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Although sound propagation in a forest is important in several applications, there are currently no rig-

orous yet computationally tractable prediction methods. Due to the complexity of sound scattering in

a forest, it is natural to formulate the problem stochastically. In this paper, it is demonstrated that the

equations for the statistical moments of the sound field propagating in a forest have the same form as

those for sound propagation in a turbulent atmosphere if the scattering properties of the two media

are expressed in terms of the differential scattering and total cross sections. Using the existing theo-

ries for sound propagation in a turbulent atmosphere, this analogy enables the derivation of several

results for predicting forest acoustics. In particular, the second-moment parabolic equation is formu-

lated for the spatial correlation function of the sound field propagating above an impedance ground

in a forest with micrometeorology. Effective numerical techniques for solving this equation have

been developed in atmospheric acoustics. In another example, formulas are obtained that describe the

effect of a forest on the interference between the direct and ground-reflected waves. The formulated

correspondence between wave propagation in discrete and continuous random media can also be

used in other fields of physics. https://doi.org/10.1121/1.5024904

[JFL] Pages: 1194–1205

I. INTRODUCTION

Sound propagation in a forest is a complicated phenom-

enon due to multiple scattering by trunks and branches,

visco-thermal attenuation and induced vibration in the can-

opy, the ground effect, and micrometeorology. This problem

is important in several applications such as noise reduction

near highways by a stand of trees and localization of sound

sources in forests. Recent overviews of forest acoustics can

be found in Refs. 1 and 2.

Predicting sound propagation in a forest presents chal-

lenges. Most modeling is based on engineering approaches

where different propagation factors are accounted for sepa-

rately and their interactions are ignored. Finite-difference

time-domain (FDTD) techniques have recently been applied

to forest acoustics.3–5 However, accurate numerical model-

ing of sound scattering by numerous scatterers in a forest is

still computationally prohibitive. Therefore, it is desirable to

develop rigorous methods for predicting forest acoustics,

which are computationally feasible.

Due to the complexity of sound propagation in a forest,

it is convenient to employ a stochastic approach by assuming

that different scatterers, such as trunks and branches, have

random locations. This enables the derivation of closed-form

equations for the first two statistical moments of the sound

field: the mean sound field and the spatial correlation func-

tion of the sound field (including the mean intensity). The

second statistical moment is usually measured experimen-

tally; the mean sound field can be used to approximate the

mean intensity at relatively short propagation ranges. Note

that a stochastic approach might not be applicable for forests

in which the trees are planted in regular patterns.4,6

In the literature, two-dimensional (2D) multiple scatter-

ing theory has been used to calculate the mean sound field

(e.g., Refs. 1,7–9). In this approach, the effective sound wave-

number keff due to sound scattering by trunks is obtained first.

Then, sound propagation in a forest is represented as propaga-

tion in free space with the sound wavenumber replaced with

keff.

Recently, three-dimensional (3D) multiple scattering the-

ory has been employed in describing forest acoustics. In Ref.

10, the effective sound wavenumbers keff due to sound scatter-

ing by trunks, large branches, and the canopy were calculated.

Trunks and large branches were approximated as vertical and

slanted finite cylinders, while the canopy layer was modeled

by diffuse scatterers. The mean sound field was then calcu-

lated for several cases of the problem with increasing com-

plexity: sound propagation above an impedance ground in free

space, a trunk layer added to the previous case, a canopy layer

added above the trunk layer, and inclusion of the effective

sound speed in the trunk and canopy layers. In Ref. 2, sound

propagation in a forest was analyzed using the radiative trans-

fer equation (RTE) for the second statistical moment of a

sound field. The RTE can be derived from first principles

using 3D multiple scattering theory. The RTE was solved in a

modified Born approximation to calculate and analyze the

mean sound intensity transmitted and reflected from a stand ofa)Electronic mail: vladimir.ostashev@colorado.edu
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trees.2 A modified Born approximation was also used to study

pulse propagation in a forest.11

The current paper continues the application of 3D multi-

ple scattering theory to forest acoustics and has three main

goals: (i) show the correspondence between equations describ-

ing the first two statistical moments of the sound field in a

forest and a turbulent (random) atmosphere; (ii) using this cor-

respondence, obtain new results for sound propagation in these

media; and (iii) study the effect of sound scattering on the

interference of the direct and ground-reflected waves in a

forest.

Sound propagation in discrete and continuous random

media, such as a forest and a turbulent atmosphere, is described

by different starting equations. However, it has been noted in

the literature (e.g., Refs. 12,13) that some equations for the sta-

tistical moments of the electromagnetic or sound field in dis-

crete and continuous random media have a similar form. In the

present paper, we build on these results and argue that the

equations for the statistical moments of the sound field in a for-

est and turbulent atmosphere should have the same form if, in

these equations, the scattering properties of the two media are

expressed in terms of the differential scattering cross section

(DSCS) and total cross section (TCS). This conclusion is also

valid for wave propagation in many other discrete and continu-

ous random media, and can be utilized in various applications

such as sound scattering by air bubbles in water and urban

acoustics.

The theories of sound propagation in a turbulent atmo-

sphere have been well developed in the literature and summa-

rized in Ref. 14. In the present paper, we use these theories

and the abovementioned similarity between sound propaga-

tion in discrete and continuous random media to advance for-

est acoustics. Furthermore, some results from forest acoustics

enable new formulations for sound propagation in a turbulent

atmosphere.

As an important example, this paper considers the inter-

ference between the direct and ground-reflected waves in a

forest. For typical, relatively soft forest floors this interference

could theoretically result in significant reduction of sound lev-

els.7,15,16 However, in practice this reduction is not fully

observed since scattering by trees results in a coherence loss

between the direct and ground-reflected waves, thus, produc-

ing an apparent increase in sound levels. In Ref. 17, a heuris-

tic approach was used to account for the loss of coherence

between the direct and ground-reflected waves in a forest. A

similar effect has been well studied for sound propagation in

a turbulent atmosphere.14,18–21 In the present paper, we use

the latter theory to analyze a similar effect in a forest. This

was also done in Ref. 22, in which the variance and the corre-

lation length of the Gaussian-spectrum model of atmospheric

turbulence were used as adjustable parameters for best fit

between theoretical predictions and experimental data.

