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Abstract. Given a Banach space X with an unconditional basis, we consider
the following question: does the identity operator on X factor through every
operator on X with large diagonal relative to the unconditional basis? We
show that on Gowers' unconditional Banach space, there exists an operator
for which the answer to the question is negative. By contrast, for any operator
on the mixed-norm Hardy spaces Hp(Hq), where 1 ≤ p, q < ∞, with the
bi-parameter Haar system, this problem always has a positive solution. The
spaces Lp, 1 < p <∞, were treated �rst by Andrew [Studia Math. 1979].

1. Introduction

Let X be a Banach space. A basis for X will always mean a Schauder basis. We
denote by IX the identity operator on X, and write 〈·, ·〉 for the bilinear duality
pairing between X and its dual space X∗. By an operator on X, we understand a
bounded and linear mapping from X into itself.

Suppose that X has a normalized basis (bn)n∈N, and let b∗n ∈ X∗ be the nth

coordinate functional. For an operator T on X, we say that:

. T has large diagonal if infn∈N |〈Tbn, b∗n〉| > 0;

. T is diagonal if 〈Tbm, b∗n〉 = 0 whenever m,n ∈ N are distinct;

. the identity operator on X factors through T if there are operators R and S
on X such that the diagram

X
IX //

R
��

X

X
T
// X

S

OO

is commutative.

Suppose that the basis (bn)n∈N for X is unconditional. Then the diagonal operators
onX correspond precisely to the elements of `∞(N), and so for each operator T onX
with large diagonal, there is a diagonal operator S on X such that 〈STbn, b∗n〉 = 1
for each n ∈ N. This observation naturally leads to the following question.

Question 1.1. Can the identity operator on X be factored through each operator
on X with large diagonal?

In classical Banach spaces such as `p with the unit vector basis and Lp with
the Haar basis, the answer to this question is known to be positive. These are the
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theorems of Peªczy«ski [19] and Andrew [2], respectively; see also Johnson, Maurey,
Schechtman and Tzafriri [10, Chapter 9].

The aim of the present paper is to establish the following two results.

. There exists a Banach space with an unconditional basis for which the
answer to Question 1.1 is negative. This result relies heavily on the deep
work of Gowers [7] and Gowers-Maurey [8].

. Question 1.1 has a positive answer for the mixed-norm Hardy spaceHp(Hq),
where 1 ≤ p, q < ∞, with the bi-parameter Haar system as its uncondi-
tional basis. This conclusion can be viewed as a bi-parameter extension
of Andrew's theorem [2] on the perturbability of the one-parameter Haar
system in Lp.

The precise statements of these results, together with their proofs, are given in
Sections 2 and 3�5, respectively.

Acknowledgements. It is our pleasure to thank Th. Schlumprecht for very in-
formative conversations and for encouraging the collaboration between Lancaster
and Linz. Special thanks are due to J. B. Cooper (Linz) for drawing our attention
to the work of Andrew [2].

2. The answer to Question 1.1 is not always positive

The aim of this section is to establish the following result, which answers Ques-
tion 1.1 in the negative.

Theorem 2.1. There is an operator T on a Banach space X with an unconditional
basis such that T has large diagonal, but the identity operator on X does not factor
through T .

The proof of Theorem 2.1 relies on two ingredients. The �rst of these is Fredholm
theory, which we shall now recall the relevant parts of.

Given an operator T on a Banach space X, we set

α(T ) = dim kerT ∈ N0 ∪ {∞} and β(T ) = dim(X/T (X)) ∈ N0 ∪ {∞},
and we say that:

. T is an upper semi-Fredholm operator if α(T ) <∞ and T has closed range;

. T is a Fredholm operator if α(T ) <∞ and β(T ) <∞.

Note that the condition β(T ) < ∞ implies that T has closed range (see, e.g., [4,
Corollary 3.2.5]), so that each Fredholm operator is automatically upper semi-Fred-
holm. For an upper semi-Fredholm operator T , we de�ne its index by

i(T ) = α(T )− β(T ) ∈ Z ∪ {−∞}.
The main property of the class of upper semi-Fredholm operators that we shall

require is that it is stable under strictly singular perturbations in the following
precise sense. Let T be an upper semi-Fredholm operator on a Banach space X,
and suppose that S is an operator on X which is strictly singular in the sense that,
for each ε > 0, every in�nite-dimensional subspace of X contains a unit vector x
such that ‖Sx‖ 6 ε. Then T + S is an upper semi-Fredholm operator, and

i(T + S) = i(T ).

A proof of this result can be found in [14, Proposition 2.c.10].
We shall require the following piece of notation in the proof of our next lemma.

For an element x of a Banach space X and a functional f ∈ X∗, we write x⊗ f for
the rank-one operator on X de�ned by

(x⊗ f)y = 〈y, f〉x (y ∈ X).
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Lemma 2.2. Let T be a diagonal upper semi-Fredholm operator on a Banach space
with a basis. Then β(T ) = α(T ), so that T is a Fredholm operator with index 0.

Proof. Let X be the Banach space on which T acts, and let (bn)n∈N be the basis
for X with respect to which T is diagonal. Set N = {n ∈ N : Tbn = 0}. Since
T is diagonal, we have kerT = span{bn : n ∈ N}, and so the set N is �nite,
with α(T ) elements. Consequently, we can de�ne a projection of X onto kerT by
PN =

∑
n∈N bn ⊗ b∗n. The fact that kerPN = span{bn : n ∈ N \ N} implies that

T (X) ⊆ kerPN . Conversely, for each n ∈ N \ N , we have bn = T (〈Tbn, b∗n〉−1bn),
so we conclude that kerPN ⊆ T (X) because T has closed range. Hence

β(T ) = dimPN (X) = α(T ) <∞,

and the result follows. �

The other main ingredient in the proof of Theorem 2.1 is the Banach space XG

which Gowers [7] created to solve Banach's hyperplane problem. This Banach
space has subsequently been investigated in more detail by Gowers and Maurey [8,
Section (5.1)]. Its main properties are as follows.

Theorem 2.3 (Gowers [7]; Gowers and Maurey [8]). There is a Banach space XG

with an unconditional basis such that each operator on XG is the sum of a diagonal
operator and a strictly singular operator.

Corollary 2.4. Each upper semi-Fredholm operator on the Banach space XG is a
Fredholm operator of index 0.

Proof. Let T be an upper semi-Fredholm operator on XG. By Theorem 2.3, we
can �nd a diagonal operator D and a strictly singular operator S on XG such
that T = D + S. The stability of the class of upper semi-Fredholm operators
under strictly singular perturbations that we stated above implies that D is an
upper semi-Fredholm operator with the same index as T , and hence the conclusion
follows from Lemma 2.2. �

Proof of Theorem 2.1. Let X = XG be the Banach space from Theorem 2.3, and
let (bn)n∈N be the unconditional basis for XG with respect to which each operator
on XG is the sum of a diagonal operator and a strictly singular operator. We may
suppose that (bn)n∈N is normalized. Set

T = IXG + b1 ⊗ b∗2 + b2 ⊗ b∗1.

Then T has large diagonal because 〈Tbn, b∗n〉 = 1 for each n ∈ N.
Assume towards a contradiction that IXG = STR for some operators R and S

on XG. Then R is injective, and its range is complemented (because RST is a
projection onto it), and it is thus closed, so that R is an upper semi-Fredholm
operator with α(R) = 0. This implies that R is a Fredholm operator of index 0
by Corollary 2.4, and hence R is invertible. Since ST is a left inverse of R, the
uniqueness of the inverse shows that R−1 = ST , but this contradicts that the
operator T is not injective (because T (b1 − b2) = 0). �

As we have seen in the proof of Theorem 2.1, the identity operator need not
factor through a Fredholm operator. If, however, we allow ourselves sums of two
operators, then we can always factor the identity operator, as the following result
shows.

Proposition 2.5. Let T be a Fredholm operator on an in�nite-dimensional Banach
space X. Then there are operators R1, R2, S1, and S2 on X such that

IX = S1TR1 + S2TR2.
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Proof. Let P =
∑n
j=1 xj ⊗ fj be a projection of X onto the kernel of T , where

n ∈ N, x1, . . . , xn ∈ X, and f1, . . . , fn ∈ X∗, and let Q be a projection of X onto
the range of T . Since this range is in�nite-dimensional, we can �nd y1, . . . , yn ∈ X
and g1, . . . , gn ∈ X∗ such that 〈Tyj , gk〉 = δj,k (the Kronecker delta) for each

j, k ∈ {1, . . . , n}. The restriction T̃ : x 7→ Tx, kerP → T (X), is invertible, so we

may de�ne an operator onX by S1 = JT̃−1Q, where J : kerP → X is the inclusion.
Set

R1 = IX − P, R2 =

n∑
j=1

yj ⊗ fj , and S2 =

n∑
k=1

xk ⊗ gk.

Then, for each z ∈ X, we have

(S1TR1 + S2TR2)z = JT̃−1QT (z − Pz) +

n∑
j,k=1

〈Tyj , gk〉〈z, fj〉xk

= (z − Pz) + Pz = z,

from which the conclusion follows. �

3. The answer to Question 1.1 is positive in mixed-norm Hardy spaces

In many classical Banach spaces, the answer to Question 1.1 is known to be positive.
This includes `p, p ≥ 1, and Lp, p > 1, see Peªczy«ski [19] and Andrew [2], respec-
tively. Closely related to this question is the work of Johnson, Maurey, Schechtman
and Tzafriri [10, Chapter 9], in which they specify a criterion for an operator on a
rearrangement invariant function space to be a factor of the identity.

We now turn to de�ning the mixed-norm Hardy spaces together with an uncon-
ditional basis, the bi-parameter Haar system. Let D denote the collection of dyadic
intervals given by

D = {[k2−n, (k + 1)2−n) : n, k ∈ N0, 0 ≤ k ≤ 2n − 1}.
The dyadic intervals are nested, i.e. if I, J ∈ D , then I ∩ J ∈ {I, J, ∅}. For I ∈ D
we let |I| denote the length of the dyadic interval I. Let I ∈ D and I 6= [0, 1), then

Ĩ is the unique dyadic interval satisfying Ĩ ⊃ I and |Ĩ| = 2|I|. Given N0 ∈ N0 we
de�ne

DN0 = {I ∈ D : |I| = 2−N0} and DN0 = {I ∈ D : |I| ≥ 2−N0}.
Let hI be the L∞-normalized Haar function supported on I ∈ D ; that is, for
I = [a, b) and c = (a + b)/2, we have hI(x) = 1 if a ≤ x < c, hI(x) = −1 if
c ≤ x < b, and hI(x) = 0 otherwise. Moreover, let R = {I × J : I, J ∈ D} be the
collection of dyadic rectangles contained in the unit square, and set

hI×J(x, y) = hI(x)hJ(y), (I × J ∈ R, x, y ∈ [0, 1)).

