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In this paper, we study a model of many species that compete, directly or indirectly, for a pool of

common resources under the influence of periodic, stochastic, and/or chaotic environmental

forcing. Using numerical simulations, we find the number and sequence of species going extinct

when the community is initially packed with a large number of species of random initial densities.

Thereby, any species with a density below a given threshold is regarded to be extinct. Published by
AIP Publishing. https://doi.org/10.1063/1.5017233

The history of life on Earth is one of continually fluctuat-

ing diversity. In general terms, the diversity of life, as mea-

sured by the number of species or higher taxa such as

genera or families, represents the balance between the pro-

cess of speciation (which adds species to the biosphere)

and extinction (which removes species from the bio-

sphere). Palaeobiological work has shown that the history

of life is characterized by many extinction events that have

at various times decimated the Earth’s biota. The process

of extinction is of particular current scientific interest

because it is thought that we may be approaching a mass

extinction driven by some kind of environmental forcing

(for example, climate change, anthropogenic activities,

extreme weather, etc.). In this paper, we consider a

resource competition model, which allows us to investigate

how chaotic and period oscillations of resource supply

affect the number of coexisting species (biodiversity) and

how these oscillations can lead to species extinction. Using

analytical investigations and numerical simulations, we

find model parameters that characterize extinction under

environmental forcing. In our model, extinctions are inevi-

table if population has the maximal possible biodiversity

level (a certain number of survived species) and exploits

the maximal amount of resources.

I. INTRODUCTION

The current state of the biosphere is a product of the

evolutionary process that began with the origin of life around

3.5 Ga.1 Since this time, life has expanded from a single

common ancestor to the diversity of biological forms that are

present on the Earth today.2 However, the diversification of

life over this time interval has not been smooth or steady,

and the fossil record indicates that there have been periods

where the number of taxa has declined rapidly. Such inter-

vals represent extinction events, and reviews of the history

of life indicate that there have been 61 such events in Earth

history.3,4 Of these, several stand out for their sheer magni-

tude.5 These are mass extinctions, which are defined as “any

substantial increase in the amount of extinction (i.e., lineage

termination) suffered by more than one geographically wide-

spread higher taxon during a relatively short interval of geo-

logic time, resulting in an at least temporary decline in their

standing diversity”(see Ref. 6 p. 278).

Palaeobiological studies indicate that extinction events

are frequently associated with major environmental change.

For example, several of Earth’s largest extinction events

occur during intervals of elevated volcanic activity, either

due to the intrusion of large igneous bodies of rock as in the

case of the Toarcian extinction event7 or to the opening of

the Atlantic ocean in the case of the late Triassic extinction.8

There are also examples of extinction events on much more

recent timescales, such as the disappearance of the spruce

tree species Picea critchfieldii during the last deglaciation in

North America.9,10 Such studies can provide empirical data

on the sensitivity of the Earth’s biota to environmental

change and can identify factors that can lead to the prolifera-

tion of species as well as the broad abiotic conditions under

which species are lost from the Earth’s biota.

A general trait that emerges from empirical palaeobio-

logical studies of the biosphere is that extinctions reflect per-

turbations that stress populations beyond their resilience.11

Species populations represent functional entities that are pro-

duced by assembly processes, and if they are subject to per-

turbations that are greater in magnitude or duration than they

can accommodate, then they are disrupted in some way.11,12

Many ecological models do not represent every single com-

plex biotic and abiotic interaction that leads to population

assembly and disruption, but nevertheless, the dynamical

outcomes of such models11,13 can provide a quantitativea)Electronic mail: isudakov1@udayton.edu
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formalization for dynamical biospheric change11 and can

serve as a counterpoint to empirical studies of biospheric

evolution based on observational data.