The paper is organized as follows. In Sec. II, the corre-

spondence between equations for the statistical moments of

the sound field in a forest and turbulent atmosphere is formu-

lated. Section III considers the case where sound waves in

these two media can be scattered at large angles. In Sec. IV,

the narrow-angle approximation for sound propagation in a

forest and turbulent atmosphere is studied. The effect of

sound scattering on the interference between the direct and

ground-reflected waves is analyzed in Sec. V. Conclusions

are summarized in Sec. VI.

II. CORRESPONDENCE BETWEEN SOUND
PROPAGATION IN A FOREST AND TURBULENT
ATMOSPHERE

Sound propagation in an inhomogeneous, non-turbulent

atmosphere is affected by several factors such as refraction,

diffraction, and interaction with the ground. These factors

can be accounted for with the well-known equations such as

a Helmholtz equation or parabolic equation (PE) with the

corresponding boundary conditions at the ground. In addition

to these factors, a forest and atmospheric turbulence result in

sound scattering. If this scattering can be described similarly

for both media, the equations for the statistical moments of

the sound field should have the same form.

A. Cross sections

For both a forest and turbulent atmosphere, the quanti-

ties characterizing sound scattering are the DSCS, rd, and

TCS, r; see Ref. 2 and Sec. 6.4 in Ref. 14. The DSCS is

defined as follows:

rd Rc; n0; nð Þ ¼ Is Rc; n0; nð ÞR2

I0V
: (1)

Here, V is the scattering volume, which contains random

inhomogeneities, Rc are the coordinates of its center, R is the

distance between Rc and the receiver, I0 is the intensity of a

plane sound wave incident on the scattering volume, Is is the

intensity of the scattered wave at the receiver, and n and n0

are the unit vectors in the directions of the incident and scat-

tered waves, respectively (Fig. 1).

The TCS is a sum of the absorption cross section (ACS),

ra, and the scattering cross section (SCS), rs,

rðRc; nÞ ¼ raðRc; nÞ þ rsðRc; nÞ: (2)

FIG. 1. Geometry for determining the DSCS. V is the scattering volume, Rc

is its center, and n and n0 are the unit vectors in the directions of the incident

and scattered waves, respectively.
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These cross sections depend on the direction of sound propa-

gation n. The ACS characterizes acoustic energy absorbed

during scattering. The SCS characterizes the loss of energy

due to sound scattering in all directions and can be expressed

in terms of the DSCS,

rsðRc; nÞ ¼
ð

4p
rdðRc; n0; nÞ dXðn0Þ: (3)

Here dXðn0Þ ¼ sin h0dh0du0 is the solid angle in the direction

of the unit vector n0, where h0 and u0 are the polar and azi-

muthal angles of n0, respectively, in a spherical coordinate

system. If ra¼ 0, then r¼rs and only the DSCS is needed

to completely describe sound scattering.

The mean sound field in a random medium can be calcu-

lated as that in a non-random medium if the sound wave-

number k is replaced with the effective wavenumber keff

¼ k1þ ic. Here, k1 and c are the real and imaginary parts of

the effective wavenumber, respectively, with c being termed

as the extinction coefficient of the mean sound field. There is

a useful relationship between the TCS and the effective

sound wavenumber,

r ¼ 2 Im keff ¼ 2c: (4)

This relationship is a consequence of the optical theorem.

If the equations for the statistical moments of the sound

field propagating in a forest and turbulent atmosphere are

expressed in terms of rd and r, these equations should have

the same form. This similarity can be found in Refs. 12 and

13, and is also demonstrated below by several examples. In

the present paper, this similarity is used to advance formula-

tions of sound propagation in a forest using results known

for a turbulent atmosphere and vice versa. Although the

equations for the statistical moments of the sound field in a

forest and turbulent atmosphere can be expressed in the

same form, rd and r in these equations are quite different in

these two media. Below we specify the cross sections in a

turbulent atmosphere and forest.

B. Turbulent atmosphere

In a turbulent atmosphere, the DSCS may be given by

[e.g., Eq. (6.114) in Ref. 14],

rd Rc; n0; nð Þ ¼ 2pk4 n0 � nð ÞUT Rc; k n� n0ð Þ
� �
4T2

0

"

þ n0 � nð Þ2ninjUij Rc; k n� n0ð Þ
� �

c2
0

#
; (5)

where UT is the spectrum of temperature fluctuations, Uij is

the spectral tensor of wind velocity fluctuations, and T0 and

c0 are the reference values of temperature and sound speed,

respectively. For sound scattering by atmospheric turbu-

lence, ra¼ 0 so that r¼ rs. Substituting rd into Eq. (3), we

can calculate the TCS, r, and the extinction coefficient, c,

for different spectra of turbulence.

C. Forest

A forest consists of discrete scatterers such as trunks,

branches, and the canopy. Scattering by one scatterer is char-

acterized by the scattering amplitude f ðRc; n0; nÞ defined as

follows. Suppose that a plane sound wave propagating in the

direction of the vector n is incident on a scatterer centered at

Rc (Fig. 2). In the far field, the sound pressure of the scattered

field can be expressed in terms of the scattering amplitude,

ps Rð Þ ¼ p0 f Rc; n0; nð Þ exp ikjR� Rcjð Þ
jR� Rcj

: (6)

Here, p0 is the amplitude of the incident plane wave and n0 is

the unit vector in the direction to the observation point R.

Using this formula, the intensity Is of the scattered sound

field can be calculated. Substituting the result into Eq. (1)

and replacing 1/V with the number of scatterers per unit vol-

ume �, we obtain the DSCS for discrete scatterers

rdðRc; n0; nÞ ¼ �jf ðRc; n0; nÞj2: (7)

The TCS and SCS can be calculated with Eqs. (2) and (3),

respectively. However, in many cases, it is more convenient

to calculate the TCS using the optical theorem,

r Rc; nð Þ ¼ 4p�
k

Im f Rc; n; nð Þ: (8)

Here, f ðRc; n; nÞ is the forward scattering amplitude.

