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Abstract	

The	 high	 cost,	 complexity	 and	 multimodality	 of	 clinical	 data	 collection	 restrain	 the	

datasets	 available	 for	 predictive	 modelling	 using	 machine	 learning	 (ML),	 thus	

necessitating	 new	 data-efficient	 approaches	 specifically	 for	 limited	 datasets.	 This	

interdisciplinary	 thesis	 focuses	 on	 clinical	 outcome	 modelling	 using	 a	 range	 of	 ML	

techniques,	 including	 artificial	 neural	 networks	 (NNs)	 and	 their	 ensembles,	 decision	

trees	(DTs)	and	random	forests	(RFs),	as	well	as	classical	 logistic	regression	(LR)	and	

Cox	proportional	hazards	(Cox	PH)	models.	The	utility	of	ML	for	data-efficient	regression,	

classification	 and	 survival	 analyses	 was	 investigated	 in	 three	 clinical	 applications,	

whereby	 exposing	 the	 common	 limitations	 inherent	 in	 patient	 data,	 such	 as	 class	

imbalance,	 incomplete	 samples,	 and,	 in	 particular,	 limited	 dataset	 size.	 The	 latter	

problem	was	addressed	by	developing	a	methodological	 framework	for	 learning	 from	

datasets	 with	 less	 than	 10	 observations	 per	 predictor	 variable.	 A	 novel	 method	 of	

multiple	 runs	 overcame	 the	 volatility	 of	 NN	 and	 DT	 models	 due	 to	 limited	 training	

samples,	 while	 a	 surrogate	 data	 test	 allowed	 for	 regression	model	 evaluation	 in	 the	

presence	of	noise	due	to	limited	dataset	size.	When	applied	to	hard	tissue	engineering	

for	 predicting	 femoral	 fracture	 risk,	 the	 framework	 resulted	 in	 98.3%	 accurate	

regression	 NN.	 The	 framework	 was	 used	 to	 detect	 early	 rejection	 in	 antibody-	

incompatible	 kidney	 transplantation,	 achieving	 85%	 accurate	 classification	 DT.	 	 The	

third	 clinical	 task	 –	 that	 of	 predicting	10-year	 incidence	of	 type	2	diabetes	 in	 the	UK	

population	 –	 resulted	 in	 70-85%	 accurate	 classification	 and	 survival	 models,	 whilst	

highlighting	 the	 challenges	 of	 learning	 with	 the	 limited	 information	 characteristic	 of	

routinely	 collected	 data.	 By	 discovering	 unintuitive	 patterns,	 supporting	 existing	

hypotheses	 and	 generating	 novel	 insight,	 the	 ML	 models	 developed	 in	 this	 research	

contributed	 meaningfully	 to	 clinical	 research	 and	 paved	 the	 way	 for	 data-efficient	

applications	of	ML	in	engineering	and	clinical	practice.	
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Introduction	

 The	tacit	value	of	expert	insight	

In	his	1946	study	on	human	expertise,	Dutch	chess	master	and	psychologist	Adriaan	de	

Groot	 came	 to	 a	 striking	 revelation	 that	 for	 a	 given	position,	 grandmasters	 evaluated	

fewer	moves	than	less	experienced	players,	but	each	of	those	moves	were	among	the	five	

best	possible.	The	grandmasters,	he	noted,	were	able	to	‘immediately	“see”	the	core	of	

the	 problem	 in	 the	 position’	 [1].	 This	 ability	 of	 a	 practiced	 mind	 to	 eliminate	 poor	

solutions,	before	they	reached	the	conscious	thought,	 is	attributed	to	 insight.	Defining	

information	 as	 value-added	 raw	 data	 in	 a	 usable	 context,	 and	 knowledge	 –	 as	 an	

interconnected	 and	 structured	 system	 of	 information	 (Figure	 1.1),	 insight	 could	 be	

described	 as	 a	 sudden	 change	 in	 knowledge	 representation,	 often	 leading	 to	 a	

formulation	of	a	new	concept	or	awareness	of	a	solution	[2].	

	

Figure	1.1	Graphical	illustration	of	the	relationship	between	data,	information,	knowledge,	insight	and	
wisdom.	Adapted	from	[3].	
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For	 a	 society	 that	 has	 spent	most	 of	 the	 20th	 century	meticulously	 codifying	 existing	

human	knowledge	into	computer	algorithms,	insight	presented	a	challenge:	it	is	difficult	

to	reproduce,	systematise	or	even	explain	the	tacit	mechanisms	by	which	we	generate	

insight.	 Without	 statistical	 backing	 and	 reproducibility,	 insight	 is	 often	 viewed	 as	

intuition,	creative	genius,	or	luck,	therefore,	invalidating	its	use	in	systematic	decision-

making	 in	high-risk	 applications	 and	expert	domains	 such	as	medicine	 [4].	 	Although	

largely	a	product	of	 subconscious	processing,	 insight	originates	 from	 learning	complex	

patterns	 in	the	data,	that	results	in	an	often	spontaneous	awareness	of	the	underlying	

knowledge	 structure	 [2].	 	 Whether	 in	 chess	 or	 radiography,	 the	 more	 practice	 we	

undertake	 recognising	 relevant	 patterns,	 the	more	 efficient	 and	 focused	 our	 thinking	

becomes,	to	the	point	where	we	are	able	to	ignore	non-essential	knowledge	pathways	

and	come	up	with	an	insight	(Figure	1.1).			

Pattern	 recognition	 is	 a	 fundamental	 function	 of	 a	 human	 brain	 through	 which	 we	

integrate	sensory	information	about	the	surrounding	world	to	generate	advantageous	

behavioural	responses.	Whether	it	 is	 in	detecting	familiar	faces	and	creating	cognitive	

maps	 of	 the	 environment,	 or	 piecing	 together	 sounds	 into	 a	 language,	 throughout	

thousands	 of	 years	 of	 existence,	 humans	 have	 developed	 a	 remarkable	 capacity	 for	

pattern	 recognition	 from	sensory	 inputs.	We	are	even	capable	of	 identifying	 temporal	

patterns	when,	driven	by	our	rudimentary	aversion	of	uncertainty,	we	access	past	and	

present	information	to	predict	and	model	the	future	[5].	Nevertheless,	our	perception	of	

numerical	and	abstract	patterns	 is	often	limited	by	three-dimensional	spatial	thinking,	

making	 spontaneous	 insight	 improbable	 when	 multi-dimensional	 properties	 of	

observations	 are	 involved,	 such	 as	 that	 in	 identifying	 a	 rare	 disease	 from	 sporadic	

symptoms,	unrelated	tests	and	fragmented	medical	history.	
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 Teaching	machines	to	generate	insight	

From	drawings	and	clay	models	to	mathematics	and	physical	theories	–	we	have	always	

used	 instruments	 to	 augment	 our	 perception	 of	 sensory,	 numerical,	 and	 abstract	

patterns	and	aide	our	predictions.	Yet	only	with	the	advent	of	computers	we	have	been	

able	to	overcome	the	limitation	of	our	three-dimensional	spatial	thinking.	This	became	

possible	as	a	result	of	machine	learning	(ML)	–	a	paradigm	in	which	computers	are	taught	

to	learn	patterns	from	data,	as	opposed	to	being	pre-programmed	with	equations	that	

describe	 these	patterns.	 	By	 teaching	computers	 to	recognise	patterns	 in	 the	data,	we	

have	 been	 able	 to	 augment	 our	 pattern	 recognition	 in	 higher	 dimensions,	 provide	

statistical	backing	to	our	intuition,	and	make	probabilistically-founded	predictions	from	

existing	observations	[6].		

Formally,	ML	refers	to	an	area	of	artificial	intelligence	that	enables	autonomous	learning	

from	 input	 stimuli	 [7–9].	The	process	of	 learning	 in	 itself	 is	 a	 stepwise	 refinement	of	

patterns	that	results	from	repeated	hierarchical,	parallel	and	recursive	computations	on	

new	observations	 and	 experiences	 [4].	 As	with	 human	 learning,	where	we	 adapt	 our	

behaviour	based	on	observed	information	in	order	to	achieve	a	set	goal,	computers	are	

trained	 to	 generate	 adaptive	 responses	 to	 the	 input	 data	 when	 given	 an	 objective	

function.	 	 This	 fundamental	 property	 allows	 ML	 systems	 to	 generate	 insight	 from	

complex	patterns	through	exposure	to	data.		

The	 ML	 domain	 encompasses	 a	 diverse	 array	 of	 algorithms	 and	 modes	 of	 learning,	

including	 supervised,	 unsupervised,	 hybrid,	 ensemble,	 reinforcement,	 active,	

adversarial,	and	transfer	learning	[8–12].		In	predictive	modelling	that	is	the	focal	point	

of	this	thesis,	much	of	the	success	of	ML	has	been	attributed	to	supervised	learning	[6,13],	

in	which	machines	learn	to	map	inputs	to	pre-specified	desired	outputs	(ground	truth).	
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By	 comparing	 ML	 system	 predictions	 with	 the	 true	 outcomes,	 supervised	 learning	

essentially	 reproduces	 the	 “trial	 and	 error”	 approach	 of	 human	 learning	 [4].	 Once	

trained,	the	models	can	be	used	for	generalising	on	new	input	data,	i.e.	the	prediction	of	

outputs	for	sets	of	data	not	previously	encountered	by	the	model.	Supervised	learning	

has	proven	exceptionally	effective	in	solving	problems	that	involve	sorting	sets	of	data	

into	previously	known	classifications,	mapping	trends	(function	fitting),	and	forecasting	

the	output	from	sets	of	inputs	[14,15].	

Among	 numerous	 ML	 architectures,	 artificial	 neural	 networks	 (NN)	 are	 widely	

recognised	for	their	ground-breaking	ability	to	derive	insight	from	complex	non-linear	

patterns.	Originally	inspired	by	the	function	of	biological	neurons	in	the	central	nervous	

system	 [16,17],	 NNs	 are	 regarded	 as	 universal	 function	 approximators	 capable	 of	

working	 with	 both	 linear	 and	 non-linear	 systems	 [18,19].	 Various	 neural	 learning	

algorithms	 and	 network	 configurations	 have	 been	 developed	 throughout	 NN	 history	

[20],	allowing	NNs	to	be	tailored	to	the	demands	of	specific	analytical	tasks	ranging	from	

classification,	 forecasting	 and	 time	 series	 analysis	 to	 combinatorial	 problem	 solving,	

adaptive	 control,	 multisensory	 data	 fusion	 and	 noise	 filtering	 [21,22].	 Most	 recently,	

Deep	Learning	[23]	resulted	in	NNs	mastering	speech	recognition	[24]	and	surpassing	

humans	in	the	game	of	Go	[25].	Despite	their	adaptability,	NN	algorithms	are	sensitive	to	

the	quality	and	size	of	the	training	data.	Precisely	for	this	versatility,	promising	future	

potential,	and	realistic	 limitations,	 the	NN	was	chosen	 in	this	research	as	the	core	ML	

architecture	 for	 exploring	 the	 challenges	 of	 predictive	 modelling	 with	 limited	

information.	

In	 some	 high-risk	 clinical	 applications	 such	 as	 organ	 transplantation,	 where	 an	

erroneous	decision	can	be	fatal,	the	black-box	nature	of	NNs	render	them	inadmissible	

to	critical	decision	support.	In	applications	that	require	an	intuitive	model	to	be	used	by	
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the	 operating	 physician,	 decision	 tree	 (DT)	 learning	 offers	 an	 unprecedented	

transparency	of	the	statistical	pattern	associations	with	transplantation	outcomes.		

Although	largely	focused	on	NNs	and	DTs,	the	methodological	approaches	developed	in	

this	thesis	could	be	applied	to	other	ML	systems	for	clinical	risk	stratification,	including	

kernel-based	 learning	 [318]	 and	 Bayesian	 inference	 models	 [200].	 However,	 these	

systems	are	outside	of	the	remit	of	this	research	and	have	not	been	considered	in	this	

thesis.	

 Machine	learning	in	healthcare	

In	medicine	 and	 clinical	 epidemiology,	ML	 is	 beginning	 to	 enable	 predictive	 decision	

support	for	healthcare	professionals	in	diagnosing	diseases	[26],	predicting	mortality	or	

relapse	 [27],	 informing	 treatment	 strategies	 [28–30],	 simulating	 potential	 outcomes	

[31,32],	and	in	performing	numerous	other	patient-specific	analyses	[33].		ML	is	viewed	

as	an	indispensable	tool	for	biomedical	problems	involving	complex	heterogeneous	data	

when	conventional	statistical	 tools	 fail	 [34–36].	 In	applications	such	as	gene	selection	

and	classification	[37],	screening	heart	murmurs	in	children	[38],	and	predicting	breast	

cancer	 relapse	 [39],	ML	models	were	 able	 to	map	 highly	 nonlinear	 input	 and	 output	

patterns	 even	when	mechanistic	 relationships	 between	model	 variables	 could	 not	 be	

determined	due	to	pathologies	or	complexity.			

ML	is	largely	responsible	for	the	recent	breakthrough	in	human	genomics	[40,41]	and	

drug	discovery	[42,43],	thus	accelerating	our	transition	to	precision	medicine		[44,45].	In	

radiology	and	brain	imaging,	computer-aided	image	recognition	is	reshaping	the	clinical	

practice	and	reaching	above-human	diagnostic	accuracies	[46,47].	In	other	areas,	clinical	

researchers	equipped	with	ML	are	working	to	eradicate	AIDS	[28,32],	treat	diverse	types	

of	 cancer	 [29,48–50],	 and	 improve	 the	 efficiency	 of	 critical	 care	 [51].	 	 Despite	 these	



Chapter	1.		Introduction	

6	

notable	 advances	 in	medical	 research,	 the	 uptake	 of	ML	 in	 clinical	 practice	 has	 been	

slower	than	in	many	other	equally	high-risk	expert	domains	[52,53].	The	vast	potential	

of	ML	for	predictive	modelling	in	healthcare	remains	largely	unexplored.	It	is	argued	that	

the	further	development	of	ML	in	clinical	practice	is	impeded	by	limited	availability	and	

quality	of	relevant	data	[33,51,52].	Thus,	to	extend	the	benefits	of	ML	to	a	wider	range	of	

clinical	datasets,	it	is	essential	to	first	develop	methods	that	would	compensate	for	the	

limited	data.	This	brings	us	to	a	consideration	of	the	inherent	properties	of	clinical	and	

biomedical	data	that	make	ML	particularly	challenging.		

 Why	clinical	data	are	limited	

The	limitations	of	clinical	datasets	are	two-fold:	limited	availability	of	high	quality	data	

and	low	quality	of	available	data.		The	size	of	datasets	available	for	statistical	modelling	

is	 often	 restrained	 by	 the	 cost	 and	 complexity	 of	 medical	 experiments.	 Most	

experimental	datasets	stem	from	single-centre	studies,	and	do	not	meet	the	demands	of	

data-intensive	ML	systems	designed	for	Big	data	[54].	Multicentre	data	collaborations	

have	proven	to	possess	a	tremendous	potential	for	transforming	clinical	practice	[53],	

yet	 integration	 of	 datasets	 across	 multiple	 institutions	 remains	 problematic.	

Heterogeneity	 of	 study	 protocols,	 differing	 international	 and	 inter-institutional	

standards,	concerns	over	patient	confidentiality,	and	technical	incompatibility	–	all	pose	

barriers	to	an	open	sharing	of	medical	information	and	the	creation	of	the	substantive	

datasets	required	to	train	ML	systems.	Finally,	 in	some	medical	domains,	for	example,	

hard	 tissue	 engineering	 or	 organ	 transplantation,	 where	 associated	 interventions	 are	

invasive	and	potentially	harmful	 to	 the	patient,	 obtaining	 large	number	of	 samples	 is	

altogether	unrealisable.			
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Routinely	collected	patient	data,	such	as	those	found	in	electronic	medical	records	(EMR)	

and	clinical	data	management	systems,	are	generally	more	accessible	than	data	curated	

for	 research	 purposes.	 By	 reusing	 the	 standard	 clinical	 databases,	 it	 is	 possible	 to	

decrease	 the	cost	of	 large	volume	datasets	 for	 training	ML	systems.	Nevertheless,	 the	

quality	of	routinely	collected	data	is	often	limited	in	terms	of:		

• low	information	density	

• multimodality	and	heterogeneity	

• missing	values	and	censoring	

• class	imbalance	

• corruption	by	noise	and	errors		

Firstly,	 not	 all	 data	 are	 informative	 (Figure	1.1).	 Even	a	 large	EMR	database	may	not	

contain	the	necessary	information	to	reliably	infer	complex	patterns	relevant	to	a	clinical	

problem	at	hand.	For	 instance,	 in	order	 to	successfully	model	a	multifactorial	disease	

such	 as	 diabetes	mellitus,	 the	 data	must	 carry	 sufficient	 information	 to	 describe	 the	

pathophysiological	 mechanisms	 of	 the	 disease,	 to	 differentiate	 between	 patient	

phenotypes,	and	to	account	for	confounding	factors	and	the	reverse	causality	of	diabetes	

with	conditions	such	as	hypertension	and	obesity.		As	later	discovered	in	this	research,	

such	intricate	detail	is	not	presently	available	in	the	UK	healthcare	EMR	systems.		Some	

leading	groups	 in	clinical	ML	adaptation	argue	 that	 commercial	 clinical	 systems	were	

designed	“to	document	clinical	activity	for	reporting,	liability,	and	billing	reasons,	rather	

than	 for	 developing	 new	 algorithms”	 [51].	 The	 low	 information	 density	 of	 such	 EMR	

systems	make	even	large	datasets	small.	

Multimodality	of	a	clinical	dataset	refers	to	its	heterogeneous	sources:	free-text	reports	

by	 general	 practitioners,	 hospital	 discharge	 records,	 biochemistry	 tests	 and	 biopsies	

from	 laboratories,	 DNA	 sequencing	 data,	 vaccination	 history,	 X-ray	 and	 MRI	 scans,	
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medication	 prescriptions,	 and	 even	 medical	 insurance	 claims.	 Multimodality	 poses	

similar	problems	with	dataset	integration	as	the	multicentre	data	discussed	earlier,	but	

requires	 technologically	 different	 ML	 solutions	 that	 cascade	 or	 combine	 multiple	

learners	[55–57].	Variable	types	in	clinical	datasets	also	exhibit	heterogeneity:	discrete	

(ex.:	 family	 size,	 number	 of	 previous	 transplants)	 and	 continuous	 (ex.:	 age,	 blood	

pressure,	blood	glucose	 level)	numerical	variables,	nominal	 (ex.:	gender,	blood	group)	

and	 ordinal	 (ex.:	 degrees	 of	 pain,	 classes	 of	 antibodies)	 categorical	 factors,	 including	

binary	indicators,	as	well	as	image	matrices,	waveforms	and	time	series	–	all	of	which	

necessitate	a	mixed	modelling	approach	and	non-trivial	pre-processing	[17,58]	.		

Clinical	database	records	and	EMR	are	rarely	complete.	Missing	values	arise	in	routinely	

collected	datasets	for	reasons	such	as	unsystematic	recording,	equipment	failure,	time	

constraints,	 human	 error,	 system	 blackouts,	 and	 patient	 no-show.	 Some	 unrecorded	

values	 may	 be	 implicit	 (e.g.:	 sex	 of	 obstetrics	 patients,	 ethnicity	 in	 homogeneous	

communities)	or	sparse	by	design	(e.g.:	historic	data	for	a	newly-introduced	variable).	A	

particular	 type	 of	 missing	 data	 are	 right-censored	 observations,	 where	 the	 outcome	

variable	is	unknown	due	to	loss	of	the	patient	follow-up.	Censored	population	data	are	

particularly	 difficult	 for	 supervised	 learning;	 limited	 success	 has	 been	 achieved	with	

supervised	ML	systems	and	right-censored	data	in	general	[6,27,59–62].	The	cumulative	

effect	of	missing	values	across	several	variables	and	outcomes	of	interest	diminishes	the	

reliability	and	information	density	of	routinely	collected	clinical	datasets	for	training	and	

validating	accurate	ML	systems	[63–66].		

Class	imbalance	refers	to	a	limitation	where	one	type	of	outcomes	is	observed	in	a	dataset	

more	frequently	than	another.	High	imbalance	is	common	in	medical	classification	tasks,	

such	as	predicting	diseases	with	 low	prevalence	or	rare	variants	of	common	diseases,	

monitoring	abnormal	response	to	treatment,	and	preventing	clinical	equipment	failures	



Chapter	1.		Introduction	

9	

[26,47,67,68].	 Imbalanced	 sets	 also	 abound	 in	 population	 screening	 data,	 where,	

fortunately,	even	the	most	prevalent	diseases	such	as	diabetes,	only	affect	a	fraction	of	

the	population.	Training	ML	classifiers	with	 imbalanced	data	reduces	 their	sensitivity	

and	thus	overall	predictive	power,	unless	appropriately	accounted	for	[69–71].	

Finally,	 routinely	 collected	 patient	 data	 are	 inherently	noisy	 and	prone	 to	 errors.	 Any	

locality	 specific	 variations,	 errors	 or	 omissions	 in	 EMR	 aggregate	 at	 scale	 when	

combined	 with	 population-level	 datasets.	 An	 additional	 source	 of	 “noise”	 for	 ML	 in	

multimodal	 and	 multicentre	 databases	 results	 from	 inconsistencies	 in	 how	 a	 given	

disease	 symptom	 is	 coded,	 when	 certain	 variables	 are	 recorded,	 and	 how	 they	 are	

interpreted		[44,72,73].	For	instance,	the	UK	National	Health	Service	(NHS)	EMR	system	

accessed	 in	 this	 research	 utilises	 over	 300	 separate	 codes	 for	 direct	 identification	 of	

diabetes	 mellitus,	 not	 including	 400	 additional	 product	 codes	 related	 to	 diabetic	

medicine	prescriptions.	Even	smoking	status	identification	involves	analysis	of	over	120	

read	 codes,	 which	 make	 distinctions	 as	 subtle	 –	 and	 perhaps	 as	 prone	 to	 arbitrary	

assignment	 –	 as	 “137S.00	 Ex-smoker”	 and	 “137K.00	 Stopped	 smoking”.	 Despite	

continuous	 standardisation	 of	 clinical	 databases	 in	 the	 UK	 and	 globally,	 noise,	

inconsistencies	and	errors	have	remained	one	of	the	defining	limitations	of	a	domain	as	

complex	and	diverse	as	human	healthcare		[47,51,74,75].	

Combined,	the	quality	limitations	reduce	the	predictive	value	of	clinical	and	biomedical	

datasets.	Low	information	density,	high	heterogeneity,	missing	values,	class	imbalance	

and	errors	explain	why	a	seemingly	vast	multicentre	dataset	may	not	contain	a	sufficient	

number	 of	 observations	 to	 effectively	 approach	 the	 clinical	 problem	 at	 hand	 [53].	

Whether	using	large	routinely	collected	multicentre	databases,	or	single-centre	datasets,	

reductions	 of	 already	 scarce	 observations	 often	 result	 in	 datasets	 as	 small	 as	 10	

observations	per	predictor	variable.	
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 Challenges	of	learning	with	limited	information	

Small	datasets	jeopardise	the	predictive	potential	of	otherwise	powerful	ML	techniques.	

Efforts	 towards	 data-efficient	 learning	 are	 presently	 nascent	 in	 the	 ML	 community,	

which	has	been	traditionally	focused	on	solving	complex	problems	with	Big	data	[76].	

Learning	efficiency	considerations	are	emerging	in	Bayesian	optimisation	[77–79]	and	

reinforcement	 learning	 [80–82],	 however,	 the	 synthetic	 and	 real	 datasets	 implied	 in	

those	applications	are	in	the	order	of	tens	of	megabytes	[83]	–	far	beyond	what	is	readily	

available	 in	 many	 clinical	 applications,	 such	 as	 hard	 tissue	 engineering	 and	 organ	

transplantation.		

As	a	result,	ML	models	trained	with	insufficiently	large	datasets	often	exhibit	unstable	

behaviour	 in	 performance,	 i.e.	 sporadic	 fluctuations	 due	 to	 the	 sensitivity	 of	 the	 ML	

models	to	initial	parameter	values	and	training	order	[84–86].	Model	initialisation	and	

training	 algorithms	 commonly	 contain	 deliberate	 degrees	 of	 randomness	 in	 order	 to	

improve	 convergence	 to	 the	 global	 minimum	 of	 the	 associated	 cost	 function	

[14,85,87,88].	With	some	learning	algorithms,	the	order	within	which	the	training	data	

are	fed	to	the	model	can	affect	the	level	of	convergence	and	produce	erratic	outcomes	

[85,86].	 Moreover,	 limited	 test	 data	 availability	 poses	 a	 major	 obstacle	 to	 reliably	

assessing	 the	model	generalisation	on	new	samples.	Such	 inter-model	volatility	 limits	

both	the	reproducibility	of	the	results	and	the	objective	comparison	between	different	

NN	designs	for	future	optimisation	and	validation.	Previous	attempts	[89]	to	resolve	the	

stability	 problems	 in	 NNs	 demonstrated	 the	 success	 of	 k-fold	 cross-validation	 and	

ensemble	 methods	 for	 a	 medical	 classification	 problem;	 the	 dataset	 comprised	 53	

features	 and	1355	observations,	which	 corresponds	 to	25	observations	per	predictor	

variable.	 	 To	 the	 author’s	 best	 knowledge,	 effective	 strategies	 for	 classification	 and	

regression	tasks	with	less	than	10	observations	per	predictor	variable	have	not	yet	been	
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established,	 thus	 necessitating	 the	 development	 of	 a	methodology	 that	would	 enable	

successful	learning	from	limited	information.	

 Aims	and	objectives	

The	aim	of	 this	 thesis	 is	 to	develop	and	validate	practical	models	 for	clinical	outcome	

prediction	 and	 risk	 stratification	 based	 on	machine	 learning	with	 limited	 biomedical	

information.	Three	 important	clinical	applications	are	addressed	by	adapting	existing,	

and	 developing	 novel,	 supervised	 learning	 techniques	 for	 data-efficient	 regression,	

classification,	and	survival	modelling.	

In	 hard	 tissue	 engineering,	 the	 task	 is	 to	 devise	 a	 scalable	 model	 for	 hip	 fracture	

prediction	in	severe	osteoarthritis	based	on	a	small	secondary	dataset	of	35	trabecular	

bone	 samples.	 If	 successful,	 the	 original	 contribution	 of	 this	 work	 is	 two-fold:	 (1)	

enabling,	for	the	first	time,	an	accurate	and	non-invasive	estimation	of	the	mechanical	

strength	of	a	trabecular	tissue	from	a	handful	of	structural	and	physiological	parameters	

for	patients	suffering	from	a	severe	degenerative	bone	disease,	and	(2)	evidencing	that	a	

small	 NN	 model	 is	 capable	 of	 capturing	 complex	 mechanobiological	 patterns	 and	 of	

making	 inferences	 about	 the	 diseased	 bone	 quality	 that	 are	 inaccessible	 through	

mechanistic	modelling.		

In	kidney	 transplantation,	 the	 aim	 is	 to	 reduce	 the	 long-term	 failure	 risk	 of	 donor-

recipient	 antibody-incompatible	 transplants	 by	 providing	 nephrologists	 with	 an	

accurate	and	transparent	decision	support	tool.	The	complexity	of	developing	such	a	tool	

from	heterogeneous	single-centre	patient	data	is	that	it	must	combine	descriptive	and	

predictive	modelling	in	order	to	first	establish	dangerous	antibody	levels	and	key	risk	

factors,	 and	 then	 forecast	 the	 likelihood	 of	 acute	 and	 chronic	 transplant	 rejection.	 If	

successful,	this	tool	for	the	early	detection	of	acute	graft	rejection	would	be	the	first	of	
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its	kind	in	antibody-incompatible	kidney	transplantation,	pioneered	in	Europe	by	clinical	

collaborators	from	the	University	Hospitals	of	Coventry	and	Warwickshire.	

The	 diabetes	 screening	 project,	 conducted	 in	 collaboration	 with	 the	 Nuffield	

Department	 of	 Primary	 Care	 Health	 Sciences	 (University	 of	 Oxford),	 is	 aimed	 at	

modernising	the	existing	statistical	system	for	managing	the	early	prediction	of	diabetes	

in	NHS	primary	health	care.	The	development	of	a	dynamic	NN	model	for	10-year	type	2	

diabetes	 risk	 stratification	 from	 80,000	 routinely	 collected	medical	 records	 has	 been	

stipulated	by	the	study	protocol	[90].	It	has	been	previously	hypothesised	that	inclusion	

of	 blood	 glucose	 measurements	 can	 increase	 the	 prognostic	 value	 of	 the	 model.	 To	

validate	 this	 hypothesis,	 the	 NN	 model	 will	 be	 implemented	 and	 evaluated	 in	 two	

settings:	with	and	without	the	blood	glucose	information.		

It	is	important	to	note	that	the	ML	algorithms	developed	in	this	research	are	not	intended	

to	 be	 decision-makers:	 they	 are	 merely	 statistical	 tools	 that	 allow	 healthcare	

professionals	 to	 recognise	 non-trivial	 high-dimensional	 patterns	 that	 may	 exist	 in	

complex	clinical	data.		

The	above	applications	represent	three	common	clinical	tasks:	regression,	classification	

and	 survival	 analysis,	 respectively.	 They	 also	 reflect	 various	 aspects	 of	 limitations	

inherent	in	clinical	data.	The	trabecular	bone	and	kidney	transplant	datasets	are	limited	

by	size,	representing	single-centre	studies.	The	diabetes	dataset	is	of	a	large	size,	but	is	

grossly	 incomplete,	 censored	and	 imbalanced,	 representing	 the	 common	attributes	of	

routinely	collected	data.	
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The	objectives	of	this	thesis	are	listed	as	follows:	

1. to	identify	effective	strategies	for	managing	data	quality	limitations	in	the	three	

applications;	

2. to	 develop	 an	 application-independent	 methodological	 framework	 for	 small-

data	learning	(less	than	10	observations	per	predictor	variable)	and	to	validate	

the	framework	with	a	sufficiently	large	external	dataset;	

3. using	existing	(1)	and	novel	(2)	methodology,	to	design,	implement,	optimise	and	

test	 practical	 ML	 prototypes	 of	 the	 healthcare	 technology	 required	 for	 each	

application:	

a. an	 accurate,	 non-invasive	 diagnostic	 tool	 for	 depleted	 femoral	

compressive	strength	in	osteoarthritic	patients	of	all	genders	and	ages;	

b. an	 informative,	 statistically-grounded,	 and	 easy-to	 interpret	 decision	

support	 tool	 for	 the	 prediction,	 prior	 to	 transplantation,	 of	 likely	

transplant	outcomes;	

c. a	prognostic	 tool	 for	 early	 indicators	of	 type	2	diabetes	 in	 the	general	

population,	that	would	retain	high	sensitivity,	without	generating	a	large	

number	of	costly	false	alarms;	

4. to	use	the	clinical	insights	gained	from	the	ML	models	in	order	to	detect	patients	

at	 risk	 and	 improve	 short-	 and	 long-term	 individual	 outcomes	 in	 all	 three	

applications.		

 Thesis	structure	

The	 structure	 of	 the	 thesis	 is	 as	 follows.	 Chapter	 1	 introduces	machine	 learning	 and	

predictive	modelling	in	healthcare	in	the	context	of	expert	insight	generation	and	clinical	

data	limitations.	It	outlines	the	aims	and	the	objective	of	the	thesis.		Chapter	2	outlines	
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machine	learning	methodologies	relied	upon	in	this	work,	focusing	on	neural	networks,	

decision	trees,	and	ensemble	learning.	Chapter	3	presents	a	novel	methodology	for	the	

limited	 data	 underpinning	 this	 research,	 and	describes	 its	 validation	 using	 a	 publicly	

available	civil	engineering	dataset.	Chapters	4	and	5	explore	the	utility	of	the	proposed	

strategies	for	data-efficient	regression	modelling	on	hard	tissue	engineering	data,	and	

predictive	 classification	 on	 kidney	 transplantation	 data,	 respectively.	 Chapter	 6	

describes	the	challenges	of	modelling	diabetes	with	large,	routinely	collected	dataset	and	

how	 they	 have	 been	 addressed	 with	 several	 classification	 and	 survival	 models.	 The	

overall	contribution	and	key	discoveries	are	summarised	in	Chapter	7.			
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Methodology		

This	chapter	describes	the	underlying	methodology	for	the	design,	training,	optimisation	

and	validation	of	the	machine	learning	models	developed	for	the	applications	in	Chapters	

4,	 5	 and	 6,	 and	 serves	 as	 a	 foundation	 for	 the	 novel	 methodology	 for	 limited	 data	

presented	in	Chapter	3.		

The	chapter	is	organised	as	follows.	Sections	2.1	and	2.2	provide	an	in-depth	explanation	

of	 neural	 network	 and	 decision	 tree-based	 learning.	 Section	 2.3	 introduces	 ensemble	

learning	 and	 the	concept	of	 learner	diversity.	Section	2.4	presents	an	overview	of	 the	

statistical	models	 implemented	 in	 Chapters	 5	 and	 6,	 specifically	 the	Cox	 proportional	

hazards	model	and	logistic	regression.	Section	2.5	describes	performance	validation	and	

outlines	 the	 criteria	 for	 evaluation	 of	 regression,	 classification,	 and	 survival	 tasks.	

Section	2.6	details	the	software	and	hardware	resources	utilised	in	this	research.	Finally,	

the	sources	of	primary	and	secondary	data	are	acknowledged	in	Section	2.7.	

 Neural	network	learning	

2.1.1 Neural	network	topology	and	configuration	

NNs	 represent	 a	 set	 of	 highly	 interconnected	 neural	 computing	 elements	 called	

perceptrons	(also	known	as	neurons,	used	interchangeably)	that	respond	to	input	stimuli	
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by	 crudely	 imitating	 the	 non-linear	 learning	 that	 occurs	 in	 biological	 neurons.	 In	 the	

biological	nervous	system,	an	input	signal	propagates	through	the	dendrites	to	the	cell	

body,	where	a	response	is	generated	if	an	excitation	(activation)	threshold	is	reached,	and	

the	 response	 is	 then	 fired	 through	 the	 axon	 to	 the	 neighbouring	 neurons.	 The	

connections	between	neurons,	called	synapses,	strengthen	or	weaken	depending	on	how	

frequently	that	particular	synapse	is	used	to	compute	a	successful	response	[14,17].			

Imitating	 this	property	of	 the	 synapses,	NNs	adapt	 to	 changes	 in	 the	environment	by	

varying	the	strength	of	individual	neural	links,	referred	to	as	weights	w,	and	the	inherent	

inclination	of	each	neuron	to	produce	a	predefined	output,	termed	as	bias	b.	Figure	2.1	

represents	 a	 single	 perceptron	 that	maps	 an	 input	 vector	 : = [: V 	: , … : C ]	 to	 an	

output	vector		0 = [0 V 	0 , … 0 C ],	each	comprising	2	observations.		

	

Figure	2.1	Perceptron	

The	perceptron	activation	function	consists	of	a	summation	operation	Y	and	a	transfer	

function	Z.	Given	a	linear	Z,	the	perceptron	in	Figure	2.1	computes	the	output	as	follows:	

	 0 = :8 + b	 "].	2.1	

Given	 3	 predictor	 variables,	 the	 input	 becomes	 a	 2	x	3	 matrix		4 =
:	V
(V) ⋯ :	b

(V)

⋮ ⋱ ⋮
:V
(C) ⋯ :	b

(C)
,	

where	 jth	column	with	2	observations	is	one	predictor	variable	:; = :;
V 	:;

, … :;
C e

.	
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Scaling	this	simple	mathematical	model	of	a	single	perceptron	into	a	multilayer	network	

yields	a	powerful	predictive	model	capable	of	being	 trained	and	 learning	dynamically	

from	new	stimuli	in	order	to	map	its	inputs	to	outputs	[14,91].			

	

Figure	2.2	Multilayer	perceptron	network	(secondary	paths	are	greyed-out	for	legibility)	

	
The	diagram	in	Figure	2.2	is	an	example	of	a	multilayer	perceptron	network,	comprising	

3	 inputs,	one	hidden	 layer	with	$	neurons	and	one	output	 layer	with	1	output	neuron.	

The	 input	 to	 the	 NN	 does	 not	 strictly	 constitute	 its	 own	 layer,	 although	 there	 is	 no	

unanimous	consensus	in	the	ML	community	regarding	reference	to	the	separate	“input”	

layer	[14,17].	The	neurons	in	the	hidden	layer	connect	to	every	variable	:V, :,, … , :b	in	

the	input	4	supplied	to	the	network.	The	number	of	hidden	layers,	as	well	as	their	size	(i.e.	

the	number	of	neurons	$	in	the	layer)	are	NN	hyperparameters	that	can	be	tailored	for	a	

given	 application.	 The	 number	 of	 neurons	 in	 the	 output	 layer	 is	 determined	 by	 the	

number	of	output	variables	being	predicted.	In	the	network	depicted	in	Figure	2.2	the	

output	layer	size	is	1,	since	the	applications	considered	in	this	thesis	only	required	one	
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output	0.		The	set1	of	biases	b	=	{. V , . , }	corresponds	to	the	number	of	neurons	in	the	

network,	 which	 in	 this	 example	 is	 equal	 to	 $	 biases	. V = [	.V
V 	.,

V …	.h
V ]	 for	 the	

hidden	layer	and	one	bias	.(,)	for	the	output	neuron.		

The	matrix	of	input	weights	67 =
8VV ⋯ 8Vh
⋮ ⋱ ⋮
8bV ⋯ 8bh

	comprises	elements	8;i 	that	connect	

the	jth	variable	:; 	with	a	kth	neuron	in	the	hidden	layer.	The	column	vector	of	layer	weights		

89 = 8VB		8,B …8hB
e
comprises	 elements	8iB 	 that	 connect	 each	 kth	 neuron	 in	 the	

hidden	layer	to	the	output	neuron	(in	case	of	multiple	outputs	67 		is	a	matrix).	There	is	

no	mathematical	distinction	between	how	8;i 	and	8iB	are	treated;	the	input	and	layer	

weights	comprise	a	set	of	network	weights	6 = {67, 89}.	In	a	fully-connected	NN	every	

neuron	in	a	given	layer	is	connected	to	every	neuron	in	the	next	layer,	but	not	to	other	

neurons	in	the	same	layer	[17].	The	level	of	connectivity	can	be	customised	for	a	given	

application,	producing	more	exotic	NN	topologies	such	as	convolutional	layer	networks	

[92],	residual	networks	[93]	and	Echo	state	networks	[94].			

The	multilayer	perceptron	 in	Figure	2.2	 is	 referred	 to	as	a	 feedforward	NN,	due	 to	 its	

acyclic	signal	flow	in	which	the	signal	is	propagated	from	the	inputs	to	outputs	and	the	

connections	between	neurons	do	not	 form	 loops.	Other	 types	of	 flow	exist,	 such	as	 in	

recurrent	 NNs	 [95],	 auto-encoders	 [96,97],	 Hopfield	 networks	 [98]	 and	 Boltzmann	

machines	[99].		What	makes	feedforward	NNs	particularly	versatile	and	effective	in	the	

applications	 considered	 in	 this	 research	 is	 that	 they	 are	 capable	 of	 approximating	

arbitrarily	 closely	 any	 continuous	 function	 of	 real	 valued	 inputs.	 This	 notion	 of	

feedforward	NNs	 	as	universal	approximators	has	been	elegantly	proven	by	Hornik	 in	

1990	[19].	

																																								 																					
1	Braces	{	}	denote	sets.	
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2.1.2 Neural	network	training	with	backpropagation	

NN	 training	 involves	 determining	 values	 for	weights	6	 and	 biases	.	 that	 reduce	 the	

overall	network	cost	 function.	The	cost	 function	kZ(0, 1)	refers	to	the	error	/	between	

predicted	0	and	target	1	output	value,	i.e.	/ = kZ 0, 1 .	In	supervised	learning,	a	training	

dataset	l = {4, 1},	 comprising	 the	 pairs	 of	 input	4	 and	 target	 1	 = [1 V 	1 , … 	1 C ],	 is	

supplied	to	the	network.	Hence,	the	aim	of	training	can	be	defined	as	using	observations	

in	l	to	determine	the	set	of	NN	parameters	%	 = 	 {6, .}		that	minimise	kZ(0, 1).	This	task	

is	two-fold:	it	requires	an	optimisation	algorithm	to	minimise	kZ(0, 1)	and	a	mechanism	

to	adapt	the	parameters	in	%	in	response	to	changes	in	kZ 0, 1 .	

In	the	NN	applications	considered	in	this	research,	i.e.	in	Chapters	3,	4	and	6,	the	task	of	

training	NNs	 is	 solved	by	backpropagation	 –	 a	powerful	 algorithm	 that	has	 remained	

dominant	 in	 NN	 development	 and	 proved	 its	 superiority	 through	 	 time	 [100–104].	

Backpropagation	combines	the	chain	rule	[105],	to	propagate	the	slope	of	/	through	the	

network,	 with	 an	 optimisation	 algorithm,	 such	 as	 gradient	 descent,	 to	 compute	 the	

necessary	changes	to	network	parameters	in	%	to	reduce	/.	The	use	of	backwards	flow	

through	 non-linear	 systems	 had	 been	 well	 known	 in	 control	 theory	 for	 many	 years	

before	 Paul	Werbos	 proposed	 their	 application	 to	 NNs	 [101].	 	 The	 resulting	 process	

created	 two	passes	of	 information	 flow	 through	a	network	 for	each	 training	 iteration	

(epoch).		In	the	forward	pass,	an	output	0	was	computed	from	the	training	sample	in	the	

input	4.	In	the	backward	pass,	the	error	/	is	propagated	starting	from	the	output	layer	

through	the	hidden	layers	to	the	input.	In	so	doing,	backpropagation	updates	the	values	

of	 the	 weights	6	 and	 biases	 .	 for	 each	 neuron,	 while	 accounting	 for	 their	 overall	

contribution	to	the	predicted	result.		The	forward	and	backward	steps	iterate	until	the	

error	function	is	minimised,	as	described	in	Figure	2.3.		
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Figure	2.3	Stages	of	NN	training	with	backpropagation	

What	 constitutes	 a	 single	 epoch	 depends	 on	 whether	 online	 (also	 referred	 to	 as	

stochastic)	or	batch	learning	is	involved.	In	online	learning,	each	data	sample	presented	

is	 followed	 by	 a	 weight	 update,	 while	 for	 batch	 learning,	 all	 data	 samples	 from	 the	

training	set	are	presented	to	the	NN,	and	the	weight	update	is	calculated	for	each	sample	

and	 combined	 prior	 to	 every	 update	 event	 [106].	 Online	 learning	 requires	 less	

computations	for	each	weight	update,	but	it	is	very	sensitive	to	the	outliers,	thus	making	

it	impractical	for	the	clinical	applications	considered	in	this	research.	Despite	being	more	

computationally	 demanding,	 batch	 learning	 yielded	 robust	 performance	 in	 the	 NNs	

developed	in	Chapters	3,	4	and	6.		

2.1.3 Transfer	functions,	cost	functions	and	initialisation	

Sigmoidal	functions,	such	as	SmnNQn : = V

VoEpq
,	were	particularly	suitable	for	the	hidden	

layers	of	the	NNs	developed	in	this	research,		due	to	their	flexibility	in	modelling	nearly	

linear,	nearly	constant	and	curvilinear	functions	[17].	Alternative	transfer	functions	are	

further	discussed	in	Appendix	A.1.	

The	error	function		/ = kZ(0, 1)		is	an	important	part	of	the	backpropagation	algorithm,	

since	 it	 determines	 the	 dynamics	 of	 the	 learning	 process.	 For	 the	 regression	 tasks	

addressed	in	this	research,	mean	squared	error	(MSE)	was	particularly	well-suited	for	its	
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efficiency	and	ease	of	interpretability.	For	a	training	dataset	with	2	observations	in	batch	

learning	MSE	is	defined	as:	

	 LM/ =
1

2
(1u − 0u)

,

C

uwV

	 "].	2.2	

Since	 the	 partial	 derivative	 of	 this	 squared	 error	 function	 is	 simply	 the	 difference	

between	 the	 target	and	actual	output,	 i.e.	x//x0 = 1u − 0u ,	 this	 facilitated	 the	efficient	

computation	of	weight	updates	during	numerous	iterations	of	NN	training.	

The	classification	models	developed	in	Chapter	6	used	cross	entropy	error,	defined	as:	

	 ?/ = − 1u ln 0u + 1 − 1u ln 1 − 0u

C

uwV

	 "].	2.3	

The	 logarithm	 term	ln 1 − 0u 	 in	 "].	 2.3	 accounts	 for	 the	 distance	 between	 the	

continuous-valued	prediction	and	the	binary	target	class,	providing	superior	granularity	

in	computing	the	classification	errors.	An	additional	advantage	of	cross	entropy	for	large	

datasets,	as	encountered	in	Chapter	6,	is	that	the	rate	at	which	the	NN	learns	is	directly	

controlled	by	the	magnitude	of	cross	entropy	in	the	output	[23,107].	

For	most	error	functions,	backpropagation	is	a	non-convex	optimisation	problem,	where		

convergence	 to	 a	 global	 optimum	 is	 not	 guaranteed;	 instead,	multiple	 “good	 enough”	

local	minima	are	often	considered	 in	practice	 [104,107].	 Since	NN	may	converge	 to	a	

different	 local	minimum	for	diverse	 initial	 conditions,	NN	 initialisation	plays	a	crucial	

role	in	the	optimality	of	the	solution	[21,22,107].	The	concept	of	NN	initialisation	with	

random	starting	values	of	6	is	rooted	in	the	symmetry	of	the	NN	topology:	if	the	initial	

weights	are	equal	across	all	neurons,	then	at	any	given	layer	all	the	outputs	would	be	

equal	too,	thus	stalling	the	training	process.	The	magnitude	of	starting	values	of	%	must	
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be	 chosen	with	 care:	 too	 small	 and	 the	 training	 does	 not	 proceed,	 too	 large	 and	 the	

perceptron	 transfer	 function	 becomes	 saturated	 [104].	 In	 order	 to	 ensure	 that	 the	

sigmoidal	neurons	were	 activated	 in	 their	 linear	 region,	Nguyen-Widrow	 initialisation	

was	implemented	[108].	The	small	positive	and	negative	initial	values	of	%	generated	by	

this	 algorithm	 spread	 the	 active	 region	 of	 each	 neuron	 evenly	 across	 the	 layer	 input	

space.	The	advantage	of	this	approach	is	that	the	resulting	NN	learns	the	linear	part	of	

the	4	to	0	mapping	first,	before	embarking	on	the	more	difficult,	non-linear	part	[104].		

2.1.4 Optimisation	algorithms	

An	optimisation	(training)	algorithm	defines	the	direction	and	the	magnitude	of	the	NN	

parameter	update	in	response	to	the	derivatives	computed	in	the	backward	pass	[109].	

The	choice	of	algorithms	defines	the	behaviour	of	a	given	backpropagation	network.	For	

the	applications	considered	in	this	work,	two	backpropagation	algorithms:	Levenberg-

Marquardt	algorithm	 [110]	 and	 conjugate	 gradient	method	 [111],	 proved	particularly	

effective.	 Understanding	 the	 algorithms’	 behaviour	 enables	 appropriate	 choices	 in	 a	

given	NN	training	task.	Since	these	are	standard	optimisation	functions,	their	derivations	

are	provided	in	Appendix	A.2	and	references	therein.	

The	 Levenberg-Marquardt	 algorithm	was	 used	 for	 the	 regression	 tasks	 addressed	 in	

Chapters	3	and	4	because	it	combined	the	sensitivity	of	the	Gauss-Newton	method	[112]	

with	 the	 speed	 of	 convergence	 of	 a	 simple	 gradient	 descent,	 making	 it	 suitable	 for	

repeated	training	with	a	MSE	cost	function	on	small-sized	datasets.	This	was	useful	when	

simulating	 thousands	 of	 NNs	 during	 the	 development	 and	 validation	 of	 the	 new	

methodological	framework,	presented	in	Chapter	3,	without	sacrificing	accuracy.	

The	 conjugate	 gradient	method,	 known	 for	 its	 energy	 minimisation	 applications	 in	

physics	[113,114],	was	an	obvious	choice	for	the	optimisation	of	the	cross	entropy	cost	
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function	used	by	the	classification	NNs	in	Chapter	6.	A	modification	introduced	by	Møller	

[115]	was	implemented	to	the	standard	conjugate	gradient	method	by	scaling	the	step	

size,	 therefore	 avoiding	 otherwise	 computationally-intensive	 line	 search.	 This	

sufficiently	accelerated	the	algorithm	convergence	and	made	scaled	conjugate	gradient	

(SCG)	feasible	even	for	the	large-data	ensemble	NN	simulations.		

