gaussian residuals.  The 6x6 ID matrix was first estimated 

among the set of observed traits (activity, dominance score, SL, WT) and the two growth traits 
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(GrowthSL and GrowthWT modelled using random regressions).  Observed traits were scaled to 

standard deviation units to facilitate convergence and fixed effects included on each trait as 

determined from univariate analyses.  A random effect of individual identity was included on all 

traits.  This model was compared to one where ID was constrained to be a diagonal matrix (i.e. all 

covariance elements equal to zero) as an overall test of among-trait covariance.  The original model 

was then extended to include survival (0, 1) as an additional response variable.  Survival is observed 

once only, such that VI and VR are not separable and the latter was therefore fixed to zero.  This 

partitions all variance in survival (conditional on fixed effects) to the extended ID structure.  

Observed survival was divided by the mean to convert to relative fitness.  The covariance estimates 

between each trait and relative fitness in ID can then be interpreted as the ordinary selection 

differentials of quantitative genetic theory (Falconer and Mackay 1996) contained within a vector S.  

We compared this model’s fit to one where all elements of S are fixed to zero as a global test for 

selection.   

The above steps were repeated using male and female data separately to qualitatively check 

whether pooling sexes for multivariate genetic analysis was sensible, and determined whether 

selection was similar across sexes.  IDmale and IDfemale were broadly similar (apart from necessary 

exclusion of dominance score in females; see results) so power was maximised by estimating G from 

a pooled-sex multivariate animal model.  We note that if G x Sex interactions occur, the resultant 

estimate of G can be viewed as an average of sex-specific matrices.  Trait-specific fixed effects were 

included as before, with random additive genetic and permanent environment effects on all traits.  

For SL and WT first order random regressions of age were used.  The full model fit was compared to 

one with a diagonal G matrix assumed as a global test for genetic covariance among traits and 

individual COVA estimates were scaled to genetic correlations (rG) to facilitate interpretation.  Given 

a lack of VA in the univariate analysis, we did not expand this analysis to include (relative) survival.  
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Results 

Data structure and fixed-effects on traits 

The final data set included 384 individuals (222 males, 151 females, 11 fish with undetermined sex at 

time of death or end of data collection period); 4175 age-specific measures of size (SL and WT); 1235 

observations of activity in OFT; and 1385 observations of male dominance score.  Visual comparison 

suggests mean growth trajectories are similar across sexes (for SL and WT; Figure 1), although 

standard deviations for size at each age are uniformly larger in males (Figure 1A vs 1B, 1C vs 1D).  On 

average, growth continued across the study timeline in all density treatments, although the 

comparatively constant rate of absolute growth in part 2 masks a decline in relative growth rates 

after maturation in both sexes (see supplemental figure 1).  

Effects of density treatment were not obvious from visual inspection of behavioural data 

(not shown), while univariate models confirmed no significant density treatment effects on activity 

or dominance score (Table 1; see also supplemental Table 1 for coefficient estimates).  In contrast, 

high part 1 density reduces age-specific SL and WT (especially in females; Fig 1A, 1C).  Fish 

experiencing low density in early life were bigger in part 1, both in terms of SL (ELDpart1 L coefficient 

(SE) = 0.635 (0.113), F1,2583.6 = 31.5, P<0.001) and WT (ELDpart1 L coefficient (SE) = 0.050 (0.020), 

F1,2583.6 = 31.5, P<0.001).  Significant effects of LLDpart2 and (LLD:ELD)Part2 on WT were also detected 

(Table 1).  Collapsing these terms into a four level factor defining possible treatment combinations 

on WTpart2 yields effect size estimates (relative to expected mean for HH fish) of LL -0.038 (0.039) , LH 

-0.165 (0.039), HL 0.024 (0.033).  Thus, the significant effect of LLD on WTpart 2 is driven largely by a 

negative impact of switching from L to H at the end of part 1.  