For 1 ≤ p, q <∞, the mixed-norm Hardy space Hp(Hq) is the completion of

span{hI×J : I × J ∈ R}
under the square function norm

‖f‖Hp(Hq) =

(∫ 1

0

(∫ 1

0

(∑
I×J
|aI×J |2h2

I×J(x, y)
)q/2

dy
)p/q

dx

)1/p

, (3.1)

where f =
∑
I×J aI×JhI×J . Then (hI×J)I×J∈R is a 1-unconditional basis ofHp(Hq),

called the bi-parameter Haar system. We begin with the following facts:

. It is recorded by Capon [3] that the identity operator provides an isomor-
phism between Hp(Hq) and Lp(Lq), 1 < p, q <∞.

. Since the bi-parameter Haar system {hI×J : I×J ∈ R} is an unconditional
basis, we do not need to specify an ordering of its index set R.
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. This basis is L∞-normalized and not normalized in Hp(Hq); we have

‖hI×J‖Hp(Hq) = |I|1/p|J |1/q.
An operator T : Hp(Hq) → Hp(Hq) has large diagonal with respect to the L∞-
normalized Haar system {hI×J : I × J ∈ R} if and only if for some δ > 0 we have
that |〈ThI×J , hI×J〉| ≥ δ|I × J | for all I × J ∈ R. The remaining sections of the
paper are devoted to proving the following theorem.

Theorem 3.1. Let 1 ≤ p, q <∞ and δ > 0, and let T : Hp(Hq)→ Hp(Hq) be an
operator satisfying

|〈ThI×J , hI×J〉| ≥ δ|I × J | for all I × J ∈ R.

Then the identity operator on Hp(Hq) factors through T , that is, there are opera-
tors R and S such that the diagram

Hp(Hq)
IHp(Hq)//

R

��

Hp(Hq)

Hp(Hq)
T
// Hp(Hq)

S

OO
(3.2)

is commutative. Moreover, for any η ∈ (0, 1] the operators R and S can be chosen
such that ‖R‖‖S‖ ≤ (1 + η)/δ.

For related, local (�nite dimensional, quantitative) factorization theorems in bi-
parameter H1 and BMO, see [18, 13]. Recently in [11], the second named author
obtained local factorization results in mixed-norm Hardy and BMO spaces by com-
bining methods of the present paper with techniques of [13]. Despite the fact that
the constants in our theorem are independent of p and q, we remark that the passage
to the non-separable limiting spaces (corresponding to p = ∞ or q = ∞) cannot
be deduced routinely from the proof given below. The non-separable space SL∞

consisting of functions with square function in L∞ would be an example of such a
limiting space. Factorization theorems in SL∞ are treated by the second named
author in [12].

The cornerstones upon which the constructions of the operators R,S in Theo-
rem 3.1 rest are embeddings and projections onto a carefully chosen block basis of
the bi-parameter Haar system in mixed-norm Hardy spaces.

4. Capon's local product condition and its consequences

In this section, we treat embeddings and projections in Hp(Hq). They are the main
pillars of the construction underlying the proof of Theorem 3.1. We begin by listing
some elementary and well known facts concerning Hp(Hq) and its dual.

4.1. Basic facts and notation.

Let 1 ≤ p, q < ∞ and let Hp(Hq)∗ denote the dual space of Hp(Hq), identi�ed
as a space of functions on [0, 1)2. Then the duality pairing between Hp(Hq) and
Hp(Hq)∗ is given by

〈f, g〉 =

∫ 1

0

∫ 1

0

f(x, y)g(x, y) dy dx.

Correspondingly, we have

‖g‖Hp(Hq)∗ = sup
‖f‖Hp(Hq)≤1

|〈f, g〉|.

Since hI×J , I × J ∈ R is a 1-unconditional Schauder basis in Hp(Hq), we may
identify an element g ∈ Hp(Hq)∗ with the sequence (〈hI×J , g〉)I×J . In the dual
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space, the norm of (|〈hI×J , g〉|)I×J is equal to the norm of (〈hI×J , g〉)I×J . See [14,
Chapter 1].

If 1 < p, p′, q, q′ < ∞ and 1
p + 1

p′ = 1, 1
q + 1

q′ = 1, it is recorded by Capon [3]

that there is a constant Cp,q such that for any �nite linear combination f of Haar
functions we have

C−1
p,q‖f‖Lp(Lq) ≤ ‖f‖Hp(Hq) ≤ Cp,q‖f‖Lp(Lq).

Consequently, the identity operator provides an isomorphism between Hp(Hq) and

Lp(Lq), and the dual of Hp(Hq) identi�es with Hp′(Hq′). Capon's argument is
based on the observation by Pisier that the UMDp property of a Banach space does
not depend on the value of 1 < p <∞. For a proof of Pisier's observation, we refer
to [15] respectively [20, Chapter 5].

For the limiting cases we have H1(Hq)∗ = BMO(Hq′), Hp(H1)∗ = Hp′(BMO)
and H1(H1)∗ = BMO(BMO). See Maurey [16] and Müller [17].

Let {BR : R ∈ R} be a pairwise disjoint family, where each set BR is a �nite
collection of disjoint dyadic rectangles. Given a vector of scalars β = (βR : R ∈⋃
Q∈R BQ), we de�ne

b
(β)
R (x, y) =

∑
Q∈BR

βQhQ(x, y), x, y ∈ [0, 1) (4.1)

and we call {b(β)
R : R ∈ R} the block basis generated by {BR : R ∈ R} and β =

(βR : R ∈
⋃
Q∈R BQ). Now, let 1 ≤ p, q <∞ be �xed. Note that {b(β)

R : R ∈ R} is
1-unconditional in Hp(Hq) since {hR : R ∈ R} is 1-unconditional in Hp(Hq), i.e.∥∥∥ ∑
R∈R

γRαRb
(β)
R

∥∥∥
Hp(Hq)

≤ sup
R∈R

|γR|
∥∥∥ ∑
R∈R

αRb
(β)
R

∥∥∥
Hp(Hq)

, (γR : R ∈ R) ∈ `∞(R),

whenever the series
∑
R∈R αRb

(β)
R converges. We say that the system {b(β)

R : R ∈ R}
is equivalent to the Haar system {hR : R ∈ R} if the operator Bβ : Hp(Hq) →
Hp(Hq) given by

Bβ(f) =
∑
R∈R

〈f, hR〉
‖hR‖22

b
(β)
R , f ∈ Hp(Hq),

is bounded and an isomorphism onto its range. In this case, whenever C1, C2 > 0
are constants such that

1

C1
‖f‖Hp(Hq) ≤ ‖Bβf‖Hp(Hq) ≤ C2‖f‖Hp(Hq), f ∈ Hp(Hq),

we say that {b(β)
R : R ∈ R} is C1C2-equivalent to {hR : R ∈ R}.

If βR = 1 for each R ∈ R, then we write bR instead of b
(β)
R and B in place of Bβ .

4.2. Uniform weak and weak* limits.

Let Γ denote the closed unit ball of `∞(R), so that Γ consists of all families γ =
(γR : R ∈ R) of scalars with |γR| ≤ 1 for each R ∈ R. Given γ ∈ Γ, the 1-un-
conditionality of the bi-parameter Haar system implies that the de�nition

Mγ : hR 7→ γRhR, R ∈ R (4.2)

extends uniquely to an operator of norm supR |γR| on Hp(Hq).

Lemma 4.1. For m ∈ N, let Xm and Ym be non-empty, �nite families of pairwise
disjoint dyadic intervals, de�ne fm =

∑
I∈Xm, J∈Ym

hI×J , Xm =
⋃

Xm, and Ym =⋃
Ym, and let 1 ≤ p, q <∞. Then:

(i) ‖fm‖Hp(Hq) = |Xm|1/p|Ym|1/q for all m ∈ N;
(ii) ‖fm‖Hp(Hq)∗ = |Xm|1−1/p|Ym|1−1/q for all m ∈ N.
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Suppose in addition that:

. Xm ∩Xn = ∅ or Ym ∩ Yn = ∅ whenever m,n ∈ N are distinct;

. Xm = Xn and Ym = Yn for all m,n ∈ N.
Then:

(iii) the sequence (|Xm|−1/p|Ym|−1/qfm)m∈N in Hp(Hq) is isometrically equivalent
to the unit vector basis of `2;

(iv) for each g ∈ Hp(Hq)∗, supγ∈Γ |〈Mγfm, g〉| → 0 as m→∞;
(v) for each g ∈ Hp(Hq), supγ∈Γ |〈Mγg, fm〉| → 0 as m→∞.

Note that in (i), (iii), and (iv), we regard fm as an element of Hp(Hq), whereas
in (ii) and (v), we regard it as an element of Hp(Hq)∗.

Proof. Set Bm = {I × J : I ∈Xm, J ∈ Ym} for each m ∈ N.
(i). This follows immediately from the de�nition of ‖ · ‖Hp(Hq).
(ii). For any g =

∑
K×L∈Bm

aK×LhK×L ∈ Hp(Hq) we obtain by Hölder's
inequality that

|〈fm, g〉| ≤
∑

K∈Xm

|K|
∑
L∈Ym

|aK×L||L| ≤ |Ym|1−1/q
∑

K∈Xm

|K|
( ∑
L∈Ym

|aK×L|q|L|
)1/q

≤ |Xm|1−1/p|Ym|1−1/q

( ∑
K∈Xm

|K|
( ∑
L∈Ym

|aK×L|q|L|
)p/q)1/p

= |Xm|1−1/p|Ym|1−1/q‖g‖Hp(Hq),

and thus we have proved ‖fm‖Hp(Hq)∗ ≤ |Xm|1−1/p|Ym|1−1/q. For the other in-

equality, recall from (i) that ‖fm‖Hp(Hq) = |Xm|1/p|Ym|1/q, thus

〈fm, fm〉 = |Xm||Ym| = |Xm|1−1/p|Ym|1−1/q‖fm‖Hp(Hq).