In this paper, we consider a resource competition model

that allows us to investigate how biodiversity affects the

mechanism of extinction. In this model, a number of species

share resources, and oscillations in these resources (as might

be induced by some kind of environmental forcing: from

periodic environmental temperature changes to chaotic

dynamics defined by the Lorenz model), self-limitation

effects, as well as extinctions are accounted for. Our model

represents an extension of the Huisman and Weissing

model,14 which does not include any environmental varia-

tions. The parameters of the model depend on the state of the

environment via time dependent coefficients (i.e., we con-

sider an external forced competition model). This system is

inspired by some phytoplankton models,15,16 and under cer-

tain assumptions can be derived from them. If the resource

turnover rate is large enough our model reduces to a Lotka-

Volterra system.17

Externally forced competition models have been studied

in various papers,18–24 and here we briefly recapitulate their

main findings. Bagchi and Mohanty18 presented a micro-

scopic model of biological evolution that takes into account

both external stresses as well as biotic interactions between

species as contributory factors for species extinction.

However, this model does not consider competition for

resources. Caraballoa et al.19 develop a general theory of

pullback attractor, while in the paper by Kremer and

Klausmeier,20 a competition model with fluctuations is con-

sidered and these authors showed that, by numerical simula-

tions, identical fluctuations are capable of supporting the

coexistence of multiple species. Amritkar and Rangarajan21

studied a general resource competition model with time

dependent parameters. It was shown that under a common

external forcing the species with a quadratic saturation term

first undergoes spatial synchronization and then extinction.

Ovaskainen and Meerson22 proposed a simple model of spe-

cies extinction using the Verhulst equation with fluctuating

parameters. In the paper by Sun et al.,23 a spatial version of

the predator prey model with Holling III functional response

and two species, which includes external periodic forces,

noise, and diffusion processes, was studied. Finally, in the

work by Smith and Meerson,24 extinction of oscillating pop-

ulations in a stochastic version of the Rosenzweig-

MacArthur predator-prey model was found.

In Sec. II, we first state the model of species coexis-

tence; In Sec. III, we then extend the standard model of spe-

cies coexistence by introducing extinctions and external

forcing (assuming that the dynamics depends on some envi-

ronmental parameters that can oscillate (for example, envi-

ronmental temperature)). In Sec. IV, we then consider the

problem of extinction in our extended model in more detail;

In Sec. V, we use analytical investigations and numerical

simulations to study the dynamics of our extended model

under chaotic and periodic forcing.

Our principal results are that the stochastic dynamics of

our model exhibit strong dependence on initial parameters.

Also, we show that extinctions are inevitable if species

community has the maximal possible biodiversity and uses

the maximal amount of resources, a conclusion which under-

scores the importance of studying the role of stability thresh-

olds in mass extinction (the species with a density below a

certain threshold).25

II. THE STANDARD MODEL OF SPECIES
COEXISTENCE

We consider the following standard model of species

biodiversity:14

dxi

dt
¼ xi �ri þ /iðvÞ �

XN

j¼1

cij xj

 !
; (1)

dvj

dt
¼ DjðSj � vjÞ �

XN

k¼1

cjk xk /kðvÞ; (2)

where v ¼ ðv1; v2;…; vMÞ, and

/jðvÞ ¼ min
ajv1

K1j þ v1

;…;
ajvM

KMj þ vM

� �
: (3)

where aj and Kij> 0. In these equations, x ¼ ðx1; x2;…; xMÞ
are unknown species abundances, v ¼ ðv1;…; vMÞ is a vector

of unknown resource amounts, where vk is the resource of

k-th type consumed by all species, ri are the species mortal-

ities, Dk > 0 are resource turnover rates, Sk is the supply of

the resource vk, and the coefficients cjk determine how the

species share the resources (nutrients). If all xi¼ 0, then the

initial nutrient supply of k-th type is Sk. Note that Sk and Dk

are characteristics of the environment, in particular, the coef-

ficient Dk describes the resumption rate of k-th resource.

The terms ciixi define self-regulation of species popula-

tions that restrict the species abundances, and cijxj with i 6¼ j
define a possible competition between species for resources.

The coefficients aj are specific growth rates and the Kij are

self-saturation constants. The coefficients cjk determine how

the species share the resource (nutrient supply).

