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FACTORIZATION OF THE IDENTITY THROUGH OPERATORS
WITH LARGE DIAGONAL

NIELS JAKOB LAUSTSEN, RICHARD LECHNER, AND PAUL F.X. MULLER

AsstrACT. Given a Banach space X with an unconditional basis, we consider
the following question: does the identity operator on X factor through every
operator on X with large diagonal relative to the unconditional basis? We
show that on Gowers’ unconditional Banach space, there exists an operator
for which the answer to the question is negative. By contrast, for any operator
on the mixed-norm Hardy spaces HP(HY), where 1 < p,q < oo, with the
bi-parameter Haar system, this problem always has a positive solution. The
spaces LP,1 < p < oo, were treated first by Andrew [Studia Math. 1979].

1. INTRODUCTION

Let X be a Banach space. A basis for X will always mean a Schauder basis. We
denote by Iy the identity operator on X, and write (-,-) for the bilinear duality
pairing between X and its dual space X*. By an operator on X, we understand a
bounded and linear mapping from X into itself.
Suppose that X has a normalized basis (b,)nen, and let bX € X* be the nt®

coordinate functional. For an operator 7" on X, we say that:

> T has large diagonal if inf, ey |(TD,,b})| > 0;

> T is diagonal if (Tb,,,b%) = 0 whenever m,n € N are distinct;

> the identity operator on X factors through T if there are operators R and S

on X such that the diagram

I
X =5

b

R

_—
U

S

X —
T

is commutative.

Suppose that the basis (b, )nen for X is unconditional. Then the diagonal operators
on X correspond precisely to the elements of £ (N), and so for each operator T on X
with large diagonal, there is a diagonal operator S on X such that (STb,,b%) =1
for each n € N. This observation naturally leads to the following question.

Question 1.1. Can the identity operator on X be factored through each operator
on X with large diagonal?

In classical Banach spaces such as /P with the unit vector basis and LP with
the Haar basis, the answer to this question is known to be positive. These are the
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theorems of Petczynski [19] and Andrew [2], respectively; see also Johnson, Maurey,
Schechtman and Tzafriri [I0, Chapter 9].
The aim of the present paper is to establish the following two results.

> There exists a Banach space with an unconditional basis for which the
answer to Question [I.1] is negative. This result relies heavily on the deep
work of Gowers [7] and Gowers-Maurey [g].
> Question has a positive answer for the mixed-norm Hardy space HP(H?),
where 1 < p,q < oo, with the bi-parameter Haar system as its uncondi-
tional basis. This conclusion can be viewed as a bi-parameter extension
of Andrew’s theorem [2] on the perturbability of the one-parameter Haar
system in LP.
The precise statements of these results, together with their proofs, are given in
Sections [2] and [BH5] respectively.

Acknowledgements. It is our pleasure to thank Th. Schlumprecht for very in-
formative conversations and for encouraging the collaboration between Lancaster
and Linz. Special thanks are due to J. B. Cooper (Linz) for drawing our attention
to the work of Andrew [2].

2. THE ANSWER TO QUESTION IS NOT ALWAYS POSITIVE

The aim of this section is to establish the following result, which answers Ques-
tion [I.I]in the negative.

Theorem 2.1. There is an operator T on a Banach space X with an unconditional
basis such that T has large diagonal, but the identity operator on X does not factor
through T .

The proof of Theorem 2.1 relies on two ingredients. The first of these is Fredholm
theory, which we shall now recall the relevant parts of.
Given an operator T on a Banach space X, we set

a(T) =dimker T € Ny U {oo} and B(T) = dim(X/T(X)) € Ng U {o0},
and we say that:

> T is an upper semi-Fredholm operator if a(T) < oo and T has closed range;
> T is a Fredholm operator if o(T) < oo and B(T) < co.

Note that the condition S(T) < oo implies that T has closed range (see, e.g., [4,
Corollary 3.2.5]), so that each Fredholm operator is automatically upper semi-Fred-
holm. For an upper semi-Fredholm operator T', we define its index by

i(T) = a(T) — B(T) € ZU {—cc}.

The main property of the class of upper semi-Fredholm operators that we shall
require is that it is stable under strictly singular perturbations in the following
precise sense. Let T be an upper semi-Fredholm operator on a Banach space X,
and suppose that S is an operator on X which is strictly singular in the sense that,
for each € > 0, every infinite-dimensional subspace of X contains a unit vector x
such that ||Sz| < e. Then T + S is an upper semi-Fredholm operator, and

(T +8) = i(T).

A proof of this result can be found in [14, Proposition 2.c.10].

We shall require the following piece of notation in the proof of our next lemma.
For an element x of a Banach space X and a functional f € X*, we write x ® f for
the rank-one operator on X defined by

(z2fly=(y, Hlz=  (yeX).
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Lemma 2.2. Let T be a diagonal upper semi-Fredholm operator on a Banach space
with a basis. Then B(T) = «(T), so that T is a Fredholm operator with indez 0.

Proof. Let X be the Banach space on which T acts, and let (b,,)nen be the basis
for X with respect to which T is diagonal. Set N = {n € N: Tb, = 0}. Since
T is diagonal, we have kerT = span{b, : n € N}, and so the set N is finite,
with «(T") elements. Consequently, we can define a projection of X onto ker T' by
Py =3 ,cnbn @by, The fact that ker Py = span{b, : n € N\ N} implies that
T(X) C ker Py. Conversely, for each n € N\ N, we have b, = T((Tb,,b%)"1b,),

so we conclude that ker Py C T'(X) because T has closed range. Hence
B(T) = dim Py(X) = a(T) < oo,
and the result follows. O

The other main ingredient in the proof of Theorem is the Banach space X¢
which Gowers [7] created to solve Banach’s hyperplane problem. This Banach
space has subsequently been investigated in more detail by Gowers and Maurey |8,
Section (5.1)]. Its main properties are as follows.

Theorem 2.3 (Gowers [7]; Gowers and Maurey [8]). There is a Banach space X¢
with an unconditional basis such that each operator on X¢ is the sum of a diagonal
operator and a strictly singular operator.

Corollary 2.4. Fach upper semi-Fredholm operator on the Banach space Xg is a
Fredholm operator of indez 0.

Proof. Let T be an upper semi-Fredholm operator on X¢. By Theorem [2.3] we
can find a diagonal operator D and a strictly singular operator S on Xg such
that T = D + S. The stability of the class of upper semi-Fredholm operators
under strictly singular perturbations that we stated above implies that D is an
upper semi-Fredholm operator with the same index as T, and hence the conclusion
follows from Lemma O

Proof of Theorem 2.1l Let X = X¢ be the Banach space from Theorem [2.3] and
let (b,)nen be the unconditional basis for X¢ with respect to which each operator
on Xg is the sum of a diagonal operator and a strictly singular operator. We may
suppose that (b,)nen is normalized. Set

TZIXG+b1®b§+b2®bT.

Then T has large diagonal because (T'b,,b}) = 1 for each n € N.

Assume towards a contradiction that Ix, = STR for some operators R and S
on Xg. Then R is injective, and its range is complemented (because RST is a
projection onto it), and it is thus closed, so that R is an upper semi-Fredholm
operator with «(R) = 0. This implies that R is a Fredholm operator of index 0
by Corollary and hence R is invertible. Since ST is a left inverse of R, the
uniqueness of the inverse shows that R~! = ST, but this contradicts that the
operator T' is not injective (because T'(by — b)) = 0). O

As we have seen in the proof of Theorem the identity operator need not
factor through a Fredholm operator. If, however, we allow ourselves sums of two
operators, then we can always factor the identity operator, as the following result
shows.

Proposition 2.5. Let T be a Fredholm operator on an infinite-dimensional Banach
space X. Then there are operators Ry, Ra, S1, and Sy on X such that

Ix = S{TRy + S3TR>.
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Proof. Let P = Z _1%; ® f; be a projection of X onto the kernel of T', where
neN x,....,x, € X, and f1,..., fn € X*, and let @ be a projection of X onto
the range of T'. Since this range is inﬁnite—dimensiona], we can find y1,...,y, € X
and ¢1,...,9n, € X* such that (Ty;,g9x) = 6;r (the Kronecker delta) for each
j,ke{l,...,n}. The restriction T: z — Tz, ker P — T(X), is invertible, so we

may define an operator on X by 57 = Jf_lQ, where J: ker P — X is the inclusion.
Set

Ri=Ix—P,  R=Y y;®f;, and Sy=) x;®g.
Then, for each z € X, we have

($1TRy + 82T Ro)z = JT'QT(2 — Pz)+ Y (Tys, i), fi)an
7,k=1
=(z—Pz)+ Pz=z,

from which the conclusion follows. O

3. THE ANSWER TO QUESTION [I.1] IS POSITIVE IN MIXED-NORM HARDY SPACES

In many classical Banach spaces, the answer to Question[1.1]is known to be positive.
This includes ¢7, p > 1, and L?, p > 1, see Pelczynski [19] and Andrew [2], respec-
tively. Closely related to this question is the work of Johnson, Maurey, Schechtman
and Tzafriri [10, Chapter 9], in which they specify a criterion for an operator on a
rearrangement invariant function space to be a factor of the identity.

