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Abstract It has been shown that the deep Eastern Equatorial Pacific (EEP) region was poorly ventilated
during the Last Glacial Maximum (LGM) relative to Holocene values. This finding suggests a more efficient
biological pump, which indirectly supports the idea of increased carbon storage in the deep ocean
contributing to lower atmospheric CO2 during the last glacial. However, proxies related to respired carbon are
needed in order to directly test this proposition. Here we present Cibicides wuellerstorfi B/Ca ratios fromOcean
Drilling Program Site 1240 measured by laser ablation inductively coupled plasma mass spectrometry
(LA-ICPMS) as a proxy for deep water carbonate saturation state (Δ[CO3

2�], and therefore [CO3
2�]), along

with δ13C measurements. In addition, the U/Ca ratio in foraminiferal coatings has been analyzed as an indicator
of oxygenation changes. Our results show lower [CO3

2�], δ13C, and [O2] values during the LGM, which would be
consistent with higher respired carbon levels in the deep EEP driven, at least in part, by reduced deep water
ventilation. However, the difference between LGM andHolocene [CO3

2�] observed at our site is relatively small,
in accordance with other records from across the Pacific, suggesting that a “counteracting”mechanism, such
as seafloor carbonate dissolution, also played a role. If so, this mechanism would have increased average
ocean alkalinity, allowing even more atmospheric CO2 to be “sequestered” by the ocean. Therefore, the deep
Pacific Ocean very likely stored a significant amount of atmospheric CO2 during the LGM, specifically due to a
more efficient biological carbon pump and also an increase in average ocean alkalinity.

1. Introduction

Severalmarine carbon cyclemechanisms have been invoked to explain, at least, a major part of the atmospheric
CO2 drawdown observed over the last glacial period (e.g., Kohfeld & Ridgwell, 2009; Sigman et al., 2010). These
mechanisms can be categorized broadly as deriving primarily from (1) changes in whole ocean carbonate
chemistry through global alkalinity (ALK) increase, for example, due to “carbonate compensation” or carbonate
dissolution (e.g., Archer &Maier-Reimer, 1994); (2) changes in the conditions or efficiency of air-sea gas exchange,
that is, changes in the “solubility pump” (e.g., Volk & Hoffert, 1985); or (3) changes in the accumulation of respired
organic carbon (in the form of dissolved inorganic carbon, DIC) in the ocean interior, that is, changes in the
global average efficiency of the “soft-tissue” component of the “biological carbon pump” (e.g., Volk & Hoffert,
1985), either in absolute terms or relative to the global average efficiency of its “carbonate pump” counterpart.

The efficiency of the soft tissue carbon pump was initially defined in terms of the gradient of major nutrient
concentrations between the deep ocean and the shallow ocean, which arises due to the interplay of biologi-
cal export from the surface ocean and the large-scale overturning circulation (Volk & Hoffert, 1985). Due to
the association of carbon with biologically fixed nutrients, the efficiency of the soft tissue pump relates
directly to the DIC concentration gradient between the surface and deep ocean (note that the two may
become uncoupled due to air-sea gas exchange effects, which affect carbon but not major nutrients). A more
efficient glacial soft-tissue pumpwould therefore result in greater carbon storage in the deep sea and a lower
surface ocean and atmospheric pCO2. This would occur as long as the soft-tissue pump remained dominant
over its carbonate pump counterpart (as it is in the modern ocean), as an efficient carbonate pump draws
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down surface ocean alkalinity and thus increases atmospheric CO2. Changes in the relative strength of the
soft tissue and carbonate pumps would be driven by, for example, biological community structure driven
DIC:ALK “rain ratio” changes or water column remineralization profile changes (Archer & Maier-Reimer,
1994; Kwon et al., 2009). Notably, a global average increase in soft-tissue pump efficiency can occur as a result
of (1) an increase in the biological flux of nutrients and carbon from the surface ocean to the deep interior,
representing increased soft-tissue pump “strength” (e.g., Martínez-Garcia et al., 2014), and/or (2) a reduction
in the return flux of remineralized nutrients and respired carbon from the deep interior to the surface ocean,
for instance, due to a weaker large-scale overturning circulation, representing reduced soft-tissue pump
“leakiness” (e.g., Stephens & Keeling, 2000; Toggweiler, 1999).

While a categorization of the various mechanisms for atmospheric CO2 drawdown, as proposed above, might
be useful for organizing our thinking about past marine carbon cycle changes, it is important to emphasize
that these mechanisms need not have operated in isolation from each other. For example, if an increase in
soft-tissue pump global efficiency was achieved via a change in ocean circulation, this would very likely
co-occur with a change in the conditions of air-sea gas exchange and therefore the solubility pump.
Furthermore, regardless of whether enhanced soft-tissue pump global efficiency is achieved via an increase
in biological export rates or a reduction in the overturning circulation rate, it would lead to more respired car-
bon storage in the deep ocean, which in turn would lower deep ocean carbonate ion concentration ([CO3

2�]),
and [O2]. If [CO3

2�] was reduced enough to cause seafloor carbonate dissolution (a mechanism also referred
to as “respiratory calcite dissolution” (Archer, 1991, 1996; Archer & Maier-Reimer, 1994)), it would eventually
increase the whole ocean alkalinity budget and lead to further atmospheric CO2 drawdown.