Based on significance in univariate models, some additional fixed effects were retained in 

variance component and multivariate analyses that are not directly relevant to current hypotheses, 

therefore we describe them only briefly here (but see Table 1 and Supplemental Table 1 for full 

presentation).  Specifically sex effects are present on mean size (SL and WT) and average growth 
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trajectory (manifest as Measure:Sex effects) and GS effects positively influenced SL.  SR was not a 

significant predictor of any trait.  Among-stack differences were present for all traits except 

dominance score.  For activity, significant trial effects were driven by greater mean activity at trials 

2-4 relative to trial 1, while a negative effect of order was also present.  These were already known 

from prior analysis of OFT data (Boulton et al 2014).  Trial also significantly influenced dominance 

score, with higher scores seen in the later observations made after mixing fish across units.  This is 

consistent with an expected increase in agonistic interactions among individuals that are unfamiliar 

with each other (see e.g., Wong and Balshine 2011). 

 

Repeatabilities, heritabilities and (genetic) variance in growth.   

Univariate models provided statistical support for among-individual variance (conditional on fixed 

effects), underpinned by genetic effects for all traits (but not survival as noted above).  Testing 

random effects in univariate models confirmed significant repeatability of activity (R = 0.260 (0.034)) 

and male dominance score (R = 0.242 (0.032); Table 2).  Behavioural heritabilities were low (h2
activity = 

0.093 (0.056), h2
Dominance = 0.066 (0.052)) but VA estimates significant at P<0.05 (Table2).  Size varied 

among individuals (SL and WT) and first order random regression models yielded significantly better 

fits than simple repeated measures models.  Thus there is among-individual variance in both size and 

growth (the latter being I x age for size; Table 2).  This was mirrored at the genetic level with VA and 

G x age interaction statistically supported for SL and WT (Table 2).  Noting that ID x age and G x age 

imply age-dependence of VI and VA respectively, we estimate RSL = 0.908 (0.008) and RWT = 0.839 

(0.011) at 294 days (the mean observed age in the data set).  At this age h2
SL = 0.247 (0.106) while 

h2
WT is lower (though not significantly so) at 0.144 (0.076).  

 

Survival analysis 
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Two hundred fish (52.8%) remained alive at the end of part 2 (measure 13).  Observed 

survival to measure 13 was higher in females (62.0% versus 46.6% in males) with treatment specific 

rates (sexes combined) of LL = 59.1%, LH = 46.9%, HL = 55.9%, and HH = 49.5%.  Testing of the 

treatment effects in the proportional hazards regression predicts that, conditional on other model 

effects, survival is lower in LH and HH and higher in HL relative to LL (the reference treatment level 

(Figure 2)).  However, only in LH is the difference from LL statistically significant (Table 3).  Thus, 

experiencing low density in early life and then being switched to high density has a negative effect 

on survival.  In addition there were significant effects of Stack, SR, and GS (with the hazard for a focal 

individual increased in more male-biased and larger groups; Table 3).  The animal model of survival 

yielded a small non-significant estimated for survival on the observed 0/1 scale of h2
 = 0.016 (0.015).  

 

Multivariate models: ID, G and selection through survival 

Comparison of unstructured and diagonal models revealed significant among-trait covariance in ID.  

This was true in pooled-sex (χ2
15 = 2057, P<0.001), and sex-specific analyses (males χ2

15 = 1430, 

P<0.001, females χ2
10 = 663, P<0.001).  Length and weight are strongly positively correlated with 

each other in the pooled sex estimate of ID (Table 4), and also with growth traits.  In other words 

random intercepts (size at mean age) and slopes (growth) were positively correlated in the random 

regression models.  For males, dominance score is positively correlated with all measures of size and 

growth but, counter to predictions, is negatively associated with activity.  The correlation between 

activity and dominance score is nominally significant based on Z score ≥ 1.96 (rI= -0.410 (0.104)).  