We now turn to defining the mixed-norm Hardy spaces together with an uncon-
ditional basis, the bi-parameter Haar system. Let & denote the collection of dyadic
intervals given by

=A{k27",(k+1)27") : n,k € No,0 <k <2" —1}.
The dyadic intervals are nested, i.e. if I,J € 2, then INJ € {I,J,0}. For [ € 2
we let |I] denote the length of the dyadic interval I. Let I € & and I # [0, 1), then
I is the unique dyadic interval satisfying I D I and |I| = 2|I]. Given Ny € Ny we
define
Ing={1€P :|I|=2"N} and PN ={IcP:|I|>2 N},
Let h; be the L*-normalized Haar function supported on I € Z; that is, for
I = [a,b) and ¢ = (a + b)/2, we have hy(z) = 1if a <z < ¢, hy(x) = -1 if
¢ <z <b,and hy(z) = 0 otherwise. Moreover, let Z = {I x J:1,J € P} be the
collection of dyadic rectangles contained in the unit square, and set
hIXJ(xay):hI(I)hJ(y)a (IX‘]E'@7 x,y € [071))
For 1 < p,q < oo, the mized-norm Hardy space HP(H?) is the completion of
span{hrx; : I x J € #}

under the square function norm

1 1 1/p
2 p/q
v = ([ ([ (S lanslristean™ )™ a) 7, @
IxJ

where f =", ;arxshrxy. Then (hrxj)rx ez is a 1-unconditional basis of HP(HY),
called the bi-parameter Haar system. We begin with the following facts:
> It is recorded by Capon [3] that the identity operator provides an isomor-
phism between HP(H?) and LP(L?), 1 < p,q < 0.
> Since the bi-parameter Haar system {hyyj: I x J € #} is an unconditional
basis, we do not need to specify an ordering of its index set Z%.
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> This basis is L°-normalized and not normalized in H?(H?); we have
1hess | e ey = [1MPLT|M.

An operator T' : HP(H?) — HP(H?) has large diagonal with respect to the L>°-
normalized Haar system {hyx;: I x J € £} if and only if for some § > 0 we have
that [(Thrx.g, hrx)| > 0|1 x J| for all T x J € #%. The remaining sections of the
paper are devoted to proving the following theorem.

Theorem 3.1. Let 1 < p,q < oo and § >0, and let T : HP(HY) — HP(H?) be an
operator satisfying

|<Th[><],h[><]>‘ Zé‘IX J| fOT all I x J € ZX.

Then the identity operator on HP(H?) factors through T, that is, there are opera-
tors R and S such that the diagram

Tup(ma)
—_—

HP(HY) HP(HY)

Ri TS (3.2)

HP(H) — HP(HY)

is commutative. Moreover, for any n € (0,1] the operators R and S can be chosen
such that |R||||S|| < (14 n)/é.

For related, local (finite dimensional, quantitative) factorization theorems in bi-
parameter H' and BMO, see [I8, [13]. Recently in [I1], the second named author
obtained local factorization results in mixed-norm Hardy and BMO spaces by com-
bining methods of the present paper with techniques of [I3]. Despite the fact that
the constants in our theorem are independent of p and ¢, we remark that the passage
to the non-separable limiting spaces (corresponding to p = oo or ¢ = c0) cannot
be deduced routinely from the proof given below. The non-separable space SL>
consisting of functions with square function in L*° would be an example of such a
limiting space. Factorization theorems in SL> are treated by the second named
author in [12].

The cornerstones upon which the constructions of the operators R, S in Theo-
rem rest are embeddings and projections onto a carefully chosen block basis of
the bi-parameter Haar system in mixed-norm Hardy spaces.

4. CAPON’S LOCAL PRODUCT CONDITION AND ITS CONSEQUENCES

In this section, we treat embeddings and projections in H?(H?). They are the main
pillars of the construction underlying the proof of Theorem[3.1] We begin by listing
some elementary and well known facts concerning H?(H?) and its dual.

4.1. Basic facts and notation.

Let 1 < p,q < oo and let HP(HY)* denote the dual space of HP(H?), identified
as a space of functions on [0,1)?. Then the duality pairing between HP(H?) and
HP(H?)* is given by

(f.9) = /01 /01 f(x,y)g(z,y) dy da.

Correspondingly, we have

lgllar(ray- = sup  [(f,9)|
£l e (ray<1

Since hrxy, I x J € # is a l-unconditional Schauder basis in HP(H?), we may
identify an element g € HP(H?)* with the sequence ((hrx.s,9))rxs. In the dual
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space, the norm of (|(hrx s, g)|)rxJ is equal to the norm of ({(hrx ., g))rx.s. See [14]
Chapter 1].

If1<pp,q¢q < oo and %4— :z% =1, 4+ % = 1, it is recorded by Capon [3]
that there is a constant C), , such that for any finite linear combination f of Haar
functions we have

C;,;”f”LP(L’I) < N fllze ey < Cpgll fllor(ray-
Consequently, the identity operator provides an isomorphism between HP(H?) and
LP(L9), and the dual of HP(HY) identifies with H? (H?). Capon’s argument is
based on the observation by Pisier that the UMD, property of a Banach space does
not depend on the value of 1 < p < co. For a proof of Pisier’s observation, we refer
to [I5] respectively |20, Chapter 5].
For the limiting cases we have H'(H?)* = BMO(HY), H?(H')* = H? (BMO)
and H'(H')* = BMO(BMO). See Maurey [16] and Miiller [17].
Let {#r : R € #} be a pairwise disjoint family, where each set %y is a finite

collection of disjoint dyadic rectangles. Given a vector of scalars 8 = (Bg : R €
Uges #q), we define

QEBr
and we call {bg) : R € #Z} the block basis generated by {Br : R € #} and § =
(Br : R € Upes Pa)- Now, let 1 < p,q < oo be fixed. Note that {b};’ : R € #} is

1-unconditional in H?(HY) since {hg : R € #} is 1-unconditional in H?(HY), i.e.

(8) (8) 00
YrORrb H < sup |vr H arb H , (\R:REZR) € l>™(XR),

whenever the series ) . aRbg?) converges. We say that the system {b%g) R e %}
is equivalent to the Haar system {hp : R € #} if the operator Bg : HP(HY) —
HP(H1) given by

Bs(f) = Z (f,hr) pB) f e HP(HY),

2 "R »
2 gl

is bounded and an isomorphism onto its range. In this case, whenever Cy,Cs > 0
are constants such that

1
aHfHHp(Hq) <|Bsfllar ey < Coll fllae fe HP(HT),

we say that {bg-f) : R e %} is C1Cz-equivalent to {hr : R € Z}.
If Bg = 1 for each R € #, then we write by instead of bg) and B in place of Bg.

4.2. Uniform weak and weak* limits.

Let T' denote the closed unit ball of £*°(Z%), so that T consists of all families v =
(Yr : R € #) of scalars with |yg| < 1 for each R € Z. Given v € T, the 1-un-
conditionality of the bi-parameter Haar system implies that the definition

M’Y: hRHVRhRa ReZxn (42)
extends uniquely to an operator of norm supy, |yg| on HP(HY).
Lemma 4.1. For m € N, let Z,, and %,, be non-empty, finite families of pairwise
disjoint dyadic intervals, define f =3 1c o jew, Pixss Xm =U Zm, and Yy, =
U%m, and let 1 < p,q < co. Then:
(i) | fmllzro ey = | Xom|VP| Y| Y2 for all m € N;
(ii) || fnll e (E0Y = | X |7 YP Y, |19 for all m € N.
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Suppose in addition that:
> Zm N Zy =0 or %, N%, =0 whenever m,n € N are distinct;
> Xy =X, and Y,, =Y, for all m,n € N.

Then:

(iii) the sequence (| Xom|~YP| Y| 9 f1 ) men in HP(H) is isometrically equivalent
to the unit vector basis of ¢2;

(i) for each g € HP(HY)*, sup.cr [(My fm,g)| — 0 as m — oo;

(v) for each g € HP(H), sup.cr [(M~g, fm)| — 0 as m — oco.

Note that in , , and , we regard f,, as an element of HP(H?), whereas
in and (), we regard it as an element of HP(H?)*.

Proof. Set B, ={IxJ:Iec X, Je€X,} for each m € N.