It has been proposed that increased export production in the EEP over the last glacial period played a role
storing more respired carbon in the deep ocean than during the Holocene (e.g., Doss & Marchitto, 2013;
Pichevin et al., 2009; Robinson et al., 2009). However, other studies have argued against this (e.g., Costa
et al., 2016; Winckler et al., 2016). Glacial [O2] decrease in the deep EEP supports higher respired DIC accumu-
lation (Bradtmiller et al., 2010), although without elucidating the mechanism behind its variation. In this
respect, it is now apparent that the EEP was less ventilated over the last part of the last glacial period, becom-
ing better ventilated at the onset of the Heinrich Stadial 1 (de la Fuente et al., 2015; Umling & Thunell, 2017).
This would indirectly support the idea of a more efficient biological pump during the last glacial due to a
longer residence time for carbon in the deep ocean, thus reducing the leakiness of the biological pump
and enhancing the deep ocean’s respired carbon inventory.

In this study we set out to test the proposition that the respired carbon content of deep waters was indeed
greater in the EEP during the LGM, as suggested by radiocarbon ventilation ages from this area (e.g., de la
Fuente et al., 2015). Our approach is to combine several respired carbon-related proxies in the same sediment
core Ocean Drilling Program (ODP) Site 1240 (hereafter referred to as ODP1240). Thus, measurements of δ13C
and B/Ca have been performed on the calcite shells of the benthic foraminifer species Cibicides wuellerstorfi as
a means of reconstructing respired nutrient and [CO3

2�] changes, respectively. B/Ca analyses have been pro-
posed as a method for reconstructing past deep water [CO3

2�] changes on the basis of an empirical correla-
tion with deep water carbonate saturation state (Δ[CO3

2�]) (Yu & Elderfield, 2007), and on the assumption of
invariant local saturation [CO3

2�] ([CO3
2�]sat). In addition, sedimentary redox conditions (i.e., estimates of

changing [O2]) have been reconstructed from analyses of U/Ca in the coatings (U/CaC; (Boiteau et al., 2012;
Gottschalk et al., 2016)) of the planktonic species Neogloboquadrina dutertrei and have been compared to
existing authigenic uranium (aU; (Bradtmiller et al., 2010; Cochran et al., 1986; Jaccard et al., 2016)) measure-
ments from the same area (Bradtmiller et al., 2010; Kienast et al., 2007). Neither U/CaC nor aU has so far been
shown to quantify changes in O2, and despite the fact that each of these approaches has its own limitations,
we propose that their combination may offer robust qualitative information on glacial-interglacial bottom
water/pore water [O2] changes.

2. Materials and Methods
2.1. EEP Hydrographic Settings

Sediment core ODP1240 was recovered from the southern edge of the Panama Basin in the EEP (0°01.310N,
86°27.760W) at 2,921 m water depth (Figure 1). The chronostratigraphy for this sediment core was previously
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described by de la Fuente et al. (2015) and is based on sediment depth-age modeling using calibrated
radiocarbon dates on Neogloboquadrina dutertrei that have been corrected for a variable reservoir age
offsets, constrained through stratigraphic alignment of the UK0

37 record from ODP1240 with Greenland δ18O
records. The hydrography of the EEP, in common with the whole tropical Pacific, is highly influenced by
Southern Ocean water masses at depth (Kessler, 2006; Strub et al., 1998), with the depth of ODP1240
location, in particular, currently bathed by a mixture of Upper Circumpolar Deep Water (UCDW) and Pacific
Deep Water (PDW; Figure 1). PDW refers to the water mass formed at depth in the North Pacific through
very slow vertical mixing of bottom and intermediate waters of southern origin and extremely long
residence times, and UCDW represents the upper layer of the deep water mass flowing within the
Antarctic Circumpolar Current (ACC), a mixture of deep and recirculated waters from the Atlantic, Indian,
and Southern Oceans (Mantyla & Reid, 1983; You, 2000). Although these deep water masses have different
origins, both occupy approximately the same density and depth range in the Pacific (Talley et al., 2011) as
a consequence of the extremely weak deep circulation in the Pacific Ocean. An additional feature of the
modern Panama Basin hydrography is a degree of “biogeochemical aging” in its deepest part. Although this
points to the possibility of highly localized influences on respired carbon in the Panama Basin, such influ-
ences do not affect the basin as a whole and are relatively small, with hardly any influence at the location
of ODP1240 today.

2.2. B/Ca Analysis by LA-ICPMS and [CO3
2�] Estimates

The epibenthic foraminifer C. wuellerstorfi was picked from 15 samples from the top 3 m of sediment
core ODP1240 covering the last ~30 kyr. Each sample was composed of approximately six specimens
(>212 μm) that were rinsed in milliQ water and secured on a double-sided carbon tape on a glass slide for
LA-ICPMS analysis. Between two and three depth-profiling ablations were made per shell using the
RESOlution M-50 prototype 193 nm ArF laser ablation system (featuring a two-volume Laurin LA cell) coupled
to an Agilent 7500ce quadrupole ICP-MS at Royal Holloway University of London (Müller et al., 2009). Ablation
was performed using a laser spot size of 96 μm, repetition rate of 2 Hz, and fluence of ~4 J/cm2. Data quanti-
fication follows Longerich et al. (1996) with the transformation of raw count rates to concentration achieved
using 43Ca as an internal standard and NIST610/612 as a calibration standard. The accuracy and precision of
B/Ca measurements using these conditions is <5 and <10%, respectively (see Evans et al., 2015). Several
steps to exclude any possible contaminant phases from the data were applied (Bolton et al., 2011; Boyle,
1983; Marr et al., 2011), and spots with B/Ca values higher than the individual foraminifer average plus 2SD
were removed and not included in further palaeoclimatic interpretations. A more detailed discussion of
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Figure 1. EEP hydrography. (left) Themap of the study area displaying the bathymetry (blue scale), the location of the sedi-
ment core ODP1240 (red dot), the WOCE P19 transect (light yellow meridional line), and a scheme of the upper (black
arrows) and deep (purple arrows) ocean circulation of the area: North Equatorial Current (NEC), North Equatorial
Countercurrent (NECC), Equatorial Undercurrent (EUC), South Equatorial Current (SEC), Peru Current (PC), South Pacific
Current (SPC), Cape Horn Current (CHC), Antarctic Circumpolar Current (ACC), and the northward diffusion of the
Upper Circumpolar Deep Water mass (UCDW). (right) The vertical section of the WOCE P19 transect showing modern
[CO3

