
GUARANTEEING GENERALISATION IN NEURAL NETWORKS

John Gareth Polhill

A Thesis Submitted for the Degree of PhD
at the

University of St Andrews

1995

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/12878

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/12878


Guaranteeing Generalisation in 
Neural Networks

A thesis submitted to the 
University of St. Andrews 

for the degree of 
DOCTOR OF PHILOSOPHY

By

John Gareth Polhill

Department of Mathematical and Computational Sciences 
University of St. Andrews

October 1995



ProQuest Number: 10170673

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion.

uest.
ProQuest 10170673

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code 

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346
Ann Arbor, Ml 48106- 1346



<v~



Abstract
Neural networks need to be able to guarantee their intrinsic generalisation 
abilities if they are to be used reliably.

Mitchell's concept and version spaces technique is able to guarantee 
generalisation in the symbolic concept-learning environment in which it is 
implemented. Generalisation, according to Mitchell, is guaranteed when 
there is no alternative concept that is consistent with all the examples 
presented so far, except the current concept, given the bias of the user. A 
form of bidirectional convergence is used by Mitchell to recognise when 
the no-alternative situation has been reached.

Mitchell's technique has problems of search and storage feasibility in its 
symbolic environment. This thesis aims to show that by evolving the 
technique further in a neural environment, these problems can be 
overcome.

Firstly, the biasing factors which affect the kind of concept that can be 
learned are explored in a neural network context. Secondly, approaches 
for abstracting the underlying features of the symbolic technique that 
enable recognition of the no-alternative situation are discussed. The 
discussion generates neural techniques for guaranteeing generalisation 
and culminates in a neural technique which is able to recognise when the 
best fit neural weight state has been found for a given set of data and 
topology.

i



I, John Gareth Polhill, hereby certify that this thesis, which is 
approximately 95 000 words in length, has been written by me, that it is 
the record of work carried out by me and that it has not been submitted in 
any previous application for a higher degree.

o- Li-
Date: Signature of candidate: „ _____________

I was admitted as a research student under Ordinance No. 12 in 1991 and 
re-registered as a candidate for the degree of Doctor of Philosophy in 
1992; the higher degree study for which this is a record was carried out in 
the University of St. Andrews between 1991 and 1995.

Date: Signature of candidate: _ _______________

In submitting this thesis to the University of St. Andrews I understand 
that I am giving permission for it to be made available for use in 
accordance with the regulations of the University Library for the time 
being in force, subject to any copyright vested in the work not being 
affected thereby. I also understand that the title and abstract will be 
published, and that a copy of the work may be made and supplied to any 
bona fide library or research worker.

Date: Signature of candidate: _________________ _____

I hereby certify that the candidate has fulfilled the conditions of the 
Resolution and Regulations appropriate for the degree of Doctor of 
Philosophy in the University of St. Andrews and that the candidate is 
qualified to submit the thesis in application for that degree.

Date: Signature of supervisor:

ii



ARS LONGA, VITA BREVIS EST

ill



Acknowledgements

This thesis would not have been possible without the help of Mike Weir, 
my supervisor, and the financial support of the EPSRC. I am also 
extremely grateful to my parents, Chris and John Polhill for their financial 
and moral support. I would like to thank Inman Harvey at the School of 
Cognitive Sciences, Sussex University for some helpful advice on 
implementing genetic algorithms, and the Department of Mathematical 
and Computational Sciences at St. Andrews University for providing the 
computer facilities and putting up with all the demands I made on CPU 
time (with special thanks to Brian, Norman, Dave and Colin; and the 
secretaries, Helen and Margaret). I would like to thank Bath Information 
and Data Services for their extremely useful document search facilities. I 
would like to thank Katy Harrison for helping me through some difficult 
times, the Wild Bunch for helping me through some good times, Robert 
Bruce for being my guru, Gordon McPhate for putting up with me for a 
year and Tom Sambrook for the chrysanthemums. Last, and most, I would 
like to thank the Frimble Wizard, for the magic spell...

In Defence of No Defence

A great deal of neural network research is funded by military grants. I 
would like to make it clear that I do not approve of defence work, and that 
I would prefer it if this thesis was not used in any way as part of a defence 
project or a defence-funded project. My reasons for opposing defence 
work are simple. Firstly, whilst I accept that in certain situations, war is 
the only alternative short-sighted people can see, I do not think it is right 
to encourage it by providing more and more sophisticated means of 
defending ourselves or attacking others. Secondly, and more importantly, 
it is becoming increasingly clear that many clients of the British defence 
industry are not to be trusted with a firework, never mind tanks, fighter- 
planes, laser-guided missiles, etc. Finally, anyone who reads this is 
supposed to be intelligent, and violence is not an intelligent way to solve a 
problem.

iv



Contents
1 Introduction............................................................................................ 1

1.1 Introduction................................................................................ 1
1.2 Introduction to Symbolic AI...................................................3

1.2.1 Search Techniques....................................................... 4
1.2.1.1 Depth-First Search....................................... 4
1.2.1.2 Breadth-First Search.................................... 7
1.2.1.3 Best-First Search........................................... 8
1.2.1.4 Bidirectional Search......................................9

1.2.2 Introduction to Learning in Symbolic AI................12
1.2.3 Assessment of Symbolic AI........................................ 14

1.3 Introduction to Neural Networks..........................................17
1.3.1 Specification of Neural Networks.............................18
1.3.2 Training Neural Networks......................................... 21

1.3.2.1 The Perception.............................................. 23
1.3.2.2 Back-Propagation......................................... 26
1.3.2.3 Introduction to Genetic Algorithms for

Training Neural Networks......................... 31
1.3.3 Assessment of Neural Networks...............................34

1.4 Can Symbolic AI and Neural Networks Co-operate?..... 37
1.5 Summary of the Rest of the Thesis........................................39

2 Mitchell's Symbolic Technique.......................................................... 41
2.1 Introduction................................................................................ 41
2.2 Searching For No Alternative................................................ 45

2.2.1 The Search Space..........................................................45
2.2.2 Bidirectional Search in Mitchell's Technique........49
2.2.3 Candidate Elimination................................................ 53
2.2.4 The Version Space Algorithm and Examples........57

2.2.4.1 A Simple Example........................................ 58
2.2.4.2 A More Complex Example......................... 59

2.2.5 Formalism of Mitchell's Technique.........................68
2.3 Problems With Mitchell's Technique................................... 76

2.3.1 When No-Alternative Cannot be Found................ 77
2.3.2 When the Data are Inconsistent................................ 79

v



2.3.3 When the Concept is Disjunctive.............................82
2.3.4 Controlling the Size of the Boundary Sets.............83

2.4 Conclusion................................................................................... 85

3 Generalisation In Neural Networks..................................................87
3.1 Introduction................................................................................ 87
3.2 Issues in Generalisation...........................................................91

3.2.1 Assumptions about the Underlying Function...... 91
3.2.2 Assumptions about the Data.....................................94
3.3.3 The Over-Fit/Under-Fit Dilemma........................... 94
3.2.4 Over-Fit and Under-Fit in the Classification

Paradigm........................................................................ 97
3.3 Generalisation in Neural Networks in the Literature..... 98

3.3.1 The Validation Technique......................................... 98
3.3.2 Average Generalisation Error....................................104
3.3.3 Vapnik Chervonenkis Theory....................................109
3.3.4 Comparing VC and Average Generalisation

Theories...........................................................................113
3.3.5 Bayesian Frameworks for Generalisation...............115

3.4 The Mitchellian View............................................................... 120
3.4.1 Generalisation.............................................................. 120
3.4.2 Relating Mitchell's Technique to Neural

Networks........................................................................121
3.5 Conclusion.................................................................................. 124

4 Issues in Topology Determination.................................................... 127
4.1 Introduction..................................................................................127
4.2 The First Hidden Layer............................................................ 134

4.2.1 Regions and the Requirement for a Second
Hidden Layer................................................................ 134

4.2.2 Overcoming the Requirement for a Second
Hidden Layer................................................................ 137
4.2.2.1 ID Input Space...............................................137
4.2.2.2 2D Input Space...............................................139
4.2.2.3 Higher Dimensions of Input Space..........143

4.2.3 One Hidden Layer or Two?....................................... 143
4.3 The Second Hidden Layer.......................................................146

4.3.1 Number of Units Required......................................... 148

vi



4.3.1.1 One Output Unit........................................... 148
4.3.1.2 Many Output Units...................................... 151

4.3.2 Further Hidden Layers.............................................. 153
4.4 A Brief Look at Sigmoid Units...............................................154

4.4.1 The Increased Power of Sigmoid Units...................154
4.4.2 Approximation of the Chequer-Board With a

Single Hidden Layer Using Sigmoid Units........... 158
4.4.3 The Possibility For Using More Than Two