With	finite	data,	determining	whether	the	NN	training	algorithm	has	converged	is	not	

trivial	 [116–118].	 Instead,	 practical	 NNs	 employ	 a	 combination	 of	 several	 stopping	

criteria	which	have	been	used	in	the	NNs	developed	in	Chapters	3,	4	and	6.	These	are:	

• minimum	gradient	(usually	<0.00001)		

• minimum	error	(usually	<0.00001)	

• maximum	number	of	iterations	(usually	1000s)	

• maximum	training	duration	(pre-defined	time	in	seconds)	

Combined,	 these	 criteria	 ensured	 that	 the	 NN	 training	 process	 would	 terminate	

eventually:	when	 the	 cost	 function	 ceased	 to	 change	 significantly	 or	 the	 value	 of	 the	

prediction	 error	 became	negligibly	 small;	 or	 by	 simply	 timing	 out	 because	 either	 the	

maximum	number	of	iterations	was	completed	or	the	pre-allocated	time	expired.		

The	stopping	criteria,	however,	do	not	prevent	overfitting,	 thus	necessitating	auxiliary	

means	of	controlling	the	training	process,	which	enable	the	NN	to	generalise	beyond	the	

training	cohort.	One	way	to	achieve	this	is	to	monitor	NN	performance	on	a	randomly	

sampled	validation	cohort	and	to	stop	training	early	when	the	validation	error	ceases	to	

decrease	 for	 -	 consecutive	 iterations	 –	 a	 technique	 aptly	 named	 early	 stopping.	

Alternative	 methods	 for	 preventing	 over-parametrisation	 in	 NNs	 are	 regularisation	

(Section	3.5.2)	 	which	penalises	 large	weights,	and	dropout	[119]	 	which	removes	 the	

“weakest”	neurons.	
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 Decision	tree	learning	

In	 the	 context	 of	 ML,	 decision	 trees	 (DT)	 refer	 to	 hierarchical	 learners	 that	 map	 the	

interrelated	consequences	(leaves)	of	given	decisions	(branches)	based	on	a	predefined	

reasoning	process.		The	algorithm	for	classification	and	regression	trees	(CART)	was	first	

formalised	by	Breiman	et	al.	[120]	and	has	since	been	used	for	descriptive	and	predictive	

modelling	in	medicine	[121].	By	determining	the	answer	to	individual	decisions,	the	tree	

makes	a	prediction	about	a	parameter	of	interest.	DTs	are	nonparametric,	i.e.	no	prior	

assumptions	are	made	regarding	the	underlying	distribution	of	the	predictor	variables	

[120].	

DTs	 produce	 a	 graphical	 mapping	 of	 input	 conditions	 to	 likely	 outcomes	 and	

probabilities,	rendering	them	particularly	useful	when	decisions	have	to	be	taken	with	

limited	information	and	reviewed	by	an	expert.	The	graphical	nature	of	DTs	makes	them	

indispensable	 in	 clinical	 applications,	 where	 non-technical	 users	 might	 be	 seeking	

intuitive	and	clear-cut	representations	of	the	complex	relationships	in	patient	data.	DTs	

can	 be	 used	 in	 medical	 expert	 systems	 for	 decision	 making,	 classification,	 and	

probabilistic	prediction	[121–124].		

2.2.1 Nomenclature,	topology	and	configuration	

Formally,	a	tree	is	an	acyclic	(no	loops)	directional	(top-to-bottom)	graph	with	nodes	and	

edges	organised	in	a	hierarchical	structure	[125].	In	a	DT,	decisions	are	represented	by	

branches,	 which	 are	 arranged	 in	 a	 particular	 order	 starting	 from	 a	 root	 node	 and	

terminating	at	a	leaf	node.		A	data	sample	traverses	through	the	tree	from	the	root	to	the	

leaf	following	a	unique	path	determined	by	the	decisions	at	each	branch	along	the	way.		
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A	binary	DT,	such	as	that	used	for	the	two-class	prediction	tasks	described	in	Chapters	5	

and	6,	 	 separates	 the	 input	data	4u 	 at	 a	 ith	parent	 node	2u 	 into	 two	subsets:	Mu
BE}~	 and		

Mu
�uÄÅ~ ,	 so	 that	4u = Mu

BE}~ ∪ 	Mu
�uÄÅ~	 and	Mu

BE}~ ∩ 	Mu
�uÄÅ~ = 	∅,	 i.e.	 the	 subsets	 are	 disjoint	

(Figure	2.4).	The	child	nodes	2uoV	and	2uo,	operate	on	the		Mu
BE}~	and		Mu

�uÄÅ~	and	divide	

the	dataset	into	four	by	producing	further	child	nodes	2uoÑ,	2uoÖ,	2uoÜ	and	2uoá.	When	a	

node	cannot	be	split	further,	i.e.		only	one	observation	remains	in	its	input	set	Mu 	or	when	

a	 pre-defined	 degree	 of	purity	 is	 reached,	 it	 becomes	 a	 terminal	 leaf	 node.	 A	 node	 is	

considered	pure	when	all	of	the	observations	in	that	node	are	of	the	same	target	value.	

The	degree	of	impurity	is	measured	by	the	proportion	of	observations	in	the	node	that	

do	not	agree	with	the	majority	target	value.	

The	binary	split	continues	until	every	branch	terminates	with	a	leaf	node,	i.e.	all	of	the	

observations	 are	 assigned	 to	 a	 leaf.	 The	 target	 values	 could	 be	 continued-valued	

(regression	DT)	or	categorical	(classification	DT).		The	binary	classification	tree	model	

utilised	in	this	work	follows	Breiman’s	time-tested	CART	algorithm	[120]	as	described	

below.	

	

Figure	2.4	A	binary	DT	topology:	a	root	node	(blue),	three	branch	nodes	(orange),	and	5	leaf	nodes	(green)	
across	3	levels.		
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2.2.2 Decision	tree	training	

Training	 (or	 growing)	 a	 DT	 involves	 selecting	 which	 predictor	 variable	 is	 to	 be	

considered	at	each	node,	and	how	this	variable	should	be	split.	In	order	to	determine	the	

optimal	sequence	of	decisions	that	makes	a	fully-grown	DT,	the	CART	algorithm	employs	

recursive	 binary	 partitioning	 [17,120].	 In	 recursive	 binary	 partitioning	 an	 exhaustive	

search	of	all	possible	split	values	is	performed	across	all	potential	predictor	variables.	

This	greedy	algorithm	divides	the	predictor	variable	range	into	a	number	of	possible	split	

points,	calculates	for	each	candidate	split	a	measure	of	quality,	and	chooses	the	best	one	

to	 produce	 two	 child	 nodes.	 Split	 criteria	 are	 discussed	 further	 in	 Section	 2.2.3.	 The	

process	is	repeated	in	a	recursive	manner	for	each	subsequent	child	node,	until	the	node	

is	either	pure,	or	when	splitting	no	longer	increases	predictive	accuracy	[17].	This	top-

down	 iterative	process	 for	DT	 learning	 is	 summarised	 in	Figure	2.5.	Since	not	all	 leaf	

nodes	 in	a	DT	are	necessarily	pure,	 there	exists	 the	notion	of	a	classification	error	–	a	

weighted	average	of	the	individual	leaf	impurities,	where	weights	are	the	proportions	of	

records	in	each	leaf.		

	

Figure	2.5	Recursive	binary	partitioning	for	DT	learning	
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The	number	of	possible	 splits	 is	defined	by	 the	data	 themselves.	 In	 this	 research,	both	

discrete	and	continuous	variables	were	considered.	A	continuous	variable	could	be	split	

between	 any	 two	 adjacent	 values	 	 present	 among	 the	 observations,	 or,	 alternatively	

categorised	 into	 a	 smaller	 number	 of	 ranges	where	 appropriate	 [17].	 For	 categorical	

variables,	all	the	possible	combinations	of	categories	must	be	considered.	The	number	of	

these	combinations	grows	exponentially	with	the	degrees	of	freedom	(levels)	present:	a	

binary	 variable	 offers	 a	 single	 possible	 split,	 whilst	 a	 variable	 with	 S	levels	 could	 be	

partitioned	 in	 2B–V– 1	 ways.	 Hence	 finding	 an	 optimal	 binary	 split	 for	 a	 continuous	

predictor	 is	often	 less	 computationally	 intensive	 than	 for	a	 categorical	predictor	with	

multiple	levels.		

2.2.3 Split	criteria		

The	quality	of	a	candidate	split	is	generally	determined	by	the	homogeneity	of	the	target	

variable	in	the	child	nodes	it	produces	[17].	This	can	be	measured	in	a	number	of	ways.	

For	regression	DTs,	the	most	common	split	criterion	is	mean	squared	error,	which	has	

already	been	introduced	in	Section	2.1.3.	For	classification	DTs,	the	two	most	common	

split	criteria	are	diversity	and	information	gain.		

Information	 gain	 (or	 entropy	 reduction)	 is	 based	 on	 the	 concept	 of	 entropy	 from	

information	theory	[126,127].	Entropy	(also	known	as	Shannon’s	measure	of	uncertainty)	

refers	 to	 the	 average	 length	 of	 the	 message	 required	 to	 transmit	 information	 in	

variable	:.	The	entropy	of	:	whose	å	classes	have	probabilities	3V, 3,, … , 3i ,	is:	

	 ℎ : = −	 3D log,(3D)

i

DwV

	 "].	2.4	
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Note	 that	 the	 logarithm	of	base	2	 is	used	because	 the	message	 length	 is	measured	 in	

binary	(0	or	1).	An	obvious	problem	arises	when	a	node	is	pure,	and	thus	the	probability	

of	one	class	is	zero:	would	ℎ(:)	be	undefined?	An	analogy	with	signal	processing	–	where	

information	 is	a	signal	 and	entropy	 is	equivalent	 to	noise	 –	 shows	 that	 the	amount	of	

noise	in	a	crystal-clear	signal	is	zero,	as	is	the	entropy	of	a	pure	node.				

Based	on	 this	definition	of	entropy,	 the	 information	gain	êë	for	2u 	 is	computed	as	 the	

difference	between	the	entropy	at	2u 	and	the	weighted	sum	of	entropy	of	its	child	nodes	

2uoV
BE}~	 and	 2uoV

�uÄÅ~ ,	 where	 the	 weights	 3BE}~	and	 3�uÄÅ~	 represent	 the	 proportion	 of	

observations	in	Mu 	that	reach	each	child	node:	

	 êë		 = ℎ :u − 	 [3BE}~	ℎ(Mu
BE}~) + 3�uÄÅ~ℎ(Mu

�uÄÅ~)]	 "].	2.5	

It	 is	 important	 to	 note	 that	 information	 gain	 is	 biased	 towards	 continuous	 :	 and	

categorical	:	with	multiple	levels	[120].	The	bias	correction	for	information	gain	could	

be	 achieved	 through	 a	 probabilistic	 3-value	 criterion	 with	 exact	 randomisation,	

bootstrapping,	Monte	Carlo	simulation,	or	asymptotic	approximations	[128].	

Gini’s	Diversity	Index	(GDI)	is	a	measure	of	diversity	named	after	Corrado	Gini,		adopted	

from	econometrics	 into	machine	 learning	by	Breiman	[126].	GDI	reflects	how	 likely	a	

given	 observation	 in	 the	 input	 subset	 Mu 	 would	 be	 misclassified	 if	 it	 was	 labelled	

randomly	according	to	the	class	distribution	in	Mu .	 	For	a	classification	problem	with	å	

classes,	the	GDI	of	an	ith	node	with	observations	Mu 	is	given	by:	

	 ëGê = 	1 − 	 3D
,

i

DwV

	 "].	2.6	

where	3D 	is	the	observed	probability	of	class	k	samples	that	reach	the	node	[126,127].	

The	GDI	of	a	pure	node,	 i.e.	when	the	node	contains	only	observations	of	one	class,	 is	
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equal	to	0.	By	the	same	definition,	the	upper	boundary	of	GDI	is	always	less	than	1	for	

any	å,	 and	 0.5	 for	 a	 å=2	 class	 problem.	 When	 applying	 GDI	 with	 recursive	 binary	

partitioning,	 the	 split	 that	 results	 in	 a	 node	with	 the	 smallest	 GDI	 is	 selected	 as	 the	

optimal	split.	

Despite	 the	 fundamental	 differences	 between	 GDI	 and	 information	 gain,	 a	 rigorous	

analytical	comparison	by	Raileanu	et	al.	found	that	the	two	measures	disagreed	only	in	

2%	of	cases	[126,127].	The	preliminary	analyses	of	the	DT	models	for	kidney	transplant	

modelling	in	Chapter	5	also	demonstrated	no	difference	in	performance	associated	with	

the	use	of	either	measures.	Given	that	there	was	no	advantage	of	using	information	gain,	

GDI	was	used	as	a	split	criterion	for	all	models	described	in	Chapters	5	and	6,	saving	on	

a	small,	but	recurrent	step	of	computing	logarithms.			

2.2.4 Controlling	leafiness		

Just	as	with	NN	training,	the	process	of	growing	DTs	was	monitored	closely	to	prevent	

overtraining	 and	 avoid	 unnecessary	 complexity	 of	 a	 model.	 	 In	 DT,	 the	 degree	 of	

complexity	is	determined	by	the	number	of	branch	levels	(“depth”)	and	the	number	of	

leaves	 (“leafiness”).	 Note	 that	 if	 a	 tree	 is	 allowed	 to	 grow	 without	 restraints,	 it	 will	

achieve	 100%	 accuracy	 (provided	 that	 samples	with	 identical	 attributes	 do	 not	 have	

inconsistent	class	indicators)	by	fitting	every	available	training	sample	in	4	to	a	separate	

leaf,	producing	a	“perfect”	 fit	 that	 is	bound	to	exhibit	poor	performance	on	additional	

samples	[17].	A	drawback	of	deep	trees	is	that	with	every	new	branch	node,	the	subset	

of	samples	available	for	analysis	becomes	smaller	and	less	representative	of	the	overall	

performance.		

To	manage	the	size	of	the	tree,	the	following	parameters	have	been	constrained	in	the	

DT	models	developed	in	this	research:	
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• maximum	tree	depth	–	the	number	of	branches	along	the	longest	path,	

• minimum	leaf	size	–	smallest	permitted	observation	count	per	leaf,	

• minimum	parent	size	–	observation	count	per	node	for	it	to	become	a	parent.	

The	constraints	prevented	splits	that	violated	the	set	limit,	and	forced	the	corresponding	

parent	nodes	to	become	leaves	earlier	than	they	would	otherwise	do.	Nevertheless,	even	

with	a	combination	of	several	stopping	criteria,	DTs	may	overfit	the	data.	This	limitation	

is	inherent	in	DT	learning,	since	finding	a	globally	optimal	tree	requires	nondeterministic	

polynomial	 time,	 i.e.	 the	problem	 is	np-complete.	 In	 contrast,	practical	DT	algorithms,	

including	 CART,	 commonly	 employ	 heuristic	 searches,	 which	 yield	 locally	 optimal	

decisions	 at	 each	 recursion.	 Thus,	 the	 convergence	 to	 a	 globally	 optimal	 tree	 is	 not	

guaranteed.		

A	more	 direct,	model-based	method	 for	 controlling	 overfitting	 in	 DT	 is	pruning.	 It	 is	

achieved	 by	 removing	 nodes	 that	 have	 the	 least	 effect	 on	 the	 overall	 classification	

performance	[120].	Depending	on	when	the	node	in	question	is	discarded,	two	types	of	

pruning	exist:	post-	and	pre-pruning.		

In	pre-pruning,	the	association	between	the	attributes	and	the	target	class	is	assessed	by	

a	 statistical	 test	 (most	 commonly,	 +,	 test	 [129]),	 and	 only	 statistically	 significant	

variables	are	considered	for	a	candidate	split.	Although	considerably	faster,	pre-pruning	

it	is	less	frequently	used	in	practice,	as	it	terminates	the	learning	process	prematurely,	

particularly	when	the	number	of	observations	is	small	[130].	

Post-pruning	 involves	simplification	operations	such	as	subtree	replacement	or	subtree	

raising.	 First,	 the	 tree	 is	allowed	 to	grow	until	 all	observations	 in	 the	 training	set	are	

classified	correctly.	Then	the	classification	error	is	estimated	for	the	whole	tree.	Since	

the	error	on	 the	 training	 set	does	not	 constitute	a	useful	 estimator,	 either	a	 separate	
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hold-out	set	is	required	for	assessing	the	pruning	error	(reduced	error	pruning)	or	the	

upper	boundary	of	the	confidence	interval	derived	on	training	error	is	used	(pessimistic	

pruning)[131].	Pessimistic	pruning	further	adds	a	penalty	term	to	the	error	at	each	node,	

known	 as	 error	 correction.	 As	 long	 as	 the	 error	 does	 not	 increase,	 entire	 subtrees	

(combinations	of	connected	nodes)	may	be	pruned.	 In	subtree	replacement,	 the	nodes	

with	the	weakest	class	discrimination	are	replaced	by	a	leaf	representing	the	majority	

class	in	a	bottom-up	fashion.	Subtree	raising,	on	the	other	hand,	removes	a	node	with	the	

largest	error	and	redistributes	its	observations	to	the	next	node	down	in	the	hierarchy.	

The	 resulting	 tree	 represents	 the	 minimal-complexity	 model	 while	 maintaining	 the	

predictive	 power.	 For	 a	 dataset	 with	 3	 attributes	 and	 2	 training	 instances,	 pruning	

increases	 the	 complexity	 of	 the	 DT	 algorithm	 from	 Ο(32	log	2)	 to		Ο(32 log	2 ,).	

Alternatives	to	DT	learning	with	pruning,	such	as	decision	lists	and	decision	graphs,	are	

discussed	in	the	literature	[130].	

 Ensemble	learning	

The	accuracy	and	robustness	of	NN	and	DT	models	can	be	improved	by	combining	the	

predictive	effort	of	several	learners	into	a	single	model,	known	as	an	ensemble	[132,133].	

The	 principle	 behind	 a	 good	 ensemble	 is	 the	 diversity	 of	 its	 constituent	 models.	 By	

generalising	over	different	subsets	of	an	input	space,	the	learners	offset	mutual	errors.	

The	more	disagreement	there	is	between	the	learners	in	the	ensemble,	the	smaller	the	

overall	generalisation	error.	This	relationship	between	the	diversity	of	an	ensemble	with	

å	 learners	 and	 its	 generalisation	 performance	 	 was	 	 explored	 in	 detail	 	 by	 Krogh	 &	

Vedelsby	[56].	Their	analytical	findings	demonstrate	that	the	error	for	an	input	sample	

:	 in	 the	 ensemble	" : 	 depends	 on	 both	 the	 individual	 learner	 errors	 ìu : 	 and	 the	

degree	of	diversity	P : ,	defined	as	the	variance	of	the	ensemble	around	the	mean:	
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ìu : −
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u

P : 	 "].	2.7	

Hence,	 when	 the	 learners	 in	 the	 ensemble	 are	 strongly	 correlated,	 i.e.	P : ≈ 0,	 the	

ensemble	error	" : 	would	be	equal	to	the	average	of	the	errors	ìu : 	of	the	å	individual	

learners.	As	the	diversity	P(:)	increases,	" : 	decreases.	By	increasing	learner	diversity,	

the	 ensembles	 often	 yield	more	 robust	 predictive	models	 than	 any	 of	 its	 constituent	

learners	and	offer	superior	generalisation	accuracy	[132,133].				

2.3.1 Increasing	ensemble	diversity		

The	most	popular	ensembling	strategies	for	 increasing	learner	diversity	are	bootstrap	

aggregation,	cross-validated	committee,	and	boosting,	as	described	below.		

Bootstrap	aggregation	(or	bagging)	involves	training	each	learner	in	the	ensemble	with	

a	 different	 subset	 of	 samples	 drawn	 randomly	 from	 the	 original	 training	 set	 [134].	

Sampled	with	replacement,	each	bootstrap	subset	may	contain	duplicate	observations.	

All	models	in	a	bagged	ensemble	vote	with	an	equal	weight.			

To	 avoid	 bootstrapping	 duplicates	 in	 bagging,	 the	 original	 sample	 space	 could	 be	

randomly	 divided	 into	disjoint	 subsets,	 producing	what	 is	 known	 as	 a	 cross-validated	

committee	[135].	Similar	to	å-fold	cross	validation	discussed	in	Section	2.5,	the	sample	

space	 is	 partitioned	 into	å	disjoint	 subsets	 and	one	 subset	 is	withheld.	 Subsequently,	

å	learners	are	each	trained	on	å-1	out	of	the	å	subsets,	with	the	subset	being	withheld	

iterating	from	learner	to	learner.				

Boosting	is	similar	to	bagging,	but	instead	of	random	sampling,	the	individual	subsets	are	

drawn	to	emphasise	the	samples	that	contributed	to	the	largest	error	[136].	The	process	

is	 incremental:	 each	 new	 model	 is	 added	 to	 target	 the	 “weakest”	 samples	 of	 its	
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predecessor.	 This	 is	 achieved	 by	maintaining	 a	 set	 of	weights	 across	 all	 samples	 and	

assigning	 a	 higher	 weight	 to	 the	 samples	 that	 produced	 the	 largest	 error.	 Thus,	 a	

progressively	 more	 difficult	 problem	 is	 being	 learned	 by	 each	 new	 model.	 Boosting	

allows	for	improved	performance	over	bagging	or	cross-validated	committees.	However,	

by	emphasising	a	small	subset	of	samples,	it	is	also	more	prone	to	overfitting	on	noisy	

data	[132].	

The	disadvantage	of	bagging,	boosting	and	cross-validated	committees	is	that	they	rely	

on	sub-sampling,	which	reduces	the	amount	or	weight	of	the	training	samples	available	

for	individual	learners	[133].	In	applications	where	datasets	are	already	small,	further	

reduction	 of	 the	 sample	 space	may	not	 be	 feasible.	 Instead,	 for	 the	 applications	with	

limited	data	considered	in	this	work,	the	learner	diversity	in	ensembles	was	achieved	by:	

• randomising	the	initial	model	parameters	(in	NN	ensembles)	

• combining	 small	 amount	 of	 bagging	 with	 random	 feature	 sampling	 (in	 DT	

ensembles)	

2.3.2 Ensembles	of	neural	networks		

The	NN	ensemble	was	created	by	initialising	hundreds	of	NN	with	random	weights	and	

biases.	 Each	 constituent	NN	 learner	was	 trained	 on	 the	 complete	 set.	 Optiz	&	Maclin	

showed	 that	 this	 ensembling	 approach	 was	 “surprisingly	 effective,	 often	 producing	

results	as	good	as	bagging”	[132].		

Once	individual	NNs	are	trained,	they	can	either	be	merged	into	a	single	NN	instance,	

whose	weights	and	biases	are	a	parameter	average	of	the	constituent	NNs,	or	they	can	

exist	 in	an	ensemble	by	combining	their	output	predictions	[137].	Several	approaches	
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were	 considered	 in	 this	 research	 for	 aggregating	 the	 individual	 outputs	0(u)	 across	å	

learners	into	a	single	ensemble	output	0:		

• simple	output	averaging:	0 = 	 V
i
	 0 u

i

uwV
	

• weighted	 output	 averaging:	0 = 8(u)0(u)
i

uwV
,	 where	8(u)is	 proportional	 to	

the	“trustworthiness”	of	the	learner	Q	measured	by	its	predictive	accuracy	

• voting	or	majority	consensus	(in	classicisation):	0 = 0(u)	if		 Qi
uwV > å/2	

In	 the	 applications	 addressed	 by	 the	 ensemble	 NNs	 in	 Chapters	 3,	 4	 and	 6,	 simple	

averaging	proved	as	effective	as	weighted	averaging	and	voting.		

The	accuracy	of	the	NN	ensemble	generally	increases	with	the	number	of	learners	until	

a	saturation	point	is	reached,	which	in	turn	depends	on	the	amount	of	noise	in	the	data	

[118].	 Thus,	 the	 choice	 regarding	 the	number	 of	 learners	å	 to	 be	 included	 in	 a	 given	

ensemble	is	a	design	trade-off	between	computational	efficiency	and	reproducibility.		

2.3.3 Random	forest	

An	ensemble	of	DTs,	aptly	named	random	forest	(RF),	involves	growing	a	number	of	DTs	

and	aggregating	their	outputs	[138].	The	RF	algorithms	use	various	degrees	of	bagging	

in	 tandem	with	 random	 feature	 sampling	 to	 further	 increase	 the	 diversity	 among	 its	

constituent	DTs.	Each	tree	in	the	RF	is	developed	with	only	a	subset	3∗of	the	total	number	

of	input	features	3,	sampled	at	random.	The	recommended	size	of	such	partial-feature	

subsets	 is	 roughly	3∗ = √3,	 although	 empirical	 results	 show	 little	 sensitivity	 to	 this	

choice	of	3∗[138].	RFs	do	not	tend	to	overfit	with	an	increased	number	of	trees,	instead,	

the	RF	generalisation	error	reaches	a	limiting	value	[138].		
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By	design,	the	partial-feature	trees	are	unlikely	to	fit	the	entire	dataset	well,	hence	they	

are	referred	to	as	“weak”	 learners.	 Instead,	 the	trees	 in	an	RF	developed	in	Chapter	4	

were	 allowed	 to	 grow	 fully	 and	 specialise	 on	 their	 specific	 subset	 of	 samples	 and	

features,	with	an	expectation	 that	when	a	 large	number	of	 them	was	combined,	 their	

performances	would	benefit	from	the	cumulative	effect	across	the	entire	sample	space	

[123,125].	This	property	allowed	 the	RFs	 to	handle	numerous	 input	 features	without	

having	to	perform	preliminary	feature	selection	or	dimensionality	reduction.		

The	 built-in	 feature	 selection	 mechanism	 in	 RFs	 also	 enabled	 the	 quantification	 of	

relative	variable	importance.	Variable	importance	scores	for	RF	are	defined	by	measuring	

the	 increase	 in	 prediction	 error	 when	 the	 values	 of	 a	 variable	 under	 question	 are	

permuted	 across	 the	 out-of-bag	 observations;	 referred	 to	 as	permutation	 test.	 	 These	

scores	were	computed	 for	each	constituent	 tree,	averaged	across	 the	entire	ensemble	

and	divided	by	the	standard	deviation.	

Finally,	the	predictions	made	by	the	individual	DTs	were	combined	by	voter	consensus,	

in	which	each	constituent	DT	voted	for	the	corresponding	class	and	the	majority	of	votes	

decided	 the	 overall	 RF	 output	 [121,123].	 This	 aggregate	 vote	 of	 several	 DTs	 proved	

inherently	 less	 noisy	 and	 less	 susceptible	 to	 outliers	 than	 a	 single	 DT	 output,	 	 and	

improved	the	robustness	of	predictions	[132,134,138].		

 Statistical	methods	

The	use	of	machine	learning	to	address	the	complex	research	questions	considered	in	

this	work	was	driven	by	pragmatism,	not	by	design	preference.	Where	deemed	adequate	

or	where	required	by	existing	clinical	practice,	classical	statistical	 techniques,	such	as	

linear,	logistic	and	Cox	regression,	were	initially	considered.	For	example,	in	Chapter	5	

the	 task	 of	 evaluating	 factors	 associated	 with	 long-term	 kidney	 graft	 survival	 was	
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accomplished	 using	 the	 Cox	 proportional	 hazards	 survival	 model,	 while	 logistic	

regression	was	used	for	discriminating	between	binary	rejection/non-rejection	patient	

groups.	 In	Chapter	6,	 the	Cox	proportional	hazards	model	was	used	 to	 reproduce	 the	

existing	 clinical	 benchmark	model,	 against	which	 the	NN	 ensembles	 and	 survival	 DT	

models	 were	 subsequently	 assessed.	 Classical	 statistical	 models	 continue	 to	 play	 an	

important	role	in	the	exploratory	analysis	and	model	benchmarking	of	modern	machine	

learning	algorithms.	The	two	approaches	used	in	Chapters	5	and	6	are	described	below.	

Logistic	regression	(LR)	is	a	multivariate	parametric	model	that	has	been	widely	used	

in	clinical	literature	due	to		its	ability	to	infer	categorical	outcomes	[139,140]	and	thus,	

address	questions	such	as	Would	the	recipient	reject	the	transplant?	or	Would	this	patient	

be	diagnosed	with	diabetes	in	10	years?	LR	is	a	particular	case	of	generalised	linear	models	

that	uses	logit	link	function	to	express	the	log-odds	of	dichotomous	outcome	0	in	terms	

of	probabilities	I(:)	of	3-dimensional	input	: = :V	:, …	:b
e
	[141]:	

	 log
I :

1 − I :
= !ô +	 !;:;

b

;wV

	 "].	2.8	

The	solution	to	the	"].	2.8	is	presented	by	the	set	of	parameters	!	that	maximises	the	

log-likelihood	HH	of	the	model	with	2	classes	containing	2V	and	2,	samples:	

	 HH = 	 log I :(u) + log	(1 − I :(u) )

Cö

uwV,			sõwô

Cú

uwV,			sõwV

	 "].	2.9	

The	value	of	"#ù 	(known	as	the	odds	ratio)	explains	how	the	probability	of	the	outcome	

0	being	positive	changes	as	variable	:; 	 	 increases	by	one	unit	 (if	 continuous),	or	by	a	

factor	(if	categorical).		Unlike	least-squares	models,	logistic	regression	does	not	stipulate	

strict	 assumptions	 on	 linearity	 between	 :; 	 and	0,	 nor	 the	 normality	 of	:; ,	 which	 is	
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particularly	advantageous	for	modelling	medical	and	biological	systems.	Nevertheless,	

when	the	relationship	between	:; 		and	log	odds	of	0	is	linear	and	4	is	multivariate	normal,	

logistic	regression	yields	more	stable	solutions	and	stronger	variable	significance	[140–

142].	When	variable	 associations	 are	unreliable,	 such	as	 in	 cases	with	 limited	data,	 a	

likelihood	 ratio	 test	 can	 be	 used	 to	 assess	 the	 relative	 significance	 of	 the	 predictor	

variables	given	a	model	fit	[141,143–145].	The	likelihood	ratio	test	measured,	for	every	

variable	:; 	in	4,	the	chi-squared	+,	significance	[129]	between		HH	of	the	full	model	and	

the	HH	of	the	nested	model	without	that	variable.	The	computation	of	+,	accounted	for	

the	degrees	of	freedom	in	:; 	and	penalised	more	complex	models	[129,143,146].	

Cox	 proportional	 hazards	 (Cox	 PH)	 regression	 is	 a	 semiparametric	 multivariate	

regression	model	 that	was	used	 in	this	research	for	problems	 involving	time-to-event	

data	 [147,148].	 	 The	 risk	 of	 developing	 an	 event	û,	 such	 as	 transplant	 rejection	 or	

diagnosis	with	a	disease,	at	time	1	is	expressed	by	a	hazard	'(1):	

	 ' 1 = '( 1 	"
#ü 	 "].	2.10	

where	 baseline	 hazard	'( 1 		 corresponds	 to	 the	 overall	 model	 hazard	 when	 the	

explanatory	 variables	 are	 absent,	 i.e.	 : = 0.	 By	 accounting	 for	 the	 length	 of	 survival	

period	0,	Cox	PH	is	able	to	make	inferences	on	the	right-censored	data	that	are	common	

in	longitudinal	clinical	studies,	where	patients	are	lost	to	follow-up.	The	solution	to	the	

Cox	 PH	 regression	 is	 the	 set	 of	 parameters	 !	that	 maximises	 the	 probability	 of	 the	

observed	event	û	occurring	in	ith	patient	(ûu = 1)	rather	than	any	other	kth	patient	,	given	

by	the	log	partial	likelihood:	

	 HI = 	 (!:(u) − Smn

C

u:°õwV

"#ü
(¢)

i:s¢£sõ

)	 "].	2.11	
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The	 process	 of	 modelling	 with	 Cox	 PH	 and	 its	 extensions,	 including	 time-varying	

covariates	 and	 non-proportional	 hazards,	 are	 described	 in	 detail	 by	 Singer	 &	Willett	

[149]	and	references	therein.			

Model	selection.	With	a	limited	number	of	observations,	both	the	Cox	PH	and	LR	models	

benefit	from	a	reduction	of	the	number	of	predictor	variables	to	the	most	parsimonious	

set.	Since	a	priori	knowledge	of	which	variables	to	include	was	not	available	when	the	

exploratory	analyses	were	conducted,	the	initial	Cox	PH	and	LR	regressions	were	fitted	

on	 all	 clinically-relevant	 variables.	 Subsequently,	 using	 a	 popular	 technique	 of	model	

selection	 known	 as	 backwards	 stepwise	 elimination	 [150],	 the	 variables	 that	 did	 not	

contribute	to	the	improvement	of	the	models’	 log-likelihood	(log	partial	 likelihood	for	

Cox	PH)	were	eliminated	from	the	models	one-by-one	in	an	automated	manner.	

The	statistical	hypothesis	tests	used	in	this	research	include	the	two-tailed	Fisher	exact	

test	 [151]	 for	 categorical	 variables,	 and	 the	 non-parametric	Wilcoxon	 rank	 sum	 (also	

known	 as	Mann-Whitney	U)	 test	 [152]	 for	medians	 of	 continuous	 variables.	 The	 null	

hypothesis	of	no	difference	between	the	groups	was	tested	at	the	5%	significance	level.		

 Performance	evaluation	

In	order	to	evaluate	a	predictive	ML	model,	the	validation	subset	of	data	must	be	separate	

from	the	training	samples.	Popular	partitioning	strategies	[107]	considered	in	this	thesis	

include	random	sampling,	å-fold	cross-validation,	and	leave-one-out	validation.		

With	random	sampling,	as	used	in	early	stopping	(Section	2.1.4),	the	validation	subset	is	

formed	by	sampling	without	replacement.	In	å-fold	cross-validation	[56,153],	the	entire	

dataset	 is	divided	into	å	disjoint	subsets	(folds),	out	of	which	å − 1	 folds	are	used	for	

training,	and	the	remaining	fold	is	used	for	testing.	The	process	is	repeated	å	number	of	
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times,	until	all	folds	have	been	tested.	Leave-one-out	validation	[153]	is	equivalent	to	å-

fold	validation	with	the	fold	consisting	of	a	single	sample:	the	model	is	trained	on	all	but	

one	sample.	For	a	dataset	of	size	2,	the	process	is	repeated	2	times,	and	each	sample	is	

tested	exactly	once.			

The	disadvantage	of	å-fold	validation	is	that	it	reduces	the	number	of	samples	available	

for	model	training	and	produces	å	different	models.	Although	more	resourceful	with	the	

data,	leave-one-out	validation	is	computationally	more	expensive	and	more	susceptible	

to	outliers	 than	k-fold	cross-validation.	The	advantage	of	 random	sampling	 is	 that	 for	

limited	data	it	allows	for	a	thorough	validation	if	repeated	multiple	times	with	different	

combinations	of	samples,	even	when	the	validation	dataset	is	small	[47].	This	property	

of	early	stopping	was	integrated	into	the	multiple	runs	method	developed	in	Chapter	3.	

The	 performance	 of	 the	 predictive	models	 developed	 in	 this	 research	was	 evaluated	

using	the	following	standard	[17]	statistical	measures:	

(i) for	 regression	 models:	 coefficient	 of	 determination	 J		 and	 root-mean-square	

error	JLM/			

(ii) for	classifiers:	the	area	under	the	receiver	operating	characteristic	(ROC)	curve	

=>?,	and	the	measures	defined	from	the	confusion	matrix	(Figure	2.6)	

(iii) for	survival	models:	Harrell’s	?-index	and	Royston	and	Sauerbrei’s	G	and	JK, ,	in	

addition	to	measures	in	(i).	

For	 classifiers,	 confusion	matrices	help	 distinguish	 True	 Positive	 (§I),	 True	 Negative	

(§•),	 False	 Positive	 (¶I),	 and	 False	 Negative	 (¶•)	 observations,	 and	 define	 the	

classifier’s	sensitivity	(§I	5P1"	also	referred	to	as	recall),	specificity	(§•	5P1"),	positive	

and	negative	predictor	values,	and	the	overall	correct	classification	rate	(Figure	2.6).	
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Figure	2.6	Confusion	matrix	notation	and	definitions	for	a	binary	classifier	

The	definitions	of	the	remaining	criteria	in	(i-iii)	are	detailed	in	Appendix	B.	

 Software	and	hardware	resources	

The	 applied,	 problem-driven	 nature	 of	 this	 machine	 learning	 research	 provided	 a	

stimulating	 environment	 for	 the	 learning	 of	 several	 engineering	 programming	

languages,	including	R	and	MATLAB™.	The	code	for	the	preliminary	data	analysis,	neural	

network	 design,	 and	 the	 simulation	 of	 the	 new	 framework	 in	 Chapters	 3	 and	 4	 was	

written	 in	 MATLAB™	 versions	 R2012b-R2015b	 for	 64-bit	 Microsoft	 Windows.	 The	

research	 experiments	 on	 tree-based	 learning	 in	 Chapter	 5	 were	 implemented	 in	

MATLAB™	 R2014b.	 The	 code	 for	 the	 programming,	 testing	 and	 visualisation	 of	 the	

ensemble	 NN,	 Cox	 PH,	 LR	 and	 survival	 DT	 models	 in	 Chapter	 6	 was	 developed	

predominantly	 in	 the	 open-source	 R	 environment	 (versions	 3.1.1	 to	 3.4.0),	 including	

packages	attributed	to	several	authors	[154–159].			

By	most	conservative	estimates,	the	number	of	 individual	simulations	involved	in	this	

research	 amounted	 to	 1,500,000	 neural	 networks	 and	 1600	 full	 and	 partial	 decision	

trees.	The	computational	experiments	were	conducted	on	a	workstation	with	32	GB	RAM	

§I + §• + ¶I + ¶•	 = 	2	

Correct	classification	rate	?	 = 	 (§I + §•)/2	

Sensitivity	M2 = §I/(§I + ¶•)		

Specificity	M3 = §•/(§• + ¶I)	

Positive	predictive	value	IIß	 = 	§I/(§I + ¶I)		

Negative	predictive	value	•Iß	 = 	§•/(§• + ¶•)	

Balanced	accuracy	?@ABACDEF = (M2 + M3)/2	
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and	 an	 Intel®	 Core™	 i7-3770	 processor	 with	 base	 frequency	 of	 3.40GHz	 (3.90	 GHz	

achieved	with	Turbo	Boost).		Where	possible,	the	simulations	were	parallelised	across	

the	 four	 processor	 cores.	 The	 average	 simulation	 time	 for	 instantiating,	 training	 and	

logging	a	run	of	2000	small-data	backpropagation	neural	networks	was	280	seconds.	

The	auxiliary	programs	that	supported	this	research		were	an	open-source	Plot	Digitizer	

[160]	used	for	the	extraction	of	data	from	the	literature	sources	in	Chapter	4,	and	the	

proprietary	 DTREG®	 [161]	 used	 to	 accelerate	 the	 computation	 of	 likelihood	 ratio	

significance	 tests	 in	 Chapter	 5.	Mendeley	 Desktop	 version	 1.16.1	 [162]	was	 used	 for	

referencing	and	maintaining	relevant	bibliographical	data.	For	parts	of	this	thesis,	Google	

autonomous	speech	recognition	for	English	[24,163]	was	trialled		to	convert	the	author’s	

voice	to	text.		

 Sources	of	data		

Four	clinical	and	engineering	datasets	were	used	for	the	training,	validation	and	testing	

of	the	ML	systems	developed	in	this	research.	These	are	as	follows:	

(1) A	 civil	 engineering	 dataset	 comprising	 1030	 samples	 of	 concrete	 from	 the	

experiments	of	Yeh	[164]	was	used	for	validating	the	generalising	performance	of	the	

novel	 methodological	 framework	 developed	 in	 Chapter	 3.	 The	 dataset	 was	 obtained	

through	a	publicly	available	Machine	Learning	Repository	at	the	University	of	California,	

Irvine	[165].	

(2) A	 hard	 tissue	 engineering	 dataset	 comprising	 35	 trabecular	 bone	 samples	was	

used	in	Chapter	4	for	the	development	of	a	patient-specific	hip	fracture	risk	stratification	

model	 in	 severe	 osteoarthritis.	 This	 secondary	 dataset	 was	 extracted	 through	 plot	

digitisation	from	the	original	study	by	Perilli	et	al.	[166].	
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(3) The	kidney	transplant	data	investigated	in	Chapter	5	were	obtained	as	a	result	of	

meticulous	examination,	recording	and	follow-up,	spanning	14	years,	by	the	UK’s	leading	

antibody-incompatible	renal	transplantation	group	at	the	University	Hospitals	Coventry	

and	 Warwickshire	 (UHCW).	 The	 single-centre	 UHCW	 dataset	 containing	 baseline	

characteristics	and	transplantation	outcomes	for	80	patients	was	provided	directly	by	

the	clinical	collaborators	[167,168].		

(4) A	 UK	 primary	 care	 dataset	 comprising	 nearly	 80,000	 anonymised	 electronic	

healthcare	records	was	used	in	Chapter	6	for	the	development	and	validation	of	novel	

diabetes	 risk	 stratification	 models.	 The	 dataset	 was	 obtained	 through	 the	 Clinical	

Practice	Research	Datalink	in	collaboration	with	a	team	at	University	of	Oxford	Nuffield	

Department	of	Primary	Care	Health	Sciences		[90].	
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Strategies	for	limited	data	

As	discussed	in	Chapter	1,	limitations	on	data	quality,	such	as	missing	values	and	class	

imbalance,	reduce	the	size	of	already	small	clinical	datasets,	often	below	10	observations	

per	predictor	variable.	To	the	best	of	the	author’s	knowledge,	effective	ML	strategies	for	

such	datasets	do	not	presently	exist	[169–171].	For	the	three	applications	considered	in	

this	research,	existing	ML	approaches	for	managing	limited	data	[17,71,172]	did	not	offer	

a	well-rounded	 solution	and,	 in	 some	cases,	were	 surpassed	by	biased	 complete	 case	

analysis.	In	order	to	bridge	this	gap,	a	novel	framework	specifically	for	the	application	of	

ML	 to	 small	 experimental	 datasets	 has	 been	 developed	 in	 this	 chapter.	 This	 original	

methodology	 was	 pivotal	 to	 the	 successful	 development	 of	 ML	 models	 in	 the	 three	

medical	applications	considered	in	Chapters	4,	5	and	6.	

This	chapter	commences	by	describing	the	strategies	for	improving	incomplete	(Section	

3.1)	and	imbalanced	(Section	3.2)	data	used	in	this	research.	Sections	3.3	and	3.4	focus	

on	the	development	of	the	novel	 framework	for	small	datasets	and	its	validation	with	

real	 data.	 Section	 3.5	 demonstrates	 the	 efficacy	 of	 the	 proposed	 framework	 in	

comparison	with	existing	state-of-the-art	techniques.			
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 Managing	incomplete	data	

Examples	of	incomplete	data	abound	in	medical	and	biomedical	databases.	Whether	it	is	

a	nationwide	electronic	medical	record	system	or	a	collection	of	Excel	spreadsheets	from	

a	 single	 centre,	 missing	 values	 are	 one	 of	 the	 defining	 characteristics	 of	 the	 clinical	

datasets.	Before	we	can	discuss	the	strategies	for	handling	incomplete	data	in	predictive	

modelling,	 it	 is	 important	 to	 highlight	 the	 mechanisms	 by	 which	 the	 data	 become	

missing.	As	formulated		in	the	seminal	work	by	Rubin	[173],	depending	on	whether	the	

missing	values	are	related	to	the	underlying	variables,	the	data	are	said	to	be:	

• missing	 completely	at	 random	 (MCAR),	 if	 the	probability	of	 the	data	missing	

does	 not	 depend	 on	 any	 variable	 in	 the	 dataset,	 nor	 on	 the	 response	 being	

predicted;	

• missing	at	random	(MAR),	if	the	probability	of	the	data	missing	is	independent	

of	the	response,	but	may	depend	on	the	observed	values	of	other	variables	in	

the	dataset;	

• missing	not	at	random	(MNAR),	if	missing	data	are	dependent	on	the	values	of	

the	unobserved	data.		

Whilst	 with	 MCAR	 and	 MAR	 the	 missing	 data	 mechanism	 could	 be	 deemed	 to	 be	

independent	 of	 the	 response,	 MNAR	 indicates	 that	 the	 missing	 data	 may	 contain	

information	 about	 predicted	 response	 [65,172].	 Most	 algorithms	 for	 missing	 data	

operate	under	MCAR	or	MAR	assumptions;	no	effective	approaches	exist	for	MNAR	data	

unless	 the	 underlying	 missing	 data	 mechanism	 could	 also	 be	 specified	 and	 learned	

[63,65,172].		Sections	3.1.1-3.1.4	describe	common	strategies	for	handling	missing	data	

from	case	deletion	to	imputation,	and	model-based	induction	specific	to	decision	trees.	
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3.1.1 Complete	case	analysis	

When	the	missing	data	mechanism	is	MCAR,	the	observations	with	missing	values	could	

be	safely	omitted	from	the	analysis	without	introducing	bias	[65].	Complete	case	analysis	

considered	 in	Section	6.3.3	 illustrates	 the	potential	of	 small-data	NNs	when	routinely	

collected	 patient	 records	 contain	 no	 missing	 information	 across	 a	 few	 variables	 of	

interest.	 Such	 list-wise	 deletion	 is	 a	 simple	 yet	 appropriate	 solution	 for	 building	

inferences	 on	MCAR	 data,	 but	 when	 the	 data	 fall	 under	MAR	 condition	 or	 when	 the	

proportion	 of	 missing	 values	 is	 high,	 complete	 case	 analysis	 would	 produce	 biased	

estimates	 of	 the	 response	 [63].	 In	 the	 case	 of	 MAR,	 the	 significance	 of	 the	 bias	 is	

dependent	 on	 the	quantity	 of	missing	 values,	 and	on	 the	degree	of	 association	of	 the	

missing	variable	with	other	confounding	variables	[63].		

3.1.2 Single	value	imputation	

Imputation	is	required	when	the	discarding	of	partially	incomplete	observations	is	not	

feasible	due	to	the	high	historic	cost	of	collection	or	sensitivity	to	the	MAR	bias.		Single	

value	imputation	aims	to	substitute	the	missing	values	with	an	estimate.	This	could	be	a	

global	or	group	mean,	median	(or	mode	if	the	value	is	binary)	measured	on	the	observed	

values	of	the	missing	variable,	or	a	value	estimated	through	a	model-based	algorithm,	

such	as	linear	or	logistic	regression,	k-nearest	neighbours	or	expectation	maximisation	

[63,65].			

Substituting	missing	values	 in	 a	 variable	with	 the	mean,	median	or	mode	 of	 observed	

values	distorts	the	distributions	of	that	variable;	hence	the	technique	is	also	not	suitable	

for	datasets	with	a	high	proportion	of	missing	values.	A	more	practical	approach,	which	

has	been	used	in	Chapter	6,	is	to	complement	the	imputed	variable	with	an	additional	
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binary	indicator	flag	that	identifies	which	observations	in	that	variable	are	missing	[174].	

This	 strategy	 is	 particularly	 effective	 with	 models	 that	 can	 incorporate	 variable	

interaction,	such	as	Cox	proportional	hazards	and	neural	network	models	discussed	in	

Chapter	6.		

Model-based	imputation	with	linear	or	logistic	regression	treats	the	incomplete	variable	

as	dependent	and	regresses	its	values	based	on	all	other	variables	in	the	data	model.		The	

quality	of	these	estimations	depends	on	the	quality	of	the	model	fit,	and	is	therefore	not	

feasible	in	applications	where	a	well-fitting	model	could	not	be	defined	in	the	first	place,	

as	is	common	with	physiological	models	[174–176].	The	quality	of	the	estimation	could	

be	improved	using	an	iterative	expectation	maximisation	algorithm	[65,172],	but	it	was	

also	 deemed	 inadequate	 with	 the	 level	 of	 incompleteness	 frequently	 observed	 in	

routinely	 collected	 population	 data.	 	 For	 the	 diabetes	 data	 in	 Chapter	 6,	 expectation	

maximisation	has	also	proved	prohibitively	slow,	since	its	rate	of	convergence	increased	

exponentially	with	an	increasing	proportion	of	missing	information.	