2�] (color scale) and oxygen (contours) (Schlitzer, 2017). Water masses are indicated: Antarctic Intermediate Water
(AAIW), UCDW, Subantarctic Water (SAAW), and Pacific Deep Water (PDW).
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the methodology can be found in the supporting information (Eggins et al., 1998; Jochum et al., 2006;
Jochum et al., 2011; Evans & Müller, 2013; Müller & Fietzke, 2016).

C. wuellerstorfi B/Ca ratios have been experimentally shown to linearly relate to Δ[CO3
2�] based on global

core top measurements in the modern ocean, as described by equation (1) below (Yu & Elderfield, 2007),
thereby allowing downcore [CO3

2�] to be estimated from equation (2), albeit with some caution.

Δ CO3
2�� � ¼ B=Ca–177:1ð Þ=1:14 in μmol=molð Þ (1)

Δ CO3
2�� � ¼ CO3

2�� �
– CO3

2�� �
sat (2)

Seawater [CO3
2�]sat in themodern ocean is estimated fromwater column [CO3

2�]/Ωcalcite data, whereΩcalcite

is the calcite saturation state in seawater (Ωcalcite = [Ca2+] · [CO3
2�]/Ksp, and Ksp is the solubility product of

calcite ([Ca2+]sat · [CO3
2�]sat) at a given temperature, salinity, and pressure). However, seawater [CO3

2�]sat
in the deep ocean is typically assumed to have remained constant over the late Pleistocene since the influ-
ence of pressure, bottom water temperature, and salinity in the past are thought to have exerted little effect
on [CO3

2�]sat over this time period (Allen et al., 2015). Thus, the general equation to estimate downcore
[CO3

2�] through B/Ca ratios measured in the calcite shell of C. wuellerstorfi would be

CO3
2�� � ¼ B=Ca–177:1ð Þ=1:14ð Þ þ CO3

2�� �
modð Þ=Ωcalcite modð Þ

� �
(3)

In this study, modern [CO3
2�] and Ωcalcite have been inferred from instrumental measurements of ALK and

DIC available from the GLODAP data set (WOCE P19C transect; Tsuchiya & Talley, 1998). For these esti-
mates, the CO2SYS software package (Lewis et al., 1998; Pierrot et al., 2006) and the equilibrium constants
from Mehrbach et al. (1973) and Dickson and Millero (1987) were used. The obtained modern values at a
depth of 2,888 m were 67.7 μmol/kg for [CO3

2�] and 0.9 for Ωcalcite, leading to a modern [CO3
2�]sat of

75.2 μmol/kg (station: 18373; LAT: 0.004°N; LONG: 85.84°W).

Since the initial calibration of Yu and Elderfield (2007) was published, several studies have provided addi-
tional core top measurements, but only one provided B/Ca results analyzed by LA-ICPMS (Raitzsch et al.,
2011). In order to add further support to this technique, B/Ca ratios in C. wuellerstorfi specimens have been
analyzed here in nine core top samples across the Atlantic Ocean by LA-ICPMS, following the same scheme
described above for downcore analyses. Estimates of modern Δ[CO3

2�] were obtained using either in situ
data from the corresponding cruises when available, or data from nearby GLODAP sites (Key et al., 2004),
in both cases by deriving values for modern [CO3

2�] and Ωcalcite (Table S1 in the supporting information).

2.3. δ13C Measurements

Downcore δ13C measurements were performed on 46 samples from ODP1240, covering the last 25 kyr and
consisting exclusively of C. wuellerstorfi individuals from the >212 μm fraction size. The analyses were per-
formed using a Thermo Kiel device attached to a Thermo MAT253 Mass Spectrometer in dual inlet mode
at the University of Cambridge. The sample size was ~100 μg, with the exception of a few samples of 20 μg,
which is close to the detection limit of this machine. A few additional δ13C measurements in C. wuellerstorfi
from ODP1240, consisting of four to five specimens each (also from the>212 μm size fraction) were obtained
at the Scientific and Technological Center of the University of Barcelona (CCiT-UB) by using a FinniganMAT252
mass spectrometer fitted with a Kiel Carbonate Device I. All δ13C values presented here are reported as per
mil relative to the international standard Vienna Pee Dee Belemnite (VPDB), with a typical external reprodu-
cibility estimated to be equal or better than ±0.06‰ and ±0.03‰ for the Universities of Cambridge and
Barcelona, respectively.

2.4. U/Ca Analysis in Planktonic Foraminiferal Coatings

U/Ca ratios measured in the foraminiferal shell coatings have been suggested to reflect changes in the sedi-
mentary redox conditions and therefore potentially linked with changes in the [O2] in bottomwaters (Boiteau
et al., 2012). This oxygen-related proxy is based on the redox chemistry of U in seawater, shifting from the
soluble form U(VI) in oxygenated waters to the insoluble U(IV) species as the medium depletes in oxygen
(Cochran et al., 1986; Langmuir, 1978; Morford & Emerson, 1999).
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In order to quantify the U concentration in the foraminiferal coatings,
clays were removed and an acid leach step to remove any adsorbed ions
was performed in 20 N. dutertrei samples, each one composed of ~30
specimens collected from the 212–300 μm fraction. No oxidative or
reductive step was performed in order to preserve the thin coating layer
(Boiteau et al., 2012). Cleaned samples were dissolved in 0.1 M HNO3,
diluted to 10 ppm Ca2+, and analyzed by ICP-MS at the University of
Cambridge using a Thermo Element XR, with a typical analytical repro-
ducibility of ~7%.