Hidden Layers............................................................... 160
4.5 Conclusion.................................................................................. 164
Appendix................................................................................................. 166
4.A Mapping the 4-Bit Parity Problem onto a Unit Square

Using Two Units in the First Hidden Layer, Whilst 
Preserving Their Separability................................................166

5 Neural Implementation Based on Weight Space...........................170
5.1 Theory of the Weight Space Technique...............................170

5.1.1 Bidirectional Search Using Hypercones.................173
5.1.1.1 Monotonically decreasing angle

between N and X......................................... 175
5.1.1.2 Freedom of movement and

hypercones......................................................176
5.1.1.3 Convergence...................................................181

5.1.2 Implementing Candidate Elimination Using
Error Functions............................................................. 181
5.1.2.1 Minimising the Distance from the

Current Hypercone..................................... 182
5.1.2.2 An Error Function which is Zero for all

Correctly Classified Patterns.................... 184
5.1.2.3 Combining Correct Classification with

Minimum Distance from the Current 
Hypercone......................................................186

5.1.3 Relation to the Symbolic Technique........................ 189
5.2 Algorithm and Experimental Results.................................. 192

5.2.1 Algorithm.......................................................................192
5.2.2 Results for a Simple Experiment...............................195
5.2.3 Problems with the Technique....................................198

vii



5.3 Generalisation For Hidden Units......................................... 200
5.3.1 Symmetries in Hidden Units....................................201
5.3.2 Measuring Weight Space Angle with Hidden

Units................................................................................ 203
5.4 Conclusion...................................................................................206

6 Neural Implementation Based on IO Space..................................... 208

(i) Development of Theory.......................................................................208
6i. 1 Partially Ordering the IO..........................................................208

6i. 1.1 Representing the IO......................................................208
61.1.2 Partially Ordering the Grids......................................213

61.2 Learning Using Grids............................................................... 216
61.2.1 Construction and Use of Grids.................................216
61.2.2 Generalisation and the Relation to Mitchell.......... 219
61.2.3 Comparison with the Validation Technique........ 220
61.2.4 Features of Learning Using Grids............................222

61.3 The H/H0 Paradigm................................................................ 227
61.3.1 Methodology of the H/H0 Paradigm..................... 227
61.3.2 Experiments on the H/H0 Paradigm..................... 229

61.3.2.1 Efficient Exhaustive Search........................ 229
61.3.2.2 Demonstration of Termination..................232
61.3.2.3 Maximum Number of Hypothetical

Gridpoints at Locking..................................236
61.3.3 Assessment of the H/H0 Paradigm.........................239

61.4 The B/W Paradigm.................................................................. 240
61.4.1 Using the Partial Ordering.........................................240
61.4.2 Inherently Better Fit.....................................................242
61.4.3 False Locking Using the B/W Paradigm...............246

61.5 The I/I0 Paradigm.....................................................................250
61.6 Conclusion to Part (i).................................................................254

(ii) Experiments on the 1/10 Paradigm...................................................257
6ii.l Experiments and Results...........................................................257

611.1.1 Example Run................................................................. 258
611.1.2 Comparison with Perfect Training.......................... 265
611.1.3 Comparison with H/H0............................................. 267
611.1.4 Comparison with Validation.....................................272

viii



611.1.5 Validation Set Size........................................................275
611.1.6 Scalability of the Technique.......................................277
6H.1.7 A Symbolic Problem.................................................... 279

611.2 Assessment of the I/IO Paradigm..........................................284
611.3 Conclusion to Part (ii).............................................................. 287
Appendices............................................................................................. 290
6. A Proof of Locking for the H/HO Paradigm...........................290
6.B Genetic Encoding of Neural Network and Selection

Mechanism................................................................................ 292
6.B.1 Genetic Encoding of Neural Network Weight

State................................................................................292
6.B.2 Selection Mechanism................................................... 293

6.C Crossover and Mutation Probabilities................................... 294

7 Conclusions and Further Work......................................................... 296
7.1 Achievements.............................................................................. 296
7.2 Further Work.............................................................................. 298

7.2.1 Keeping 10 Strictly Behind in the Ordering........... 298
7.2.2 Using the Network Trained from the Previous

Familiarisation...............................................  299
7.2.3 Relaxing the Training Requirements Further....... 300
7.2.4 Proposal of New Instances.........................................300

7.3 Conclusion.................................................................................. 301

A Software Manual....................................................................................304
A.l General Points and File Formats.............................................304

A. 1.1 Format of Topology Files........................................... 305
A. 1.2 Format of Weight Files................................................ 306
A. 1.3 Format of Pattern Files................................................ 307

A.2 Grid Technique Simulators...................................................... 307
A.2.1 Perfect Training Version Using Exhaustive

Search..............................................................................308
A.2.2 Imperfect Training Version Using a GA.................322

A.3 IOVisualisor.................................................................................331

Bibliography........................................................................................................341

ix



Introduction Introduction

1 Introduction

1.1 Introduction

Mitchell's concept and version spaces technique1 is a technique for 
learning symbolic descriptions of concepts from a set of instances. A series 
of instances and non-instances of the concept are presented to the learner 
until there is only a single concept that is consistent with the series. The 
learner has then learned the concept and will correctly determine whether 
future examples are instances or non-instances of the concept.

To some extent, when humans learn concepts, much the same kind of 
processes are happening at an abstract level. For example, when teaching 
our children to speak we point to objects and recite the word. The child is 
then expected to repeat the word back to the parent. There are two things 
to be learned here: firstly, the correct pronunciation of the word, and 
secondly the class of objects which the word refers to. At first, the child 
may have no idea of what is being pointed to — nor indeed what is to be 
inferred from the gesture of pointing. Yet after a series of instances of the 
word taught by the parent and non-instances corrected by the parent 
when the child fails to generalise correctly, the word is learned, and the 
child can distinguish "car" from "lorry" and "van", for example.

We can all remember concepts we may have had difficulty in learning, 
such as the conditional perfect tense in French, long division in arithmetic, 
or how to deal with a box junction when driving a car. Although the 
moment when we finally grasp the concept does not have us all jumping 
out of the bath shouting "Eureka!" to no-one in particular, it must be said 
that there is a certain joy at having understood something.

It is this eureka sense of grasping a concept that Mitchell's technique 
manages to achieve in a computer, in a limited sense, when the correct 
concept is converged upon. There is no alternative but the learned concept

1 Mitchell, 1982

1



Introduction Introduction

at this stage and therefore the concept can be used with confidence in 
future classifications.

Mitchell's technique is based in the domain of symbolic Artificial 
Intelligence (AI) though its appeal is not restricted to that discipline. The 
eureka experience should be open to other paradigms and in this thesis 
the aim is to make it available to neural networks. The view is taken that 
the tenets of Mitchell's technique which enable the concept to be learned 
can be abstracted from the symbolic domain in such a way that they can 
be applied in neural networks.

The potential benefit of Mitchell's technique, as far as neural networks are 
concerned, is that it enables guaranteed generalisation within the limits of 
the assumptions made by the user. Authors have yet to harness the 
generalisation abilities which are a natural and primary ability of neural 
networks. If this could be done — even in a limited fashion — then neural 
networks could more readily justify themselves as an alternative approach 
to conventional classification and function approximation methods.

For Mitchell's technique, there is the benefit of showing a wider 
applicability than just symbolic AI. Symbolic AI, which is discussed in 
section 1.2, suffers from certain difficulties — particularly with regard to 
noise toleration — which limit its use. These limits are imposed by default 
on Mitchell's technique which, in the abstract, might not be restricted in 
this way.

Neural networks are introduced in section 1.3. There it is shown that 
neural networks have their own difficulties. In section 1.4, it is argued that 
the strengths and weaknesses of symbolic AI and neural networks seem to 
complement one another. Consequently it is argued that there is scope for 
making the more general point that neural networks and symbolic AI may 
be able to borrow ideas from one another — or even co-operate fully to 
provide more effective hybrid techniques. Existing examples of such co
operation are discussed.

This thesis is an attempt to evolve a technique based on borrowing ideas 
from Mitchell's technique to provide a benefit both for Mitchell's 
technique in the abstract, and for neural networks. Section 1.5 gives a

2



Introduction Introduction

summary of the rest of the thesis which documents the research 
undertaken in attempting this goal.

