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In this letter, a symmetric quartic potential well is considered for use as a low-pass filter
in BPAM receivers. By using the BPAM input to force a change in the shape of the well,
the output can be considered as the position of a particle in the well. The potential well
has been designed to pass the BPAM signal and suppress the background noise. Within
the paper, DC gain and cut-off frequency are defined where the potential well is subject
to a noise free single pulse. The effects of the background noise are also discussed. These
initial results are applicable to other pulse modulation methods. Moreover, it is revealed
that the cut-off frequency plays a significant role on the BPAM detector. Finally, a new
result for the probability of error is introduced which clearly shows that the potential
well filters out the background noise as much as a lowpass Butterworth filter does.

1. Introduction

Potential well models are significant to researchers in explaining the reasoning be-

hind probabilistic behaviours. For example, the motion of a particle in a double

well potential is used to model the dynamic behaviour of an RF superconducting

quantum interference device (SQUID) [1], a finite square potential well is used to

model the energy of the electron in a single quantum well [2], and a Morse potential

well is used to model the vibrational structure of molecules [3]. Moreover, poten-

tial wells can exhibit a behaviour phenomenon called Stochastic Resonance (SR),

which occurs when a nuisance signal, such as noise, counter-intuitively, favours the

system [4]. This combination of potentially beneficially behavioural phenomenon,

coupled with the links to probabilistic concepts analogous in information theory,

make them important for further consideration in the communications and signal

processing fields.

∗Corresponding author.
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Of particular interest to researchers, and a subject that has been studied exten-

sively in the literature, is that of the Brownian motion of a particle in a double well.

It has been shown that this system can exploit the background noise to improve

the SNR [5–8]. To take advantage of the double well potential behaviors, they are

effectively implemented as signal processing block sets within the receiver architec-

ture. Examples of implementation have been shown for binary phase shift keying

(BPSK) [9], frequency shift keying (FSK) [10], minimum shift keying (MSK) [11],

and binary pulse amplitude modulation (BPAM) [12–17]. Upon implementation,

these block sets are more generically referred to as a stochastic resonator. These

studies have all shown that a stochastic resonator, namely a Symmetric Quartic

Potential Well (SQPW), exhibiting the SR phenomenon can enhance the system

performance.

The SQPW considered here also has a filter like response which thus results in

an SNR gain. The frequency response has a pattern similar to a Low Pass Filter

(LPF) [18–20], and in some cases, linear response functions can therefore be derived

[5, 21]. What can be noted is that of all the papers given so far, none of them list

their main focus as designing this SQPW as a filter, focusing instead their efforts

upon the SNR gain itself. Thus, whilst they do provide analysis along the lines of

SNR, BER, Mutual Information etc., the fundamental filtering characteristics; like

DC gain and cutoff frequency, are not presented as a focused contribution.

Therefore, this paper aims to make a significant contribution to field by design-

ing the SQPW as an LPF within a BPAM receiver. Through a process of designing

the SQPW to pass a BPAM signal and attenuate the background noise, an analyt-

ical definition for the DC gain and cut-off is shown. This result, novel in itself, is

then validated through simulation of the SQPW and an output-input magnitude

ratio response (MRR). Further to this, the effect of the background noise on the

MRR is then investigated. Finally, the primary result of the paper, that of two

equations that define both the probability of error and cut-off frequency for the

SQPW, are shown. These two final closed form equations are new to the literature.

2. Receiver Model

2.1. Receiver and Input Signal

It is assumed that the transmitter sends digital information by use of two rectan-

gular pulses (g0(t) = −A, g1(t) = A). Each pulse is transmitted within the symbol

interval of duration Tb (0 < t ≤ Tb). Therefore, the transmitted signal is in the

following form

s(t) =
+∞
∑

i=1

gBi
(t− (i− 1)Tb), (1)

where Bi is a sequence of binary symbols. Each symbol is an identically distributed

and independent random variable with P (Bi = 1) = P (Bi = 0) = 0.5.
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The channel is assumed to corrupt the signal by the addition of white Gaussian

noise, n(t), with autocorrelation function 〈n(t)n(t + τ)〉 = N0/2 δ(τ). Based on

the received signal, the aim is to design a receiver that consists of a SQPW and a

detector as shown in Fig. 1.