(i). This follows immediately from the definition of || - || gr (£74)-

(). For any g = ZKxLegé’m agxrhrxxr, € HP(H?) we obtain by Holder’s
inequality that

el € 3 KDY Jamnsl L1 < W7V S0 (1Y Jamnlirl)

KeZm Le%,, KeZm Le%,,

1/
< 1P e (Y RIS T ) ,,

Ke%Zm, LeY,,
= |Xm|1_1/p|ym|1_1/q”g”HP(HQ)a

and thus we have proved | | e () < | X[ ~1/P|Y,,|'71/9. For the other in-
equality, recall from (i) that || full e (rra) = | Xim|*/?[Ysn |9, thus

{fms ) = 1 Xl [Yon] = [ Xon "Y1V frn |l o 219y
(iii). We observe that the first of the additional assumptions ensures that %, N

B, = 0 whenever m,n € N are distinct. Set X := X,,, and Y := Y, for some (and
hence all) m € N, and let (¢, )men be a sequence of scalars that vanishes eventually.

Since
S @y = (Y 1@)( X Lw)=1x@1vy)

REB, IeZm JEY
for all m € N and z,y € [0,1), (3.1) implies that

(St

p/q

P /01 ( / (S lenPLtoty )" 2dy> da
= (Slenl?) i i,

from which the conclusion follows.

(iv). Let g € HP(H?)* and € > 0. For each R € %, we can choose a scalar Sg
with [8r| = 1 such that Br(hr,g) = |[(hr,9)l. Set 8 = (8r) € I. By (i),
the sequence (fm)men converges weakly to 0, so we can find my € N such that
|(fm, M3g)| < e whenever m > myg. Then, for each v = (yg) € I' and m > mg we
have

(Mo fs ) = | D2 wnlhrsg)| < D2 [, g)]

Re%B, Re%,
= Z /6R<hR7g> = <M,8.fm7g> S g,
Re%WL

as required.
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— O 1L
=0 e L
v %XJ
e R R s D 2
R S s D
z ] :
Ko K, Ko

%IXJ

Fi1GURE 1. For a dyadic rectangle I x J € £, this figure depicts
PBrxg = Z1xj X Y1« (the collection of the dark gray rectangles)
contained in the unit square (the light gray area). Here, 27« =
{Ko, K1, K2}. The dyadic rectangles in K; x #74; are connected
by dotted lines.

(v). Given g € HP(H?) and £ > 0, we choose a finite subset .# of % such that
lg — Pgllav(mey < €, where P : HP(HY) — HP(H?) is the orthogonal projection
given by Pf =3 p o <f|’1}%|R>hR. Since the sets %,,, m € N, are pairwise disjoint
and .Z is finite, we can find mg € N such that (Um>m° PBm) N.F = 0. Then, for
each m > mg and v € T, we have P*f,, = 0, and hence

[(Myg, fm)| = [(Myg, (I = P)" fm)| = [(My(I = P)g, fm)|
< IMy N lg = Pallerezroy | fnll o 2oy < e,

where we have used that M, commutes with P, and that
||fm||HP(Hq)* = |X|171/p|Y|171/q <1
by (). .

4.3. Embeddings and projections.
For each R € Z let 2R, %r C 2 denote non-empty, finite collections of dyadic
intervals that define the collection of dyadic rectangles Zgr by

%RZ{KXL:KE%R,LEWR}, ReZ. (43)
Now (4.1)) assumes the following form, if Sp = 1 for each R € #:
ba(ey) = (Y he@)( X ),  Re (44)
KeZr LeXr

see Figure

Capon [3] discovered a condition for {#gr : R € #} which ensures that the block
basis {br : R € #} given by is equivalent to the Haar system {hg : R €
Z} in HP(H?), whenever 1 < p,q < 0o (see Theorem [4.2)). The local product
condition (P[I)—~(P) has its roots in Capon’s seminal work [3].

We now introduce some notation. For R € Z we set

Xp=|(}{K:Ke2r} and Yap=|J{L:Lec%} (4.5)
For each Iy x Jy € Z we consider the following unions

XIO - U{XIUXJ 1 J e -@}a YJo = U{YIXJO S ‘@} (46)
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. I K . . I

f T t { P
I P UTTTTTOO
: %x.]
|
|
: 3?’/'[1><]

Ko, [, R

f — | = t ~—1 {
. IS Iy L
t %0)(]

FIGURE 2. The figure depicts the collections Z7xj, ZI,x.,
%IIXJ, with [pUI; =1 and IgNI; = (Z), J e 9. Given x € [0,1),
the dashed vertical line connects the intervals Ko and K with

z € Ko C K. By (P2) we have X;, C X/, and in the figure (PH)

. . KnX X
is realized by l |K|IO| = |‘XIIO|‘.

Clearly, for all I x J € Z the following crucial inclusions hold true:
Xixg CXr and Yiv;CYy. (47)
We say that {Zixy : I x J € Z} given by (4.3)) satisfies the local product
condition with constants Cx,Cy > 0, if the following four properties (P1)—(P4]),
to be defined below, hold true.
(P1) For all R € £ the collection Zg consists of pairwise disjoint dyadic rectangles,
and for all Ry, Ry € Z with Ry # Ry we have Br, N Br, = 0.
(PQ) For all I x J, Iy x Jo, Iy x J; € Z with I[oN1, = @, Ihul; CcITand JyNJy = @,
JoUJ1 C J we have

X, NXyp, =0, X, UXy, C Xy,
Y;,NY; =0, Y; UY; CYj.
(P3) For each R=1 x J € %, we have
1< CxIXal, X <OxlIl, I <CylYl, Vs < Cyll

(P4) For all Iy x Jo,I x J € Z with Iy x Jo C I x J and for every K € £« and
L € %, ;, we have
|KOXI(J| 1|XI(J| and |LOYJ0| 1|YJ0‘
K| | X1 IL| Yl
See Figure [2 for the collections 2%, R € %, and Figure [3] as well as Figure [ for a
depiction of 2% and %R, R € Z%.

Theorem 4.2 (Capon). Let 1 < p,q < cc. If the conditions (H1)-(H3) are satis-
fied, then {brwy : I x J € #} is C-equivalent to {hyxy : I x J € #} in HP(H?),
where C' depends only on Cx and Cy .

> Cx

> Cy

We emphasize that p or ¢ may take the value 1 in the above theorem. By a
duality argument, M. Capon [3] showed the equivalence stated in Theorem [4.2
implies that the orthogonal projection P : HP(HY) — HP(H?) given by

Pf= Y Uobrxa)y (4.8)

IXJER ”bIX‘]H%

is bounded on HP(H?), whenever 1 < p,q < co. We point out that the parameters
p =1or g =1 are both excluded by the duality argument. Indeed, the duality
argument of Capon shows that

|P: HP(HY) — HP(H?)|| < C(p,q,Cx,Cy),
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’ffo/ K1 Zixs

Fi1GURE 3. The dyadic rectangles I x J, I x Jy and [ x J; in &#
are such that JyUJ; = J and JyNJ; = (. This figure depicts the
collections Brxj = Zrxg X Y1« in the top layer, and By, =
Zrxgo X Urxg, and Brxg, = Z1xg, X 1<, in the bottom layer.
Here, Z1x7 = Z1ox0 = Z1, x5 = {Ko, K1, K2}. Each interval in
%y is split in two intervals, which are then placed into %7y j,
and %7 s, , respectively.

where the constants C(p,q,Cx,Cy) — oo in each of the cases p — 1, p — oo,
q— 1or qg— oo.

The next theorem is our first major step towards proving Theorem We show
that the operator P is bounded on HP(HY), 1 < p,q < oo with an upper estimate
for the norm independent of p or g. Specifically, Theorem [.3] includes the cases
p=1lorqg=1.

Theorem 4.3. Let 1 < p,q < oo, let {Br : R € Z} be a pairwise disjoint family
which satisfies the local product condition (f( with constants C'x and Cy,
and let = (Bq : Q € Urcn Zr) be a family of scalars such that

M :=sup|Bg| < oc.
Q

Then the operators Bg, Ag : HP(H?) — HP(HY) given by

(f,hr) (f, b2y
Baf= 3 S e s = ZIbH
REZ REZ 2
satisfy the estimates
| B fll v 10y < MC;(/pC)l//qu”HP(HQ)v f e HP(HY),

| Ag fll e (may < MC;?’(“/[)C'%H/C‘I||f||HP(Hq)7 f e HP(HY).
If we additionally assume that

= inf > 0,
n 1Bal
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layer 3

layer 2

layer 1

layer O

’%O/ Kl %I <J

FIGURE 4. In the figure, Z7x;, = {Ko, K1,K3}, 0 < j
whereas @IXJ]. changes with each layer 0 < j < 3. For yg € |
the light red vertical plane connects the lines ¢ = {(z,y0) : x
[0,1)} in the four layers depicted in the figure.