1.2 Introduction to Symbolic AI

Symbolic AI is the domain of Artificial Intelligence which develops 
techniques for simulating intelligence on the basis of the physical symbol 
system hypothesis of Newell and Simon:

A physical symbol system has the necessary and sufficient means for 

general intelligent action.2

In essence, a physical symbol system is a system which operates on a set of 
symbols which have some kind of structure. Symbolic AI techniques are 
therefore techniques which are based around the manipulation of 
symbols.3 More specifically, the techniques are characterised by a mind- 
based approach. This means that they approach problems in a high-level 
fashion, using the symbols and rules that humans use to describe the 
problems, without insisting on any neurological or biological realism:

Artificial Intelligence research is not aimed at simulating neural 

networks, for it is based on another kind of faith: that probably there 

are significant features of intelligence which can be floated on top of 

entirely different sorts of substrates than those of organic brains.4

The key to the symbolic approach to problems is state representation. The 
capability to represent states within the problem domain enables the 
representation of the solution state and the current state. Together with a 
set of rules for proceeding from one state to another, symbolic AI 
approaches are able to find the desired state from a given current state. 
The basic mechanism by which this is done is termed search. Section 1.2.1 
outlines some search techniques.

2Newell & Simon, 1976, p. 116

3Rich & Knight, 1991, p. 8

4Hofstadter, 1980, p. 572

3



Introduction Introduction to Symbolic AI

There are many applications of symbolic AI in domains such as vision, 
natural language understanding, making plans, and game playing. This 
thesis, however, will draw from machine learning — another domain of 
AI. Section 1.2.2 indicates some approaches to machine learning in 
symbolic AI.

Section 1.2.3 gives some assessments of the symbolic approach to 
problem-solving.

1.2.1 Search Techniques

For the purposes of illustrating the search techniques, consider the famous 
problem by Lewis Carroll of getting from one English word to another of 
the same length by changing one letter at a time. All the intervening 
words must also be English. It is desired to achieve this in as few steps as 
possible. For example, it is possible to get from BLACK to WHITE in seven 
steps:

BLACK

1 BLANK
2 BLINK
3 CLINK
4 CHINK
5 CHINE
6 WHINE
7 WHITE

The search can be thought of as a tree of words starting from the first 
word as the trunk, with branches extending for each subsequent word, 
which differ by one letter from their predecessors. Figure 1.2 shows some 
of the branches for the BLACK to WHITE search.

1.2.1.1 Depth-First Search

One approach to the problem is to start with BLACK and then find a word 
that differs from BLACK by one letter, such as SLACK. Then the search 
proceeds by finding a word that differs from SLACK by one letter, and so 
on. The search is stopped when the goal is reached or some prespecified 
maximum number of words have been visited, in which case the strategy

4



Introduction Introduction to Symbolic AI

backtracks, and explores the deepest next alternative. This approach is an 
example of what is called depth-first search. Figure 1.3 shows how the 
depth-first search strategy would search a portion of the tree in figure 1.2.

Figure 1.2 — A search tree showing some of the possibilities during the 

search from BLACK to WHITE.

Of course, when the search is not restricted only to the search space 
represented by the tree in figure 1.2, rather more possibilities arise. If the 
search algorithm just finds, for a given word, w, all the words which differ 
from w by just a single letter, there is the possibility of revisiting words 
which have already been encountered during the search. For example the 
search could go BLACK, SLACK, SLICK, SLINK, BLINK, BLANK, 
BLACK. This leaves open the possibility of infinite loops during the 
search. This may be prevented by keeping a record of all previously 
visited nodes — not just the current path. Each node expanded from a leaf 
of the tree is checked against this list to see if it has occurred already.

5



Introduction Introduction to Symbolic AI

Figure 1.3 — How the right hand side of the search tree in figure 1.2 is 

searched using the depth-first strategy.

Even given such a measure, the depth first search does not guarantee the 
minimum number of steps. For example, it might find a longer route from 
BLACK to WHITE, such as BLACK, BLINK, BRINK, BRINE, BRIBE, 
TRIBE, TRITE, WRITE, WHITE, with eight steps rather than seven.

Depth-first search without path storage has the advantage of requiring 
little storage space, but the disadvantages of being costly in terms of time 
taken to find a solution. It is also not able to guarantee the solution in the 
minimum number of steps, should that be desired (as it is with this 
problem). Often, however, search spaces are so large, and problems so 
hard, that it is enough to be able to find a solution and depth-first search 
may be capable of doing this in various cases.

6



Introduction Introduction to Symbolic AI

1.2.1.2 Breadth-First Search

An alternative strategy is to generate all the words that have one letter 
different from BLACK, i.e. SLACK, FLACK, BLOCK and BLANK, and 
then find the corresponding words for each of these, and so on, until 
WHITE is found. This is the breadth-first search strategy. Figure 1.4 shows 
how breadth-first search expands the first two layers of the search tree in 
figure 1.2 layer by layer. Ideally, breadth-first search should only have to 
remember the words in the current layer being expanded. This is so that 
the next layer can be produced. If there is the possibility of going back to a 
previous layer from the current layer, however, as is the case in this 
problem, the previous layers will have to be remembered as well to avoid 
repetitions.

I

Figure 1.4 — Expansion of the first two layers of the search tree in figure 

1.2 by breadth-first search. The order in which the nodes are expanded is 

indicated next to each node.

In contrast to depth-first search, breadth-first search can guarantee the 
minimum number of steps, should that be required. However, there is a 
cost. By the time the seventh layer of the search is reached (which contains 
WHITE), there are 134 words in the layer. A large number of problems, 
including this one, have an exponential growth in the number of nodes to

7



Introduction Introduction to Symbolic AI

expand during the search. In a game of chess, for example, where (for the 
sake of ease) let us assume there are 16 possibilities for each move, there 
are 167, or roughly 108 possible states of play after seven moves.

Breadth-first search therefore has the advantage of being able to guarantee 
the solution with the fewest steps, if that is required. The disadvantage is 
that for large search spaces there is an excessive demand on memory.

1.2.1.3 Best-First Search

Large search spaces cannot be feasibly searched using brute-force methods 
such as breadth-first and depth-first search. It is therefore necessary to 
find the means by which the search can be cut down. Such means are 
called heuristics. For example, a heuristic for depth first search might be to 
use a depth-bound. This means the search backtracks when a pre-defined 
maximum number of steps have been taken, to cut losses in the sense of 
not exploring a branch too far down. Such heuristics are blind heuristics, 
and may apply for any problem. There are also knowledge-based 
problem-specific heuristics, however, which can be used to explore the 
search space for the given problem more intelligently.

Best-first search uses a heuristic evaluation function to decide which 
nodes in the current search tree are to be explored first. The heuristic 
evaluation function for a given problem gives an indication of how good a 
candidate move is.

In the Lewis Carroll game, for example, the heuristic evaluation function 
might be the number of letters which are equal to the corresponding 
letters in the target word. Since the minimum number of moves is also 
required for this problem, a fraction is added to this heuristic evaluation 
function. Let /J-max be the maximum number of moves which will be 
considered by the search. Let p. be the number of moves so far. The 
fraction (Umax - M) / Umax will give a number which is less than 1, and is 
larger for a fewer number of moves. Suppose there is a heuristic 
evaluation function, h(w), which is to be maximised. There is the following 
equation for h(w), where w is a word, and Cw is the number of letters in w 
that are equal to the target word:

8



Introduction Introduction to Symbolic AI

h(w)=c„+a*z—[i.i]

P'max

Let fimax = 10 for the purposes of this example. Best-first search begins by 
expanding the first node (which is BLACK in the example). The values of 
the heuristic evaluation function are calculated for each new node 
generated, and the nodes and their heuristic evaluation function values 
are put on a list of nodes to be explored. The search then proceeds by 
taking the first item with the highest value of the heuristic evaluation 
function from the list of nodes to be explored, and adding the nodes 
attained by expanding this item (which is always a leaf node on the 
current search tree) to the front of the list of nodes to be explored, along 
with their heuristic evaluation function values. Figure 1.5 shows how best- 
first search would approach the problem in the search tree of figure 1.2.

Best-first search does not guarantee the solution with the minimum 
number of steps, however, should that be required. For the restricted 
search space of figure 1.2, the search in figure 1.5 shows the search finding 
the CHINE branch, which leads to WHITE in the optimum number of 
moves, when the search is done properly. With all five-letter words 
available to the search, rather than just those in figure 1.2, a sub-optimum 
path may be found if SLACK is the first word expanded from BLACK. 
Figure 1.6 shows the nodes expanded in a search which takes 8 moves 
instead of 7. The 8 steps in the solution in figure 1.6 are: BLACK, SLACK, 
SLICK, SLICE, SPICE, SPINE, SHINE, WHINE and WHITE.

Best-first search is a more feasible method of searching the space than 
breadth-first search, and will often take less time than depth-first search.