Reference 2 provides the DSCS for trunks, branches,

and the canopy. The trunks and branches are modeled as ver-

tical and slanted finite solid cylinders, while the canopy layer

is modeled with diffuse scatterers. For concreteness, we will

consider sound scattering by trunks. The scattering ampli-

tude of a finite cylinder is obtained in Ref. 23. Substituting

the result into Eq. (7), we obtain the DSCS

FIG. 2. Geometry for determining the scattering amplitude of a discrete

scatterer. The unit vectors n and n0 are in the directions of the incident and

scattered waves, respectively.
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rdðn0; nÞ ¼ rdða0;u0; a;uÞ
¼ �k2h2b2 sinc2 khðsin a0 � sin aÞ=2

� �
�
����X1

n¼0

Bn cos nðu0 � uÞ
� �����

2

: (9)

Here b is the radius of the cylinder, h is its height, sincðgÞ
¼ sinðgÞ=g is the sinc function, and the unit vector n0 is

expressed as

n0 ¼ ðn0x;n0y;n0zÞ ¼ ðcos a0 cos u0; cos a0 sin u0; sin a0Þ:
(10)

Here a0 is the angle between n0 and the plane perpendicular to

the axis of the cylinder and u0 is the azimuthal angle (Fig. 2).

These angles vary within the intervals [–p/2,p/2] and [–p,p],

respectively. The angles a and u pertinent to the unit vector n

are defined similarly. The functions Bn are

Bn a0;að Þ ¼ en

2
J0n kb cos að Þ

"
cos aJn kb cos a0ð Þ

�cos a0J0n kb cos a0ð ÞH 1ð Þ
n kb cos að Þ

H 1ð Þ0
n kb cos að Þ

#
; (11)

where Jn is the Bessel function, Hð1Þn is the Hankel function

of the first kind, primes above Jn and Hð1Þn denote derivatives

with respect to the argument, and en is the Neumann factor:

e0¼ 1 and en¼ 2 for n 6¼ 0.

For sound scattering by solid cylinders, ra¼ 0 so that

r¼ rs. The TCS is obtained with the use of Eq. (8),2

r að Þ ¼ 4�h

k
Re
X1
n¼0

en
J0n kb cos að Þ

H 1ð Þ0
n kb cos að Þ

: (12)

III. WIDE-ANGLE SCATTERING

When considering sound propagation in a forest and tur-

bulent atmosphere, it useful to treat separately two cases. In

the first case considered in this section, a sound wave can be

scattered at wide (or all) angles. Wide-angle scattering occurs

if the sound wavelength k is greater than the scale L of dis-

crete scatterers or medium inhomogeneities. In this case,

using 3D multiple scattering theory, calculation of the corre-

lation function of the sound field both in a forest and turbu-

lent atmosphere can be reduced to the RTE. In the second

case (Sec. IV), a sound wave is scattered predominantly in

the direction of propagation.

A. Forest

For sound propagation in a forest, the starting equations

are the Helmholtz equation in free space and the sound field

scattered by a discrete scatterer. Assuming that there are many

scatterers whose positions are random, an integral equation for

the spatial correlation function of the sound field p(R) can be

derived.12,13 This correlation function can be expressed in

terms of the radiance J(Rc,n),

BðRc;RdÞ ¼ hpðR1Þp�ðR2Þi

¼ .c0

ð
4p

JðRc; nÞeik1n�Rd dXðnÞ: (13)

Here, . is the air density, and Rc¼ (R1þR2)/2 and Rd¼R1

– R2 are the center and difference coordinates, respectively,

of the two points of observation, R1 and R2. The radiance

satisfies the RTE, which can be derived from the integral

equation for the correlation function,

n � @
@Rc

� �
J Rc; nð Þ þ r Rc; nð ÞJ Rc; nð Þ

¼
ð

4p
rd Rc; n; n0ð ÞJ Rc; n

0ð Þ dX n0ð Þ þ Qs Rcð Þ; (14)

where the function Qs(Rc) characterizes the sound sources

distribution. Reference 2 outlines application of the RTE to

forest acoustics. The RTE accounts for sound scattering and

absorption by different scatterers in a forest such as trunks,

branches, and the canopy. The RTE can be generalized to

account for sound refraction.13

The radiance J can be written as a sum

JðRc; nÞ ¼ JcohðRc; nÞ þ JdðRc; nÞ; (15)

where Jcoh and Jd are the coherent and diffuse radiances,

respectively. The Jcoh satisfies Eq. (14) with rd¼ 0 and in

many cases can be calculated analytically. The diffuse radi-

ance satisfies the integro-differential equation,

n � @
@Rc

� �
Jd Rc; nð Þ þ r Rc; nð ÞJd Rc; nð Þ

¼
ð

4p
rd Rc; n; n0ð Þ Jcoh Rc; n

0ð Þ þ Jd Rc; n
0ð Þ½ � dX n0ð Þ:

(16)

Numerical solutions of the RTE are well developed in

many fields such as nuclear physics, optics, and radiation

transfer in the Earth, planetary, and solar atmospheres (e.g.,

Sec. 4.6 in Ref. 13 and Ref. 24).

B. Turbulent atmosphere

The starting equation for sound propagation in a turbu-

lent atmosphere is a Helmholtz-type equation [e.g., Eq.

(8.53) in Ref. 14], which accounts for scattering by tempera-

ture and wind velocity fluctuations and differs significantly

from the starting equations for forest acoustics. The correla-

tion function of the sound field in a turbulent atmosphere can

also be expressed in terms of the radiance, which satisfies a

RTE. Equation (8.107) in Ref. 14 for the diffuse radiance Jd

obtained for a homogeneous turbulence (the cross sections do

not depend on Rc) coincides with Eq. (16). Thus, even though

the starting equations for sound propagation in a forest and

turbulent atmosphere are different, the equations for the cor-

relation function of the sound field have the same form.

Using this similarity, we can account for inhomogeneity

of atmospheric turbulence in formulations for the correlation

J. Acoust. Soc. Am. 143 (2), February 2018 Ostashev et al. 1197



function of the sound field. This correlation function can be

written as Eq. (13), in which the radiance J(Rc, n) satisfies

Eq. (14), where the DSCS is given by Eq. (5). This is a new

result for sound propagation in a statistically inhomogeneous

and anisotropic turbulence, which would be otherwise diffi-

cult to obtain.

IV. NARROW-ANGLE APPROXIMATION

Sound propagation in a forest and turbulent atmosphere

are usually studied in the narrow-angle approximation using a

PE. For sound propagation in a continuous random medium,

this approximation is valid if the sound wavelength k is smaller

than the scale L of medium inhomogeneities. (For sound propa-

gation in the atmosphere, L can be chosen as the outer scale of

turbulence, e.g., see Secs. 6.2 and 7.1.1 in Ref. 14.) For forest

acoustics, a similar requirement is a necessary but not sufficient

condition since a solid object scatters sound both in the forward

and backward directions. The RTE is applicable for any ratio

between k and L, but significantly simplifies if k � L. In this

section, following Refs. 13 and 25 and using the narrow-angle

approximation, the RTE is reduced to the second-moment PE.