3. Results
3.1. C. wuellerstorfi B/Ca Core Top Measurements by LA-ICPMS

In Figure 2, C. wuellerstorfi B/Ca analyses from the Atlantic Ocean core
tops are compared to their corresponding Δ[CO3

2�] values, as well as
to other core top data available from the literature (Brown et al., 2011;
Rae et al., 2011; Raitzsch et al., 2011; Yu et al., 2013; Yu & Elderfield, 2007).

The core top measurements presented here (Table S1 in the supporting
information) fit well within the two existing linear regressions from Yu
and Elderfield (2007) (A = 1.14; B = 177.1) and from Raitzsch et al.
(2011) (A = 1.37; B = 170.9), and combining all of the data results in an
indistinguishable new calibration equation (~230 core top samples
including this study; A = 1.07; B = 177.7), thus providing support for
B/Ca as a proxy for Δ[CO3

2�] and for LA-ICPMS as a suitable technique
for this type of analysis. The original calibration equation from Yu and
Elderfield (2007) is adopted here for downcore Δ[CO3

2�] estimates in
ODP1240 for better comparison with previously published data.

3.2. B/Ca-[CO3
2�], δ13C, and U/Cac Downcore ODP1240

Downcore B/Ca ratios from C. wuellerstorfi at ODP1240 are ~10 μmol/mol lower over the end of the last glacial
period (~18–23 kyr), with an average of ~172 ± 5 μmol/mol (±1 SE), than across the late Holocene (~0–8 kyr),
which exhibits values of ~182 ± 4 μmol/mol (±1SE) (Figure 3a). When converted into [CO3

2�] the difference
between glacial (~71 μmol/kg) and interglacial (~80 μmol/kg) is ~9 μmol/kg, which is not as large as might be
expected based on observed radiocarbon ventilation changes, possibly as a result of other processes that we
discuss in the next sections. C. wuellerstorfi δ13C measurements from ODP1240 are also characterized by
lower values during the LGM compared to the Holocene of ~0.4‰, showing good consistency betweenmea-
surements performed in the two laboratories (Figure 3b). Although both [CO3

2�] and δ13C seem to be in
good agreement and exhibit a similar pattern across the deglaciation, a “bump” just before the termination
onset is observed only in the [CO3

2�] record. This may reflect processes that have an impact exclusively in
[CO3

2�] without modifying δ13C (i.e., changes in seafloor carbonate dissolution), or analysis artifacts in those
specific samples. Although we cannot discard any of these possibilities unequivocally, the observed change
in [CO3

2�] before the deglaciation seems to be too rapid to be explained by variations in calcite dissolution.
U/CaC measurements in the planktonic species N. dutertrei show higher values at the LGM compared to the
Holocene suggesting, very likely, a more reducing environment at the water-sediment boundary at that time,
and therefore lower [O2], in the deep EEP (Figure 3c). All data can be found in Tables S2, S3 and S4 in the
supporting information.

4. Discussion
4.1. A Comparison of Ocean Ventilation and Carbonate System Changes in the EEP Across the
Last Deglaciation

A poorly ventilated deep EEP at the end of the last glacial period compared to the present has been shown by
the radiocarbon offsets between benthic foraminifera and atmospheric records (B-Atm) (de la Fuente et al.,
2015). This study also revealed that better ventilation of this area of the Pacific began at the onset of the

Figure 2. Bottom water Δ[CO3
2�] versus B/Ca ratios in C. wuellerstorfi from

core top samples analyzed by solution-ICPMS (Brown et al., 2011; Rae et al.,
2011; Yu et al., 2013; Yu & Elderfield, 2007) and by LA-ICPMS (Raitzsch et al.,
2011 and core tops from the Atlantic Ocean analyzed in this study (red stars)).
Black solid line represents the linear fit from Yu and Elderfield (2007) by
solution-ICP-MS, while gray solid line represents the linear fit from Raitzsch
et al. (2011) by LA-ICP-MS. Black dashed line represent the linear fit from all
the records together including the core tops analyzed in this study.
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deglaciation (~17.5 kyr B.P.), demonstrating a consistency with other ventilation records from the South
Pacific (Siani et al., 2013; Sikes et al., 2000; Skinner et al., 2015) and the Atlantic sector of the Southern
Ocean (Burke & Robinson, 2012; Skinner et al., 2010), all of which broadly covaried in time with changes in
atmospheric Δ14C and CO2. Thus, when CO2 increased and Δ14C decreased in the atmosphere at the degla-
ciation onset (Figures 4a and 4b, respectively), all of these deep water ventilation records start to exhibit
enhanced ventilation (Figure 4c, de la Fuente et al., 2015, and figures therein). This observation has at least
two important implications: (1) that the deglacial increase in atmospheric CO2 might be directly and causally
linked to the deglacial evolution of deep ocean ventilation and (2) that the deep ocean, including the EEP,
might have contained a higher concentration of respired CO2 during the glaciation as compared to the late
Holocene and thus acted as a source of carbon to the atmosphere during deglaciation.