Noting that dominance score is a male limited trait, and excluding relationships with survival 

(see below) the correlation structure in ID is qualitatively similar in the two sexes (Supplemental 

Table 2) and G was thus estimated from a pooled analysis.  A diagonal genetic matrix was supported 

over a null model (χ2
6 = 35.6, P<0.001), and the fully unstructured matrix was significantly better 

again (χ2
15 = 59.4, P<0.001).  The first comparison corroborates the presence of genetic variance, the 
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second provides evidence of among-trait genetic covariance structure (Table 4).  On a correlation 

scale, (i.e. upper diagonal of G in Table 4), our estimates of between-trait genetic relationships 

largely mirror those in ID (although SEs are larger and not all pairwise estimates of rG should be 

deemed significant).  Thus, for example, we find a strong negative genetic correlation between 

activity and dominance score (rG = -0.845 (0.361)).  The former is also negatively genetically 

correlated with size and growth, for the latter the correlation structure is positive (Table 4). 

Finally, expanding the multivariate model used to estimate ID to also include relative 

survival provided evidence for (among-individual) phenotype-fitness covariance (both sexes 

combined χ2
6 = 97.8, P<0.001).  Selection differentials, S (contained in the final row of the expanded 

ID matrix; Table 4) and their corresponding correlations indicate positive trait-fitness associations 

that are nominally significant for all traits except activity (rI = 0.013 (0.074)).  Thus large, fast 

growing, dominant (if male) individuals showed higher survival, but activity does not predict fitness.  

In males, the phenotype-fitness associations were similar (supplemental table 2), and significant (χ2
6 

= 104.8, P<0.001).  However, single sex analysis provided no statistical support for significant 

selection on female traits (excluding dominance; χ2
5 = 7.38, P = 0.194). 

 

Discussion 

The aims of this study were to ascertain the effects of experimentally manipulated competition on 

growth, personality and survival in the sheepshead swordtail, and to investigate among-individual 

and genetic covariance structures between traits related to social dominance.  We found evidence of 

reductions in size and growth at high competition as predicted, but no evidence of density effects on 

personality.  Between traits there was significant among-individual covariance structure, with 

personality (boldness) predicting social dominance, size, growth and survival, though not all 

relationships matched our a priori predictions.  Genetic covariance was also found between traits 

and we detected low, but statistically significant genetic variance in male dominance that has 
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important consequences for the evolution of traits dependent on competitive outcomes.  In what 

follows we first discuss the density effects on phenotype and patterns of phenotypic covariance 

before addressing these evolutionary implications in more detail. 

 

The effects of increased competition on phenotype and fitness 

As predicted, we found evidence that density (i.e. level of competition for space) influenced 

phenotypes and fitness.  For example, size and growth rates were lower in early life at high density, 

consistent with the widespread reporting of density dependent growth rates in fishes (see e.g., 

Rothschild 1986; Lorenzen and Enberg 2002; Hixon et al. 2012).  Significant density treatment effects 

on later life growth were also found, and were driven in particular by reduced growth (measured by 

live mass (WT)) in fish that experienced the low:high (LH) regime.  Thus, it seems that switching from 

a low to a high competition environment part way through development may impose a greater 

challenge to growth than consistently experiencing high density.  Conversely, males experiencing the 

HL regime actually had the greatest mean size at the end of the experiment.  This latter pattern is 

consistent with compensatory growth, a widely reported phenomenon in fishes entailing a phase of 

accelerated growth following a period of growth depression, usually when favourable conditions are 

restored (e.g., Metcalfe and Monaghan 2001; Ali et al. 2003).  We also found that survival was 

directly influenced by the competitive environment.  Observed survival was highest in fish 

experiencing low density throughout life (LL) and lowest in the HH treatment.  However, the 

predictions from survival analysis indicated that, after conditioning on other model effects, the most 

striking outcome is a significant reduction in survival for fish moved from low to high density 

(relative to those not moved).  This may indicate some form of adaptive plastic response to density 

in early life, such that individuals raised at low density find themselves maladapted if subjected to an 

environmental switch.  In this case it is necessarily a plastic within-generation effect; however, the 

pattern shows some interesting parallels to results of reciprocal translocation experiments in wild 
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guppies that have been interpreted as evidencing evolution under density dependent selection 

(Bassar et al 2013). 