Nearest	 neighbour	 technique	was	 another	 promising	method	 for	 handling	 incomplete	

data,	with	some	resemblance	of	how	human	experts	complete	missing	data	[65,177].	For	

each	 sample	 with	 missing	 values,	 the	 algorithm	 finds	 the	 k	 most	 similar	 samples	

(neighbours).	The	missing	value	is	subsequently	substituted	with	the	mean	value	across	

k	 neighbours.	 The	 drawback	 of	 k-nearest	 neighbour	 imputation	 is	 that	 with	 a	 high	

proportion	 of	 missing	 values,	 it	 alters	 the	 data	 distributions	 in	 a	 way	 that	 hinders	

subsequent	response	prediction	[65,177].	This	 flaw	was	observed	when	the	k-nearest	

neighbour	technique	was	implemented	for	the	diabetes	data	in	Chapter	6	and	eliminated	

during	the	preliminary	data	analysis.	Nearest	neighbour	imputation	was	also	considered	

for	the	kidney	transplant	patients	analysed	in	Chapter	5,	but	it	was	superseded	by	the	
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built-in	 mechanism	 for	 dealing	 with	 missing	 data	 in	 decision	 trees,	 as	 described	 in	

Section	3.1.4.	

3.1.3 Multiple	imputation	

The	problem	with	single	value	imputation	is	that	it	does	not	account	for	uncertainty	in	

the	 missing	 values,	 nor	 for	 biased	 interactions	 of	 multiple	 missing	 variables	 [63].	

Multiple	imputation	overcomes	these	issues	by	leveraging	on	the	predictive	distributions	

of	 the	missing	 values	 and	 creates	multiple	 versions	 of	 the	 dataset	 [65,172].	 In	 other	

words,	each	missing	value	is	replaced	by	an	m-dimensional	vector	of	imputed	values.	This	

technique	 is	 more	 computationally	 intensive	 than	 single	 value	 imputation,	 but	 it	

preserves	 the	 variance	 and	 uncertainty	 in	 the	 missing	 values	 required	 for	 realistic	

modelling	of	the	response	[65].	Multiple	imputation	does	not	optimise	individual	sample	

accuracy,	 but	 instead	 attempts	 to	 reproduce	 the	 overall	 resemblance	 to	 a	 complete	

dataset	by	generating	multiple	datasets.	Among	numerous	practical	implementations	of	

multiple	imputation,	Multiple	Imputation	with	Chained	Equations	(MICE)	has	been	shown	

to	be	particularly	effective	for	clinical	applications	[178–180].	

For	the	clinical	application	described	in	Chapter	6,	MICE	was	used	for	imputation	of	the	

three	continuous	variables	:V, :,, :Ñ	with	missing	values.	In	the	initial	step,	all	missing	

values	 in	:V, :,, :Ñ	were	 filled	at	random.	Then,	:V	was	regressed	on	:,, :Ñ	and	all	 the	

other	variables	:Ö, … , :b	present	in	the	model	(including	the	response	variable),	and	the	

missing	values	in	:V		were	substituted	by	simulated	draws	from	its	posterior	predicted	

distribution.	 Using	 the	 newly-imputed	 values	 of	:V,	 :,		was	 regressed	 on	:V, :Ñ, … , :b.	

Similarly,	using	the	imputed	values	of	:V	and	:,,	:Ñwas	estimated	from	the	regression	on	

:V, :,, :Ö, … , :i .	As	suggested	by	Van	Buuren,	the	cycle	was	repeated	20	times	to	refine	

the	estimations	[178].	The	entire	procedure	was	repeated	® =100	iterations	in	order	to	



Chapter	3.		Strategies	for	limited	data	

48	

account	 for	 the	 large	 proportion	 of	 missing	 values	 (60-70%).	 MICE	 resulted	 in	 100	

individual	 datasets,	 each	 modelled	 separately.	 The	 parameter	 estimates	 and	 the	

corresponding	 standard	 errors	 of	 the	 100	 individual	 Cox	 PH	 and	 LR	 models	 were	

combined	according	to	Rubin’s	rules	[173],	and	the	outcomes	of	the	100	NN	models	were	

combined	using	ensembling	approach.			

It	 is	 important	 to	note	 that	multiple	 imputation	operates	under	MAR	assumption.	For	

MNAR	data,	 inclusion	of	additional	predictors	 that	affect	 the	missing	value	allows	 for	

partial	approximation	of	MNAR	to	MAR,	but	only	to	a	certain	degree	[174].	The	potential	

bias	with	MNAR	data	requires	careful	consideration,	since	the	response	variable	forms	

part	of	the	MICE	imputation	model.	In	order	to	ensure	the	purity	of	test	samples,	model	

derivation	and	model	validation	datasets	were	imputed	separately.			

3.1.4 Surrogate	splits	in	decision	trees	

In	DTs,	the	impact	of	missing	variables	could	be	mitigated	by	means	of	surrogate	splits		

[121,181].	 For	 each	 primary	 split	 where	 the	 variable	 may	 be	 missing,	 “surrogate”	

substitutions	are	constructed	from	other	predictor	variables	that	exist	in	the	model.	The	

goal	 is	 to	 find	 a	 splitting	 point	 with	 child	 distributions	 most	 closely	 resembling	 the	

primary	split.	The	surrogate	splits	are	then	ranked	according	to	misclassification	error,	

and	any	split	that	does	not	perform	better	than	the	“go	with	the	majority”	rule	is	ignored.	

The	split	with	lowest	misclassification	error	is	used	as	the	preferred	surrogate	split,	and	

if	neither	the	primary	nor	the	surrogate	variable	are	available,	each	subsequent	ranked	

surrogate	split	has	priority.	 If	no	surrogate	variables	are	available,	 the	data	sample	 is	

classified	in	the	majority	direction	[181].		Surrogate	splits	allow	DTs	to	handle	missing	

data	without	 imputation.	This	 important	advantage	of	DTs	over	other	ML	models	was	

explored	in	two	medical	applications	considered	in	Chapters	5	and	6.	
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 Balancing	strategies	

The	problem	of	class	 imbalance	 is	 intrinsic	 to	medical	datasets,	and	occurs	when	one	

type	of	outcome	is	observed	more	frequently	than	another,	thus	forming	a	majority	and	

minority	classes.	An	imbalance	of	1:11,	such	as	that	observed	among	diabetic	and	non-

diabetic	patients	in	Chapter	6,	skews	a	binary	classifier	to	null	accuracy	of	0.917,	meaning	

that	 91.7%	 accuracy	 could	 be	 achieved	 by	 simply	 assigning	 every	 observation	 to	 the	

majority	class.	 	 Significant	class	 imbalance	compromises	 the	 learning	success	of	a	ML	

classifier,	 unless	 adjusted	 for.	 The	 methods	 used	 to	 address	 class	 imbalance	 can	 be	

broadly	 grouped	 into:	 1)	 cost-sensitive	 training	 techniques,	 and	 2)	 data	 resampling	

techniques,	including	synthetic	sample	generation.	

3.2.1 Cost-sensitive	training	

Cost-sensitive	training	prevents	overfitting	of	the	majority	class	instances	by	adjusting	

the	classifier	cost	function.	An	obvious	way	to	implement	this	is	by	using	a	performance	

metric	that	is	sensitive	to	the	underlying	class	distributions,	such	as	=>?	(see	Appendix	

B)	or	the	weighted	harmonic	mean	of	the	classifier	sensitivity	and	specificity	known	as	

¶-score	[71,182,183].	Yet,	successful	algorithms	for	optimising	=>?	or	¶-score	directly	

are	scarce	for	NNs	[184,185],	and	non-existent	for	DTs.	This	is	due,	in	part,	to	the	nature	

of	the	performance	measures:	in	contrast	to	LM/	or	entropy,	¶-score	and	=>?	are	global	

measures	of	the	true	and	predicted	class	agreement,	and	are	not	a	direct	summation	of	

the	error	in	individual	observations.	Moreover,	=>?	is	non-differentiable,	whilst	¶-score	

is	not	concave,	thus	requiring	approximations	and	rendering	their	direct	optimisation	

infeasible	[186–188].	Finally,	utilising	a	non-separable	global	cost	function	for	training,	

meant	that	the	NN	models	would	lose	their	ability	to	adapt	incrementally	with	every	new	

sample	–	a	key	criteria	for	making	medical	prognostic	models	scalable	with	future	data.	
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A	more	practical	approach	for	cost-sensitive	training	was	to	impose	a	weights	matrix	on	

an	existing	cost	function,	so	that	false	negatives	are	penalised	more	severely	than	false	

positives	[71].	In	the	prognostic	models	developed	in	Chapter	6,	the	weighted	cost	matrix	

approach	was	considered	for	classification	DT,	NN	and	LR.	The	weights	were	determined	

from	 the	1:11	 ratio	 of	 diabetic	 and	non-diabetic	patients	 observed	 at	 10-years	 in	 the	

model	derivation	cohort,	i.e.	the	cost	of	a	false	negative	predictions	was	stipulated	to	be	

11	times	higher	than	the	cost	of	false	positives.	Such	weighted	cost	matrix	rectified	the	

class	imbalance	issue	in	the	classification	DT,	although	the	overall	model	structure	was	

deemed	inappropriate	and	the	classification	DT	was	replaced	later	in	the	study	with	a	

specialised	survival	DT.		

Against	the	expectations,	the	cost-penalised	NN	and	LR	models	overfitted	the	diabetic	

outcome	 patients	 and	 produced	 an	 overwhelming	 number	 of	 false	 positives.	 Poor	

specificity	 in	models	 designed	 to	 predict	 a	 long-term	 incidence	 of	 diabetes,	 meant	 a	

dramatic	 increase	 for	 the	NHS	 screening	 expenses,	 rendering	 such	models	 infeasible.	

Lowering	the	cost	penalty	from	11	to	1	in	the	increments	of	1,	did	not	improve	the	overall	

balanced	 accuracy,	 rendering	 the	weighted	 cost	matrix	 approach	 not	 suitable	 for	 the	

applications	 where	 it	 is	 critical	 to	 achieve	 high	 sensitivity	 without	 jeopardising	 an	

adequate	specificity.	This	left	the	author	and	her	collaborators	to	seek	data-resampling	

techniques	for	balancing	the	class	representation	in	the	dataset.	

3.2.2 Sampling	techniques	for	imbalanced	data	

Another	approach	 for	balancing	a	dataset	 is	 to	 increase	 the	number	of	minority	 class	

observations:	 either	 by	 resampling	 with	 replacement,	 or	 by	 generating	 synthetic	

instances	[71].	Two	state-of-the-art	methods	of	oversampling	were	considered	for	the	

imbalanced	dataset	 in	Chapter	6.	Synthetic	Minority	Oversampling	 (SMOTE)	generated	
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new	 samples	 from	 each	 minority	 observation	 and	 its	 nearest	 neighbours	 by	 linear	

interpolation	across	each	input	dimension	[189].	The	method	is	considered	an	effective	

remedy	against	severely	 imbalanced	data,	but	has	a	serious	drawback	of	blending	the	

boundary	between	majority	and	minority	classes	[68,188,190].	An	extension	to	SMOTE	

called	Adaptive	Synthetic	Sampling	(ADASYN),	in	which	the	density	of	the	new	instances	

is	weighted	with	respect	to	the	class	boundaries,	was	proposed	by	He	et	al.	[191].		The	

improvement	comes	with	a	price:	ADASYN	is	sensitive	to	outliers	[70,188,191],	which	

makes	it	less	suitable	for	modelling	rare	events,	such	as	type	2	Diabetes	Mellitus	(DM)	

considered	in	Chapter	6.		

The	 simplest	 and	 often	 overlooked	 approach	 for	 imbalanced	 data	 is	 majority	

undersampling,	 whereby	 majority	 class	 observations	 are	 removed	 from	 the	 training	

dataset.	An	illustrative	comparison	of	SMOTE	and	majority	undersampling	is	shown	in	

Figure	3.1.		

	

Figure	3.1	Effect	of	minority	oversampling	(centre)	and	majority	undersampling	(right)	on	imbalanced	data.	
Two	classes	of	patients	correspond	to	those	with	known	10-year	non-diabetic	(DM)	outcome	(red)	and	those	
who	had	been	diagnosed	with	type	2	DM	(teal)	during	the	10-year.	The	original	dataset	(left)	comprised	1431	

(278	DM)	patients	with	known	fasting	blood	glucose	(BG)	and	Body	mass	index	(BMI).		

	

2	 2	 2	
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Although	undersampling	has	been	shown	to	be	particularly	effective	 in	 large	datasets	

with	low	variance	[69,70,188],	the	omission	of	a	part	of	the	dataset	inevitably	introduces	

selection	 bias.	 Several	 techniques	 have	 been	 suggested	 to	 reduce	 this	 effect	 by	

considering	majority	outliers	[190],	analysing	clusters	[68]	or	cascading	an	ensemble	of	

classifiers	[192].		In	this	research,	majority	undersampling	was	combined	with	ensemble	

learning,	allowing	for	all	majority	samples	to	be	considered	at	least	once,	thus	effectively	

removing	 the	 inclusion	bias.	As	highlighted	 in	Section	6.3.2,	 this	approach	resulted	 in	

prognostic	models	as	effective	as	those	built	with	more	complex	SMOTE	and	ADASYN.	

 Novel	framework	for	small	data		

In	 real	 world	 clinical	 applications,	 where	 missing	 values	 and	 class	 imbalance	 issues	

cannot	be	effectively	addressed,	 the	number	of	samples	available	 for	ML	training	and	

validation	is	 further	reduced.	As	mentioned	in	Chapter	1,	ML	models	trained	on	small	

datasets	(less	than	10	observations	per	predictor	variable)	exhibit	sporadic	fluctuations	

in	their	output,	and	are	difficult	to	validate.	In	order	to	address	these	issues	and	improve	

usability	 of	 ML	 with	 small	 clinical	 datasets,	 developed	 in	 this	 thesis	 is	 a	 framework	

consisting	of:	1)	the	method	of	multiple	runs	 for	model	development,	and	2)	surrogate	

data	 test	 for	 regression	 model	 validation.	 The	 method	 of	 multiple	 runs	 enabled	

consistent	performance	comparisons	among	various	ML	designs,	despite	the	volatility	in	

predicted	 outcomes	due	 to	 small	 data.	 	 Surrogate	 data	 test	 evaluated	 trained	models	

under	small	data	conditions	and	provided	quantification	of	the	random	effects,	where	

additional	test	samples	are	not	available.		

The	framework	was	developed	and	validated	for	NNs,	although	it	could	be	applied	to	any	

regression	ML	system,	whose	training	and	initialisation	algorithms	contain	a	deliberate	

degree	of	randomness.	The	method	of	multiple	runs,	in	isolation,	is	not	sensitive	to	the	
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nature	of	the	predicted	targets,	and	thus	it	is	applicable	to	both	regression,	classification	

and	survival	problems.	This	novel	methodology	extends	beyond	the	task	considered	in	

this	chapter	and	provides	a	general	framework	for	application	of	ML	to	medical	problems	

characterised	by	limited	dataset	sizes.	

3.3.1 Method	of	multiple	runs		

The	 principle	 underpinning	 the	method	 of	 multiple	 runs	 is	 rooted	 in	 the	 simple	 yet	

powerful	 idea	 of	 tackling	 the	 problem	 of	 insufficiently	 few	 samples	 with	 many	

independent	 learners.	 A	 large	 number	 of	 NNs	 of	 the	 same	 design	 are	 trained	

simultaneously.	In	other	words,	the	performance	of	a	given	NN	design	is	assessed	not	on	

a	single	NN	instance,	but	repeatedly	on	a	set	(defined	here	as	run)	of	a	few	thousand	NNs.	

Identical	in	terms	of	their	topology	and	neuron	functions,	NNs	within	each	such	run	differ	

due	 to	several	 sources	of	 randomness	deliberately	embedded	 in	 the	 initialisation	and	

training	routines.	For	instance,	for	feed-forward	NNs	with	early	stopping	these	are:		

• the	initial	values	of	the	layer	weights	and	biases,		

• the	split	between	the	training	and	validation	datasets,	

• the	order	with	which	the	training	and	validation	samples	are	fed	into	the	NN.		

In	 every	 run,	 several	 thousand	NNs	with	various	 initial	 conditions	are	generated	and	

trained	in	parallel,	producing	a	range	of	successful	and	unsuccessful	NNs,	as	evaluated	

according	to	criteria	set	in	Section	3.3.3.	Subsequently,	the	NN	performance	indicators	

are	 reported	 as	 collective	 statistics	 across	 the	 whole	 run,	 thus	 allowing	 consistent	

comparisons	of	performance	among	 runs	despite	 the	 limited	 size	of	 the	dataset.	This	

helps	to	quantify	the	varying	effects	of	design	parameters,	such	as	network	size	and	the	

training	duration,	during	the	iterative	parameter	estimation	process.	Finally,	the	highest	

performing	 instance	 of	 the	 optimal	 NN	 design	 is	 selected	 as	 the	working	model.	 This	
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strategy	principally	differs	from	NN	ensemble	methods	(as	discussed	further	in	Section	

3.5)	in	the	sense	that	only	the	output	of	a	single	best	performing	NN	is	ultimately	selected	

as	the	working	model.	

In	summary,	the	following	terminology	applies	throughout	this	chapter:	

• design	parameters	are	NN	size,	neuron	functions,	training	functions,	etc.	

• individual	NN	parameters	are	weights	and	biases;	

• optimal	NN	design	is	based	on	estimation	of	appropriate	hyperparameters;	

• working	(optimal)	model	is	the	highest	performing	instance	selected	from	a	run	

of	the	optimal	NN	design.		

The	 choice	 of	 the	 number	 of	 NNs	 per	 run	 is	 influenced	 by	 the	 balance	 between	 the	

required	precision	of	the	statistical	measures	and	available	computational	resources,	as	

larger	runs	require	more	memory	and	time	to	simulate.	In	the	extreme	case	of	dataset	

size	 deficiency	 considered	 in	 Chapter	 4,	 where	 only	 35	 samples	 were	 available,	 a	

consistency	 to	 3	 decimal	 places	 could	 be	maintained	 for	most	 performance	 statistics	

(such	as	mean	regression	between	NN	targets	and	predictions)	with	2000	NNs,	which	

was	deemed	sufficient.	For	 inter-run	consistency,	each	2000	NN	run	was	repeated	10	

times,	 yielding	20000	NNs	 in	 total.	The	average	 simulation	 time	 for	 instantiating	and	

training	a	run	of	2000	NNs	on	a	modern	PC	(Intel®	Core™	i7-3770	CPU	@3.40GHz,	32	

GB	RAM)	was	280	seconds.		

3.3.2 Surrogate	data	test	

Where	 a	 sufficient	 number	 of	 samples	 is	 available,	 the	 efficiency	 of	 learning	 of	 the	

interrelationships	 in	 the	data	 is	expected	 to	correlate	with	 its	 test	performance.	With	

small	test	datasets,	however,	it	is	possible	for	even	poorly-designed	NNs	to	achieve,	at	
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random,	a	statistically	significant	performance.	In	order	to	distinguish	truly	effective	NN	

learners	 from	 “lucky”	 coincidental	 fittings,	 it	 is	 important	 to	 be	 able	 to	 evaluate	 NN	

generalising	 performance	 in	 spite	 of	 random	 effects.	 This	 is	 the	 aim	 of	 the	 proposed	

surrogate	data	test.		

First,	surrogate	data	are	generated	 so	 that	 they	mimic	 the	statistical	properties	of	 the	

original	 dataset	 independently	 for	 each	 component	 of	 the	 input	 vector.	 Whilst	

resembling	the	statistical	properties	of	the	original	data,	the	surrogates	are	not	meant	to	

retain	 the	 intricate	 interrelationships	 between	 the	 various	 components	 of	 the	 real	

dataset.	Subsequently,	the	NNs	trained	and	tested	on	surrogates	are	expected	to	perform	

poorly.	Any	seemingly	high	performance	should	be	deemed	coincidental.		

The	model	accuracy	on	surrogate	data	informs	the	NN	designer	as	to	what	performance	

could	be	achieved	by	a	particular	NN	design	due	to	“luck”.	By	repeating	these	estimations	

with	 multiple	 surrogate-data	 NNs,	 the	 random	 effects	 on	 the	 real-data	 model	

performance	can	be	quantified.	Training	and	evaluation	of	multiple	NNs	with	surrogate	

data	is	made	possible	with	the	method	of	multiple	runs	proposed	in	Section	3.3.1.	The	

highest	performing	surrogate	NN	instance	defines	the	lowest	performance	threshold	for	

real	data	models.	Hence,	to	pass	the	surrogate	data	test,	real	data	NNs	must	outperform	

this	threshold.	

The	surrogate	samples	can	be	generated	using	a	variety	of	methods	[170,193,194].	For	

normally	 distributed	 data	 the	 surrogates	 were	 generated	 from	 random	 numbers	 to	

match	the	truncated	normal	distributions,	e.g.	mean	and	standard	deviation	estimated	

from	the	original	data,	as	well	as	their	range	and	size.	For	data	where	individual	variables	

were	not	normally	distributed,	random	permutations	[195]	of	the	original	vectors	were	

applied.	
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3.3.3 Model	evaluation	and	selection	

For	 the	regression	NNs,	 the	performance	of	 the	 individual	models,	 including	 the	best-

performing,	was	reported	using	the	linear	regression	coefficients	J	between	the	ground	

truth	 (targets)	 and	 predicted	 outputs.	 	 In	 particular,	 regression	 coefficients	 were	

evaluated	 for	 the	entire	dataset	 (JABB),	 and	separately	 for	 training	 (J~�AuC),	 validation	

(J©AB),	and	testing	(J~E™~).		

The	 collective	 performance	 of	 the	 NNs	 within	 a	 multiple	 run	 was	 reported	 on	 the	

following:	

• mean	µ	and	standard	deviation	*	of	J~E™~	and	JABB 	across	all	NNs	in	the	run	

• the	number	of	NNs	that	are	statistically	significant	(JABB ≥ 0.6)	

• the	random	effect	threshold,	J™Æ�,ØAü ,	set	by	the	highest	performing	surrogate	

NN,	in	terms	of	JABB 	and	J~E™~	

Under	small-data	conditions,	J©AB 	is	unreliable	on	its	own	for	model	selection.	Hence	in	

the	proposed	framework,	both	J~�AuC	and		J©AB 	were	considered	 in	order	to	select	 the	

best	performing	model	 in	 the	multiple	 run.	Although	J~�AuC	 does	not	 indicate	 the	NN	

performance	on	new	samples,	it	provides	a	useful	estimation	of	the	highest	expected	NN	

performance.		It	is,	therefore,	stipulated	that	J~�AuC	must	be	generally	higher	than	J©AB 	

for	a	well-trained	NN.	Subsequently,	when	selecting	the	best	performing	NN,	the	models	

with	J©AB 	>	J~�AuC	were	disregarded,	and	from	the	remaining	models	the	one	with	the	

highest	J©AB 	was	chosen.	Note	that	J~E™~	should	not	be	involved	in	the	model	selection	as	

it	reflects	the	generalising	performance	of	NN	models	on	new	data.	
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3.3.4 Summary	of	the	proposed	framework	

Combined,	the	method	of	multiple	runs	and	surrogate	data	test	comprise	a	framework	

for	application	of	regression	ML	models	to	small	datasets,	as	summarised	in	Figure	3.2.		

Multiple	runs	enable:		

i) consistent	comparison	of	ML	designs	during	design	parameter	estimation,		

ii) evaluation	of	surrogate	data	and	real	data	models	during	surrogate	data	test,	

iii) selection	of	the	working	model	among	the	models	of	optimal	design.			

Surrogate	data	test	provides	a	mechanism	for:	

iv) quantification	 of	 the	 random	 effects	 due	 to	 small	 data	 on	 regression	 ML	

performance,		

v) validation	of	the	regression	ML	model	performance,	where	no	additional	test	

samples	are	available.			

	

Figure	3.2	A	novel	framework	for	the	application	of	regression	ML	models	to	small	datasets.	



Chapter	3.		Strategies	for	limited	data	

58	

 Framework	validation	

The	 intended	 domain	 of	 application	 for	 the	 proposed	 framework	 was	 a	 tissue	

engineering	 task	 of	 predicting	 compressive	 strength	 (CS)	 in	 bones	 affected	 by	

osteoarthritis,	as	later	detailed	in	Chapter	4.		However,	the	small-data	models	enabled	by	

the	framework	could	not	be	considered	as	valid	until	it	was	confirmed	that	such	models	

were	able	to	generalise	on	larger	datasets.	Since	large	datasets	were	not	easily	available	

in	hard	tissue	engineering,	alternative	data	sources	had	to	be	considered.		A	1030-sample	

dataset	 [164]	on	CS	of	another	porous	solid	(concrete)	was	adapted	 in	 this	validation	

study	from	civil	engineering	domain.	

This	dataset	enabled,	 in	a	principled	manner,	an	investigation	of	the	effects	of	dataset	

size	on	generalising	ability	of	the	NNs	produced	by	the	framework.		Furthermore,	access	

to	 more	 data	 meant	 that	 the	 small-data	 NNs	 could	 be	 rigorously	 assessed	 for	

generalisation	on	a	large	independent	test	cohort,	subsequently	confirming	whether	the	

multiple	runs	strategy	and	surrogate	data	test	were	effective.		

3.4.1 The	concrete	compressive	strength	data		

The	dataset	[164]	from	1030	concrete	samples	was	obtained	from	a	publicly	available	

ML	 repository	 [165].	 It	 included	 the	 following	 variables	 (descriptive	 statistics	 are	

provided	in	Appendix	C):		

• CS	of	concrete	samples	(in	MPa);	

• quantities	 of	 7	 components	 in	 the	 concrete	mixture	 (kg/m3):	 cement,	 blast	

furnace	slag,	fly	ash,	water,	superplasticizer,	coarse	and	fine	aggregates;	

• duration	of	concrete	aging	(days).	
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CS	of	concrete	is	a	highly	nonlinear	function	of	its	components	and	the	duration	of	curing	

[164],	 however,	 an	 appropriately	 trained	 NN	 could	 effectively	 capture	 that	 complex	

relationship	between	the	CS	and	the	other	8	variables.	A	successful	application	of	NNs	to	

CS	prediction	based	on	700	concrete	samples	has	been	demonstrated	in	an	original	study	

by	Yeh	[164].		The	goal	of	this	work	was	to	establish	if	NNs	trained	with	smaller	dataset	

could	achieve	comparable	performance.		

It	is	important	to	emphasise	that	the	concrete	CS	data	were	used	solely	for	the	purpose	

of	validating	 the	proposed	modelling	methodology,	and	not	 for	 transfer	 learning	[11].	

Concrete	 was	 chosen	 due	 to	 the	 similarity	 of	 the	 statistical	 nature	 of	 the	 output	

(continuous	CS)	and	input	parameters,	but	 it	obviously	had	no	biological	relevance	to	

trabecular	bones.	 In	principle,	 any	 large	dataset	with	continuous-valued	output	could	

have	been	used.		

3.4.2 Effect	of	dataset	size	on	neural	network	performance	

The	dataset	 on	 concrete	CS	was	utilised	 to	 investigate	 the	 role	 of	 dataset	 size	 on	NN	

performance	and	generalising	ability.	It	was	demonstrated	that	for	a	 larger	number	of	

samples	the	optimal	NN	parameters	could	be	derived	without	 involving	the	proposed	

framework,	yet	the	importance	of	the	framework	increases	as	the	data	size	is	reduced.	

First,	a	large-dataset	NN	model	was	developed	on	the	complete	dataset	(1030	samples).	

The	samples	were	divided	at	random	into	training	(60%),	validation	(10%)	and	testing	

(30%),	 i.e.	 out	 of	 1030	 available	 samples,	 630	 were	 used	 for	 NN	 training,	 100	 for	

validation	 and	300	were	 reserved	 for	 testing.	 Each	 run	 comprised	 1000	 feedforward	

backpropagation	NNs	with	3=8	inputs	and	$=10	neurons	in	the	hidden	layer.	The	NNs	

were	trained	using	the	Levenberg-Marquardt	backpropagation	algorithm	[110,196,197].	

The	cost	function	was	defined	as	the	mean	squared	error	LM/	between	the	output	and	
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actual	CS	values.	Early	stopping	on	an	independent	validation	cohort	was	implemented	

in	order	to	avoid	NN	overtraining	and	to	improve	generalisation	[153].	The	validation	

subset	was	sampled	at	random	from	the	model	dataset	for	each	NN,	ensuring	diversity	

among	the	samples.	The	early	stopping	criterion	-	was	set	to	10.	

Secondly,	 a	 NN	was	 applied	 to	 a	 smaller	 subset	 of	 the	 original	 dataset.	 Out	 of	 1030	

concrete	samples,	100	samples	were	sampled	at	random	and	without	replacement	[195].	

The	descriptive	statistics	of	the	original	and	small	subsets	are	provided	in	Appendix	C.	

The	proportions	for	training,	validation	and	testing	subsets,	as	well	as	the	training	and	

initialisation	routines,	were	analogous	to	those	used	for	the	large	concrete	dataset	NN	

with	an	exception	to	the	following	adjustments:	

i) the	 size	 of	 the	 run	 was	 increased	 to	 2000	 NNs	 to	 maintain	 inter-run	

repeatability		

ii) the	hidden	 layer	 size	$	was	 reduced	 from	10	 to	5	neurons	 to	 adjust	 for	 the	

smaller	dataset	

iii) the	early	stopping	criterion	-	was	reduced	from	10	to	6	to	reflect	the	changes	

in	(ii)		

Finally,	an	extreme	case	with	even	smaller	subset	of	the	data	was	considered.	From	the	

available	 1030	 samples,	 56	 were	 selected	 at	 random	 to	 yield	 the	 same	 ratio	 of	 the	

number	of	observations	per	predictor	variable	as	in	the	bone	CS	dataset	(35	samples	and	

5	predictors)	considered	in	Chapter	4.	Out	of	the	56	concrete	samples,	41	were	used	for	

small-data	model	development,	and	the	remaining	15	were	reserved	for	model	testing.	

The	descriptive	statistics	on	the	model	and	test	subset	are	provided	in	Appendix	C.		
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Figure	 3.3	 illustrates	 the	 changes	 to	 the	 regression	 coefficient	 distributions	 across	 a	

multiple	run	as	the	size	of	the	dataset	decreased	from	(a)	1030	to	(b)	100,	and	to	(c)	56	

samples.	 All	 large-data	 NNs	 (Figure	 3.3	 a)	 performed	 with	 statistically	 significant	

regression	 coefficients	 (J	 ≥ 	0.6).	 As	 expected	with	 large	 data,	 the	 performance	was	

highly	accurate,	with	)(JABB)	=0.95	and	)(J~E™~)=0.94	when	averaged	across	the	multiple	

run	of	1000	NNs.	

For	smaller	dataset	NNs	(Figure	3.3	b,	c),	the	distributions	of	the	regression	coefficients	

along	 x-axis	 were	 within	 substantially	 wider	 ranges.	 The	 standard	 deviations	 σ	 also	

increased	 substantially	 for	 NN	modes	 based	 on	 smaller	 datasets	 compared	 with	 the	

initial	 large-dataset	model	 (Figure	 3.3	 a).	 Distributions	 of	 the	 regression	 coefficients	

achieved	 by	 the	 2000	 NN	 instances	within	 the	 same	 run	 (Figure	 3.3	 c)	 demonstrate	

higher	intra-run	variance	when	compared	to	the	large-dataset	NNs	(Figure	3.3	a).		Over	

half	 of	 the	NNs	 did	 not	 converge	 and	 only	 762	NNs	 produced	 statistically	 significant	

predictions.		

The	 mean	 regression	 coefficients	 across	 the	 run	 decreased	 to	 )(JABB)=0.719,	 and	

)(J~E™~)=0.542	(Figure	3.3	c).	 	When	considering	only	statistically	significant	NNs,	the	

mean	 performance	 of	 all	 samples	 was	 )(JABB,™uÄCu})=0.839	 and	 individually	 for	 tests	

)(J~E™~,™uÄCu})=0.736.	Despite	higher	volatility,	an	undesirable	distribution	spread	and	

lower	 mean	 performance,	 the	 maximal	 R	 values	 for	 the	 small-dataset	 NNs	 were	

comparable	with	those	for	the	large-dataset	NNs.		
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Figure	3.3.	Distributions	of	JABB 	and	J~E™~	across	a	run	of	NNs:	(a)	large-dataset	model	(1030	samples),	(b)	
intermediate	100	sample	model,	and	(c)	small-dataset	model	(56	samples).	The	inset	shows	the	enlarged	area	

highlighted	in	(a).	
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3.4.3 Surrogate	data	test	for	concrete		

As	expected,	NNs	trained	on	the	real	concrete	data	consistently	outperformed	surrogate	

NNs.	Figure	3.4	demonstrates	how	the	difference	in	performance	between	the	real	and	

surrogate	NNs	increased	with	the	dataset	size.		

For	the	large-dataset	NN	developed	with	1030	samples	(Figure	3.4	a),	the	surrogate	and	

real-data	NN	distributions	did	not	overlap.	 In	 fact,	 the	 surrogate	NNs	 in	 this	 instance	

achieved	 approximately	 zero	mean	 performance,	 which	 signifies	 that	 random	 effects	

would	not	have	an	impact	on	NN	learning	with	a	dataset	of	this	size.		

The	100-sample	(Figure	3.4	b)	and	56-sample	(Figure	3.4	c)	surrogate	NNs	had	a	non-

zero	mean	performance	of	)(JABB,™Æ�,Vôô)	=0.219	and	)(JABB,™Æ�,Üá)=0.187,	respectively.	

They	were	also	characterised	by	a	higher	standard	deviation	of	* = 0.142	and	* = 0.145		

compared	to	 large-dataset	NNs	(* = 0.048).	 	The	non-zero	mean	performance	of	NNs	

suggests	 that	 random	 effects	 cannot	 be	 disregarded	with	 small	 datasets	 and	 require	

quantification	offered	by	the	proposed	surrogate	data	test.	Figure	3.4	also	demonstrates	

how	the	surrogate	data	test	becomes	progressively	more	conservative	with	decreasing	

dataset	size.	

For	 56-sample	 datasets	 (Figure	 3.4	 c),	 the	 surrogate	 NNs	 performed	 with	 a	 mean	

regression	of	)(JABB,™Æ�,Üá)=0.187,	as	opposed	to	)(JABB,�EAB,Üá)=0.715	for	real-data	NNs.	

None	 of	 the	 2000	 surrogate	 small-dataset	 NNs	 achieved	 a	 statistically	 significant	

performance	 (R	 ≥	 0.6).	 The	 surrogate	 threshold	 for	 the	 56-sample	 NN	 was	 below	

statistical	significance:	the	highest	performing	surrogate	NN	achieved	J™Æ�,ØAü,Üá=0.791,	

largely	due	to	overtraining,	and	hence	its	corresponding	performance	on	test	samples	of	

J™Æ�,ØAü,Üá,~E™~		=	0.515	was	poor.			
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Figure	3.4.	Surrogate	(green)	vs.	real	concrete	data	(navy)	NN	performance	for	(a)	large-dataset	model	(1030	
samples),	(b)	intermediate	100	sample	model,	and	(c)	small-dataset	model	(56	samples).	
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3.4.4 Benchmark	model	

The	performance	of	one	of	1000	large-data	NN	from	the	run	in	Section	3.4.2	(Figure	3.3	

a)	is	shown	in	Figure	3.5.	This	specimen	NN	achieved	JABB	=0.944	and	generalised	with	

J~E™~=0.94	 on	 300	 independent	 test	 samples	 (Figure	 3.5	 d).	 It	 reflects	 a	 benchmark	

performance	of	NNs	trained	with	abundant	samples	using	standard	techniques.		

	

Figure	3.5.	Linear	regression	between	target	and	predicted	compressive	strength	achieved	by	the	specimen	
large-data	(1030	samples)	concrete	neural	network	model.	Values	are	reported	individually	for	(a)	training	

(blue),	(b)	validation	(green),	(c)	testing	(red),	and	(d)	the	entire	dataset	(black).	

	

3.4.5 Small-data	model	developed	with	multiple	runs	

Among	the	2000	small-dataset	(56-sample)	NNs,	the	best-performing	NN	was	selected	

using	the	performance	criteria	defined	in	Section	3.3.3.	This	model	achieved	regression	
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coefficients	of	JABB=0.92	on	the	entire	dataset,	and	separately:	J~�AuC=	0.96,	J©AB=	0.92	

and	J~E™~=0.90	on	15-sample	test	(Figure	3.6	a-d).	In	comparison,	the	large-dataset	NN	

developed	with	 1030	 samples	 performed	 only	 2.12%	higher.	 The	J	values	were	well	

above	the	surrogate	threshold	)(J™Æ�,ØAü,Üá)=0.791	determined	in	Section	3.4.3,	hence	

establishing	that	high	performance	of	the	small-data	NN	was	not	due	to	random	effects.	

	

Figure	3.6.	Linear	regression	between	target	and	predicted	compressive	strength	achieved	by	the	small-
dataset	(56	samples)	optimised	concrete	neural	network.	Values	are	reported	individually	for	(a)	training	

(blue),	(b)	validation	(green)	and	(c)	testing	(red),	(d)	the	entire	dataset	(black),	and	(e)	for	300	independent	
test	samples	(purple).	

To	further	confirm	that	the	proposed	framework	was	indeed	capable	of	producing	well-

generalising	 models	 from	 limited	 data,	 the	 performance	 of	 the	 small-data	 NN	 was	

assessed	on	300	additional	test	samples	(an	equivalent	number	was	used	in	the	large-

dataset	 NN).	 These	were	 randomly	 sampled	without	 replacement	 from	 the	 available	

dataset	of	1030 − 56 = 974	 samples	not	previously	seen	by	 this	NN.	Remarkably,	 the	

small-data	NN,	modelled	with	only	41	samples,	was	able	to	predict	CS	on	300	new	test	

samples	 with	J~E™~,Ñôô=0.865	 (Figure	 3.6	 e).	 The	 corresponding	RMSE	 (as	 defined	 in	
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Appendix	B)	was	9.5	MPa.	This	constitutes	a	7.5%	decrease	in	generalising	performance	

compared	to	the	benchmark	NN,	which	used	18	(!)	times	larger	dataset	(Figure	3.5	c).		

In	 other	 words,	 the	 proposed	 framework	 enabled	 the	 development	 and	 validation	

against	random	effects	of	an	86.5%	accurate	regression	ML	model	on	a	dataset	18	times	

smaller	 than	 that	 required	 to	 achieve	 a	 comparable	 performance	 with	 standard	

techniques.	 The	 remarkable	 cost-benefit	 trade-off	 made	 possible	 by	 the	 framework	

highlighted	 its	 value	 for	 addressing	 the	 problems	 characterised	 by	 restricted	 dataset	

sizes.	The	small-data	concrete	CS	NN	demonstrated	that	it	was	possible	for	accurate	and	

robust	regression	ML	models	to	be	developed	with	as	few	as	56	samples.	This	finding	

inspired	the	clinical	applications	in	Chapters	4-6,	which	were	not	previously	considered	

possible	with	ML	due	to	restricted	availability	and	limited	quality	of	samples.		

 Comparison	with	alternative	techniques	for	small	data	

Although	there	are	no	existing	ML	techniques	for	analysis	of	such	extreme	cases	as	the	

dataset	with	merely	56	observations,	some	ML	methods,	such	as	NN	ensembling,	leave-

one-out	 cross-validation,	 and	 regularisation,	 are	 believed	 to	 work	 well	 in	 data-poor	

situations	[198,199].			In	order	to	determine	their	suitability	for	datasets	as	small	as	10	

observations	 per	 predictor	 variable,	 it	 was	 decided	 to	 implement	 each	 of	 the	

abovementioned	techniques	and	let	the	practical	results	speak	for	themselves.		

3.5.1 Ensemble	of	neural	networks	

As	discussed	in	Section	2.3,	combining	predictions	of	a	series	of	individual	NNs	into	an	

ensemble	often	increases	their	robustness	and	accuracy	[132,133].	In	this	section,	the	

NN	 ensemble	 was	 compared	 and	 contrasted	 with	 a	 single	 small-data	 NN	 model	

developed	with	the	proposed	framework	from	Section	3.4.5.		
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The	 initial	NN	ensemble	was	designed	by	combining	the	outputs	of	1000	NNs	trained	

with	the	complete	dataset	(analogous	to	the	large-dataset	NNs	described	in	Section	3.4.2	

and	presented	in	Figure	3.3	a).	As	anticipated,	this	NN	ensemble	was	able	to	achieve	a	

superior	 generalisation	 accuracy	 of	 J~E™~	 =	 0.96	 when	 tested	 on	 300	 independent	

samples.			

The	 second	 NN	 ensemble	 was	 designed	 by	 combining	 the	 2000	 56-sample	 NNs	

(analogous	 to	 the	small-dataset	NNs	 in	Section	3.4.2).	This	ensemble	achieved	J~E™~	=	

0.81	 on	 15	 independent	 test	 samples.	 In	 comparison,	 the	 small-dataset	 NN	model	 in	

Section	 3.4.5	 achieved	 J~E™~	 =	 0.90	 on	 the	 same	 test	 samples.	 Subsequently	 the	

generalising	ability	of	this	ensemble	was	assessed	on	300	additional	concrete	samples.		

The	ensemble	was	able	to	retain	its	generalising	ability	with	the	accuracy	of	J~E™~,Ñôô	=	

0.81,	proving	its	robustness,	 irrespective	of	the	test	sample	size.	Despite	such	striking	

consistency	between	J~E™~	and	J~E™~,Ñôô,	this	generalising	performance	was	found	to	be	

8%	lower	than	that	of	the	single	small-data	NN	developed	with	the	proposed	framework	

(J~E™~,Ñôô	=	0.87,	Section	3.4.5).	 	These	results	demonstrate	that	the	NN	ensemble	was	

able	to	achieve	a	remarkable	performance	on	predictive	tasks	with	sufficient	data,	but	

was	unable	to	perform	as	well	as	the	proposed	multiple	run	model	on	the	small	dataset	

considered	in	this	experiment.		

3.5.2 Regularisation	

The	principle	behind	regularisation	is	to	penalise	NN	performance	for	large	weights	and	

biases,	 thus	 preventing	 over-parametrisation	 and	 resulting	 in	 smoother	 response	

[107,199].	This	 is	achieved	by	modifying	 the	NN	cost	 function	 to	consider	 the	sum	of	

squares	of	the	NN	weights	and	biases.	Regularisation	with	Bayesian	regularisation	[200]	

backpropagation	was	implemented	in	the	NN	models	as	an	alternative	technique	to	early	
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stopping.	The	validation	samples	required	for	early	stopping	were	now	made	available	

for	 training.	Despite	 this	 increased	 training	 dataset,	 regularisation	 did	 not	 lead	 to	 an	

increased	 generalisation	 performance,	 and	 instead	 it	 appeared	 to	 over-train	 the	NNs	

(Table	3.1).	

Table	3.1	Controlling	overfitting	with	small	data:	Early	stopping	vs	Bayesian	regularisation	

Median	J	across	a	run	of	2000	NNs	
Dataset2	 Early	stopping	 Regularisation	
All	 0.760	 0.864	
Training	 0.817	 0.950	
Validation	 0.709	
Testing	 0.734	 0.676	

	

Changing	 regularisation	 parameters	 (such	 as	 increasing	 the	 minimum	 gradient,	

maximum	Marquardt	adjustment	parameter	 and	 the	 learning	rate	decrements)	did	not	

improve	the	results.	Whilst	regularisation	did	not	prove	superior	to	early	stopping	on	

the	extremely	small	dataset,	the	strategy	independently	verified	the	optimal	estimates	of	

the	bone	CS	network	hyperparameters,	as	described	in	Chapter	4.	

3.5.3 K-fold	and	leave-one-out	cross	validation	

Cross-validation	is	used	to	ensure	that	the	results	produced	by	the	ML	models	do	not	

depend	on	the	random	choice	of	 the	validation	set.	With	multiple	runs,	 the	validation	

cohort	used	for	early	stopping	was	sampled	at	random	from	the	model	dataset	for	each	

NN,	ensuring	diversity	among	the	samples.	This	validation	approach	cannot	be	strictly	

called	 a	 k-folds	 cross-validation:	 the	 folds	 are	 overlapping	 and	 may	 not	 cover	 every	

possible	combination.	The	resulting	validation	subsets	are	more	diverse	than	k-folds	due	

to	the	random	sampling	in	each	run	of	2000	NNs.	

																																								 																					
2	The	dataset	presented	here	bone	CS	data,	which	is	discussed	in	Chapter	4.		
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Leave-one-out	cross	validation	was	useful	for	overall	inter-run	performance	evaluation	

during	preliminary	design	parameter	optimisation.	However,	it	was	not	applicable	to	the	

intra-run	model	 selection.	Medical	 applications	 considered	 in	 this	 research	 require	 a	

stand-alone	predictive	model,	and,	therefore,	it	is	advantageous	to	be	able	to	single	out	a	

best-performing	NN	 among	 those	 of	 identical	 designs.	 To	do	 so	without	 affecting	 the	

purity	of	test	samples,	one	has	to	sacrifice	a	subset	for	a	validation	cohort.	Whilst	being	

resourceful	with	an	already	small	dataset,	leave-one-out	cross	validation	does	not	provide	

such	independent	subset	for	identification	of	a	single	best-performing	NN	in	a	run.		

 Chapter	conclusions	

This	 chapter	 demonstrated	 that	 no	 general	 “one-size-fits-all”	 strategy	 exists	 for	 ML	

modelling	with	limited	clinical	data.	The	key	findings	are	summarised	as	follows:	

(1) The	existing	techniques	for	managing	incomplete	data	rely	on	missing	at	random	

assumption	and	introduce	bias	when	mechanisms	of	missing	data	are	dependent	on	the	

unknown	variables.			

(2) Relative	disadvantages	of	list-wise	deletion,	single	value	imputation	with	indicator	

variable,	 and	multiple	 imputation	with	 chained	 equations	 have	 to	 be	 considered	 in	 a	

practical	context.	

(3) Decision	 trees	 stand	out	 among	other	ML	 algorithms	 for	 their	 ability	 to	 handle	

missing	data	without	imputation,	rendering	these	models	particularly	advantageous	for	

analysing	incomplete	datasets.		

(4) Complexity	 of	 the	 class	 balancing	 technique	 does	 not	 necessarily	 translate	 into	

superior	performance:	majority	undersampling	combined	with	ensemble	learning	was	
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as	effective	as	state-of-the-art	synthetic	minority	oversampling	techniques	for	data	with	

1:11	class	imbalance.		

(5) A	novel	methodological	 framework	comprising:	 (1)	a	multiple	 runs	strategy	 for	

predictive	model	 development	 and	 optimisation	with	 limited	 data,	 and	 (2)	 surrogate	

data	test	for	regression	model	validation	in	the	absence	of	substantive	test	samples,	has	

been	developed	to	address	the	limitations	of	small	datasets	(less	than	10	observations	

per	predictor	variable)	in	ML	applications.		

(6) The	framework	enabled	the	successful	development	and	validation	of	a	regression	

NN	with	as	few	as	8	observations	per	predictor	variable	and	outperformed	the	ensemble	

NNs,	leave-one-out	cross	validation	and	regularisation	methods	in	experiments	on	small	

data.		

(7) Using	the	proposed	framework,	a	NN	modelled	with	a	small	subset	of	56	samples	

was	 shown	 to	 generalise	 on	 300	 independent	 test	 samples	 with	 86.5%	 predictive	

accuracy.	 This	was	 comparable	 to	 the	performance	of	 the	NNs	developed	with	 an	18	

times	 larger	 dataset	 using	 standard	 techniques,	 thus	 demonstrating	 the	 remarkable	

potential	 of	 the	 proposed	 framework	 for	 improving	 the	 cost-benefit	 trade-off	 in	

applications	restricted	by	dataset	sizes.	
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Bone	fracture	prediction	in	osteoarthritis	

The	compressive	strength	(CS)	of	a	trabecular	tissue	in	the	femoral	head	is	indicative	of	

hip	 fracture	 risk	 [201–203].	 In	patients	 suffering	 from	severe	osteoarthritis	 (OA),	 the	

relationships	between	the	CS	and	structural	parameters	of	trabecular	tissue	cannot	be	

explained	with	the	existing	mechanistic	models	[201,204].	In	this	chapter,	a	two-layer	

feedforward	NN	was	developed	 for	modelling	CS	 from	porosity,	morphology,	 and	 the	

level	of	trabecular	interconnectivity	in	female	and	male	OA	patients	of	various	ages.		