In the absence of major ocean interior carbon sources, radiocarbon behaves as a semiconservative tracer
that is not significantly affected by biological or chemical reactions within the ocean and tracks the mean
time since a water mass exchanged carbon with the atmosphere. Radiocarbon ventilation estimates there-
fore allow us to isolate the contribution of ocean ventilation to changes in the global average efficiency of
the soft-tissue pump. Increased radiocarbon ventilation ages observed in ODP1240 during the last late gla-
cial period could therefore imply an increase in the amount of remineralised/oxidized organic matter in
the ocean interior, that is, more carbon respired by microorganisms per unit volume due to more time

Figure 3. Deep water respired carbon related records across the first 450 cm of the sediment core ODP1240 (last ~30 kyr). (a) B/Ca ratios in C. wuellerstorfimeasured
by LA-ICP-MS and [CO3

2�]-derived estimates (gray solid line/dots). Uncertainties represent ±1 SE in [CO3
2�] (gray envelope). [CO3

2�] was estimated by using
the calibration equation from Yu and Elderfield (2007) and assuming a constant [CO3

2�]sat value of 75.2 μmol/kg (estimated from modern [CO3
2�] and ΩCalcite

values from the GLODAP data set WOCE P19 transect, see main text). (b) Benthic δ13C from C. wuellerstorfi (black line/solid dots and crossed dots analyzed at the
Universities of Cambridge and Barcelona, respectively). (c) U/Ca ratios in the coatings of N. dutertrei (gray dashed line/asterisks). All lines are B-spline smoothed.
Vertical dashed lines delimit relevant climatic periods, and light gray vertical bands highlight the coldest periods of the last 30 kyr. HS1 and HS2: Heinrich Stadial 1
and 2 respectively; BA: Bølling-Allerød; YD: Younger Dryas.
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for this respired carbon to accumulate. If this happened, the most noticeable consequences might be, on
the one hand, a decrease in seawater δ13C due to enhanced lighter carbon isotope (12C) release, and on
the other hand, a greater CO2 accumulation in seawater as a product of respiration. Such an increase in
seawater [CO2] would have altered the carbonate system equilibrium, leading to a drop in [CO3

2�] in

Figure 4. Comparison of deep ocean records from ODP1240 with records of atmospheric CO2 and radiocarbon activity over the last 30 kyr. (a) Atmospheric CO2
concentrations from EPICA Dome C (EDC) ice core (for the deglacial period, Monnin et al., 2001; for the Holocene period, Flückiger et al., 2002), placed on the age
scale of Lemieux-Dudon et al. (2010) (gray line). (b) Atmospheric radiocarbon activity (Δ14C) changes (IntCal09 calibration curve; Reimer et al., 2009 (black
dotted line). (c) Deep water ventilation reconstruction (B-Atm, from SST alignment in de la Fuente et al., 2015) (black line/white stars). (d) [CO3

2�](B/Ca-based) (±SE)
(gray solid line/dots). (e) δ13C from C. wuellerstorfi (black line/solid dots and crossed dots analyzed at the Universities of Cambridge and Barcelona, respectively).
(f) Oxygenation proxies: U/CaC from N. dutertrei (gray dashed line/asterisks) and 238U from ME0005-24JC (same location as Site 1240; blue line/stars; Kienast et al.,
2007; Bradtmiller et al., 2010). All lines are B-spline smoothed. Vertical dashed lines delimit relevant climatic periods, and light gray vertical bands highlight the
coldest periods of the last 30 kyr. The gray arrow on the [CO3

2�] axis represents the modern water value (67.6 μmol/kg) obtained from GLODAP database (WOCE
P19C transect; Tsuchiya & Talley, 1998).
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order to buffer the change in seawater pH (Sarmiento & Gruber, 2004; Williams & Follows, 2011; Zeebe &
Wolf-Gladrow, 2001).

The [CO3
2�] and δ13C results presented here from ODP1240 are in good agreement with these expectations

(Figures 4d and 4e), as well as with a previous study in the area (Doss & Marchitto, 2013), showing lower δ13C
and [CO3

2�] during the late glacial, in parallel with reduced radiocarbon ventilation, and an increase in all of
these parameters across the deglaciation. Interestingly, when the modern [CO3

2�] value from this area is
taken into account, a drop at the late Holocene is inferred. The existence of such [CO3

2�] decrease across
the late Holocene has been previously suggested on the basis of sediment composition data and modeling
studies (Berelson et al., 1997; Broecker & Peng, 1987). This feature might reflect a restored lower average
ocean alkalinity due to enhanced carbonate preservation associated with the release of excess respired car-
bon from the ocean interior to the atmosphere during deglaciation, which in turn might have helped to
maintain the higher CO2 in the atmosphere during the late Holocene. However, another plausible explana-
tion for the late Holocene-modern value “mismatch” observed in our core might be related to the inherent
noise contained in the B/Ca-Δ[CO3

2�] calibration applied. Indeed, this issue has been observed in previous
studies that estimated [CO3

2�] through B/Ca analysis in benthic foraminifera (Allen et al., 2015; Elmore
et al., 2015; Yu et al., 2013, 2008). In order to avoid this mismatch, some of these studies opted for applying
a correction by subtracting the core top value to each measurement downcore, thus forcing the record to
fall on the regression line given by the equation: [CO3

2�]downcore = [CO3
2�]preindustrial + Δ(B/Ca)/1.14, where

Δ(B/Ca) represents the deviation of each downcore sample relative to the core top value (Yu et al., 2008, 2010,
2013, 2016; Yu, Anderson, Jin, et al., 2014). However, in our study, the conventional option of applying the
linear correlation from Yu and Elderfield (2007) without correcting for the core top value has been chosen
to avoid applying arbitrary offsets to the data set. This issue would call for cautious approach when consider-
ing absolute [CO3

2�] values derived from benthic B/Ca analysis and may suggest that relative changes
observed downcore might be more robust than intercore or absolute value comparisons. It would also call
for a careful interpretation when using data for any further carbonate system calculations.