1.2.1.4 Bidirectional Search

An alternative strategy is to search from two directions — one starting at 
the initial state, the other starting at the goal. The search then proceeds in 
two directions, and hopefully meets in the middle. Bidirectional breadth- 
first search will gain over straightforward breadth-first search in that 
fewer nodes in the search tree must be expanded. For example, in the 
BLACK to WHITE search, only 109 nodes would need to be examined in 
order to find the solution. With a unidirectional search the number of

9



Introduction Introduction to Symbolic AI

nodes examined is 332 — just over three times the number needed with a 
bidirectional search.

Figure 1.5 — Searching the tree in figure 1.2 using a best-first search. The 

numbers above each word indicate the order in which the words are explored.

The value of the heuristic evaluation function is indicated to the right of each 

word.

Bidirectional best-first search, however, is not such a good idea. This is 
because it will not necessarily be the case that each direction will explore 
the same branch of the search. In general, any search employing a

10



Introduction Introduction to Symbolic AI

heuristic has the possibility of suffering from this problem.5 Figure 1.7 
shows the BLACK and WHITE directions passing each other in the search.

Figure 1.6 — The search tree for a non-optimum best-first search to get from 

BLACK to WHITE. The number above each word is the heuristic evaluation 

function value for that word.

Bidirectional depth-first search may also fail to make any savings, if the 
depth-bound is set inappropriately. Too high a depth-bound, and the two 
directions may pass each other. Too low a depth-bound, and the two 
directions cannot meet.

5 Rich, 1983, p. 60

11



Introduction Introduction to Symbolic AI

Figure 1.7 — The two directions in a best-first bidirectional search passing 

each other. The shaded line separates the WHITE direction from the BLACK 

direction, for which the values of the heuristic evaluation function are 

indicated.

1.2.2 Introduction to Learning in Symbolic AI

Since one of the major abilities of intelligent systems is the ability to learn, 
many AI researchers set out to show that computers were also capable of

12



Introduction Introduction to Symbolic AI

learning. Machine learning has many different paradigms,6 indicated 
below, all of which are aimed at finding a concept description that will be 
useful in future.

• Rote Learning. Here, the learner memorises the positive and 
negative training instances. No representation of the concept is 
needed. In order for future instances to be correctly classified, they 
must belong to the set of training instances.

• Learning by Instruction. In this case, the learner is given a concept 
description by a teacher. This must be translated into the learner's 
own internal concept description which can then be used in 
future.

• Learning by Analogy. The learner transfers an already acquired 
concept into another analogous domain.

• Learning from Examples. Under ideal circumstances, in which the 
data are noiseless, a concept description is found by the learner 
which matches all the positive instances and does not match any 
of the negative instances. When the data are noisy, heuristics must 
be employed which enable the correct concept to be learned.

• Learning by Observation and Discovery. This is also known as 
unsupervised learning. With no teacher, there is no given 
classification of the instances. It is up to the learner to make its 
own classifications. There is also the possibility that there is more 
than one concept to be learned from the observations made.

This thesis will be looking at learning from examples. Given a 
representation of the concepts, it is possible to use the instances as a basis 
for a search of concept space. Mitchell's technique is an example of this, 
and it has been described as a least-commitment exhaustive breadth-first 
search of concept space.7 (The least-commitment strategy is that of not 
trying to patch up incomplete solutions, but waiting for more information

6Carbonell et al, 1983, pp. 8-11

7Rich & Knight, 1991, p. 468

13



Introduction Introduction to Symbolic AI

before making a more complete specification.8) This description, however, 
does not do the technique justice. It ignores the savings made by the 
bidirectional search that Mitchell uses, and also ignores the extensive 
pruning carried out by the technique during the search, which is enabled 
by a partial ordering of concepts. Chapter 2 has more detail on this.

There are other techniques for searching concept space. Winston's arch 
learner,9 for example, employs a depth-first strategy.10 The approach relies 
on near-miss instances, which have a single difference from positive 
instances of the concept. Winston's program requires a very careful 
teacher if the concept is to be learned quickly, since it is sensitive to the 
order of presentation of the instances.11

1.2.3 Assessment of Symbolic AI

Symbolic AI techniques are used in a wide variety of real-world domains. 
The main practical application to come from research in symbolic AI has 
been expert systems. Expert systems are the embodiment in a computer of 
the rules which experts apply when solving problems in their particular 
domain of expertise. For more detail, see Charniak and McDermott.12

Examples of expert systems are programs such as MYCIN13 and 
CADUCEUS,14 which give medical diagnoses, and PROSPECTOR,15 
which predicts the location of deposits of various ores. These programs 
provide accurate information, where possible, and are also able to give 
explanations of how and why they reach the conclusions they make. These 
explanations inform the user of the rules invoked during decision making.

8Rich, 1983, p. 258

9Winston, 1975

10Rich & Knight, 1991, p. 469

11Rich & Knight, 1991, p. 462

12Chamiak & McDermott, 1985, Ch. 8

13Shortliffe, 1976

14Popleetal, 1975

15Duda et al, 1980

14



Introduction Introduction to Symbolic AI

Expert systems exploit the narrowness of the domains in which they are 
applied to enable computers to make suggestions. Problems with large 
numbers of rules and too much computational information cannot be 
addressed by computers in a reasonable amount of time. By narrowing the 
domain in which they are applied, computers can be effectively used.

However, this narrowness leads to brittleness. This brittleness means that 
an expert system, once designed, can only cope with the problem domain 
it was designed to cope with. The rules and general principles cannot be 
applied in other domains. Brittleness is discussed by several authors,16 
and in general, it refers not only to the narrowness of the domains AI 
systems can be effectively be used in, but also to the intolerance of these 
systems to noisy, novel and inconsistent data within a given domain.17

Duda and Shortliffe see this as a paradox in simulating intelligent 
behaviour:

Paradoxically, it has proved much easier to emulate the problem

solving methods of some kinds of specialists than to write programs 

that approach a child's ability to perceive, to understand language, or 

to make "commonsense" deductions. Many human experts are 

distinguished by their possession of extensive knowledge about a 

very narrow class of problems. It is this very limitation that makes it 

feasible to provide a computer with enough of the knowledge needed 

to perform those tasks effectively.18

Symbolic AI aims to provide a high level account which as a consequence 
tends to deal with clean rather than noisy data. In order to cope with 
noise, rules must be seen as guidelines rather than statements of absolute 
truth and symbolic representation schemes must allow for the fact that 
reality does not always divide itself up into neat, non-intersecting 
compartments. Noise toleration may be improved by a more flexible, 
adaptive approach.

16E.g. Aha, 1992, p. 267; Boden, 1987, p. 499; Hanson & Burr, 1990, p. 472; Holland, 1986

17Coombs et al, 1992, p. 247

18Duda & Shortliffe, 1983, p. 262

15



Introduction Introduction to Symbolic AI

Other approaches, outwith mainstream symbolic AI, take these factors 
into consideration and are also sometimes incorporated into symbolic AL 
Fuzzy logic, for example, is a formalism for approximate reasoning 
developed by Zadeh,19 and another example is the use of genetic 
algorithms,20 which adopt an evolutionary approach to system design.

Noise has more implications in concept learning using symbolic AI than in 
other domains in which symbolic AI is applied. This is because it can give 
rise to incorrectly learned concepts, or even the loss of the ability to learn 
anything. Mitchell's technique requires unwieldy adaptations to cope with 
noise (see chapter 2). Other techniques for coping with noise in concept 
learning using symbolic AI involve using nearest-neighbour techniques.21

19Zadeh, 1973

20Goldberg, 1989

21E.g. Aha & Kibler, 1989; Hirsh, 1990

16



Introduction Introduction to Neural Networks

1.3 Introduction to Neural Networks

Neural networks adopt a different approach to simulating intelligence 
from symbolic AI. They may be seen as a brain-based approach, rather 
than a mind-based approach. They offer the hope of being able to simulate 
the aspects of human intelligence that symbolic AI has difficulty with, 
such as vision and speech, though it is also believed that they might model 
higher psychological processes:

Though the appeal of PDP models is definitely enhanced by their 

physiological plausibility and neural inspiration, these are not the 

primary bases for their appeal to us. We are, after all, cognitive 

scientists, and PDP models appeal to us for psychological and 

computational reasons. They hold out the hope of offering 

computationally sufficient and psychologically accurate mechanistic 

accounts of the phenomena of human cognition which have eluded 

successful explication in conventional computational formalisms; and 

they have radically altered the way we think about the time-course of 

processing, the nature of representation, and the mechanisms of 

learning.22

However, not all authors with an interest in neural networks are 
concerned with intelligence and biological reality:

Our subject matter is computation by artificial neural networks. The 

adjective "neural" is used because much of the inspiration for such 

networks comes from neuroscience, not because we are concerned 

with networks of real neurons. Brain modelling is a different field and 

... our prime concern is with what the artificial networks can do, and 

why. ...