< 3,
0,1),
€

and if we define the vector of scalars v = (VQ :Q € Upen ,@R) by Boyvg =1, then
the diagram

1P () —— 0 pp(110)
X % (4.10)
1P ()

is commutative, and the operator A, satisfies the estimate || A, || < m_le(H/ng’,H/q.
Moreover, the composition Pg » = BgA, is the projection Pg ,, : HP(HY) — HP(H?)
given by
(.00 )

br[3

Pﬁ,v(f) = Z

Rez
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Consequently, the range of Bg is complemented (by Ps ), and Bg is an isomor-
phism onto its range. Finally, if Bg = vg = 1 for each Q, then Ps  coincides with
the orthogonal projection P defined by (4.8)).

Before we proceed with the proof, we record some simple facts.

Lemma 4.4. Let Br = Zr X Yr C #Z, R € Z satisfy the conditions (
and (H3). Then
Cx'CyR| < |[brl3 < CxCy|R|,  Rez.

Proof. Let R € Z be fixed. By condition ( and (4.3), the collections 2% and
% each consist of pairwise disjoint dyadic intervals, thus, Lemma yields

Ibrl13 = | XR||YR|.
By (PB) and (4.7) we obtain
Cx'Cy Y R| < |XR||Yr| < OxCy|R)|. O

Below we use Minkowski’s inequality in various function spaces. For ease of
reference, we include it in the form that we need it.

Lemma 4.5. Let (2, 1) be a probability space.
(i) Let 1 <r < oo and let g, € L™(2) be real valued. Then

/Q (Xk:gi)w dp > (Xk: (/ng du)z)”?

(i1) Let 1 <r,s < oo and let gi ¢ € L°(Q) be real valued. Then

/Q(Z(Zgﬁ,é)sm)r/sduz (;(Z(/{zgk,@du)Q)Sﬂ)T/s.

k 4 14

Proof. First, we apply Minkowski’s inequality (see e.g. [6, Corollary 5.4.2], [9] The-
orem 202]) to the integral and the sum over ¢:

(SOn o))"= (S ([t )

k ¢ 79
Secondly, applying Minkowski’s inequality to the integral and the sum over k yields

(;(/Q<Zgz,z>”2du)s)”s </Q(Z(Zgz,e)s/2)l/sdu.

1/s

¢ )
Finally, we obtain (fi)) by Holder’s inequality.
The assertion () follows from ({iil) by putting s = 2. O

Lemma 4.6. Assume that (Z; : I € 9) satisfies the following condition: For all
I,Io,I1 € 2 with yNI =0, IyUI; C I we have that

ZjoﬂZh =0 and Z]UUZ]I cC Zy.
Let 0 <r < oo, Ng € N and ¢y > 0 and define

1= 3 cfnz,(z))".

Ie9MNo

T
a=(Dex) (D ce)
EOI EDI
satisfies ¢y > 0 and we obtain the identity

f)=> @lg(2).

IegNo

Then

T
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Proof. Observe that by telescoping and the tree structure of the sets (Z; : I € 2)

we have that
( Z CI]]-ZI(Z)) = Z E]]lZI(Z).

Ie9No Ie2No
The fact that ¢; > 0 is self-evident. O

Proof of Theorem[[.3 The proof will be split into three parts. In the first part, we
will give the estimate for Bg, and in the second part, we will establish the estimate
for Aﬁ.

PART 1: THE ESTIMATE FOR Bg. We emphasize that our proof of the estimate for
Bg only uses the conditions (P[L)—(PB); specifically, we do not use (PH)).
For Ny € N we define the collections of indices

No ={lox Jo€ X : Iy, Jo € Dn,} (4.11a)
and
BN = {Io x Jy € # : I, Jo € 2™°}. (4.11b)
Let us assume that
f= Z arhg.
RexNo

Then by (PfI) and (4.3) we find that

p/q

1 1 /
B e = [ ([ (3 tanl ¥ 80P 1eten) )

Re#zNo QEBr

Recall that |Srxs| < M and that by (4.7) 1x,,,(x)ly, ,(y) < 1x,(z)1ly,(y), so

we note

p/q

1Bty <3 [ ([ X i @1r,0) )

IxJezNo
(4.12)
If we define c;(z) = Y ;cono larxs*Lx, (z), (£.12) reads

q/2 p/q
1Bs W gy < M7 / ( / > et ) ) an @

JegNo

Lemma yields the following identity for the inner integrand of (4.13):

(Y a@inm)” = ¥ Gy, (414)

JegNo JegNo

- 2 2 .
where ¢;(z) = (3,5, ¢n (I))q/ - (ZJIQJ cn (x))q/ > 0. Integrating (4.14)
with respect to y and using that |Y;| < Cy|J| by (PB), we have

[ (X awmw) wor 3 s

JegNo JeoNo

Combining the latter estimate with (4.13) yields

1 r/q
1B ey <20 [ (S @@} an @y
0

JeaNo
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It remains to estimate fol (> jeamo EJ(x)\JDp/q dz from above by a constant mul-
tiple of || f[I% s4)- Note that

/2
(> enla q/2 ( > drglx,(x )q , wheredr ;=Y lan |’

JiDJ IegNo JiDJ
2
Z q/2 Z a/ Z 2
( CJ1 ( er J]].XI ) s where €1,J = |a]><J1| y
J12J IePNo J12J

and that ¢;(x) was defined as the difference between the two quantities, above. By

Lemma we obtain

( > dI,J]lxI(a:))q/Z: > dr.1x,(z)

IegNo Ie9No

q/2 _
( > el,ﬂle(%‘)) = Y aulx (@)
IegNo 1€9MNo

where

JI,J = ( Z dll,J)q/Q - ( Z dh,J)q/Q >0,

DI L2I
N q/2 q/2
€r,g = ( E 611,J) - ( E 811,J>
;DI 21

Summing up, in between (4.15) and here, we have shown that

p/a
||B/3f||Hp(Hq)SMPCP/q/ (Y fix@) " dr, (4.16)

I1e2No

Where f] = ZJ€@N0 |J‘(Cﬂi’[”] — g]J).
It is important to show that f; > 0, for all I € 2™o. To this end, note the
identity

~ _ q/2 a/
drg—erg= ( Z |a11xJ1|2> - ( Z |a11x11|2)

LI LI
Ji1DJ J1DJ
q/2 q/
2 2
—< E lar, s, ) +( E lar, x| )
DI LI
72 5DJ

Let Jy € Pn,, then grouping together the first with the third term as well as the
second with the fourth, and summing the latter identity over J D Jy yields

~ - a/2 q/2
> dz,erz,J:( > |(11li1|2> *( >, |a11><J1|2) > 0.

J>Jo LI D1
J1DJo J1DJo

fr=">" 1l > (s —e1.),

J()E_@NO JDJo

Since we have

we showed that f; > 0.
A final application of Lemma, [4.6] gives

/ (3 mixG p/qu_/ S Al @de= 3 Flxl,

IegNo IezNo IegNo
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where f; = (ZIDI fj)p/q (21131 fI)p/q > 0. Using ( in the above identity
and combining it with - ylelds

1Bs Vo aray < CxMPCY™ 37 filll.
Ieo™No
Finally, we remark that
||f||1;-[p(Hq) = Z fI|I|
Ie9No
To see this, it suffices to apply Lemma [.6] as above.
PART 2: THE ESTIMATE FOR Ag. Let Ny € N, and define the collections of building
blocks £y, and 2N by
‘%No = {KO X LO € %IOXJO : Io X JO S %No}

and

BN = (K xLeBryy:IxJermN,

where %y, and %o are defined in (4.11). Taking into account that the bi-
parameter Haar system is a 1-unconditional basis of HP(H4Y), it suffices to consider
only those f that can be written as follows:

[ = E arxLhKxL-
K xLe%No

We will now estimate ||A5f||’;{p(Hq). To this end, note that by the definitions of
Apg and the norm in HP(H?) we have

f,b('B 2 q/2 P/q
||A5f||11]t[p(Hq) :/ (/ Z ||bR||4| ILR(xay)) dy dil?

ReﬂNo

Since Yy, is a partition of the unit interval, we obtain that

7b(,ﬁ’) 2 a/2 r/q
A8 oy = D /1( > /J 1/ R4>| 1R(x,y)) dy) dz.

I0€Dn, Jo€Dn, ReZNo (LlP
Recall that |Bg| < M, note that for In, Jo € Zn, and R € Z™° as in the above
sums, Lg(x,y) = 1 exactly when R D Iy x Jy, and apply Lemma to obtain

||A5f||]ID—IP(Hq)

<mregey 30 IIo|< 3 \Jo( 3 (Z |GQHQ|> )q/2>P/q' 417)

IOE-@NO JOG@NU RGJNO QE.@R
RDIgxJg

We continue by proving a lower bound for ||f||§lp(Hq). Set

Z |aQ\hQ, RE%NO,
QEBR

and observe that by (P[I) we have

r/q

1 o 27y :/01 (/01( > w?z(l“’l/))q/?dy) dz.