Reduced allocation to resource dependent traits and a decrease in (absolute) fitness are 

defining features of competition found ubiquitously across taxa.  Thus the reduced growth and 

survival at higher density are consistent with our density treatment having manipulated the level of 

competition as intended.  We previously reported a weak trend towards later and smaller maturation 

at high early life density in these fish, highlighting the fact that other aspects of life history are also 

impacted (Boulton et al. 2016).  In contrast however, we found no evidence of density treatment 

effects on individual behaviour.  Although this was not unexpected for male dominance (assayed 

within groups of individuals experiencing the same treatment regime), several recent studies have 

reported links between density and “bold type” personality variation (see e.g., Patrick et al. 2013; 

Müller et al. 2016 for observational and experimental studies respectively).  Conversely, Niemelä et 

al. (2012) reported no impact of experimentally manipulated (larval) rearing density on adult 

boldness in the field cricket Gryllus integer, a result that mirrors our lack of population level plastic 

response of boldness to the density treatment applied.  

 

Among-individual correlations between traits and fitness 

After controlling for all fixed effects, our mixed model analyses provided strong evidence of among-

individual variance in those traits with repeated measures (i.e., activity, dominance score, size and 

growth).  Repeatability of activity, used here as a proxy for boldness, was known from prior analysis 

of this data (Boulton et al. 2014).  However, consistent among-male differences in dominance score 

provide independent confirmation that male dominance in this species can be viewed as a 

repeatable trait of the individual (Wilson et al. 2013), albeit one that will also depend on social 

context (i.e. group, competitor phenotype).  We also found evidence of significant correlations 

between phenotypic traits (at the among-individual level) and between traits and fitness, though not 
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all relationships were as predicted.  Most strikingly, we had predicted a positive correlation between 

individual boldness and dominance, but in fact found a strong and highly significant negative one.  

The strength of the correlation remains consistent with the idea that this personality trait is part of 

what determines an individual’s competitive ability (Briffa et al. 2015), but clearly our directional 

prediction, based largely on the emerging pattern in the literature (e.g., Dingemanse and de Goede 

2004; Sundstrom et al. 2004; Webster et al. 2007; Dahlbom et al. 2011), was entirely wrong.  

Speculatively, it is possible that the negative association between boldness and dominance reflects 

alternate male strategies for obtaining resources (food and / or mating opportunities) that have 

been reported in some Xiphophorus species (Ryan and Causey 1989; Zimmerer and Kallman 1989; 

Ryan and Keddyhector 1992; Cummings and Gelineau-Kattner 2009).  For instance, socially dominant 

males may be able to hold territories in the natural environment, with subordinates having to use 

more active, mobile and exploratory (i.e. bold-type) behaviours to find undefended resources.    

Other correlations in ID were more in line with our a priori predictions.  Thus, despite being 

less bold, dominant fish did tend to be larger, and grow faster (as inferred from both standard length 

and weight).  Although dominance score is observed for males only, this finding agrees with previous 

work on the same population where resource acquisition during dyadic interactions was used to 

assay dominance in both sexes (e.g., Wilson et al. 2013).  Under our experimental rearing conditions, 

viability selection also tends to favour the dominant, faster growing males as predicted.  Size and 

growth were not under significant viability selection in females, although the qualitative pattern of 

covariance with survival is not dissimilar.  Note that following maturity, female fecundity scales 

tightly with size so we would expect strong (positive) selection on size through lifetime fitness in the 

wild.  We find no evidence of selection on boldness in either sex, but stress that this may well be a 

consequence of the artificial conditions.  For instance, increased predation risk is widely expected to 

impose a cost on bold behavioural strategies in wild populations.  This was recently found in roach 

(Rutilus rutilus), with bolder fish being more susceptible to avian predation (Hulthén et al. 2017).  It 
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is also the case that personality traits can be under sexual selection (Schuett et al. 2010), that will 

not be apparent in our experiment.  