This model is widely used for primary producers like

phytoplankton and it can also be used to describe competi-

tion among terrestrial plants.26 When cij ¼ 0, this system is

equivalent to models used to study the plankton paradox,

which describes the phenomenon where a limited range of

resources supports an unexpectedly large number of different

species.14

Relation (3) corresponds to the von Liebig minimum

law, but we can consider even more general /j satisfying the

conditions

/jðvÞ 2 C1; 0 � /jðvÞ � Cþ; (4)

where Cþ > 0 is a positive constant, and

/kðvÞ ¼ 0; 8k v 2 @RN
>; (5)

where @RN
> denotes the boundary of the positive cone RN

>

¼ fv : vj � 0; 8jg. Note that condition (5) holds if /j are

defined by (3), so our conditions can be considered a gener-

alization of the von Liebig law, when the species abundance
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growth stops if at least one resources vanishes. Thus, each

resource is necessary for species survival.

We consider the Cauchy problem for the systems (1) and

(2) on a time interval ½0; s�, where initial data are given by

xið0Þ ¼ Xi > 0; vk ¼ Vk 2 ð0; SkÞ; (6)

and s is a positive number. We assume that N � 1 (the case

of a large species community) and Xi > 0 is distributed ran-

domly according to a log-normal law with parameters a�; r.

The corresponding distribution density is given by

f ðxÞ ¼ 1

xr
ffiffiffiffiffiffi
2p
p exp

�ðlnx� a�Þ2

2r2

� �
: (7)

Suppose we simplify the problem that a direct competi-

tion between species is absent and

cij ¼ cidij; ci > 0: (8)

One can show that, by standard estimates, the Cauchy prob-

lems (1), (2), and (6) are well posed and that the corresponding

xiðtÞ are defined for all t> 0, bounded and take positive values.

Therefore, we are dealing with a dynamical system. Moreover,

we observe that this system is cooperative,27 since
@Fið~xÞ
@xj

> 0

for j 6¼ i, where Fi is the right side of the equation (1).

Assertion. Under condition (8), the dynamical system
defined by (1) and (2) has a compact global attractor. In the
case of a single resource (M¼ 1) and sufficiently large turn-
over D¼D1, all trajectories of that system are convergent,
and there are no locally attracting stable limit cycles.

Outline of the proof. We follow Kozlov et al.28 and

Sudakov et al.29 The resource is a uniformly bounded func-

tion. This fact, in a standard way, implies uniform bounded-

ness of xiðtÞ for large times t and shows that the systems (1)

and (2) defines a global semiflow, which has an absorbing

set. Thus, this semiflow is dissipative and has a compact

global attractor. The claim on trajectories convergence for-

mally follows from Theorem I in Ref. 28. Non-formally, it

can be explained as follows. For large turnovers, the resour-

ces are fast variables, whereas the species populations are

slow. Under condition (8), the system is dissipative, and typi-

cally in such systems the large time dynamics of the fast

modes is captured by the dynamics of slow modes. In our

case, the slow dynamics are defined by a single differential

equation for v, thus the stable limit cycles are impossible.

For M> 1, the problem can be also simplified for large

turnovers (Dk � 1). Then, one can show29 that systems (1)

and (2) reduce to Lotka-Volterra systems of a special form.

III. THE MODEL WITH EXTINCTIONS

We extend systems (1) and (2) to describe two important

effects. The first effect is species extinctions, and in this sec-

tion we focus on it. The second effect is a result of external

forcing in the dynamics of the modified systems (1) and (2).

That effect will be considered in Sec. V.

In reality, abundances xi are discrete numbers; therefore,

if the abundance becomes too small, the corresponding spe-

cies must become extinct. To describe this effect

mathematically, we introduce a threshold parameter d > 0

and suppose that if the i-th species abundance xiðtÞ becomes

less than d, i.e., xiðt0Þ ¼ d and
dxiðt0Þ

dt < 0 for some i and

t0 > 0, then the corresponding species should be excluded

from systems (1) and (2). We then set formally that xiðtÞ � 0

for all t > t0. Note that this modification follows to the per-

sistence concept studied in detail in the book by Hofbauer

and Sigmund.30 For the case of a single resource, this

extended model is used and investigated in Ref. 28.