Developed	with	only	35	specimens	using	the	novel	methodology	for	small	data	proposed	

in	 Chapter	 3,	 the	 NN	model	 was	 able	 to	 accurately	 (J~E™~	 =0.983)	 estimate	 CS	 from	

structural	and	physiological	properties	to	within	0.85	MPa.	Within	the	limitations	of	the	

available	 dataset,	 the	 NN	 offered	 a	 predictive	 model	 for	 clinical	 and	 hard	 tissue	

engineering	 decision	 support.	 The	 significance	 of	 this	 work	 is	 two-fold:	 its	 practical	

application	allows	for	the	non-destructive	estimation	of	strength	to	femoral	fracture	in	

OA	patients,	whilst	also	demonstrating	the	efficacy	of	the	proposed	framework	for	the	

application	of	regression	NNs	to	small	biomedical	datasets.	

 Femoral	fractures	in	osteoarthritis	

Bone	 fractures	 account	 for	 more	 than	 20%	 of	 orthopaedic	 hospital	 cases	 in	 the	 UK,	

among	which	 fractures	 of	 proximal	 femur	 (hip)	 are	 a	 growing	public	 health	 problem	
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[205–207].	With	 increasing	global	 incidence,	hip	 fractures	are	projected	to	affect	6.26	

million	 people	 by	 2050	 [206],	which	 necessitates	 scalable	 screening	 programmes	 for	

patients	at	risk	that	can	adapt	to	population	dynamics.				

A	fracture	occurs	when	excessive	mechanical	loading	is	exerted	on	areas	of	the	femora	

during	accidental	falls	and	injuries.	Such	accidents	are	most	common	in	the	elderly	as	a	

result	 of	 frailty,	 sensorial	 and	 neurological	 deterioration	 or	muscular	 atrophy	 [207].	

Whether	 the	 femora	 would	 fracture	 at	 the	 traumatic	 impact	 is	 determined	 by	 the	

mechanical	properties	of	 the	 femoral	 tissue	at	 the	 location	of	 impact.	The	mechanical	

properties,	in	turn,	are	determined	by	the	quality	of	the	bone	tissue,	which	is	depleted	

with	 age	 and	 hormonal	 changes	 in	 a	 process	 known	 as	 osteopenia	 and,	 in	 advanced	

stages,	osteoporosis	 [208].	This	 is	why	 the	 residual	 lifetime	 risk	of	hip	 fracture	at	50	

years	of	age	is	higher	in	women	(20%)	than	men	(5.6%)	[206].	Specifically,	osteoporosis	

is	 characterised	by	 the	decrease	of	bone	mineral	density	 (BMD),	but	 it	 is	not	 the	only	

degenerative	condition	that	affects	the	mechanical	strength	of	the	femur.		

Osteoarthritis	(OA)	is	a	degenerative	joint	disease	associated	with	the	degradation	of	the	

articular	cartilage	and	hypertrophic	changes	in	the	bone	(Figure	4.1)	[209].	OA	is	a	life-

long	condition	accompanied	by	pain	and	stiffness	in	the	affected	joint,	loss	of	dexterity,	

and	reduced	mobility,	 thus	considerably	 limiting	 the	quality	of	 life	of	 the	patient.	The	

etiological	 interplay	 in	OA	 is	 complex,	 but	 it	 is	 recognised	 that	OA	 in	 the	hip	 is	more	

common	 in	 people	with	 high	 Body	Mass	 Index	 (BMI),	 advancing	 age	 (particularly	 in	

women),	 previous	 joint	 injury,	 and	 genetic	 predisposition	 [201,209].	 In	 the	 UK,	 8.75	

million	people	have	sought	treatment	for	OA,	which	translates	to	the	direct	annual	cost	

of	£5.2	billion	to	the	healthcare	system	[210].	The	treatment	of	severe	hip	OA	is	partial	

or	total	hip	arthroplasty	(replacement).		
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Whilst	it	is	well-established	that	osteoporotic	decrease	in	BMD	is	a	key	factor	in	fragility	

fractures,	it	might	be	less	known	that	OA	is	often	associated	with	increased	BMD	around	

the	 joints.	Several	groups	have	studied	 this	 inverse	association	between	OA	and	BMD		

[201,211,212].	Evidence	indicates	that	hip	OA	modulates	the	age	dependence	of	BMD	in	

the	proximal	 femora	 [213].	 It	was	also	observed	 that	hip	 fractures	 rarely	occurred	 in	

patients	with	OA	[214],	although	OA	was	associated	with	higher	risk	fracture	in	the	knee	

[215]	and	spine	 [216].	 It	 is	unclear	whether	 the	greater	BMD	 in	OA	could	be	directly	

translated	into	a	reduced	risk	of	hip	fracture,	thus	necessitating	mechanical	modelling	of	

the	OA-affected	tissue	from	structural	and	biological	parameters	[201].	

 Modelling	trabecular	strength	in	osteoarthritis	

Bone	is	a	living	cellular	solid	with	a	hierarchical	architecture,	formed	by	a	load-bearing	

flexible	 matrix	 of	 collagen	 and	 other	 protein	 molecules	 layered	 with	 hydroxyapatite	

nanocrystals	[217].	There	are	two	main	types	of	bone	architecture:	1)	cortical,	forming	

the	outer	layer	of	long	bones	with	a	high	density	(90%	of	the	volume)	of	mineralization,	

low	surface	to	volume	ratio	and	a	slow	metabolic	rate	(2.5%	annual	remodelling),	and	2)	

trabecular	(cancellous),	which	is	a	porous	lattice-like	structure	in	the	inner	bone	(Figure	

4.1)	oriented	along	stress	lines	that	correspond	to	maximum	load-bearing	[208].	It	is	the	

mechanical	strength	of	trabecular	tissue	that	determines	the	fragility	fracture	in	proximal	

human	femur.	From	a	structural	point	of	view,	the	microarchitecture	of	trabecular	bone	

is	characterised	by:		

• porosity,	which	 is	measured	by	 the	bone	volume	over	 total	volume	(BV/TV)	

ratio	and	designates	the	percentage	level	of	BMD	in	a	given	volume;	
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• level	 of	 interconnectivity,	 indicated	 by	 trabecular	 thickness	 (Tb.Th)	 and	

trabecular	spacing	and	which	shows	how	thick	trabeculae		are	and		how	large	

the	pores	are,	respectively;	

• morphology,	 characterised	 by	 the	 Structure	 Model	 Index	 (SMI)	 and	 which	

provides	the	3D	measures	of	the	trabecular	lattice	[218].	

These	structural	properties,	together	with	age	and	gender	related	quality	factors	such	as	

collagen	content,	mineralisation	rate	and	damage	accumulation,	define	some	of	the	key	

mechanical	indicators	of	bone	fracture	risk	such	as	compressive	strength	(CS),	hardness,	

stiffness	and	Young’s	modulus.	

It	is	known	from	cellular	mechanics	that	CS	is	related	to	BMD	as	a	polynomial	function	

(constant	 exponent	 of	 Ñ
,Ü
	 )	 [166,204,219].	 This	 mechanistic	 relationship	 explains	

reasonably	 well	 the	 dependency	 of	 CS	 on	 BMD	 in	 healthy	 and	 osteoporotic	 patients	

[220,221].	However,	for	patients	with	OA,	there	is	an	indication	that	higher	BMD	does	

not	 increase	 the	 strength	 to	 failure	 in	OA-affected	 joints	 [201,211].	 Furthermore,	 the	

improvement	 of	 BMD	 observed	 in	 OA	 patients	 may	 be	 misrepresented	 by	 the	

heterogeneity	 of	 the	 femoral	 tissue	 itself,	 suggesting	 that	 higher	 bone	mineralisation	

occurs	in	a	cortical	bone	whilst	trabecular	bone	suffers	from	osteoporotic	loss	of	BMD	

[204,222].	The	task	of	modelling	trabecular	tissue	becomes	even	more	onerous	due	to	

the	 dependence	 of	 CS	 on	 local	 variations	 in	 microarchitecture	 [223].	 Computational	

techniques	such	as	finite-element	analysis	(FEA)	have	been	used	for	clinical	data	in	hip	

fractures	with	limited	success	[203,224,225].	All	these	factors	not	only	highlight	the	non-

intuitive	complexity	of	the	physiological	and	mechanical	properties	of	trabecular	tissue	

in	OA,	but	also	emphasise	the	clinical	importance	of	modelling	femoral	CS	for	OA	patients,	

who	have	been	overlooked	in	the	traditionally	osteoporosis-centred	fracture	screening	

programmes	[201,213].			
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Figure	4.1	Osteoarthritic	hip	joint	

Patient-specific	mechanical	CS	modelling	of	a	trabecular	bone	is	also	of	interest	to	hard	

tissue	engineers,	who	are	often	faced	with	the	problem	of	selecting	the	most	successful	

strategy	for	both	the	design	and	fabrication	of	synthetic	bioscaffolds	for	the	treatment	of	

patients	 suffering	 from	 degenerative	 orthopaedic	 diseases	 triggered	 by	 OA,	

osteoporosis,	trauma,	injury	and	metastatic	cancer	[84,226].	To	be	effective,	bioscaffolds	

must	not	only	imitate	natural	trabecular	structure	for	improved	bone	regeneration,	but	

also	match	precisely	the	mechanical	loading	of	the	diseased	tissue	that	is	being	replaced	

[226,227].	 The	 latter	 task	 could	 be	 achieved	 with	 advanced	 3D	 printing	 techniques,	

which	 are	 being	 increasingly	 adopted	 in	 hard	 tissue	 engineering	 [226,227];	 provided	

that	the	target	values	of	load-bearing	CS	at	the	site	of	implantation	could	be	estimated	in	

the	patient	femora	prior	to	the	CS-tailored	bioscaffold	fabrication.		

The	 clinical	 application	of	 screening	patients	 at	 risk	of	hip	 fractures	 in	OA	 requires	a	

predictive,	 scalable	 and	 non-invasive	 CS	 model.	 Firstly,	 the	 model	 must	 enable	 the	

prediction	of	the	dangerously	decreased	strength	to	fracture	of	OA	tissue	for	the	timely,	

preventative	intervention	in	patients	of	different	age	and	gender	groups.	Secondly,	the	

model	must	be	scalable	with	aging	population	dynamics	and	the	growing	incidence	of	

hip	fractures.	Finally,	the	model	should	provide	a	non-invasive	estimation	of	trabecular	

CS	from	the	structural	parameters	available	from	computer	tomography	(CT)	scans.	One	
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possibility	 of	 such	 modelling	 was	 addressed	 in	 this	 research	 using	 neural	 network	

learning	from	a	small	secondary	dataset	obtained	from	a	published	study	on	the	effect	of	

age	in	OA	[166].	

 Neural	network	for	bone	strength	prediction		

The	use	of	NNs	was	motivated	by	the	author’s	earlier	work	[84],	in	which	a	feedforward	

backpropagation	 NN	 was	 able	 to	 infer,	 in	 multi-dimensional	 space,	 the	 complex	

interdependency	between	the	mechanical	and	structural	parameters	of	trabecular	tissue	

with	a	patient’s	age.	The	application	demonstrated	that	NNs	could	cope	well	with	a	lack	

of	mechanistic	priors	and		the	non-linearity	of	parameters	and	determine	the	significant	

correlation	of	CS	and	age	[84],	where	linear	statistical	analyses	and	polynomial	BMD-CS	

models	had	failed	to	do	so	[166].		

The	 remaining	 obstacle	 for	 applying	NNs	 to	 trabecular	 CS	modelling	was	 the	 limited	

availability	 of	 training	 and	 validation	data,	 since	 obtaining	 a	 labelled	dataset	with	CS	

values	 involved	 the	destructive	 testing	of	 tissue	samples	extracted	 through	expensive	

and	highly	invasive	hip	replacement	procedures.	Such	complexity	is	characteristic	of	the	

tissue	engineering	domain,	where	generation	of	large-volume	and	high-quality	datasets	

is	highly	 impractical	and	often	unrealistic.	Without	effective	strategies	 for	small	 sized	

datasets,	such	as	the	novel	framework	developed	in	Chapter	3,	NN	modelling	remained	

infeasible.	The	successful	application	of	the	framework	to	concrete	samples	presented	in	

Chapter	3	demonstrated	the	small-data	potential	of	regression	NNs	to	CS	modelling	in	

porous	 solids.	 The	 NN	 model	 for	 predicting	 trabecular	 CS	 presented	 in	 this	 chapter	

follows	the	principles	of	design	optimisation	with	the	method	of	multiple	runs,	validation	

with	 the	 surrogate	data	 test	 and	 comparison	with	 the	 ensemble	NNs	established	and	

detailed	in	Section	3.3.	
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4.3.1 The	data	

This	work	focuses	on	a	single-centre	dataset	of	structural	and	mechanical	parameters	

for	male	and	female	patients	of	various	ages,	adapted	from	a	study	on	trabecular	bones	

affected	by	severe	OA	[166].		Patients	affected	by	secondary	OA	and	other	bone	and	joint	

diseases	 were	 excluded	 from	 the	 original	 study.	 Trabecular	 tissue	 samples	 were	

extracted	from	the	femoral	head	of	37	patients	undergoing	total	hip	arthroplasty	due	to	

severe	 OA.	 The	 cylindrically	 shaped	 fragment	 (20	 mm	 in	 free	 height	 and	 10	 mm	 in	

diameter)	of	trabecular	bone	was	chosen	from	the	principal	compressive	region	of	the	

femoral	head	and	positioned	for	extraction	so	that	the	cylinder	axis	was	aligned	with	the	

fixed	main	trabecular	direction	for	each	specimen.	Care	was	taken	to	ensure	consistency	

of	shape,	location	and	alignment.	

The	physiological	data	reported	were	the	age	and	gender	of	the	patients.	The	structural	

parameters,	 comprising	 trabecular	 thickness	 factor	Tb.Th	(μm),	bone	volume	 fraction	

BV/TV	 (%),	 and	 SMI	 (dimensionless)	were	 estimated	 from	micro-CT	 scanning	 at	 the	

isentropic	pixel	resolution	of	19.5	μm	with	a	complete	rotation	over	185°	through	voxel	

analysis	and	spherical	estimation	[166].	Tissue	strength	to	compressive	failure	CS	(MPa)	

was	 measured	 from	 the	 extensometer	 ultimate	 stress	 readings	 during	 deformation	

testing	 of	 the	 extracted	 femoral	 specimen	 [166].	 Finally	 the	 tissue	 samples	 were	

subjected	 to	 ashing	 at	 650°C	 for	 24	 hours	 with	 subsequent	 apparent	 density	

measurements	in	order	to	confirm	the	BV/TV	values	estimated	from	micro-CT	images		

[166].			

Since	 the	 apparent	 density	 and	 BV/TV	 values	 in	 Perilli’s	 experiments	 were	 the	

characterisation	of	 the	 same	porosity	 parameter,	 they	were	 linearly	 correlated	 (R2	=	

0.89,	p<0.01	[166].	Whilst	essentially	conveying	the	same	information	about	the	tissue	
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as	 BV/TV	 measured	 from	 micro-CT	 scans,	 the	 measurements	 of	 apparent	 density	

involved	 invasive	 sample	 collection	 and	 ashing,	 and	 thus	 was	 excluded	 from	 the	 CS	

model	proposed	in	this	study.		

The	model	dataset	comprising	BV/TV,	Tb.Th,	SMI,	CS	and	age	parameters	for	each	gender	

was	extracted	through	the	digitisation	of	the	nine	plots	presented	in	the	primary	source	

[166].	 The	 precision	 error	 of	 data	 extraction	 was	 less	 than	 0.7%	 for	 any	 given	

measurement.	 CS	 data	 were	 not	 recorded	 in	 one	 specimen	 and	 BT/TV	 values	 were	

missing	in	the	plots	for	another,	reducing	the	available	dataset	to	35	samples	(17	male	

and	18	 female).	The	values	of	 the	 extracted	dataset	 are	provided	 in	Appendix	D.	The	

dataset	was	divided	at	random	into	training	(63%),	validation	(17%)	and	testing	(20%)	

subsets,	i.e.	22,	6	and	7	samples,	respectively.	The	relative	proportions	for	the	testing	and	

validation	subsets	were	lower	than	in	the	small-data	concrete	CS	model	(Section	3.4.2),	

since	further	reduction	in	the	number	of	samples	in	the	validation	set	was	not	feasible.	

4.3.2 Small-data	neural	network	design	

Considering	 the	 size	 and	 nature	 of	 the	 available	 data,	 a	 two-layer	 feedforward	

backpropagation	NN	was	chosen	as	the	base	for	the	bone	CS	model,	with	5	input	features	

and	1	output	(Figure	4.2).	The	hidden	layer	neurons	implemented	a	tan-sigmoid	transfer	

function	[228],	while	the	output	neuron	computed	the	CS	output	from	the	input	by	using	

a	simple	linear	transfer	function.	

For	every	sample,	 the	 input	vector	:	 	contained	5	predictor	variables	 in	the	following	

order:	:V	 =	morphology	 (SMI),	:,	 =	 level	 of	 interconnectivity	 (Tb.Th),	 	:Ñ	 =	 porosity	

(BV/TV),	:Ö	=	age	and	:Ü		=	gender.	The	5	x	$	input	weights	matrix	67 ,	the	$	x	1	column	

vector	of	layer	weights	89 ,	and	sets	of	biases	.(V)	and	.(,)	corresponding	to	each	layer	
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were	 initialised	according	to	the	Nguyen-Widrow	method	[108]	 in	order	to	distribute	

the	active	region	of	each	neuron	in	the	layer	evenly	across	the	layer's	input	space.		

	

Figure	4.2	The	bone	CS	NN	model	topology	and	layer	configuration	represented	by	a	5-D	input	vector,	1	
output	variable,	and	one	hidden	layer	of	η	neurons.	

	
The	 NNs	 were	 trained	 using	 the	 Levenberg-Marquardt	 backpropagation	 algorithm	

[110,196,197].	The	cost	function	was	defined	by	the	MSE	between	the	output	and	actual	

CS	values.	Early	stopping	was	implemented	in	order	to	avoid	NN	overtraining	and	hence	

ensured	 better	 generalisation	 [153].	 	 The	 final	 values	 of	 the	 NN	 parameters	67 ,	89 ,	

.(V)	and	.(,)	 were	 determined	 during	 NN	 training	 and	 provided	 in	 Section	 4.3.4.	 For	

every	sample	with	inputs	:,	the	resulting	NN	model	computed	the	output	0	(in	MPa)	as	

follows:	

	 0 = 1P2NQn :67 + .
(V) 89 +.

, 	 "].	4.1	

During	each	iteration	(epoch),	the	performance	of	the	NN	on	training,	validation	and	test	

samples	was	monitored	in	terms	of	its	cost	function.	Figure	4.3	shows	that	the	prediction	

error	on	the	training	set	monotonically	decreased	with	each	epoch.	The	errors	on	the	

validation	 and	 test	 samples	were	 sporadic	 until	 the	14th	 epoch.	At	 the	31st	 epoch	 the	

validation	error	 failed	 to	decrease	 for	9	consecutive	 iterations	and	 the	early	stopping	

criterion	was	triggered.	The	weights	and	biases	were	then	reverted	by	9	epochs	to	the	
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state	at	which	the	validation	error	was	the	lowest,	i.e.	the	final	state	of	the	trained	NN	

weights	and	biases	corresponded	to	the	22nd	epoch.	It	is	important	to	note	that	the	22nd	

epoch	 was	 not	 the	 state	 that	 minimises	 cost	 function	 for	 the	 test	 samples,	 as	 these	

independent	test	samples	were	not	involved	in	the	model	training;	their	corresponding	

cost	function	is	provided	for	illustrative	purposes	only.		

	

Figure	4.3	NN	cost	function	dynamics	during	the	31	epochs	of	training	(blue),	validation	(green)	and	testing	
(red).	The	training	was	completed	upon	reaching	the	minimum	validation	error	(green	circle).	

	

4.3.3 Hyperparameter	optimisation	using	multiple	runs	

The	limited	availability	of	training	samples	stipulated	careful	selection	of	the	NN	design	

hyperparameters,	 specifically,	 the	 size	 of	 the	 hidden	 layer	 η	 	 and	 the	 early	 stopping	

criterion	ω,	in	order	to	achieve	efficient	training	and	improve	generalisation.	The	effect	
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of	 increasing	 the	 number	 of	 neurons	 η	 in	 the	 hidden	 layer	 on	 NN	 performance	 was	

investigated	in	a	series	of	experiments	involving	20	short	runs	of	100	NNs.		

Reported	in	Figure	4.4	are	the	distributions	in	JABB 	achieved	when	varying	the	hidden	

layer	size	from	η	=1	to	η	=	20	neurons.	Despite	the	inter-run	volatility	in	the	results,	it	

was	 established	 that	 the	 performance	 was	 significantly	 lower	 in	 η	 =1	 configuration	

(p<0.01	for	all	pairwise	comparisons)	signifying	undertraining.	Increasing	the	number	of	

neurons	 past	 η	 =10	 did	 not	 improve	 the	 NN	 performance	 and	 instead	 resulted	 in	 a	

gradual	 decrease	 in	JABB ,	 which	 signified	 overtraining.	 Between	 η	 =2	 and	 η	 =10,	 the	

highest	median		JABB 	was	observed	in	η	=4	configuration,	although	it	was	not	statistically	

different	 from	η	=3	 (p=0.192)	 and	only	marginally	 different	 from	 the	η	 =6	 (p=0.036)	

configurations.	The	effect	of	η	=4	was	also	observed	on	J©AB .	Computed	from	the	leave-

one-out	validation	cohort,	 it	 indicated	marginal,	but	statistically	significant	optimality	

(p<0.05	for	all	pairwise	comparisons	apart	from	η	=3).		

	

Figure	4.4	Effect	of	hidden	layer	size	on	NN	performance		
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The	second	hyperparameter	considered	in	the	design	optimisation	was	the	NN	training	

duration,	which	is	controlled	by	the	early	stopping	criterion	-.	This	criterion	specifies	

the	 maximum	 for	 consecutive	 training	 epochs	 the	 NN	 validation	 performance	 could	

decrease	before	early	termination	of	the	training	process	was	triggered	(Section	2.5).	

The	 effect	 of	-	 was	 investigated	 on	 NN	 performance	 when	 varied	 from	 1	 to	 20	 in	

increments	of	1	and	from	10	to	100	in	increments	of	10.	When	investigated	with	the	total	

28	runs	of	100	NNs,	J~�AuC	was	found	to	increase	substantially	for	-		values	between	1	

and	 10,	 and	 then	 grow	 monotonically	 for	 each	 value	 from	 10	 to	 100,	 signifying	 no	

substantial	 increase	 in	 performance	 past	 -=10.	 Since	 large	 -	 directly	 affected	 the	

computational	efficiency	of	the	training	algorithm	(Table	4.1),	only	-		values	between	1	

and	10	were	further	investigated.	

	Table	4.1	The	timing	effects	of	early	stopping	criterion	

ω	 Average	simulation	time	(seconds)	
per	run	of	2000	NNs	on	standard	PC3	

5	 240	
10	 280	
30	 590	
100	 990	

	

When	evaluated	on	J©AB 	at	η	=4,	the	early	stopping	criterion	-		had	a	marginal	effect	on	

the	performance	of	the	NN	and	no	statistically	significant	median	differences	in	the	range	

between	1 ≤ 	- ≤ 10	 (p>0.05	 for	 all	 pairwise	 comparisons).	 In	 the	 absence	of	 strong	

evidence	for	choosing	a	specific	-,	the	value	of	-	=	9	that	gave	highest	J©AB 	was	chosen	

for	the	final	NN.		

																																								 																					

3	PC	specifications:	Intel®	Core™	i7-3770	CPU	@3.40GHz,	32	GB	RAM	
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As	 highlighted	 in	 Section	 3.5.2,	 Bayesian	 regularisation	 [200]	 was	 considered	 as	 an	

alternative	 approach	 for	 controlling	 the	 training	duration	without	 early	 stopping	and	

determining	the	size	of	the	NNs.	By	penalising	NNs	for	large	weights,	the	regularisation	

reduced	some	NN	weights	 to	near-zero	values.	The	remaining	non-zero	weights	were	

counted	as	the	number	of	effective	NN	parameters,	irrespective	of	the	theoretical	NN	size.	

By	varying	the	number	of	hidden	layer	neurons	$,	 it	was	possible	to	determine	which	

hidden	layer	sizes	resulted	in	the	highest	number	of	effective	parameters.		

	

Figure	4.5	Effect	of	hidden	layer	size	on	the	number	of	effective	parameters	

	
Reported	in	Figure	4.5	is	the	number	of	effective	parameters	for	a	NN	configuration	with		

1 ≤ $ ≤ 20	across	20	runs	of	100	NNs.	The	median	number	of	effective	parameters	was	

significantly	 (p<0.05	 for	 all	 pairwise	 comparisons)	 higher	 for	 a	 η	 =	 4	 configuration,	

indicating	 that	 an	 increase	 in	 the	 hidden	 layer	 NN	 size	 above	 4	 neurons	 introduced	

redundant	near-zero	weights,	whilst	a	smaller	hidden	layer	size	did	not	allow	maximum	

NN	 potential.	 This	 observation	 further	 confirmed	 that	 for	 the	 dataset	 at	 hand,	 a	 NN	

design	with	η	=	4	neurons	in	the	hidden	layer	was	optimal.		
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4.3.4 Optimised	neural	network	performance	

A	full	run	of	2000	NNs	of	optimal	design	was	trained	and	evaluated	using	the	multiple	

runs	 strategy	 described	 in	 Section	 3.3.1.	 	 From	 the	 2000	 NNs	 considered,	 the	 best-

performing	NN	was	selected	using	the	criteria	detailed	in	Section	3.3.3.	The	resulting	NN	

model	was	 capable	 of	 predicting	 trabecular	 tissue	 CS	with	RMSE	 =	 0.85	MPa	 on	 test	

samples.		

 

Figure	4.6	Linear	regression	between	target	and	predicted	CS	achieved	by	the	small-data	bone	NN.	Values	
were	reported	individually	for	a)	training	(blue),	b)	validation	(green)	and	c)	testing	(red),	and	d)	the	entire	

dataset	(black).	

	
The	 linear	 regression	 coefficients	 between	 target	 and	 prediction	 achieved	 by	 the	NN	

were	individually:	J~�AuC=0.999,	J©AB=0.991,	J~E™~=0.983	and	in	total:	JABB=0.993	(Figure	

4.6	a-d).	This	 indicated	a	high	accuracy	of	predictions	despite	 the	 limited	dataset	 (35	
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samples).	 The	 final	 values	 of	 the	 weights	 and	 biases	 of	 this	 fully-trained	 network	

complete	the	unknown	terms	in	eq.	4.1:	

67 = 	

0.887 2.382 −0.888 −3.584
1.301 −1.586 0.904 −3.841
−3.268 0.632 −1.342 −0.144
−1.216 −2.153 −1.380 −3.000
−0.620 1.592 −0.379 −1.169

																			89 = 	

−0.698
−0.151
2.349
−1.501

	

.(V) = 	 0.268 −0.006 −1.224 −4.972 		 	 									.(,) = 0.623	

4.3.5 Surrogate	data	test	

The	surrogate	data	test	proposed	in	Section	3.3.2	was	used	to	validate	the	NNs	trained	

with	 real	 data	 against	 those	 trained	 on	 surrogate	 data	 and,	 therefore,	 establish	 the	

minimal	performance	threshold	that	the	candidate	real	data	models	must	exceed.	The	

surrogates	were	 generated	 using	 random	 sampling	 to	mimic	 the	 distributions	 of	 the	

original	 bone	 data	 (Section	 3.3.2).	 The	 resulting	 surrogate	 dataset	 is	 provided	 in	

Appendix	D.	When	analysed	across	the	total	of	20000	NNs	in	10	runs	of	2000	NNs,	the	

real	dataset	NNs	consistently	outperformed	the	surrogate	NNs	with,	on	average,	a	35%	

performance	increase	(Figure	4.7	a).		

The	median	JABB,™Æ�=	0.38	and	median	JABB,�EAB=0.78	across	20000	NNs	were	significantly	

different	among	the	real	and	surrogate	data	NNs	(p	=	0,	Wilcoxon	rank	sum	test,	Figure	

4.7	b).	Similar	differences	in	the	distributions	of	J~E™~,�EAB 	and	J~E™~,™Æ�	were	observed	for	

the	NN	performance	on	test	samples	(Figure	4.7	c-d).	The	surrogate	threshold	for	the	

bone	dataset	was	found	to	be	around	J™Æ�,ØAü 	=	0.87.	By	quantifying	the	random	effects	

in	training	and	initialisation	of	the	bone	CS	NNs,	the	surrogate	data	test	validated	that	

the	performance	of	the	real	data	models	above	the	surrogate	threshold	was	not	due	to	

noise.	
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Figure	4.7	Distributions	(a)	of	regression	coefficients	achieved	by	NNs	for	surrogates	(light	blue)	and	real	
bone	data	(navy)	and	(b)	Wilcoxon	rank	sum	test	for	medians	across	all	samples.		Distributions	and	Wilcoxon	

rank	sum	test	results	across	test	samples	are	reported	in	(c)	and	(d).	

	

4.3.6 Comparison	with	a	neural	network	ensemble	

Ensemble	learning	was	implemented	by	combining	2000	small-data	NNs,	among	which	

learner	 diversity	 was	 achieved	 through	 randomising	 the	 initial	 model	 parameters	

(Section	 3.5.1)	 and	 aggregated	 using	 performance	 averaging	 (Section	 2.3.2).	 The	 NN	

ensemble	 achieved	 J~E™~	 =	 0.882,	 which	 was	 11%	 lower	 than	 the	 accuracy	 of	 the	

proposed	multiple	run	NN	model	 (J~E™~	=	0.983)	and	only	marginally	higher	 than	 the	

surrogate	threshold	 	J™Æ�,ØAü 	=	0.87	established	 in	Section	4.3.5	 for	the	bone	dataset.		
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This	 result	 further	 confirmed	 that	 NN	 ensembles,	 when	 tasked	 with	 small-dataset	

applications,	were	unable	to	realise	their	full	predictive	potential	and	were	inferior	to	

NNs	 designed	 within	 the	 multiple	 runs	 framework.	 One	 possibility	 for	 improving	

ensemble	diversity	was	to	train	constituent	NNs	with	different	versions	of	the	original	

dataset,	 for	 instance,	by	 resampling	or	 repeating	 the	 source	plot	digitisation.	 Such	an	

approach	was	investigated	in	Chapter	6,	whereby	each	constituent	NN	was	trained	on	a	

different	version	of	the	imputation	dataset.		

 Clinical	significance	and	limitations	

The	application	of	NNs	for	hard	tissue	modelling	in	degenerative	conditions	was	a	novel	

and	largely	unexplored	area.	Among	the	limited	number	of	relevant	studies	on	trabecular	

bone	modelling,	only	a	few	adopted	NN-based	approaches	[229,230].	Habli		[230]	used	

a	NN	model	 for	the	estimation	of	apparent	 fatigue	damage	accumulation	due	to	cyclic	

loading	 in	 a	 trabecular	 bone	 from	FEA	 simulations.	 Zadpoor	 et	 al.	 [229]	 used	NNs	 to	

analyse	FEA	data	and	model	the	mechanical	loading	effects	from	the	spatial	distribution	

of	density	in	the	femur.	The	key	limitations	of	both	these	studies	were	the	dependence	

of	 NN	 performance	 on	 the	 validity	 of	 the	 underlying	 FEA	model’s	 assumptions,	 thus	

necessitating	 a	 stand-alone	 NN	 that	 could	 integrate	 the	 complex	 structural	 and	

physiological	parameters	directly	into	a	single	model	of	a	human	femur.		At	the	time	of	

publication	[84,231–233],	the	NN	model	developed	in	this	research	was	the	only	known	

application	of	such	NNs	for	trabecular	tissue	modelling	in	severe	OA.		

The	 NN	 model	 offered	 98.3%	 accurate	 predictions	 of	 the	 strength	 to	 failure	 of	

osteoarthritic	hip	joints	from	the	structural	and	physiological	parameters	of	the	femoral	

trabecular	tissue	in	OA	patients.	In	the	absence	of	a	comparable	CS	model	specifically	for	

OA,	the	power	model	from	cellular	mechanics,	with	Jb(∫E�	Ø(FEB	=	0.916,	was	the	best	
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existing	 fit	 to	 the	 data	 [166].	 By	 inferring	 non-linear	 variable	 interrelations	 in	 the	

heterogeneous	multi-dimensional	dataset,	the	NN	improved	Jb(∫E�	Ø(FEBby	over	8%	on	

all	samples	JABB	=	0.993.	

The	 high	 accuracy	 of	 the	 proposed	 CS	model	 enabled	 the	 early	 stratification	 of	 bone	

fracture	 risk	 based	 on	 structural	 and	 physiological	 parameters	 that	 can	 be	 derived	

without	invasive	tests	on	the	patient.	Hence,	by	predicting	how	CS	correlates	with	the	

bone	volume	fraction,	trabecular	thickness	and	structure	model	index	for	OA	patients	of	

various	age	and	gender	groups,	the	NN	model	provided	a	decision	support	tool	for	hard	

tissue	engineers	and	clinicians	alike	[234].	The	potential	practical	applications	include:	

the	estimation	of	bone	fracture	risk	in	OA	patients	from	CT-scans	and	basic	physiological	

data,	 the	 load	modelling	 of	 synthetic	 bioscaffolds	 that	mimic	 natural	 trabecular	 bone	

damaged	 by	 osteoarthritis,	 and	 the	 tailoring	 of	 bioscaffold	 designs	 for	 an	 individual	

patient	to	match	the	damaged	trabecular	tissue	at	the	site	of	implantation.	

The	 predictive	 NN	 model	 can	 be	 adapted	 to	 larger	 datasets,	 extended	 to	 other	

degenerative	bone	disorders,	or	scaled	for	modelling	new	anatomical	locations,	with	a	

marginal	 increase	 in	design	effort	and	cost	 [14,26].	 Such	scalability	 is	 inherent	 in	 the	

underlying	ML	nature,	which	enables	NNs	to	learn	and	improve	their	performance	with	

new	data	[36,88,235,236].	Using	the	proposed	NN	model	for	OA	as	a	prototype,	future	

predictive	NNs	could	provide	valuable	clinical	insights	for	the	early	detection	of	patients	

at	risk	of	hip	fractures	and	for	the	preventive	treatment	of	bone	disorders,	thus	reducing	

fractures	and	improving	surgical	effects.	
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 Chapter	conclusions	

The	key	findings	demonstrated	in	this	chapter	are	as	follows:	

(1) The	methodological	 framework	 for	 small	 datasets	 developed	 in	 Chapter	 3	was	

effective	 in	 enabling	 NN-learning	 from	 35	 osteoarthritic	 specimens	 with	 an	 aim	 to	

predict	 trabecular	 strength	 to	 hip	 fractures	 from	 structural	 and	 physiological	

parameters.			

(2) The	regression	NN	developed	and	optimised	using	multiple	runs	achieved	98.3%	

accurate	predictions	on	independent	test	samples.	Further	validation	with	a	surrogate	

data	 test	confirmed	that	 the	accuracy	achieved	by	 the	NN	was	above	 the	 threshold	of	

J™Æ�,ØAü=0.87	attributable	to	random	effects	due	to	small	datasets.			

(3) The	NN	offered	an	accurate	and	scalable	predictive	 tool	 for	 the	non-destructive	

estimation	 of	 femoral	 compressive	 strength	 in	 patients	 suffering	 from	 severe	

osteoarthritis,	with	potential	extension	to	other	degenerative	bone	and	joint	disorders.	

(4) The	 proposed	 methodology	 confirmed	 that	 the	 size	 of	 datasets	 does	 not	

necessarily	limit	the	utility	of	NNs	in	the	clinical	and	hard	tissue	engineering	domains.		
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Outcome	prediction	in	antibody-

incompatible	kidney	transplantation		

Human	leukocyte	antigen	(HLA)	sensitisation	is	a	major	public	health	problem	that	limits	

access	 to	 kidney	 transplantation	 for	 as	many	 as	 25%-47%	of	 the	 patients	 awaiting	 a	

deceased	 donor	 transplant	 [167,237].	 The	 growing	 field	 of	 antibody-incompatible	

transplantation	demands	novel	insights	into	the	complex	association	between	baseline	

clinical	and	immunological	indicators	and	patient	outcomes	[167,238,239].		

The	 descriptive	 and	 predictive	 models	 developed	 in	 this	 chapter	 establish	 the	

association	 of	 the	 dominant	 HLA	 isotype	 and	 its	 subclasses	 with	 both	 short-	 and	

medium-term	renal	transplant	outcomes.	A	time-to-event	graft	survival	was	modelled	

with	Cox	PH	(Section	5.4.1),	whilst	acute	graft	rejection	within	30	days	post-transplant	

was	explored	using	logistic	regression	(Section	5.4.2).	A	granular	and	accurate	predictive	

model	 for	early	 (acute)	antibody-mediated	 transplant	 rejection	was	developed	with	a	

decision	tree	classifier	(Section	5.5)	using	the	multiple	runs	strategy	for	a	small,	single-

centre	 dataset.	 This	 work	 demonstrated	 the	 potential	 for	 classification	 from	 small	

clinical	data	(Section	5.6)	and	offered	novel	clinical	 insights	into	the	area	of	antibody-

incompatible	transplantation	(Section	5.8).		
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 Antibody-incompatible	kidney	transplantation	

Organ	and	tissue	transplantation	is	recognised	as	an	effective	treatment	for	many	renal	

(kidney)	pathologies	including	end-stage	renal	disease.	Transplantation	from	living	or	

deceased	donors	can	dramatically	improve	the	recipients’	quality	of	life,	often	offering	

the	only	solution	for	their	survival	[240].		In	the	UK	alone,	over	3100	life-saving	and	life-

transforming	kidney	transplantations	were	performed	in	the	past	year	[237].			

For	a	successful	transplantation	outcome,	the	recipient	and	donor	should	be	matched	for	

tissue	 proteins	 called	 human	 leukocyte	 antigen	 (HLA).	 HLA	mismatches	 between	 the	

transplant	recipient	and	their	donor	may	cause	the	development	of	antibodies	against	

HLA,	which	can	lead	to	transplant	(graft)	failure	and	endanger	the	option	of	a	subsequent	

future	 transplant.	 HLA	 antibodies	 can	 also	 be	 stimulated	 by	 pregnancy	 and	 blood	

transfusion.	Patients	with	preformed	HLA	donor-specific	antibodies	(DSAs)	have	longer	

waiting	times	for	surgery	or	are	unable	to	receive	a	renal	transplant.	Current	NHS	Blood	

and	Transplant	 data	 indicate	 that	 among	 the	 5233	 patients	 on	 the	 kidney	 transplant	

register	in	March	2017,	32%	had	been	waiting	for	a	suitable	graft	for	over	3	years,	with	

a	median	waiting	time	of	864	days	[237].	Between	25%	-	47%	of	patients	on	the	deceased	

donor	 kidney	 programme	 in	 the	 UK	 are	 unable	 to	 receive	 a	 transplant	 due	 to	 HLA	

sensitisation	[167].		

Antibody-incompatible	transplantation	(AIT)	was	pioneered	in	Europe	by	the	University	

Hospitals	Coventry	and	Warwickshire	[241,242]	to	enable	transplantation	procedures	

on	HLA	 senstised	patients.	 In	 the	past	 year	 alone,	HLA-incompatible	 transplantations	

saved	and	 improved	 the	 lives	of	654	patients	 in	 the	UK	alone	 [237].	AIT	 is	becoming	

increasingly	 feasible	 due	 to	 the	 advances	 in	 immunosuppressive	 drugs	 and	 surgical	

techniques	 that	 allow	 for	 the	 recipient’s	 DSA	 levels	 to	 be	 decreased	 prior	 to	
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transplantation	 [243–245].	 Nevertheless,	 the	 complete	 elimination	 of	 DSAs	 and	

immunological	memory	is	not	practical,	hence	AIT	is	considered	a	high-risk	intervention:	

about	40%	of	HLA-incompatible	kidney	transplants	experience	an	episode	of	rejection,	

which,	in	its	chronic		form,	leads	to	transplant	failure	[237].	The	ability	of		nephrologists	

to	 identify	 patients	 at	 high	 risk	 of	 transplant	 rejeciton	 prior	 to	 transplantation	 is	

diminished,	 because	 neither	 specific	 types	 of	 harmful	 HLA	DSAs	 nor	 their	acceptable	

levels		have	been	established.		

	

Figure	5.1	Immunoglobulin	G	molecule	structure	and	class	switching.	Adapted	from	[246].		

Among	isotypes	of	HLA	DSAs,	Immunoglobulin	G	(IgG)	and	its	four	subclasses,	IgG1-IgG4	

(Figure	 5.1),	 are	 recognised	 as	 principal	 agents	 for	 humoral	 (antibody-mediated)	

rejection	 [247–249].	 The	 four	 subclasses	 of	 IgG	 exhibit	 structural	 and	 functional	

differences	 that	may	be	 associated	with	 diverse	 clinical	 outcomes	 [246].	 In	 the	 small	

number	 of	 studies	 that	 have	 investigated	HLA-specific	 IgG	 subclass	 associations	with	

transplant	outcomes,	some	report	that	IgG1	subclass	DSAs	were	dominant	in	poor	graft	

survival	 [250]	 and	 rejection	 [168],	 whilst	 others	 report	 	 the	 harmful	 effects	 of	 IgG4	

subclass	 DSAs	 [167,247].	 Predicting	 AIT	 outcome	 from	 IgG	 subclass	 information	 is	

further	complicated	by	the	class	switching	of	IgG3	to	IgG1	to	IgG2	to	IgG4	(Figure	5.1)	–	a	

common	 phenomenon	 which	 occurs	 as	 the	 recipient’s	 immune	 system	 develops	 a	

humoral	response	to	the	transplant	[246].		
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Determining	which	IgG	subclasses	are	particularly	dangerous	and	establishing	their	safe	

levels	 prior	 to	 the	 surgery	 could	 prevent	 graft	 loss	 and/or	 excessive	 treatment	 	 by	

harmful	and	expensive	immunonosuppresive	drugs.	Hence	the	field	of	AIT	requires	both	

descriptive	 and	 predictive	models	 that	 could	 leverage	multidimensional	 associations	

among	patient	and	antibody	characteristics	with	the	likely	transplant	outcomes.		

 Machine	learning	in	kidney	transplantation	

In	standard	(non-AIT)	kidney	transplantation,	the	task	of	outcome	prediction	has	been	

considered	in	a	number	of	studies	using	machine	learning.	In	particular,	decision	trees	

have	been	a	popular	choice,	likely	owing	to	their	graphical	interpretability	and	ability	to	

supplement	nephrologists’	intuitive	insights	with	data-driven	statistical	evidence.		

Greco	et	al.	studied	long-term	kidney	graft	survival	and	concluded	that	“decision	trees	in	

clinical	practice	may	be	a	suitable	alternative	to	the	traditional	statistical	methods,	since	

it	 may	 allow	 one	 to	 analyse	 interactions	 between	 various	 risk	 factors	 beyond	 the	

previous	knowledge”	[251].	Their	DT	model,	based	on	194	patients	with	9	known	clinical	

indicators,	predicted	5-year	graft	survival	with	a	test	accuracy	of	74%-88%.		

Krikov	 et	 al.	 in	 their	 	 large-scale,	 multi-centre	 study	 [252]	 analysed	 92,844	 patient	

records	 from	 the	US	Renal	 Data	 System.	 Their	DT	models	 for	 long-term	 kidney	 graft	

survival	were	based	on	31	predictors	and	achieved	=>?	of	0.63,	0.64,	0.71,	0.82,	and	0.90	

for	the	1,	3,	4,	5,	and	10-year	predictions,	respectively.	The	trend	–	the	further	into	the	

future	the	forecast	scope	is,	the	better	its	accuracy	–	appears	unintuitive	to	those	working	

with	 real-world	 forecasts.	 The	 phenomenon	 can	 be	 explained	 in	 part	 by	 the	way	 the	

model	accuracies	were	measured,	and	how	this	was	influenced	by	reduced	follow-up	and	

class	imbalance	dynamics	over	the	years	as	more	transplants	failed.						
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Decruyenaere	et	al.	compared	the	traditional	logistic	regression	method	with	8	different	

ML	 algorithms	 for	 the	 prediction	 of	 delayed	 graft	 function	 (DGF)	 following	 kidney	

transplantation	 [253].	 Their	 models	 were	 developed	 on	 497	 single-centre	 (Belgium)	

patients	from	deceased	donors	and	used	24	parameters	related	to	donor	and	recipient	

characteristics,	preservation	and	operation.	The	authors	found	that	tree-based	models	

achieved	low	accuracy:	=>?	of	0.53	for	DT	and	0.74	for	RF	respectively,	which	again	can	

be	attributed	to	DT	sensitivity	to	the	high	class	imbalance	between	DGF+	(12.5%)	and	

DGF-	samples.	Out	of	10	classifiers,	a	linear	support	vector	machine	performed	best	with	

=>?	of	0.84.	

The	models	 in	 the	above	 studies	were	developed	with	a	 few	hundred	 to	a	 few	 tens	of	

thousands	of	samples	 involving	national	databases.	 In	all	 four	datasets,	 the	number	of	

observations	 2	 per	 3	 predictor	 features	 had	 ratio	 of	 2/3	 > 20.	 Datasets	 of	 such	

magnitude	are	not	readily	available	in	HLA-incompatible	renal	transplantation,	which	is	

inherently	a	high-risk,	low-volume	intervention.	The	data	are	further	limited	for	smaller	

transplant	units	wishing	to	analyse	their	samples	without	having	to	wait	decades	until	

enough	procedures	are	conducted.	Hence	outcome	prediction	in	AIT	often	falls	under	the	

small	dataset	condition	defined	in	Chapter	3,	as	2 3 < 10.	

Machine	learning	from	small	datasets	results	 in	high	variablitity	among	models	of	the	

same	design.	In	the	previous	chapters	it	has	been	shown	that	identical	NNs	suffer	from	

large	discrepancies	in	their	predictions	due	to	random	initial	conditions,	training	order	

and	 the	 split	 between	 the	 training	 and	 validation	 samples.	 Such	 discrepansies	 are	

common	for	other	ML	approaches,	including	DTs.		For	example,	Lofaro	et	al.	attempted	

to	predict,	using	DTs,	chronic	graft	nephropathy	within	5	years	post-transplant	from	23	

clinical	indications	based	on	only	80	samples	(2 3 = 3.5)	[254].	The	authors	reported	

one	DT	model	with	=>? = 0.847,	62.5%	sensitivity,	7.2%	false	positive	rate,	and	another	
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tree	 with	=>? = 0.824,	 81.3%	 sensitivity	 and	 25%	 false	 positive	 rate.	 The	 volatility	

among	 the	DT	 trials	was	 not	 explicitly	 disclosed,	 but	 the	 two	DTs	 presented	 showed	

significant	variation	in	performance	and	structure,	thus	casting	doubts	on	the	robustness	

of	the	overall	results.	Successful	applications	of	ML	to	small	single-centre	datasets	 for	

outcome	prediction	in	AIT	are	presently	not	known.		

The	primary	aim	 of	 this	 research	was	 to	 confirm	which	donor-specific	 immunological	

indicators	 and	 at	what	 levels	 were	 associated	 with	 short-	 and	 medium-term	 patient	

outcomes	in	HLA-incompatible	transplantation.	The	secondary	aim	was	to	develop,	from	

the	 small	 dataset	 of	 complex	 pre-transplant	 indicators,	 a	 predictive	 model	 for	 acute	

transplant	rejection	that	would	support	the	clinical	decision	process.			

 Data:	patient	and	antibody	characteristics		

The	work	presented	in	this	chapter	examines	multivariate	associations	in	the	AIT	data	

collected	by	the	clinical	collaborators	at	the	renal	transplant	unit	at	University	Hospitals	

Coventry	and	Warwickshire	(UHCW).	Included	in	the	study	were	80	patients	(49	female	

and	 31	 male)	 aged	 between	 18	 and	 68	 years	 (mean	 age	 of	 41.8	 ±	 11.6	 years)	 who	

received	HLA-incompatible	renal	grafts	between	June	2003	and	October	2012.	 	At	the	

time	of	transplantation	44%	of	patients	had	been	living	with	life-limiting	end-stage	renal	

disease	(ESRD)	for	15	years	or	longer	(mean	ESRD	duration	11.3	±	8.2	years).	