RexzNo

By (P2) the collections {Xy, : Iy € Zn,} and {Y}, : Jo € P, } are each pairwise
disjoint, thus we obtain

q/2 dy p/q
a1y / ( |YJ|/ Wy ) iz,
H (H Z X Joe@N 0 Z R ) |YJ0‘

Io€DnN, Rez%No
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For fixed Iy, Jo € In,, v € X1,, y € Yy, and R € ZN°, we have by ([£.7) and (
that wg(z,y) # 0 implies R D Iy x Jy, so we obtain from the latter estimate

together with ( Ii the following lower estimate for C’p/q||f||Hp(Hq)

> /X ( . |J0|/Y Z w%(m,y)fml;]y')p/qu. (4.18)
Jo€ Jo 0

Io€InN, RDIgxJo

With Iy, Jo € Py, fixed, we now prepare for the application of Lemma to the
inner integral of the above estimate. We use the following specification. We put
Q=Y,, dp= Df%, and r = ¢. In view of ({i)) of Lemma we obtain that

0

/YJU ( Z wQR(mvy))q/2|SjJ| = Z / |wr(z,y) Y, ‘) )q/Q-

RDI()XJ()
(4.19)
By ( we have [wr(z,y)| = Yk« pesy, [axxL| 1k (2)1L(y), hence by ( and (
d LNy
/ |wR(xay)|Y7y = Z |aK><L||Y7JO|]lK(x)
Y, | J(J| KxLER | J|

>0 Y a1k

KXLEABR

for all R € #™No with R = I xJ D IyxJy. Combining the latter estimate with (4.19)
and ( we obtain the following lower estimate for C’2p+p/q||f||Hp(Hq)

al [ (3 Wi aw)”) L e

10691\1 JoEDN, RDIgxJo

where we put vr(z) = X ez, % x(z),if R=1xJ. With I, € 9y,
fixed, we now prepare for the application of Lemma [I.5] to obtain a lower bound
for the following term:

J,

To this end, we use the followmg specification. We put Q =X, dp= |X BenE and
r =p, s = q. Invoking (fii) of Lemma | we find that ( is bounded from below

by
( > |Jo 3 / IXI(,I) )q/Q)p/q. (4.22)

JOE@NO RDIQXJO

(T i X ) )

To JOG-@NO RDIpxJo

Recall that we defined vg(z) = Yy e, %ﬂ (z),if R=1xJ. By 'i
and (P3)) we estimate

/ ’UR(x) de _ Z ‘GKXL||L| ‘KﬂX]O|
v OGO  IXal
> 02 Z lagl|Q

o, Bl
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for all R = I x J € #No with R O Iy x Jy. Combining the latter estimate
with (4.22)), (4.21)), and ([4.20)), we obtain the following lower estimate for C§p0§p+p/q||f\|%p(}“):

Z |XIO|( Z |J0|< Z (Z W)2)q/2)p/q’

IISZINN JoEDnN, RDIoxJo QEXBr

Finally, by (P3) the latter estimate yields

2
T FI gy >
lagll@[\2ya/2\"*  (4.23)
> omi( 3wl (X ERE))T)
Io€DnN, Jo€EDnN, RDIoxJo QEBr

Direct comparison with (4.17) gives
34+1/p ~3+1
145 f s ey < MO PCE | a1

PART 3: CONCLUSION OF THE PROOF. If additionally, we assume that m :=
infg |Bg| > 0, Part 2 implies that A, is bounded by m~'C% /PC3T/9. The
commutativity of the diagram (4.10) follows from the fact that Sgvo = 1. O

4.4. A linear order on Z and Capon’s local product condition.

In Section [5] we will iteratively construct collections of dyadic rectangles Zr C %,
R € Z satisfying Capon’s local product condition. This will be accomplished
by organizing the dyadic rectangles according to the linear order < defined in
the present section, below. The other purpose of this section is to introduce the
auxiliary condition (f(R@ and to show that it implies Capon’s local product
condition (P1))—(P4).

First, we define the bijective function Oz : N§ — Ny by

n? +m, if m <n,

m?+m+n, if m>n.

oNg (m,n) = {

To see that Oz is bijective consider that for each k € N:
> Oz (0,0) =0,
> m = Onz(m, k) maps {0,...,k — 1} bijectively onto {2, k> +k—1}
and preserves the natural order on Ny,
> ONg(/{,O) = ONg(k - 1,k)+1,
> 1+ Oyz(k,n) maps {0,...,k} bijectively onto {k? + k,...,k* + 2k} and
preserves the natural order on Ny,
> ON3(07 k+ 1) = ONg(k’, ]f) + 1.
See Figure [5| for a depiction of Opz.

Now, let <, denote the lexicographic order on R3. For two dyadic rectangles
I x J,, € Z with |Ik| =27k, |Jk| =2""_ Lk =0,1, we define Iy x Jo < I; x Jy if
and only if

(ON% (mo, no), inf I, inf Jo) <y (ONS (ml, Tll), inf 1y, inf Jl) .

Associated to the linear ordering < is the bijective index function O : Z — Ny
defined by

O<] (R0)<O<] (R1)<:>R0< Ry, Ry, Ry cX.
The geometry of a dyadic rectangle is linked to its index by the estimate

(2F —1)2<04(I xJ) < (2" —1)2,  whenever min(|I],|J|) = 27%, (4.24)
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(0,0) (1,0) (2,0) (3,0)

(0,1)

(0,2)

FIGURE 5. This figure depicts the order of the first 16 pairs in N3
with respect to the map Opgz.

o
T, =
o o]
P
EAEN
o
o oo oo
oo
EEDE

o

N |
[y
Ne)

FIGURE 6. The first 49 rectangles and their indices O .

and hence,
1
— < |I| |J], 1=04( x J). 4.25
vl <X J) (4.25)
The index of a dyadic rectangle and its predecessors are related by
IxJaIxJ forIT#[0,1) and IxJ<IxJ, forJ#[0,1), (4.26)

where we recall that for I # [0, 1), I is the unique dyadic interval satisfying I>1
and |I| = 2|1|. See Figure EI for a picture of O.

For a dyadic interval I, we write I and I" for the dyadic intervals which are
the left and right halves of I, respectively. In the following definition, we use the
notation introduced in (4.5), so that for a collection 2% (respectively, %) of dyadic
intervals, Xg (respectively, Yr) denotes its union.
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Definition 4.7. Let & = Z or o = {R € #Z : R4 Ry} for some Ry € %#. We
say that {Zpr : R € &/} satisfies the auziliary condition (Hi])-(H6) if the following
properties hold true.

(R1) For each R € &7, there are non-negative integers pu(R), v(R) and non-empty
sets Zr C Zyu(r) and D C P, (r) such that Br = {K x L: K € Zp, L €
Wi}

(R2) ,LL([O, 1) X [0, 1)) = V([O7 1) X [07 1)) =0 and %O,I)X[O,l) = @[0,1)><[0,1) = {[07 1)}

(R3) Foreach I € 2\ {[0,1)} with R=1x[0,1) € &

X = (K" : K € Doiry, K C Xpyoqy} i T= It
x[0,1) — - . T
(K" : K € Dury. K C Xp,0,) if T=T,

where x(R) = max{u(S) : S<[0,]I]) x [0,1)};
(R4) f R =1 x J € o with |I| < |J|, then

p(R) > max{u(S): S< R},

Xr = Xix[0,1), and Zr = %1, where I’ € 9 is the unique dyadic interval
such that I’ D I and |I'| = |J|.
(R5) For J € 2\ {[0,1)} with R=1[0,1) x J € o

Voo — UL L€ Dy L C Yyt i J =",
10 U{LTIZLGQ)\(R)’LCY[OJ)X?} if J=J",

where A(R) = max{r(S) : S<[0,1) x [0, |]])}.
(R6) IER=1xJ e o\ {[0,1) x [0,1)} with |I| > |J|, then

v(R) > max{v(S): S< R},

Yr = Yjo,1)xJ, and 2 = X7y, where J' € Z is the unique dyadic interval
such that J' D J and |J'| =2|I|if I #[0,1), and J' =[0,1) if I = [0, 1).

Remark 4.8. Let {#r : R € #Z} be a collection such that each of the finite sub-
collections {#r : R< Ry}, Ry € %, satisfies the auxiliary condition (R[I)-(R[6).
Then it is easy to see that {#r : R € Z} itself satisfies the auxiliary condition

(RI)-(RE).
Lemma 4.9. Let {%r : R € #} satisfy the augiliary condition (K1)-(H6). Then

{%Br : R € %} satisfies the local product condition (HI))—(HJ]) with constants Cx =
Cy =1.