We emphasise the theoretical aspects of neural computation. Thus we 

provide little or no coverage of... implications for cognitive science or 

artificial intelligence.23

22McClelland et al, 1986, p. 11

23Hertz et al, 1991, p. xix

17



Introduction Introduction to Neural Networks

Therefore, there is an. argument for asserting that neural networks are a 
discipline in their own right, distinct from AI. Some of the early 
enthusiasm for AI, and its subsequent failure to keep all the promises it 
made, has meant that those in neural networks are more cautious about 
stating their goals. Rather than attempting a complete simulation of 
human intelligence, neural networks are also to be seen as useful tools in 
the workshop of the computer scientist and the statistician.

Although it is some fifty years since the pioneering work of McCulloch 
and Pitts,24 real enthusiasm for neural networks did not develop until the 
advent of training algorithms that could train more sophisticated neural 
networks than the Perceptron.25 This did not happen until the last decade, 
and hence neural networks have yet to establish themselves as being as 
reliable as, and superior to standard techniques. This is necessary if neural 
networks are to survive as a discipline. Papers with titles such as "Neural 
Networks: A New Method for Solving Chemical Problems or Just a 
Passing Phase?"26 serve to emphasise this point, and indicate that there is 
some urgency if neural networks are to establish themselves as valid 
replacements for standard techniques.

Section 1.3.1 describes the terminology of neural networks, and how they 
are constructed. Section 1.3.2 discusses three methods for training neural 
networks. Section 1.3.3 gives an assessment and critique of neural 
networks.

1.3.1 Specification of Neural Networks

A neural network consists of a set of interconnected neural processing 
elements, called units. These are sometimes called neurons, since they are 
based on a loose simulation of biological neurons. Each unit consists of a 
set of fan-in connections which provide the input to the unit, fan-out 
connections along which the output of the unit is sent, and functions for 
relating the input of the unit to the output of the unit. The connections are

24McCulloch & Pitts, 1943

25Rosenblatt, 1958

26Zupan & Gasteiger, 1991

18



Introduction Introduction to Neural Networks

weighted, and the process of training the neural network to give the 
desired behaviour is that of deducing these weights.

The input to a unit is called the excitation. The excitation function is a 
function of the outputs of the units at the other end of the fan-in 
connections and the weights assigned to those connections. Typically, the 
excitation takes the form of equation [1.2] (where N is the number of fan-in 
connections), though sometimes a product, or combination of products 
and sums is used instead of the sum.

excitationj = outputweight- [1.2]
M,N

The excitation is used to compute the activation of the unit. The activation 
of the unit refers to the unit's state, which is usually either on or off, though 
sometimes the analogue value is of interest. In the binary case, an 
activation value of 1 represents the unit being on, and an activation value 
of 0 represents the unit being off. The activation function must be non
linear in multi-layer neural networks, since the addition of an extra layer 
when the neural network uses linear activation functions does not increase 
its capabilities.27 Typical non-linearities are the Heaviside, or step-function 
[1.3], a semi-linear function [1.4], or a sigmoid function [1.5] (where (3 is a 
positive constant).

activation}
1 excitation j > 0 
0 excitation^ < 0 [13]

1
< + lj

0
activation j =

excitation j > [3 
-f3 < excitation. < {3 

excitation j < -(3

. . 1 acfcvaftow; = ----- _pxexcitatio
1 + e

[1-4]

[13]

27Hertz et al, 1991, p. 108

19



Introduction Introduction to Neural Networks

Usually, a bias is added to the excitation, which enables the activation to 
cross the 0.5 activation threshold for any value of the excitation, rather 
than just zero. Thus, the full excitation function is given in [1.6]:

excitation. - ''^output- X weightj
J=1,N

+ biasj [1.6]

There is then an output function, which provides the final output of the 
unit given the activation. In this thesis, the output is set to be equal to the 
activation. The behaviour of a unit is summarised in figure 1.8.

Figure 1.8 — Stages in calculating the output of a neuron from its input.

In some neural networks, there are neurons with no fan-in connections. 
These are called input units, and their outputs are usually given by a set of 
data. Similarly, there are neurons with no fan-out connections, which are 
called output units. The neural networks considered in this thesis all have 
input units and output units. Units which are neither input nor output 
units are called hidden units.

The excitation of each input unit is specified by the user, and may be seen 
as belonging to one axis of an input space. The input space contains the set 
of all possible inputs to the network. The Input to Output (IO) behaviour 
of the neural network is the output of each output unit for each point in 
input space.

The connections in a neural network may, in theory, be from any unit to 
any other unit. In practice, however, the units are often organised into 
layers, with the outputs of units in one layer being connected to the inputs 
of the units in the next layer closer to the layer of output units. These are 
called layered feed-forward networks, and are illustrated in figure 1.9.

20



Introduction Introduction to Neural Networks

Networks with cyclic connections, such as Hopfield networks28 in which 
each unit sends its output along connections to every other unit, are called 
recurrent networks.

Input Layer Layer Layer Output
Layer 0 n-1 n n+1 Layer z

Figure 1.9 — A layered feed-forward network, where all fan-in connections 

to units in an arbitrarily chosen layer n, come from units in layer n-1, and 

all fan-out connections go to units in layer n + 1.

The organisation of the units and connections in a neural network is called 
the topology of the network. In layered feed-forward networks, the 
topology is a specification of the number of layers, and the number of 
units in each layer. Full connection between each layer is usually assumed. 
The term feed-forward will be used to infer layered feed-forward networks 
henceforth in this thesis, which will only be considering such networks.

1.3.2 Training Neural Networks

The main thrust of much neural network research is the attempt to find a 
weight state that gives the desired IO behaviour. The process of finding a 
weight state is called training. In this thesis, as in many neural network 
training frameworks, the desired IO behaviour is trained using a set of p 
samples from the desired IO behaviour, termed the training or pattern set. 
The pattern set may have to be taken from real-world measurements, in 
which case the desired IO behaviour may not be known for all cases, and 
erroneous behaviour is only revealed during future trials of the trained 
network by taking further samples.

28Hopfield, 1982

21



Introduction Introduction to Neural Networks

Rumelhart and Zipser identify four main paradigms for training neural 
networks:29

• Auto Associator. Input patterns are stored in the network and then 
the network is used to retrieve the patterns as output, on the basis 
of input which may be corrupted or resembling versions of the 
patterns stored.

• Pattern Associator. Patterns consisting of IO pairs are presented 
and the output must be associated with the input for each pattern. 
Once the IO pairs have been trained, the correct output should be 
retrieved for each trained input. The pattern associator is more 
general than the auto-associator in that the desired output is not 
necessarily the same as the input used in training.

• Classification Paradigm. This is strictly a subset of the problems 
tackled by the pattern association paradigm. With pattern 
association, a given input may have a desired output which 
involves any number of the output units firing, or the outputs may 
have analogue targets. In the classification paradigm each output 
unit is trained to represent the input as belonging to a particular 
class, as distinct from the classes which are represented by other 
output units. Thus, with the classification paradigm, exactly one 
output unit should fire for each input.

• Regularity detector. Salient features in the input population are to 
be discovered by the network. There is no pre-specified output for 
the network. The system groups together inputs with common 
salient features, creating its own classification scheme accordingly.

As has been seen, learning by example occurs in symbolic AI, and the 
neural pattern association and classification paradigms. This thesis will 
focus on these paradigms of neural network training. It is these paradigms 
which correspond most closely with the kind of learning that takes place 
in Mitchell's technique.

29Rumelhart & Zipser, 1986, p. 191

22



Introduction Introduction to Neural Networks

The following sections examine three methods for training neural 
networks in the classification and pattern association paradigms. In 
section 1.3.2.1 the Perceptron training algorithm is discussed since it 
provides an example of step-function architectures which are the subject 
of the discussion of topology considerations in chapter 4, and are used in 
the neural networks in chapter 6. This leads on to the discussion of back- 
propagation in section 1.3.2.2, which is the basis for training the neural 
networks used in chapter 5. A Genetic Algorithm (GA) may also be used 
to train neural networks, and a brief introduction to GAs is given in 
section 1.3.2.3, since it is the training mechanism used in chapter 6.

1.3.2.1 The Perceptron

The Perceptron was one of the earlier neural networks, developed in 1958. 
It was designed by Rosenblatt,30 31 and used a feed-forward neural network 
with the structure outlined in figure 1.10.

Retina

Figure 1.10 — An elementary perceptron with a single output unit.31 The 

S-units are stimulus units, and have fixed weights (represented by the thicker 

lines) to the A-units. The weights from theA-units to the R-unit are trained.