The	patient	data	collected	at	the	UHCW	contained	information	on	the	type	of	transplant	

(living	 or	 deceased),	 the	 number	 of	 HLA	 mismatches	 by	 class	 (I	 and	 II),	 including	

particularly	dangerous	class	II	HLA	D-related	(DR)	mismatches,	patients’	progression	on	

ESRD	 and	 other	 baseline	 characteristics.	 Additional	 immunological	 data,	 including	

cytotoxic	crossmatching	and	HLA-specific	antibody	levels	by	IgG	subclass,	were	gathered	

through	 advanced	 laboratory	 analyses	 [167,168].	 Flow	 cytometry	 and	 complement	
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dependant	cytotoxic	(CDC)	crossmatching	were	performed	prior	to	transplantation.	Pan-

IgG	HLA	class	I-	and	class	II-specific	antibodies	were	identified	in	serum	obtained	before	

the	immunosuppressive	treatment.		

The	pre-treatment	pan-IgG	DSA	levels	were	measured	using	fluorescence	immunoassay	

and	 recorded	 as	 Median	 Fluorescence	 Intensity	 (MFI)	 values.	 	 In	 the	 immunoassay	

analyses	 conducted,	 the	 positive	 reactive	 MFI	 threshold	 was	 set	 at	 1000.	 The	 MFI	

threshold	 levels	 for	 each	 HLA-specific	 IgG	 subclass	 were	 five	 times	 greater	 than	 the	

negative	 control	 incorporated	 into	 the	 immunoassay:	 120.6	 (IgG1),	 72.0	 (IgG2),	 62.7	

(IgG3)	and	17.2	(IgG4)	 [167,168].	These	thresholds	presently	 lack	standardisation	and	

vary	from	centre	to	centre.	

Combined,	 the	 following	14	baseline	 (pre-transplant)	parameters	were	established	as	

potential	predictor	variables:	

• 7	continuous:	single	highest	pan-IgG	DSA	MFI	level,	patient’s	age	(years),	ESRD	

duration	(years),	and	4	total	IgG	subclass	MFI	levels	(IgG1-IgG4)	

• 4	categorical:	cytometry	crossmatch	(1=bead,	2=flow	or	3=CDC),	total	number	

of	HLA	mismatches	between	donor	and	recipient	(0-6),	the	number	of	class	II	

HLA-	DR	mismatches	(0-2),	and	the	number	of	previous	transplants	(0-2)	

• 3	binary:	gender	(male/female),	the	presence	of	both	HLA	Class	I	and	Class	II	

DSA	(yes/no),	and	an	indicator	for	donor	type	(live/deceased)	

The	transplantation	outcomes	of	primary	interest	were:	

• acute	antibody-mediated	rejection	(ABMR)		

• medium-term	graft	survival/failure	
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ABMR	was	defined	as	acute	graft	rejection	within	the	first	30	days	of	 transplantation.	

ABMR	was	confirmed	by	renal	biopsy	in	the	ABMR+	group	(2 = 46),	except	in	four	cases,	

where	anticoagulation	was	given	urgently	and	precluded	a	pre-treatment	biopsy	[167].	

The	remaining	patients	(2 = 34),	who	did	not	experience	rejection	in	the	first	30	days,	

were	categorised	as	the	ABMR-	group.	Owing	to	the	advances	 in	AIT,	even	in	patients	

who	experienced	acute	rejection	the	graft	loss	could	be	prevented	by	timely	intervention.		

In	 the	 UHCW	 centre,	 rejection	 was	 treated	 by	 a	 combination	 of	 immunosuppressive	

drugs,	 plasmapheresis,	 and/or	 intravenous	 IgG	 injections	 for	 immunomodulation.	

Among	the	80	high-risk	patients,	15	experienced	graft	failure,	6	died	with	a	functioning	

transplant,	 and	 59	 were	 still	 alive	 with	 a	 functioning	 transplant	 at	 the	 time	 of	 this	

analysis.		

Table	 5.1	 presents	 the	 results	 of	 the	 univariate	 comparison	 between	 the	 patients’	

baseline	 clinical	 and	 immunological	 characteristics	 in	 the	 ABMR+/-	 and	 the	 graft	

survival/failure	groups	[167].	The	null	hypothesis	of	no	difference	between	the	groups	

was	 tested	 at	 5%	 significance	 level	 using	 two-tail	 Fisher	 exact	 test	 for	 categorical	

variables	 and	 the	 Wilcoxon	 rank	 sum	 test	 for	 medians	 of	 continuous	 variable	

distributions.	Significant	differences	between	groups	(p	<	0.05)	are	highlighted	in	bold.	

Table	5.1	Baseline	clinical	and	antibody	characteristics	of	transplant	recipients	[167]	

	Variable	 Rejection	(within	first	30	days)	 Graft	outcome	(deaths	excluded)	
	 ABMR+		

(n=46)	
ABMR-		
	(n=	34)	

p	 failure	
(n=15)	

survival	
(n	=	59)	

p	

Age,	median	(range)	 42.5	(18-68)	 43	(22-67)	 0.83	 34	(22-50)	 43	(18-67)	 0.003	

Male	gender,	N	(%)	 17	(37)	 14	(41)	 0.82	 7	(47)	 23	(39)	 0.56	

Prev.	transpl.,	N	(%)	 16	(35)	 15	(44)	 0.49	 10	(67)	 36	(61)	 0.77	

ESRD,	median	(range)	 13	(0-29)	 10	(0-31)	 0.60	 7	(0-21)	 13	(0-31)	 0.13	

Living	donor,	N	(%)	 45	(98)	 30	(88)	 0.16	 15	(100)	 56	(95)	 0.58	

DR	mismatch,	N	(%)	 38	(83)	 27	(79)	 0.78	 13	(87)	 47	(80)	 0.72	

Total	mismatches,	
median	(range)	 3(1-5)	 3	(0-6)	 0.13	 3	(2-5)	 3	(0-6)	 0.70	
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CDC	positive,	N	(%)	 12	(26)	 7	(21)	 0.61	 8	(53)	 10	(17)	 0.006	

Single	highest	pan-
IgG	DSA	MFI,	median	
(range)	

6058	
(869	–13345)	

3492.5	
(221-17660)	

0.03	
8987	

(775-13345)	
3788	

(221-17660)	
0.004	

Total	pan-IgG	DSA	
MFI,	median	(range)	

7797.5	
(869-45612)	

5134	
(306-37084)	

0.01	
11568	

(775-45612)	
5793	

(468-27187)	
0.02	

IgG3	presence,	N	(%)	 22	(50%)	 13	(38.2%)	 0.36	 8	(53%)	 24	(42%)	 0.56	

IgG3	MFI,	median	
(range)	

255.5	
(76.5-2793)	

256.5	
(75-1541)	

0.63	
521	

(82-2793)	
204	

(75-1541)	
0.24	

IgG1	presence,	N	(%)	 35	(79.5%)	 18	(53%)	 0.01	 13	(86.7%)	 37	(65%)	 0.12	

IgG1	MFI,	median	
(range)	

2393	
(162-24589)	

2340	
(175-16538)	

0.69	
6691	

(175-24589)	
1121	

(162-16538)	
0.03	

IgG2	presence,	N	(%)	 24	(54.5%)	 14	(41.2%)	 0.26	 10	(66.6%)	 26	(45.6%)	 0.24	

IgG2	MFI,	median	
(range)	

581.7	
(87-9472)	

952.8	
(75-5073)	

0.62	
1595	

(102-9472)	
432	

(75-4819)	
0.08	

IgG4	presence,	N	(%)	 24	(52.2%)	 12	(35%)	 0.17	 12	(80%)	 23	(39%)	 0.008	

IgG4	MFI,	median	
(range)	

113	
(24-6505)	

30	
(17.5-321)	

0.003	
53	

(21-135)	
35	

(17-6505)	
0.39	

Class	I	&	II	DSA,	N	(%)	 24	(52)	 10	(29)	 0.07	 8	(53)	 24	(41)	 0.40	

DGF,	N	(%)	 12	(26)	 4	(12)	 0.16	 1	(7)	 14	(24)	 0.28	

Rejection,	N	(%)	 N/A	 10	(67)	 34	(58)	 0.57	

	

For	the	ABMR+	patients	versus	the	ABMR-	group,	significant	differences	were	observed	

in	IgG1	presence	(p=0.01)	and	IgG4	MFI	levels	(p=0.003)	[167].	In	addition,	the	patients	

in	ABMR+	group	had	elevated	levels	of	single	highest	pan-IgG	DSA	MFI	(p=0.03)	and	total	

pan-IgG	DSA	MFI	(p=0.01).	There	were	no	significant	differences	between	the	ABMR+/-	

groups	 with	 respect	 to	 the	 presence	 or	 levels	 of	 the	 DSAs	 in	 the	 two	 remaining	

subclasses,	IgG2	and	IgG3,	nor	in	the	CDC-positive	crossmatch	[167].	For	the	graft	failure	

versus	survival	groups,	the	differences	were	significant	in	IgG1	MFI	levels	(p=0.03),	IgG4	

presence	(p=0.008),	as	well	as	in	the	single	highest	pan-IgG	DSA	MFI	(p=0.004),	total	pan-

IgG	DSA	MFI	(p=0.02),	age	(p=0.003),	and	the	CDC-positive	crossmatch	(p=0.006).	

The	univariate	analysis	(Table	5.1)	confirmed	the	initial	hypothesis	(Section	5.1)	of	the	

association	 of	 pre-treatment	 IgG	 subclass	 presence	 and	 levels	 with	 ABMR	 and	 graft	

failure	in	AIT.	However,	further	investigation	was	required	to	establish	whether	or	not	
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the	 effects	 of	 IgG1	 and	 IgG4	 subclasses	 remained	 significant	 in	 the	 presence	 of	

confounding	factors	in	multivariate	space	[167].			

 Exploratory	data	analysis	

In	order	to	explore	the	effect	of	the	HLA	IgG	subclasses	on	acute	ABMR	and	medium-term	

survival	in	the	presence	of	confounding	clinical	and	immunological	data,	the	following	

multivariate	statistical	analyses	were	conducted	by	the	author:			

• Cox	PH	regression	for	medium-term	graft	survival		

• Logistic	regression	for	acute	ABMR	

5.4.1 Cox	proportional	hazards	model	for	graft	survival	

For	medium-term	 graft	 survival	modelling,	 early	 post-transplant	 outcomes	 (DFG	 and	

rejection)	 were	 included	 in	 addition	 to	 the	 14	 baseline	 characteristics	 described	 in	

Section	 5.3.	 The	 pre-treatment	 IgG	 subclass	 information	 was	 considered	 both	 as	

continuous	MFI	values	and	as	a	binary	presence/absence	indicator	(based	on	the	cut-off	

values	declared	in	Section	5.3).	The	outcome	was	modelled	as	time	(in	weeks)	until	the	

event	(graft	failure).		

Among	 the	80	patient	samples,	6	were	excluded	due	 to	death-censoring	and	3	due	 to	

missing	values.	57	out	of	the	remaining	71	samples	were	censored	at	the	study	end	date	

(July	2014).		Backwards	stepwise	model	selection	[139]		was	used	to	eliminate	variables	

that	did	not	improve	the	association	with	medium-term	survival.	The	final	Cox	PH	model	

(Table	 5.2)	 comprised	 8	 variables:	 number	 of	 previous	 transplants,	 CDC	 crossmatch,	

DFG,	single	highest	pan-IgG	DSA	MFI,	and	the	presence/absence	of	 the	4	 IgG	subclass	

DSAs,	out	of	which	only	the	highest	pan-IgG	DSA	MFI	and	IgG4	subclass	DSA	presence	were	
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statistically	significant	(p<0.05).	 	The	hazard	ratios	(HR)	revealed	that	death	censored	

graft	survival	was	significantly	worse	in	cases	with	positive	IgG4	DSA	(HR	=	5.8,	p=0.035)	

and	elevated	single	highest	pan-IgG	DSA	MFI	levels	(HR	=	71,	p=0.012),	both	known	pre-

treatment.	

Table	5.2	Cox	proportional	hazards	model	for	death	censored	graft	survival.	Highlighted	in	bold	are	p<0.05.		

Variable	 p-value	 Hazard	ratio	 95%	CI	
Lower	 Upper	

Previous	transplant		 0.125	 0.443	 0.157	 1.253	
CDC	crossmatch	positive	 0.598	 1.455	 0.362	 5.855	
Highest	pan-IgG	DSA	(MFI)	 0.012	 70.999	 2.578	 1955.4	
IgG1	(+/-)	 0.665	 0.641	 0.086	 4.789	
IgG2	(+/-)		 0.282	 0.342	 0.048	 2.415	
IgG3	(+/-)	 0.464	 1.694	 0.414	 6.932	
IgG4	(+/-)	 0.035	 5.826	 1.129	 30.1	
DGF		 0.165	 0.225	 0.027	 1.853	
	

Separate	 Cox	 PH	 analyses	were	 carried	 out	 for	 IgG	DSA	 values	 at	 future	 time	 points,	

including	peak	(around	14th	day)	and	30th	day	post-transplant.	These	time	points	are	of	

great	 clinical	 importance	 and	 were	 considered	 in	 this	 interdisciplinary	 collaborative	

study	with	 the	resulting	models	published	 in	 [167].	These	models,	however,	 relate	 to	

post-event	information,	and,	therefore,	are	not	relevant	to	this	thesis,	which	focuses	on	

predictive	modelling	 as	a	means	of	 stratifying	 the	 risk	of	a	particular	 clinical	outcome	

while	it	is	still	beneficial	for	the	patient.	

5.4.2 Logistic	regression	for	acute	rejection	

A	multivariate	LR	was	performed	to	determine	whether	the	pre-treatment	IgG4	and	IgG1	

DSA	MFI	was	independently	predictive	of	acute	ABMR.	Three	cases	were	excluded	from	

this	analysis	because	of	missing	baseline	data,	thus	leaving	77	samples,	43	in	the	ABMR+	

group	and	34	in	the	ABMR-	group.		
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Included	 in	the	LR	model	were	the	14	baseline	characteristics	outlined	 in	Section	5.3.	

Numerical	variables	were	mapped	to	the	interval	[0,	1]	in	order	to	normalise	the	varying	

variable	 ranges.	 Backwards	 stepwise	model	 selection	 eliminated	 input	 variables	 that	

reduced	the	quality	of	the	ABMR	model.	The	following	five	variables	were	not	found	to	

be	statistically	significant	in	the	LR	model:		

1) recipient’s	age	

2) ESRD	duration	

3) number	of	class	II	HLA-DR	mismatches	

4) number	of	previous	transplants	

5) the	marker	of	whether	the	donor	was	a	live/deceased	

One	explanation	as	to	why	these	variables	did	not	add	value	to	the	ABMR	mode	is	that:	

both	1)	 the	ESRD	duration	 and	2)	 recipient’s	 age	 carry	 the	 information	on	 long-term	

effects,	whilst	the	outcome	in	question,	i.e.	acute	ABMR,	is	a	snapshot	in	time	at		day	30		

post-transplant	and	was	influenced	predominantly	by	short-term	IgG	dynamics;	3)	the	

number	 of	 class	 II	 HLA-DR	 mismatches	 is	 counted	 in	 the	 total	 number	 of	 HLA	

mismatches,	 which	 was	 already	 included	 in	 the	 model;	 4)	 the	 number	 of	 previous	

transplants	correlated	with	long-term	survival,	but	not	acute	ABMR;	5)	with	only	6	cases	

of	deceased	donor	kidneys	(remaining	AIT	transplantations	were	from	living	donors),	it	

is	likely	that	deceased	donor	incidence	was	too	rare	to	be	captured	in	the	available	80	

sample	dataset,	yet	alone	used	to	predict	the	ABMR.	

The	 resulting	 LR	 model	 shown	 in	 Table	 5.3	 comprised	 8	 variables	 and	 a	 constant	

(intercept).	The	regression	coefficients	β	were	statistically	significant	(3 < 0.05)	for	all	

variables.	In	particular,	3	variables	yielded	odds	ratios	"# 	beyond	the	[0.5,	2]	interval,	

namely:	the	number	of	HLA	mismatches	("#=	4.2,	p<0.0001),	single	highest	pan-IgG	DSA	

MFI	("# =3.3,	p<0.0001),	and	total	IgG4	MFI	level	("# =3.0,	p<0.0001).		
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Table	5.3	Logistic	regression	model	for	acute	transplant	rejection.	Highlighted	in	bold	are	odds	ratios	outside	
[0.5,	2]	interval.	

Variable	:	
		

Coefficient	
!	

3-value	
		

Odds	ratio	
"# 	

95%	CI		
Lower	 Upper	

Intercept	 -1.847	 <0.0001	 0.158	 0.089	 0.280	
Number	of	HLA	mismatches	 1.435	 <0.0001	 4.199	 2.756	 6.396	
Class	I	&	II	DSA	presence	 0.386	 <0.0001	 1.471	 1.260	 1.718	
CDC	crossmatch	positive	 -0.413	 <0.0001	 0.662	 0.575	 0.762	
Highest	pan-IgG	DSA	(MFI)	 1.185	 <0.0001	 3.269	 2.557	 4.180	
IgG1	(MFI)	 0.547	 <0.0001	 1.727	 1.363	 2.190	
IgG2	(MFI)	 -0.454	 <0.0001	 0.635	 0.598	 0.675	
IgG3	(MFI)	 -0.235	 <0.0001	 0.791	 0.772	 0.810	
IgG4	(MFI)	 1.088	 <0.0001	 2.969	 2.203	 4.000	
	

Taking	into	account	the	scaling	of	the	numerical	variables,	these	odds	ratios	should	be	

interpreted	as	follows:	

• Between	the	lowest	(1)	and	highest	(6)	number	of	HLA	mismatches,	the	odds	

of	the	transplant	being	rejected	are	expected	to	increase	by	4.2	times.		

• For	every	1000	MFI	units	increase	in	the	highest	pan-IgG	DSAs,	there	is	13%	

increase	in	the	odds	of	ABMR.	

• For	every	1000	MFI	units	increase	in	IgG4	levels,	the	expected	increase	in	the	

odds	of	ABMR	is	30.5%.		

In	order	 to	establish	 the	relative	 variable	 importance	 for	ABMR	association	 in	 the	LR	

model,	 the	 likelihood	 ratio	+,	significance	was	 evaluated	 for	 each	 variable	 using	Chi-

squared	test	[143].	The	analysis	revealed	that	only	two	variables	resulted	in	a	significant	

(p<0.05)	increase	in	the	goodness	of	fit	of	the	LR	model:			

• single	highest	pan-IgG	DSA	MFI	(+,=	4.3,	p=0.003)	

• total	IgG4	DSA	MFI	(+,=	7.6,	p=0.005)	
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The	number	of	HLA	mismatches	had	a	high	likelihood	ratio	(+,=11.9),	but	at	p=0.06,	it	

fell	short	of	the	significance	threshold.	This	could	be	due	to	the	fact	that	the	Chi-squared	

test	penalises	large	degrees	of	freedom,	hence	this	multilevel	(6	possible	HLA	mismatch	

values)	variable	was	penalised	heavily	in	the	likelihood	ratio	significance	test.		

Accounting	for	confounding	baseline	indicators,	the	descriptive	Cox	PH	and	LR	models	

confirmed	the	important	associations	of	the	single	highest	pan-IgG	DSA	and	the	total	IgG4	

DSA	 subclass	with	 short-	 and	medium-term	 transplant	 outcomes	 [167,255].	 The	 key	

immunological	 risk	 factors	 established	 in	 these	 exploratory	 analyses	 were	 further	

confirmed	by	the	predictive	ML	models	described	in	the	subsequent	section.			

 Predicting	early	rejection	using	tree-based	learning	

As	stated	at	the	end	of	Section	5.2,	the	primary	purpose	of	this	research	was	not	only	to	

establish	 the	key	 immunological	 indicators	of	 transplant	 rejection	and	 its	 subsequent	

loss,	but	to	find	the	baseline	levels	of	DSAs	for	safe	transplantation,	i.e.	establishing	how	

much	of	DSAs	can	be	tolerated	before	the	donor	kidney	is	rejected.	The	solution	to	this	

task	required	more	granularity	than	had	been	achieved	with	the	standard	Cox	PH	and	

Logistic	regression	analyses,	hence	it	was	approached	with	machine	learning.			

The	 secondary	 goal	 of	 the	 research	 stipulated	 a	 predictive	model	 for	 acute	 rejection,	

which	 clinicians	 could	 use	 to	 identify	 patients	 at	 risk	 of	 acute	 ABMR	 prior	 to	 AIT	

interventions	 and	 to	 make	 timely	 and	 informed	 life-saving	 decisions.	 Accurately	

classifying	 AIT	 patients	 into	 ABMR+/-	 groups	 –	 based	 on	heterogeneous	 (continuous,	

categorical	 nominal	 and	 categorical	 ordinal	 variable	 types),	 multimodal	 (routine	

collection	and	dedicated	laboratory	experiments),	incomplete	(a	few	samples	contained	

missing	values),	and	small	data	–	constituted	a	non-trivial	task	that	also	necessitated	the	

use	of	ML.		
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Among	various	ML	classifiers,	DTs	are	particularly	well	suited	for	clinical	classification	

tasks,	where	interpretability	is	key.	DTs	are	easy	to	interpret	by	non-statisticians	and	are	

intuitive	to	follow.	They	cope	with	missing	values	and	are	able	to	combine	heterogeneous	

data	 types	 into	 a	 single	 model,	 whilst	 also	 performing	 automatic	 feature	 selection	

[121,124].	When	 combined	 in	 a	 random	 forest	 (RF)	 ensemble,	 DTs	 lose	 part	 of	 their	

interpretability,	but	benefit	from	increased	robustness	and	the	classification	accuracy	of	

RFs.	 The	 exploratory	 power	 is	 partially	 restored	 in	 the	 RF	 by	 leveraging	 the	 built-in	

variable	importance	estimation	(Section	2.3.3).		

As	has	been	demonstrated	in	Section	5.2,	tree-based	learning	has	been	successful	in	the	

general	area	of	kidney	transplantation	where	training	samples	were	abundant.	The	new	

challenge	was	 to	 develop	 equally	 successful	 DT	 and	 RF	models	 using	 only	 a	 limited,	

single-centre	dataset.		The	novel	application	of	DTs	for	the	prediction	of	acute	ABMR	in	

HLA-incompatible	kidney	transplantation	was	enabled	by	the	multiple	runs	strategy	for	

small	data	proposed	in	Chapter	3.	

5.5.1 Decision	tree	and	random	forest	design	

From	the	80	available	patient	cases,	60	were	randomly	sampled	for	model	training	and	

the	remaining	20	samples	were	reserved	for	independent	tests.	As	has	been	shown		in	

Section	5.4,	 the	patient	 groups	were	well	 balanced	 (46	 in	ABMR+,	34	 in	ABMR-),	 but	

contained	 3	 samples	 with	 partially	 missing	 values.	 In	 one	 of	 the	 samples	 the	 ESRD	

duration	was	lost	upon	collection;	in	two	other	samples	the	IgG1,	IgG2,	and	IgG3	values	

were	not	 recorded.	The	3	missing	 samples	were	 included	 in	 the	DT	and	RF	 inputs	 to	

ensure	that	the	models	were	able	to	make	realistic	predictions	on	incomplete	data,	which	

are	commonly	encountered	in	a	clinical	AIT	setting.		
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The	models	were	evaluated	using	confusion	matrices	and	ROC	curves	(as	described	in	

Section	 2.5);	 the	 correct	 classification	 rate	?,	 sensitivity	M2,	 specificity	M3,	 and	 area	

under	the	ROC	curve	=>?	were	evaluated	separately	for	training	and	test	cohorts.	The	

same	test	cohort	was	used	for	both	the	final	DT	and	RF	models.		

Decision	tree	design	was	based	on	the	standard	CART	algorithm	implemented	using	

MATLAB™	[120]	and	the	Caret	package	in	R	[157].	All	14	baseline	and	immunological	

predictors	 described	 in	 Section	 5.3	 were	 included	 as	 the	 DT	 input	 feature	 space.	

Throughout	the	training	process,	the	dataset	was	recursively	divided	according	to	the	

Gini’s	Diversity	Index	split	criterion,	as	described	in	Section	2.2.3,	until	the	optimal	DT	

hierarchy	of	nodes	was	reached.	In	order	to	control	leafiness,	the	following	constraints	

defined	 in	 Section	 2.2.4	 were	 imposed	 on	 the	 DT:	 minimum	 parent	 size	 of	 10,	 and	

minimum	 leaf	 size	of	1.	No	 separate	 validation	 cohort	was	 afforded	 from	 the	 already	

limited	 number	 of	 available	 samples.	 Instead,	 pruning	 [120]	was	 applied	 in	 order	 to	

penalise	the	complexity	of	the	DT	and	prevent	overfitting,	thus	ensuring	that	only	the	

most	significant	splits	were	discovered	by	the	model.	

Using	the	multiple	runs	strategy,	the	experiments	with	DT	were	repeated	600	times	and	

each	 time	 a	 different	 model	 subset	 was	 sampled	 from	 the	 original	 samples.	 	 It	 was	

expected	that	the	performance	of	those	600	DTs	would	be	highly	volatile,	reflecting	that	

not	all	DTs	would	be	able	to	learn	from	the	limited	training	data.	It	was	also	expected	

that	some	DTs	would	be	initialised	to	the	training	subsets	which	was	more	conducive	to	

generalisable	 patterns	 in	 the	 ABMR+/-	 patients,	 as	was	 the	 case	with	 the	 small-data	

neural	network	models	in	the	concrete	and	bone	applications	[232,233].	The	sufficient	

size	 of	 the	 multiple	 run	 was	 estimated	 from	 the	 initial	 design	 exploration,	 where	

increasing	the	size	above	600	trees	did	not	result	in	observable	changes	in	the	=>?	and	

?	distributions.			
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Random	forest	design.	A	RF	comprising	600	constituent	trees	was	developed	in	order	

to	increase	the	robustness	of	the	stand-alone	DT	predictions	to	the	degree	required	by	a	

practical	 clinical	 support	 system.	This	 number	 of	 trees	was	 selected	due	 to	 the	 same	

considerations	as	in	the	multiple	runs	above.	Although	it	was	expected	that	the	RF	would	

produce	substantially	more	robust	results	than	the	600	individual	DTs,	the	experiment	

with	RF	was	repeated	10	times	to	monitor	the	variance	due	to	small	data.	 In	order	to	

reduce	its	input	dimensionality,	the	predictive	RF	system	leveraged	the	findings	of	the	

exploratory	LR	analysis	conducted	in	Section	5.4.2.	The	5	variables	that	lacked	significant	

association	with	 the	 acute	 ABMR	 in	 the	 LR	model	 were	 removed	 from	 the	 RF	 input	

feature	space,	thus	reducing	it	to	9	baseline	predictors,	all	of	which	were	known	prior	to	

the	transplantation.		

A	constituent	tree	in	RF	was	different	from	a	DT	in	the	following	ways:	

• Overfitting	was	controlled	by	out-of-bag	validation	with	90%	of	the	samples,	

as	opposed	to	DT	pruning.	

• To	compensate	for	otherwise	excessively	large	trees	grown	without	pruning,	

the	minimum	number	of	samples	per	leaf	node	was	increased	to	3.	

• Out	of	the	9	input	features,	6	were	sampled	at	random	for	each	partial-feature	

tree	in	the	RF.		

5.5.2 Decision	tree	model	results	

The	DT	classifier	in	Figure	5.2	was	developed	after	considering	a	multiple	run	of	the	600	

DTs,	each	modelled	on	a	different	subset	of	the	data	by	permuting	the	test	and	training	

datasets	 with	 each	 other.	 The	 models	 were	 analysed	 in	 a	 semi-automatic	 manner	

whereby	 the	 high-performing	 (=>?~�AuC ≥ 	0.8)	 DTs	 were	 monitored	 for	 repeating	

patterns	of	variables	in	the	branches.	In	the	absence	of	a	separate	validation	cohort,	the	
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final	model	was	selected	as	the	highest	performing	(measured	by	=>?~�AuC,	?~E™~,	?~�AuC,	

and	?~E™~)	 from	the	subset	of	DTs	with	a	repeating	pattern.	As	expected,	considerable	

volatility	in	performance	and	structure	was	observed	among	the	600	DTs.	Out	of		the	600	

DTs,	a	persistent	pattern	was	observed	in	14	high-performing	DTs,	which	used	the	same	

6	variables	(in	differing	order)	as	the	model	in	Figure	5.2.		

	

	

Figure	5.2	DT	schematic	showing	the	split	hierarchy	with	7	branch	nodes	and	8	leaves	based	on	6	variables	

	

A	 further	 comparison	 of	 these	 14	 DT	 instances	 with	 the	 remaining	 586	 DTs	 in	 the	

multiple	run	was	carried	out	with	the	Wilcoxon	rank	sum	test	for	medians	of	?~E™~ .	Figure	

5.3	shows	that	despite	the	overall	large	variance	(*	 = 	0.013)	across	the	multiple	run,	

the	14	DTs	based	on	the	6	variables	 identified	 in	Figure	5.2	had	a	significantly	higher	

predictive	 power	 (p<0.002).	 This	 indicated	 that	 the	 training	 cohorts	 of	 these	 trees,	

containing	high-risk	patient	groups,	were	more	conducive	to	learning	the	associations	

between	the	input	variables	and	acute	ABMR	[232].		

0	=	ABMR-	
1	=	ABMR+	
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Figure	5.3	Wilcoxon	rank	sum	test	for	median	?~E™~	based	on	600	DTs	and	on	the	subset	of	DTs	with	the	
repeating	pattern.		

	

Out	of	the	14	baseline	predictors,	6	variables	were	identified	by	the	DT	as	the	primary	

splits	for	ABMR	prediction.	These	were:	the	single	highest	pan-IgG	DSA	MFI	level,	total	

IgG4	MFI	level,	number	of	HLA	mismatches,	total	IgG2	MFI	level,	the	total	IgG1	MFI	level,	

and	cytometry	crossmatch.		The	remaining	8	were	not	used	by	the	final	DT	(Figure	5.2)	

in	either	the	primary	or	surrogate	splits.	Thus,	the	DT	model	independently	confirmed	

that	none	of	 the	5	baseline	parameters	 eliminated	by	 the	LR	model	 (Table	5.3)	were	

instrumental	to	acute	ABMR	prediction.	

Importantly,	the	node	splits	in	the	DT	model	(Figure	5.2)	provided	an	indication	as	to	

what	specific	levels	of	HLA	DSA	antibodies	were	statistically	associated	with	each	of	the	

ABMR+/-	 groups.	 The	 DT	 identified	 that	 all	 patients	 with	 the	 highest	 pan-IgG	 levels	

below	 MFI	 1062	 belonged	 to	 the	 ABMR-	 group	 (no	 rejection),	 while	 those	 with	 the	

highest	pan-IgG	level	≥	1062	and	the	IgG4	MFI	level	≥	80	had	a	high	(85%)	likelihood	of	

early	transplant	rejection.	Similarly,	85%	of	patients	with	4	or	5	HLA	mismatches,	the	

highest	pan-IgG	 level	≥	1062,	 and	 IgG4	MFI	 level	<	80	belonged	 to	 the	ABMR+	group	

[256,257].	
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Figure	5.4	Confusion	matrices	for	the	training	dataset	(left)	and	test	samples	(right)	of	the	DT	model.	
The	cells	provide	the	performance	metrics	described	in	Section	2.5.		

The	DT	was	able	to	correctly	predict	the	incidence	of	ABMR	in	85%	cases	on	both	

training	and	test	datasets	(Figure	5.4).	When	evaluated	on	the	test	cohort,	the	DT	

identified	ABMR+	patients	with	81.8%	sensitivity	and	ABMR-	cases	with	88.90%	

specificity	(Figure	5.4).	The	classifier	ROC	curves	show	=>?~�AuC 	= 	0.849	on	training	

samples	and	=>?~E™~ 	= 	0.854	for	DT	predictions	on	test	samples	(Figure	5.5).		

	

Figure	5.5	ROC	curves	for	DT	accuracy	on	the	training	dataset	(left)	and	test	samples	(right).	
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5.5.3 Random	forest	model	results	

The	 RF	 of	 600	 partial-feature	 trees	was	 built	 on	 the	 same	 training	 cohort	 as	 the	 DT	

presented	 in	 Figure	 5.2.	 It	 achieved	 ?~�AuC	 =	 91.7%	 during	 the	 training	 phase	 and	

correctly	classified	85%	of	test	cases	(Figure	5.6),	which	was	analogous	to	the	DT	model	

performance	on	the	same	test	cohort.	The	RF	was	able	to	identify	ABMR+	patients	with	

a	 higher	 sensitivity	 (M2	 =	 92.3%)	 than	 the	 DT,	 but	 its	 ABMR-	 predictions	 were	 less	

specific	(M3	=	71.4%).	=>?~E™~	=	0.819	of	this	RF	was	equal	to	that	of	the	DT	(Figure	5.7).	

	

Figure	5.6	Confusion	matrices	for	the	training	dataset	(left)	and	test	samples	(right)	of	the	RF	model.	

	

Figure	5.7	ROC	curves	for	RF	classification	accuracy	on	training	(left)	and	test	(right)	samples.	
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Ten	RFs	were	 generated	 [256]	 in	 order	 to	 determine	whether	 the	 consistency	 of	 the	

predictions	 improved	 compared	 to	 the	 DT	 run.	 The	 results	 (Figure	 5.8)	 showed	

significantly	reduced	variance	(*	 = 	0.002),	and	consistently	high	performance.	

	

Figure	5.8	Distributions	of	performance	measures	?~�AuC, ?~E™~, =>?~�AuC, =>?~E™~	for	10	RFs.	

The	 variable	 importance	 scores	 (Figure	 5.9)	 were	 computed	 in	 order	 to	 identify	 the	

principal	 factors	 of	 ABMR	 among	 the	 9	 input	 variables	 used	 by	 the	RF	 classifier.	 	 As	

shown	 in	 Figure	 5.9,	 the	 total	 IgG4	 MFI	 level	 was	 the	 single	 most	 important	 factor,	

followed	by	the	highest	MFI	IgG	level,	and	the	number	of	HLA	mismatches.	This	result	

independently	 confirms	 the	 finding	 of	 the	multivariate	 analyses	 that	 IgG4	 was	 a	 key	

contributor	to	the	risk	of	kidney	rejection	in	the	early	post-transplant	period	[255–257].	

	

Figure	5.9	Variable	importance	scores	evaluated	by	a	permutation	test	across	10	RFs	
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Both	 the	 DT	 and	 RF	 models	 enabled	 accurate	 predictions	 of	 acute	 ABMR	 from	 the	

baseline	 indicators	 in	 the	 UHCW	 data.	 However,	 the	 two	 tree-based	 models	 offered	

distinct	auxiliary	functionality.		Despite	its	volatility	to	limited	training	samples,	the	DT	

model	had	an	added	advantage	of	descriptive	modelling:	its	numerical	branches	enabled	

quantification	of	dangerous	HLA	DSA	levels,	whilst	its	clear	graphical	representation	is	

easy	to	follow	by	non-statisticians.	The	RF	did	not	offer	such	ease	of	interpretation,	since	

it	comprised	600	individual	partial-feature	trees.	This	drawback	in	interpretability	was	

compensated	by	 the	reduction	 in	 the	RF	performance	volatility,	making	the	RF	model	

more	 suitable	 as	 a	 practical	 clinical	 risk	 stratification	 system.	 The	 quantitative	

comparison	of	the	two	predictive	models	is	provided	in	Table	5.4.	

Table	5.4	Predictive	performance	of	the	DT	and	RF	models	

Performance	measures:																																												
DT	 RF	

training	 test	 training	 test	

Correct	classification	rate,	C	(%)	 85.0	 85.0	 91.7	 85.0	

Sensitivity,	Sn	(%)	 85.7	 81.8	 93.9	 92.3	

Specificity,	Sp	(%)	 84.0	 88.9	 88.9	 71.4	

Positive	Predictive	Value,	PPV	(%)	 88.2	 90.0	 91.2	 85.7	

Negative	Predictive	Value,	NPV	(%)	 80.8	 80.0	 92.3	 83.3	

Area	under	the	ROC	curve,	AUC	 0.849	 0.854	 0.914	 0.819	
	
	

 Methodological	significance	and	limitations	

The	accuracy	achieved	by	the	DT	classifier	in	Section	5.5	demonstrated	that	tree-based	

ML	could	be	effectively	applied	to	predictive	modelling	in	AIT	despite	the	small	number	

of	observations	and	heterogeneous	input	parameters.	Developed	with	only	60	cases,	the	

DT	model	for	acute	ABMR	correctly	classified	85%	of	the	patients	in	both	the	training	

and	test	cohorts.	Although	no	similar	ML	model	for	acute	ABMR	existed	at	the	time	of	
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publication	[256,257]	to	make	a	direct	comparison,	the	proposed	DT	outperformed	in	its	

accuracy	(=>?	=	0.854)	some	of	the	highest-performing	large-data	ML	models	in	the	area	

of	kidney	transplantation	discussed	in	Section	5.2	[251–254].	

In	 addition	 to	 providing	 patient-specific	 ABMR	 risk	 predictions,	 the	 DT	 was	 also	 a	

descriptive	model.	 Its	 branch	 nodes	 determined	 the	 optimal	 set	 of	 6	 pre-treatment	

indicators	 associated	with	 acute	ABMR,	which	 confirmed	 and	 expanded	 the	 previous	

findings	of	the	LR	model	(Section	5.4.2).	The	superiority	of	the	DT	model	was	in	further	

granularity:	 not	 only	 had	 it	 identified	which	 IgG	 subclasses	 were	 highly	 pertinent	 to	

ABMR,	but	also	what	levels	of	these	IgG	DSAs	could	be	safely	tolerated	[256,257].		

The	 limitation	 of	 the	 DT	 model	 was	 its	 sensitivity	 to	 the	 subset	 of	 training	 data	 it	

received.	 Without	 an	 additional	 validation	 cohort	 it	 is	 unknown	 whether	 the	 DT	

performance	 on	 the	 test	 cohort	 was	 also	 subset-dependent,	 or	 whether	 it	 was	

generalisable	 to	 new	 samples.	 The	 model	 provided	 in	 Figure	 5.2	 was	 not	 a	 unique	

solution	 to	 the	 classification	 of	 ABMR.	 Instead,	 it	 represented	 one	 of	 several	 DT	

hierarchies	that	could	explain	the	association	of	the	samples	in	the	training	cohort	with	

acute	 ABMR.	 Due	 to	 this,	 no	 claims	 on	 the	 DT	 model	 generalisation	 for	 the	 patient	

samples	outside	of	the	UHCW	data	could	be	reasonably	made.	

The	RF	ensemble	provided	an	extension	to	the	DT	model,	with	the	purpose	of	improving	

its	robustness	as	a	classification	tool.	It	has	been	widely	accepted	that	an	aggregate	vote	

of	several	DTs	was	inherently	less	noisy	and	less	susceptible	to	outliers	than	a	single	DT	

output	[132–134,138,258].	The	RF	ensemble	 in	 this	study	was	not	developed	with	an	

intention	of	improving	the	already	high	DT	model	accuracy,	but	to	factor	in	possible	noise	

in	 the	 training	 samples	 the	 DT	 model	 received,	 and	 thus	 increase	 its	 generalisation	

potential.	The	RF	offered	a	better	consistency	of	results	and	lowered	the	volatility	of	the	

DT	predictions,	albeit	at	the	expense	of	reduced	interpretability.	It	remains	for	further	
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study	to	confirm	that	the	reduction	in	volatility	was	due	to	ensemble	learning	and	not	

the	training	data,	and	whether	the	RF	model	would	indeed	be	able	to	generalise	on	the	

patient	cohort	outside	of	the	UHCW	centre.	

Small	dataset	size	was	not	the	only	limitation	of	the	clinical	data	explored	in	this	work.	

Despite	 being	 meticulously	 collected	 and	 maintained	 by	 largely	 the	 same	 team	 of	

nephrologists,	the	single-centre	dataset	contained	3	incomplete	samples.	These	samples	

with	partially	missing	baseline	and	immunological	information	could	not	be	integrated	

into	the	Cox	PH	survival	and	logistic	regression	analyses	without	one	of	the	imputation	

strategies	discussed	 in	Chapter	3.	On	 the	 contrary,	 the	DT	and	RF	models	were	well-

equipped	to	handle	partially	missing	data	and	managed	to	classify	correctly	all	3	cases	

with	 incomplete	 data.	 	 This	methodological	 superiority	 of	 the	 tree-based	ML	models	

further	 adds	 to	 their	 descriptive	 and	 predictive	 significance	 for	 classification	 from	

limited	clinical	data.		

 Clinical	impact	

At	 the	 time	of	 	publication	 [167,232,233],	 this	research	was	 the	 first	 in	 the	UK	to	use	

machine	learning	for	the	prediction	of	acute	ABMR	from	HLA	donor-specific	IgG	subclass	

data	in	antibody-incompatible	renal	transplantation.		It	was	also	the	first	demonstration	

of	the	potential	prognostic	value	of	the	HLA	DSA	IgG4	in	AIT	[167,255,257].	

The	independent	association	of	IgG4	DSAs	with	the	graft	outcome	was	first	confirmed	by	

the	Cox	PH	model	(Table	5.2).	The	multivariate	model	revealed	a	strong	association	of	

pre-treatment	IgG4	DSA	presence	with	medium-term	graft	loss.	Accounting	for	multiple	

confounding	factors,	this	association	was	independent	of	IgG1	and	pan-IgG	DSA	levels,	

revealing	that	IgG4	DSAs,	even	in	isolation,	could	be	highly	pathogenic	to	the	graft.	It	is	

also	possible	 that,	being	 last	 in	 the	 IgG	class-switching	sequence,	 IgG4	represented	an	
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already	mature	immune	response	to	the	donor	organ	by	the	recipient’s	immune	system.		

The	 importance	 of	 IgG4	was	 also	 detected	 in	 acute	 graft	 rejection	 by	 the	 exploratory	

logistic	 model	 (Table	 5.3).	 The	 LR	 model	 confirmed	 a	 significant	 association	 of	 pre-

treatment	 IgG4	DSA	 levels	with	 acute	ABMR.	A	 similar	 association	was	 independently	

confirmed	 by	 the	 relative	 variable	 importance	 scores	 in	 the	 subsequent	 RF	 model.	

Combined,	 the	 analyses	 strongly	 supported	 the	 discovery	 of	 IgG4	 DSAs	 as	 the	 key	

prognostic	indicator	for	short-	and	medium-term	AIT	outcomes.		

Conventional	statistical	models	were	unable	to	determine	how	much	of	IgG4	DSAs	could	

be	safely	tolerated	before	the	transplant	was	rejected	by	the	recipient’s	humoral	system.		

It	was	 the	DT	model	 that	 revealed	 the	dangerous	 levels	 of	 antibodies	 associated	with	

ABMR.	The	harmful	levels	of	IgG4	DSA	and	the	single	highest	pan-IgG	DSA	were	identified	

to	be	at	80	MFI	and	1062	MFI,	respectively	(Figure	5.2).	Whilst	the	threshold	of	around	

1000	MFI	for	the	single	highest	pan-IgG	had	been	intuitively	used	by	transplant	experts	

[75,239,248,259],	the	threshold	for	IgG4	discovered	by	the	DT	model	on	the	UHCW	data	

presented	an	entirely	novel	insight.		

By	integrating	known	and	novel	associations,	the	tree-based	ML	classifiers	developed	in	

this	work	enabled	accurate,	patient-specific	outcome	predictions	for	acute	ABMR.	They	

provided	the	means	for	the	early	stratification	of	ABMR	risk	from	pre-treatment	clinical	

and	 immunological	 indicators,	 leaving	 clinicians	 with	 more	 time	 to	 make	 essential	

adjustments	to	treatment.		The	granularity,	with	which	the	DT	model	determined	which	

IgG	 subclasses	 were	 particularly	 dangerous,	 and	 to	 what	 degree,	 added	 invaluable	

statistical	evidence	 to	support	 the	expert	clinician’s	decision	making.	These	outcomes	

are	summarised	by	the	workflow	schematic	in	Figure	5.10.	

By	 informing	 clinical	 decisions,	 tree-based	 ML	 has	 the	 potential	 to	 transform	

personalised	care	 in	AIT,	preventing	 life-threatening	graft	 loss	and	over-treatment	by	
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costly	 and	 harmful	 immunonosuppresive	 drugs.	 Before	 the	 DT	 and	 RF	 prototypes	

developed	in	this	work	on	the	UHCW	data	can	be	used	as	a	practical	decision	support	

tool,	they	require	extensive	validation	with	external	datasets.	Through	dissiminations	at	

multiple	 international	 conferences	and	 leading	AIT	 fora,	 requests	 to	 collaborate	were	

discussed	with	multiple	groups,	including	the	Paris	centre	[260].	A	grant	application	to	

obtain	additional	HLA-incompatible	and	blood-group	incompatible	transplant	data	was	

submitted	 to	 the	UK	Transplant	Registry	 [261]	and	access	has	 recently	been	granted.		

Thus,	the	research	underpinning	this	thesis	forms		the		foundation	for	an	extensive	multi-

centre	collaboration	with	the	potential	to	transform	the	field	of	antibody-incompatible	

renal	transplantation.		

	

Figure	5.10	From	raw	data	to	clinical	insight:	summary	of	the	workflow	

	

 Chapter	conclusions		

The	key	finding	of	this	chapter	are	as	follows:	

(1) Single-centre	 renal	 transplant	 data	 were	 explored	 for	 novel	 multivariate	

associations	 and	 the	 potential	 for	 data-driven	 predictive	 modelling	 of	 early	

transplantation	outcomes.	
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(2) A	multivariate	Cox	PH	model	established	the	independent	association	of	the	single	

highest	pan-IgG	DSA	MFI	levels	(HR	=	71,	p=0.012),	and,	specifically,	IgG4	DSAs	presence	

(HR	=	5.8,	p=0.035)	with	medium-term	graft	loss.		

(3) An	exploratory	LR	model	confirmed	that	the	single	highest	pan-IgG	DSA	MFI	level	

("#=	 3.3,	 p<0.0001)	 and	 total	 IgG4	 DSA	 MFI	 level	 ("#=	 3.0,	 p<0.0001)	 were	 also	

associated	with	early	transplant	rejection.	

(4) A	 predictive	 DT	model,	 developed	 on	 60	 patient	 samples	 using	 the	 method	 of	

multiple	 runs,	 independently	 confirmed	 the	 confounding	 factors	 used	 in	 LR	 and	

predicted	early	ABMR	with	85%	accuracy.	

(5) By	providing	a	quantification	of	dangerous	DSA	levels,	 the	DT	identified	that	all	

patients	with	the	highest	pan-IgG	levels	below	MFI	1062	belonged	to	the	ABMR-	group,	

while	those	with	the	highest	pan-IgG	level	≥	1062	and	the	IgG4	MFI	level	≥	80	had	an	

85%	chance	of	early	ABMR+.	

(6) Within	 the	 limitations	 of	 the	 test	 cohort,	 the	 predictive	 RF	 ensemble	 model	

improved	DT	robustness	and	maintained	85%	predictive	accuracy.	The	relative	variable	

importance	scores	of	the	RF	ensemble	further	confirmed	the	LR	and	DT	findings	of	the	

key	immunological	and	clinical	factors	for	acute	ABMR	in	HLA	sensitised	patients.		
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Diabetes	type	2	risk	stratification	from	

routinely	collected	NHS	data	

The	research	presented	in	this	chapter	stems	from	a	3-year-long	collaboration	with	the	

Nuffield	Department	of	Primary	Care	Health	Sciences,	University	of	Oxford.		The	overall	

aim	 of	 the	 project	 was	 to	 explore	 the	 possibilities	 of	 improving	 the	 existing	 type	 2	

diabetes	risk	stratification	system	used	in	NHS	primary	care,	through	the	adoption	of	ML	

and	 inclusion	 of	 blood	 glucose	 information.	 The	 author’s	 contribution	 to	 this	

collaboration	 was	 the	 development,	 implementation,	 and	 validation	 of	 a	 novel	 ML	

prototype	 that	 predicted	 the	 10-year	 risk	 of	 acquiring	 type	 2	 diabetes	 in	 the	 UK	

population	based	on	routinely	collected	primary	care	data.	The	study	protocol	specified	

for	 the	model	 to	 be	 based	 on	 artificial	 neural	 networks,	 although	 alternative	models	

using	 logistic	 regression	 and	 survival	 decision	 trees	 were	 also	 explored	 and	 are	

presented	in	this	chapter.	