(iii). We observe that the �rst of the additional assumptions ensures that Bm ∩
Bn = ∅ whenever m,n ∈ N are distinct. Set X := Xm and Y := Ym for some (and
hence all)m ∈ N, and let (cm)m∈N be a sequence of scalars that vanishes eventually.
Since ∑

R∈Bm

1R(x, y) =
( ∑
I∈Xm

1I(x)
)( ∑

J∈Ym

1J(y)
)

= 1X(x)1Y (y)

for all m ∈ N and x, y ∈ [0, 1), (3.1) implies that∥∥∥∑
m

cmfm

∥∥∥p
Hp(Hq)

=

∫ 1

0

(∫ 1

0

(∑
m

|cm|21X(x)1Y (y)
)q/2

dy

)p/q
dx

=
(∑
m

|cm|2
)p/2
|X| |Y |p/q,

from which the conclusion follows.
(iv). Let g ∈ Hp(Hq)∗ and ε > 0. For each R ∈ R, we can choose a scalar βR

with |βR| = 1 such that βR〈hR, g〉 = |〈hR, g〉|. Set β = (βR) ∈ Γ. By (iii),
the sequence (fm)m∈N converges weakly to 0, so we can �nd m0 ∈ N such that
|〈fm,M∗βg〉| ≤ ε whenever m ≥ m0. Then, for each γ = (γR) ∈ Γ and m ≥ m0 we
have

|〈Mγfm, g〉| =
∣∣∣ ∑
R∈Bm

γR〈hR, g〉
∣∣∣ ≤ ∑

R∈Bm

|〈hR, g〉|

=
∑

R∈Bm

βR〈hR, g〉 = 〈Mβfm, g〉 ≤ ε,

as required.
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Figure 1. For a dyadic rectangle I × J ∈ R, this �gure depicts
BI×J = XI×J ×YI×J (the collection of the dark gray rectangles)
contained in the unit square (the light gray area). Here, XI×J =
{K0,K1,K2}. The dyadic rectangles in Ki × YI×J are connected
by dotted lines.

(v). Given g ∈ Hp(Hq) and ε > 0, we choose a �nite subset F of R such that
‖g − Pg‖Hp(Hq) ≤ ε, where P : Hp(Hq) → Hp(Hq) is the orthogonal projection

given by Pf =
∑
R∈F

〈f,hR〉
|R| hR. Since the sets Bm, m ∈ N, are pairwise disjoint

and F is �nite, we can �nd m0 ∈ N such that
(⋃

m≥m0
Bm

)
∩F = ∅. Then, for

each m ≥ m0 and γ ∈ Γ, we have P ∗fm = 0, and hence

|〈Mγg, fm〉| = |〈Mγg, (I − P )∗fm〉| = |〈Mγ(I − P )g, fm〉|
≤ ‖Mγ‖ ‖g − Pg‖Hp(Hq)‖fm‖Hp(Hq)∗ ≤ ε,

where we have used that Mγ commutes with P , and that

‖fm‖Hp(Hq)∗ = |X|1−1/p|Y |1−1/q ≤ 1

by (ii). �

4.3. Embeddings and projections.

For each R ∈ R let XR,YR ⊂ D denote non-empty, �nite collections of dyadic
intervals that de�ne the collection of dyadic rectangles BR by

BR = {K × L : K ∈XR, L ∈ YR}, R ∈ R. (4.3)

Now (4.1) assumes the following form, if βR = 1 for each R ∈ R:

bR(x, y) =
( ∑
K∈XR

hK(x)
)( ∑

L∈YR

hL(y)
)
, R ∈ R; (4.4)

see Figure 1.
Capon [3] discovered a condition for {BR : R ∈ R} which ensures that the block

basis {bR : R ∈ R} given by (4.4) is equivalent to the Haar system {hR : R ∈
R} in Hp(Hq), whenever 1 < p, q < ∞ (see Theorem 4.2). The local product
condition (P1)�(P4) has its roots in Capon's seminal work [3].

We now introduce some notation. For R ∈ R we set

XR =
⋃
{K : K ∈XR} and YR =

⋃
{L : L ∈ YR}. (4.5)

For each I0 × J0 ∈ R we consider the following unions

XI0 =
⋃
{XI0×J : J ∈ D}, YJ0 =

⋃
{YI×J0 : I ∈ D}. (4.6)
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I

I0 I1

XI×J

XI0×J

XI1×J
K0

K

x

Figure 2. The �gure depicts the collections XI×J , XI0×J ,
XI1×J , with I0 ∪ I1 = I and I0 ∩ I1 = ∅, J ∈ D . Given x ∈ [0, 1),
the dashed vertical line connects the intervals K0 and K with
x ∈ K0 ⊂ K. By (P2) we have XI0 ⊂ XI , and in the �gure (P4)

is realized by
|K ∩XI0 |
|K| =

|XI0 |
|XI | .

Clearly, for all I × J ∈ R the following crucial inclusions hold true:

XI×J ⊂ XI and YI×J ⊂ YJ . (4.7)

We say that {BI×J : I × J ∈ R} given by (4.3) satis�es the local product
condition with constants CX , CY > 0, if the following four properties (P1)�(P4),
to be de�ned below, hold true.

(P1) For all R ∈ R the collection BR consists of pairwise disjoint dyadic rectangles,
and for all R0, R1 ∈ R with R0 6= R1 we have BR0 ∩BR1 = ∅.

(P2) For all I×J, I0×J0, I1×J1 ∈ R with I0∩I1 = ∅, I0 ∪ I1 ⊂ I and J0∩J1 = ∅,
J0 ∪ J1 ⊂ J we have

XI0 ∩XI1 = ∅, XI0 ∪XI1 ⊂ XI ,

YJ0 ∩YJ1 = ∅, YJ0 ∪YJ1 ⊂ YJ .
(P3) For each R = I × J ∈ R, we have

|I| ≤ CX |XR|, |XI | ≤ CX |I|, |J | ≤ CY |YR|, |YJ | ≤ CY |J |.
(P4) For all I0 × J0, I × J ∈ R with I0 × J0 ⊂ I × J and for every K ∈XI×J and

L ∈ YI×J , we have

|K ∩XI0 |
|K|

≥ C−1
X

|XI0 |
|XI |

and
|L∩YJ0 |
|L|

≥ C−1
Y

|YJ0 |
|YJ |

.

See Figure 2 for the collections XR, R ∈ R, and Figure 3 as well as Figure 4 for a
depiction of XR and YR, R ∈ R.

Theorem 4.2 (Capon). Let 1 ≤ p, q < ∞. If the conditions (P1)�(P3) are satis-
�ed, then {bI×J : I × J ∈ R} is C-equivalent to {hI×J : I × J ∈ R} in Hp(Hq),
where C depends only on CX and CY .

We emphasize that p or q may take the value 1 in the above theorem. By a
duality argument, M. Capon [3] showed the equivalence stated in Theorem 4.2
implies that the orthogonal projection P : Hp(Hq)→ Hp(Hq) given by

Pf =
∑

I×J∈R

〈f, bI×J〉
‖bI×J‖22

bI×J (4.8)

is bounded on Hp(Hq), whenever 1 < p, q <∞. We point out that the parameters
p = 1 or q = 1 are both excluded by the duality argument. Indeed, the duality
argument of Capon shows that

‖P : Hp(Hq)→ Hp(Hq)‖ ≤ C(p, q, CX , CY ),
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Figure 3. The dyadic rectangles I × J , I × J0 and I × J1 in R
are such that J0 ∪ J1 = J and J0 ∩ J1 = ∅. This �gure depicts the
collections BI×J = XI×J × YI×J in the top layer, and BI×J0 =
XI×J0 ×YI×J0 and BI×J1 = XI×J1 ×YI×J1 in the bottom layer.
Here, XI×J = XI0×J = XI1×J = {K0,K1,K2}. Each interval in
YI×J is split in two intervals, which are then placed into YI×J0
and YI×J1 , respectively.

where the constants C(p, q, CX , CY ) → ∞ in each of the cases p → 1, p → ∞,
q → 1 or q →∞.

The next theorem is our �rst major step towards proving Theorem 3.1. We show
that the operator P is bounded on Hp(Hq), 1 ≤ p, q <∞ with an upper estimate
for the norm independent of p or q. Speci�cally, Theorem 4.3 includes the cases
p = 1 or q = 1.

Theorem 4.3. Let 1 ≤ p, q <∞, let {BR : R ∈ R} be a pairwise disjoint family
which satis�es the local product condition (P1)�(P4) with constants CX and CY ,
and let β = (βQ : Q ∈

⋃
R∈R BR) be a family of scalars such that

M := sup
Q
|βQ| <∞.

Then the operators Bβ , Aβ : Hp(Hq)→ Hp(Hq) given by

Bβf =
∑
R∈R

〈f, hR〉
‖hR‖22

b
(β)
R and Aβf =

∑
R∈R

〈f, b(β)
R 〉

‖bR‖22
hR

satisfy the estimates

‖Bβf‖Hp(Hq) ≤MC
1/p
X C

1/q
Y ‖f‖Hp(Hq), f ∈ Hp(Hq),

‖Aβf‖Hp(Hq) ≤MC
3+1/p
X C

3+1/q
Y ‖f‖Hp(Hq), f ∈ Hp(Hq).

(4.9)

If we additionally assume that

m := inf
Q
|βQ| > 0,
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Figure 4. In the �gure, XI×Jj = {K0,K1,K2}, 0 ≤ j ≤ 3,
whereas YI×Jj changes with each layer 0 ≤ j ≤ 3. For y0 ∈ [0, 1),
the light red vertical plane connects the lines ` = {(x, y0) : x ∈
[0, 1)} in the four layers depicted in the �gure.

and if we de�ne the vector of scalars γ =
(
γQ : Q ∈

⋃
R∈R BR

)
by βQγQ = 1, then

the diagram

Hp(Hq)
IHp(Hq) //

Bβ %%

Hp(Hq)

Hp(Hq)

Aγ

99
(4.10)

is commutative, and the operator Aγ satis�es the estimate ‖Aγ‖ ≤ m−1C
3+1/p
X C

3+1/q
Y .

Moreover, the composition Pβ,γ = BβAγ is the projection Pβ,γ : Hp(Hq)→ Hp(Hq)
given by

Pβ,γ(f) =
∑
R∈R

〈f, b(γ)
R 〉

‖bR‖22
b
(β)
R .
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Consequently, the range of Bβ is complemented (by Pβ,γ), and Bβ is an isomor-
phism onto its range. Finally, if βQ = γQ = 1 for each Q, then Pβ,γ coincides with
the orthogonal projection P de�ned by (4.8).

Before we proceed with the proof, we record some simple facts.

Lemma 4.4. Let BR = XR × YR ⊂ R, R ∈ R satisfy the conditions (P1)
and (P3). Then

C−1
X C−1

Y |R| ≤ ‖bR‖
2
2 ≤ CXCY |R|, R ∈ R.

Proof. Let R ∈ R be �xed. By condition (P1) and (4.3), the collections XR and
YR each consist of pairwise disjoint dyadic intervals, thus, Lemma 4.1 (i) yields

‖bR‖22 = |XR||YR|.
By (P3) and (4.7) we obtain

C−1
X C−1

Y |R| ≤ |XR||YR| ≤ CXCY |R|. �

Below we use Minkowski's inequality in various function spaces. For ease of
reference, we include it in the form that we need it.

Lemma 4.5. Let (Ω, µ) be a probability space.

(i) Let 1 ≤ r <∞ and let gk ∈ Lr(Ω) be real valued. Then∫
Ω

(∑
k

g2
k

)r/2
dµ ≥

(∑
k

( ∫
Ω

gk dµ
)2)r/2

.