30Rosenblatt, 1958

31Rosenblatt, 1962, p. 99

23



Introduction Introduction to Neural Networks

The S-units are stimulus units, which feed input to the A-units, which are 
a layer of intermediate units, called "association" units by Rosenblatt.32 
The R-unit is a response unit, which gives the output of the network. In 
general, there may be one or more R-units in a perceptron architecture. 
The units all have step-function activation functions. The weights to the A- 
units from the S-units are fixed, and are not trained. From henceforth, 
therefore, the S-units will be ignored, and the A-units will be treated as the 
input units. The neural network trained is, in modern terms, effectively a 
feed-forward network with no hidden layers and step-function activation 
functions.

The essence of the perceptron training algorithm is as follows. Let the 
training set, P, contain n patterns, each pattern, p, with an input vector, yp, 
for the I inputs of the perceptron, taken from {0, l}1, and target vector, ty, 
for the J outputs of the perceptron, taken from {0,1}/. Let wji be the weight 
from input unit i to output unit j of the perceptron, where i - 0 implies the 
bias unit.

Weights are initialised by choosing small random values. Then the 
weights are changed for each pattern according to equation [1.7]:

i1-7]

where ApWji is the change to be made to wji for pattern p, and Opj is the 
output of output unit j for pattern p, calculated using a threshold 
activation function as per equation [1.8]:

{1 ^ + ^>0 [1.8]
[0 otherwise

A single cycle of training refers to changing the weights for all n patterns. 
Rosenblatt's perceptron convergence theorem states that if it is possible to 
correctly classify all members of P, some finite number of cycles is 
sufficient to find a solution weight state.

32Rosenblatt, 1958, p. 389

24



Introduction Introduction to Neural Networks

Consider a perceptron with a single output unit. Let R/ be the underlying 
space of all inputs which are taken from {0, l}1. Consider the boundary 
between an input classified as 1 by an R-unit, uj, and one classified by 0. 
This is given by equation [1.9]:

+ WpJz +• ■ • +Wjiyi + Wj0 = 0 U-9]

This is the equation of a hyperplane in input space. All inputs classified as 
1 will be on one side of the hyperplane, all those classified as 0 will be on 
the other side of the hyperplane. Those inputs which are on the 
hyperplane will be (arbitrarily) assigned a classification of 0. The 
perceptron will be able to correctly classify any training sets whose classes 
are linearly separable. It was thought that there would be very few 
problems that perceptrons would be unable to solve.33 However, a book 
by Minsky and Papert34 indicated an important problem that is not 
linearly separable, and hence could not be solved by a perceptron. This is 
the XOR problem, indicated in figure 1.11. It is not possible to separate the 
black and white points with a single line, and hence the XOR problem 
cannot be realised by a perceptron. Minsky and Papert's book showed that 
there are a large number of problems which require the solution of XOR, 
and hence this counter-example could not be ignored.

CM•<-<
23
ClC

XOR

Inputs
Output

1 2

0
0
1
1

0
1
0
1

0
1
1
0

Input 1

o

1

Figure 1.11 — The XOR problem, and its graphical representation. White 

circles indicate an output of 0, and black circles indicate an output ofl.

33Rosenblatt, 1962, p. 97

34Minsky & Papert, 1969

25



Introduction Introduction to Neural Networks

The XOR problem can, however, be solved by a network with a single 
hidden layer, but Rosenblatt's algorithm cannot train networks with 
hidden layers.

1.3.2.2 Back-Propagation

The answer came in the form of the back-propagation algorithm, which is 
usually accredited to Rumelhart et al,35 even though others had thought of 
it earlier.36 The back-propagation algorithm uses sigmoid activation 
functions, which are differentiable. The output of a unit uk for pattern p, 
Opk, may then be any real number between 0 and 1 non-inclusive. The 
difference between the output and the target, tpk, (which may be set to a 
small distance, 8, from 0 or 1) is then an analogue number between -(1 - 8) 

and +(1 - 8). The sum over all patterns and output units of the square of 
this difference is termed the error, E, [1.10]. Since the activation function is 
continuous and differentiable, the partial derivative of the error in terms 
of the weights may be calculated, which provides the means by which the 
change to any weight can be found.

I1-10!

Back-propagation performs gradient descent of the error/weight surface, 
in the hope of finding a weight state with minimum error. Gradient 
descent travels down the slope of the potential function until it reaches a 
local minimum. (See figure 1.12.)

For neural networks, the change in weights, ApWji is proportional to the 
partial derivative of the error/weight surface with respect to the weights:

dE„ r

dwa

^Rumelhart et al, 1986

36Bryson & Ho, 1969; Werbos, 1974; Parker, 1985

26



Introduction Introduction to Neural Networks

Figure 1.12 — Gradient descent reaches the minimum of a function f(x) by 

making a series of steps in the opposite direction to the gradient.

Using the chain rule, Rumelhart et al expand the partial derivative of the 
error with respect to the weight to give the following equation for 
changing the weight wji between two units, ui and wy for pattern p37

ApW., = ri8pjopi [1.12]

where 77 is a positive constant, Opi is the output of w/ and 8pj is the error 
signal of wy. The error signal is the partial derivative of Ep with respect to 
the excitation of wy, Xpj. For output units, Ufo this is given by:

dpk ~ f (Xpk}{fpk —°pk) [1.13]

For hidden units, wy, there is no target, and the change in weights is based 
on the error signals of the units in the layer immediately after wy. The error 
signal of a hidden unit wy is thus given by [1.14], where k sums over the 
units in the higher layer:

Equations [1.13] and [1.14] show the importance of having a differentiable 
activation function. For the sigmoid activation function in [1.5], the partial 
derivative of the activation with respect to the excitation is given by:

37Rumelhart et al, 1986, pp. 322-327

27



Introduction Introduction to Neural Networks

i
d(l + e‘"''j

dxpi

Back-propagation consists of a forward pass, in which the output of the 
network for the input of pattern p is calculated, followed by a backward 
pass, in which the error is propagated backwards through the network, 
giving the change needed for each weight. The series of weight states 
adopted as the network moves through the error/weights surface may be 
termed the weight trajectory,38 or equivalently the weight path. Weights are 
initialised to be small, non-zero, random values.

Unlike the perceptron, back-propagation does not guarantee convergence 
if it is possible to correctly classify all of the patterns using the given 
topology. This is because it is possible for the error/weight surface to 
contain local minima, from which the weight path cannot escape. For 
example, in the XOR problem, back-propagation finds a local minimum 
for roughly 1% of weight paths.39 Another problem comes in the form of 
steep-sided, shallow ravines. These may take a long time to escape, and 
hence may be mistaken for local minima.40 Ravines are a more common 
occurrence than local minima, and the failure to train XOR using back- 
propagation roughly 15% of the time reported by Weir41 is largely 
attributable to these ravines. Ochiai et al have more detail on the 
difficulties of ravines.42

The general method used for trying to escape local minima and speed up 
training through ravines is to add a momentum term 43 The momentum is 
represented by a fraction, a, of the last weight change, which is added to 
the current weight change, giving the following overall formula for the 
weight change at time t:

38McClelland & Rumelhart, 1988

39Beale & Jackson, 1990, p. 79

40Hertz et al, 1991, p. 129

41Weir, 1991, p. 376

42Ochiai et al, 1994

43Rumelhart et al, 1986, p. 330

28



Introduction Introduction to Neural Networks

Aw;((«) = aAw.,(? -1) + /?X,, [1.16]

However, even with a momentum term, back-propagation is a 
deterministic algorithm, and finding a local minimum rather than a global 
minimum is entirely dependent on the initial weight state.44 Baba has 
suggested a non-deterministic method which uses small random 
perturbations to the current weight state in order to escape local minima.45

Problems of separation, including those involving local minima and non
separating global minima are discussed by Brady et al, who discovered 
that there were certain linearly separable problems for which back- 
propagation would never find the solution weight state, whereas the 
perceptron would.46 One such problem is shown in figure 1.13. Without 
pattern S, back-propagation finds a separation that lies along the Input 2 
axis. In this situation all the 2n patterns have error 0, since the output of 
the output unit is exactly equal to their non-extreme targets which are a 
small, constant distance from 1 or 0.