Fig. 1. AWGN Channel and Receiver configuration.

The function of the detector is to decide which of two pulses was transmitted

based on the sample taken at the end of each pulse. Therefore, the output bit

sequence can be given by

Bout
i =

{

0 , y(iTb) < 0

1 , y(iTb) ≥ 0
(2)

2.2. SQPW and Filter Design

As noted, the most studied stochastic resonator is SQPW based upon the Brow-

nian motion in the symmetric quartic bi-stable potential under the action of an

external field. Here, the transmitted signal s(t) is considered as the external field.

The internal state, which is the output y(t), evolves according to

dy

dt
= ay − by3 + s(t) + n(t). (3)

It is known that at high frequencies the output power of the SQPW falls off

[5, 18]. Considering that the input noise has a flat spectrum, this fall-off results in

an attenuation. Therefore, |Y (f)|/|S(f) + N(f)| needs to show this attenuation,

which can be defined as an output-input magnitude ratio response (MRR) function

|H(f)|. Although this notation is used for linear systems, it is found convenient

whilst seeking a filter like response.
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Assuming that a pulse is applied to the input, and the SQPW is designed to

provide a pulse like shape corresponding to the input, then it can be said that

the SQPW allows that pulse to occur in its output [16]. As the pulse signal is

baseband, this SQPW passes the low (baseband) frequencies. Therefore, the MRR

|H(f)| needs to show the same relation.

When a pulse with the amplitude A is applied, then the output will be stable

at one of the roots of 0 = (ay − by3 + A). If |A| is greater than potential barrier
√

4a3/27b, there is only one real root which has the same sign with input. Defining

the output y = k × A where k can be determined form (bk3A2 − ak − 1) = 0, the

DC response of the SQPW becomes

|H(0)| = k. (4)

The frequency response is a more complex problem, and is related to the timing

such that when the output is already stable at −kA, a pulse with amplitude A ≫
√

4a3/27b and a duration Tb must be able to change the output to kA in the same

period. In this case, the output is a monotonically increasing function since it has

one real root. Therefore, there is a specific point in time which makes the integral

of output zero. For example, the output reaches ckA at t = T where 0 < c ≤ 1, the

integral of (3) from t = 0 to T can be given by

ckA− (−kA) =

∫ T

0

(ay − by3)dt+

∫ T

0

Adt, (5)

where T is the specific time. In order to simplify (5), the output is assumed anti-

symmetric, which makes the integral of y3 zero. Thus, it can be written that 1 <

T/k ≤ 2 which shows that T = 2k is the critical time for the output to be stable

at the end of each pulse. Therefore, the SQPW passes the transmitted signal if

Tb ≥ 2k, which means that the cut-off frequency of the system is

fc ≤ 1/(2k). (6)

3. Simulation Method and MRR

The design above can be verified by a simulation. This requires a specific treatment,

known as stochastic differential equations (SDEs), and needs to be considered in

discrete time.

3.1. Heun Scheme

The output of the chosen SQPW evolves according to (3) which is a one dimensional

SDE and can be solved by SDE integration schemes.

Firstly, it has to be written in the generic form that is given by x = f(x) +

g(x)ξ(t), where x represents y, f(x) = ay − by3 + s(t), g(x) =
√

N0/2, and ξ(t) ∼
N(0, 1). Considering the discretization, the formal integration with the step size h
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is given by

x(h)− x(0) =

∫ h

0

(f(x) + g(x)ξ(t))dt. (7)

Secondly, a method to solve this integral has to be chosen. In [22], SDE integra-

tion schemes are provided with their accuracies. Among those methods, the Heun

scheme is considered since it promises a better accuracy and needs less computa-

tional effort. It is applied in two steps as,

x1 = x(0) +

√

N0

2
Z(h) + hf(x(0)) (8)

x(h) = x(0) +

√

N0

2
Z(h) +

h

2
(f(x1) + f(x(0))) (9)

where Z(h) is a Gaussian random variable with zero mean and a variance which is

equal to the step size h [22].

3.2. MRR without Noise

To verify the design, a pulse without the noise term is applied to make the output

change from −kA to kA, then the frequency response is obtained from |H(f)| =
|Y (f)|/|S(f)| by calculating the DFTs of both input and output.