(ii) Let 1 ≤ r, s <∞ and let gk,` ∈ Ls(Ω) be real valued. Then∫
Ω

(∑
k

(∑
`

g2
k,`

)s/2)r/s
dµ ≥

(∑
k

(∑
`

( ∫
Ω

gk,` dµ
)2)s/2)r/s

.

Proof. First, we apply Minkowski's inequality (see e.g. [6, Corollary 5.4.2], [9, The-
orem 202]) to the integral and the sum over `:(∑

k

(∑
`

( ∫
Ω

gk,` dµ
)2)s/2)1/s

≤
(∑

k

(∫
Ω

(∑
`

g2
k,`

)1/2
dµ
)s)1/s

.

Secondly, applying Minkowski's inequality to the integral and the sum over k yields(∑
k

(∫
Ω

(∑
`

g2
k,`

)1/2
dµ
)s)1/s

≤
∫

Ω

(∑
k

(∑
`

g2
k,`

)s/2)1/s

dµ.

Finally, we obtain (ii) by Hölder's inequality.
The assertion (i) follows from (ii) by putting s = 2. �

Lemma 4.6. Assume that (ZI : I ∈ D) satis�es the following condition: For all
I, I0, I1 ∈ D with I0 ∩ I1 = ∅, I0 ∪ I1 ⊂ I we have that

ZI0 ∩ZI1 = ∅ and ZI0 ∪ZI1 ⊂ ZI .
Let 0 < r <∞, N0 ∈ N and cI ≥ 0 and de�ne

f(z) =
( ∑
I∈DN0

cI1ZI (z)
)r
.

Then

c̃I =
(∑
E⊃I

cE

)r
−
(∑
E)I

cE

)r
satis�es c̃I ≥ 0 and we obtain the identity

f(z) =
∑

I∈DN0

c̃I1ZI (z).
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Proof. Observe that by telescoping and the tree structure of the sets (ZI : I ∈ D)
we have that ( ∑

I∈DN0

cI1ZI (z)
)r

=
∑

I∈DN0

c̃I1ZI (z).

The fact that c̃I ≥ 0 is self-evident. �

Proof of Theorem 4.3. The proof will be split into three parts. In the �rst part, we
will give the estimate for Bβ , and in the second part, we will establish the estimate
for Aβ .

Part 1: The estimate for Bβ. We emphasize that our proof of the estimate for
Bβ only uses the conditions (P1)�(P3); speci�cally, we do not use (P4).

For N0 ∈ N we de�ne the collections of indices

RN0
= {I0 × J0 ∈ R : I0, J0 ∈ DN0

} (4.11a)

and

RN0 = {I0 × J0 ∈ R : I0, J0 ∈ DN0}. (4.11b)

Let us assume that

f =
∑

R∈RN0

aRhR.

Then by (P1) and (4.3) we �nd that

‖Bβf‖pHp(Hq) =

∫ 1

0

(∫ 1

0

( ∑
R∈RN0

|aR|2
∑
Q∈BR

|βQ|21Q(x, y)
)q/2

dy

)p/q
dx.

Recall that |βI×J | ≤ M and that by (4.7) 1XI×J (x)1YI×J (y) ≤ 1XI (x)1YJ (y), so
we note

‖Bβf‖pHp(Hq) ≤M
p

∫ 1

0

(∫ 1

0

( ∑
I×J∈RN0

|aI×J |21XI (x)1YJ (y)
)q/2

dy

)p/q
dx.

(4.12)
If we de�ne cJ(x) =

∑
I∈DN0 |aI×J |21XI (x), (4.12) reads

‖Bβf‖pHp(Hq) ≤M
p

∫ 1

0

(∫ 1

0

( ∑
J∈DN0

cJ(x)1YJ (y)
)q/2

dy

)p/q
dx. (4.13)

Lemma 4.6 yields the following identity for the inner integrand of (4.13):( ∑
J∈DN0

cJ(x)1YJ (y)
)q/2

=
∑

J∈DN0

c̃J(x)1YJ (y), (4.14)

where c̃J(x) =
(∑

J1⊃J cJ1(x)
)q/2 − (∑J1)J cJ1(x)

)q/2 ≥ 0. Integrating (4.14)

with respect to y and using that |YJ | ≤ CY |J | by (P3), we have∫ 1

0

( ∑
J∈DN0

cJ(x)1YJ (y)
)q/2

dy ≤ CY
∑

J∈DN0

c̃J(x)|J |.

Combining the latter estimate with (4.13) yields

‖Bβf‖pHp(Hq) ≤M
pC

p/q
Y

∫ 1

0

( ∑
J∈DN0

c̃J(x)|J |
)p/q

dx. (4.15)
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It remains to estimate
∫ 1

0

(∑
J∈DN0 c̃J(x)|J |

)p/q
dx from above by a constant mul-

tiple of ‖f‖pHp(Hq). Note that( ∑
J1⊃J

cJ1(x)
)q/2

=
( ∑
I∈DN0

dI,J1XI (x)
)q/2

, where dI,J =
∑
J1⊃J

|aI×J1 |2,

( ∑
J1)J

cJ1(x)
)q/2

=
( ∑
I∈DN0

eI,J1XI (x)
)q/2

, where eI,J =
∑
J1)J

|aI×J1 |2,

and that c̃J(x) was de�ned as the di�erence between the two quantities, above. By
Lemma 4.6, we obtain( ∑

I∈DN0

dI,J1XI (x)
)q/2

=
∑

I∈DN0

d̃I,J1XI (x),

( ∑
I∈DN0

eI,J1XI (x)
)q/2

=
∑

I∈DN0

ẽI,J1XI (x),

where

d̃I,J =
( ∑
I1⊃I

dI1,J

)q/2
−
( ∑
I1)I

dI1,J

)q/2
≥ 0,

ẽI,J =
( ∑
I1⊃I

eI1,J

)q/2
−
( ∑
I1)I

eI1,J

)q/2
≥ 0.

Summing up, in between (4.15) and here, we have shown that

‖Bβf‖pHp(Hq) ≤M
pC

p/q
Y

∫ 1

0

( ∑
I∈DN0

fI1XI (x)
)p/q

dx, (4.16)

where fI =
∑
J∈DN0 |J |(d̃I,J − ẽI,J).

It is important to show that fI ≥ 0, for all I ∈ DN0 . To this end, note the
identity

d̃I,J − ẽI,J =
( ∑
I1⊃I
J1⊃J

|aI1×J1 |2
)q/2

−
( ∑
I1)I
J1⊃J

|aI1×J1 |2
)q/2

−
( ∑
I1⊃I
J1)J

|aI1×J1 |2
)q/2

+
( ∑
I1)I
J1)J

|aI1×J1 |2
)q/2

.

Let J0 ∈ DN0
, then grouping together the �rst with the third term as well as the

second with the fourth, and summing the latter identity over J ⊃ J0 yields∑
J⊃J0

d̃I,J − ẽI,J =
( ∑
I1⊃I
J1⊃J0

|aI1×J1 |2
)q/2

−
( ∑
I1)I
J1⊃J0

|aI1×J1 |2
)q/2

≥ 0.

Since we have

fI =
∑

J0∈DN0

|J0|
∑
J⊃J0

(d̃I,J − ẽI,J),

we showed that fI ≥ 0.
A �nal application of Lemma 4.6 gives∫ 1

0

( ∑
I∈DN0

fI1XI (x)
)p/q

dx =

∫ 1

0

∑
I∈DN0

f̃I1XI (x) dx =
∑

I∈DN0

f̃I |XI |,
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where f̃I =
(∑

I1⊃I fI
)p/q − (∑I1)I fI

)p/q ≥ 0. Using (P3) in the above identity

and combining it with (4.16) yields

‖Bβf‖pHp(Hq) ≤ CXM
pC

p/q
Y

∑
I∈DN0

f̃I |I|.

Finally, we remark that

‖f‖pHp(Hq) =
∑

I∈DN0

f̃I |I|.

To see this, it su�ces to apply Lemma 4.6 as above.

Part 2: The estimate for Aβ. Let N0 ∈ N, and de�ne the collections of building
blocks BN0

and BN0 by

BN0
= {K0 × L0 ∈ BI0×J0 : I0 × J0 ∈ RN0

}
and

BN0 = {K × L ∈ BI×J : I × J ∈ RN0},
where RN0 and RN0 are de�ned in (4.11). Taking into account that the bi-
parameter Haar system is a 1-unconditional basis of Hp(Hq), it su�ces to consider
only those f that can be written as follows:

f =
∑

K×L∈BN0

aK×LhK×L.

We will now estimate ‖Aβf‖pHp(Hq). To this end, note that by the de�nitions of

Aβ and the norm in Hp(Hq) we have

‖Aβf‖pHp(Hq) =

∫ 1

0

(∫ 1

0

( ∑
R∈RN0

|〈f, b(β)
R 〉|2

‖bR‖42
1R(x, y)

)q/2
dy

)p/q
dx.

Since DN0 is a partition of the unit interval, we obtain that

‖Aβf‖pHp(Hq) =
∑

I0∈DN0

∫
I0

( ∑
J0∈DN0

∫
J0

( ∑
R∈RN0

|〈f, b(β)
R 〉|2

‖bR‖42
1R(x, y)

)q/2
dy

)p/q
dx.

Recall that |βQ| ≤ M , note that for I0, J0 ∈ DN0 and R ∈ RN0 as in the above
sums, 1R(x, y) = 1 exactly when R ⊃ I0 × J0, and apply Lemma 4.4 to obtain

‖Aβf‖pHp(Hq)

≤MpCpXC
p
Y

∑
I0∈DN0

|I0|
( ∑
J0∈DN0

|J0|
( ∑

R∈RN0

R⊃I0×J0

( ∑
Q∈BR

|aQ||Q|
|R|

)2)q/2)p/q
. (4.17)

We continue by proving a lower bound for ‖f‖pHp(Hq). Set

wR =
∑
Q∈BR

|aQ|hQ, R ∈ RN0 ,

and observe that by (P1) we have

‖f‖pHp(Hq) =

∫ 1

0

(∫ 1

0

( ∑
R∈RN0

w2
R(x, y)

)q/2
dy

)p/q
dx.