Proof. The usual linear order < on dyadic intervals is given by I; < I if and only
if either |I1| > |Ip| or |I1| = |Ip| and minI; < minly. The proof uses induction
with respect to the linear orders < and <.

VERIFICATION OF (. For each R € #, 2'r consists of pairwise disjoint intervals
because 2 is contained in &, (g). Similarly, #r C 9,(r) and consists of pairwise
disjoint intervals, and therefore the rectangles in #p are pairwise disjoint.

Now suppose that Ry, Ry € #Z are distinct. By relabelling them if necessary, we
may suppose that Ry < Ry, where Ry = Iy x Jy # [0,1) x [0,1). To establish the
disjointness of #r, and ABr,, we must show that either Zx, and 2, are disjoint
or @, and Zg, are disjoint. If |Iy| < |Jo|, then (R4) implies that p(Ro) > p(R1),
so that 2k, N Zr, C Du(ro) N Du(ry) = V- Otherwise |Ig| > |Jo|, in which case a
similar argument based on (R) shows that #r, N %r, = 0.

VERIFICATION OF (Pf2)). We begin by observing that (R4) and (R) imply that
the sets Xg, Yr, X1, and Y defined in (4.5)—(4.6) are given by

XR:XIX[(],l) :X[ and YR:}/[(),l)XJ:YJa R=1x JE% (427)
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Since the order < is linear, and the set Z is countable and has a minimum el-

ement [0,1) with respect to <, we may use induction on Iy € 2 to prove the

following two statements:

(a) XIOX[O,I) N X11><[O,1) = (Z) and YV[OJ)XIU N YV[OJ)XII = @ for each Il € 2 with
I < Iyand IgN 14 :Q;

(b) XIOX[O,I) C X11><[0,1) and YV[OJ)XID C }/[0,1)><[1 for each I, € 9 with Iy C I;.

The statements @ and (]ED above together with imply ( The start of the

induction is easy. Indeed, suppose that Iy = [0,1). Then no I; satisfies I < [0, 1),

so that (a)) is vacuous, while (b)) holds trivially because I; = [0,1) is the only dyadic

interval which contains [0, 1).

Now let Iy € 2\ {[0,1)}, and assume inductively that (a)—(b) have been estab-
lished for each Iy < Iy (that is, (a)—(b) hold whenever I, is replaced with I{)). We
shall prove the statements concerning Xy, 0,1); the proofs for Y|o 1)y, are similar,
requiring only minor adjustments of the notation.

To verlfy @ suppose that I} € 9 satisfies I} < Iy and Iy N I; = (. Then either
LN =0, or Iy = (I, o)t and Iy = (Io)". (Note that because I; < Iy, we cannot
have I; = (Iy)" and Iy = (Iy)’.) In the first case, since I; < Iy and Iy < Iy, the
induction hypothesis implies that XI «[0,1) " Xnx[o,1) = (), from which the result
follows because Xy, x[0,1) C XI()X[0 1 by (

In the second case, we observe that Iy = I1 and |Io| = |I1], so that x(Iy x [0,1)) =
k(11 x[0,1)). This implies that X, 0,1y and X7, x[0,1) are disjoint because X7, (0,1
is the disjoint union of the right halves of the intervals K € %,y x[0,1)) with
K C XI <[0,1)? while X7 y0,1) is the disjoint union of the left halves of the same
intervals.

Next, to prove (]ED, suppose that I; € 2 with Iy C I;. The inclusion is obvious
if Iy = I;, so we may suppose that Iy C I;. Then we have 1:0 C I, so the induction
hypothesis implies that XI «[0,1) C X1,x[0,1)- Hence the statement follows from
the fact that X7 [0,1) C Xlox[o 1)

VERIFICATION OF (PB]). The proofs of (P3) and (P)) both rely on the following
two identities:

|Lm [0,1) ><f| (

2

K0 Xy 0.0
2
valid for I, J € 2\ {[0,1)}, K € 2*Ux01) and [ € 2 0:1)x7),
We shall establish the first of these identities; again, the proof of the other

requires only notational changes. For I € 2\ {[0,1)} and K € 2~Ux[01) get
Y1(K) ={K, € -@m(lx[o,l)) Ky C KOXIX[O 1) }. We claim that

(KN Xxjo0)| = and  [LNYp1)xs| = 4.28)

U{KE : Ko € 7(K)} if I =1

Y(K) and KNX = 5
Xixon = U7(K) an (o) {U{KS 1Ko e Vi(K)} ifI=1".
(4.29)

Indeed, the inclusion | ¥7(K) C KNX7, 1) is clear from the definition of Y1 (K).

Conversely, for each z € K N X5 Tx[0,1)’ there is a (necessarily unique) interval
Ko € 25,0, such that = € Ko. We have w(I % [0,1)) < k(I x [0,1)) because

Ix[0,1)<0,]1]) x [0,1), so we can find K; € D(1x[0,1)) such that r € Ky C K.
The sets K7 and K are not disjoint as they both contain x; combined with the fact
that |K;| < |K]|, this shows that K; C K. Moreover, we have K1 C Ko C X7
so that Ky € 77(K), and hence z € Ky C |J 71(K).

Moving on to the second part of , we obtain the inclusion D directly from
the definition of #7(K) and ( Conversely, suppose that € K N X;,[0,1), 50

Ix[0,1)°
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that z € K and either z € K4 or z € Kj (depending on whether I = (I)¢ or

I=(I)") for some Ko € Z,(1x[0,1)) With Ko C X7, 0.1)° In both cases, we see that
KN Ky#0and |Ky| < |K|, so that Ky C K, and hence Ky € ¥7(K), from which
the inclusion follows.

The first equation in is immediate from because ¥7(K) consists of
disjoint sets and |K{| = |K§| = |Ko|/2.

We can now easily establish (P3) with Cx = Cy = 1. By ([@.27), we must show
that

| X150, = 1] and [Yio,1)x1] = 1], Ie9. (4.30)

We do so by induction on I. The start of the induction, where I = [0, 1), follows
immediately from the fact that Xo1)xj0,1) = Yjo,1)x[0,1) = [0,1) by (R2).

Now let I € 2\ {[0,1)}, and assume inductively that the result is true for each
I' < I. Using with K = L = [0,1), we obtain that | X;,01)| = |Xf><[0,1)|/2 =

|1]/2 = |I| because I < I and likewise |Yjo 1)xs] = |I]-

VERIFICATION OF ( We shall prove that, for each Ry = Ig x Joand R=1x.J
in Z with Ry C R,

KO Xionl KLy 0 Yol _ 2]
| 1] ol 7

By and this will verify ( with Cx = Cy = 1.

The proof of (4.31) is by induction on Ry. The start of the induction is trivial
because the only R € Z that contains Ry = [0,1) x [0,1) is Ry itself.

Now let Ry € %\ {[0,1) x [0,1)}, and assume inductively that has been
verified for each R{ <1 Rg. This time, we shall focus on the proof of the second
identity in ; the proof of the first identity is similar, but formally slightly easier
due to the lack of symmetry between conditions (Ri) and (R): when |I| = |J|, we
re-use an existing set as 2 and define a new set #x.

Suppose that R =1 x J € # with Ry C R, and let L € #%x. If Jy = J, then
L C Yjp,1)x .1, and the identity is immediate. Hence we may suppose that Jo C J.
Moreover, we may suppose that |I| > |J|. Indeed, if not, then by ( Wn =Wy,
where I’ € 2 satisfies I’ D I and |I’| = |J|, so that we may replace I with I’ to
obtain that |I| > |J|.

Then we have |Jo| < |J| = min{|I],|J|}, so that R<[0,1) x [0, |.Jy|), and hence
A([0,1)x Jo) > v(R); thus L € % C Dyry C 2MNOD*J0) 50 that shows that
ILNY[01)x0| = |LﬂY[0’1)XjO|/2. Now R}, = Iy x Jy satisfies R) < Ry and R} C R,
and therefore the induction hypothesis implies that |L N Y[0,1)><L70|/“70| = |L|/|J|.

Hence the conclusion follows because |Jo| = 2|Jo|- O

K e %R, L e %g.
(4.31)

Having obtained Theorem [I.3] and Lemma [4.9] we are finally prepared to prove
Theorem [3.11

5. PROOF OF THEOREM [3.1]

Here, we prove that the identity operator on H?(H?) factors through any operator
T : HP(H?) — HP(H?) having large diagonal with respect to the bi-parameter
Haar system (see Theorem [3.1)). The basic pattern of our argument below is the
following: we carefully construct {#r : R € £} satisfying the auxiliary condition
(RI)—(R) (see Section [)). Moreover, these collections are chosen in such a way
that we are able to find signs eq € {£1}, Q € gy Zr, for which the block basis

bgg) = sy cQhq, R € % has the following properties: \(Tbgél), b§3>| is small in
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the precise sense of (5.6a) below whenever Ry, Ry € % are distinct, and
(To i) 2 8655, Re .