The cross sections pertinent to sound scattering in a forest and

turbulent atmosphere are simplified in this approximation.

A. Second-moment PE

Let us consider sound propagation close to the x axis

and assume that the two points of observation, R1¼ (x, r1)

and R2¼ (x, r2), be located at the same range x (Fig. 3). In

this case, Rc¼ (x, rc) and Rd¼ (0,rd), where rc¼ (r1þ r2)/2

and rd¼ r1 – r2 are the center and difference coordinates,

respectively, in the plane perpendicular to the x axis.

In the narrow-angle approximation, we have

n ¼ ðnx; n?Þ � ð1� n2
?=2; n?Þ � ð1; n?Þ; (17)

where n?¼ (ny,nz) is the component of the vector n perpen-

dicular to the x axis. In the narrow-angle approximation, n?
is a small parameter; hereinafter, all calculations are done to

order n?. The radiance can be written as

JðRc; nÞ ¼ Jðx; rc; nx; n?Þ � Jðx; rc; 1; n?Þ
	 Jðx; rc; n?Þ: (18)

Similarly, we express the cross sections,

rðRc;nÞ � rðx;rc;1;n?Þ	 rðx;rc;n?Þ;
rdðRc;n

0;nÞ � rdðx;rc;1;n
0
?;1;n?Þ	 rdðx;rc;n

0
?;n?Þ:

(19)

Finally, the differential and integral operators appearing in

the RTE simplify,

n � @
@Rc
¼ nx

@

@x
þ n? �

@

@rc
� @

@x
þ n? �

@

@rc
;ð

4p
dX n0ð Þ �

ð
d2n0? 	

ð
dn0y

ð
dn0z: (20)

Hereinafter, if the limits of integration are not indicated,

they are assumed to be from –1 to 1. As a result of these

approximations, the RTE, Eq. (14), takes the form

@

@x
þ n? �

@

@rc
þ r x; rc; n?ð Þ

	 

J x; rc; n?ð Þ

¼
ð

rd x; rc; n?; n
0
?ð ÞJ x; rc; n0?ð Þ d2n0?: (21)

In Eq. (13), we assume for simplicity that k1¼ k. We

also express n? ¼ j?=k, where j? ¼ ðjy; jzÞ is a vector in

the plane perpendicular to the x axis, and write Jðx; rc; n?Þ
	 Jðx; rc; j?=kÞ as Jðx; rc; j?Þ. Then, Eq. (13) becomes

B x; rc; rdð Þ ¼
.c0

k2

ð
J x; rc; j?ð Þeij?�rd d2j?: (22)

With these notations, Eq. (21) takes the form

@

@x
þ j?

k
� @
@rc
þ r x;rc;j?=kð Þ

	 

J x;rc;j?ð Þ

¼ 1

k2

ð
rd x; rc;j?=k;j0?=k
� �

J x;rc;j
0
?ð Þd2j0?: (23)

As will be shown below, for sound propagation in a forest and

turbulent atmosphere the TCS and DSCS can be written as

rðx; rc; j?=kÞ � rðx; rcÞ; rdðx; rc; j?=k; j0?=kÞ
� rdðx; rc; ðj? � j0?Þ=kÞ: (24)

We apply the operator ð1=k2Þ
Ð

exp ðij? � rdÞ d2j? to both

sides of Eq. (23). After some manipulations and taking into

account Eqs. (22) and (24), we obtain a differential equation

for the correlation function of the sound field

@

@x
� i

k

@2

@rc@rd
þ r x; rcð Þ

	 

B x; rc; rdð Þ

¼ B x; rc; rdð Þ
1

k2

ð
rd x; rc; j?=kð Þeij?�rd d2j?: (25)

In this equation, we recall that r¼raþ rs. In the narrow-

angle approximation, rs can be written as

rs x; rcð Þ ¼
1

k2

ð
rd x; rc; j?=kð Þ d2j?: (26)

FIG. 3. Schematics of sound propagation in the narrow-angle approxima-

tion. The two points of observation, (x,r1) and (x,r2), are located close to the

x axis; rd is the distance between these points.
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Using this formula, we obtain the desired form of a differen-

tial equation for the correlation function,

@

@x
� i

k

@2

@rc@rd
þra x;rcð ÞþQ x;rc;rdð Þ

	 

B x;rc;rdð Þ¼ 0:

(27)

Here,

Q x;rc;rdð Þ¼
1

k2

ð
rd x;rc;j?=kð Þ 1�eij?�rdð Þd2j?: (28)

Thus, in the narrow-angle approximation, the RTE

reduces to Eq. (27). This a parabolic-type equation for the

correlation function of the sound field, B(x;rc,rd), and we refer

to this equation as the second-moment PE. This equation

is valid for sound propagation in a statistically inhomoge-

neous and anisotropic random medium (discrete or continu-

ous). Equation (27) is much simpler than the RTE and can be

readily solved numerically. If the approximation k1¼ k is not

used, the correlation function still satisfies Eqs. (27) and (28)

with k replaced by k1.

The results obtained in this subsection are valid for arbi-

trary cross sections. In Secs. IV B and IV C, we specify the

DSCS in a turbulent atmosphere and the trunk region of a

forest. Equation (27) is a new result in forest acoustics; in

atmospheric acoustics, this equation has been previously

used for analytical and numerical calculations (Secs. 7.4.4

and 11.2.3 in Ref. 14 and Refs. 26–28).

B. Turbulent atmosphere

In Eq. (5), we ignore terms proportional to n2
? and also

omit products of two small quantities such as n?U12 (this

term is small in comparison with U11 	 Uxx). As a result, in

the narrow-angle approximation, the DSCS in a turbulent

atmosphere simplifies,

rd x; rc; n0? � n?ð Þ ¼ pk4

2

UT x; rc; 0; k n? � n0?ð Þð Þ
T2

0

"

þ 4U11 x; rc; 0; k n? � n0?ð Þð Þ
c2

0

#
:

(29)

In this formula, the quantity in the square brackets can be

recognized as the effective spectrum of turbulence,

Ueff x; rc; 0; j?ð Þ ¼ UT x; rc; 0; j?ð Þ
T2

0

þ 4U11 x; rc; 0; j?ð Þ
c2

0

; (30)

where j? ¼ kðn? � n0?Þ. With these notations, Eq. (29) can

be written as

rd x; rc; j?=kð Þ ¼ pk4

2
Ueff x; rc; 0; j?ð Þ: (31)

This formula relates the DSCS pertinent to the RTE with the

effective spectrum Ueff, which plays a key role in the theo-

ries of sound propagation in a turbulent atmosphere in the

PE approximation (Chap. 7 in Ref. 14).