As it is desired for the pulse to occur at the output, hereafter the potential

barrier is eliminated by a = 0 and consequently there is no more restriction upon

A. The fact is that increasing |A| leads a to lose its effect on the output, and the

minimum width of the well, that dominates the maximum output values, depends

on b. Additionally, k is set to Tb/m where m > 2. Then, the simulation is carried

out for different m parameters, which shows how the frequency response evolves.

The results are illustrated in Fig. 2. Defining |H(fc)|/k = 1/
√
2 where fc is the

cut-off frequency, it is found that m shifts |H(f)|/k and consequently the cut-off

frequency is well-fitted by the expression

fc ≈
0.2047m

Tb

≈ 1

5k
. (10)

Here, (10) verifies via simulation that (6) is correct. Defining the bandwidth

from DC to the first null in the frequency spectrum, m = Tb/k ≥ 5 keeps the signal

bandwidth in the pass-band.

By simulation, the design has been verified. It is found that the DC gain is

|H(0)| = k as determined previously where Tb > 2k. As can be seen, this is equal

to (4), thus verifying its correctness. Moreover, decreasing k shifts the |H(f)| curve
towards higher frequencies.
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Fig. 2. Normalised frequency response |H(f)|/k where a = 0, b = 1/(k3A2), k = Tb/m, m = 2 : 20
(from left to right). The input is A = 1, Tb = 1, and ts = Tb/10

3. The insert gives the normalised
cut-off frequencies of each curve.

3.3. MRR with Noise

The MRR is dependent on not only the transmitted signal but also the noise term.

Although the noise term was not taken into account previously, those features of

the MRR must be considered as references. When the noise term is considered,

accordingly, the MRR changes.

To define the input noise power, the SNR per bit is used as the noise has an

infinite number of frequency components. It is denoted by γb and given by Eb/N0

where Eb is the pulse energy and equals to A2Tb for BPAM signal.

Then, in order to observe the effect of noise, the SQPW is simulated. The results

are illustrated in Fig. 3. It shows that the slope in the attenuation band stays almost

the same and the noise can decrease DC gain considerably.

The noise plays a significant role on fc. Although the slope does not change,

DC gain varies depending on γb. By definition, fc is determined from |H(fc)| =
|H(0)|/

√
2. Thus, the cut-off frequency can be derived from

10 log(φ(γb))− 10 log(|H(0)|/k)
log(TbfN

c )− log(Tbf0
c )

≈ −10
dB

decade
(11)

where φ(γb) is a function of γb, f
N
c and f0

c are the cut-off frequencies with and

without noise respectively. Therefore, fc can be written in a general form as

fc =
1

ckφ(γb)
, (12)

where c is a coefficient. Assuming that φ(γb) is always positive and it tends towards
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Fig. 3. Normalised frequency response |H(f)|/k where a = 0, b = 1/(k3A2), k = Tb/m, m = 5,
A = 1, Tb = 1, γb = −10 : 10 : 30 dB, and ts = Tb/10

3. The insert illustrates the normalised
cut-off frequencies (solid) and DC gain (dashed).

0 while decreasing γb, the noise increases fc.

In concluding this key result, it implies that at high SNRs, the noise slightly

decreases fc, whilst, at low SNRs, it decreases the DC gain and increases the cut-off

frequency.

4. BER Performance of Receiver

4.1. The Effect of Cutoff Frequency

Besides the MRR, the error performance is also needed to validate the filtering

capability of the SQPW. If the noise is filtered out, the output SNR must be less

than that of the input. As the output SNR is generally used to obtain the probability

of error, the BER of the SQPW can provide the SNR at the output. In order to

reveal the BER performance of the receiver, it is simulated under various γb.

Assuming that transmitted signal power stays in 1/Tb bandwidth, for ideal case,

the output SNR would be γbTb and increasing cut-off frequency only makes more

of the noise component pass. If so, for the receiver, the output SNR can be given

by SNRo = γb/fc where fc > 1/Tb.

To verify this relation between SNRo and fc, the BER performance of the re-

ceiver is obtained by means of simulation. For each γb, simulations continue until

the 100th error occurs. The results are illustrated in Fig. 4. From left to right, m,

and consequently fc, increases. The BER curves follow the same trend, shifted in m.