Thereafter we apply the two main results of the preceding section, Theorem [.3]
and Lemma [4.9] and finally we construct a factorization of the identity operator
through 7.

Proof of Theorem[3.1 Let 1 < p,q < oo and § > 0, and let T : HP(H?) — HP(HY)
be an operator such that

[{Thgr,hr)| > d|R)|, ReZ. (5.1)
We define v = (yr : R € %) by
T
(Thr, hr) Re

B (Thy, he)|

Recall that in (4.2) we defined the Haar multiplier M., which satisfies ||M, | = 1,
and ((I'M)hg, hr) > 0|R|. Thereby, replacing T' with T'M.,, it suffices to consider
the special case where

<ThR,hR> > (5|R|, ReZ. (52)

OVERVIEW. Let 0 < 7 < 1. The main part of the proof consists of choosing
collections of dyadic rectangles Zr, R € # and suitable signs ¢ = (¢¢g) such that

bg? = ZQG 25, €Qhq satisfies the following:

> The closed linear span of {bg) : R € #} is complemented and isomorphic
to HP(H1).
> There is an operator U : H?(H?) — HP(HY) given by

(F,8) o
U =3 Rl
foe (T05) b))

> For every finite linear combination g = 5, A Rbg) we have
n
NWUTg — gllazr ey < 5 gl v (o)

PREPARATION. Given R =1 x J € &% we write

Thr = arhgr + TR, (5.3a)
where
ag = (Thr, hr) and rp= Z \Lhas hs) hS)hS- (5.3b)
A Z s
We note the estimates
§<ap <|T|  and  |r&llusme < 2|77 (5.4)

INDUCTIVE CONSTRUCTION OF bg?. We will now inductively define the block basis
{bg) : R e #Z}. For fixed R € %, the block basis element bg? is determined by a
collection of dyadic rectangles Zr C Z and a suitable choice of signs e = (¢g) and
is of the following form:
bg) = Z é‘QhQ. (5.5)
QEBr
From now on, we systematically use the following rule: whenever O, (R) = i we

set
B =Br, b =0, hi=hg
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We will construct collections {%; : i € Ny} satisfying the auxiliary condition (R[1)-
(Rl6) and choose signs ¢ = (gg) such that

1—1
STUTE B + [0, T < pea=i2 ieN, (5.6a)
=0

(TB, )| > 6713, i€ N, (5.6b)
The induction begins by putting
Bo=1{[0,1) x [0,1)}  and b5 = hp1)xp)- (5.7)

Consequently, Z(o,1)x[0,1) = Zfo,1)x[0,1) = 1[0, 1)} and ([0, 1)x[0,1)) = 0, »([0, 1)x
[0,1)) = 0. Obviously, {%,} satisfies (RI)—(R).

Let ip € N. At this stage we assume that
> {2;:0 < j <io— 1} satisfies the auxiliary condition (R[1)—(R[6).
> the block basis {bg-e) : 0 < j <ip— 1} given by satisfies (for
0<i<ig—1).
Now, we turn to the construction of %;, and g, where Q € %;,. In the first step
we will find %;, in (5.20), and only then we will choose the signs eg, Q € %,
in ((5.23)). The collection %;, and the signs €g, @ € %;, then determine bgs).
CONSTRUCTION OF %;,. Let Iy x Jy € #Z be such that Oy (Ip x Jy) = i9. We
distinguish between the four cases
[o| < [Jol, Jo =[0,1), [o| < [Jol, Jo # [0,1),

and
[ Io| > |Jol|, 1o = [0, 1), [Io| > |Jol|, Io # [0, 1).

CASE 1: |Iy| < |Jp|. Here, we will construct the collection %y, « j,, for which the
index rectangle Iy x Jy is “below the diagonal”.
First, we define

v(lo x Jo) =v(Iyx Jo)  and  Diyugy = Dy (5.8)

where I, € 2 is the unique interval such that I D Iy and |I}| = |Jo|. We remark
that p(ly x Jo) will be defined at the end of the proof in (5.21al).
Cask 1.A: Jy = [0,1). Here, we know that Iy # [0,1). Recall
that fo denotes the dyadic predecessor of Iy, and note that

‘%ﬂ)x[o,l) has already been defined. The collections indexed by II..%%
the black rectangles have already been constructed. Here, we B
determine the collections for the gray rectangles. The white H H H H D D D D E E E E
ones will be treated later. LIUUBEHER

Note that [0, |Ip]) x [0,1) < Iy x [0,1), and define the integer x(Iy x [0,1)) by

k(Io x [0,1)) = max{u(Q) : Q <0, [Lo]) x [0,1)}.

Recall that for a dyadic interval K, we denote its left half by K§ and its right
half by K. Following the basic construction of Gamlen-Gaudet [5], we proceed
as follows. The set X ox[0,1) has already been defined in a previous step of the
construction. Now we put

] )
fox(o.1) = {U{Kg : K(] S 9&([0)([0,1))7 KO C Xﬁ)X[O,l)} if I() = I() y
0 ) r . Fr

U{KO : KO S _@K(on[071)), Ko C XI~0><[O,1)} if Io = IO .
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To finish the construction in Case 1.A, we define the family of high frequency covers
of the set Xy y[0,1) X [0,1) by putting

cg.ﬂ% = {K X [07 1) EX: Ke @m7 K C XIOX[O,l)}? (59)
for all m > k(Ip x [0, 1)), see Figure |7, and observe that
Uﬁm = Xpyxj0,1) X [0,1). (5.10)
}(él) }(52) }{63) }(54)
[0,1)

F1GURE 7. The above figure depicts an instance of .%,,, in Case 1.A.
Kék) is a dyadic interval such that Kék) x [0,1) € %;()X[O 1) and
K is a dyadic interval such that K x [0,1) € .%,,.

Hl—
CASE 1.B: Jy # [0,1). The collections indexed by the black H—
rectangles have already been constructed. Here, we determine II. %%
the collections for the gray rectangles. The white ones will be . %%
treated later. III NO00EREH

gogg

goog

i

By our induction hypothesis, {#B.; : O4(I x J) < ig — 1} satisfies (R[I)—(R[6).
Note that the set Xy x[o,1) is already defined. To conclude the construction in
Case 1.B, we define the high frequency covers of Xy, (0,1) X Y1,%, by

Fn = {K xLoeZ : KeD,, KC XIgX[O,l)a Ly € g/joxjo}, (5.11)

for m > pu(ly x Jo).
CASE 2: |Iy] > |Jp|. In this case, we will construct the collection %y, « j,, for which

the index rectangle Iy x Jy is “on or above the diagonal”.
First, we set

Iy x Jo) = p(Iy x Jb) and Z1oxdy = X1oxJp (5.12)

where Jj € 2 is the unique dyadic interval such that Jj D Jy and |J)| = 2|Ip] if
Iy #[0,1), and Jj =1[0,1) if Iy = [0,1). We remark that v(Iy x Jy) will be defined
at the end of the proof in ([5.21b)).

CASE 2.A: Iy =[0,1). Note that Jy # [0,1) and Py 1) 5, has
already been constructed. The collections indexed by the black
rectangles have already been constructed. Here, we determine
the collections for the gray rectangles. The white ones will be
treated later.
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Note that [0,1) x [0, |Jo]) <[0,1) x Jy. Define A([0,1) x Jy) to be
A([0,1) x Jp) = max{v(Q) : @ <[0,1) x [0, |Jo])} (5.13)
Recall that for a dyadic interval Ly we denote its left (=lower) half by L§ and its

right (=upper) half by Lj. The set Y[o %o has already been defined. Now put

Vi, = UL = Lo € Zaoyxso)s Lo € Yo qy, 5} i Jo = Zé,
AP T VUL = Lo € Daqoayxanys Lo € Yoy i} i Jo =T

We define the family of high frequency covers of the set [0,1) x Yjo 1)x.s, by

Fm =0, 1) x LeR : L E€ Dy, L CYo1)xd0 > (5.14)
for all m > A([0,1) x Jy), see Figure|8| and observe that
U Zm =10.1) x Yio,1)x s, (5.15)
[0,1)
2
L(() ) i
L
1
L(() ) i
L

F1GURE 8. The above figure depicts an instance of %, in Case 2.A.
Lék) is a dyadic interval such that [0,1) x Lék) €A and L
is a dyadic interval such that [0,1) x L € .Z,,.