Now consider a new problem, in which the training set in the previous 
problem is augmented by the pattern S. Although there are separating 
hyperplanes, such as W, it is no longer possible to exactly realise the same 
analogue target values for all the training patterns in the same class. Any 
separating solution has an error proportional to n. There also exist non
separating solutions with constant error, i.e. any hyperplane lying along 
the Input 2 axis. Therefore, for large enough n, such a non-separating 
solution will have lower error than any separating solution. Hence 
starting training with a hyperplane lying along the Input 2 axis and using 
the gradient descent algorithm of back-propagation will fail to move the 
hyperplane to a separating position since the latter has the higher error. In 
general, the point may be made that there are some problems for which 
the set of weight states with global minimum sum of squared error does

44Kolen & Pollack, 1990; Guo & Gelfand, 1991

45Baba, 1989

46Bradyet al, 1988

29



Introduction Introduction to Neural Networks

not intersect with the set of weight states with correct classification of all 
the patterns.47

The solution, suggested by Sontag and Sussmann,48 is to make the error 
function zero for outputs which are closer to 1 or 0 than their target. With 
this adaptation, all the 2n patterns (as well as S) have zero error with 
separation W. Thus, for separable problems (those which can be realised 
by the given topology) the error is zero when all the patterns are correctly 
classified. There is then always an intersection between the set of weight 
states with global minimum error of Sontag and Sussmann's error 
function, and the set of weight states that correctly classify all the patterns.

Figure 1.13 — W is a correctly classifying separation of the pattern set, with 

constant error. The pattern set consists of2n + l patterns. The dashed lines 

indicate n-2 patterns which are evenly spaced between their delimiting 

patterns. Targets close to 1 are indicated by black circles, those with targets 

close to 0 are indicated by white circles. For sufficiently large n, a solution 

lying along the Input 2 axis has lower error than W.

Back-propagation using the sum of squared error function is also found to 
be sometimes suboptimal in the case of inseparable problems. This is

47Brady et al, 1988, p. 650

48Sontag & Sussmann, 1988

30



Introduction Introduction to Neural Networks

because the sum of squared error approximates the Bayesian a posteriori 
probabilities of each class.49 This requires a more complex topology than 
that needed to realise the class boundaries with global minimum 
misclassification error, since it is a more complex problem.50 The set of 
weight states that minimise the Bayesian a posteriori probability of 
misclassification for a given topology and problem may not intersect with 
the set of weight states with global minimum raw misclassification error.

1.3.2.3 Introduction to Genetic Algorithms for Training Neural Networks

GAs are a technique in their own right. They are used in a variety of 
optimisation problems for which conventional algorithms are too slow. 
For example, Fang et al use GAs to find solutions to the Job-Shop 
Scheduling Problem.51 In this problem, there are a number of jobs to be 
done which require a number of units of time on each of a number of 
machines. It is desirable to organise these tasks such that they can be done 
in the minimum time, making the most efficient use of the machines. Fang 
et al point out that conventional search algorithms are too slow because 
the problem is "one of the worst" NP-complete problems.52 They show 
that a GA is capable of producing comparable results to the conventional 
techniques in a fraction of the time.

Neural networks can be trained using GAs, particularly for the purpose of 
minimising discontinuous error functions such as misclassification error. 
This avoids the problem of approximating misclassification error using a 
continuous error function as in gradient descent.

GAs adopt an evolutionary approach to optimisation. Introductory texts 
on GAs include books by Holland53 and Goldberg.54 The logic of the GA 
approach is that evolution worked for optimising biological systems, and

49Richard & Lippmarm, 1991

50Telfer & Szu, 1994, p. 809

51Fang et al, 1993

52Fang et al, 1993, p. 375

53Holland, 1975

54Goldberg, 1989

31



Introduction Introduction to Neural Networks

therefore if it can be simulated in computers, it may also work for 
optimising computational systems.

Given a representation scheme for candidate solutions using binary 
strings, and a heuristic evaluation function for deciding how good a 
candidate solution is, a GA works as follows: Firstly, an initial random 
population of candidate solutions is generated. The heuristic evaluation 
function value for each member of the population is calculated. These are 
then used as a basis for generating the next generation of candidate 
solutions. Those members of the population with the best heuristic 
evaluation function values are given the best chance of producing 
offspring in the subsequent generation. Offspring may be generated 
through direct reproduction, in which each offspring is identical to its 
parent. There are also genetic operators which may be applied, however, 
which extend the search beyond the scope of the initial population. The 
procedure is repeated until a prespecified maximum number of 
generations is reached, or until an acceptable heuristic evaluation function 
value is found.

There are two genetic operators, crossover, and mutate. The latter is the 
simpler of the two. A random bit in the binary string is selected, and its 
value changed to the opposite bit value. Figure 1.14 shows an example of 
the mutate operator.

X

Parent 0 0 0 1 0 M ° 1 1 1 1 0 1 0 0 0 1

Offspring 0 0 0 1 0 2Jd 0 1 1 1 1 0 1 0 0 0 1

Figure 1.14 — Mutation. A random bit, X, is selected in the parent binary 

string, and the offspring is identical to its parent with the exception of bit X.

The crossover operator requires two parents. A random point in the 
binary string is selected, and the parents' binary strings are swapped 
thereafter to give the offspring. Good strings are more likely to be chosen 
as parents, consequently useful or important bit sequences in the binary 
string which might be responsible for the high heuristic evaluation

32



Introduction Introduction to Neural Networks

function values of the parents tend to be preserved in the offspring. Figure 
1.15 shows the crossover operator.

X

Parent 1 1 0 0 1 0 1 1 1 1 1 0 1 0 EJE 0

Parent 2 1 0 1 1 1 0 1 0 1 0 1 0 ElE ojo E

(a)

10 0 10 1 1 1 1 1
0 1 0 [o I 1 I 0 I o] 0

X

10 1110 10^ 1 0 1 o 1 r°Id°l°T

(b)

X

Offspring 1

Offspring 2

1 0 0 1 0 1 1 1 1 0 1 0 EE 0 0
1 0 1 1 1 0 1 0 1 1 0 1 0 0,EEE 0

(c)

Figure 1.15 — The crossover operator, (a) A random point X in the parent 

strings is selected, (b) The strings after X in the parents are swapped to give 

(c), the offspring. Note that potentially worthy sequences such as the bold 

outlined bit sequence are preserved by this operation.

Usually, there is a probability for each operator being applied during 
offspring generation. These values must be chosen carefully. If the 
probabilities are too low, the search will be too slow. If they are too high, 
good solutions may not be retained from one generation to the next.

Encoding the neural network into a binary string can be quite simple for a 
fixed topology size. The values of the weights are readily encoded into 
binary values, and these weight values are then evolved until a 
satisfactory neural network is found. Since there is no need for a

33



Introduction Introduction to Neural Networks

differentiable activation function, the simpler step-function may be used, 
even though there may be hidden units in the network.

GAs are not necessarily a panacea for the difficulties with back- 
propagation and other training algorithms however. There is no guarantee 
that the optimum is always reached within a reasonable time.

Nevertheless, there are several authors who use GAs, at least in part, to 
train neural networks.55 Kitano, for example, uses GAs to find a near 
optimum solution which is then used as the initial weight state for back- 
propagation 56

1.3.3 Assessment of Neural Networks

The motivation for studying neural networks is discussed by Hertz et al:

The brain has ... features that would be desirable in artificial systems:

• It is robust and fault tolerant. Nerve cells in the brain die every day 

without affecting its performance significantly.

• It is flexible. It can easily adjust to a new environment by 

"learning" — it does not have to be programmed in Pascal, 

FORTRAN or C.

• It can deal with information that is fuzzy, probabilistic, noisy, or 

inconsistent.5?

The extent to which these features can be transferred into artificial neural 
systems is partly a measure of the success of the discipline.

In describing the appeal of the neural network approach, McClelland et al 
indicate three properties of neural networks which are to be observed.58

55E.g. Fogel et al, 1990; Sikora, 1992; Smalz & Conrad, 1994

^Kitano, 1990

5?Hertz et al, 1991, p. 1

58McClelland et al, 1986, pp. 29-30

34



Introduction Introduction to Neural Networks

• Graceful degradation. Removal of a unit from a neural network does 
not result in a dramatic loss of performance. Performance 
decreases gradually as more and more units are removed.

• Default assignment. When an input is presented with similar 
properties to other inputs, the neural network is likely to give the 
same (possibly erroneous) output.

• Spontaneous generalisation. Even in the case of inputs which are 
radically different from other inputs, neural networks are able to 
provide an output.

Therefore there is evidence that neural networks are indeed successful in 
modelling the desirable properties of the brain that are mentioned by 
Hertz et al. Default assignment may be seen as toleration of noisy 
information. If an input is presented which is corrupted by noise, and is 
not too far from the original pattern, the neural network may produce the 
correct output.

This thesis will be focusing on the spontaneous generalisation and noise 
toleration benefits of neural networks. Graceful degradation may be seen 
as being largely a hardware issue, and the neural networks implemented 
during the work of this thesis are all software-based. (See appendix A.)