Note that after this modification the model stays mathe-

matically well posed.28 Next, we introduce a function NeðtÞ,
which is the number of surviving species at time t, i.e., the

number of the indices i such that xiðtÞ > d. It is clear that

NeðtÞ is a piecewise constant non-increasing function. Let

t0 < t1 < … < tm < … be the points of discontinuity of this

function. Within the intervals ½tk; tkþ1�, the Cauchy problem

for systems (1) and (2) is well posed, and therefore the

Cauchy problem is well posed for the modified systems (1)

and (2) with extinctions. There are two possible situations. If

limt!þ1 NeðtÞ ¼ N1 ¼ 0, then all the species vanish. If

N1 > 0, then on some infinite semiaxis ðtm;þ1Þ, the modi-

fied system is equivalent to models (1) and (2), which,

according to our Assertion, has a compact global attractor.

Therefore, in this case, the modified model with extinctions

also has a compact global attractor.

The model with extinctions exhibits a highly stochastic

behavior. The final population state depends dramatically on

initial data (6).28 For some initial abundances, all species

coexist, whereas for other initial data only a few species can

survive over long timescales. Usually, the external forcing

diminishes the number of surviving species. Nonetheless,

sometimes the environmental chaos can stabilize the popula-

tion, increasing the number of coexisting species. Systems

with large numbers of species are more stable than the ones

with few species. This multistability, which is present in a

system with fixed parameters, means that in a system with

slowly evolving parameters we can observe jumps between

equilibria.

IV. A MORE DETAILED LOOK AT EXTINCTIONS

We follow Kozlov et al.28 but will consider the problem

of extinction in more detail. Let us consider the case of a sin-

gle resource M¼ 1 for large D¼D1. For brevity and simplic-

ity, we use notation v1 ¼ v; ci ¼ ci1 > 0; S ¼ S1 and that

cij ¼ dijci with ci > 0. Let /i ¼ ai/ðvÞ, where /ðvÞ ¼ v
Kþv.

Then, according to our Assertion, all trajectories are conver-

gent to equilibria. Let N be the number of coexisting species

for such equilibria and veq is the equilibrium amount of the

resource. Then, the equilibrium abundances �xi are28

�xi ¼ ðc�1
i ðai/ðveqÞ � riÞÞþ;d; (9)

where aþ;d is truncated at level d > 0, the number a: aþ;d ¼ a
for a > d and a¼ 0 otherwise. It is useful to introduce normal-

ized variables u ¼ v=S; �K ¼ K=S; pi ¼ ri=ai, and �di ¼ dci.

For the normalized equilibrium consumed resource

amount ueq ¼ veq=S, we then obtain
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1� ueq ¼ �/ðueqÞ
XN

i¼1

a2
i ci

DSci

ð�/ðueqÞ � piÞþ;�d i
; (10)

where �/ðuÞ ¼ u=ð �K þ uÞ and we assume that ci > c0 > 0.

Note that ueq depends on S and N. That dependence on S is

monotonic: as S decreases, veq also decreases. Moreover, it

useful to note that the properties of system when all cij ¼ 0

[the case (a)] and when cij ¼ dijci with ci > 0 [case (b)] are

strongly different. The case (a) is studied in detail by many

works (see Refs. 31 and 32) Then, in a generic situation, a

single species survives and, in order to obtain coexistence of

many species, we should impose special restrictions on

parameters (pi ¼ �p for all i). Then, actually the equilibrium

resource value does not involve the resource supply S. In the

case (b), even if ci > 0 are small, the large time behaviour

properties of the systems (1) and (2) completely change since

that systems become dissipative that, under some conditions,

makes possible coexistence of many species.

The equilibrium abundances �xi decrease in veq¼ Sueq

and for some i the value �xi defined by (9) equals zero. Then,

the corresponding species suffers extinction and the species

number N takes a smaller value, for example, N – 1. That is a

typical picture for general S and not too large N.