[0,1)xJo?

|
Case 2.B: Iy # [0,1). The collections indexed by the black T EE
rectangles have already been constructed. Here, we determine II .%%
the collections for the gray rectangles. %%
I“ BiEEEE
DDDD
| [FlElSIS
By our induction hypothesis, {ZBrx; : Oq(I x J) < ig — 1} satisfies (R[1)—(
At this stage of the proof, the set Y|g 1)x ., has already been constructed. Now, we
define the high frequency covers of Xj,x ., X Y[o,1)xJ, by putting
Jm:{KO xL: Kyé€ %IOXJO,LGQm,LCYY[OJ)XJO}, (516)

whenever m > v(Iy x Jy), see Figure
In each of the above cases (5.9)), (5.11)), (5.14), and (5.16) we define the following
functions. Firstly, let

> h, (5.17a)
QEFm
and secondly for any choice of signs g € {—1,+1}, Q € %, put
féf) = Z EQhQ. (5.17b)
QEFm

Now, we specify the value of m. To this end, put
kiy = max{u(R),v(R): R€ %, O4(R) <ig—1}, (5.18)
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K1(1) K%Z) K£3)

) =
E | &

L

KO’_’_‘ L

F1GURE 9. The above figure depicts an instance of .%,,, in Case 2.B.
We have ka) € 2% 10 Lgé) € ¥ ;,» and the dyadic interval Ko
isin Z7,xJ,- Fm is the collection of all the small gray rectangles.
We obtain .%,, by leaving intact the intervals of the z-coordinate
(Ko € Z1,xJ,) and using a high frequency cover — comprised of

the intervals L — of the intervals Lgé) € Y s~ The intervals

ng) € @;OX J, In this Figure are covering the exact same set as the
intervals denoted by L in Figure |8} i.e. they cover Yo 1)x j,-

and note that each .%,,, m > k;, can be written as the product of two sets of
intervals, i.e.

Fm={KxL:K&eZn, Le%,}, m >k,

where the collections %2, and %;,, m > k;,, satisfy the following:

> Z,n and %, are each a non-empty, finite collection of pairwise disjoint
dyadic intervals of equal length, whenever m > k; ;

> X N Xy =0 or %, N%, =0 whenever m,n > k;, are distinct;

> the union of the sets in 2, is independent of m > k;., and the union of
the sets in %}, is independent of m > k.

Thus, by Lemma we have that
> for each g € HP(H)*, sup.er (M fim, )| — 0 as m — oo;
> for each g € HP(HY), sup. e (M~ g, fm)| — 0 as m — oo;

where we recall that I' denotes the unit ball of £>°(%), and that y = (yr : R€ %) €
I' defines the operator M, (see (4.2))). Hence, we can find an integer m;, > k;, such
that

109

i0—1
S UTHE, £+ 1) T | < moa—io, (5.19)
j=0

for all choices of signs exxr, K X L € ﬁmio. Now, we put
Broxso = Bio = Fnsy - (5.20)
If Iy x Jy is a “Case 17 rectangle, i.e. |Ip| < |Jo|, then, by and
p(lo x Jo) =mi, and  Ziyxj, = {K € Dm,, : K C Xpyxj01)}s (5.21a)
and if Iy x Jy is a “Case 27 rectangle, i.e. |Iy| > |Jo|, then, by and
v(Io x Jo) =mi, and P g, ={L € Dy, : L CY[o1)xup}- (5.21b)

Thereby, we have completed the construction of &y, «j, = Bi,-
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Reviewing the four cases Case 1.A, Case 1.B, Case 2.A, and Case 2.B of the
construction we see that {%; : i <o} satisfies (R[1)-(R[6).

SELECTING THE SIGNS €. Let eg € {£1}, Q € %, be fixed. We obtain from ([5.3))
and ((5.17)
(e) (e) \ _ (e) 5@
<Tf mi0> - Z aQ|Q| +< Mg m10>

QESB;,
where
mlo Z cQrQ-
QB
By (5.3) we have (hg,rq) =0, Q € %, and consequently
<f7gi)o’ 5220 = ZEQDEQI <th7rQ1>’ (5.22)

where the sum is taken over all Qy, Q1 € %;, with Qo # Q1. Let E. denote the
average over all possible choices of signs g, @ € %;,. Taking expectations we
obtain from ([5.22) that

E.(f) ) ) =0,
This gives us
ETFS) £ )= Y aqlql.
QERB;,
Hence, in view of (5.4, there exists at least one ¢ such that

KT FE = > aql@l = dlIfE)

QEH;,

2 (5.23)

We complete the inductive construction by choosing ¢ according to (5.23)) and define
b, = b5 = 153 (5.24)

m10

Hence, (5.6b)) holds for i = i¢, while (5.19) ensures that (5.6a) holds for i = 4.

ESSENTIAL PROPERTIES OF OUR INDUCTIVE CONSTRUCTION. Since each of the
finite collections {%; : i < ip}, ig € Ny, satisfies B' R@ Remark“asserts that
the infinite collection {%; : i € Ny} satisfies (RI)—(R[6), and hence, by Lemma [£.9]

it satisfies the local product condition (P|1)—(Pd! = =1.
7 together with (£.7) and (PB)

For 1 < u,v <ooand I xJ € Z, Lemma 4.1
gives us the following mixed-norm estimates for b(fx gt

16%) Nl raarey = YT = Bl o, (5.25a)
165 rrarreys = YT Y = s | e ey (5.25b)

The estimates (5.6a)) and (5.6b)) show that the block basis {bz(-e)} almost-diago-
nalizes T in the following precise sense:

(To 6N = 5163, i e N, (5.26)
i—1
STUTH 6 + (T ) < peamT2 e N (5.27)
7=0

PUTTING IT TOGETHER. The basic model of argument presented below can be
traced to the seminal paper of Alspach, Enflo, and Odell [1]]. Since { %« s} satisfies
the local product condition (P[I)—(P{) with constants Cx = Cy = 1, we obtain from

Theorem E the following. First, let ¥ = span{bl(-e) : 1€ No} € HP(HY) and let
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B. : HP(HY9) — Y denote the unique linear extension of B.h; = bl(-e), i € Ng, then
by Theorem

Trp(ray

Hr () D ()
l Ay 1Bl = Al =1, (5.28)
Y Y

where we recall that A, : HP(H‘]) — HP(H?) denotes the operator given by

(e
z-:f Z ”bb” hi7 fE Hp(Hq)'

Secondly, we put
_ b3
(T, b1y
Recall that M., was defined in (4.2) as the linear extension of M, h; = v;h,, i € Ny.
The operator norm of M, is sup;cy, || < 3 by (5.26). Define U : HP(HY) — Y
by U = B.M, A, and note that
v =S LU0 e ), (5.29)
=0 (Tb;7,b;7)
The above estimates for the norms of the operators A., B., and M, yield

1
U= HP(H?) = Y| < [IMy ][I Bell | Aell < 5- (5.30)

1 € Np.

Thirdly, observe that for all g = Z?OO )\-b(-s) €Y, we have the identity

oo i—1 (6) (5 (5) (5)
T\ b)) (b bl
UTg—g= W L) (ASUNED VR M BEAASH (5.31)
22 " )"
Using that ||645 | e ey < 1, j € Ng, we obtain
oo 1—1 (e) (5) (e) 1(e)
T, b;7)| (b7, b))
1UTg = gl < 3D g| ST (5.32)
el RN SO TR (TN ]

Now, we will make the following two observations: The first is that (5.25b|) implies
1641l 0 74y~ < 1, and thus by (5-25a) and (£23), we obtain

1
P q > 2 q b(a) P q)* > b(a) = )\ b(E) > _— )\
gl ey = Mgl e oy 105 [ e oy = [(g: 0570 = [A5]l10;7 112 > (1+\/j)2| il

for all j € Nyg. The second observation is that |< bge),bge)ﬂ > ﬁ, Jj € No,

which is a consequence of (5.26), (5.25a), and (£.25). These two observations yield
the following estimate:

;]
0 o) =
Inserting this estimate into (5.32) and applying m yields

||9||Hp(Hq)(1 +Vi)R(1+/5) J#i.

||UTg—g||Hp<Hq>éfngnmmq)z 14+ i)t zmbe),be’ |+ (T )]

< §||9||Hp(Hq)-
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To see the latter estimate note that >0 (1+V/1)1477 <4377 (1+1)%477 =452 <
8.

Finally, let J : Y — HP(HY) denote the inclusion operator given by Jy = y.
Since we assumed that 0 < n < 1, the operator UT'J is invertible, and its inverse
has norm at most (1 —2)~! < 1+7. Now we define the operator V : HP(H?) — Y
by (UTJ)~'U and observe that

wrJg)—*t
UTJ
g Y v IV < (L +m)/6. (5.33)
X
HP(H) HP(H)
Merging the commutative diagram (5.28) with (5.33) yields
Iyp(ma
HP(HY) —"0 gp(HY)
B. Ay
Y Y

Iy

(urJg)—*
UTJ

Y

T %
\X
HP(HY) HP(HY)
where ||B:|| = ||Ac]l = 1 and || J||||V]| < (1 + 7n)/d, which concludes the proof of
Theorem 3.1 O
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