 

Implications of genetic (co)variance 

Our animal model analyses confirmed the presence of significant additive genetic effects 

contributing to observed phenotypic (co)variance.  Therefore, there is evidence for genetic variance 

in boldness (activity) and male dominance score, as well as in size and growth (as measured by 

standard length and weight).  The presence of genetic variance means that there is scope for 

adaptive evolution (Falconer and Mackay 1996) although the extent that the traits involved can 

respond independently to selection on them will depend on the genetic covariance / correlation 

structure in G (Walsh and Blows 2009).  Overall, there was statistical support for between-trait 

genetic covariance although we acknowledge that pairwise genetic correlations between traits were 

characterised by high levels of uncertainty.  Nonetheless, a number of correlations were nominally 

significant at α = 0.05 (based on their estimated standard errors).  This included, for example, the 

strong negative estimate of rG between boldness and male dominance.  In this case, and more 

generally, the sign of the estimated genetic correlations matched that of the phenotypic correlations 

in I as discussed above.   

Two results from our genetic analysis are worth highlighting.  The first is that the among-

individual variation in boldness previously reported (Boulton et al. 2014), is underpinned by 

significant heritable variation.  Although it has long been known that genes influence personality in 

humans (e.g., Horn et al. 1976; Jang et al. 1996; Bouchard and McGue 2003) comparable studies on 

animals, particularly wild ones, are still quite rare (but see: Drent et al. 2003; Dingemanse et al. 

2004; van Oers et al. 2004).  Our result thus adds to an emerging picture of genetic differences 

among individuals being important determinants of animal personality generally (Dochtermann et al. 

2015) and in fishes specifically (Dingemanse et al. 2012).   
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A second important result, and one more germane to our study rationale, is that we found 

evidence for heritable variation in male dominance score.  Although the estimate of h2
 is low (6.6%), 

genetic correlations with other traits examined suggest that this could have important evolutionary 

consequences.  This is because if the resources won by a focal individual in competition depend on 

its own genotype, it follows that they will also be influenced by the genotypes of competitors, giving 

rise to indirect genetic effects (IGEs; Moore et al. 1997; Moore et al. 2002) on resource acquisition 

and resource dependent traits.  While IGE can accelerate selection responses in some contexts (Wolf 

et al. 1998), under competition they are expected to constrain phenotypic responses of resource-

dependent traits (e.g., size, growth) to directional selection as a result of the evolution of a more 

competitive social environment (Hadfield 2010; see Introduction).  Equivalently, but conceptualised 

slightly differently, IGEs reduce the genetic variance available to facilitate a selection response 

(Wilson 2014).  In the limiting case with a finite resource and constant population size, a response to 

selection in a single trait will depend not on the total magnitude of VA but on the portion that is 

independent of competitive ability (and thus free from constraining IGE; Wilson 2014).  If dominance 

score is a valid measure of competitive ability, then from our estimate of G we can determine this as 

VA|Dom / VA where VA|Dom is the additive variance conditional on dominance score.  Following Hansen 

and Houle 2008, for a single trait y conditional on a single trait x we can calculate VAy|x = VA(y) - 

COVA(y,x)·VA(x)
-1

 ·COVA(x,y).  This yields, for example, values of VA|Dom / VA of 38% and 42% respectively 

for size and growth as measured by live weight.  