To understand how extinctions occur in our model, we

consider the case of the maximal biodiversity. To simplify

our analysis, we suppose first that all species have identical

properties, i.e., all pi ¼ �p and ai¼ a, ci¼ c, ci ¼ c. Then,

from (10), one has

N ¼ DSc
a2c

1� ueq

�/ðueqÞð�/ðueqÞ � �pÞþ;dc

: (11)

An analysis of this equation allows us to note that in

(11) the numerator decreases in ueq and the denominator is

an increasing function of ueq. Thus, the number of survived

species (for brevity, we call it biodiversity) N is a decreasing

function of the veq. On the other hand, N is an increasing

function of resource supply S. Therefore, one can say that

the maximal N can be obtained when the resource supply,

which still exist in an environment and not consumed by spe-

cies, is maximal.

Moreover, let us note that the large number of coexisting

species N can be obtained for a more realistic situation when

the species parameters are not identical. It is possible if d is

small and all fundamental parameters pi (which are consum-

ing rates divided mortality rates) are close to a value �p.

Equation (11) also shows that the biodiversity N depends on

the parameter

Pstress ¼ ðDScÞ�1ha2ci; (12)

where ha2ci denotes the value of the quantities a2
i ci averaged

over all the population

ha2ci ¼ N�1
XN

i¼1

a2
i ci:

The quantity Pstress is a dimensionless parameter and can be

interpreted as a level of environmental pressure on the

population.

Consider now how extinctions can occur. While

/ðueqÞ � �p � dc, a small variation DS in the resource S
leads to either a small variation in N or N conserves. In fact,

a decrease in S can be compensated by the corresponding

decrease in the normalized consumed resource amount ueq.

In this case, we observe the extinction of a small number of

species.

However, in the case of the maximal possible biodiver-

sity N that can be attained, if all the equilibrium abundances

�xi are close to d, the situation dramatically changes when the

normalized consumed resource amount ueq is close to the

maximal value of 1. In this situation, a decrease in a ueq leads

to extinction of many or even all species in the model

because for smaller ueq we have a/ðueqÞ < �p þ dc.

This effect is weaker if the species parameters are differ-

ent (i.e., the parameters ai; ci; ci, and pi are different).

From this study of our model, we can formulate the fol-

lowing assertion:

Extinction principles (a) If a community consisting of
species that share the same resource attains its maximum
possible biodiversity, then relatively small changes in the
environment can lead to species extinction. (b) If the biodi-
versity of a species community is at its maximal possible
value and simultaneously the species in that community con-
sume resources close to a maximal value, then the commu-
nity is fragile: it can be destroyed completely or almost
completely as a result of species extinction under very small
environmental changes. This effect is weaker for community
consisting of a random mix of species that have different
mortality and resource consumption parameters.

V. THE POPULATION MODEL UNDER PERIODIC AND
CHAOTIC ENVIRONMENTAL FORCING

In this section, we consider extinctions in our model

forced by chaotic and periodic environmental temperature T
changes. We assume that the resource supply depends on T
and that T is a periodic function of time. We also include sto-

chastic effects. For example, we can suppose that

S ¼ S0 þ R sin ðxtÞ þ egðtÞ; (13)

where S0;R > 0 are parameters, x is a frequency, g is stan-

dard white noise, and e is the noise amplitude. This means

that the temperature changes periodically in time. The

parameter S0 represents nutrient supply (the resource avail-

able to species), and the parameter r describes the intensity

of periodic forcing.

To simulate chaotic time forcing, we set

S ¼ S0 þ RhðqðtÞÞ; (14)

where hðqÞ is a smooth function of the vector argument q,

q ¼ ðq1;…; qnÞ which describes a state of the population

environment, and the dynamics of q is governed by trajecto-

ries of the noisy dynamical system, written in the Ito form:

dq ¼ QðqÞdtþ
ffiffi
e
p

dBðtÞ; (15)

where B(t) is standard Brownian motion and Q is a smooth

vector field. In the case e ¼ 0, we are dealing in (15) with a
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system of differential equations, and we will suppose that its

dynamics are well posed and has a compact attractor AQ.