Another consequence of the hypothetical increase in respired carbon due to a longer residence time of deep
water during the LGM would be a drop in [O2], as microorganisms consume O2 during respiration of organic
matter. Following reformulations of the traditional Redfield ratios of remineralized organic matter (Redfield
et al., 1963), the release of 117 CO2 molecules consumes 170 molecules of O2 (Anderson & Sarmiento,
1994). Our U/CaC results show the expected depletion in O2 if the respired carbon content of the ocean inter-
ior was indeed higher at the LGM compared to the Holocene (Figure 4f). Moreover, our qualitative relative
oxygenation changes indicated by U/CaC estimates support previous measurements of authigenic uranium
(aU) in core ME0005-24JC (recovered from nominally the same location as Site 1240; Kienast et al., 2007)
showing a similar trend, characterized by higher aU (i.e., lower O2) during the glacial compared to the
Holocene (Bradtmiller et al., 2010; Kienast et al., 2007) (Figure 4f).

Thus, all records presented here, that is, [CO3
2�], δ13C, and oxygenation proxies, are in good agreement with

the deep radiocarbon ventilation in the EEP and lend support to the hypothesis of a higher efficiency of the
biological pump during the LGM due to changes in its leakiness. In the same way, all of these records are in
reasonably close agreement through deglaciation, increasing as the deep EEP gets better ventilated at the
onset of the last termination. Despite this general agreement, it is interesting to note that both oxygenation
proxies, aU and U/CaC, do not change synchronously with the rest of the proxies at the beginning of the
deglaciation, but later at the termination. A plausible explanation for this apparent mismatch might rely on
a decoupling of pore water and deep water chemistry, for example, due to a productivity pulse between
~17 and 14 kyr (e.g., Calvo et al., 2011) that would have depleted O2 in the pore fluids of the sediment (which
the oxygenation proxies would record), even after the radiocarbon ventilation and carbonate saturation of
the ambient deep water started to increase. Taken together, all the records presented here point to the deep
EEP as a plausible contributor to the decreased atmospheric CO2 during the LGM, by storing more respired
carbon at the expense of the surface ocean and atmospheric carbon inventories, that was posteriorly
released during the deglaciation once the ocean interior got better ventilated.

A different interpretation based on similar glacial-interglacial Δ[CO3
2�] changes, also from the Panama Basin,

has been proposed by Doss and Marchitto (2013). This study suggests that the observed glacial Δ[CO3
2�] dif-

ference found between a sediment core located at the sill depth and sediment cores located deeper in the
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basin are indicative of an increase in the export production during the last glacial. While we do not discard
this possibility, which must eventually be tested against other evidence for increased export production dur-
ing the last glacial period, we propose that it must have acted in addition to a decrease in ocean ventilation,
as indicated by our combined proxy results, including radiocarbon ventilation ages. Below we discuss the
available evidence for other possible contributions to the apparent increase in the respired carbon content
of the deep EEP, including more direct nutrient-based indicators of export production.

4.2. Export Production as a Complementary Mechanism for a Higher Biological Pump Efficiency in
the EEP

An increase in the strength of the biological pump (i.e., export production rates) could have operated on the
glacial atmospheric CO2 drawdown independently of, or in addition to, contributions from changes in ocean
ventilation constrained using radiocarbon measurements. The glacial changes observed in deep ocean
[CO3

2�], δ13C, and oxygenation records from ODP1240, described in the previous subsection, might indeed
be compatible with an increase in surface productivity over the LGM. Thus, a larger flux of organic matter to
the deep ocean in this area might have contributed to the observed drop in [CO3

2�] and δ13C, as a conse-
quence of higher levels of carbon respiration that would have also increased the release of respired CO2 to
deep water and the consumption of dissolved O2.

The documented increase in dust-borne iron delivery to the iron-limited low-latitude Pacific Ocean at the last
glacial period (McGee et al., 2007) has led to a number of investigations into a potential increase in surface
productivity over this period, however, with ambiguous results. On the one hand, lower opal δ30Si content
in ODP1240 as a proxy for the relative utilization of silica during the glacial has been interpreted as an indica-
tion of a decline in the Si:C uptake ratio by diatoms due to an iron-replete glacial ocean, which would be com-
patible with the assumption of higher productivity over this period (Pichevin et al., 2009). Similarly, nitrogen
isotopes (δ15N) from bulk sediments in ODP1240 core, once they are corrected for denitrification effects typi-
cal of the Central American margin, showed higher values over the LGM compared to the Holocene suggest-
ing higher local nutrient consumption consistent with higher surface productivity over the LGM (Robinson
et al., 2009). At the same time, higher abundances of organic biomarkers (alkenones and brassicasterol) have
been shown in the same core during the LGM, as compared to the present (Calvo et al., 2011). However, these
inferences are contradicted by other studies that do not support the proposed increase in the strength of the
biological pump in the EEP as a mechanism for the atmospheric CO2 drawdown during the LGM (Bradtmiller
et al., 2006; Kienast et al., 2006). More recently, for instance, Winckler et al. (2016) reported excess Ba and opal
fluxes obtained from sediment cores located along the equatorial Pacific, which do indicate higher produc-
tivity in this area (stimulated by an increased Fe supply by upwelling rather than by dust deposition), but with
peak export occurring during deglaciation rather than over the LGM. Moreover, Costa et al. (2016) suggested
that the glacial dust supply to the equatorial Pacific exerted a negligible effect on surface productivity,
arguing that the major nutrient supply with Southern Ocean origin was actually reduced as nutrients were
mostly consumed in the Subantartic Zone.