The presence of heritable variation for dominance coupled to positive genetic covariance 

with size and growth, thus implies that IGEs arising from competition could reduce observed 

selection responses by >50% relative to naive predictions.  Two caveats need stating however.  First 

this degree of constraint is likely to be an overestimate because it assumes that size and growth are 

causally dependent on competitive ability but not vice versa.  We have no way to assess causality 

from our data although there are a wealth of contest studies in Xiphophorus showing that body size 
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is a key predictor of contest outcome (see Earley and Hsu 2008 for a review).  Thus the (genetic) 

covariances between dominance and size and growth are likely to reflect bi-directional causality.  

Nonetheless, we have previously shown that the presence of dominant X. birchmanni males reduces 

weight gain of subordinate tank mates (Wilson et al. 2013).  The specific mechanism underpinning 

this is unknown.  Reduced growth rates in behaviourally subordinate fish could be an indirect 

consequence of experiencing harassment and bullying from fish with dominant phenotypes (as 

opposed to a direct consequence of obtaining less resource, e.g. food).  It is well known that 

physiological effects of chronic social stressors such as bullying can impact behaviour, health, life 

history and survival in animal populations (e.g., Pickering and Pottinger 1989; Boonstra et al. 2001; 

Barton 2002).  Individual fitness may depend therefore not only on the ability to win resources (and 

thus the phenotypic traits that promote resource winning) but also on the ability to cope with the 

social stress imposed by socially dominant conspecifics.  

A second caveat to note is that we did not explicitly model or estimate IGEs on traits 

presumed consequent to competitive outcomes (i.e. size, growth).  Ideally this would have allowed 

us to verify the expected consequences of heritable dominance for downstream traits (as discussed 

above).  Although in principle it is relatively straightforward to estimate IGEs within a variance 

partitioning animal model framework (Bijma et al. 2007), we were unable to obtain stable model 

convergence from our data.  We acknowledge that our breeding design is relatively small here and 

therefore data availability is likely limiting in this regard (as well as contributing to high uncertainty 

in the elements of G).  In fact, a second generation of breeding was initially planned to allow further 

investigation of IGEs, as well as testing for GxE across the density treatments.  However, this was 

precluded by poor reproductive success of surviving fish both during and following the current 

experiment.  We therefore note that more complex quantitative genetic models are thus unlikely to 

provide further insight. 
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Conclusions 

In summary, this study sought to investigate the direct effects of social competition on phenotype 

and fitness, test for among-individual variation in competitive ability (i.e. dominance) and investigate 

the multivariate genetic architecture linking traits putatively causal and consequent to dominance.  

We found that higher levels of competition caused reductions in growth and survival but had no 

effect on average behaviour.  Dominance score was repeatable in males, and positively correlated 

with size, growth and survival at the among-individual level as predicted.  However, while we found 

a correlation between personality (boldness) and dominance, the sign of this relationship was 

negative counter to our predictions.  Thus, fish that were bolder actually tended to be less dominant 

(if male).  This is compatible with the premise that personality is an important determinant of social 

dominance, but the direction of the relationship is something of an anomaly when set against the 

wider context of empirical studies of boldness.  We also found evidence of genetic (co)variance 

underpinning observed phenotypic variation.  Thus there is genetic integration between boldness, 

dominance, size and growth and these aspects of phenotype will not evolve independently under 

selection.  Of particular significance is the conclusion that dominance is both heritable and 

genetically correlated with size and growth.  Provided growth depends on the outcome of 

competition, heritable dominance leads to an expectation of indirect genetic effects that will act as 

constraints on selection responses.  
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Table 1: Fixed effects retained for each trait showing results of conditional Wald F tests from 

univariate animal models including additive genetic (all traits) and permanent environment (all traits 

except longevity) effects as random.  