Then, for small e, we can use the Freidlin-Wentzell theory,33

and the properties of the noisy dynamical system (15)

depend on the attractor structure of (15). For simplicity, we

will consider here the case e ¼ 0.

For example, we can set q ¼ ðx; y; zÞ and consider the

Lorenz system, a simplified model of atmospheric dynamics

given by

dx=dt ¼ s�1ðaðy� xÞÞ;
dy=dt ¼ s�1ðxðq� zÞ � yÞ;
dz=dt ¼ s�1ðxy� bzÞ;

(16)

where a; b; q are parameters, and s > 0 is a parameter that

controls the speed of the trajectories. For e ¼ 0, this system

shows a chaotic behaviour for a ¼ 10; b ¼ 8=3 and q ¼ 28.

We construct h as follows. The third component z in (16)

describes the time evolution of temperature. We set

hðtÞ ¼ ðxðtÞ � �xÞ=lx, where lx ¼ maxðjxðtÞjÞ on a large inter-

val ½0; T� and �x is the average of T�1
Ð T

0
xðtÞdt on this interval.

The time extended model reduces to the time indepen-

dent model with constant S in the two opposite cases: (A)

x� 1 and (B) x	 1. Assume S ¼ SðtÞ is defined by (13).

In case (A), we can apply the averaging principle to (1) and

(2) and replace S(t) by S0 in (2). This averaging also works

for S(t) defined by (14). The number NeðtÞ of coexisting spe-

cies tends to a constant for large t. This asymptotic averaging

is confirmed by numerical results, see below.

In case (B), we introduce a slow time �t ¼ xt and use a

quasistationary approximation. Then, we obtain that the

equilibria �xð�tÞ; �vð�tÞ are functions of slow time. The number

Ne of coexisting species is also a function of �t. Note that Ne

is a measure of biodiversity in our model.

The numerical results for periodical and chaotic cases

are as follows. For chaotic and fast periodic forcing and for

large values of the resource supply S0 systems (1) and (2)

with M¼ 1 shows formidable stability when relative varia-

tions of S are not small, for example, have the order 40%

(see Fig. 1) and even 80% (see Fig. 2). The fast periodic and

chaotic oscillations usually decrease biodiversity, but the

effect on the number of coexisting species is small: the num-

bers NeðTÞ of finally survived species (biodiversity) remain

close for R¼ 0 (forcing is absent) and R> 0 (under forcing).

Typical situations, showing the dynamics of the number

of coexisting species and how the environmental forcing

sharply changes that number, are illustrated by Fig. 1 for the

case of slow periodic forcing (see the black curve on that

plot). This numerical result can be explained by the results

of Sec. IV. In fact, for slow forcing, we can apply a quasista-

tionary approximation, when at each time moment the popu-

lation state is determined by the resource supply at that

moment. Note that for R¼ 0.8 the slow periodic forcing

leads to a catastrophe, when all the species go to extinct.

So, we observe that for the fast environmental oscilla-

tions our resource competition model is sufficiently stable

even for large forcing amplitudes, whereas slow forcing can

lead to mass extinctions.

FIG. 1. This graph shows the number of coexisting species Ne for the model

defined by (1) and (2) with M¼ 1 (a single resource v) on time interval

½0; 50� and with N¼ 50 species. The three cases are considered: (a) S¼ S0

(no forcing), (b) S ¼ S0 þ R sin ðxtþ p=2Þ (periodic external forcing), with

x ¼ p (fast oscillations) and x ¼ 0:1 (slow periodic forcing), and (c)