An increase in organic carbon (Corg) accumulation rates in the EEP over the LGM has been documented in
core ODP1240 (Pichevin et al., 2009), as well as in the nearby core P6 (Pedersen, 1983). Such higher Corg accu-
mulation might have been the result of an increase in surface productivity and also the result of better pre-
servation of the organic matter due to lower oxygen content in the deep ocean at that time. Thus, in light of
the fact that existing proxy reconstructions can neither corroborate nor rule out unequivocally an increase in
EEP surface productivity over the LGM, two key questions remain: was the observed increase in the biological
pump efficiency in the glacial EEP mainly due to changes in ocean circulation, or changes in the carbon
export production in this area; how much did the proposed increase in organic carbon export production
affect carbon storage in the deep ocean? Arguably, these questions cannot be fully resolved without
accurate quantitative estimates of export production and deep ocean apparent oxygen utilization changes.
Nevertheless, it is clear at least that ocean ventilation changes made some contribution, though only quali-
tative conclusions, such as those drawn above, are possible at present.

4.3. Carbonate Seafloor Dissolution as a Potential Counteracting Mechanism for [CO3
2�] EEP Changes

A decrease in deep ocean ventilation along with a potential increase in carbon export production in the EEP
at the LGM are therefore proposed as the mechanisms responsible for the decrease in deep [CO3

2�], δ13C,
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and oxygenation observed in this area. The action of any of these mechanisms (alone or together) might be
expected, in principle, to achieve a relatively large [CO3

2�] glacial-Holocene difference. For example, spatial
correlations of radiocarbon and [CO3

2�] in themodern deep ocean would predict a change of ~�37 μmol/kg
for the ~960 14C yr increase in deep water radiocarbon ventilation observed in ODP1240 at the LGM relative
to the modern ocean (Key et al., 2004). However, the results from this study indicate only a small [CO3

2�]
change between these two periods (~9 μmol/kg), suggesting that a counteracting mechanism, such
as seafloor respiratory calcite dissolution, might have also played a role: when carbonate dissolves in
seawater, both [CO3

2�] and ALK increase (Broecker & Peng, 1989; Zeebe & Wolf-Gladrow, 2001). If this was
the case, a decrease in the CaCO3 content in sediments might be initially expected. However, CaCO3%
from ODP1240 indicates little change between 25 and 15 kyr (Figure 5). Furthermore, the possibility of an
increase in the calcium carbonate export production rates as a masking mechanism for the expected
CaCO3% drop seems not to be supported by carbonate flux data (expressed as 230Th-CaCO3) from this
area, which also show little change between last glacial and Holocene (Figure 5).

Despite no obvious carbonate dissolution in core ODP1240 being observed during the LGM, it remains pos-
sible that [CO3

2�] was added to deep waters bathing the EEP through carbonate dissolution elsewhere in the
Pacific (Anderson et al., 2008). Indeed, similarly small [CO3

2�] differences between LGM-Holocene/modern
have also been reported in other areas from the Pacific Ocean (Allen et al., 2015; Doss & Marchitto, 2013;
Elmore et al., 2015; Yu et al., 2010), and this has been generally attributed to the large buffering capacity of

Figure 5. Carbonate chemistry-related records from core ODP1240 across the past 30 kyr. (top) [CO3
2�]B/Ca-based (gray

line/dots; this study). (bottom) 230Th-CaCO3 and CaCO3% (purple dashed line/open dots and yellow line/open dia-
monds, respectively; Pichevin et al., 2009). Vertical dashed lines delimit relevant climatic periods, and light gray vertical
bands highlight the coldest periods of the last 30 kyr.
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carbonate sediments in this basin (Allen et al., 2015; Yu et al., 2010,
2013). In Figure 6, a compilation of the averaged Δ[CO3

2�] offsets
between the LGM (~18–23 kyr) and the late Holocene (~0–8 kyr)
(Δ(Δ[CO3

2�])LGM-Hol) from these studies shows the consistency
among the Indo-Pacific sites with variations of only ~5 μmol/kg
between these two periods (orange line in Figure 6). By restricting the
comparison to LGM-Hol differences, potential biases due to different
techniques/calibrations/standards can be avoided, as well as any biases
that may arise from assuming constant local [CO3

2�]sat across the degla-
ciation. Thus, negative values represent lower Δ[CO3

2�] at the LGM
compared to the Holocene, while positive ones represent the opposite.
The small LGM-late Holocene difference observed in the Indo-Pacific, in
contrast with larger offsets detected within the Atlantic and Southern
Oceans (blue line in Figure 6) (Gottschalk et al., 2015; Yu et al., 2008,
2013; Yu, Anderson, Jin, et al., 2014; Yu, Anderson, & Rohling, 2014) still
implies lower LGM Δ[CO3

2�] for the whole Pacific as well as for the
Atlantic and Southern Ocean at depths greater than ~2,500 m water
depth. However, the Δ(Δ[CO3

2�])LGM-Hol changes present a noticeable
difference between basins above ~2,500 m water depth. This might
point to the accumulation of respired DIC (i.e., not equilibrated with
the atmosphere) in the Pacific, Southern Ocean, and Atlantic >2,500 m
during the last glacial, and the maintenance of “equilibrium” DIC (Ito &
Follows, 2013) in Atlantic water masses shallower than ~2,500 m. The
shallow Atlantic would thus have responded more closely to changes
in the atmosphere, such that lower atmospheric CO2 would be directly
manifested as higher LGM [CO3

2�] (Hodell et al., 2001; Yu et al., 2008).
In this situation, seafloor CaCO3 not only might have “buffered” glacial
[CO3

2�] changes in the EEP (without affecting δ13C significantly) but also
might have played a role in the atmospheric CO2 drawdown during the
LGM by contributing to increased average ocean alkalinity via [CO3

2�]
supply to the ocean (Keir, 1995; Sigman & Boyle, 2000). This would have
further reinforced the effects of a higher biological pump efficiency
achieved by circulation changes, and perhaps also by surface
productivity changes.