 

Trait Effect F DF P 

Activity 
 

Intercept 1332 1, 12.1 <0.001 

Stack 7.80 5, 188.3 <0.001 

Sex 7.51 1, 345.8 0.006 

Trial 131 3, 921.6 <0.001 

Order 10.4 1, 1203.9 0.001 

Dominance score Intercept 12.8 1, 11.6 0.004 

 Trial 3.26 15, 1220.4 <0.001 

Standard length 
 

Intercept 4196 1, 1.5 0.002 

Age 22.4 1, 494.3 <0.001 

Measure 462 12, 3335.5 <0.001 

Stack 2.43 5, 343.6 0.035 

Sex 0.362 1, 361.4 0.548 

GS 7.22 1, 3824.1 0.007 

Measure:Sex 13.9 12, 3384.3 <0.001 

ELDPart1 31.5 1, 2583.6 <0.001 

Weight 
 

Intercept 486 1, 6.7 <0.001 

Age 19.7 1, 279.1 <0.001 

Measure 169 12, 3123.3 <0.001 

Stack 4.39 5, 330.1 0.001 

Sex 0.674 1, 359 0.412 

Measure:Sex 13.4 12, 3477 <0.001 

ELDPart1 47.1 1, 837.1 <0.001 

LLDPart2 11.8 1, 3782.9  0.001 

(ELD:LLD)Part2 8.69 2, 2621.5 <0.001 
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Table 2: Repeatability (R) and heritability (h2) estimates for all traits and survival.  Estimates are from 

univariate models and standard errors in parentheses.  Also shown are likelihood ratio tests of 

among-individual variance (VI), additive genetic variance (VA) and, for size traits only, among-

individual (ID x Age) and additive genetic (G x Age) variance in growth. 

 Trait R (SE) h2 (SE) VI VA ID x Age G x Age 

χ2
0,1 P χ2

0,1 P χ2
2 P χ2

2 P 

Activity 0.260 
(0.034) 

0.093 
(0.056) 

83.
3 

<0.00
1 

4.97 0.013 - - - - 

Dominance 
score 

0.242 
(0.032) 

0.066 
(0.052) 

180 <0.00
1 

3.66 0.028 - - - - 

Standard 
length1 

0.908 
(0.008) 

0.247 
(0.106) 

337
0 

<0.00
1 

19.6
1 

<0.00
1 

338
7 

<0.00
1 

17.
6 

<0.00
1 

Weight1 0.839 
(0.011) 

0.144 
(0.076) 

203
0 

<0.00
1 

14.1
4 

<0.00
1 

358
7 

<0.00
1 

11.
2 

0.004 

Survival - 0.016 
(0.015) 

- - 1.93 0.082 - - - - 

 

1Since random regression models are used R and h2 estimates here are for size at mean observed 

age of fish in the study (= 294 days) 

 

 

Table 3: Results of survival analysis using proportional hazards regression model 

Predictor Coefficient SE 
Exp 

(Coefficient) 
z P 

Stack (A) NA 
    

Stack (B) 1.087 0.274 2.965 3.971 <0.001 

Stack (D) 0.270 0.271 1.310 0.995 0.320 

Stack (E) 0.808 0.281 2.244 2.879 0.004 

Stack (F) 0.120 0.305 1.127 0.392 0.695 

Stack (G) -0.185 0.304 0.831 -0.607 0.544 

Sex (Female) NA 
    

Sex (male) 0.204 0.183 1.226 1.114 0.265 

GS 1.720 0.174 5.584 9.885 <0.001 

SR 0.829 0.388 2.290 2.134 0.033 

Treatment (LL) NA 
    

Treatment (LH) 0.597 0.225 1.817 2.652 0.008 

Treatment (HL) -0.237 0.241 0.789 -0.984 0.325 

Treatment (HH) 0.225 0.240 1.253 0.941 0.347 
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Table 4: Estimates of among-individual (ID) and additive genetic (G) matrices.  Estimates are derived 

from analyses of both sexes combined (see main text) noting that Dominance score is sex-limited 

(males only).  Among-individual or additive genetic variances are shown on the diagonal (light grey 

shading), with between-trait covariances below the diagonal with corresponding correlations above.  