 Diabetes	in	the	UK	and	globally	

Diabetes	 mellitus	 (DM)	 is	 a	 chronic	 hormone	 deficiency	 condition	 that	 significantly	

impacts	on	the	lives	of	an	estimated	422	million	people	globally	[262].	The	key	feature	

of	DM	is	the	relative	or	absolute	absence	of	insulin	–	the	hormone	involved	in	controlling	
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and	critically	 lowering	 levels	of	glucose	 in	 the	blood.	Elevated	 levels	of	blood	glucose	

(hyperglycaemia)	produce	serious	short-term	as	well	as	 long-term	complications	 that	

have	significant	impacts	on	the	quality	of	life	and	health	of	diabetic	patients	and	lead	to	

increased	 mortality	 [263].	 In	 severe	 cases,	 patients	 can	 suffer	 from	 hyperglycaemic	

hyperosmolar	state,	and	in	instances	of	absolute	insulin	deficiency,	lead	to	ketoacidosis,	

loss	 of	 consciousness	 and	 coma.	 In	 cases	 of	 long-term	 hyperglycaemia,	 the	

microvasculature	 of	 a	 patient's	 kidney,	 eye,	 nerve,	 and	 larger	 arteries	 are	 affected,	

leading	to	blindness,	neuropathy,	and	end-stage	renal	failure	[263].	Hypoglycaemia	(low	

blood	glucose)	caused	by	improper	glycaemic	management	in	diabetic	patients	can	also	

lead	 to	 mortality	 [263].	 The	 World	 Health	 Organisation	 estimates	 that	 DM	 and	 its	

complications	 caused	 1.5	 million	 deaths	 in	 2012	 (2016).	 In	 England	 alone,	 DM	 is	

responsible	for	over	48,000	hospital	admissions	and	5,500	deaths	annually	[264].		

As	alarming	as	its	complications,	is	the	accelerating	rate	at	which	DM	continues	to	strike	

modern	society.	The	worldwide	prevalence	of	diabetes	type	2	has	doubled	since	1980		

and	this	trend	is	expected	to	continue	with	a	forecasted	592	million	diabetic	people	by	

2035	[262,265].	Weber	and	Narayan	call	it	the	“epidemic	of	diabetes”	(2008).	In	the	UK,	

the	number	of	adults	living	with	DM	is	3.9	million,	corresponding	to	a	prevalence	rate	of	

6.2%	[267,268].	 It	 is	estimated	 that	 there	are	also	around	850,000	people	 in	England	

who	have	diabetes	but	have	not	been	diagnosed	[267].	Those	undiagnosed	patients	may	

have	experienced	diabetic	complications,	such	as	a	heart	attack	or	renal	failure	without	

warning	symptoms.	

The	 rapid	 growth	 in	 DM	 incidence	 is	 a	 serious	 public	 health	 priority	 [262,264].	

Fortunately,	 the	 past	 few	 decades	 have	 also	 brought	 about	 two	 paradigms:	 (1)	

widespread	 computerisation	 of	medical	 systems	 in	 industrialised	 countries	 that	 have	

resulted	 in	the	collection	of	vast	(and	often	convoluted)	digital	repositories	of	patient	
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data,	and	(2)	 the	emergence	of	hardware	and	machine	 learning	algorithms	capable	of	

dealing	with	these	data.	Combined,	these	technological	advances	offer	an	unprecedented	

opportunity	 to	 better	 understand,	 monitor	 and	 manage	 DM.	 By	 analysing	 routinely	

collected	primary	 care	data	using	NNs	 and	DTs,	 this	work	 contributes	 to	 the	nascent	

niche	for	machine	learning	application	in	the	early	prediction	of	DM	in	the	UK	population.	

6.1.1 Disease	pathology,	diagnosis	and	treatment	

Despite	 the	 rapid	 growth	 in	 incidence	of	DM	 in	 the	past	 century,	 the	disease	 is	not	 a	

phenomenon	unique	to	modern	society.	The	term	diabetes	can	be	traced	back	to	the	2nd	

century	AD	Greece,	and	 the	distinction	between	 the	different	 types	of	DM	 is	 found	as	

early	as	the	5th	and	6th	centuries	AD	in	the	work	of	multiple	Hindu	physicians	[263].	Yet	

our	understanding	of	the	complex	metabolic	and	biochemical	processes	in	DM,	as	well	

as	the	policy	around	diagnosing	and	managing	DM,	is	still	evolving.		

DM	is	diagnosed	on	the	basis	of	chronic	hyperglycaemia	determined	by	a	blood	glucose	

(BG)	 test.	A	 fasting	glucose	 level	≥7	mmol/L	 in	plasma	or	≥6.1	mmol/L	 in	a	 capillary	

blood	sample	define	DM.	 	Where	 fasting	BG	 is	not	available,	2-hour	BG	 level	of	≥11.1	

mmol/L	(either	in	plasma	or	capillary)	are	used	as	a	sufficient	diagnostic	criteria	for	DM	

[263].	In	2011	the	World	Health	Organisation	recommended	a	supplementary	diagnostic	

measure	based	on	glycated	haemoglobin	(HbA1c)	above	48	mmol/mol	or	6.5%	[267].	

DM	is	categorised	into	two	main	types:	type	1,	caused	by	autoimmune	responses	within	

the	pancreas	 (absolute	deficiency),	 and	 type	2,	 associated	with	 insulin	 resistance	and	

impaired	secretion.	There	are	a	range	of	other	forms	of	DM,	such	as	neonatal	DM,	mature	

onset	 diabetes	 of	 the	 young	 (type	 MODY),	 and	 Alström	 and	 Wolfram	 syndromes.	

However,	over	90%	of	all	incidences	of	DM	correspond	to	type	2	[264].	 	This	work	on	

routinely	collected	data	from	the	general	UK	population	focuses	solely	on	type	2	DM.	
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Type	2	DM	is	caused	by	a	combination	of	genetic	and	environmental	factors,	such	as	low	

physical	activity,	imbalanced	diet,	chronic	stress	and	polygenic	inheritance	patterns.	It	is	

a	life-long	condition	that	can	rarely	be	reversed,	although	the	risk	of	complications	and	

the	severity	of	the	disease	can	be	considerably	reduced	by	life	style	interventions,	such	

as	weight	 loss,	 increased	physical	 activity,	 and	 cessation	of	 smoking	 [265].	These	 life	

style	changes	have	to	be	adopted	early	and	carried	out	persistently	to	be	effective,	thus	

timely	detection	of	DM	or	pre-DM	conditions	is	highly	advantageous	[264,266,269].		

Unlike	 type	1	DM,	 type	2	diabetic	patients	are	not	necessarily	dependent	on	external	

insulin.	However,	 type	2	DM	 is	a	progressive	 condition	 that	often	deteriorates,	 to	 the	

point	where	exercise	and	healthy	diet	alone	are	not	sufficient	to	control	BG	levels.	The	

patient	is	then	prescribed	insulin	and	a	number	of	medications	to	stimulate	and	protect	

insulin-producing	 cells	 in	 the	 pancreas	 or	 to	 inhibit	 the	 absorption	 of	 starch	 in	 the	

intestine	and	the	absorption	of	glucose	by	the	kidneys	and	the	blood	[268].	The	ability	to	

maintain	BG	outside	 the	dangerous	hyper-	or-	hypoglycaemia	 thresholds	 is	 critical	 to	

reducing	 the	 risk	 of	 serious	 macro-	 and	 micro-vascular	 complications	 and	 death	

[263,269,270].	The	longer	the	patient’s	body	is	exposed	to	uncontrolled	hyperglycaemia,	

the	 higher	 the	 risk	 of	 the	 irreversible	 damage	 of	 insulin-producing	 cells	 [263].	 Early	

detection	of	DM	is	therefore	key	to	preventing	severe	morbidity.	

6.1.2 Managing	type	2	diabetes	risk	in	primary	care	

With	49.1	million	 items	prescribed	each	year	 for	DM	 in	England	alone,	 the	burden	of	

monitoring	and	managing	type	2	DM	falls	on	primary	care	[264].	The	risk	of	type	2	DM	

can	be	identified	through	correlated	(but	not	necessarily	causal)	factors	observable	in	

primary	care,	including:	

• high	BMI	and	obesity	
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• first-degree	relative	with	DM	

• smoking		

• hypertension	

• conditions	requiring	the	prescription	of	corticosteroids	

• gestational	diabetes		

The	net	effect	of	these	risk	factors	is	not	straight	forward.	Obesity	in	itself	is	a	summary	

measure	of	multiple	health	conditions	that	reflect	both	lifestyle	and	genetic	factors	[265].	

Cardiovascular	 conditions	 such	 as	 hypertension	 and	 DM	 are	 mutually-cofounded:		

patients	with	hypertension	have	increased	insulin	resistance,	while	75%	of	DM	patients	

also	have	hypertension	[271].	Some	risks	are	associated	with	patient	demographic.	For	

instance,	among	the	UK	population	type	2	DM	is	found	to	be	more	common	in	people	of	

South	 Asian,	 African,	 Afro-Caribbean	 and	 Chinese	 family	 origins	 and	 in	 people	 from	

regions	associated	with	a	high	Townsend	index	of	multiple	deprivation	[264].	General	

practitioners	are	encouraged	to	screen	 for	DM	risk	 factors,	and	to	refer	patients	 for	a	

blood	 biochemistry	 test	when	 a	 combination	 of	multiple	DM	 risk	 factors	 is	 observed	

[264,267].	

Population	screening		for	high-risk	groups	is	set	in	place	across	UK	primary	health	care	

practices		[264,267].	The	official	guideline	of	the	National	Institute	for	Health	and	Care	

Excellence	[267]	recommends	the	use	of	computer-based	risk	assessment	tools	based	on	

routinely	collected	data,	including	the	QDiabetes®	risk	calculator	[272],	the	Cambridge	

dataset	risk	score	[273],	the	questionnaire-based	Finish	Diabetes	Risk	Score	[274],	and	

the	Leicester	practice	score	[275].	These	four	risk	assessment	tools	predict	the	10-year	

risk	of	being	diagnosed	with	type	2	DM	and	use	5	common	variables	(age,	gender,	BMI,	

family	history	of	diabetes	and	hypertension)	and	2-5	additional	variables,	such	as	waist	
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circumference,	self-reported	 fruit	and	vegetable	 intake	and	gestational	diabetes,	all	of	

which	can	be	measured	in	primary	care	without	expensive	laboratory	tests.		

It	 is	 unrealistic	 that	 a	 handful	 of	 predictor	 variables	 can	 capture	 the	 entirety	 of	 the	

possible	DM	risks	and	variance	in	population,	but	it	is	important	to	establish	the	small	

number	of	variables	that	account	for	most	of	the	variance.	In	a	systematic	review	of	14	

type	2	DM	risk-prediction	models,	Noble	et	al.	advised	against	including	more	than	10	

components	to	the	risk	model	in	order	to	sustain	its	usability	[276,277].	

The	Finnish	Diabetes	Risk	Score	and	Leicester	risk	scores	use	questionnaires	that	sort	

patients	into	appropriate	categories	of	risk	of	developing	type	2	DM	in	a	10-year	period.	

The	Cambridge	risk	score	and	QDiabetes®	use	data	already	available	 in	primary	care	

systems,	 but	 the	 algorithms	 for	 computing	 the	 risk	 differ:	 QDiabetes®	 uses	 the	 Cox	

proportional	hazards	model	to	compute	percentage	risk	of	developing	type	2	DM,	while	

the	Cambridge	risk	score	utilises	logistic	regression	to	express	the	likelihood	of	having	

undiagnosed	diabetes.	

Importantly,	these	four	validated	and	routinely	used	risk	assessment	algorithms	were	

recently	found	to	produce	dissimilar	risk	scores	[278].	For	an	individual,	this	carries	an	

implication	that	their	predicted	risk	is	dependent	on	which	risk-prediction	tool	is	used	

and	 could	 be	 altered	 if	 a	 different	 assessment	 is	 adopted.	 The	 National	 Audit	 Office	

exposed	 that	 a	 high-quality	 randomised	 controlled	 trial	 was	 yet	 to	 confirm	 that	 the	

existing	manual	screening	is	beneficial	[277].	

The	aim	of	this	work	is	not	to	develop	yet	another	type	2	DM	risk	score,	but	instead	to	

investigate	the	utility	of	various	algorithms,	both	from	classical	statistics	and	machine	

learning,	in	the	context	of	routinely	collected	data.	
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Of	 the	 four	 risk	 assessment	 tools	 recommended	 by	NICE,	 QDiabetes®	has	 by	 far	 the	

largest	model	derivation	and	validation	base.	It	was	built	on	2.5	million	medical	records,	

amounting	 to	 16,436,135	 person	 years	 of	 observation,	 during	 which	 78,081	 new	

incidences	of	 type	2	DM	occurred	 [272].	The	model	 considers	11	predictor	variables:	

patient’s	age,	gender,	gestational	DM,	BMI,	smoking	status,	self-assigned	ethnicity,	family	

history	of	DM,	Townsend	multiple	deprivation	score	and	whether	or	not	the	patient	was	

treated	for	hypertension,	had	cardiovascular	disease,	or	was	prescribed	corticosteroid	

drugs.		

Despite	 their	uncontested	diagnostic	value,	BG	measurements	are	not	 included	 in	 the	

computation	 model	 of	 QDiabetes®.	 The	 reason	 why	 QDiabetes®	 disregards	 this	

essential	biochemical	factor	is	because	it	was	designed	with	a	vision	to	be	used	both	in	a	

primary	care	environment	and	by	patients	at	home,	where	a	blood	test	for	measuring	BG	

levels	may	not	be	available.	This	assumption	is	now	obsolete:	in	the	24	years	since	the	

collection	 of	 the	 first	 patient	 record	 in	 the	 QDiabetes®	 study,	 point-of-care	 testing,	

including	 that	 of	 BG	 in	 primary	 care,	 have	 become	 routine	 [279,280].	 	 For	 a	 model	

designed	to	predict	DM	risk	at	the	point	of	care,	it	would	be	reasonable	to	use	all	available	

data,	including	BG	biochemistry,	even	if	this	will	render	the	model	less	useful	outside	the	

clinical	setting.	The	advances	in	point-of-care	testing	and	BG	monitoring,	coupled	with	

the	recent	trends	in	personal	health	devices	[280–283]	further	stipulate	the	inclusion	of	

BG	 measurements	 in	 the	 DM	 risk	 stratification	 systems	 of	 the	 future.	 The	 models	

developed	in	this	chapter	consider	BG	information,	where	available.	
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 The	data	

6.2.1 Overview	

The	 data	 acquisition	 was	 funded	 by	 the	 National	 Institute	 for	 Health	 Research	 in	

accordance	with	the	study	protocol	 [90].	The	data	were	obtained	through	the	Clinical	

Practice	Research	Datalink	(CPRD)	and	stored	on	the	University	of	Oxford	servers.	The	

data	 contained	 information	 on	 the	 incidence	 of	 type	 2	 DM	 diagnosis	 and	 associated	

baseline	indicators	spanning	a	20-year	period	from	1/1/1993	to	31/10/2013.	100,000	

anonymised	EMR	were	 requested	 from	primary	 care	 practices;	 these	were	 randomly	

distributed	within	CPRD	in	order	to	best	represent	the	wide	UK	demographic.		Patients	

who	had	already	been	diagnosed	with	DM	(either	type	1	or	type	2)	were	excluded	from	

the	study.	Consistent	with	QDiabetes®,	only	patients	aged	25-79	at	the	date	of	entering	

the	study	were	considered.	After	applying	the	exclusion	and	inclusion	criteria,	the	final	

study	dataset	comprised	of	79,959	records,	totalling	476,333	person-years.		

In	addition	to	the	variables	considered	in	QDiabetes®	[272],	the	dataset	also	included	

biochemical	 data,	 although	 the	 actual	 BG	 levels	 (fasting	 or	 otherwise)	 were	 largely	

incomplete	 or	 obsolete	 (collected	 more	 than	 5	 years	 prior	 to	 the	 index	 date).	 	 The	

incidence	 of	 gestational	 diabetes	 among	 women	 in	 the	 study	 was	 less	 than	 0.01%	

providing	too	few	(77)	events	to	be	reliably	included	in	the	model.	Hence,	the	following	

11	variables	were	used	as	model	input:	

• continuous:	patient’s	age	(years)	and	Townsend	score	(dimensionless),	most	

recent	at	the	index	date	BMI	(kg/m2)	and	BG	(mmol/L)	measurements		

• binary:	 presence	 (1)	 or	 absence	 (0)	 of	 diabetic	 family	 history,	 incidents	 of	

cardiovascular	 disease	 (CVD),	 treatment	 for	 hypertension,	 prescription	 of	

corticosteroids	(steroid),	and	smoking	history	(smoker)	
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• nominal:	 gender	 (1=Male,	 2=Female)	 and	 ethnicity	 (1=White,	 2=Asian,	

3=Black,	4=Mixed,	5=Other)	

The	outcome	variable	was	a	binary	result	of	type	2	DM	diagnosis	at	the	end	of	the	study	

(0=	non-diabetic,	1=diabetic	or	missing).	The	duration	(days)	from	the	index	date	to	the	

study	 end	 date	 or	 to	 the	 type	 2	 DM	 diagnosis	 date	 was	 also	 considered	 in	 survival	

analysis.	 It	 is	 important	 to	note	 that	 the	diagnosis	 of	 type	2	DM	 is	merely	an	 indirect	

measure	of	whether	the	person	did	or	did	not	have	type	2	DM.	The	cases	of	undiagnosed	

DM	abound	as	illustrated	in	Section	6.2.2.4.	

Table	6.1	CPRD	data:	descriptive	statistics	across	the	derivation	and	validation	cohorts	

Variables	Statistic	 Derivation	cohort	 Validation	cohort	
Patient	N	 53306	 26653	
Person	years	Mean	(std)	 6.0	(3.7)	 5.9	(3.7)	
Diagnosed	type	2	DM	N		 1585	 828	
Gender	female	N	(%)	 26608	(49.9)	 13260	(49.8)	
Age	(years)	Mean	(std)	 44.5	(14.7)	 44.4	(14.7)	
BMI	recorded	N	(%)	 30722	(57.6)	 15236	(57.2)	
							BMI	(kg/m2)	Mean	(std)			 26.2	(5.1)	 26.2	(5.1)	
Any	blood	glucose	recorded	N	(%)	 13879	(26.0)	 7021	(26.3)	
							Fasting	BG	(mmol/L)	Mean	(std)	 5.1	(0.8)	 5.1	(0.8)	
							Random	BG	(mmol/L)	Mean	(std)	 5.1	(1.0)	 5.1	(1.0)	
Townsend	score	Mean	(std)	 -0.5	(2.9)	 -0.5	(2.9)	
Ethnicity	 	 	
							White	N	(%)	 50755	(95.2)	 25416	(95.4)	
							Asian	N	(%)	 1308	(2.5)	 626	(2.3)	
							Black	N	(%)	 564	(1.1)	 262	(1.0)	
							Mixed	N	(%)	 265	(0.5)	 147	(0.6)	
							Other	N	(%)	 414	(0.8)	 202	(0.8)	
Smoker	N	(%)	 12383	(23.2)	 6292	(23.6)	
Family	history	of	DM	N	(%)	 3331	(6.2)	 1678	(6.3)	
History	of	CVD	N	(%)	 2157	(4	.0)	 1100	(4.1)	
Treated	for	hypertension	N	(%)	 5288	(9.9)	 2604	(9.8)	
Prescribed	steroids	N	(%)	 1346	(2.5)	 699	(2.6)	
	

The	 data	 were	 divided	 randomly	 into	 derivation	 and	 validation	 cohorts:	 1/3	 of	 the	

records	were	held	for	the	purposes	of	model	validation	(also	referred	to	as	‘test’	cohort),	
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and	 the	 remaining	 records	were	made	 available	 for	model	 development.	 Descriptive	

statistics	across	the	derivation	and	validation	cohorts	are	presented	in	Table	6.1.		

This	 CPRD	 data	 were	 gathered	 by	 general	 practitioners	 and	 practice	 nurses	 during	

routine	patient	visits	and	reflect	the	broader	challenges	of	routinely	collected	data.	The	

sources	of	this	complexity	are	discussed	in	Section	6.2.2	with	illustrative	examples	from	

the	79,959-sample	dataset	used	in	this	study.			

6.2.2 The	4	“C”s	of	routinely	collected	data	

6.2.2.1 Complexity	

Routinely	 collected	 data	 carry	 broad,	 often	 overlapping	 and	 at	 times	 contradictory	

information	about	a	patient’s	health	and	is	inherently	complex.		

The	variety	of	possible	underlying	physiological	interactions	between	causal,	correlated	

and	cofounded	factors	in	life-long	conditions	such	as	type	2	DM	are	not	fully	established.	

Type	 2	 DM	 presents	 an	 intricate	 interplay	 of	 genetic	 predisposition	 and	 metabolic	

processes,	where	unhealthy	diet,	smoking,	obesity,	and	physical	inactivity	combine	with	

previous	 gestational	 DM,	 ethnicity,	 and	 older	 age.	 	 The	 direct	 and	 indirect	 indicators	

recorded	in	the	electronic	medical	system	at	the	point	of	care	may	not	capture	all	of	this	

complexity.	This	is	evident	from	retrospective	analysis	of	large	patient	databases,	where	

a	number	of	patients	may	match	across	all	variables	of	 interest,	yet	 their	10-year	DM	

outcome	may	differ.		

For	example,	among	the	records	in	this	study,	there	were	two	31-year	old	white	male,	

non-smoking	patients	with	an	almost	identical	healthy	body	mass	(BMI	of	19.2	and	19.7),	

from	 equally	 prosperous	 demographic	 areas	 (Townsend	 decile	 score	 of	 –2.17)	 and	

identically	absent	histories	of	hypertension,	cardiovascular	disease,	family	DM,	previous	
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BG	measurement	or	treatment	with	steroids	at	the	time	of	joining	the	study.	Despite	their	

profiles	matching	across	all	10	of	the	parameters	considered,	the	two	men	experience	

opposite	outcomes:	one	goes	on	to	develop	DM	and	is	diagnosed	with	type	2	DM	after	3.5	

years,	 while	 the	 other	 leaves	 the	 study	 after	 10	 years	 without	 DM.	 Such	 apparent	

contradictions	are	abundant	in	the	dataset,	indicating	from	the	start	of	the	study	that	the	

variables	available	for	analysis	do	not	contain	all	the	necessary	information	required	for	

modelling	the	disease.	

6.2.2.2 Completeness	(or	the	lack	of)	

Routinely	collected	patient	data	could	be	described	as	sparse,	with	values	missing	across	

a	 range	 of	 variables.	 The	 level	 of	 completeness	 depends	 on	 the	 mechanism	 through	

which	the	data	were	collected.	For	instance,	in	the	CPRD	dataset	[90]	the	patient’s	date	

of	birth	and	gender	were	known	in	all	instances,	since	the	medical	record	would	not	have	

been	instantiated	without	the	two	variables.	For	variables	that	represent	conditions	or	

comorbidities	that	require	diagnosis	or	clinical	intervention,	such	as	CVD,	treatment	for	

hypertension,	or	prescription	for	steroids,	missing	values	imply	their	absence	and	could	

be	reliably	substituted	by	zero.		

More	uncertainty	 is	 present	 around	 variables	 that	 rely	 on	patient	 disclosure,	 such	 as	

ethnicity,	smoker	status	or	family	history	of	diabetes.	Among	79,959	records,	13%	did	

not	have	smoking	status	on	record.	 	Family	history	of	diabetes	was	missing	 in	all	but	

positive	cases	(9%).	Ethnicity	was	not	recorded	in	70%	of	patients.	Customarily,	these	

missing	values	would	be	left	as	missing,	imputed	statistically	or	the	entire	patient	record	

would	 be	 omitted	 from	 the	 study	 [17,284,285].	 Instead,	 in	 this	 collaborative	 study,	

domain	 knowledge	 of	 practicing	 healthcare	 professionals	 and	 clinical	 statisticians	

[90,286–288]	was	enlisted	to	deduce	the	missing	values	based	on	the	mechanisms	by	

which	the	samples	were	recorded.		It	was	decided	to	treat	missing	family	history	of	DM	
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as	absent	(0),	unrecorded	ethnicity	as	“White”	(1),	and	to	give	benefit	of	the	doubt	to	the	

unknown	smokers	 (0	 if	missing).	These	 subjective	assumptions	generate	noise	 in	 the	

data,	which	adds	to	the	challenge	of	modelling	with	limited	and	uncertain	information.	

The	final	category	of	missing	input	variables	are	continuous	variables	such	as	BMI,	and	

blood	 plasma	 glucose	 level:	 fasting	 (FBG)	 or	 random	 (BG).	 Any	 BMI,	 FBG	 and	 BG	

measurements	 available	 up	 to	 5	 years	 prior	 to	 the	 index	 date	 were	 included	 in	 the	

analysis.	Despite	this	generous	threshold,	the	measurements	were	grossly	missing:	BMI	

indications	were	absent	in	43%,	BG	-	in	79%,	and	FBG	–	in	93%	of	the	patient	records	

(Figure	6.1).	

	
	

Figure	6.1	Venn	diagram	representing	the	number	of	recorded	BMI	(aqua),	BG	(blue),	FBG	(green)	and	the	
union	of	BG	and	FBG	(red	contour)	as	a	proportion	of	the	entire	available	dataset	(white	rectangle).	The	

diagram	is	annotated	with	the	actual	numbers	of	the	records	corresponding	to	each	subset.	The	areas	of	the	
figures	are	drawn	to	scale.	

	

Evidently,	the	FBG	was	too	scarce	to	be	reliably	incorporated	into	the	model	on	its	own.	

Furthermore,	for	a	healthy	patient	a	fasting	blood	glucose	test	is	expected	to	yield	a	more	

conservative	mmol/L	value	than	a	measurement	taken	at	an	arbitrary	point	in	the	day,	
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yet	it	can	be	noted	from	Table	6.1	that	the	mean	and	standard	deviation	of	the	BG	and	

FBG	are	surprisingly	similar.	A	closer	analysis	revealed	that	indeed	the	distributions	of	

the	BG	and	FBG	(Figure	6.2)	are	identical	(p-value	>	0.05,	Wilcoxon	rank	sum	test)	

	

Figure	6.2	Distributions	of	FBG	and	BG	values	

Hence	BG	and	FBG	were	aggregated	into	a	single	predictor,	such	that:	

ΩëCE∫ =
¶Ωë,													QZ	¶Ωë	QN	å2m82																																				
Ωë,																QZ	¶Ωë	QN	®QNNQ2n, Ωë	QN	å2m82							
O2æ"ZQ2"æ, QZ	2"Q1ℎ"5Ωë	2m5	¶Ωë	P5"	å2m82			

,	

yielding	 a	 new	 variable	with	 a	mean	 of	 5.1	mmol/L	with	 a	 standard	 deviation	 of	 0.9	

mmol/L.	 This	 new	 BG	was	 known	 for	 only	 26%	 of	 the	 patients;	 a	 separate	 variable,	

Ωëb�E™,	was	set	to	0	for	the	remaining	74%	of	patients	for	whom	no	BG	nor	FBG	levels	
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were	 known.	When	 known,	 BG	 levels	 were	 significantly	 different	 (p-value	 <	 0.0001,	

Figure	6.3)	 in	patients	diagnosed	with	type	2	DM	by	the	end	of	the	10	years	(diabetic	

outcome	group,	median	BG	5.8	mmol/L)	 and	 those	who	would	have	exited	 the	 study	

without	a	diabetes	diagnosis	(non-diabetic	outcome	group,	median	BG	5.0	mmol/L).		

	

Figure	6.3	Wilcoxon	rank	sum	test	for	medians	for	BG	values	in	DM,	non-DM	and	unknown	outcome	groups.		

	
6.2.2.3 Censoring	

Another	type	of	missing	data	is	where	the	outcome	variable	is	unknown.	In	primary	care,	

this	may	happen	when	a	patient	leaves	the	practice	before	the	end	of	the	longitudinal	

study.	 The	 loss	 of	 follow-up	 is	 arguably	 the	most	 defining	 characteristic	 of	 routinely	

collected	data.	Over	63%	of	the	patients	studied	in	this	work	left	the	study	before	the	end	

of	10	years.	The	CPRD	dataset	contained	the	date	of	when	the	patient	left	the	practice	

and	the	variable	“reason	for	transferring	out”,	which,	among	others,	included	death.	It	is	

unknown	whether	 those	 transferred-out	 patients	 (apart	 from	 those	who	 died)	would	

have	been	diagnosed	with	type	2	DM	or	remained	disease-free	by	the	end	of	the	10	years.		



Chapter	6.		Diabetes	type	2	risk	stratification	from	routinely	collected	NHS	data	

133	

Loss	of	follow-up	and,	therefore,	the	ability	to	ascertain	what	outcome	would	have	been	

developed	by	a	patient	if	they	remained	in	the	study,	results	in	right-censored	records.	

Censoring	 further	 reduces	 the	 number	 of	 records	 for	 conventional	 modelling	 with	

supervised	 machine-learning	 algorithms,	 which	 inherently	 rely	 on	 known	 outcome	

labels	for	training.	Let	us	recount	the	proportion	of	available	samples	with	BMI	and	BG	

present	in	the	Venn	diagram	in	Figure	6.1,	taking	into	account	censoring.	The	resulting	

Figure	6.4	demonstrates	the	“big	picture”	of	the	combined	effect	of	censoring	and	missing	

BMI	and	BG	measurements	on	limiting	the	samples	available	for	supervised	modelling.			

	

Figure	6.4	Area	diagram	representing	the	number	of	samples	with	known	10-year	follow-up	(left)	and	
unknown	outcome	(right),	separately	in	validation	(top)	and	derivation	(bottom)	cohorts.	The	areas	of	the	

rectangles	are	drawn	in	proportion	to	their	populations.	

	
6.2.2.4 Consistency	

Despite	numerous	attempts	 toward	standardisation,	 the	distributed	nature	of	general	

practices	makes	primary	care	data	prone	to	institutional	bias:	from	one	clinic	to	another	

(inter-institutional	bias),	 from	one	nurse	 to	another	 (intra-institutional	bias),	or	 from	

one	 day	 to	 the	 next.	 This	 determines	 if	and	when	 certain	 baseline	 characteristics	 are	

recorded	[285].	Moreover,	how	those	indicators	are	interpreted	also	depend	on	when,	
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where	and	by	whom	the	patient	was	seen	[289].	Whilst	it	is	not	the	primary	goal	of	this	

research	 to	 quantify	 the	 various	 inter-	 and	 intra-centre	 biases,	 it	 is	 important	 to	

acknowledge	that	inevitable	inconsistencies	influence	why	the	likelihood	of	BG	and	BMI	

values	being	recorded	differs	among	DM	and	non-DM	groups,	and	why	some	patients	

with	BG	levels	meeting	diagnostic	criteria	remain	undiagnosed	for	several	years.	

Firstly,	the	existence	of	bias	in	a	variable	being	recorded	for	patients	of	different	outcome	

groups	directly	affects	the	utility	of	statistical	techniques	such	as	multiple	imputation	on	

that	variable	(Section	3.1.3).	Table	6.2	illustrates	that	patients	who	went	onto	develop	

type	2	DM	were	found	1.5	times	more	likely	to	have	their	BG	levels	measured.	Existence	

of	a	BG	record	was	biased	towards	patients	in	the	DM-outcome	group	versus	non-DM	

and	 unknown	 outcome	 groups.	 Whilst	 the	 mechanism	 by	 which	 a	 patient	 might	 be	

referred	for	a	BG	test	was	unobservable	from	existing	data,	the	bias	indicated	that	BG	

variable	 violated	 the	 Missing	 at	 Random	 (MAR)	 assumption	 required	 for	 multiple	

imputation.	On	the	other	hand,	the	existence	of	a	BMI	record	was	as	 likely	 in	patients	

who	would	develop	type	2	DM	as	in	patients	who	transfer	out	without	a	diagnosis.	The	

absence	of	a	significant	bias,	coupled	with	a	larger	proportion	of	known	values	(57%)	

provided	sufficient	ground	to	impute	BMI.	

Table	6.2	Frequency	of	BG	and	BMI	being	recorded	for	the	whole	cohort	and	separately	for	DM,	non-DM	and	
unknown	outcome	groups.	

Cohorts:	 all	 DM	 non-DM	 unknown	

Is	BG	measured	uniformly	among	DM,	non-DM	and	unknown	outcome	groups?	
#	samples	 79959	 2413	 26889	 50657	
#		recorded	BG	 20900	 1072	 7419	 12409	
%	 26%	 44%	 28%	 24%	
Is	BMI	measured	uniformly	among	DM,	non-DM	and	unknown	outcome	groups?	

#	samples	 79959	 2413	 26889	 50657	
#		recorded	BMI	 45958	 1463	 12576	 31919	
%	 57%	 61%	 47%	 63%	
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Secondly,	patients	with	BG	levels	meeting	diagnostic	criteria	may	remain	undiagnosed	

due	to	inconsistencies	in	the	interpretation	of	already	existing	records	and/or	the	lack	

of	monitoring	of	patients	at	risk.	Recent	studies	demonstrated	that	cases	of	undiagnosed	

type	 2	 DM	were	more	 common	 than	 previously	 acknowledged	 [286,287].	 Among	 the	

patients	 analysed	 in	 this	 work,	 20900	 individuals	 had	 either	 their	 BG	 or	 FBG	 levels	

recorded	at	least	once	within	5	years	before	entering	the	study.	The	records	indicate	that	

for	150	of	these	patients	the	BG	or	FBG	levels	had	been	above	their	diagnostic	criteria	

(Section	6.1.1)	at	the	index	date.	Table	6.3	traces	the	outcomes	for	these	patients	with	

undiagnosed	diabetes	over	the	next	10	years.	

Table	6.3	Patients	with	undiagnosed	type	2	DM	prior	to	the	study	and	their	outcomes.	

Patients/year		 0	yr	 1	yr	 2	yr	 3	yr	 4	yr	 5	yr	 6	yr	 7	yr	 8	yr	 9	yr	 10	yr	

N	remaining	in	the	study	 150	 130	 116	 103	 89	 85	 80	 75	 70	 60	 59	
N	diagnosed	 0	 28	 36	 42	 44	 46	 48	 49	 51	 51	 53	

N	remaining	undiagnosed	 150	 102	 80	 61	 45	 39	 32	 26	 19	 9	 6	
%	undiagnosed	 	 78%	 62%	 53%	 44%	 44%	 38%	 33%	 25%	 13%	 10%	

	

Out	 of	 the	 150	 patients	 who	 already	 had	 records	 of	 BG	 ≥11.1	 mmol/L	 or	 FBG	 ≥7.0	

mmol/L	before	entering	 the	study,	only	28	would	be	diagnosed	by	 the	end	of	year	1,	

meaning	 that	 78%	 of	 the	 undiagnosed	 patients	 would	 remain	 without	 a	 record	 of	

diagnosis	with	type	2	DM	throughout	their	1st	year	in	the	study.	By	the	end	of	the	5th	year,	

46	 out	 of	 the	 initial	 150	 patients	were	 given	 a	 diagnosis.	 Since	 some	 of	 the	 patients	

transferred	 out,	 the	%	 undiagnosed	 (44%)	was	 calculated	 relative	 to	 the	 number	 of	

patients	from	the	undiagnosed	cohort	still	remaining	in	the	study	(89).	At	the	10th	year,	

10%	of	the	cohort	still	remaining	in	the	study	(59)	would	have	exited	the	study	without	

ever	being	given	a	diagnosis.	 	These	estimations	only	accounted	for	patients	who	had	

been	at	least	once	referred	for	a	BG	test	prior	to	the	study	start	date.	The	true	extent	of	

cases	with	undiagnosed	DM	is	unknown,	since	over	70%	of	patients	in	the	study	had	no	

BG	measurements.			
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Finally,	the	loss	of	 follow-up	in	itself	could	be	biased.	This	happens	for	 instance	when	

patients	 die	 due	 to	 complications	 of	 a	 condition,	 or	 they	 transfer	 out	 to	 a	 different	

location	to	access	better	treatment.	Some	patients	may	re-enter	at	the	same	or	different	

practice,	during	which	they	might	be	assigned	a	new	ID	number.	The	fact	that	the	impact	

of	 these	 inconsistencies	on	 the	quality	of	 the	data	would	 remain	unquantified,	makes	

working	with	routinely	collected	data	both	more	challenging	and	rewarding.	

 The	models	

The	 research	 task,	 to	 predict	 10-year	 incidence	 of	 type	 2	 DM,	 was	 approached	 with	

survival	and	classification	models.	The	survival	models	included	the	classical	Cox	PH	and	

ML-based	survival	DT	algorithm.		The	classification	models	considered	were:	small-data	

NN,	LR,	and	NN	ensembles.	

In	 order	 to	 investigate	 whether	 or	 not	 the	 inclusion	 of	 BG	 data	 could	 improve	 the	

accuracy	of	the	prognosis,	the	models	were	considered	in	two	settings:	with	and	without	

BG	data.	The	predicted	output	was	 intended	 to	be	a	 continuous	variable	 [0	 to	1]	 that	

represented	the	probability	of	developing	type	2	DM	by	the	end	of	10	years.	The	true	

outcome	was	the	binary	variable	[0	or	1]	corresponding	to	being	diagnosed	with	type	2	

DM	 (1)	 or	 being	 diagnosis-free	 (0)	 by	 the	 end	 of	 10	 years.	 In	 order	 to	 analyse	 the	

confusion	matrices	and	corresponding	sensitivity	and	specificity	values,	the	continuous	

predicted	 outcome	 was	 dichotomised	 into	 a	 binary	 variable.	 The	 threshold	 for	 this	

conversion	was	set	to	the	75th	percentile,	in	order	to	account	for	the	model	sensitivity	to	

large	class	imbalance	in	the	true	outcomes	(Section	6.4).	No	dichotomising	was	required	

for	the	computation	of	concordance	measures,	which	operated	on	continuous	outputs.		

The	derivation	cohort	applicable	for	a	given	model	differed	from	one	model	to	another,	

due	 to	 the	 varying	 limitations	 and	 advantages	 of	 each	 model.	 In	 order	 to	 ensure	
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consistent	comparisons	among	the	NN	ensemble,	Cox	PH,	Survival	DT	and	LR	models,	

they	were	evaluated	on	the	same	cohort	of	26653	patients,	unaltered	and	as	originally	

sampled.		

6.3.1 Cox	proportional	hazards	model	

Designed	to	handle	censored	samples,	a	Cox	PH	model	was	developed	with	the	entire	

derivation	cohort	of	53306	samples,	 including	all	of	the	1585	DM,	17907	non-DM	and	

33814	 unknown	 outcome	 records	 available	 for	 the	 model	 derivation.	 The	 model	

presented	here	is	the	prototype	version	of	the	Cox	PH	model	developed	in	collaboration	

with	 the	 Oxford	 group	 [90]	 which	 was	 derived	 separately	 for	 men	 and	 women	 and	

included	time-varying	coefficients	and	multiple	polynomial	terms.	Despite	the	difference	

in	complexity,	this	prototype	achieved	the	same	(to	2	decimal	places)	concordance	and	

prognostic	 performance	 as	 the	 average	 of	 the	 male	 and	 female	 benchmark	 Cox	 PH	

models.	 In	 accordance	with	 the	 collaboration	protocol	 [90],	missing	BMI	values	were	

imputed	 using	 the	 MICE	 [290]	 with	 100	 iterations	 and	 the	 missing	 BG	 values	 were	

imputed	 zero,	 and	 additional	 variable	 Ωëb�E™	was	 supplied	 to	 indicate	 presence	 or	

absence	of	BG	values.	

The	 resulting	 model	 provided	 the	 hazard	 of	 the	 event	 “diagnosis	 with	 type	 2	 DM”	

happening	relative	to	the	baseline	hazard	'((1),	and	took	the	following	form:		

	
' 1

'( 1
= " #úüúo#öüöo	⋯	#øüø 	 "].	6.1	

where	:	are	predictor	variables	and	!	are	the	estimated	model	parameters.	The	values	

of	!	and	corresponding	hazard	ratio	(HR)	"# 		for	the	variables	:	in	the	Cox	PH	models	

with	and	without	the	inclusion	of	BG	are	provided	in	Tables	6.4	and	6.5	respectively.		
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Table	6.4	Cox	PH	model	without	blood	glucose	information	

Variable	:	 Coefficient	!	 Hazard	ratio	"# 	 95%	CI	 p-value	
lower	 upper	

Gender	female	 -0.581	 0.559	 0.505	 0.620	 <0.001	
Age	(years)	 0.039	 1.040	 1.035	 1.044	 <0.001	
Family	history	of	DM	 0.509	 1.664	 1.378	 2.010	 <0.001	
CVD		 0.337	 1.401	 1.195	 1.643	 <0.001	
BMI	(kg/m2)	 0.130	 1.139	 1.130	 1.147	 <0.001	
Hypertension	 0.452	 1.572	 1.396	 1.771	 <0.001	
Ethnicity	“Asian”	 0.996	 2.707	 1.988	 3.688	 <0.001	
Ethnicity	“Black”	 0.246	 1.279	 0.764	 2.140	 0.349	
Ethnicity	“Mixed”	 0.087	 1.091	 0.453	 2.627	 0.846	
Ethnicity	“Other”	 1.060	 2.886	 1.845	 4.516	 <0.001	
Prescribed	steroids	 0.279	 1.321	 1.061	 1.646	 0.013	
Smoker	 0.291	 1.338	 1.187	 1.507	 <0.001	
Townsend	score	 0.064	 1.066	 1.049	 1.083	 <0.001	
	

Table	6.5	Cox	PH	model	with	blood	glucose	information	

Variable	:	 Coefficient	!	 Hazard	ratio	"# 	 95%	CI	 p-value	
lower	 upper	

Gender	female	 -0.533	 0.587	 0.530	 0.651	 <0.001	
Age	(years)	 0.037	 1.038	 1.033	 1.042	 <0.001	
Family	history	of	DM	 0.511	 1.666	 1.379	 2.013	 <0.001	
CVD		 0.253	 1.288	 1.097	 1.512	 0.002	
BMI	(kg/m2)	 0.125	 1.133	 1.124	 1.142	 <0.001	
Hypertension	 0.393	 1.481	 1.311	 1.674	 <0.001	
Ethnicity	“Asian”	 0.874	 2.397	 1.760	 3.265	 <0.001	
Ethnicity	“Black”	 0.302	 1.353	 0.809	 2.263	 0.250	
Ethnicity	“Mixed”	 0.059	 1.061	 0.441	 2.557	 0.895	
Ethnicity	“Other”	 1.051	 2.861	 1.829	 4.474	 <0.001	
Prescribed	steroids	 0.218	 1.243	 0.998	 1.549	 0.053	
Smoker	 0.318	 1.375	 1.220	 1.549	 <0.001	
Townsend	score	 0.060	 1.062	 1.045	 1.080	 <0.001	
BG	recorded	 -2.472	 0.084	 0.064	 0.112	 <0.001	
BG	level	(mmol/L)	 0.483	 1.621	 1.552	 1.694	 <0.001	
	

The	inclusion	of	BG	information	improved	the	prognostic	ability	of	the	model	from	?-

index	= 0.809	 to	?-index	= 0.825	 on	 the	model	development	 cohort.	When	validated	

with	the	independent	test	cohort	of	26653	samples,	the	Cox	model	without	BG	performed	
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with	?-index	= 0.817,	 73%	 sensitivity	 and	 74%	 specificity.	 The	 Cox	 model	with	 BG	

achieved	?-index	= 	0.832,	and	was	able	to	correctly	stratify	76%	of	DM	and	74%	non-

DM	groups	among	patients	with	known	outcomes.		

According	to	the	baseline	Cox	model	without	BG	levels,	the	highest	risk	factors	(HR	≥		

1.5)	were:	ethnicity	“Asian”	and	“Other”,	male	gender,	presence	of	family	history	of	DM,	

and	history	of	being	 treated	 for	hypertension.	 	The	 control	 group	were	patients	with	

ethnic	 origin	 “White”,	 no	 family	 history	 of	 DM,	 and	 no	 history	 of	 hypertension	

respectively.	 All	 variables,	 apart	 from	 those	 with	 small	 representation	 in	 the	 cohort	

(ethnicity	“Black”	or	“Mixed”,	use	of	steroids)	were	statistically	significant.	

Inclusion	of	BG	information	marginally	reduced	the	HR	of	being	treated	for	hypertension	

to	below	1.5.	The	Cox	model	with	BG	confirmed	the	hypothesis	that	elevated	BG	levels	

were	a	high-risk	factor	for	type	2	DM.		Surprisingly,	the	presence	of	BG	measurements	

was	negatively	associated	with	type	2	DM,	which	could	be	due	to	the	information	overlap	

of	 BG	 levels	 with	 BG	 presence.	 To	 examine	 this	 further,	 a	 third	 Cox	 PH	 model	 was	

developed	 to	 include	 only	 the	 binary	 variable	 for	 BG	 presence	 (without	 the	

corresponding	BG	levels).	The	model	was	largely	similar	to	the	one	presented	in	Table	

6.4,	with	the	additional	positive	association	(¿J	=1.212)	of	having	BG	recorded	with	the	

type	2	DM	diagnosis	(p-value	<0.001),	which	contradicted	the	findings	in	Table	6.5,	thus	

necessitating	 further	 investigation	 with	 models	 that	 could	 prove	 less	 sensitive	 to	

correlated	cofactors.		

Combined,	these	findings	demonstrated	that:	

• Inclusion	of	BG	measurements	increased	the	prognostic	value	(?-index)	of	the	

Cox	PH	model	from	0.809	to	0.825.	



Chapter	6.		Diabetes	type	2	risk	stratification	from	routinely	collected	NHS	data	

140	

• Patients	of	“Asian”	and	“Other”	ethnic	origin,	patients	of	male	gender,	patients	

with	 an	 existing	 family	 history	 of	 DM	 or	 a	 history	 of	 being	 treated	 for	

hypertension,	and	patients	with	elevated	BG	levels	had	an	over	1.5	times	higher	

risk	of	developing	type	2	DM	than	the	control	group.	

• The	relative	importance	of	the	variables	remained	inconclusive.	

6.3.2 Neural	network	ensemble	

The	NN	model	was	stipulated	by	the	CPRD	study	protocol	[90]	and	formed	a	pivotal	part	

of	 this	work	with	over	1,200,000	NNs	 implemented	and	evaluated	during	 the	various	

exploratory	and	model	development	stages,	amounting	to	over	138	days	of	simulation	

time	alone.	As	a	result	of	this	extensive	study,	the	model	evolved	from	a	multi-node	NN	

to	an	ensemble	of	100	two-layer	NNs,	where	a	single	neuron	in	the	hidden	layer	formed	

a	‘bottle	neck’.		

The	model	was	trained	with	1585	DM	and	17907	non-DM	examples,	and	was	validated	

on	an	independent	cohort	of	26653	patients.	With	the	ratio	of	minority	(DM	outcome)	to	

majority	 (non-DM	 outcome)	 examples	 being	 approximately	 1:11,	 the	model	 suffered	

from	vast	class	 imbalance	and	 initially	 failed	 to	 learn	minority	class	associations.	The	

class	 imbalance	 problem	 was	 later	 addressed	 by	 combining	 ensemble	 learning	 with	

majority	undersampling	as	follows:	

a) Divide	the	majority	class	into	10	non-overlapping	subsets		

b) Use	one	of	the	majority	class	subsets,	plus	all	minority	class	samples	to	train	

10	individual	NNs	

c) Repeat	(b)	for	the	remaining	9	majority	class	subsets	to	produce	100	NNs	

d) Combine	the	NNs	into	an	ensemble	by	averaging	
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It	is	important	to	emphasise	that	the	above	balancing	strategy	was	only	applied	to	the	

model	derivation	 cohort,	whilst	 the	26653	validation	 cohort	 samples,	with	which	NN	

ensemble	was	subsequently	tested,	retained	its	original	class	imbalance.		

Also	considered	was	minority	oversampling	with	ADASYN,	where	over	17000	synthetic	

DM	 samples	 were	 created	 to	 match	 the	 number	 of	 non-DM	 samples;	 however,	 no	

increase	 in	performance	over	the	proposed	strategy	with	the	majority	undersampling	

was	observed.	