By (P2) the collections {XI0 : I0 ∈ DN0
} and {YJ0 : J0 ∈ DN0

} are each pairwise
disjoint, thus we obtain

‖f‖pHp(Hq) ≥
∑

I0∈DN0

∫
XI0

( ∑
J0∈DN0

|YJ0 |
∫
YJ0

( ∑
R∈RN0

w2
R(x, y)

)q/2 dy

|YJ0 |

)p/q
dx.
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For �xed I0, J0 ∈ DN0
, x ∈ XI0 , y ∈ YJ0 and R ∈ RN0 , we have by (4.7) and (P2)

that wR(x, y) 6= 0 implies R ⊃ I0 × J0, so we obtain from the latter estimate

together with (P3) the following lower estimate for C
p/q
Y ‖f‖

p
Hp(Hq):

∑
I0∈DN0

∫
XI0

( ∑
J0∈DN0

|J0|
∫
YJ0

( ∑
R⊃I0×J0

w2
R(x, y)

)q/2 dy

|YJ0 |

)p/q
dx. (4.18)

With I0, J0 ∈ DN0
�xed, we now prepare for the application of Lemma 4.5 to the

inner integral of the above estimate. We use the following speci�cation. We put
Ω = YJ0 , dµ = dy

|YJ0 |
, and r = q. In view of (i) of Lemma 4.5 we obtain that∫

YJ0

( ∑
R⊃I0×J0

w2
R(x, y)

)q/2 dy

|YJ0 |
≥
( ∑
R⊃I0×J0

(∫
YJ0

|wR(x, y)| dy

|YJ0 |

)2)q/2
.

(4.19)
By (P1) we have |wR(x, y)| =

∑
K×L∈BR

|aK×L|1K(x)1L(y), hence by (P4) and (P3)∫
YJ0

|wR(x, y)| dy

|YJ0 |
=

∑
K×L∈BR

|aK×L|
|L∩YJ0 |
|YJ0 |

1K(x)

≥ C−2
Y

∑
K×L∈BR

|aK×L|
|L|
|J |

1K(x)

for all R ∈ RN0 with R = I×J ⊃ I0×J0. Combining the latter estimate with (4.19)

and (4.18) we obtain the following lower estimate for C
2p+p/q
Y ‖f‖pHp(Hq):

∑
I0∈DN0

|XI0 |
∫
XI0

( ∑
J0∈DN0

|J0|
( ∑
R⊃I0×J0

v2
R(x)

)q/2)p/q dx

|XI0 |
, (4.20)

where we put vR(x) =
∑
K×L∈BR

|aK×L||L|
|J| 1K(x), if R = I × J . With I0 ∈ DN0

�xed, we now prepare for the application of Lemma 4.5 to obtain a lower bound
for the following term:∫

XI0

( ∑
J0∈DN0

|J0|
( ∑
R⊃I0×J0

v2
R(x)

)q/2)p/q dx

|XI0 |
. (4.21)

To this end, we use the following speci�cation. We put Ω = XI0 , dµ = dx
|XI0 |

, and

r = p, s = q. Invoking (ii) of Lemma 4.5, we �nd that (4.21) is bounded from below
by ( ∑

J0∈DN0

|J0|
( ∑
R⊃I0×J0

(∫
XI0

vR(x)
dx

|XI0 |

)2)q/2)p/q
. (4.22)

Recall that we de�ned vR(x) =
∑
K×L∈BR

|aK×L||L|
|J| 1K(x), if R = I × J . By (P4)

and (P3) we estimate∫
XI0

vR(x)
dx

|XI0 |
=

∑
K×L∈BR

|aK×L||L|
|J |

|K ∩XI0 |
|XI0 |

≥ C−2
X

∑
Q∈BR

|aQ||Q|
|R|
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for all R = I × J ∈ RN0 with R ⊃ I0 × J0. Combining the latter estimate

with (4.22), (4.21), and (4.20), we obtain the following lower estimate for C2p
X C

2p+p/q
Y ‖f‖pHp(Hq):∑

I0∈DN0

|XI0 |
( ∑
J0∈DN0

|J0|
( ∑
R⊃I0×J0

( ∑
Q∈BR

|aQ||Q|
|R|

)2)q/2)p/q
.

Finally, by (P3) the latter estimate yields

C2p+1
X C

2p+p/q
Y ‖f‖pHp(Hq) ≥∑

I0∈DN0

|I0|
( ∑
J0∈DN0

|J0|
( ∑
R⊃I0×J0

( ∑
Q∈BR

|aQ||Q|
|R|

)2)q/2)p/q
.

(4.23)

Direct comparison with (4.17) gives

‖Aβf‖Hp(Hq) ≤MC
3+1/p
X C

3+1/q
Y ‖f‖Hp(Hq).

Part 3: Conclusion of the proof. If additionally, we assume that m :=

infQ |βQ| > 0, Part 2 implies that Aγ is bounded by m−1C
3+1/p
X C

3+1/q
Y . The

commutativity of the diagram (4.10) follows from the fact that βQγQ = 1. �

4.4. A linear order on RRR and Capon's local product condition.

In Section 5, we will iteratively construct collections of dyadic rectangles BR ⊂ R,
R ∈ R satisfying Capon's local product condition. This will be accomplished
by organizing the dyadic rectangles according to the linear order C de�ned in
the present section, below. The other purpose of this section is to introduce the
auxiliary condition (R1)�(R6) and to show that it implies Capon's local product
condition (P1)�(P4).

First, we de�ne the bijective function ON2
0

: N2
0 → N0 by

ON2
0
(m,n) =

{
n2 +m, if m < n,

m2 +m+ n, if m ≥ n.

To see that ON2
0
is bijective consider that for each k ∈ N:

. ON2
0
(0, 0) = 0,

. m 7→ ON2
0
(m, k) maps {0, . . . , k − 1} bijectively onto {k2, . . . , k2 + k − 1}

and preserves the natural order on N0,
. ON2

0
(k, 0) = ON2

0
(k − 1, k) + 1,

. n 7→ ON2
0
(k, n) maps {0, . . . , k} bijectively onto {k2 + k, . . . , k2 + 2k} and

preserves the natural order on N0,
. ON2

0
(0, k + 1) = ON2

0
(k, k) + 1.

See Figure 5 for a depiction of ON2
0
.

Now, let <` denote the lexicographic order on R3. For two dyadic rectangles
Ik × Jk ∈ R with |Ik| = 2−mk , |Jk| = 2−nk , k = 0, 1, we de�ne I0 × J0C I1 × J1 if
and only if (

ON2
0
(m0, n0), inf I0, inf J0

)
<`
(
ON2

0
(m1, n1), inf I1, inf J1

)
.

Associated to the linear ordering C is the bijective index function OC : R → N0

de�ned by

OC (R0) < OC (R1)⇔ R0C R1, R0, R1 ∈ R.

The geometry of a dyadic rectangle is linked to its index by the estimate

(2k − 1)2 ≤ OC (I × J) < (2k+1 − 1)2, whenever min(|I|, |J |) = 2−k, (4.24)
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Figure 5. This �gure depicts the order of the �rst 16 pairs in N2
0

with respect to the map ON2
0
.
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Figure 6. The �rst 49 rectangles and their indices OC .

and hence,
1

(1 +
√
i)2
≤ |I| |J |, i = OC (I × J). (4.25)

The index of a dyadic rectangle and its predecessors are related by

Ĩ × J C I × J, for I 6= [0, 1) and I × J̃ C I × J, for J 6= [0, 1), (4.26)

where we recall that for I 6= [0, 1), Ĩ is the unique dyadic interval satisfying Ĩ ⊃ I

and |Ĩ| = 2|I|. See Figure 6 for a picture of OC .
For a dyadic interval I, we write I` and Ir for the dyadic intervals which are

the left and right halves of I, respectively. In the following de�nition, we use the
notation introduced in (4.5), so that for a collection XR (respectively, YR) of dyadic
intervals, XR (respectively, YR) denotes its union.
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De�nition 4.7. Let A = R or A = {R ∈ R : RE R0} for some R0 ∈ R. We
say that {BR : R ∈ A } satis�es the auxiliary condition (R1)�(R6) if the following
properties hold true.

(R1) For each R ∈ A , there are non-negative integers µ(R), ν(R) and non-empty
sets XR ⊂ Dµ(R) and YR ⊂ Dν(R) such that BR = {K × L : K ∈ XR, L ∈
YR}.

(R2) µ([0, 1)×[0, 1)) = ν([0, 1)×[0, 1)) = 0 and X[0,1)×[0,1) = Y[0,1)×[0,1) = {[0, 1)}.
(R3) For each I ∈ D \ {[0, 1)} with R = I × [0, 1) ∈ A

XI×[0,1) =

{⋃
{K` : K ∈ Dκ(R), K ⊂ XĨ×[0,1)} if I = Ĩ`,⋃
{Kr : K ∈ Dκ(R), K ⊂ XĨ×[0,1)} if I = Ĩr,

where κ(R) = max{µ(S) : SC [0, |I|)× [0, 1)};
(R4) If R = I × J ∈ A with |I| < |J |, then

µ(R) > max{µ(S) : SC R},

XR = XI×[0,1), and YR = YI′×J , where I ′ ∈ D is the unique dyadic interval
such that I ′ ⊃ I and |I ′| = |J |.

(R5) For J ∈ D \ {[0, 1)} with R = [0, 1)× J ∈ A

Y[0,1)×J =

{⋃
{L` : L ∈ Dλ(R), L ⊂ Y[0,1)×J̃} if J = J̃`,⋃
{Lr : L ∈ Dλ(R), L ⊂ Y[0,1)×J̃} if J = J̃r,

where λ(R) = max{ν(S) : SC [0, 1)× [0, |J |)}.
(R6) If R = I × J ∈ A \ {[0, 1)× [0, 1)} with |I| ≥ |J |, then

ν(R) > max{ν(S) : SC R},

YR = Y[0,1)×J , and XR = XI×J′ , where J ′ ∈ D is the unique dyadic interval
such that J ′ ⊃ J and |J ′| = 2|I| if I 6= [0, 1), and J ′ = [0, 1) if I = [0, 1).

Remark 4.8. Let {BR : R ∈ R} be a collection such that each of the �nite sub-
collections {BR : RE R0}, R0 ∈ R, satis�es the auxiliary condition (R1)�(R6).
Then it is easy to see that {BR : R ∈ R} itself satis�es the auxiliary condition
(R1)�(R6).

Lemma 4.9. Let {BR : R ∈ R} satisfy the auxiliary condition (R1)�(R6). Then
{BR : R ∈ R} satis�es the local product condition (P1)�(P4) with constants CX =
CY = 1.

Proof. The usual linear order ≺ on dyadic intervals is given by I1 ≺ I0 if and only
if either |I1| > |I0| or |I1| = |I0| and min I1 < min I0. The proof uses induction
with respect to the linear orders ≺ and C .

Verification of (P1). For each R ∈ R, XR consists of pairwise disjoint intervals
because XR is contained in Dµ(R). Similarly, YR ⊂ Dν(R) and consists of pairwise
disjoint intervals, and therefore the rectangles in BR are pairwise disjoint.