Standard errors are shown in parentheses for all estimates and bold font denotes individual 

correlations deemed nominally significant at α = 0.05 (based on |correlation/SE| ≥ 1.96).  The 

expanded estimate ID is shown with Survival included as a further response to estimate the selection 

differentials on each trait (dark grey shading) and corresponding trait-fitness correlations (black 

shading). 

 TRAIT Activity Dominance 
score 

Standard 
length 

Weight GrowthSL GrowthWT Survi
val 

I
D 

Activity 0.198 (0.029) -0.410 (0.104) -0.472 (0.065) -0.513 (0.063) -0.378 (0.069) -0.442 (0.067) 0.013 
(0.074
) 

Domina
nce 
score 

-0.084 (0.023) 0.213 (0.032) 0.632 (0.063) 0.711 (0.055) 0.493 (0.069) 0.649 (0.059) 0.233 
(0.082
) 

Standar
d 
length 

-0.010 (0.017) 0.138 (0.020) 0.225 (0.017) 0.921 (0.009) 0.576 (0.037) 0.648 (0.033) 0.189 
(0.051
) 

Weight -0.123 (0.019) 0.177 (0.022) 0.236 (0.019) 0.292 (0.022) 0.743 (0.026) 0.867 (0.015) 0.358 
(0.048
) 

Growth

SL 

-5.08x10-4 

(1.05x10-4) 

6.88x10-4 

(1.20x10-4) 

8.25x10-4 

(9.04x10-5) 

1.21x10-3 

(1.10x10-4) 

9.13x10-6 

(7.07x10-7) 

0.926 (0.008) 0.391 
(0.048
) 

Growth

WT 

-8.54x10-4 

(1.53x10-4) 

1.30x10-3 

(1.77x10-4) 

1.34x10-3 

(1.34x10-4) 

2.04x10-3 

(1.68x10-4) 

1.22x10-5 

(9.76x10-7) 

1.89x10-5 

(1.47x10-6) 

0.482 
(0.044
) 

Survival  0.005 (0.027) 0.087 (0.032) 0.073 (0.021) 0.157 (0.025) 9.59x10-4 

(1.46x10-4) 

1.70x10-3 

(2.18x10-4) 

0.659 
(0.050
) 

         

G 

Activity 0.079 (0.049) -0.845 (0.361) -0.280 (0.344) -0.580 (0.287) -0.378 (0.323) -0.625 (0.286)  

Domina
nce 
score 

-0.042 (0.032) 0.032 (0.032) 0.424 (0.422) 0.795 (0.363) 0.432 (0.468) 0.736 (0.413)  

Standar
d 
length 

-0.020 (0.028) 0.0195 (0.023) 0.066 (0.030) 0.852 (0.093) -0.176 (0.330) -0.080 (0.362)  

Weight -0.038 (0.029) 0.0334 (0.024) 0.052 (0.028) 0.056 (0.0290) 0.118 (0.346) 0.367 (0.313)  

Growth

SL 

1.95x10-4 
(2.02x10-4) 

1.42x10-4
 

(1.76x10-4) 
-8.33x10-5 
(1.52x10-4) 

5.11x10-5 
(1.60x10-4) 

3.39x10-6 
(1.55x10-6) 

0.890 (0.072)  

Growth

WT 

3.64x10-4 

(2.67x10-4) 

2.72x10-4 

(2.24x10-4) 

-4.28x10-5 

(1.89x10-5) 

1.79x10-4 

(2.11x10-4) 

3.40x10-6 

(2.38x10-6) 

4.30x10-6 

(2.38x10-6) 
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Figure 1: Average growth trajectories showing mean standard length (A – females, B - males) and live 

mass (C - females, D - males) by month from the start of the experiment for fish in each density 

treatment regime.  Bars indicate standard deviations and dashed line indicates the point of 

treatment switch.  
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Figure 2. Predicted survival curves by total density treatment.  From left to right, the dashed vertical 

lines denote mean age at start of the experiment, and mean age at measure 8 (end of part1).   

 

 