Substituting Eq. (31) into Eq. (26), the TCS and SCS are

expressed in terms of the effective spectrum,

r x;rcð Þ 	 rs x;rcð Þ ¼
pk2

2

ð
Ueff x;rc;0;j?ð Þd2j?: (32)

Substituting Eq. (31) into Eq. (28), we express the function

Q via the effective spectrum,

Q x; rc; rdð Þ ¼
pk2

2

ð
Ueff x; rc; 0; j?ð Þ 1� eij?�rdð Þ d2j?:

(33)

The first two statistical moments of the sound field in the

turbulent atmosphere in the PE approximation are analyzed

in Chap. 7 of Ref. 14. It is insightful to compare these statisti-

cal moments with those obtained above by considering the

RTE and cross sections in the narrow-angle approximation.

The extinction coefficient of the mean sound field c¼ rs/2,

which can be obtained with Eqs. (4) and (32), coincides with

Eq. (7.151) in Ref. 14. The second-moment PE for the corre-

lation function, Eq. (27) with ra¼ 0 and Q given by Eq. (33),

coincides with Eq. (7.158) in this reference. This correspon-

dence elucidates the connection between the RTE in the

narrow-angle approximation and the PE approximation.

C. Forest

For sound propagation in a forest in the narrow-angle

approximation, the TCS is still given by Eq. (12), where

a¼ 0. In this formula, in the considered high-frequency

approximation, the real part of the infinite series tends to kb.

As a result, the TCS becomes

rða ¼ 0Þ ¼ 4�hb ¼ 2�Sp: (34)

Here Sp¼ 2hb is the projected area of one cylinder. This

result, as it should, coincides with the high-frequency

approximation for the TCS for solid objects (e.g., Sec. 9.1 in

Ref. 29). In this approximation, half of the energy is scat-

tered in the narrow cone in the direction of sound propaga-

tion and the other half in other directions (e.g., Sec. 8.1 in

Ref. 30). Therefore, the TCS can be written as r¼rfþ ro,

where rf and ro are the TCSs in the forward and other

directions,

rf ¼ ro ¼ 2�hb: (35)

In the considered approximation, the angles a, a0; u, and

u0 appearing in Eq. (9) for the DSCS are small. From Eq.

(10), we have n0 � ð1; n0y; n0zÞ ¼ ð1;u0; a0Þ. The vector n can

be approximated similarly. As a result, Eq. (9) simplifies,

rdðn0? � n?Þ ¼ �k2h2b2 sinc2 khðn0z � nzÞ=2
� �

�
����X1

n¼0

Bn cos nðn0y � nyÞ
h i����

2

: (36)
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Introducing the vector j? 	 ðjy; jzÞ ¼ kðn0? � n?Þ, we have

rdðj?Þ ¼ �k2h2b2 sinc2ðhjz=2Þ
����X1

n¼0

Bn cos ðnjy=kÞ
����
2

:

(37)

In this formula, the functions Bn given by Eq. (11) can be

evaluated at a ¼ a0 ¼ 0,

Bn 0; 0ð Þ ¼ ien

pkb

J0n kbð Þ
H 1ð Þ0

n kbð Þ
: (38)

The forward TCS, rf, can also be calculated by substitut-

ing rdðj?Þ into Eq. (26). The integration over jz can be

reduced to evaluation of the integral
Ð1

0
sinc2ðgÞ dg, which is

equal to p/2. In the integral over jy, we introduce a new vari-

able u¼ jy/k. With these manipulations, we obtain

rf ¼
2�h

pk
Iu: (39)

Here, the integral Iu is given by

Iu ¼
ð1
�1

X1
n;m¼0

enem cos nuð Þcos muð Þ

� J0n kbð ÞJ0m kbð Þ

H 1ð Þ0
n kbð Þ H 1ð Þ0

m kbð Þ
� �� du: (40)

The value of Iu¼pkb can be obtained by taking into account

that rf is given by Eq. (35) in the considered approximation.

D. Sound propagation above an impedance ground in
a refractive, turbulent atmosphere

In many cases, sound propagation in a turbulent atmo-

sphere and forest should account for sound refraction and

interaction with the impedance ground. For a turbulent

atmosphere, Sec. 8.2.4 in Ref. 14 generalizes Eq. (27) for

these phenomena. The correlation function of the sound

field Bðx; r1; r2Þ ¼ hpðx; r1Þp�ðx; r2Þi satisfies the following

equation:

@

@x
� i

2k
M̂ þ Q x; r1; r2ð Þ

	 

B x; r1; r2ð Þ ¼ 0: (41)

Here, the operator M̂ is given by

M̂ ¼ r2
r1
�r2

r2
þ k2 c2

0

c2
eff x; r1ð Þ

� c2
0

c2
eff x; r2ð Þ

" #

þ 2ik

c0

v? x; r1ð Þ � rr1
þ v? x; r2ð Þ � rr2

� �
; (42)

where rr1
¼ ð@=@y1; @=@z1Þ and similarly for rr2

; ceff ¼ c
þ vx is the effective sound speed, c is the sound speed, and vx

and v? are the components of the wind velocity along the x
axis and perpendicular to it. The third and fourth terms in the

operator M̂ describe refraction and advection of sound with the

cross wind, respectively. In Eq. (41), the function Q is given by

Q x;r1;r2ð Þ ¼
pk2

4

ð
Ueff x;r1;0;j?ð Þ½

þUeff x;r2;0;j?ð Þ�2eij?� r1�r2ð Þ

�Ueff x; r1þ r2ð Þ=2;0;j?
� ��

d2j?: (43)

For a quasi-homogeneous turbulence, the effective spectrum

Ueffðx; r1; 0; j?Þ is a slow varying function with respect

to (x, r1). Therefore, we can approximate the effective spec-

trum as Ueffðx; ðr1 þ r2Þ=2; 0; j?Þ. The effective spectrum

Ueffðx; r2; 0; j?Þ can be approximated similarly. Substituting

these results into Eq. (43) and expressing Ueffðx; ðr1 þ r2Þ=
2; 0; j?Þ in terms of the DSCS, we obtain

Q x; r1; r2ð Þ ¼
1

k2

ð
rd x; r1 þ r2ð Þ=2; 0; j?
� �

� 1� eij?� r1�r2ð Þ½ � d2j?: (44)

This formula coincides with Eq. (28) if r1 and r2 are expressed

in terms of rc and rd, respectively. It can also be shown that if

refraction and advection are absent, Eq. (41) coincides with

Eq. (27).