Now suppose that R0, R1 ∈ R are distinct. By relabelling them if necessary, we
may suppose that R1C R0, where R0 = I0 × J0 6= [0, 1) × [0, 1). To establish the
disjointness of BR0 and BR1 , we must show that either XR0 and XR1 are disjoint
or YR0 and YR1 are disjoint. If |I0| < |J0|, then (R4) implies that µ(R0) > µ(R1),
so that XR0

∩XR1
⊂ Dµ(R0) ∩Dµ(R1) = ∅. Otherwise |I0| ≥ |J0|, in which case a

similar argument based on (R6) shows that YR0 ∩ YR1 = ∅.
Verification of (P2). We begin by observing that (R4) and (R6) imply that
the sets XR, YR, XI , and YJ de�ned in (4.5)�(4.6) are given by

XR = XI×[0,1) = XI and YR = Y[0,1)×J = YJ , R = I × J ∈ R. (4.27)
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Since the order ≺ is linear, and the set D is countable and has a minimum el-
ement [0, 1) with respect to ≺, we may use induction on I0 ∈ D to prove the
following two statements:

(a) XI0×[0,1) ∩ XI1×[0,1) = ∅ and Y[0,1)×I0 ∩ Y[0,1)×I1 = ∅ for each I1 ∈ D with
I1 ≺ I0 and I0 ∩ I1 = ∅;

(b) XI0×[0,1) ⊂ XI1×[0,1) and Y[0,1)×I0 ⊂ Y[0,1)×I1 for each I1 ∈ D with I0 ⊂ I1.
The statements (a) and (b) above together with (4.27) imply (P2). The start of the
induction is easy. Indeed, suppose that I0 = [0, 1). Then no I1 satis�es I1 ≺ [0, 1),
so that (a) is vacuous, while (b) holds trivially because I1 = [0, 1) is the only dyadic
interval which contains [0, 1).

Now let I0 ∈ D \ {[0, 1)}, and assume inductively that (a)�(b) have been estab-
lished for each I ′0 ≺ I0 (that is, (a)�(b) hold whenever I0 is replaced with I ′0). We
shall prove the statements concerning XI0×[0,1); the proofs for Y[0,1)×I0 are similar,
requiring only minor adjustments of the notation.

To verify (a), suppose that I1 ∈ D satis�es I1 ≺ I0 and I0 ∩ I1 = ∅. Then either

I1 ∩ Ĩ0 = ∅, or I1 = (Ĩ0)` and I0 = (Ĩ0)r. (Note that because I1 ≺ I0, we cannot

have I1 = (Ĩ0)r and I0 = (Ĩ0)`.) In the �rst case, since I1 ≺ I0 and Ĩ0 ≺ I0, the
induction hypothesis implies that XĨ0×[0,1) ∩XI1×[0,1) = ∅, from which the result

follows because XI0×[0,1) ⊂ XĨ0×[0,1) by (R3).

In the second case, we observe that Ĩ0 = Ĩ1 and |I0| = |I1|, so that κ(I0×[0, 1)) =
κ(I1×[0, 1)). This implies thatXI0×[0,1) andXI1×[0,1) are disjoint becauseXI0×[0,1)

is the disjoint union of the right halves of the intervals K ∈ Dκ(I0×[0,1)) with
K ⊂ XĨ0×[0,1), while XI1×[0,1) is the disjoint union of the left halves of the same

intervals.
Next, to prove (b), suppose that I1 ∈ D with I0 ⊂ I1. The inclusion is obvious

if I0 = I1, so we may suppose that I0 ( I1. Then we have Ĩ0 ⊂ I1, so the induction
hypothesis implies that XĨ0×[0,1) ⊂ XI1×[0,1). Hence the statement follows from

the fact that XI0×[0,1) ⊂ XĨ0×[0,1).

Verification of (P3). The proofs of (P3) and (P4) both rely on the following
two identities:

|K ∩XI×[0,1)| =
|K ∩XĨ×[0,1)|

2
and |L∩ Y[0,1)×J | =

|L ∩ Y[0,1)×J̃ |
2

, (4.28)

valid for I, J ∈ D \ {[0, 1)}, K ∈ Dκ(I×[0,1)), and L ∈ Dλ([0,1)×J).
We shall establish the �rst of these identities; again, the proof of the other

requires only notational changes. For I ∈ D \ {[0, 1)} and K ∈ Dκ(I×[0,1)), set
VI(K) = {K0 ∈ Dκ(I×[0,1)) : K0 ⊂ K ∩XĨ×[0,1)}. We claim that

K∩XĨ×[0,1) =
⋃

VI(K) and K∩XI×[0,1) =

{⋃
{K`

0 : K0 ∈ VI(K)} if I = Ĩ`⋃
{Kr

0 : K0 ∈ VI(K)} if I = Ĩr.

(4.29)
Indeed, the inclusion

⋃
VI(K) ⊂ K ∩XĨ×[0,1) is clear from the de�nition of VI(K).

Conversely, for each x ∈ K ∩ XĨ×[0,1), there is a (necessarily unique) interval

K0 ∈ XĨ×[0,1) such that x ∈ K0. We have µ(Ĩ × [0, 1)) ≤ κ(I × [0, 1)) because

Ĩ × [0, 1)C [0, |I|)× [0, 1), so we can �nd K1 ∈ Dκ(I×[0,1)) such that x ∈ K1 ⊂ K0.
The sets K1 and K are not disjoint as they both contain x; combined with the fact
that |K1| ≤ |K|, this shows that K1 ⊂ K. Moreover, we have K1 ⊂ K0 ⊂ XĨ×[0,1),

so that K1 ∈ VI(K), and hence x ∈ K1 ⊂
⋃

VI(K).
Moving on to the second part of (4.29), we obtain the inclusion ⊃ directly from

the de�nition of VI(K) and (R3). Conversely, suppose that x ∈ K ∩ XI×[0,1), so
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that x ∈ K and either x ∈ K`
0 or x ∈ Kr

0 (depending on whether I = (Ĩ)` or

I = (Ĩ)r) for some K0 ∈ Dκ(I×[0,1)) with K0 ⊂ XĨ×[0,1). In both cases, we see that

K ∩K0 6= ∅ and |K0| ≤ |K|, so that K0 ⊂ K, and hence K0 ∈ VI(K), from which
the inclusion follows.

The �rst equation in (4.28) is immediate from (4.29) because VI(K) consists of
disjoint sets and |K`

0| = |Kr
0 | = |K0|/2.

We can now easily establish (P3) with CX = CY = 1. By (4.27), we must show
that

|XI×[0,1)| = |I| and |Y[0,1)×I | = |I|, I ∈ D . (4.30)

We do so by induction on I. The start of the induction, where I = [0, 1), follows
immediately from the fact that X[0,1)×[0,1) = Y[0,1)×[0,1) = [0, 1) by (R2).

Now let I ∈ D \ {[0, 1)}, and assume inductively that the result is true for each
I ′ ≺ I. Using (4.28) withK = L = [0, 1), we obtain that |XI×[0,1)| = |XĨ×[0,1)|/2 =

|Ĩ|/2 = |I| because Ĩ ≺ I and likewise |Y[0,1)×I | = |I|.
Verification of (P4). We shall prove that, for each R0 = I0×J0 and R = I×J
in R with R0 ⊂ R,

|K ∩XI0×[0,1)|
|I0|

=
|K|
|I|

and
|L ∩ Y[0,1)×J0 |

|J0|
=
|L|
|J |

, K ∈XR, L ∈ YR.

(4.31)
By (4.27) and (4.30), this will verify (P4) with CX = CY = 1.

The proof of (4.31) is by induction on R0. The start of the induction is trivial
because the only R ∈ R that contains R0 = [0, 1)× [0, 1) is R0 itself.

Now let R0 ∈ R \ {[0, 1) × [0, 1)}, and assume inductively that (4.31) has been
veri�ed for each R′0C R0. This time, we shall focus on the proof of the second
identity in (4.31); the proof of the �rst identity is similar, but formally slightly easier
due to the lack of symmetry between conditions (R4) and (R6): when |I| = |J |, we
re-use an existing set as XR and de�ne a new set YR.

Suppose that R = I × J ∈ R with R0 ⊂ R, and let L ∈ YR. If J0 = J , then
L ⊂ Y[0,1)×J0 , and the identity is immediate. Hence we may suppose that J0 ( J .
Moreover, we may suppose that |I| ≥ |J |. Indeed, if not, then by (R4) YR = YI′×J ,
where I ′ ∈ D satis�es I ′ ⊃ I and |I ′| = |J |, so that we may replace I with I ′ to
obtain that |I| ≥ |J |.

Then we have |J0| < |J | = min{|I|, |J |}, so that RC [0, 1)× [0, |J0|), and hence
λ([0, 1)×J0) ≥ ν(R); thus L ∈ YR ⊂ Dν(R) ⊂ Dλ([0,1)×J0), so that (4.28) shows that

|L∩Y[0,1)×J0 | = |L∩Y[0,1)×J̃0 |/2. Now R′0 = I0× J̃0 satis�es R′0C R0 and R′0 ⊂ R,
and therefore the induction hypothesis implies that |L ∩ Y[0,1)×J̃0 |/|J̃0| = |L|/|J |.
Hence the conclusion follows because |J̃0| = 2|J0|. �

Having obtained Theorem 4.3 and Lemma 4.9, we are �nally prepared to prove
Theorem 3.1.

5. Proof of Theorem 3.1

Here, we prove that the identity operator on Hp(Hq) factors through any operator
T : Hp(Hq) → Hp(Hq) having large diagonal with respect to the bi-parameter
Haar system (see Theorem 3.1). The basic pattern of our argument below is the
following: we carefully construct {BR : R ∈ R} satisfying the auxiliary condition
(R1)�(R6) (see Section 4). Moreover, these collections are chosen in such a way
that we are able to �nd signs εQ ∈ {±1}, Q ∈

⋃
R∈R BR, for which the block basis

b
(ε)
R =

∑
Q∈BR

εQhQ, R ∈ R has the following properties: |〈Tb(ε)R1
, b

(ε)
R2
〉| is small in
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the precise sense of (5.6a) below whenever R1, R2 ∈ R are distinct, and

|〈Tb(ε)R , b
(ε)
R 〉| ≥ δ‖b

(ε)
R ‖

2
2, R ∈ R.

Thereafter we apply the two main results of the preceding section, Theorem 4.3
and Lemma 4.9, and �nally we construct a factorization of the identity operator
through T .

Proof of Theorem 3.1. Let 1 ≤ p, q <∞ and δ > 0, and let T : Hp(Hq)→ Hp(Hq)
be an operator such that

|〈ThR, hR〉| ≥ δ|R|, R ∈ R. (5.1)

We de�ne γ = (γR : R ∈ R) by

γR =
〈ThR, hR〉
|〈ThR, hR〉|

, R ∈ R.

Recall that in (4.2) we de�ned the Haar multiplier Mγ which satis�es ‖Mγ‖ = 1,
and 〈(TMγ)hR, hR〉 ≥ δ|R|. Thereby, replacing T with TMγ , it su�ces to consider
the special case where

〈ThR, hR〉 ≥ δ|R|, R ∈ R. (5.2)

Overview. Let 0 < η ≤ 1. The main part of the proof consists of choosing
collections of dyadic rectangles BR, R ∈ R and suitable signs ε = (εQ) such that

b
(ε)
R =

∑
Q∈BR

εQhQ satis�es the following:

. The closed linear span of {b(ε)R : R ∈ R} is complemented and isomorphic
to Hp(Hq).