The	individual	NNs	in	the	ensemble	were	trained	with	a	scaled	conjugate	gradient	(SCG)	

backpropagation	algorithm	(Appendix	A.2),	which	offered	higher	robustness,	albeit	at	

slower	 computation	 speed	 than	 the	 Levenberg-Marquardt	 backpropagation	

implemented	with	multiple	runs	strategy	in	Chapters	3	and	4.	The	two-layer	architecture	

using	a	tan-sigmoid	function	in	the	hidden	layer	and	log-sigmoid	function	in	the	output	

layer	was	developed	to	provide	as	much	separation	between	low-DM-risk	and	high-DM-

risk	patients	in	the	interval	between	0	and	1.	The	cost	function	used	was	cross	entropy	

between	 predicted	 risk	 and	 known	 binary	 outcome.	 For	 the	 purpose	 of	 computing	

confusion	matrices,	 and	 the	 corresponding	 sensitivity	 and	 specificity	 values,	 a	 binary	

version	of	the	predicted	outcome	was	generated	from	the	continuous	risk	value	using	a	

threshold	set	at	0.5.	This	was	different	from	the	75th	percentile	threshold	used	with	Cox	

PH,	since	each	NN	in	the	ensemble	was	trained	with	balanced	data.	

Four	 core	 data	 models	 representing	 various	 degrees	 of	 BG	 completeness	 were	

investigated:		

1) without	any	BG	levels	(“no	BG”)		

2) with	BG	presence	and	aggregate	BG	levels	imputed	zero	if	missing	(“BG	new”)	

3) with	aggregate	BG	levels	imputed	with	MICE	if	missing	(“BG	imputed”)		



Chapter	6.		Diabetes	type	2	risk	stratification	from	routinely	collected	NHS	data	

142	

4) with	random	BG	and	FBG	imputed	with	MICE	if	missing	(“BG	and	FBG	imputed”)	

Their	corresponding	performance	on	the	26653	independent	test	samples	is	provided	in	

Table	 6.6.	 The	 classification	measures,	 i.e.	 sensitivity		M2,	 specificity	M3,	 and	 balanced	

accuracy	?@ABACDEF ,	were	evaluated	on	9810	samples	with	known	outcomes.		

Table	6.6	NN	ensemble	performance:	concordance	and	classification	measures	

NN	ensemble	models	 ?-index	
95%	CI	

M3	 M3	 ?¡¬√¬ƒ≈∆«	lower	 upper	
no	BG	 0.829	 0.816	 0.842	 0.629	 0.835	 0.732	
BG	new	 0.847	 0.834	 0.860	 0.722	 0.807	 0.765	
BG	imputed	 0.901	 0.891	 0.911	 0.798	 0.866	 0.832	
BG	and	FBG	imputed	 0.929	 0.920	 0.938	 0.855	 0.887	 0.871	

	

The	 first	 two	models	 (“no	BG”	 and	 “BG	new”)	 correspond	 to	 the	 two	Cox	PH	models	

described	in	Section	6.3.1.		As	with	Cox	PH,	the	inclusion	of	BG	values	improved	the	NN	

ensemble	performance	on	the	validation	cohort	from	?-index	= 	0.829	to	0.847.	Unlike	

Cox	 PH,	 ensemble	 learning	 makes	 NNs	 largely	 a	 “black-box”	 system	 with	 no	 direct	

interpretation	of	variable	importance	[21,291].		

The	two	latter	models	revealed	a	substantial	increase	in	?-index	performance:	0.901	for	

“BG	imputed”	and	0.929	for	“BG	and	FBG	imputed”.	 In	other	words,	 the	NN	ensemble,	

when	using	information	on	both	BG	and	FBG	values,	was	able	to	predict	the	10-year	type	

2	DM	outcome	with	nearly	93%	accuracy	and	12%	more	reliably	than	the	model	without	

BG.	This	finding,	initially	thrilling,	was	dismissed	following	further	consideration.	Firstly,	

the	imputed	models	relied	on	the	vast	proportion	of	the	BG	(nearly	80%	missing)	and	

FBG	(over	93%	missing)	values	being	synthetically	generated	by	MICE.	Secondly,	since	

the	MICE	imputation	model	was	developed	separately	for	the	DM	and	non-DM	groups,	it	

was	 possible	 that	 the	 NN	 was	 able	 to	 decode	 the	 DM	 and	 non-DM	 groups	 from	 the	

imputed	 BG	 and	 FBG	 variables.	 Finally,	when	 re-evaluated	 on	 only	 non-imputed	 test	
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samples	(2 = 625),	the	performance	of	the	model,	at	?-index	= 	0.796,	proved	inferior	

than	 that	 of	 “no	 BG”	model.	 This	 decrease	 in	 performance	 was	 due	 to	 false	 positive	

samples:	i.e.	the	sensitivity	remained	high	(83%),	but	specificity	fell	to	56%,	resulting	in	

70%	balanced	accuracy.	Combined,	these	outcomes	indicated	the	deceptive	effectiveness	

of	imputed	data,	and	precluded	the	use	of	MICE	with	NNs	on	data	where	the	proportion	

of	missing	values	is	as	high	as	80-90%.	

To	summarise,	it	has	been	demonstrated	that:	

• The	proposed	approach	of	combining	majority	undersampling	with	ensemble	

learning	 offered	 a	 simple	 and	 effective	 solution,	 of	 which	 the	 performance	

exceeded	that	of	state-of-the-art	synthetic	minority	oversampling	techniques.	

• The	prognostic	value	of	the	NN	ensemble	was	improved	with	the	inclusion	of	

BG	measurements,	from	?-index	of	0.829	to	0.847.	

• The	 dramatic	 12%	 improvement	 to	 ?-index	 = 0.929	 achieved	 by	 the	 NN	

ensemble	with	synthetically	imputed	BG	and	FBG	was	deemed	unreasonable	-	

a	finding	that	revealed	the	pitfalls	of	applying	multiple	imputation	to	data	with	

over	80%	missing	values.		

6.3.3 Small-data	neural	network		

One	frequently	overlooked	aspect	of	modelling	with	sparse	samples	is	that	of	a	complete-

case	scenario.	The	research	question	investigated	in	this	section	was	whether	or	not	a	

well-generalising	NN	could	be	developed	with	a	small,	but	high-quality	data	subset,	and	

if	 so,	what	would	be	 its	 performance	on	 a	 validation	 cohort,	 given	 the	 complete-case	

scenario.	
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Out	of	the	79959-patient	dataset,	there	were	only	1415	patients	(918	in	model	derivation	

and	497	in	validation	cohorts),	for	whom	BG,	FBG	and	BMI	measurements	were	recorded	

at	 least	 once	 during	 5	 years	 prior	 to	 the	 patient	 entering	 the	 study.	 In	 the	 model	

derivation	cohort,	521	patients	were	lost	to	follow-up,	effectively	reducing	the	dataset	

available	for	supervised	learning	from	over	19000	to	397	samples	(318	non-DM	and	79	

DM	 examples).	 Further	 class	 balancing	would	 yield	 a	 training	 dataset	 of	merely	 158	

samples.	 With	 less	 than	 7	 event	 observations	 per	 predictor	 variable,	 the	 task	 of	

predicting	the	long-term	incidence	of	type	2	DM	becomes	a	small-data	problem.		

	

Figure	6.5	Small-data	performance	over	a	run	of	100	NNs	on	test	and	model	samples	(η=1,	ω=18)	

	

The	development	of	a	NN	model	for	type	2	DM	under	the	small-data	conditions	followed	

the	methodological	framework	developed	in	Chapter	3.	The	base	NN	configuration	was	

similar	 to	 that	 in	 the	 NN	 ensemble	 discussed	 in	 Section	 6.3.2.	 A	 two-layer	

backpropagation	NN	with	12	inputs	and	1	output	was	trained	with	a	SCG	algorithm	in	

order	to	optimise	the	cross	entropy	between	predicted	and	output	values.	Early	stopping	
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was	applied	to	reduce	overtraining.	The	classification	performance	of	the	NNs	in	each	

run	was	assessed	by	the	median	=>?	(defined	in	Appendix	B)	on	the	model	derivation	

cohort	 and,	 separately,	 on	 independent	 tests.	 The	 method	 of	 multiple	 runs	 made	 it	

possible	to	evaluate	and	optimise	the	NN	design	parameters	despite	the	output	volatility	

due	to	small	data	(Figure	6.5).		

The	hidden	layer	size	η	and	the	training	duration	(as	controlled	by	the	early	stopping	

criterion	ω)	were	optimised	in	an	iterative	simulation	involving	280	runs	of	100	NNs.		

The	effect	of	-	varying	from	5	to	20	was	highest	at	- = 18,	but	did	not	prove	statistically	

significant	(pairwise	p>0.05)	in	comparison	to	other	values	of	ω.		

	

Figure	6.6	The	small-data	NN	design	optimisation:	effect	of	the	hidden	layer	size	on	the	NN	performance	

The	hidden	layer	size	varying	from	$	 = 1	to	$	 = 20	had	a	more	pronounced	effect	on	

the	NN	performance	(Figure	6.6).	For	the	training	cohort,	the	median	=>?	across	the	run	

increased	monotonously	with	the	increasing	$,	since	larger	networks	were	able	to	learn	

the	patterns	with	greater	ease	in	the	model	cohort.	Contrary,	the	=>?	for	the	validation	

	derivation	cohort	 	validation	cohort	
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cohort	 was	 highest	 at	 $	 = 1	 and	 decreased	 with	 increasing	$,	 indicating	 that	 the	

improvement	observed	in	the	model	performance	was	due	to	overtraining.	The	single	

hidden	 layer	 forming	 a	 “bottleneck”	 was	 significantly	 more	 effective	 than	 any	 other	

hidden	layer	size	considered	(pairwise	p	<	0.01,	Wilcoxon	rank	sum	test).		

Out	of	 the	100	small-data	NNs	 in	 the	optimal	$ = 1,	- = 18	 run	(Figure	6.5),	 the	best	

performing	model	achieved	=>?	=	0.834	on	derivation	cohort	and	=>?=0.804	on	the	

207	test	samples	with	known	outcome	(Figure	6.7).		

	

Figure	6.7	The	small-data	NN:	Receiver	operating	characteristic	(ROC)	curves	for	model	derivation	and	
validation	(test)	cohorts	

With	$ = 1,	the	input	weights	87 	became	a	12	x	1	vector,	and	the	hidden	layer	bias	. V 		

became	a	scalar.	The	resulting	NN	classifier	evaluated	score	0	of	whether	or	not	a	patient	

with	 baseline	 indicators	:	would	 develop	 type	 2	DM	 in	 10	 years.	 Its	 output	 equation	

could	be	written	as:	

	 0 = SmnNQn(1P2NQn :87 	+ .
V 89 	+ .

(,))	 "].	6.2	

Substituting	the	 logsig	and	tansig	 functions	(Appendix	A.1)	in	eq.	6.2,	the	output	takes	

the	form	of:	
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0 =

1

1 + "
»@(ö)»∫…

Eq À	ÃÕ
ú
»Ep q À	ÃÕ

ú

Eq À	ÃÕ
ú
oEp q À	ÃÕ

ú

	
"].	6.3	

where	parameters	87, 89, . V ,	and	.(,)	are	determined	during	the	NN	training.	Unlike	in	

the	NN	ensemble	model,	in	this	stand-alone	NN	the	weights	could	be	traced	from	each	

input	variable	 to	 the	bottle-neck	hidden	 layer	neuron,	 thus	helping	 to	reveal	a	partial	

indication	 of	 how	 a	 given	 variable	 affected	 the	 predicted	 output.	 The	 input	 weights	

87	were	used	as	a	measure	of	relative	variable	importance	in	the	NN	predictions	(Figure	

6.8).	Unsurprisingly,	the	fasting	BG	levels	had	by	far	the	strongest	prognostic	value	in	the	

NN	model,	adding	incentive	to	the	inclusion	of	BG	information	for	any	future	type	2	DM	

prediction	model.		

	

Figure	6.8	The	not-so-black-box	NN:	relative	variable	importance	by	the	absolute	values	of	input	weights		

When	evaluated	on	all	497	test	samples	available	for	complete-case	scenario	(both	for	

missing	and	known	outcome),	 the	small-data	NN,	 trained	with	only	158	samples,	was	

able	to	achieve	concordance	of	?-index	= 0.783	,	which	was	on	par	with	the	performance	
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of	the	far	more	advanced	NN	ensemble	developed	with	over	19,000	samples	and	the	Cox	

model	built	on	over	53,000	samples.	

To	summarise	this	complete-case	investigation:	

• The	 methodological	 framework	 developed	 in	 Chapter	 3	 was	 successfully	

applied	 to	 design	 a	 78%	 accurate	 NN	 classifier	 with	 less	 than	 7	 event	

observations	per	predictor	variable.		

• Despite	 the	 selection	 bias	 associated	 with	 the	 complete-case	 scenario,	 the	

model	 was	 able	 to	 generalise	 on	 497	 independent	 test	 samples,	 including	

patients	for	whom	the	10-year	outcome	was	unknown.	

• In	 an	 extensive	 simulation	 involving	 28000	 NNs,	 a	 1-neuron	 hidden	 layer	

“bottleneck”	design	proved	optimal	for	the	given	task.	

• The	 fasting	 BG	 level,	 followed	 by	 random	 BG	 level,	 BMI	 and	 Townsend	

deprivation	 score	 had	 the	 strongest	 predictive	 value	 in	 the	 1415	 patients	

included	in	the	complete-case	scenario.	

6.3.4 Logistic	regression	

The	development	of	the	LR	model	for	type	2	DM	prediction	was	motivated	by	Section	

6.3.3,	 where	 it	 was	 discovered	 that	 a	 single	 tan-sigmoid	 neuron	 in	 the	 hidden	 layer	

yielded	the	best	NN	model	fit.	If	we	view	the	function	implemented	by	the	hidden	neuron		

ZÅ : =	
Eq À	ÃÕ

ú
»Ep q À	ÃÕ

ú

Eq À	ÃÕ
ú
oEp q À	ÃÕ

ú 		as	merely	an	input	transformation,	then	"].	6.4	for	the	NN	

output	becomes:	

	 0	 =
1

1 + "»@ ö »∫…}Œ ü
	 "].	6.4	
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where	 	.(,)	 and	89 	 are	scalars.	 It	 could	be	noted	 that	eq.	6.4	 is	 similar	 in	 form	to	 the	

output	of	a	standard	LR	model:	

	 0	 =
1

1 + "»B(Äu~ ü
	 "].	6.5	

	 SmnQ1 : = !( + !V:V + !V:V + ⋯+	!b:b	 "].	6.6	

Noting	this	resemblance,	it	was	decided	to	explore	whether	the	10-year	incidence	of	type	

2	 DM	 could	 be	 successfully	 modelled	 with	 a	 conventional	 LR.	 	 The	 LR	 model	 was	

developed	with	1585	DM	and	17907	non-DM	examples,	and	validated	on	an	independent	

cohort	of	26653	patients.	The	DM	and	non-DM	classes	were	balanced	by	SMOTE.	As	with	

Cox	 PH	 and	 NN	 ensemble	 models,	 two	 scenarios	 were	 considered:	 one	 without	 the	

inclusion	of	BG	information	and	one	with	the	inclusion	of	any	available	BG	level	and	the	

corresponding	presence	flag.	The	set	of	β	parameters	of	the	resulting	two	LR	models	are	

provided	in	Tables	6.7	and	6.8	respectively.		

Table	6.7	LR	model	without	blood	glucose	information	

Variable	:	 Coefficient	!	 Odds	ratio	"# 	 95%	CI	 p-value	
lower	 upper	

Intercept	 -6.706	 0.001	 0.001	 0.002	 <0.001	
Gender	female	 -0.722	 0.486	 0.410	 0.575	 <0.001	
Age	(years)	 0.044	 1.045	 1.038	 1.052	 <0.001	
Family	history	of	DM	 1.039	 2.827	 1.911	 4.236	 <0.001	
CVD		 0.454	 1.574	 1.138	 2.199	 0.007	
BMI	(kg/m2)	 0.154	 1.166	 1.147	 1.186	 <0.001	
Hypertension	 0.458	 1.581	 1.272	 1.969	 <0.001	
Ethnicity	“Asian”	 3.043	 20.971	 7.137	 89.969	 <0.001	
Ethnicity	“Black”	 1.269	 3.557	 1.164	 13.375	 0.037	
Ethnicity	“Mixed”	 0.048	 1.049	 0.226	 4.750	 0.950	
Ethnicity	“Other”	 2.665	 14.361	 3.792	 94.494	 <0.001	
Prescribed	steroids	 0.424	 1.528	 1.010	 2.335	 0.047	
Smoker	 0.577	 1.780	 1.452	 2.185	 <0.001	
Townsend	score	 0.082	 1.086	 1.054	 1.119	 <0.001	
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Table	6.8	LR	model	with	blood	glucose	information	

Variable	:	 Coefficient	!	 Odds	ratio	"# 	 95%	CI	 p-value	
lower	 upper	

Intercept	 -6.428	 0.002	 0.001	 0.003	 <0.001	
Gender	female	 -0.693	 0.500	 0.421	 0.594	 <0.001	
Age	(years)	 0.041	 1.042	 1.035	 1.050	 <0.001	
Family	history	of	DM	 1.076	 2.933	 1.965	 4.433	 <0.001	
CVD		 0.352	 1.422	 1.014	 2.010	 0.044	
BMI	(kg/m2)	 0.147	 1.158	 1.139	 1.178	 <0.001	
Hypertension	 0.401	 1.494	 1.188	 1.880	 <0.001	
Ethnicity	“Asian”	 3.030	 20.702	 7.004	 89.038	 <0.001	
Ethnicity	“Black”	 1.310	 3.704	 1.209	 13.948	 0.032	
Ethnicity	“Mixed”	 0.077	 1.080	 0.241	 4.743	 0.918	
Ethnicity	“Other”	 2.633	 13.919	 3.683	 91.528	 <0.001	
Prescribed	steroids	 0.440	 1.552	 1.020	 2.384	 0.042	
Smoker	 0.563	 1.757	 1.428	 2.164	 <0.001	
Townsend	score	 0.084	 1.088	 1.055	 1.122	 <0.001	
BG	recorded	 -3.864	 0.021	 0.008	 0.053	 <0.001	
BG	level	(mmol/L)	 0.742	 2.101	 1.777	 2.506	 <0.001	
	

The	 inclusion	 of	 BG	 information	 improved	 the	 prognostic	 ability	 of	 the	 LR	model	 by	

approximately	2%,	from	?-index	= 0.810	to	?-index	= 0.827,	on	the	validation	cohort.	

The	LR	model	without	BG	was	able	 to	correctly	stratify	71%	of	DM	and	76%	non-DM	

groups.	 The	 LR	model	with	 BG	 achieved	 74%	 sensitivity	 and	 77%	 specificity	 among	

patients	with	known	outcome.		

The	BG	model	parameters	with	the	highest	odds	of	type	2	DM	at	10	years	were	largely	

similar	to	those	established	by	Cox	PH	in	Section	6.3.1.	Patients	of	“Asian”	and	“Other”	

ethnic	origin,	patients	of	male	gender,	patients	with	an	existing	family	history	of	DM,	and	

patients	with	elevated	BG	levels	remained	a	high-risk	group	with	over	2	times	odds	of	

developing	 type	2	DM	at	10	years.	 Similarly	 to	 the	Cox	PH	model,	 the	presence	 of	BG	

measurements	in	LR	model	was	negatively	associated	with	the	outcome.	
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To	summarise,	these	findings	demonstrated	that	a	standard	LR	classifier	was	marginally	

inferior	in	performance	to	the	more	complex	NN	ensemble,	which	benefited	from	tan-

sigmoid	transformation	 in	the	hidden	 layer.	The	LR	model	confirmed	the	associations	

previously	established	by	the	Cox	PH	model	on	the	derivation	cohort.	

6.3.5 Survival	decision	tree	

A	 survival	 DT	 model	 offered	 a	 mechanism	 for	 dealing	 with	 censored	 outcomes	 and	

missing	covariates,	whilst	also	producing	a	concise	graphical	representation	of	high-risk	

groups.	 The	 DT	 was	 developed	 with	 all	 of	 the	 1585	 DM,	 17907	 non-DM	 and	 33814	

unknown	outcome	records	available	for	the	model	derivation.	No	imputation	of	BMI	or	

BG	was	required.	Two	survival	DT	models	were	considered:	one	without	the	inclusion	of	

BG	 information	 (Figure	 6.9)	 and	 one	 with	 the	 BG	 values	 and	 BG	 presence	 indicator	

(Figure	6.10).			

The	survival	DTs	implemented	in	this	work	were	based	on	the	local	full	likelihood	tree	

model	of		LeBlanc	&	Crowley	[292].	The	DT	partitioned	the	covariate	space	into	subsets	

of	patients	based	on	 the	 log	 rank	criterion,	 so	 that	every	new	partition	 increased	 the	

homogeneity	of	the	observations	within	each	patient	group.	The	proportion	of	patients	

at	every	node	who	were	diagnosed	with	type	2	DM	was	then	evaluated	and	compared	

with	that	at	the	root	node.	This	relative	event	rate	5	indicated	the	hazard	of	developing	

type	2	DM;	the	relative	event	rate	at	the	root	was	5	=	1,	which	is	equivalent	to	the	baseline	

hazard	in	Cox	PH.	The	model	output	0	was	expressed	as	5	mapped	between	0	and	1,	i.e.	

5 =
�»–—ƒ	(�)

–¬“ � »–—ƒ	(�)
.	In	order	to	assess	the	classification	measurements,	the	output	of	the	

DT	was	dichotomised	as	follows:		

	
0@uCA�s =

1, QZ	5 > 1
0, QZ	5 ≤ 1

	 "].	6.7	
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In	order	to	prevent	overfitting,	the	minimum	parent	size	was	set	to	®Q2N3SQ1	 = 100.	A	

pruning	complexity	parameter	of	k3 = 	0.003		was	specified	to	control	DT	growth:	any	

split	that	did	not	improve	the	fit	by	a	factor	of	0.003	was	not	attempted.		

Surrogate	splits	were	constructed	for	each	node,	which	allowed	the	handling	of	variables	

with	missing	 values.	 If	 an	 observation	missed	 the	 primary	 and	 all	 possible	 surrogate	

splits,	then	the	DT	sent	the	observation	in	the	majority	direction.		As	a	result	of	surrogate	

splits,	a	variable	could	appear	in	the	DT	multiple	times	both	as	primary	and	surrogate.	

The	relative	variable	importance	scores	were	computed	from	the	combined	node	purity	

for	every	split	(surrogate	or	otherwise),	in	which	the	variable	in	question	had	featured.		

	

Figure	6.9	Survival	DT	modelled	without	the	inclusion	of	BG	(missing	values	of	BG	and	BMI	left	unaltered).		
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The	 DT	 in	 Figure	 6.9	 was	 modelled	 on	 the	 derivation	 cohort	 without	 BG	 values.	 It	

consisted	of	7	branch	nodes	and	8	terminal	nodes,	numbered	1	to	15.	The	box	under	each	

node	provides	 the	 value	of	5,	 the	number	of	 events/total	 number	of	 samples	passing	

through	 the	 node,	 and	 the	 %	 of	 the	 derivation	 cohort	 size.	 The	 colour	 intensity	 is	

associated	with	the	higher	relative	likelihood	of	being	diagnosed	with	type	2	DM.	

Without	 the	 BG	 information,	 the	 survival	 DT	 achieved	 a	 ?-index	 of	 0.786		 on	 the	

validation	cohort.		The	DT	model	was	able	to	correctly	stratify	64%	of	DM	and	70%	of	

non-DM	patients.		The	following	variables	(in	decreasing	order	of	importance)	were	used	

by	 the	 DT	 in	 primary	 and	 surrogate	 splits:	 age,	 BMI,	 hypertension,	 gender,	 CVD,	

Townsend	score	and	ethnicity.	

Of	a	particular	 interest	was	the	DT	modelled	with	BG	shown	in	Figure	6.10,	where	all	

primary	 splits	 were	 based	 on	 continuous	 variables	 (age,	 BMI	 and	 BG).	 In	 the	 DT’s	

surrogate	 splits,	 the	 following	 additional	 variables	were	used	 (in	decreasing	order	 of	

importance):	 hypertension,	 presence	 of	 BG,	 CVD,	 steroid	 use,	 Townsend	 score	 and	

ethnicity.	This	DT	stratified	patients	in	the	derivation	cohort	into	9	unequally-sized	risk	

groups,	which	are	represented	by	the	terminal	nodes.		

The	10-year	risk	of	type	2	DM	was	highest	in	patients	at	nodes	15,	17,	and	11,	comprising:	

• Individuals	44	years	or	older	with	BMI	in	the	overweight	range	(≥	26	kg/m2)	

(r	=	8.3,	node	15),	particularly	if	their	BG	level	≥	6.4	mmol/L	(r	=	12,	node	17);	

• Individuals	younger	than	44	years,	but	who	were	both	obese	(BMI	≥	30	kg/m2)	

and	had	elevated	BG	levels	≥	6.4	mmol/L	(r	=	7,	node	11).	

Patients	 younger	 than	44	years	of	 age,	with	BMI	<	30	kg/m2,	were	 the	 least	 likely	 to	

develop	type	2	DM	(r	=	0.26,	node	4).	This	group	constituted	52%	of	the	patients	in	the	

derivation	cohort.	The	second	largest	stratum	(r	=	1,	node	12),	comprising	35%	of	the	
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cohort,	was	less	conclusive:	its	estimated	event	rate	was	identical	to	that	of	the	whole	

cohort.	The	individuals	that	fell	into	this	stratum	were	44	years	or	older,	with	normal	BG	

(<5.8	mmol/L)	and	BMI	below	obese	range	(<30	mmol/L).	With	644	events	assigned	for	

the	baseline	hazard,	this	stratum	was	the	highest	producer	of	false	negatives,	signifying	

that	patients	in	this	cohort	should	be	considered	with	additional	care.	As	a	result	of	the	

false	negatives,	 the	classification	accuracy	of	 the	DT	model	with	BG	suffered	 from	the	

imbalance	between	the	sensitivity	of	45%	and	the	specificity	of	88%,	indicating	the	need	

for	more	granularity	in	the	terminal	node,	in	particular	at	node	12.			

	

Figure	6.10	Survival	DT	modelled	with	the	inclusion	of	BG	(missing	values	of	BG	and	BMI	left	unaltered).	
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Kaplan-Meyer	survival	curves	in	Figure	6.11	visualise	the	difference	in	prognosis	in	the	

patient	 groups	 represented	 by	 each	 terminal	 node	 for	 the	 DT,	 with	 and	without	 BG.	

Inclusion	of	BG	information	improved	the	prognostic	value	of	the	DT	by	nearly	5%	to	a	

?-index	of	0.824	on	the	validation	cohort.	

	

Figure	6.11	Kaplan-Meyer	curves	for	the	terminal	nodes	of	the	DT	with	BG	(left)	and	without	BG	(right)	

	

The	variable	importance	scores	for	the	two	DT	models	in	Figure	6.12	demonstrate	that	

age	 is	 the	 most	 important	 parameter	 for	 both	 models,	 followed	 by	 BG	 level,	 BMI,	

treatment	for	hypertension,	presence	of	BG	measurements,	and	CVD.	For	the	DT	model	

without	BG,	gender	and	Townsend	scores	were	also	important	factors.	Family	history	of	

DM	was	not	used	in	either	survival	DT	models	(neither	as	a	primary	nor	secondary	split).	

Ethnicity	played	a	smaller	role	than	in	the	Cox	PH	model	since	in	the	survival	DTs,	the	

small	proportion	of	minority	ethnics	meant	that	their	relative	contribution	against	the	

baseline	split	demonstrated	only	marginal	improvements.	
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Figure	6.12	Variable	importance	scores	for	DT	with	BG	(blue)	and	DT	without	BG	(orange)	

	

To	summarise:	

• The	DT	models	were	able	to	successfully	stratify	the	10-year	risk	of	type	2	DM	

without	relying	on	missing	data	imputation.			

• The	 inclusion	 of	 BG	 information	 led	 to	 a	 significant	 improvement	 in	 the	

prognostic	value,	which	increased	by	nearly	5%,	from	a	?-index	of	0.786	to	a	

?-index	of	0.824,	on	the	validation	cohort.	

• Despite	the	large	proportion	of	missing	values	in	BMI	and	BG	levels,	these	two	

variables,	 together	 with	 the	 patient’s	 age,	 exhibited	 the	 highest	 relative	

importance	 in	 the	 DT	 model,	 emphasising	 their	 prognostic	 value	 in	 the	

prediction	of	type	2	DM.	
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 Model	performance	and	limitations		

Using	Cox	PH	as	the	benchmark	model,	the	prognostic	performances	of	the	NN	ensemble,	

small-data	NN,	LR	and	survival	DT	models	were	evaluated	using	Harrell’s	?-index	and	

Royston’s	and	Sauerbrei’s	G	and	J,K	 scores	(Table	6.9).	For	validation	cohort	samples	

where	the	outcome	was	known,	standard	classification	measures,	such	as	specificity	M3,	

sensitivity	M2,	and	balanced	accuracy	?@ABACDEF 	were	also	assessed	(Table	6.10).	

Table	6.9	Comparison	of	model	performance:	Harrell's	C	and	Royston’s	D	measures	of	discrimination	

		 Harrell’s	concordance	index	 Royston	and	Sauerbrei’s	D	factor	

		 ?-index	 95%	CI	 2	pairs	 G	 95%	CI	 JK
, 	 2	

lower	 upper	 lower	 upper	

1.	Models	without	BG	
Cox	PH	 0.817	 0.803	 0.831	 28004520	 7.08	 6.32	 7.92	 0.628	 26653	

NN	ensemble	 0.829	 0.816	 0.842	 28004244	 7.28	 6.52	 8.13	 0.635	 26653	

Small-data	NN	 0.625	 0.550	 0.699	 33718	 2.39	 1.54	 3.71	 0.363	 497	

Logistic	regression	 0.810	 0.796	 0.825	 28004520	 6.84	 6.09	 7.67	 0.620	 26653	

Survival	DT	 0.786	 0.770	 0.803	 24478846	 4.86	 4.32	 5.48	 0.537	 26653	

2.	Models	with	BG	
Cox	PH	 0.832	 0.819	 0.846	 28004522	 8.44	 7.53	 9.45	 0.668	 26653	

NN	ensemble	 0.847	 0.834	 0.860	 28004338	 9.14	 8.17	 10.23	 0.686	 26653	

Small-data	NN	 0.783	 0.724	 0.842	 33720	 6.29	 4.01	 9.87	 0.600	 497	

Logistic	regression	 0.827	 0.813	 0.841	 28004522	 7.94	 7.08	 8.89	 0.655	 26653	

Survival	DT		 0.824	 0.807	 0.842	 22185650	 5.92	 5.26	 6.66	 0.586	 26653	

Harrell’s	 ?-index	 measured	 concordance,	 which	 is	 defined	 in	 Appendix	 B	 as	 the	

proportion	 of	 all	 comparable	 pairs	 of	 patients	 (n	 pairs)	 where	 patients	 with	 longer	

survival	time	are	assigned	a	lower	risk.	It	is	also	interpreted	as	=>?	for	right-censored	

data	[293].	The	most	concordant	models	were:	NN	ensemble	with	BG	(0.847),	Cox	PH	

with	BG	 (0.832)	and	NN	ensemble	without	BG	 (0.829).	 	The	 inclusion	of	patient’s	BG	

information	improved	all	six	models,	but	this	effect	was	most	pronounced	in	the	models	

that	did	not	leverage	imputation	of	missing	variables,	i.e.	small-data	NN	(25%	increase	
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in	?-index)	and	survival	DT	(5%	increase	in	?-index).	The	improvement	in	?-index	for	

Cox	PH,	NN	ensemble	and	LR	was	only	2%.		

As	discussed	in	Appendix	B,	Royston’s	and	Sauerbrei’s	G	divides	the	distribution	of	the	

patient	prognostic	 indices	 into	two	equally-sized	risk	groups	at	 the	median	value	and	

compares	their	relative	hazard.	This	property	allows	the	G	score	to	be	interpreted	as	the	

model’s	 overall	 log	 hazard	 ratio	 [293].	 	 Another	way	 to	 reason	 about	 the	G	 score	 is	

through	its	JK, 	transformation,	which	provides	a	measure	of	prognostic	separation	in	the	

interval	bound	between	0	and	1.	The	highest	G	was	achieved	by	models	with	BG:	NN	

ensemble	 (9.14),	 Cox	 PH	 (8.44)	 and	 LR	 (7.94).	 Notably,	 the	 largest	 disagreement	

between	 ?-index	 and	 G	score	 was	 in	 the	 survival	 DT	 model.	 This	 stems	 from	 the	

differences	in	the	output	distributions	produced	by	each	prognostic	model	(Figures	6.13	

and	6.14).	Since	type	2	DM	was	a	rare	event,	it	meant	that	the	use	of	medians	in	Royston’s	

and	Sauerbrei’s	G	score	was	less	appropriate	for	some	models	than	others.	

The	outputs	0	produced	by	each	model	should	represent	prognostic	indices	related	to	the	

probability	of	being	diagnosed	with	type	2	DM,	and	hence	were	designed	to	 lie	 in	 the	

common	interval	between	0	and	1.		To	achieve	this,	the	raw	outputs	0ô	of	the	Cox	PH	and	

the	survival	DT	models	(which	have	no	upper	bound)	were	scaled	as	follows:	

	 0	 =
0( − min 0(

max 0ô − min 0ô
	 "].	6.8	

Such	transformation	preserves	the	prognostic	separation	and	does	not	disturb	the	model	

performance	measures.	The	outputs	of	the	NN	and	LR	models	were	designed	from	the	

onset	to	be	between	0	and	1.	



Chapter	6.		Diabetes	type	2	risk	stratification	from	routinely	collected	NHS	data	

159	

Four	histograms	in	Figure	6.13	correspond	to	the	prognostic	indices	0	predicted	by	the	

Cox	PH,	ensemble	NN4,	LR,	and	survival	DT	models	with	BG,	where	the	sum	of	frequencies	

across	the	20	bins	corresponds	to	26653	validation	cohort	samples.	To	compensate	for	

loss	of	detail	due	to	the	overlaying	histograms,	the	distributions	of	0	are	also	visualised	

as	smooth	density	curves,	approximated	by	a	kernel	density	function	[294]	and	scaled	to	

the	 interval	 between	0	 and	1	 for	 consistent	 representation	 (Figure	6.14).	 	Unlike	 the	

continuous	output	of	the	Cox	PH,	ensemble	NN	and	LR	models,	the	survival	DT	output	

comprised	a	finite	number	of	discrete	values,	corresponding	to	the	number	of	terminal	

nodes	in	the	tree	(8	for	the	model	without	BG	and	9	for	the	one	with	BG).		

For	the	classification	measures	in	Table	6.10,	instead	of	using	medians	for	dividing	the	

prognostic	 indices	 into	DM	and	non-DM	groups,	 the	threshold	was	evaluated	for	each	

model	 separately	by	accounting	how	well	 it	handled	class	 imbalance.	For	 instance,	 in	

small-data	NNs,	the	class	imbalance	was	less	pronounced	and	binary	classification	was	

achieved	by	using	a	rigid	threshold	of	0.5	for	assigning	the	predictions	to	DM	and	non-

DM	classes.	For	Cox	PH,	NN	ensemble	and	LR	models,	 the	75th	percentile	value	was	a	

more	appropriate	threshold	for	dichotomising	the	prognostic	 indices	into	non-equally	

sized	DM	and	non-DM	groups.	For	surrogate	DT,	the	threshold	of	1	was	applied	prior	to	

the	min-max	mapping	to	preserve	interpretability	of	the	relative	event	rate	ρ.		

The	 threshold	 for	 dichotomising	 the	 prognostic	 index	 could	 be	 tuned	 to	 allow	 for	

desired	M2,	but	at	the	expense	of	lowering	M3,	and	vice	versa.	In	practice,	the	threshold	

value	of	a	prognostic	system	would	depend	on	what	false	positive	or	false	negative	rates	

an	individual	health	provider	is	able	to	accept,	and	requires	a	careful	consideration	of	

the	morbidity	of	the	disease	and	the	costs	of	its	diagnosis.			

																																								 																					
4	The	small-data	NN	was	excluded	from	this	analysis	to	avoid	misrepresentation	of	the	26653-
sample	validation	cohort	with	its	subset	of	497	complete	records.	
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Figure	6.13	Distribution	of	responses	predicted	by	Cox	PH,	NN	ensemble,	LR	and	survival	DT	models	with	BG.	

	

	

Figure	6.14	Kernel	density	curve	of	the	responses	predicted	by	Cox	PH,	NN	ensemble,	LR	and	survival	DT	
models	with	BG.	
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Balanced	accuracy	?@ABACDEF 	(Table	6.10)	assessed	the	number	of	correctly	classified	DM	

and	 non-DM	 patients	 from	 known	 10-year	 outcomes,	 and	 represented	 a	 more	

conservative	 measure	 of	 prognostic	 discrimination	 than	 Harrell’s	 ?-index.	 When	 no	

benefit	of	the	doubt	was	given	to	the	patients	who	transferred	out	of	the	study	before	the	

10-year	period,	 all	models	performed	equally	with	or	without	BG.	The	exception	was	

small-data	 NN	 without	 BG	 information,	 which	 performed	 marginally	 better	 than	 a	

random	coin	toss.	The	remarkable	agreement	in	performance	among	the	Cox	PH,	LR,	NN	

ensemble	and	small-data	NN	models	with	BG	indicates	that	?@ABACDEF 		is	a	reflection	of	

the	quality	of	the	data,	rather	than	a	property	of	the	model.		

Table	6.10	Comparison	of	model	classification	performance	on	samples	with	observed	10-year	outcome	

	 Classification	measures	

	 M2	 M3	 IIß	 •Iß	 ?@ABACDEF	
2	(known	
outcome)	

1.	Models	without	BG	

Cox	PH	 73%	 74%	 0.205	 0.968	 74%	 9810	

NN	ensemble	 74%	 76%	 0.219	 0.970	 75%	 9810	

Small-data	NN	 35%	 79%	 0.392	 0.763	 57%	 207	

Logistic	regression	 71%	 76%	 0.217	 0.966	 74%	 9810	

Survival	DT	 64%	 70%	 0.164	 0.955	 67%	 9810	

2.	Models	with	BG	

Cox	PH	 76%	 74%	 0.214	 0.971	 75%	 9810	

NN	ensemble	 78%	 77%	 0.235	 0.974	 77%	 9810	

Small-data	NN	 67%	 81%	 0.576	 0.865	 74%	 207	

Logistic	regression	 74%	 77%	 0.228	 0.970	 76%	 9810	

Survival	DT	 45%	 88%	 0.256	 0.946	 67%	 9810	

	

The	power	of	small,	but	high-quality	data	sample	is	further	exemplified	by	the	small-data	

NN.	Developed	with	only	158	complete-case	samples	and	suffering	from	a	considerable	

exclusion	bias,	 this	NN	model	performed	with	?@ABACDEF		 equivalent	 to	 that	 of	 the	NN	

ensemble	developed	with	over	19,000	samples	and	the	Cox	model	built	on	over	53,000	

samples.			
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The	 NN	 ensemble	 model	 demonstrated	 its	 competitive	 performance	 on	 censored	

observations	despite	not	being	 specifically	 trained	 to	handle	 them.	The	NN	ensemble	

model	was	designed	with	1585	DM	and	17907	non-DM	examples;	33814	records	with	

unknown	outcomes	were	not	suitable	for	supervised	learning.	The	drastic	reduction	in	

the	 number	 of	 samples	 useable	 for	 model	 derivation	 –	 coupled	 with	 the	 potential	

selection	 bias	 in	 excluding	 those	 samples	 –	was	 expected	 to	 negatively	 affect	 the	NN	

performance	in	comparison	to	the	Cox	PH	model	derived	with	a	dataset	1.7	times	larger.	

Yet,	when	validated	on	the	same	independent	cohort	of	26653	patients,	the	NN	ensemble	

model	marginally	outperformed	Cox	PH.	

Notably,	 the	 survival	 DT	 exhibited	 poor	 sensitivity	M2,	 which	 decreased	 with	 the	

inclusion	of	BG	 information.	As	explained	 in	Section	6.3.5,	 this	artefact	was	due	 to	an	

inability	to	differentiate,	based	on	the	available	data,	between	DM	and	non-DM	outcomes	

in	one	particular	group	of	patients	(node	12	in	Figure	6.10):	individuals	44	years	or	older,	

with	normal	BG	(<5.8	mmol/L)	and	BMI	below	obese	range	(<30	mmol/L).	Patients	in	

this	group	accounted	for	345	out	of	the	454	false	negatives	produced	by	the	DT	on	the	

validation	 cohort.	 Should	 additional	 baseline	 indicators	 be	 available	 to	 explain	 the	

variance	in	outcome	in	this	specific	group,	the	sensitivity	of	the	survival	DT	model	could	

reach	the	theoretical	maximum	of	M2	 = 86.3%5	with	the	existing	structure.	The	ability	

of	the	survival	DT	to	pin-point	not	only	the	groups	of	patients	with	the	highest	hazard,	

but	also	the	patients	whose	data	require	further	collection	is	a	valuable	asset,	not	found	

in	any	other	model.		

																																								 																					
5	The	theoretical	maximum	for	the	survival	DT	in	Figure	6.10	was	calculated	by	correcting	for	the	
node	12	artefact,	while	retaining	the	existing	hierarchy	of	all	the	remaining	nodes.	If	all	345	of	the	
false	 negatives	 (FN)	 produced	 in	 node	 12	 were	 eliminated	 with	 hypothetical	 new	 baseline	
indicators,	the	overall	number	of	FN	predictions	made	by	the	DT	would	decrease	to	454-345=109.	
This	 represents	 13.2%	 of	 the	 828	 total	 type	 2	 DM	 patients	 in	 the	 validation	 cohort	 and	
corresponds	to	a	model	sensitivity	of	100%-13.2%=86.8%.	In	practice,	it	is	improbable	that	all	of	
the	345	FN	in	node	12	could	be	corrected	with	additional	information,	although	new	indicators	
could	significantly	improve	the	predictions	in	other	nodes	of	this	tree.		
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A	comparison	of	model	performance	would	not	be	complete	without	accounting	for	the	

existing	 QDiabetes®	 prognostic	 model	 [272].	 Figure	 6.15	 summarises	 the	 ?-index	

performance	of	every	model	developed	in	this	work,	and	that	of	the	QDiabetes®	models	

(separately	for	women	and	men)	evaluated	on	the	same	validation	cohort	from	the	CPRD	

data.	As	expected,	the	two	QDiabetes®	models	performed,	on	average,	the	same	as	the	

Cox	 PH	 model	 without	 BG	 developed	 in	 this	 research.	 They	 were	 marginally	

outperformed	by	the	NN	ensemble	model	without	BG,	and	all	four	large-data	models	(Cox	

PH,	ensemble	NN,	LR,	and	survival	DT)	with	BG.	

	

Figure	6.15	Summary	of	model	performance	(?-index),	including	the	QDiabetes®	model	for	men	and	women.	
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 Chapter	conclusions	

The	key	findings	demonstrated	in	this	chapter	are	as	follows:	

(1) Routinely	 collected	 primary	 care	 data	 suffer	 from	 complexity,	 completeness,	

censoring	and	consistency	challenges	(“The	4	Cs”),	which	limit	their	potential	for	data-

driven	predictive	modelling.	

(2) The	 remarkable	 agreement	 in	 concordance	 and	 classification	 accuracies	 among	

the	 Cox	 PH,	 LR,	 NN	 ensemble,	 and	 the	 existing	 QDiabestes®	 model	 indicate	 that	

prognostic	performance	is	a	reflection	of	the	quality	of	the	data,	rather	than	a	property	

of	an	individual	model.		

(3) Inclusion	of	available	blood	glucose	data	improved	all	six	models.	However,	this	

effect	was	minimal	(2%	increase	in	?-index)	for	the	Cox	PH,	NN	ensemble	and	LR.	The	

improvement	was	most	pronounced	for	models	that	did	not	leverage	the	imputation	of	

missing	 variables,	 i.e.	 small-data	NN	 (25%	 increase	 in	?-index)	 and	 survival	 DT	 (5%	

increase	in	?-index).	This	demonstrates	that	the	potential	for	using	blood	glucose	data	

exists,	 but	 it	 remains	 infeasible	 until	 routine	 blood	 tests	 become	 more	 frequent	 in	

primary	care.	

(4) In	 a	 complete-case	 scenario	 of	 known	 BG	 measurements,	 a	 small-data	 NN	

developed	 with	 a	 balanced	 subset	 of	 158	 samples	 achieved	 the	 same	 classification	

accuracy	as	the	Cox	PH	and	NN	ensemble	models	developed	on	a	cohort	of	53306	and	

19492	samples,	respectively.	This	confirms	that	good	quality	data	are	more	important	

than	 high	 performance	 algorithms	 or	 large	 quantities	 of	 incomplete,	 censored,	 and	

imbalanced	data.	
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(5) The	survival	DT	model	was	able	to	identify	the	groups	of	patients	at	high	10-year	

risk	of	type	2	DM	and	pin-point	those	whose	data	were	less	conclusive.	82.4%	of	the	DT	

predictions	 were	 concordant.	 Considering	 its	 easily	 interpretable	 structure	 and	 its	

ability	to	handle	missing	data,	the	survival	DT	has	the	highest	practical	value	among	the	

models	explored	in	this	study	and	is	the	most	appropriate	model	for	the	complex	task	of	

predicting	long-term	incidence	of	a	rare	disease	from	routinely	collected	data.	

The	task	of	developing	a	new	generation	of	dynamic	prognostic	models	for	type	2	DM	is	

far	 from	complete.	The	models	prototyped	 in	 this	work	are	yet	 to	be	evaluated	using	

larger	 internal	 and	 external	 data.	 The	 inherent	 ability	 of	 the	 NN	models	 to	 adapt	 to	

population	dynamics	is	yet	to	be	quantified	with	more	recent	data.	Meanwhile,	we	can	

rest	assured	that	the	existing	systems,	developed	with	over	2.5	million	records,	remain	

appropriate	for	the	task,	until	the	time	when	advances	in	ML	for	survival	modelling	and	

clinical	 practice	 for	 routine	 data	 collection	 builds	 on	 the	 foundation	 laid	 by	 this	

collaborative	work.	
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Conclusions	

This	 thesis	 developed	 and	 presented	 data-efficient	 ML	 models	 for	 clinical	 outcome	

prediction	and	risk	stratification	in	the	context	of	data	limited	by	size	and	quality.	The	

three	domains	considered	 in	 this	 interdisciplinary	research	were:	a)	 trabecular	 tissue	

engineering,	 b)	 antibody-incompatible	 renal	 transplantation,	 and	 c)	 type	 2	 diabetes	

screening	 in	primary	 care.	The	 (a)	 trabecular	bone	and	 (b)	 renal	 transplant	datasets,	

each	 containing	 less	 than	 10	 observations	 per	 predictor	 variable,	 exemplified	 to	 the	

extreme	 the	 problem	 of	ML	modelling	 from	 small	 data.	 The	 limited	 size	 of	 available	

datasets	 is	 intrinsic	 in	 surgical	 domains	 in	 general,	where	 each	 sample	 is	 a	 result	 of	

costly,	 invasive,	and	(fortunately)	rare	 intervention.	However,	even	in	domains	where	

large,	multi-centre	databases	are	readily	available,	more	data	do	not	necessarily	imply	

proportionally-more	 information.	Routinely	collected	electronic	medical	records,	such	

as	those	involved	in	(c)	diabetes	screening	in	primary	care,	suffered	from	limitations	in	

quality	 that	 reduced	 the	 number	 of	 samples	 available	 for	 modelling.	 The	 “4	 Cs”	 of	

routinely	 collected	 data,	 i.e.	 complexity,	 censoring,	 inconsistency,	 and	 lack	 of	

completeness,	were	shown	in	this	thesis	to	hinder	the	performance	of	classical	statistical	

and	ML	algorithms	alike.	The	methods	developed	in	this	thesis	enabled	the	successful	

deployment	 of	 NNs,	 DTs,	 and	 their	 ensembles	 despite	 the	 limited	 data	 and	 enabled	

clinical	 applications	 that	 were	 previously	 considered	 beyond	 the	 reach	 of	 these	

powerful,	yet	data-demanding	supervised	ML	algorithms.	
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 Objectives	and	the	extent	to	which	they	were	achieved	

The	objectives	of	 this	 thesis,	 as	 set	out	 in	Section	1.6	were	met	 in	 full.	The	 thesis	 (1)	

identified	 effective	 strategies	 for	 managing	 data	 quality	 limitations	 in	 the	 three	

abovementioned	domains;	(2)	addressed	challenges	of	learning	with	limited	information	

by	 developing	 and	 validating	 a	 framework	 for	 small-data	 learning	 (less	 than	 10	

observations	per	predictor	variable)	with	supplementary	strategies	for	incomplete	and	

imbalanced	data;	(3)	designed,	implemented,	optimised	and	tested	practical	NN,	DT,	and	

ensemble	 tools	 for	 predictive	 modelling	 in	 the	 three	 applications;	 and	 (4)	 used	 the	

clinical	 insights	 gained	 from	 the	 ML	 models	 in	 order	 to	 detect	 patients	 at	 risk	 and	

improve	short-	and	long-term	individual	outcomes.	