Sound interaction with the ground is accounted for with

the impedance boundary conditions,

@B x; y1; z1; y2; z2ð Þ
@z1

����
z1¼0

¼ �ikbgB x; y1; z1; y2; z2ð Þjz1¼0;

(45)

@B x; y1; z1; y2; z2ð Þ
@z2

����
z2¼0

¼ ikb�gB x; y1; z1; y2; z2ð Þjz2¼0;

(46)

where bg is the normalized admittance of the ground. Equation

(41) with these boundary conditions has been used to study the

correlation function of the sound field and mean intensity prop-

agating above the impedance ground in a refractive turbulent

atmosphere.14,26,28

E. Sound propagation above an impedance ground in
a forest with micrometeorology

Equation (41) can also be used in forest acoustics, where

it is often important to account for atmospheric stratification

due to micrometeorology.31

For sound propagation in a forest, the term ra(x, rc)

should be included in the square brackets in Eq. (41) to

account for possible sound absorption,

@

@x
� i

2k
M̂ þ ra x; rcð Þ þ Q x; r1; r2ð Þ

	 

B x; r1; r2ð Þ ¼ 0:

(47)

This equation and the boundary conditions, Eqs. (45) and

(46), describe sound propagation above an impedance ground
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in a forest with temperature and wind velocity stratification.

Effective solutions of Eq. (47) have been developed for

sound propagation in a turbulent atmosphere (Sec. 11.2.3 in

Ref. 14 and Refs. 26–28) and can be used in forest acoustics.

Formulation of this equation is one of the main results of the

current paper.

As explained above, when sound propagates through tree

trunks, half of the energy is scattered in the direction of prop-

agation and the other half in other directions. To account for

the loss of energy due to scattering in other directions, the

effective ACS, reff
a , can be added into the square brackets in

Eq. (47). The effective ACS can be chosen as reff
a ¼ gro,

where ro is given by Eq. (35) and g is a numerical factor (or

adjustable parameter) of order unity.

V. INTERFERENCE BETWEEN DIRECT AND
GROUND-REFLECTED WAVES

In the atmosphere at relatively short propagation ranges,

the sound field at the receiver is a sum of the direct and

ground-reflected waves. The interference between these two

waves results in maxima and minima of the sound pressure

level (SPL) as a function of frequency. Scattering of sound

by atmospheric turbulence and trees diminishes the coher-

ence between the direct and ground-reflected waves, and can

significantly change the interference pattern. This phenome-

non is well studied for sound scattering by atmospheric tur-

bulence, but remains an important, unsolved problem in

forest acoustics. In this section, using the results pertinent to

sound propagation in a turbulent atmosphere, the interfer-

ence of the direct and ground-reflected waves in a forest is

considered.

A. Turbulent atmosphere

The geometry of the problem is shown in Fig. 4.

The source and receiver coordinates are Rs¼ (0, 0, hs) and

Rr¼ (x,0,hr), respectively. Here, hs and hr are the source and

receiver heights above the ground and x is the distance

between them. The subscripts s and r correspond to the

source and receiver, respectively.

The interference of the direct and ground-reflected

waves in a turbulent atmosphere is described in detail in Sec.

8.1 of Ref. 14. The mean-squared sound pressure due to a

unit strength point source is given by18,19

hpp�i ¼ 1

R2
1

þ jRj
2

R2
2

þ 2jRjCcoh

R1R2

cos k R2 � R1ð Þ þ b½ �:

(48)

Here, R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðhs � hrÞ2

q
and R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðhs þ hrÞ2

q
are the path lengths of the direct and ground-reflected waves,

and R ¼ jRj exp ðibÞ is the spherical-wave reflection coeffi-

cient. The indices 1 and 2 refer to the direct and ground-

reflected waves (Fig. 4). In the approximation of the near-

grazing sound propagation (x 
 hs,hr) and for the locally

reacting surface,R is given by

R ¼ Z sin h� 1þ 2F dð Þ
Z sin hþ 1

; (49)

where Z is the normalized specific impedance of the ground,

h is the grazing angle of the wave incident on the ground,

and

FðdÞ ¼ 1þ i
ffiffiffi
p
p

d expð�d2Þerfcð�idÞ
� �

(50)

is the boundary loss factor. Here, d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ikR2=2

p
ð1=Z þ sin hÞ

is the numerical distance and erfc is the complementary error

function.

In Eq. (48), Ccoh is the coherence factor, which describes

the coherence between the direct and ground-reflected waves

and is given by [Eq. (8.24) in Ref. 14 and Refs. 20,21]

Ccoh¼ exp �pk2x

2

ð1

0

dg
ð
Ueff 0;j?ð Þ 1� eigjzhsrð Þd2j?

" #
;

(51)

where hsr¼ 2hshr/(hsþ hr) is the maximum separation between

the direct path from the source to the receiver and the path

reflected from the ground. Expressing the effective spectrum

in terms of the DSCS [Eq. (31)], we obtain

Ccoh ¼ exp � x

k2

ð1

0

dg
ð1
�1

djy

"

�
ð1
�1

djz rd jy; jzð Þ 1� eigjzhsrð Þ
#
: (52)

These equations have been used to analyze the interference

between the direct and ground-reflected waves in a turbulent

atmosphere.

B. Forest

Given the similarity between equations for the statistical

moments of the sound field in discrete and continuous ran-

dom media, we argue that the equations in Sec. V A also

describe the interference between the direct and ground-

reflected waves in a forest. In particular, the mean-squared

sound pressure is given by Eq. (48), where the coherence

factor is determined with Eq. (52).