. There is an operator U : Hp(Hq)→ Hp(Hq) given by

U(f) =
∑
R∈R

〈f, b(ε)R 〉
〈Tb(ε)R , b

(ε)
R 〉

b
(ε)
R .

. For every �nite linear combination g =
∑
R∈R λRb

(ε)
R we have

‖UTg − g‖Hp(Hq) ≤
η

2
‖g‖Hp(Hq).

Preparation. Given R = I × J ∈ R we write

ThR = αRhR + rR, (5.3a)

where

αR =
〈ThR, hR〉
|R|

and rR =
∑
S 6=R

〈ThR, hS〉
|S|

hS . (5.3b)

We note the estimates

δ ≤ αR ≤ ‖T‖ and ‖rR‖Hp(Hq) ≤ 2‖T‖|I|1/p|J |1/q. (5.4)

Inductive construction of b
(ε)
R . We will now inductively de�ne the block basis

{b(ε)R : R ∈ R}. For �xed R ∈ R, the block basis element b
(ε)
R is determined by a

collection of dyadic rectangles BR ⊂ R and a suitable choice of signs ε = (εQ) and
is of the following form:

b
(ε)
R =

∑
Q∈BR

εQhQ. (5.5)

From now on, we systematically use the following rule: whenever OC (R) = i we
set

Bi = BR, b
(ε)
i = b

(ε)
R , hi = hR.
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We will construct collections {Bi : i ∈ N0} satisfying the auxiliary condition (R1)�
(R6) and choose signs ε = (εQ) such that

i−1∑
j=0

|〈Tb(ε)j , b
(ε)
i 〉|+ |〈b

(ε)
i , T ∗b(ε)j 〉| ≤ ηδ4

−i−2, i ∈ N, (5.6a)

|〈Tb(ε)i , b
(ε)
i 〉| ≥ δ‖b

(ε)
i ‖

2
2, i ∈ N0. (5.6b)

The induction begins by putting

B0 = {[0, 1)× [0, 1)} and b
(ε)
0 = h[0,1)×[0,1). (5.7)

Consequently, X[0,1)×[0,1) = Y[0,1)×[0,1) = {[0, 1)} and µ([0, 1)×[0, 1)) = 0, ν([0, 1)×
[0, 1)) = 0. Obviously, {B0} satis�es (R1)�(R6).

Let i0 ∈ N. At this stage we assume that

. {Bj : 0 ≤ j ≤ i0 − 1} satis�es the auxiliary condition (R1)�(R6).

. the block basis {b(ε)j : 0 ≤ j ≤ i0 − 1} given by (5.5) satis�es (5.6) (for

0 ≤ i ≤ i0 − 1).

Now, we turn to the construction of Bi0 and εQ, where Q ∈ Bi0 . In the �rst step
we will �nd Bi0 in (5.20), and only then we will choose the signs εQ, Q ∈ Bi0

in (5.23). The collection Bi0 and the signs εQ, Q ∈ Bi0 then determine b
(ε)
i0
.

Construction of Bi0 . Let I0 × J0 ∈ R be such that OC (I0 × J0) = i0. We
distinguish between the four cases

|I0| < |J0|, J0 = [0, 1), |I0| < |J0|, J0 6= [0, 1),

and

|I0| ≥ |J0|, I0 = [0, 1), |I0| ≥ |J0|, I0 6= [0, 1).

Case 1: |I0| < |J0|. Here, we will construct the collection BI0×J0 , for which the
index rectangle I0 × J0 is �below the diagonal�.

First, we de�ne

ν(I0 × J0) = ν(I ′0 × J0) and YI0×J0 = YI′0×J0 , (5.8)

where I ′0 ∈ D is the unique interval such that I ′0 ⊃ I0 and |I ′0| = |J0|. We remark
that µ(I0 × J0) will be de�ned at the end of the proof in (5.21a).

Case 1.a: J0 = [0, 1). Here, we know that I0 6= [0, 1). Recall

that Ĩ0 denotes the dyadic predecessor of I0, and note that
BĨ0×[0,1) has already been de�ned. The collections indexed by

the black rectangles have already been constructed. Here, we
determine the collections for the gray rectangles. The white
ones will be treated later.

Note that [0, |I0|)× [0, 1)E I0 × [0, 1), and de�ne the integer κ(I0 × [0, 1)) by

κ(I0 × [0, 1)) = max{µ(Q) : QC [0, |I0|)× [0, 1)}.

Recall that for a dyadic interval K0 we denote its left half by K`
0 and its right

half by Kr
0 . Following the basic construction of Gamlen-Gaudet [5], we proceed

as follows. The set XĨ0×[0,1) has already been de�ned in a previous step of the

construction. Now we put

XI0×[0,1) =

{⋃
{K`

0 : K0 ∈ Dκ(I0×[0,1)), K0 ⊂ XĨ0×[0,1)} if I0 = Ĩ0
`
,⋃

{Kr
0 : K0 ∈ Dκ(I0×[0,1)), K0 ⊂ XĨ0×[0,1)} if I0 = Ĩ0

r
.
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To �nish the construction in Case 1.a, we de�ne the family of high frequency covers
of the set XI0×[0,1) × [0, 1) by putting

Fm = {K × [0, 1) ∈ R : K ∈ Dm, K ⊂ XI0×[0,1)}, (5.9)

for all m > κ(I0 × [0, 1)), see Figure 7, and observe that⋃
Fm = XI0×[0,1) × [0, 1). (5.10)

[0, 1)

K
(1)
0

K

K
(2)
0

K

K
(3)
0

K

K
(4)
0

K

Figure 7. The above �gure depicts an instance of Fm in Case 1.a.

K
(k)
0 is a dyadic interval such that K

(k)
0 × [0, 1) ∈ BĨ0×[0,1), and

K is a dyadic interval such that K × [0, 1) ∈ Fm.

Case 1.b: J0 6= [0, 1). The collections indexed by the black
rectangles have already been constructed. Here, we determine
the collections for the gray rectangles. The white ones will be
treated later.

By our induction hypothesis, {BI×J : OC (I × J) ≤ i0 − 1} satis�es (R1)�(R6).
Note that the set XI0×[0,1) is already de�ned. To conclude the construction in
Case 1.b, we de�ne the high frequency covers of XI0×[0,1) × YI0×J0 by

Fm = {K × L0 ∈ R : K ∈ Dm, K ⊂ XI0×[0,1), L0 ∈ YI0×J0}, (5.11)

for m > µ(I0 × J̃0).

Case 2: |I0| ≥ |J0|. In this case, we will construct the collection BI0×J0 , for which
the index rectangle I0 × J0 is �on or above the diagonal�.

First, we set

µ(I0 × J0) = µ(I0 × J ′0) and XI0×J0 = XI0×J′0 , (5.12)

where J ′0 ∈ D is the unique dyadic interval such that J ′0 ⊃ J0 and |J ′0| = 2|I0| if
I0 6= [0, 1), and J ′0 = [0, 1) if I0 = [0, 1). We remark that ν(I0 × J0) will be de�ned
at the end of the proof in (5.21b).

Case 2.a: I0 = [0, 1). Note that J0 6= [0, 1) and B[0,1)×J̃0 has

already been constructed. The collections indexed by the black
rectangles have already been constructed. Here, we determine
the collections for the gray rectangles. The white ones will be
treated later.
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Note that [0, 1)× [0, |J0|)E [0, 1)× J0. De�ne λ([0, 1)× J0) to be

λ([0, 1)× J0) = max{ν(Q) : QC [0, 1)× [0, |J0|)}. (5.13)

Recall that for a dyadic interval L0 we denote its left (=lower) half by L`0 and its
right (=upper) half by Lr0. The set Y[0,1)×J̃0 has already been de�ned. Now, put

Y[0,1)×J0 =

{⋃
{L`0 : L0 ∈ Dλ([0,1)×J0), L0 ⊂ Y[0,1)×J̃0} if J0 = J̃`0,⋃
{Lr0 : L0 ∈ Dλ([0,1)×J0), L0 ⊂ Y[0,1)×J̃0} if J0 = J̃r0 .

We de�ne the family of high frequency covers of the set [0, 1)× Y[0,1)×J0 by

Fm = {[0, 1)× L ∈ R : L ∈ Dm, L ⊂ Y[0,1)×J0}, (5.14)

for all m > λ([0, 1)× J0), see Figure 8, and observe that⋃
Fm = [0, 1)× Y[0,1)×J0 . (5.15)

L
(1)
0

L

[0, 1)

L
(2)
0

L

Figure 8. The above �gure depicts an instance of Fm in Case 2.a.

L
(k)
0 is a dyadic interval such that [0, 1)× L(k)

0 ∈ B[0,1)×J̃0 , and L
is a dyadic interval such that [0, 1)× L ∈ Fm.

Case 2.b: I0 6= [0, 1). The collections indexed by the black
rectangles have already been constructed. Here, we determine
the collections for the gray rectangles.

By our induction hypothesis, {BI×J : OC (I × J) ≤ i0 − 1} satis�es (R1)�(R6).
At this stage of the proof, the set Y[0,1)×J0 has already been constructed. Now, we
de�ne the high frequency covers of XI0×J0 × Y[0,1)×J0 by putting

Fm = {K0 × L : K0 ∈XI0×J0 , L ∈ Dm, L ⊂ Y[0,1)×J0}, (5.16)

whenever m > ν(Ĩ0 × J0), see Figure 9.
In each of the above cases (5.9), (5.11), (5.14), and (5.16) we de�ne the following

functions. Firstly, let

fm =
∑

Q∈Fm

hQ, (5.17a)

and secondly for any choice of signs εQ ∈ {−1,+1}, Q ∈ Fm put

f (ε)
m =

∑
Q∈Fm

εQhQ. (5.17b)

Now, we specify the value of m. To this end, put

ki0 = max{µ(R), ν(R) : R ∈ R, OC (R) ≤ i0 − 1}, (5.18)
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L
(1)
1

K0 L

K
(1)
1

L
(2)
1

K0

L

K
(2)
1

L

K
(3)
1

L

K
(4)
1

Figure 9. The above �gure depicts an instance of Fm in Case 2.b.

We have K
(k)
1 ∈XĨ0×J0 , L

(`)
1 ∈ YĨ0×J0 , and the dyadic interval K0

is in XI0×J0 . Fm is the collection of all the small gray rectangles.
We obtain Fm by leaving intact the intervals of the x-coordinate
(K0 ∈ XI0×J0) and using a high frequency cover � comprised of

the intervals L � of the intervals L
(`)
1 ∈ YĨ0×J0 . The intervals

L
(`)
1 ∈ YĨ0×J0 in this Figure are covering the exact same set as the

intervals denoted by L in Figure 8, i.e. they cover Y[0,1)×J0 .

and note that each Fm, m > ki0 can be written as the product of two sets of
intervals, i.e.