This change in BER, corresponding to fc given by (12), becomes more noticeable
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Fig. 4. BER performance of the receiver where a = 0, b = 1/(k3A2), k = Tb/m, m = 4 : 4 : 20
(from left to right), A = 1, Tb = 1, and ts = Tb/10

3. The black curve with ’MF’ mark illustrates
BER performance of the receiver with the matched filter instead of the SQPW.

when the curve fitting is applied. It is found that the BER curves are well-fitted by

Pe =
1

2
exp

(

− γb
(c1m+ c2)

− 1

c3

)

, (13)

where c1 = 0.2911, c2 = 0.0424, and c3 = 16.2 with an RMSE = 0.06861 for the

inside of the exponential. Fitted curves are also illustrated in Fig. 4. Considering

that m > 2 and γb ≫ c1m/c3, (13) can be rewritten as

Pe =
1

2
exp

(

− γb
cfTbfc

)

, (14)

where cf , the filter coefficient, is about 0.2911/0.2047 = 1.422. Note that, in general,

the BER is a function of the output SNR in the form of mean over deviation.

Therefore, γb/(cfTbfc) is directly related to the output SNR of the SQPW, which

proves that the input signal frequency components below fc passes. In addition to

that, (14) is a supplement to the one in [15]. The former is specific for the filter

usage, while the latter is for the weak signal detection.

4.2. BER Comparison with Butterworth LPF

It is shown that there is a directly proportional relation between the output SNR

and cutoff frequency. Now, it is desired to compare the SQPW with a conventional

filter.

Considering Fig. 2 and Fig. 3, (|H(f)|/k)2 has no ripples in the pass band, and

in the stop band there is a -20 dB/decade slope like a 1st order Butterworth filter.
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However, the SQPW’s stop band consists of two slopes; the first slope starts from

the -3 dB point, applies to a short frequency range, varies with SNR, and it is

steeper than the seconds slope that is fixed at -20 dB/decade. This is an advantage

of the SQPW at higher SNRs compared to the Butterworth filter having a cut-

off frequency at -3 dB regardless of the filter order. On the other hand, the SNR

dependency of its cutoff frequency becomes destructive at lower SNRs.

0 2 4 6 8 10 12
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR per bit (dB)

B
E

R

Fig. 5. BER performances of the receiver accommodating either a SQPW (solid) or a Butterworth
filter(dashed). The SQPW is with a = 0, b = 1/(k3A2), k = Tb/m, m = 5, A = 1, Tb = 1, and
lowpass Butterworth filters are with cutoff frequency 1/Tb, and the orders 1 : 5 (from right to
left). The time step is ts = Tb/10

2.

The effect of this SNR dependency can be observed from the BER performance

of the receiver accommodating a SQPW and a lowpass Butterworth filter separately.

The results are illustrated in Fig. 5 and verify that, at SNRs lower than 2 dB, since

a 1st order Butterworth has a fixed cut-off frequency, less error occurs in the output,

whilst the SQPW provides an error performance as good as a 5th order Butterworth

at SNRs higher than 12 dB.

5. Conclusions

In this paper, a SQPW was designed as a low pass filter for use in BPAM receivers.

The DC gain and cut-off frequency were defined and verified by the SDE simulation

where the potential barrier was not present and where the SQPW was subject to

only one pulse. Then, the effect of noise was examined and discussed. Following

that, an expression for the error performance of BPAM receiver with a SQPW was

obtained and compared with one having the Butterworth filter instead, which also

validates the filtering capability of the SQPW.
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As the SQPW is a nonlinear system, these filter characteristics vary with input

signals. In addition to that, the SR phenomenon was not observed, consequently the

SQPW performance lags behind the matched filter because of having no potential

barrier. However, such a SQPW becomes imperative if traditional ones can not

be realised, even though its nonlinearity and performance are not favorable when

compared to the traditional signal processing methods.

As a result, the DC gain and cutoff frequency presented in this work provides

a firm base for the studies on SQPW with pulse modulation methods. The use of

SQPW as a filter is revealed for the cases where the input dominates the potential

barrier, so that the design provides an over-all noise suppression

The possible further directions can be; investigating the effect of barrier on the

MRR and connecting that effect with SR phenomenon, comparing the performances

of different pulse modulation methods, and seeking an alternative decision making

strategy.
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