Substituting the DSCS in the trunk layer into Eq. (52),

we obtain the coherence factor for sound propagation in a

forest,
FIG. 4. (Color online) Schematics of the interference of the direct (1) and

ground-reflected (2) waves in the atmosphere.
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Ccoh ¼ exp ��xh2b2

ð1

0

dg
ð1
�1

djz

"

� ð1� eigjzhsrÞsinc2ðjzh=2Þ

�
ð1
�1

djy

X1
n;m¼0

BnB�m cos ðnjy=kÞ cos ðmjy=kÞ
#
:

(53)

In this formula, the integral over g can be readily evaluated.

The integral over jy equals Iu/(p2kb2)¼ 1/(pb). With these

manipulations, we obtain

Ccoh ¼ exp �xrf Fðhsr=hÞ
� �

¼ exp �2x�hbFðhsr=hÞ½ �:
(54)

Here, rf is determined with Eq. (35) and function F is

given by

F hsr=hð Þ ¼ 2

p

ð1
0

1� sinc 2ghsr=hð Þ½ �sinc2g dg: (55)

It follows from Eq. (54) that the coherence factor decreases

exponentially with increasing range x. The attenuation coef-

ficient equals the product of the forward TSC rf and function

F(hsr/h), which is plotted in Fig. 5. It follows from Fig. 5

that F(hsr/h) monotonically increases with increasing ratio

hsr/h. If both the source and receiver are located inside the

forest (hs� h and hr� h, respectively), it can be shown that

hsr=h �
ffiffiffi
2
p

. In this case, the maximum value of F is 0.646

(Fig. 5). It also follows from Fig. 5 that F � 0.5hsr/h if hsr/

h� 1. In this case, the coherence factor takes the form

Ccoh ¼ exp ð�xNbhsr=hÞ: (56)

Here, N¼ �h is the number of trees per unit area. According

to this equation in the high-frequency approximation, the

coherence factor depends on the propagation range (x), the

number of trees per unit area (N), the tree radius (b), the max-

imum separation between the direct and ground-reflected

waves (hsr), and the tree’s height (h). The coherence factors

Ccoh given by Eqs. (55) and (56) differ from that in Ref. 17

obtained by an engineering approach.

C. Numerical results

Consider the SPL relative to that in free space,

SPL ¼ 10 log ðhpp�iR2
1Þ; (57)

where hpp�i is given by Eq. (48). Formulations from Sec. V B

enable calculation of the SPL of the sum of the direct and

ground-reflected waves in a forest. In Fig. 6, the SPL is plotted

versus sound frequency f for the propagation range x¼ 75 m,

and the source and receiver heights hs¼ 1 m and hr¼ 1.5 m.

The tree height is h¼ 20 m, the number of trees per unit area

is N¼ 0.1 m�2, and the tree’s radius is b¼ 0.15 m. With these

parameters, hsr/h¼ 0.06 and the function F in the exponential

in Eq. (54) equals 0.094.

The normalized specific impedance of the ground is cal-

culated with the relaxation model,14,32

Z¼ q

X
1þ c�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ixse

p
� �

1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ixsv
p

� �	 
�1=2

: (58)

Here, X is porosity of the ground, q¼X�0.25 is tortuosity,

sv ¼ 2.q2=ðX/Þ is the vorticity relaxation time, where / is

the static flow resistivity, and se¼ 0.709sv is the entropy

relaxation time. The relationships between some of these

parameters follows from Ref. 33. The static flow resistivity

and porosity are chosen for the fermentation/humus layer in

a forest:34 /¼ 52 kPa s m�2 and X¼ 0.763. Furthermore, in

Eq. (58), x¼ 2pf is the angular frequency, .¼ 1.2 kg/m3 is

the air density, and c¼ 1.4 is the ratio of the specific heats in

air.

The relative SPL is plotted in Fig. 6 for the three cases:

sound propagation above an impedance ground in a free

FIG. 5. Function F(hsr/h) and its approximation hsr/(2 h) appearing in the

coherence factor.

FIG. 6. Relative SPL of the sum of the direct and ground-reflected waves

versus the sound frequency f. The three lines correspond to sound propaga-

tion above an impedance ground in a free atmosphere, a forest, and when

the direct and ground-reflected waves are incoherent. The propagation range

is x¼ 75 m, the source and receiver heights are hs¼ 1 m and hr¼ 1.5 m,

respectively, the tree height and radius are h¼ 20 m and b¼ 0.15 m, respec-

tively, and the number of trees per unit area is N¼ 0.1 m�2.
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atmosphere (Ccoh¼ 1), for the case when the direct and

ground-reflected waves are incoherent (Ccoh¼ 0), and in a

forest with parameters specified above. In the first case, the

interference between the direct and ground-reflected waves

results in maxima and minima of the SPL as a function of the

sound frequency f. In the second case, these maxima and

minima are completely suppressed and the SPL only slightly

depends on the frequency. Finally, for sound propagation in a

forest, the interference minima are reduced due to the coher-

ence loss between the direct and ground-reflected waves,

resulting in an apparent increase in the SPL (for this case

Ccoh¼ 0.935). Thus, the SPL of the sum of the direct and

ground-reflected waves significantly depends on the coher-

ence factor Ccoh.

D. Comparison with experimental data

In this subsection, the theoretical results are compared

with experimental data on sound propagation in different

forests reported in Ref. 17.

In Figs. 7–9, black crosses represent the SPL relative to

that in free space in one-third octave bands measured in a

poplar forest for three propagation ranges x¼ 40 m, 60 m,

and 80 m (Fig. 5 in Ref. 17). The forest had been planted,

with parallel, symmetrical rows of trees. The number of trees

per unit area was N¼ 0.042 m�2, the averaged tree radius

was b¼ 0.135 m, and the averaged tree height was h¼ 9 m.

Green crosses correspond to the SPL calculated with the

Nord2000 model.17 The predictions use the Delany-Bazley

impedance model of the ground,35 which is characterized by

one parameter, the effective flow resistivity U. The ground

impedance was not measured during the experiment, but

rather U was used as an adjustable parameter for the best fit

between theoretical and experimental data. As a result, the

values of U were varied with range; for Figs. 7, 8, and 9, the

effective flow resistivity was 90 kPa s m�2, 100 kPa s m�2,

and 90 kPa s m�2, respectively. Also, although the single-

parameter nature of the Delany-Bazley model is convenient,

it should be noted that the model is not physically

admissible.36

In Figs. 7–9, the red lines represent the SPL calculated

with Eq. (48). The dashed lines correspond to the case when

scattering in the forest is ignored (Ccoh¼ 1), while the solid

lines correspond to the case when Ccoh is calculated with Eq.