S0 þ RðxðtÞ � x0Þ, where x(t) is a chaotic solution of the Lorenz system (16)

and R ¼ 0:4S0. The threshold parameter d for species abundances equals

0.5. To make comparison correct, we set x0 equals to the time average of

x(t), and define a by a ¼ RmaxjxðtÞ � x0j�1
, then the maximal amplitudes of

periodic forcing and chaotic one are close. For each of 10 values S0 within

the interval ½10; 20�, we have made 100 tests, where for each test at initial

time moment parameters of a random system (1) and (2) were taken as fol-

lows. The parameters were chosen as follows: Ki ¼ K ¼ 3; ci ¼ c ¼ 1;
ci ¼ c ¼ 0:1, D¼ 1, ai are sampled according to the normal law Nð2; 0:2Þ.
The mortality parameter ri equal R¼ 1. The initial species abundances xið0Þ
were chosen as X0zi, where X0 ¼ 3 and zi are random positive numbers sam-

pled according the log-normal law, log zi 2 Nð�1; 0:2Þ.

FIG. 2. This graph shows the number of coexisting species Ne for the model

defined by (1) and (2) with M¼ 1 (a single resource v) on time interval

½0; 50� and with N¼ 50 species which extinct at xiðtÞ ¼ d ¼ 0:5. The three

cases are considered: (a) S¼ S0 (no forcing), (b) S ¼ S0 þ R sin ðxtþ p=2Þ
(periodic external forcing), with x ¼ p (fast oscillations), and (c)

S0 þ RðxðtÞ � x0Þ, where x(t) is a chaotic solution of the Lorenz system (16)

and for large resource supply variations R ¼ 0:8S0. All other parameters are

same as in Fig. 1.
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To conclude this section, let us note that according to

Sec. IV, the robustness of resource competition system

with respect to forcing should depend on the parameter

Pstress. The numerical computations confirm this fact (see

Fig. 3).

VI. CONCLUDING REMARKS

In this paper, a resource competition model for biodiver-

sity is studied. The model describes a simple and easily under-

standable mechanism for resource competition and extends

the well-known Huisman and Weissing model,14 taking into

account species self-regulation, extinctions, and time depen-

dence of resources. Our results show that when the averaged

resource supply level is large enough, fast time oscillations in

resource supply do not materially affect biodiversity (the num-

ber of coexisting species). This result is valid both for chaotic

and periodic oscillations. The effect of oscillations becomes

observable when the averaged resource value is sufficiently

small. Then, typically, the oscillations (both chaotic and peri-

odic) diminish biodiversity substantially, and this effect is

stronger for slow environmental oscillations.

In our model, the largest extinctions occur when resource

consumption reaches a maximal possible value, but there is a

smooth continuum from extinctions of relatively small mag-

nitude (the loss of a few species) to extinctions of relatively

large magnitude (the loss of a great many species). Thus, we

are not able to identify mass extinctions (in the sense of mass

extinctions definition from Ref. 6 p. 278) as a quantitatively

different regime (e.g., as it was obtained in Ref. 34). This is

may be because our model does not include trophic levels

such as primary producers, herbivores, and predators, or evo-

lutionary processes such as speciation (cf. Ref. 11) Similarly,

our analyses have focused on the conditions that lead to

extinction. Representation of ecological structure and evolu-

tionary processes such as these in future extensions of our

model will allow us to investigate the dynamics of recoveries

from extinction, and this will permit investigations of how

ecosystems rebuild and new ecologies emerge from the after-

math of extinction events.

Nevertheless, our model provides support, on theoretical

grounds, for the importance of non-linear processes during

the various extinction events that have punctuated Earth his-

tory. For example, the rapid loss of plant biodiversity during

an extinction event in the Late Triassic period (200 
 106

years ago) has been attributed partly to a threshold response

of plants to relatively minor increases in the concentration of

carbon dioxide in Earth’s atmosphere at this time.7

Additionally, when species reach maximal biodiversity in

our model, the risk of large extinction events strongly

increases, even under small environment changes, and ran-

dom, chaotic, or periodic environment oscillations can also

dramatically affect biodiversity. Thus, suggestions that the

global diversity of life on Earth is capped somehow (see dis-

cussion in Ref. 2) are not incompatible with the results of

our paper.
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