Interestingly, calculations based on the modern δ13C-[CO3
2�] relation-

ship in the Panama Basin suggest that the observed glacial-interglacial
δ13C difference is compatible with the observed glacial-interglacial off-

set in [CO3
2�] (when a whole ocean glacial-interglacial δ13C change of ~0.3‰ is assumed, due to terrestrial

carbon release), which would imply no further [CO3
2�] addition from calcite dissolution (Doss & Marchitto,

2013). Following the calculations of Doss and Marchitto (2013), a 10 μmol/kg [CO3
2�] glacial-interglacial drop

would achieve a 30 μmol/kg DIC increase, which in turn would produce a ~0.26‰ change in δ13C due to
respired carbon addition. If a whole ocean change of ~0.3‰ (Peterson et al., 2014) is assumed to have
occurred exclusively due to terrestrial carbon release (Shackleton, 1977), a total change of ~0.56‰ would
therefore be expected, which is not very far off the results of Doss and Marchitto (2013) and our observed
glacial-interglacial δ13C difference of 0.4 ± 0.06‰. However, it is notable that the observed global average
glacial-interglacial δ13C change of ~0.3‰ corresponds to a global average radiocarbon ventilation age
change of perhaps ~689 14C yr (Skinner et al., 2017), which raises the question of how this average change
can be partitioned into a “terrestrial carbon component” and a “ventilation/respired carbon component.”
Until this issue is resolved, along with the related issue of how subaerial volcanism changed across the last
glacial period (Broecker et al., 2015), the possibility remains that much of the full glacial-interglacial δ13C dif-
ference observed in ODP1240 was achieved by respired carbon addition, implying that a bigger drop in
[CO3

2�] would be expected. This, in turn, would point to an additional process that would have counterba-
lanced the addition of [CO3

2�] from organic carbon respiration, such as CaCO3 dissolution.

Figure 6. Deep water [CO3
2�] offset between LGM (~18–23 kyr) and

Holocene/modern (~0–8 kyr) from several Atlantic/Southern Ocean (in
blue) and Indo-Pacific Ocean (in orange) sediment cores. DSDP593Z (Elmore
et al., 2015); RR0503-83 (Allen et al., 2015); MW91-9 GGC15, MW91-9 GGC48,
WIND 28K, and VM28-122 (Yu et al., 2010); TTNO13 PC61 (Yu et al., 2013);
BOFS and NEAP cores (Yu et al., 2008; Yu & Elderfield, 2007); RC13-140, RC23-
22, and RC23-15 (Doss & Marchitto, 2013); RC16-59 (Broecker et al., 2015);
GeoB cores (Raitzsch et al., 2011); MD07-3076 (Gottschalk et al., 2015);
TN057-21 (Yu, Anderson, Jin, et al., 2014); and ODP1240 (this study, high-
lighted in bold). WP: western Pacific; EEP: Eastern Equatorial Pacific; CP:
central Pacific; NEA: North East Atlantic; WEA: western equatorial Pacific; EqA:
equatorial Atlantic; SO: Southern Ocean; IO: Indian Ocean.
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5. Conclusions
In this study, an increase in the biological pump efficiency over the LGM through a decrease in its leakiness
has been investigated in the EEP as a mechanism for the glacial atmospheric CO2 drawdown. The change in
[CO3

2�], δ13C and oxygenation proxies inferred in this study support this idea by presenting lower values in
the EEP at the LGM compared to the late Holocene. However, the decrease in [CO3

2�] in this area is relatively
small, suggesting that these mechanisms were not the only ones operating or indeed contributing to the
drop in glacial atmospheric CO2. This has also been observed in other Pacific [CO3

2�] records and has been
suggested to be a consequence of larger carbonate dissolution over the LGM in this basin. Thus, respiratory
calcite dissolution not only might explain the relatively small change in deep ocean [CO3

2�] between the gla-
cial and late Holocene periods but also would have likely and directly contributed to the glacial atmospheric
CO2 decrease by increasing the ocean average ALK and therefore decreasing the surface ocean pCO2, thus
allowing the surface ocean to take upmore CO2. In conclusion, the deep EEP, and probably much of the wider
deep Pacific, likely sequestered a significant amount of atmospheric CO2 during the LGM, specifically due to a
more efficient biological carbon pump caused by lower ventilation rates (and potentially also enhanced
export production) and also due to an increase in average ocean alkalinity by respiratory calcite dissolution.
However, a comparison with δ13C data raises interesting questions regarding the relative contributions to the
global marine carbon inventory during the last glacial period, from changes in deep ocean ventilation, export
production, carbonate dissolution, terrestrial carbon release, and indeed volcanism. Further investigation in
other basins using a “biogeochemical fingerprinting” approach as applied in this study would help to address
these questions, for example, through better constraints on global average ocean chemistry changes at the
LGM, which in turn would allow for a more accurate quantification of carbonate dissolution effects and mar-
ine CO2 sequestration over this period.
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