(54), where N, b, and h are the parameters of the poplar for-

est indicated above. The ground-impedance model is an

extension37 of the relaxation model,

Zgr ¼ cothð�ikgrdgrÞZ: (59)

Here, Z is given by Eq. (58), dgr is the thickness of a hard-

backed porous layer, and kgr is the sound wavenumber in the

layer,

kgr ¼
qx
c0

1þ c� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ixse

p
� �1=2

1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ixsv
p

� ��1=2

:

(60)

FIG. 7. Relative SPL versus the sound frequency in a poplar forest for prop-

agation range x¼ 40 m. Black crosses are experimental data (Ref. 17), green

crosses are predictions of the Nord2000 model, and the dashed and solid red

lines are predictions of the current paper.

FIG. 8. Same as in Fig. 7, but for the propagation range x¼ 60 m.

FIG. 9. Same as in Fig. 7, but for the propagation range x¼ 80 m.
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The ground parameters /¼ 110 kPa s m�2, X¼ 0.7, and

dgr¼ 0.05 m represent the best fit between the theoretical

predictions and experimental data.

For x¼ 40 m (Fig. 7), the theory developed predicts cor-

rectly the SPL at low and high frequencies, as well as the loca-

tion of the interference minimum, but overpredicts the depth

of the minimum compared with the data. Note that at the inter-

ference minimum, the experimental data exhibit some fluctua-

tions indicating that they might have been affected by one of

the factors described in the next paragraph. In Fig. 7, the root

mean square error (RMSE) between theoretical predictions

and experimental data is 2.59 dB. The Nord2000 model pre-

dicts a deeper interference minimum with the RMSE 2.63 dB.

At x¼ 60 m (Fig. 8), the theory developed agrees better with

experimental data; the RMSE is 1.29 dB. The RMSE for the

Nord2000 model is slightly smaller, 1.15 dB. For x¼ 80 m

(Fig. 9), the theory developed underpredicts the interference

dip. At this range, the RMSE is 3.36 dB, while that for the

Nord2000 model is smaller, 2.60 dB.

Several factors affect the comparison between the theory

and experiment. First, and probably most important, the ground

impedance Zgr was not measured during the experiment and

might have been range dependent. Furthermore, the ground

was not completely flat and homogeneous.17 Different values

of the effective flow resistivity U were used in Ref. 17 at dif-

ferent ranges, while in our predictions, the same ground param-

eters were used at x¼ 40 m, 60 m, and 80 m. Second, the

poplar forest was a regularly planted forest with possible sonic

crystal effects. Third, the experimental data are in one-third

octaves, while the theory developed is narrow band. Fourth,

as mentioned in Ref. 17, refraction in the forest might have

affected the experimental data at long ranges, while it is

ignored both in the theory developed and the Nord2000 model.

Last, but not least, modeling of trees as vertical cylinders of

the same radius and height, and ignoring scattering by branches

and canopy might result in some errors. A similar approach in

Ref. 7 yielded good agreement between theoretical predictions

and experimental data if the number of trees per unit area was

reduced by 60%. To overcome this possible issue, the SCS rd

can be measured experimentally and then used in Eq. (52) for

the coherence factor Ccoh.

Reference 17 also considers sound propagation in a pine

forest and an oak forest. Though not presented here for brev-

ity, the theory developed predicts that in the pine forest, the

effect of trees on the SPL is small. This conclusion agrees

with the Nord2000 model.17 In the oak forest, the theory

developed overestimates the scattering by trees as is the case

for the 80 m range in the poplar forest. The probable reason

is that the oak forest (Fig. 8 in Ref. 17) does not resemble

vertical cylinders; a SCS rd different from that given by Eq.

(54) should be used in this case.

VI. CONCLUSIONS

In this paper, it has been demonstrated that the equations

for the statistical moments of the sound field propagating in a

forest and turbulent atmosphere have the same form if, in these

equations, the scattering properties of the two media are

expressed in terms of the DSCS and TCS. This analogy enables

the advancement of forest acoustics using results known for

sound propagation in a turbulent atmosphere and vice versa; it

can also be used for studies of wave propagation in many other

discrete and continuous random media. Using this analogy, the

following new results were obtained in the paper.

The correlation function of the sound field in a turbulent

atmosphere was expressed in terms of the radiance J; see Eq.

(13). The radiance satisfies the RTE, Eq. (14), where the

DSCS is given by Eq. (5). This is a new result for sound prop-

agation through a statistically inhomogeneous and anisotropic

turbulence, which would be difficult to obtain with other

approaches.

The second-moment PE, Eq. (47), for the correlation

function of the sound field and mean intensity in a forest was

obtained. This equation and the corresponding boundary con-

ditions enable to account for temperature and wind velocity

stratification in a forest and sound interaction with the imped-

ance ground. Effective numerical techniques for solutions of

the second-moment PE have been developed for sound prop-

agation in a turbulent atmosphere and can be readily applied

to forest acoustics.

For the first time, the interference of the direct and

ground-reflected waves in a forest was formulated analytically.

This interference was then studied numerically by modeling

trunks as finite vertical solid cylinders. It was shown that

sound scattering by trunks reduces the interference minima in

the SPL as a function of frequency, thus, resulting in apparent

increase in the SPL. Theoretical predictions were compared

with experimental data presented in Ref. 17.

Other results known for sound propagation in a turbu-

lent atmosphere can be generalized to forest acoustics. These

include the variances and correlation functions of the phase

and amplitude fluctuations, the spatial coherence, the fre-

quency coherence, and pulse propagation.

The theories developed in this and companion

papers2,10,11 enable predictions of sound propagation in a for-

est provided that the DSCS and TCS are known. These papers

consider several approaches for determining these cross sec-

tions such as modeling the trunk layer with finite vertical cyl-

inders, branches with slanted finite cylinders, and the canopy

layer with diffuse scatterers. It remains to be seen for what

types of forests these approaches provide realistic DSCS and

TCS. These cross sections can also be measured experimen-

tally by comparing experimental data to theoretical predic-

tions and retrieving DSCS and TCS. For such measurements,

it seems preferable to use short pulses to separate sound scat-

tering in a forest from ground reflection.
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