Fm = {K × L : K ∈Xm, L ∈ Ym}, m > ki0 ,

where the collections Xm and Ym, m > ki0 , satisfy the following:

. Xm and Ym are each a non-empty, �nite collection of pairwise disjoint
dyadic intervals of equal length, whenever m > ki0 ;

. Xm ∩Xn = ∅ or Ym ∩ Yn = ∅ whenever m,n > ki0 are distinct;

. the union of the sets in Xm is independent of m > ki0 , and the union of
the sets in Ym is independent of m > ki0 .

Thus, by Lemma 4.1, we have that

. for each g ∈ Hp(Hq)∗, supγ∈Γ |〈Mγfm, g〉| → 0 as m→∞;

. for each g ∈ Hp(Hq), supγ∈Γ |〈Mγg, fm〉| → 0 as m→∞;

where we recall that Γ denotes the unit ball of `∞(R), and that γ = (γR : R ∈ R) ∈
Γ de�nes the operatorMγ (see (4.2)). Hence, we can �nd an integer mi0 > ki0 such
that

i0−1∑
j=0

|〈Tb(ε)j , f (ε)
mi0
〉|+ |〈f (ε)

mi0
, T ∗b(ε)j 〉| ≤ ηδ4

−i0−2, (5.19)

for all choices of signs εK×L, K × L ∈ Fmi0
. Now, we put

BI0×J0 = Bi0 = Fmi0
. (5.20)

If I0 × J0 is a �Case 1� rectangle, i.e. |I0| < |J0|, then, by (5.9) and (5.11)

µ(I0 × J0) = mi0 and XI0×J0 = {K ∈ Dmi0
: K ⊂ XI0×[0,1)}, (5.21a)

and if I0 × J0 is a �Case 2� rectangle, i.e. |I0| ≥ |J0|, then, by (5.14) and (5.16)

ν(I0 × J0) = mi0 and YI0×J0 = {L ∈ Dmi0
: L ⊂ Y[0,1)×J0}. (5.21b)

Thereby, we have completed the construction of BI0×J0 = Bi0 .
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Reviewing the four cases Case 1.a, Case 1.b, Case 2.a, and Case 2.b of the
construction we see that {Bi : i ≤ i0} satis�es (R1)�(R6).
Selecting the signs ε. Let εQ ∈ {±1}, Q ∈ Bi0 be �xed. We obtain from (5.3)
and (5.17)

〈Tf (ε)
mi0

, f (ε)
mi0
〉 =

∑
Q∈Bi0

αQ|Q|+ 〈f (ε)
mi0

, s(ε)
mi0
〉,

where

s(ε)
mi0

=
∑

Q∈Bi0

εQrQ.

By (5.3) we have 〈hQ, rQ〉 = 0, Q ∈ R, and consequently

〈f (ε)
mi0

, s(ε)
mi0
〉 =

∑
εQ0

εQ1
〈hQ0

, rQ1
〉, (5.22)

where the sum is taken over all Q0, Q1 ∈ Bi0 with Q0 6= Q1. Let Eε denote the
average over all possible choices of signs εQ, Q ∈ Bi0 . Taking expectations we
obtain from (5.22) that

Eε〈f (ε)
mi0

, s(ε)
mi0
〉 = 0.

This gives us

Eε〈Tf (ε)
mi0

, f (ε)
mi0
〉 =

∑
Q∈Bi0

αQ|Q|.

Hence, in view of (5.4), there exists at least one ε such that

|〈Tf (ε)
mi0

, f (ε)
mi0
〉| ≥

∑
Q∈Bi0

αQ|Q| ≥ δ‖f (ε)
mi0
‖22. (5.23)

We complete the inductive construction by choosing ε according to (5.23) and de�ne

b
(ε)
I0×J0 = b

(ε)
i0

= f (ε)
mi0

. (5.24)

Hence, (5.6b) holds for i = i0, while (5.19) ensures that (5.6a) holds for i = i0.

Essential properties of our inductive construction. Since each of the
�nite collections {Bi : i ≤ i0}, i0 ∈ N0, satis�es (R1)�(R6), Remark 4.8 asserts that
the in�nite collection {Bi : i ∈ N0} satis�es (R1)�(R6), and hence, by Lemma 4.9,
it satis�es the local product condition (P1)�(P4) with constants CX = CY = 1.

For 1 ≤ u, v <∞ and I×J ∈ R, Lemma 4.1(i)�(ii) together with (4.7) and (P3)

gives us the following mixed-norm estimates for b
(ε)
I×J :

‖b(ε)I×J‖Hu(Hv) = |I|1/u|J |1/v = ‖hI×J‖Hu(Hv), (5.25a)

‖b(ε)I×J‖Hu(Hv)∗ = |I|1−1/u|J |1−1/v = ‖hI×J‖Hu(Hv)∗ . (5.25b)

The estimates (5.6a) and (5.6b) show that the block basis {b(ε)i } almost-diago-
nalizes T in the following precise sense:

|〈Tb(ε)i , b
(ε)
i 〉| ≥ δ‖b

(ε)
i ‖

2
2, i ∈ N0, (5.26)

i−1∑
j=0

|〈Tb(ε)j , b
(ε)
i 〉|+ |〈Tb

(ε)
i , b

(ε)
j 〉| ≤ ηδ4

−i−2, i ∈ N. (5.27)

Putting it together. The basic model of argument presented below can be
traced to the seminal paper of Alspach, En�o, and Odell [1]. Since {BI×J} satis�es
the local product condition (P1)�(P4) with constants CX = CY = 1, we obtain from

Theorem 4.3 the following. First, let Y = span{b(ε)i : i ∈ N0} ⊂ Hp(Hq) and let
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Bε : Hp(Hq) → Y denote the unique linear extension of Bεhi = b
(ε)
i , i ∈ N0, then

by Theorem 4.3

Hp(Hq)
IHp(Hq)//

Bε

��

Hp(Hq)

Y
IY

// Y

Aε|Y
OO

‖Bε‖ = ‖Aε‖ = 1, (5.28)

where we recall that Aε : Hp(Hq)→ Hp(Hq) denotes the operator given by

Aεf =

∞∑
i=0

〈f, b(ε)i 〉
‖bi‖22

hi, f ∈ Hp(Hq).

Secondly, we put

γi =
‖bi‖22

〈Tb(ε)i , b
(ε)
i 〉

, i ∈ N0.

Recall that Mγ was de�ned in (4.2) as the linear extension of Mγhi = γihi, i ∈ N0.
The operator norm of Mγ is supi∈N0

|γi| ≤ 1
δ by (5.26). De�ne U : Hp(Hq) → Y

by U = BεMγAε and note that

U(f) =

∞∑
i=0

〈f, b(ε)i 〉
〈Tb(ε)i , b

(ε)
i 〉

b
(ε)
i , f ∈ Hp(Hq). (5.29)

The above estimates for the norms of the operators Aε, Bε, and Mγ yield

‖U : Hp(Hq)→ Y ‖ ≤ ‖Mγ‖ ‖Bε‖ ‖Aε‖ ≤
1

δ
. (5.30)

Thirdly, observe that for all g =
∑∞
i=0 λib

(ε)
i ∈ Y , we have the identity

UTg − g =

∞∑
i=1

i−1∑
j=0

λj
〈Tb(ε)j , b

(ε)
i 〉

〈Tb(ε)i , b
(ε)
i 〉

b
(ε)
i + λi

〈Tb(ε)i , b
(ε)
j 〉

〈Tb(ε)j , b
(ε)
j 〉

b
(ε)
j . (5.31)

Using that ‖b(ε)j ‖Hp(Hq) ≤ 1, j ∈ N0, we obtain

‖UTg − g‖Hp(Hq) ≤
∞∑
i=1

i−1∑
j=0

|λj |
|〈Tb(ε)j , b

(ε)
i 〉|

|〈Tb(ε)i , b
(ε)
i 〉|

+ |λi|
|〈Tb(ε)i , b

(ε)
j 〉|

|〈Tb(ε)j , b
(ε)
j 〉|

. (5.32)

Now, we will make the following two observations: The �rst is that (5.25b) implies

‖b(ε)j ‖Hp(Hq)∗ ≤ 1, and thus by (5.25a) and (4.25), we obtain

‖g‖Hp(Hq) ≥ ‖g‖Hp(Hq)‖b
(ε)
j ‖Hp(Hq)∗ ≥ |〈g, b

(ε)
j 〉| = |λj |‖b

(ε)
j ‖

2
2 ≥

1

(1 +
√
j)2
|λj |,

for all j ∈ N0. The second observation is that |〈Tb(ε)j , b
(ε)
j 〉| ≥ δ

(1+
√
j)2

, j ∈ N0,

which is a consequence of (5.26), (5.25a), and (4.25). These two observations yield
the following estimate:

|λj |
|〈Tb(ε)i , b

(ε)
i 〉|

≤ 1

δ
‖g‖Hp(Hq)(1 +

√
i)2(1 +

√
j)2, j 6= i.

Inserting this estimate into (5.32) and applying (5.27) yields

‖UTg − g‖Hp(Hq) ≤
1

δ
‖g‖Hp(Hq)

∞∑
i=1

(1 +
√
i)4

i−1∑
j=0

|〈Tb(ε)j , b
(ε)
i 〉|+ |〈Tb

(ε)
i , b

(ε)
j 〉|

≤ η

2
‖g‖Hp(Hq).
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To see the latter estimate note that
∑∞
i=1(1+

√
i)44−i ≤ 4

∑∞
i=1(1+i)24−i = 4 53

27 ≤
8.

Finally, let J : Y → Hp(Hq) denote the inclusion operator given by Jy = y.
Since we assumed that 0 < η ≤ 1, the operator UTJ is invertible, and its inverse
has norm at most (1− η

2 )−1 ≤ 1 + η. Now we de�ne the operator V : Hp(Hq)→ Y

by (UTJ)−1U and observe that

Y
IY //

J

��

UTJ
$$

Y

Y

(UTJ)−1
::

Hp(Hq)
T

// Hp(Hq)

U

cc V

OO

‖J‖‖V ‖ ≤ (1 + η)/δ. (5.33)

Merging the commutative diagram (5.28) with (5.33) yields

Hp(Hq)
IHp(Hq) //

Bε

��

Hp(Hq)

Y
IY //

J

��

UTJ
$$

Y

Aε|Y
OO

Y

(UTJ)−1
::

Hp(Hq)
T

// Hp(Hq)

U

cc V

OO

where ‖Bε‖ = ‖Aε‖ = 1 and ‖J‖‖V ‖ ≤ (1 + η)/δ, which concludes the proof of
Theorem 3.1. �
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