 Contributions	to	knowledge	

The	 novel	 methodological	 framework	 for	 small	 data	 developed	 in	 this	 work	 was	

motivated	 by	 the	 necessity	 for	 scalable	 predictive	 models	 that	 can	 make	 accurate	

predictions	on	new	observations.	The	ability	of	the	framework	to	yield	such	models	was	

demonstrated	for	regression	NNs	by	using	a	large	civil	engineering	study.	A	small-data	

NN	 developed	 on	 41	 samples	 using	 the	 proposed	 framework	 performed	 as	 well	 as	

standard	NNs	trained	with	a	dataset	18	times	larger.	The	remarkable	generalising	ability	

(J	=	0.87)	of	the	small-data	model	on	300	new	observations	confirmed	the	utility	of	the	

proposed	framework	for	producing	well-generalising	learners	despite	small	data.		

The	framework	comprised:	a	method	of	multiple	runs	for	model	design	and	optimisation,	

and	a	 surrogate	data	test	 for	regression	model	validation	in	the	absence	of	ample	test	

samples.	 The	method	 of	multiple	 runs	 is	 based	 on	 an	 intuitive	 principle:	 rather	 than	

solving	 a	 complex	 task	with	 a	 single	 learner	 trained	on	 large	 amount	of	 data,	 a	 large	
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number	of	learners	can	be	trained	with	small	amounts	of	data,	with	the	anticipation	that	

one	of	 them	would	excel	at	 the	 task.	By	considering	performance	across	a	number	of	

learners,	the	method	of	multiple	runs	enabled	consistent	iterative	design	optimisation	

and	subsequent	model	 selection.	 In	 the	absence	of	ample	 test	data,	validating	 learner	

performance	has	proven	particularly	challenging	 for	regression	models,	which,	unlike	

classifiers,	 do	 not	 have	 a	 pre-defined	 minimal	 expected	 performance	 threshold.	 The	

surrogate	data	test	developed	in	this	thesis	addressed	this	problem	by	quantifying	the	

lowest	expected	model	performance	specific	to	each	dataset.	Combined,	the	two	methods	

enabled	 the	 successful	 application	 of	 NNs	 and	 DTs	 for	 regression,	 classification,	 and	

survival	modelling	in	the	three	clinical	domains.		

 Clinical	and	engineering	impact	

In	trabecular	tissue	engineering,	the	framework	enabled	the	development	of	an	accurate	

NN	model	for	osteoarthritic	hip	fracture	prediction	based	on	an	extremely	small	dataset	

of	35	trabecular	bone	samples.		This	NN	estimated,	accurate	to	0.85	MPa,	the	trabecular	

compressive	strength	in	patients	suffering	from	severe	hip	osteoarthritis	by	integrating	

heterogeneous	bone	scan	data	with	the	patient’s	age	and	gender.	The	unique	feature	of	

this	 model	 was	 that	 it	 was	 able	 to	 achieve	 98.3%	 accurate	 predictions	 of	 bone’s	

mechanical	strength	from	structural	and	biological	parameters	without	 invasive	tests.	

The	NN	offered	a	scalable	predictive	tool	 for	 femoral	strength	 in	osteoarthritis	with	a	

potential	extension	for	other	degenerative	disorders	and	to	new	anatomical	locations.	

The	 renal	 transplant	 application	 demonstrated	 a	 successful	 extension	 of	 the	multiple	

runs	method	to	small-data	DT	classification.	The	method	enabled	the	development	of	a	

DT	risk	stratification	model	for	early	transplant	rejection	based	on	clinical	information	

from	80	antibody-incompatible	 recipients.	This	easy-to-understand,	85%	accurate	DT	
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added	unprecedented	granularity	to	the	Cox	PH	and	LR	models,	identified	key	baseline	

risk	 factors,	 and	 unveiled	 previously	 undetermined	 harmful	 antibody	 levels.	 By	

integrating	known	and	novel	associations,	the	DT	classifier	provided	a	decision	support	

tool	 for	 early	 risk	 stratification	 from	pre-treatment	 immunological	 indicators,	 leaving	

clinicians	with	more	 time	to	make	essential	adjustments	 to	 treatment.	 	At	 the	 time	of	

publication,	 this	 work	 was	 the	 first	 in	 the	 UK	 to	 use	 ML	 for	 the	 prediction	 of	 acute	

rejection	 from	 immunological	 subclass	 data	 in	 antibody-incompatible	 renal	

transplantation.	

The	third	and	the	final	application	considered	in	this	thesis	addressed	the	problem	of	

stratifying	the	10-year	risk	of	developing	type	2	diabetes	in	the	UK	general	population	from	

routinely	collected	primary	care	data.	Several	prognostic	models,	including	Cox	PH,	LR,	

survival	DT,	and	NN	ensembles	were	successfully	developed	and	validated	with	80,000	

electronic	 medical	 records.	 Despite	 consistently	 achieving	 80-85%	 concordant	

predictions,	 the	 Cox	 PH,	 LR,	 and	 NN	 ensembles	 grossly	 suffered	 from	 the	 “4	 Cs”	 of	

routinely	collected	data,	which	reduced	the	amount	of	available	complete	samples	100-

fold.	 In	 comparison,	 the	 multiple	 runs	 method	 enabled	 the	 development	 of	 a	 78%	

concordant	 NN	 classifier	 from	 only	 158	 complete-data	 samples,	 demonstrating	 once	

again	that,	given	adequate	data	quality,	small-data	ML	techniques	can	have	exceptional	

prognostic	potential	in	healthcare.	 	The	remarkable	agreement	among	the	Cox	PH,	NN	

ensemble,	 LR,	 and	 the	 existing	 QDiabetes®	 models	 evidenced	 that	 prognostic	

performance	was	 a	 reflection	 of	 data	 quality,	 rather	 than	 a	 property	 of	 an	 individual	

model.		

One	sobering	implication	of	this	research	for	the	current	NHS	type	2	diabetes	screening	

system	is	that	substantial	improvements	to	its	prognostic	value	are	unlikely	to	be	gained	

from	adopting	increasingly	more	powerful	ML	algorithms	unless	more	resources	can	be	
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dedicated	to	improving	data	collection	in	primary	care.	Rather	than	adapting	a	“store	it	

all”	approach,	resources	should	be	focused	on	the	quality,	completeness	and	granularity	

of	the	observations	linked	to	the	outcome	of	interest.	Of	a	particular	practical	value	is	the	

survival	DT	model,	which	–	by	separating	the	groups	of	patients	at	high	and	low	risk	of	

type	 2	 diabetes	 from	 those	 patients	 whose	 incomplete	 records	 required	 additional	

granularity	 –	 allow	 for	 the	 targeted	 use	 of	 limited	 NHS	 resources.	 As	 repeatedly	

evidenced	 in	 this	 research,	 further	 improvements	 to	 risk	 stratification	 and	 outcome	

prediction	 in	 healthcare	 do	 not	 necessarily	 depend	 on	 large	 volumes	 of	 data.	 The	

methodological	 significance	 of	 this	 research	 is	 that	 it	 removes	 the	 requirement	 for	

substantive	volumes	of	data	for	ML.	By	lowering	the	barriers	for	the	application	of	ML	to	

limited	clinical	data,	this	research	meaningfully	contributes	to	engineering	and	clinical	

practice.	
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Appendix	A.	 Neural	network:	extended	methodology	

A	1		 Perceptron	transfer	functions	

The	 transfer	 function	 (TF)	 of	 a	 neuron	 represents	 the	 relation	between	 its	 input	 and	

output	in	terms	of	spatial	or	temporal	frequency	[87,295].		The	definitions	of	common	

TFs	in	feedforward	NNs	and	their	first	order	derivatives	are	provided	in	Figure	A.1.		The	

list	is	by	no	means	exhaustive:	smooth	rectifier	(ReLU)	and	its	modifications,	logit,	probit,	

complimentary	log-log	functions	could	be	used	in	NNs	if	effective	in		a	given	application	

[228,295,296].		

Step-like	 functions	 produce	 highly	 efficient	 logical	 neurons,	 but	 their	 discontinuous	

derivatives	 prohibit	 their	 use	 with	 gradient-based	 training	 algorithms	 [296].	 On	 the	

other	hand,	sigmoidal	TFs	result	in	graded	response	neurons	with	differentiable	output.	

Two	sigmoidal	TFs	were	used	for	the	final	NN	models	developed	in	this	research,	which	

are	 SmnNQn : = V

VoEpq
	 and	 1P2NQn : = Eq»Epq

EqoEpq
	 .	 The	 sigmoidal	 functions	 were	

particularly	suitable	for	NN	hidden	layers	as	they	cater	for	diverse	behaviours:		nearly	

linear	in	the	vicinity	of	zero,	nearly	constant	in	the	saturation	range,	and	a	curvilinear	in	

the	transition	zone	[17].	The	sigmoidal	TF	also	referred	to	as	‘squashing’	functions,	due	

to	their	ability	to	take	a	real-valued	input	and	return	the	output	in	a	finite	interval:	[0;1]	

for	SmnNQn(:)		and	[-1;1]	for	1P2NQn(:).		
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Figure	A.1	Common	perceptron	transfer	functions	

A	2		 Backpropagation	

The	principles	underlying	backpropagation	have	existed	since	1960s,	but	 the	method	

was	not	formalised	in	the	context	of	NNs	until	1986.	Experiments	by	Rumelhart,	Hinton	

and	Williams	demonstrated	that	backpropagation	could	be	used	to	train	practical	multi-

layer	 networks	 [100].	 Stuart	 Dreyfus	 is	 credited	 for	 an	 elegant	 derivation	 of	

backpropagation	using	chain	rule	only	[105].	The	early	neural	networks	used	discrete	

outputs,	barring	the	use	of	derivative-based	methods,	and	it	was	not	until	LeCun	[102]	

and	 Rumelhart	 et	 al.	 [100]	 overcame	 this	 problem	 by	 replacing	 the	 binary-output	
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neurons	with	those	using	sigmoidal	(smooth)	outputs.	The	forward	and	backward	passes	

of	backpropagation	are	described	below.		

Forward	pass.		For	the	following	examples,	input	variable	:; 	is	a	scalar	that	refers	to	a	

single	observation.	This	network	is	shown	in	the	diagram	in	Figure	A.2,	 for	which	the	

intermediate	outputs	are	defined	as	follows:			

	 Ni = :;8;i + .i 	 "].	A.1	

	
	 3i = Zi(Ni)	 "].	A.2	

	
	 NB = 3i8iB + .B	 "].	A.3	

	
	 0 = 	ZB NB 	 "].	A.4		

where	 Ni 	 and	 NB	represent	 output	 of	 the	 summation	 operator	 in	 layers	 k	 and	 l,	

respectively,	3i 	is	the	output	of	the	Zi 	transfer	function	with	input	sk	and	0	is	the	output	

of	the	ZB 	transfer	function.	Combining	the	equations	A.1	–	A.4,	the	output	0	computed	in	

the	forward	pass	is	determined	as:		

	 0 = ZB Zi :;8;i + .i 8iB + .B 	 "].	A.5		

Backward	pass.	The	cost	function	between	1	and	0		was	used	as	a	basis	for	finding	the	

weighted	contributions	to	total	error	by	each	weight	and	bias	in	the	network.	This	was	

achieved	by	using	partial	derivatives	at	each	step	of	the	NN	structure	in	a	chain	rule,	as	

illustrated	in	Figure	A.2.	
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Figure	A.2	Backpropagation:	forward	and	backward	passes	

To	 determine	 the	 gradient	 of	 the	 cost	 function	 for	 8iB ,	 	 the	 value	 of	
›r

›∫¢fi
	 must	 be	

determined.	Using	the	chain	rule	to	find	this	derivative	gives:	

	
x/

x8iB
=
x/

x0
×
x0

xNB
×
xNB
x8iB

	 "].	A.6		

In	order	to	find	the	gradient	of	the	cost	function	w.r.t.	bias	.B ,	the	chain	rule	becomes:	

	
x/

x.B
=
x/

x0
×
x0

xNB
×
xNB
x.B
	 "].	A.7		

Let	the	cost	function	represent	a	squared-error	function:	

/ =
1

2
1 − 0 ,	
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Let	ZB 	represent	a	logarithmic	sigmoid	transfer	function:	

ZB =
1

1 + "™fi
	

Differentiating	each	term	of	the	chain	rule	(equations	A.6	and	A.7):	

æ/

æ0
=
æ(
1
2 1 − 0

,)

æ0
= −

2

2
(1 − 0) = 0 − 1	

æ0

æNB
=
æ(

1
1 + "™fi)

æNB
=

1

1 + "™fi
−

1

1 + "™fi

,

= 0 1 − 0 	

æNB
æ8iB

=
æ(3i8iB + .B)

æ8iB
= 3i 	

æNB
æ.B

=
æ(3i8iB + .B)

æ.B
= 1	

Expanding	the	chain	rule	(equations	A.6	and	A.7):	

	
x/

x8iB
= 3i0 1 − 0 (0 − 1)	 "].	A.8		

	

	
x/

x.B
= 0 1 − 0 (0 − 1)	 "].	A.9		

In	order	to	extend	this	method	for	finding	the	gradients	of	the	cost	function	w.r.t.	8;i 	and	

.i ,	one	must	expand	the	chain	rule	to	include	the	additional	terms	
›∫¢fi
›b¢

,	›b¢
›™¢
,	 ›™¢
›∫ù¢

	and	›∫¢fi
›b¢

,	

›b¢
›™¢
,	›™¢
›@¢

	respectively:	

	
x/

x8;i
=
x/

x8iB
×
x8iB
x3i

×
x3i
xNi

×
xNi
x8;i

	 "].	A.10		
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x/

x.i
=
x/

x8iB
×
x8iB
x3i

×
x3i
xNi

×
xNi
x.i
	 "].	A.11		

Let	Zi 	represent	a	hyperbolic	tangent	sigmoid	transfer	function:	

Zi =
"™¢ − "»™¢

"™¢ + "»™¢
	

Differentiating	each	additional	term	of	the	chain	rule	(equations	A.10	and	A.11):	

x8iB
x3i

= 1	

x3i
xNi

=
æ(
"™¢ − "»™¢
"™¢ + "»™¢)

æNi
= 1 −

"™¢ − "»™¢

"™¢ + "»™¢

,

= 1 − 3i
,	

xNi
x8;i

=
æ(:;8;i + .i)

æ8;i
= :	

xNi
x.i

=
æ(:;8;i + .i)

æ.i
= 1	

Expanding	the	chain	rule	(equations	A.10	and	A.11):	

	
x/

x8;i
= 3i:;0 1 − 0 (0 − 1)(1 − 3i

,)	 "].	A.12		

	

	
x/

x.i
= 3i0 1 − 0 (0 − 1)(1 − 3i

,)	 "].	A.13		

These	 equations	 allowed	 determination	 of	 the	 weighted	 contribution	 of	 each	 NN	

parameter	to	the	resulting	error	for	a	given	sample,	which	are	required	when	calculating	

the	weight	update.		

Optimisation	algorithms	(also	referred	to	as	solution	algorithms)	are	used	to	determine	

the	required	update	to	the	network	parameters	from	the	cost	function	derivative	as	an	
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input	variable.	Typically,	backpropagation	NNs	use	a	gradient	descent	method	to	find	the	

optimal	solution,	i.e.	minimise	the	cost	function	by	considering	the	differential	equation	

of	error	with	respect	to	weight	values.	This	involves,	for	instance,	a	simple	proportional	

response,	such	as	 in	the	gradient	descent	(Section	A.2.1),	or	a	more	complex,	adaptive	

optimisation,	 such	 as	 in	 Levenberg-Marquardt	 algorithm	 (Section	 A.2.2),	 or	 scaled	

conjugate	gradient	(SCG)	method	(Section	A.2.3).			

Multiple	alternatives		to	backpropagation	exist	for	NN	training	[297].	These	include	now-

obsolete	 techniques	 such	 as	 simulated	 annealing	 [298]	 and	 Nelder-Mead	 simplex	

method	[299],	population-based	training	such	as	evolutionary	algorithms	and	particle	

swarm	optimisation	[300],	and	probabilistic	methods	such	as	radial	basis	functions	and	

contrastive	divergence	[301].	Extensive	work	contrasting	these	stochastic	and	gradient-

free	 optimisation	methods	with	 backpropagation	 is	 described	 in	 the	 literature	 [302],	

with	 the	 general	 view	 holding	 that	 any	 appropriately-tuned	method	 can	 outperform	

others	in	a	given	application.	In	comparison	to	backpropagation,	where	known	output	

values	 are	 used	 to	 direct	 the	 NN	 parameter	 adjustment,	 the	 stochastic	 optimisation	

disregards	 this	 information	 and	 attempts	 random	 changes	 to	 the	 parameters,	 often	

rendering	 them	 impractical	 for	 real-world	 applications.	 For	 those	 reasons,	

backpropagation	remains	dominant	in	feedforward	NN	training	[103,303].	

A.2.1		Gradient	descent	

Gradient	descent	is	a	first-order	iterative	optimisation	algorithm	which	uses	the	gradient	

of	the	cost	function	with	respect	to	each	weight	in	order	to	determine	the	direction	and	

magnitude	of	the	required	change	to	the	present	weight	value.	The	weight	updates	can	

then	be	calculated	as	a	step	in	the	direction	of	decreasing	error	(“descending”	the	error	

gradient),	usually	with	a	magnitude	which	is	a	fraction	of	the	current	gradient.		
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The	learning	rule	specifies	the	weight	updates	with	regards	to	the	gradient	derived	by	

gradient	descent.	For	a	gradient	descent	approach,	the	learning	rule	at	a	specific	weight	

8;i 	 is	 given	 by	 the	 product	 of	 the	 neuron	 error,	 the	 first	 derivative	 of	 the	 activation	

function	and	the	input	to	the	weight:	

∆8;i = −·	
x/i
x8iB

	3i	Ni	:; 	

where	∆8;i 	is	the	weight	update	at	weight	8;i ,	·	is	the	learning	rate,	x/i 	is	the	gradient	

of	the	error	function	with	respect	to	8;i ,	Ni 	is	the	sum	of	weighted	inputs	at	neuron	k,	

and	x; 	is	the	input	to	the	weight	8;i .		

One	limitation	of	the	gradient	descent	algorithm	is	the	possibility	of	training	the	weights	

and	 biases	 to	 reach	 a	 local	 minimum,	 hence	 constraining	 the	 potential	 gains	 of	 the	

learning	process.	This	occurs	as	a	result	of	the	nature	of	the	gradient	descent,	as	it	simply	

seeks	to	minimise	the	size	of	the	error,	without	general	knowledge	of	the	error	function	

outside	of	the	near	vicinity	in	the	variable	space.	The	risk	of	optimising	for	local	minima	

can	be	reduced	by	selecting	appropriate	learning	rates	[87,304].	

	

Figure	A.3	Effect	of	changing	learning	rate	on	saddle	point	local	minima	

E(y) 

y 

(a) E(y) 

y 

(b) 
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Figure	A.3	(a)	illustrates	the	potential	problem	of	reaching	a	local	minimum	when	using	

an	inadequate	learning	rate,	while	Figure	A.3	(b)	contrasts	the	convergence	towards	a	

lower	minimum	when	using	a	different	learning	rate.	It	is	also	worth	noting	that	a	high	

learning	rate	may	result	in	an	unstable	oscillating	response	during	training,	while	a	low	

learning	rate	may	result	in	a	very	slow	learning	process.	

Similarly	to	learning	rate,	initial	weight	and	bias	values	also	influence	the	ability	of	the	

NN	to	converge	to	minimum	error	solutions,	as	they	can	cause	the	learning	algorithm	to	

optimise	local	minimums	and	saddle	points.	Therefore,	the	success	of	gradient	descent	

backpropagation	algorithm	depends	on	arbitrary	user-defined	learning	rate	and	initial	

weight	and	bias	values.	

One	modification	of	gradient	descent	applies	the	use	of	a	“momentum	term”	in	the	weight	

update	equation,	which	essentially	 transforms	an	online-learning	approach	 to	a	mini-

batch	approach	using	a	moving	average	[305].		More	recent	work	has	demonstrated	the	

merits	of	employing	a	gradient	descent	 learning	algorithm	with	variable	 learning	rate	

[306].	This	approach	not	only	optimises	the	trade-off	between	a	 fast	 learning	process	

and	an	effective	optimisation,	but	also	reduces	 the	dependency	on	selecting	adequate	

starting	weight	values	[304].	

A.2.2		Gauss-Newton	and	Levenberg-Marquardt	algorithms		

Levenberg-Marquardt	 algorithm	 operates	 by	 finding	 a	 solution	 for	 a	 non-linear	 least	

squares	problem.	The	algorithm	alternates	between	gradient	descent	and	Gauss-Newton	

methods	depending	on	the	outcome	of	previous	iterations	using	a	variable	learning	rate	

[112].		Gauss-Newton	method	can	be	described	by	considering	a	nonlinear	least-squares	

optimisation	problem:	
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/ =
1

2
5u
, !

C

uwV

	

where	2	is	to	the	number	of	observations,	5u ! 	is	the	error	function	between	the	target	

1u 	 and	 the	 predicted	 variable,	 and	 !	 is	 the	 vector	 of	 model	 parameters	 ! = [!V,

!,, … , !Ø],	where	the	model	comprises	®	parameters	and	/	represents	the	summation	

of	squared	errors.	The	error	can	be	expressed	as	follows:	

	 5u ! = 1u − Z :u, ! 	 "].	A.14		

where	Z :u, ! 	represents	the	predicted	variable	resulting	from	the	model.	To	identify	

the	set	of	model	parameters	that	will	minimise	the	squared	error,	an	iterative	approach	

can	be	adopted,	while	taking	an	initial	assumption	for	the	parameters	! ô ,	and	modifying	

this	by	a	pre-determined	step.	The	step	is	determined	using	a	Newton	method	of	finding	

minima	to	a	function,	that	uses	a	Taylor	series	quadratic	approximation	[307].			

The	parameter	update	equation	takes	the	form:	

	 ! ™oV = ! ™ − n¿»V	 "].	A.15		

where	 ¿	 is	 the	 Hessian	 matrix	 of	 the	 error,	 composed	 of	 the	 second-order	 partial	

derivatives	of	the	error	function,	and	n	is	the	first-order	derivative	vector.	Shown	below	

is	the	Hessian	matrix	specific	to	the	error	function	defined	in	"].	A.14:	
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For	small	steps,	the	second-order	terms	in	the	Hessian	matrix	can	be	ignored,	and	both	

the	Hessian	matrix	and	the	gradient	vector	can	be	expressed	in	terms	of	the	respective	

Jacobians:	

¿ = „e„	

n = „e5	

where	the	Jacobian	matrix	has	the	format:	

„ =

‚5V
‚!V

‚5V
‚!,

‚5,
‚!V

‚5,
‚!,

⋯

‚5V
‚!Ø
‚5,
‚!Ø
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‚5C
‚!V

‚5C
‚!,

⋯
‚5C
‚!Ø

	

We	can	therefore	rewrite	the	step	change	equation	(A.14):	

	 ! ™oV = ! ™ − „e„ »V„e5	 "].	A.17		

Levenberg	Marquardt	is	effectively	a	modification	of	the	Gauss-Newton	algorithm,	and	

uses	the	parameter	λ	to	blend	gradient	descent	and	Gauss-Newton	methods:	

	 ! ™oV = ! ™ − „e„ + 'ê »V„e5	 "].	A.18		

If	 the	 error	 is	 reduced	 following	 a	 weight	 update,	 λ	 is	 decreased	 to	 increase	 the	

contribution	 of	 Gauss-Newton,	 therefore	 increasing	 the	 sensitivity	 of	 the	 update	

algorithm.	 If	 the	 error	 increases	 after	 a	weight	 update,	λ	 is	 increased	 and	 the	weight	
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update	reversed,	allowing	gradient	descent	to	more	rapidly	guide	the	weight	update.	In	

this	manner,	Levenberg	Marquardt	is	able	to	combine	the	sensitivity	of	a	Gauss-Newton	

method	with	the	speed	of	convergence	of	gradient	descent,	greatly	improving	training	

efficiency,	as	demonstrated	by	Rojas	[308].	

A.2.3		Conjugate	gradient	method	

Conjugate	gradient	methods	are	used	to	calculate	the	global	minimum	for	a	function	of	

the	form	=: = .,	where	A	is	a	symmetric	positive	definite	n-by-n	matrix,	and	x	and	b	are	

vectors	of	size	n	[115,309].	Similar	to	gradient	descent,	the	conjugate	gradient	method	

takes	an	iterative	approach	to	finding	the	minimum	of	a	function,	but	additionally	uses	

the	concept	of	conjugate	vectors	to	find	an	optimal	step	size	[310,311].	A	pair	of	non-zero	

vectors	u	and	v,	is	said	to	be	conjugate	when:	

Oe=R = 0		

The	first	iteration	in	the	conjugate	gradient	method	is	performed	in	a	manner	similar	to	

gradient	 descent,	 with	 direction	 proportional	 to	 the	 steepest	 gradient	 at	 the	 first	

estimated	 solution,	 and	magnitude	 optimised	 by	 a	 line	 search.	 The	 direction	3	 of	 all	

subsequent	iterations,	however,	must	be	orthogonal	to	all	previous	steps,	and	for	step	å	

is	given	by	the	formula:	

	 3i = −ni + !i3i»V	 "].	A.19		

where	ni 	is	the	gradient	at	the	current	estimate,	!i 	is	an	adaptive	constant	that	ensures	

the	 orthogonality	 of	 the	 gradient	 [115].	 The	 equation	 to	 calculate	 !i 	 varies	 across	

different	conjugate	gradient	algorithms;	 the	one	used	 in	 this	 study	 is	Fletcher-Reeves	

approach	[312],	in	which	!i 		is	given	by:	
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	 !i =
ni
eni

ni»Veni»V
	 "].	A.20		

The	 conjugate	 gradient	 method	 relies	 on	 the	 assumption	 that	 the	 error	 in	 the	

neighbourhood	of	 the	 current	 estimate	/ 8i 3i 	 can	be	 approximated	by	 a	 quadratic	

equation.	 The	 step	 size	 is	 then	 calculated	 using	 a	 line	 search	 algorithm,	 which	 is	

computationally	intensive.	A	modification,	called	scaled	conjugate	gradient	(SCG),	was	

introduced	by	Møller	 [115],	with	 the	 aim	of	 combining	 the	 conjugate	 gradient	with	 a	

model	trust	region,	similar	to	Levenberg-Marquardt.	This	approach	uses	the	following	

approximation	 to	 the	 second	 order	 terms	 in	 the	 Hessian	 matrix	 of	 the	 error	

function	/ 8i 3i 	with	respect	to	weights	8i 	:	

	 ‚,/ 8i 3i ≈
‚/ 8i + *i3i − ‚/(8i)

*i
+ 'i3i	 "].	A.21		

where	*i 	and	'i 	are	arbitrary	small	positive	constants.	This	approximation	reduces	the	

complexity	of	 the	computation,	 increasing	the	training	efficiency	[313,314].	The	proof	

and	detail	of	this	method	are	presented	by	Møller	[115].	
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Appendix	B.	 Performance	criteria	

The	regression	factor		J	compares	the	sum	of	squares	due	to	error	and	the	total	sum	of	

squares,	and,	in	its	standard	form,	is	given	by:		

J = 1 −	
1u − 0u ,

C
uwV

1u − 0 ,
C
uwV

		

where	1u 	is	the	target	output,	0u 	is	the	output	predicted	by	the	model,	0	is	the	mean	of	0u 	

and	2	is	a	total	number	of	samples	[315].		J	takes	values	between	0	and	1,	where	J	=	1	

corresponds	to	a	perfect	fit,	signifying	that	the	entire	variance	in	the	dependent	output	

variable	 can	 be	 explained	 by	 the	 regression	 equation.	 J		greater	 than	 0.6	 defines	

statistically	 significant	 performance,	 i.e.	 JABB ≥ 0.6, J~� ≥ 0.6, J©AB ≥ 0.6,	 and	 J~E™~ ≥

0.6		[84].	

JLM/,	 provides	 the	 same	 information	as	J,	 but	 is	 expressed	 in	 terms	of	 the	absolute	

difference	 between	 model	 predictions	 and	 targets,	 making	 it	 particularly	 useful	 for	

visualising	the	error	in	the	units	of	the	output	variable:	

JLM/ =
1

2
(1u − 0u),

C

uwV

							

In	 classification	problems,	where	 1u 	 is	 dichotomous	 (0	 or	 1),	 the	model	 accuracy	 is	

expressed	by	the	proportion	of	observations	with	correctly	predicted	class		[182].	With	

NN	 and	 DT	 classifiers,	 the	 predicted	 outcome	0u 	 is	 a	 continuous	 real-valued	 number	

(between	0	and	1)	that	describes	a	probability	of	each	class.	In	order	to	dichotomise	0u 	

into	 a	 binary	 class	 label,	 a	 cut-off	 is	 applied	 at	 a	 given	 discrimination	 threshold	 (0.5	

default	value).	Receiver	operating	characteristic	(ROC)	curve	[182]	depicts	M3	versus	1 −

M2	at	various	thresholds,	where	each	point	represents	a	different	trade-off	between	¶I	
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and	¶•	predictions.		This	trade-off	can	be	quantified	as	cost	ratio,	which	is	defined	by	the	

gradient	 of	 the	 line	 tangent	 to	 the	 ROC	 curve.	 The	 area	 under	 the	 ROC	 curve	 (=>?)	

represents	 the	performance	 averaged	 across	 all	 cost	 ratios.	On	 the	unit	ROC	 space,	 a	

perfect	prediction	would	yield	 an	=>?	of	1.0.	A	 random	coin	 flipping	would	 result	 in	

points	along	the	diagonal	and	the	corresponding	=>?	of	0.5.	Tracing	back	its	origins	to	

World	War	II,	where	it	was	developed	to	model	FP	and	FN	radar	detections,	ROC	is	now	

a	 standard	measure	 of	 discrimination	 in	medicine	 and	 clinical	 science,	 and	 its	 use	 is	

becoming	increasingly	popular	in	the	ML	community	[182].	

In	survival	modelling	the	true	outcome	1u 	may	not	be	known	for	some	patients	due	to	

censoring.	 A	 generalization	 of	 the	 =>?	 for	 assessing	 the	 discriminating	 ability	 of	 a	

survival	model	is	known	as	concordance	–	a	rank	correlation	between	the	predicted	risk	

0u 	 	and	the	observed	survival	times	§	for	all	comparable	pairs	[293].		For	time-to-event	

outcomes,	pairs	of	patients	(Q, ‰)	are	comparable	(useable)	if	§u ≯ §; ,	at	least	one	of	the	

patients	is	uncensored.	The	pair	is	said	to	be	concordant	when	the	patient	with	the	lowest	

predicted	 risk	0	 out	 survives	 the	 other,	 i.e.	 has	 the	 longer	 survival	 time	§.	 The	most	

popular	 concordance	measure	 in	 biostatistics	 and	 prognostic	 modelling	 is	 known	 as	

Harrell’s	? − Q2æ":,	which	defines	the	probability	of	concordant	pairs	in	all	usable	pairs	

[316]	as	follows:	

?-index	= I 0u > 0; §u < §;)	

Although	 it	 had	been	 recently	 suggested	 that	Uno’s	 or	Gonen	&	Heller’s	 concordance	

measures	are	more	suitable	 for	applications	with	high	proportion	of	 censoring	 [293],	

Harrell’s	?-index	was	adopted	in	Chapter	6	in	order	to	ensure	consistency	of	comparison	

with	the	existing	studies,	as	specified	by	the	collaboration	protocol	[90].		
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Another	 measure	 of	 discrimination	 popular	 in	 survival	 analysis	 is	 Royston	 and	

Sauerbrei’s	G	[317].	The	G	statistic	quantifies	the	relative	gain	in	prognostic	separation	

between	 two	 equally-sized	 groups	 of	 patients	with	 lowest	 and	highest	 predicted	 risk	

scores	0	 defined	 at	 the	median	 value.	 This	 is	 achieved	 by	 ordering	0,	 calculating	 the	

expected	 normal	 order	 statistics,	 scaling	 them	 by	 factor	 å = 	 8/Ê	 and	 performing	

auxiliary	regression	on	the	scaled	values	[317].	What	makes	Royston	and	Sauerbrei’s	G	

particularly	 appealing	 for	 assessing	 Cox	 PH	 survival	 models,	 is	 that	 it	 provides	 an	

indication	of	the	overall	model	log	hazard	ratio.			

An	 J,-like	 form	 could	 be	 achieved	 by	 transforming	 G	 into	 JK, 	 which,	 in	 turn,	 is	

interpreted	as	the	proportion	of	prognostic	separation	explained	by	the	model:	

JK
, = 	

G,
å,	

*, + G
,

å,
			

where	* = 	
	1		for	lognormal	models																																																					
Ê, 3 	for	loglogistic	or	proportional	odds	models	
Ê, 6 	for	proportional	hazard	models																								
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Appendix	C.	 Concrete	compressive	strength	dataset	

The	subsets	of	concrete	CS	data	were	accessed	through	a	public	repository	[164,165]	and	

partitioned	as	follows	for	the	3	NN	models	considered	in	Chapter	3:	(a)	large-dataset	NN	

(730	model	samples	and	300	tests),	(b)	intermediate	100-sample	NN	(70	model	samples	

and		30	tests),	(c)	small-dataset	NN	(41	model	samples	and	15	tests).	The	model	samples	

refer	to	the	validation	and	training	samples,	combined.			

Table	C.1	provides	the	key	statistics	on	each	model	(a),	(b)	and	(c)	with	the	breakdown	

according	 to	 the	model	 and	 test	 subsets	 (number	 of	 samples	 given	 in	 brackets).	 The	

frequency	distribution	histograms	for	each	of	the	9	variables	:	in	the	complete	CS	dataset	

are	included	in	the	last	column.	

Table	C.1	Concrete	CS	dataset	statistics	by	individual	variable	

	 Model	 Subset	 min	 max	 µ	 σ	 Frequency	distribution	of	the	variable	across	all	
(1030)	samples	

Ag
e	
(d
ay
s)
	

	 all	(1030)	 1.0	 365.0	 45.7	 63.2	

	

a	
model	(730)	 1.0	 356.0	 44.6	 62.5	

test	(300)	 3.0	 365.0	 48.3	 64.9	

b	
model	(70)	 3.0	 365.0	 50.5	 69.3	

test	(30)	 3.0	 365.0	 41.1	 64.8	

c	
model	(41)	 3.0	 365.0	 45.5	 70.2	

test	(15)	 3.0	 180.0	 43.6	 46.1	
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Bl
as
t	F
ur
na
ce
	S
la
g	
(k
g/
m

3 )
	

	 all	(1030)	 0.0	 359.4	 73.9	 86.3	

	
Blast	Furnace	Slag	in	the	mixture	(kg/m3)	

a	
model	(730)	 0.0	 359.4	 73.3	 86.3	

test	(300)	 0.0	 342.1	 75.4	 86.4	

b	
model	(70)	 0.0	 316.1	 66.4	 81.7	

test	(30)	 0.0	 239.0	 68.2	 87.3	

c	
model	(41)	 0.0	 359.4	 86.1	 84.9	

test	(15)	 0.0	 250.2	 90.6	 90.4	

Ce
m
en
t		
(k
g/
m

3 )
	

	 all	(1030)	 102.0	 540.0	 281.2	 104.5	

Cement	in	the	mixture	(kg/m3)	

a	
model	(730)	 102.0	 540.0	 279.9	 103.9	

test	(300)	 108.3	 540.0	 284.2	 106.1	

b	
model	(70)	 102.0	 540.0	 286.8	 117.1	

test	(30)	 145.9	 525.0	 290.6	 115.9	

c	
model	(41)	 140.0	 500.0	 285.0	 111.7	

test	(15)	 102.0	 522.0	 268.4	 121.1	

Co
ar
se
	A
gg
re
ga
te
		(
kg
/m

3 )
	

	 all	(1030)	 801.0	 1145.0	 972.9	 77.8	

	
Coarse	Aggregate	in	the	mixture	(kg/m3)	

a	
model	(730)	 801.0	 1145.0	 973.1	 76.9	

test	(300)	 801.0	 1134.0	 972.6	 79.8	

b	
model	(70)	 822.0	 1125.0	 965.0	 83.4	

test	(30)	 827.0	 1125.0	 986.4	 73.6	

c	
model	(41)	 822.0	 1125.0	 972.4	 81.4	

test	(15)	 814.0	 1069.0	 930.8	 63.3	

Fi
ne
	A
gg
re
ga
te
	(k
g/
m

3 )
	

	 all	(1030)	 594.0	 992.6	 773.6	 80.2	

	
Fine	Aggregate	in	the	mixture	(kg/m3)	

a	
model	(730)	 594.0	 992.6	 774.7	 79.2	

test	(300)	 594.0	 992.6	 770.8	 82.6	

b	
model	(70)	 613.0	 943.1	 779.1	 77.9	

test	(30)	 594.0	 896.0	 767.0	 74.6	

c	
model	(41)	 594.0	 943.1	 772.2	 76.8	

test	(15)	 594.0	 942.0	 787.6	 95.1	
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Fl
y	
As
h	
	(k
g/
m

3 )
	

	 all	(1030)	 0.0	 200.1	 54.2	 64.0	

	
Fly	Ash	in	the	mixture	(kg/m3)	

a	
model	(730)	 0.0	 200.1	 55.5	 64.3	

test	(300)	 0.0	 200.1	 51.0	 63.2	

b	
model	(70)	 0.0	 194.9	 48.1	 59.5	

test	(30)	 0.0	 174.2	 56.4	 63.6	

c	
model	(41)	 0.0	 174.9	 49.4	 63.1	

test	(15)	 0.0	 195.0	 52.9	 72.4	

Su
pe
rp
la
st
ic
iz
er
		(
kg
/m

3 )
	

	
all	(1030)	 0.0	 32.2	 6.2	 6.0	

	
Superplasticizer	in	the	mixture	(kg/m3)	

a	
	

model	(730)	 0.0	 32.2	 6.3	 5.9	

test	(300)	 0.0	 32.2	 5.9	 6.1	

b	
	

model	(70)	 0.0	 32.2	 5.7	 6.1	

test	(30)	 0.0	 32.2	 7.9	 7.2	

c	
	

model	(41)	 0.0	 32.2	 6.1	 6.9	

test	(15)	 0.0	 18.0	 6.3	 6.0	

W
at
er
	(k
g/
m

3 )
	

	 all	(1030)	 121.8	 247.0	 181.6	 21.4	

	
Water	in	the	mixture	(kg/m3)	

a	
model	(730)	 121.8	 247.0	 181.2	 21.0	

test	(300)	 126.6	 228.0	 182.5	 22.1	

b	
model	(70)	 137.8	 246.9	 184.7	 19.4	

test	(30)	 137.8	 228.0	 178.6	 23.8	

c	
model	(41)	 121.8	 228.0	 181.0	 22.2	

test	(15)	 146.0	 228.0	 184.8	 27.2	

Co
m
pr
es
si
ve
	s
tr
en
gt
h	
(M
Pa
)	

	 all	(1030)	 2.3	 82.6	 35.8	 16.7	

	
Compressive	strength	(MPa)	

a	
model	(730)	 3.3	 82.6	 35.6	 16.2	

test	(300)	 2.3	 81.8	 36.3	 17.9	

b	
model	(70)	 4.6	 72.1	 36.1	 17.5	

test	(30)	 12.5	 75.0	 36.9	 15.1	

c	
model	(41)	 4.8	 80.2	 34.8	 18.9	

test	(15)	 7.7	 75.0	 35.9	 19.0	
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Appendix	D.	 Bone	dataset:	real	and	surrogate	data	

Bone	data	in	Table	D.2	were	extracted	from	the	original	study	by	Perilli	et	al.	[166]	using	

a	Plot	Digitiser	 tool	 [160].	Surrogate	data	 in	Table	D.3	were	synthesised	as	a	 random	

normal	distribution	with	the	mean	and	standard	deviation	of	the	real	bone	data	within	

the	same	range	(Section	3.4.5).	

Table	D.2	Trabecular	bone	data	

Sample	 SMI	 Tb.Th	
(μm)	

BV/TV	
(%)	

Age	
(years)	

Gender	
(F=1)	

CS	
(MPa)	

1	 0.06	 243	 32.5	 41.8	 1	 20.9	
2	 1.42	 224	 21.5	 52.0	 1	 6.91	
3	 0.48	 239	 26.6	 57.0	 1	 18.2	
4	 -0.82	 212	 43.5	 63.9	 1	 9.46	
5	 1.22	 419	 17.9	 64.0	 1	 23.1	
6	 0.64	 223	 27.6	 67.1	 1	 19.4	
7	 2.10	 197	 9.82	 68.1	 1	 2.76	
8	 0.38	 367	 26.9	 71.5	 1	 18.9	
9	 0.80	 218	 15.4	 74.9	 1	 6.49	
10	 0.54	 314	 25.0	 76.0	 1	 17.8	
11	 0.30	 326	 32.4	 87.0	 1	 24.2	
12	 -0.17	 287	 30.4	 41.7	 0	 21.5	
13	 -0.31	 284	 37.0	 47.9	 0	 16.4	
14	 0.04	 265	 38.7	 49.8	 0	 11.1	
15	 0.82	 241	 22.7	 49.8	 0	 26.5	
16	 -0.23	 303	 37.6	 65.8	 0	 28.8	
17	 1.77	 219	 25.3	 68.0	 0	 4.91	
18	 1.33	 261	 17.4	 72.9	 0	 9.81	
19	 0.04	 307	 29.7	 73.9	 0	 23.7	
20	 0.36	 271	 31.6	 81.8	 0	 24.4	
21	 0.31	 252	 33.8	 60.9	 1	 20.5	
22	 0.70	 283	 22.5	 62.9	 1	 12.2	
23	 1.59	 247	 13.7	 72.6	 1	 1.93	
24	 0.45	 257	 27.4	 45.7	 0	 19.6	
25	 0.44	 266	 27.5	 62.9	 0	 18.5	
26	 0.15	 270	 32.1	 77.8	 0	 22.2	
27	 1.08	 193	 19.4	 87.0	 0	 9.12	
28	 1.93	 154	 9.68	 49.0	 1	 8.22	
29	 0.92	 263	 25.3	 66.0	 1	 15.4	
30	 -0.43	 299	 39.7	 69.9	 1	 23.2	
31	 1.04	 239	 21.0	 73.9	 1	 8.15	
32	 -0.05	 288	 35.6	 46.8	 0	 24.3	
33	 0.39	 246	 26.6	 64.9	 0	 19.3	
34	 0.71	 178	 12.2	 68.0	 0	 14.0	
35	 0.70	 234	 21.8	 84.9	 0	 13.3	
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Table	D.3	Surrogate	data	

Sample	 SMI	 Tb.Th	
(μm)	

BV/TV	
(%)	

Age	
(years)	

Gender	
(F=1)	

CS	
(MPa)	

1	 0.06	 243	 32.5	 41.8	 1	 20.9	
2	 1.42	 224	 21.5	 52.0	 1	 6.91	
3	 0.48	 239	 26.6	 57.0	 1	 18.2	
4	 -0.82	 212	 43.5	 63.9	 1	 9.46	
5	 1.22	 419	 17.9	 64.0	 1	 23.1	
6	 0.64	 223	 27.6	 67.1	 1	 19.4	
7	 2.10	 197	 9.82	 68.1	 1	 2.76	
8	 0.38	 367	 26.9	 71.5	 1	 18.9	
9	 0.80	 218	 15.4	 74.9	 1	 6.49	
10	 0.54	 314	 25.0	 76.0	 1	 17.8	
11	 0.30	 326	 32.4	 87.0	 1	 24.2	
12	 -0.17	 287	 30.4	 41.7	 0	 21.5	
13	 -0.31	 284	 37.0	 47.9	 0	 16.4	
14	 0.04	 265	 38.7	 49.8	 0	 11.1	
15	 0.82	 241	 22.7	 49.8	 0	 26.5	
16	 -0.23	 303	 37.6	 65.8	 0	 28.8	
17	 1.77	 219	 25.3	 68.0	 0	 4.91	
18	 1.33	 261	 17.4	 72.9	 0	 9.81	
19	 0.04	 307	 29.7	 73.9	 0	 23.7	
20	 0.36	 271	 31.6	 81.8	 0	 24.4	
21	 0.31	 252	 33.8	 60.9	 1	 20.5	
22	 0.70	 283	 22.5	 62.9	 1	 12.2	
23	 1.59	 247	 13.7	 72.6	 1	 1.93	
24	 0.45	 257	 27.4	 45.7	 0	 19.6	
25	 0.44	 266	 27.5	 62.9	 0	 18.5	
26	 0.15	 270	 32.1	 77.8	 0	 22.2	
27	 1.08	 193	 19.4	 87.0	 0	 9.12	
28	 1.93	 154	 9.68	 49.0	 1	 8.22	
29	 0.92	 263	 25.3	 66.0	 1	 15.4	
30	 -0.43	 299	 39.7	 69.9	 1	 23.2	
31	 1.04	 239	 21.0	 73.9	 1	 8.15	
32	 -0.05	 288	 35.6	 46.8	 0	 24.3	
33	 0.39	 246	 26.6	 64.9	 0	 19.3	
34	 0.71	 178	 12.2	 68.0	 0	 14.0	
35	 0.70	 234	 21.8	 84.9	 0	 13.3	
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Appendix	E.	 Multiple	imputation	in	diabetes	data	

Imputation	accuracy	of	BG	and	BMI	values	using	MICE	(Section	3.1.3)	was	investigated	

on	 a	 cohort	 of	 14922	 patients	 for	whom	 the	 BG	 and	 BMI	 values	were	 known.	 These	

samples	 were	 randomly	 injected	 with	 missing	 values	 in	 BG	 and	 BMI	 columns	 to	

reproduce	 the	 proportion	 of	missing	 values	 in	 the	 original	 cohort	 of	 79959	 patients	

(Figure	E.1).	

	

Figure	E.4	Missing	patterns	reproduced	to	match	the	original	missing	proportions:	70%	of	BG	values	and	40%	
of	BMI	values	are	missing.	

Subsequently,	 the	 deliberately	 introduced	 missing	 values	 were	 imputed	 using	 MICE	

algorithm	with	m	iterations.	The	model	included	gender,	age,	family	history	of	DM,	CVD,	

hypertension,	 ethnicity,	 steroid	 use,	 smoking	 status,	 Townsend	 index	 and	 type	 2	DM	

outcome.		

Table	E.1	indicates	the	JLM/	values	for	BG	and	BMI	averaged	across	all	imputed	samples	

for	various	m	from	1	to	100.	For	this	particular	study,	the	number	of	MICE	iterations	had	

a	marginal	effect	on	the	overall	imputation	error,	which	was	equal	to	0.96	mmol/L	for	

BG	and	4.7	for	BMI,	corresponding	to	19%	and	18%	relative	error,	respectively.			
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Table	E.4	Imputation	accuracy	of	MICE	at	70%	missing	BG	and	40%	missing	BMI	

	 JLM/	between	actual	and	imputed	values	
BG	(mmol/L)	 Ò	 Ú	 min	 max	
m=1	 0.949	 NA	 0.949	 0.949	
m=5	 0.962	 0.012	 0.948	 0.978	
m=10	 0.957	 0.009	 0.938	 0.968	
m=50	 0.959	 0.009	 0.936	 0.980	
m=100	 0.957	 0.010	 0.933	 0.983	
	 	
BMI	(kg/m2)	 Ò	 Ú	 min	 max	
m=1	 4.703	 NA	 4.703	 4.703	
m=5	 4.759	 0.000	 4.759	 4.759	
m=10	 4.744	 0.000	 4.744	 4.744	
m=50	 4.756	 0.000	 4.756	 4.756	
m=100	 4.757	 0.000	 4.757	 4.757	

		

It	 is	 important	 to	 note	 that	 JLM/	 is	 not	 the	 only	 indication	 of	 the	 effectiveness	 of	

imputation.	As	discussed	in	Section	3.1.3,	MICE	does	not	optimise	for	individual	sample	

accuracy,	 but	 instead	 attempts	 to	 reproduce	 the	 overall	 resemblance	 to	 a	 complete	

dataset	by	generating	multiple	datasets.	

	