These benefits of neural networks are also the sources of some of the 
difficulties involved with using them. Being able to generalise naturally is 
a considerable advantage, but is there any way to be sure that the neural 
networks are generalising correctly? A further issue is that of the 
topology. How many hidden units should there be, and in how many 
layers? These, and other issues, are indicated by Hertz et al, in the 
introduction to their book.59

At the heart of all these problems is the issue of what it is neural networks 
actually do. Having trained the neural network on a set of patterns, it 
would be useful to be able to discover, at a high level of understanding,

59Hertz et al, 1991, pp. 8-9

35



Introduction Introduction to Neural Networks

what it is the neural networks have learned. However, this is not an easy 
undertaking:

A major weakness of the neural network approach to artificial 

intelligence is that the knowledge learned by a network is difficult to 

interpret.60

Shavlik also discusses the problem of rule extraction from neural 
networks, and reviews existing techniques in the literature 61 However, 
the real problem is the question of comprehensibility:

An extraction algorithm must produce reasonably comprehensible 

rules, but without a good measure it is hard to compare alternative 

approaches.62

To conclude, neural networks have many potentially beneficial properties. 
However, these properties must be harnessed and understood if neural 
networks are to survive as rivals to conventional methods. Of particular 
benefit would be the ability to make guarantees about generalisation, 
which would enable the trained neural network to be used with 
confidence in real-world applications.

If there is no way to be able to make these assurances by extracting and 
then checking the rules the neural network has learned, then perhaps 
there might be alternative neural approaches to providing certainties 
about generalisation, which at least merit some research. If such methods 
proved effective, it would then be possible to side-step the whole issue of 
comprehensible rule extraction, whilst still giving assurances about neural 
network behaviour with confidence. This is the approach taken in this 
thesis.

60Fu, 1994, p. 1114

61Shavlik, 1994, pp. 326-327

62Shavlik, 1994, p. 327

36



Introduction AI/NN Co-operation

1.4 Can Symbolic Al and Neural Networks Co-operate?

Neural networks have the desirable properties of being able to generalise 
and tolerate noise. By contrast, these features are weaknesses of the 
symbolic AI approach, which suffer from brittleness. Conversely, 
symbolic systems have the desirable properties of having comprehensible 
rules and of being able to explain their behaviour. This means that within 
the narrow domains they are applied, there is a degree of certainty about 
the behaviour of the symbolic systems. This corresponds to a weakness for 
neural networks which are currently unable to guarantee generalisation 
and cannot provide explanations for their behaviour.

The strengths and weaknesses of symbolic AI and neural networks seem 
to be opposites in one another, so there is the scope for making gains for 
both disciplines through hybrid implementations. Sun and Bookman 
summarise the three main approaches for co-operation between symbolic 
AI and neural networks:63

• Localist. Symbols are attached to the nodes in the neural network. 
These are then used, when the network is trained, to describe its 
behaviour. However, one of the problems of this approach is that 
standard training algorithms do not take account of the 
symbol/node correspondence during and after training.64

* Distributed. This is almost purely a neural network approach. The 
symbols are represented in a distributed fashion, using several 
nodes at a time. However, there is only a limited scope for the 
kinds of symbolic mechanisms (such as matching) that can be 
performed, due to limited representational capabilities of neural 
networks, whose presently fixed numbers of inputs cannot have 
the same depth of structure as symbolic representation schemes 
with variable-length input expressions.

63Sun & Bookman, 1993, pp. 20-21

64Shavlik, 1994, p. 327

37



Introduction AI/NN Co-operation

• Combined. Here, a symbolic and neural system combine, with 
techniques using varying degrees of cohesion, from a loose 
coupling between two separate modules to a completely 
integrated system.

An example of a distributed system is Dyer and Lee's DYNASTY,65 in 
which neural networks are trained using back-propagation on a set of 
propositions. These are used in the task of understanding goal and plan 
based stories.

Bahrami and Dagli's HIPS66 illustrates a loosely coupled combined 
system, in which an expert system and a neural network co-operate in the 
solution of the packing problem.

Romaniuk and Hall have a fully integrated combined system in the form 
of SC-net.67 They adopt a distributed representation scheme using a 
neural network. The rules are either directly encoded into the network, or 
trained, using an instance-based learning approach, which modifies the 
network topology and biases as instances are presented.

This thesis adopts a different approach, however, in the way that it aims to 
implement an existing symbolic technique in neural networks by 
abstracting the tenets of the technique that enable guaranteed 
generalisation. Mitchell's concept and version spaces technique is able to 
guarantee generalisation once the no-alternative situation is reached. 
However, the symbolic technique is criticised because the search space can 
be so large (even for simple concepts) that representing it using boundary 
representatives at the extremes of the partial ordering becomes 
infeasible.68 It is also restrictive in the assumptions it makes with regard to 
the quality of the instances, which must be noiseless, and described using 
relevant attributes, which are assigned values for each instance.69

65Dyer & Lee, 1995

66Bahrami & Dagli, 1994

67Romarriuk & Hall, 1993

68Booker et al, 1989, p. 268

69Aha, 1992, p. 267

38



Introduction AI/NN Co-operation

Nevertheless, the ability to guarantee generalisation is very useful and 
would be of great benefit to the neural network community. This thesis 
represents a body of work carried out on the assumption that the tenets of 
Mitchell's technique which guarantee generalisation can be transferred 
into neural networks, and that the technique's drawbacks can be 
addressed in so doing. Should this prove possible, there would be the 
ability to make some guarantees about the future performance of the 
neural network (without resorting to comprehensible rule extraction), and 
Mitchell's technique would be implemented in an environment which can 
tolerate noisy data.

1.5 Summary of the Rest of the Thesis

This chapter has introduced symbolic AI and neural networks and shown 
that there is some correspondence between their advantages and 
disadvantages. There has also been discussion of the possible benefits of a 
hybrid approach, with specific relevance to Mitchell's concept and version 
spaces technique.

Chapters 2 to 4 are review chapters.

Chapter 2 discusses Mitchell's technique implemented in a symbolic 
environment in some detail. It shows how Mitchell efficiently represents a 
shrinking number of candidate concepts under the weight of the instances 
through the use of a partial ordering and boundary representatives. The 
property of convergence is also shown, as a situation is reached whereby 
no alternative concept is possible. It is this that enables Mitchell's 
technique to make guarantees about generalisation.

Chapter 3 examines existing techniques for generalisation in neural 
networks, discussing their practical applicability, and their generalisation 
performance. These are contrasted with Mitchell's approach.

Chapter 4 discusses the behaviour of neural networks. One aspect is that 
of deciding the topology of a neural network. The chapter also analyses 
the various principles involved in the spontaneous generalisation of 
neural networks through providing an output for any input. Some novel 
insights are given into the number of units required in the second hidden

39



Introduction Summary

layer of threshold unit networks, and into the possible use of more than 
two hidden layers in sigmoid unit networks.

Chapters 5 and 6 describe two attempts to implement Mitchell's technique 
in a neural environment. Chapter 5 adopts a weight space approach, 
which indicates some important lessons to be learned about the 
symmetrical nature of the weight space of neural networks. The technique 
in chapter 5 only works for restricted examples, and is unsatisfactory. 
Chapter 6 adopts a grid-based approach based on input and output (IO) 
space, showing how the problems encountered in the technique of chapter 
5 may be overcome.

Chapter 7 provides some concluding remarks, and possible directions for 
future research. Assessments are made about the degree to which the 
technique in chapter 6 has been successful in combining Mitchell's 
technique and neural networks to mutual benefit.

40



Mitchell's Symbolic Technique Introduction

2 Mitchell’s Symbolic Technique

2.1 Introduction

Mitchell recognised that generalisation is the essence of learning. No 
human being needs to be exhaustively trained using every possible 
instance of a concept. For computers to learn concepts, therefore, they 
must be able to generalise. Mitchell's Concept and Version Spaces 
technique, a symbolic AI technique, is able to learn a concept through its 
ability to recognise the no-altemative situation.

Fundamentally, the no-alternative situation is the situation whereby there 
have been enough instances to limit and contain the generalisation to only 
one possibility. In other words, there is no alternative generalisation that is 
consistent with all the instances of the concept the learner has been shown.

When the concept is known by the teacher in advance, and instances are 
carefully chosen, surprisingly few instances are required to generate the 
no-alternative situation, given certain restrictions, or biases, as Mitchell 
calls them.1 (See the example in section 2.2.4.I.) This makes Mitchell's 
technique appealing to those who wish to be sure that the right concept 
has been learned.

The bias of a given concept learning technique is defined as any 
restrictions in the ability of the technique to represent or learn concepts or 
instances. For example, imagine the concept of "yellow or red flowers" is 
to be learned. If one cannot represent the colour of a given instance, then 
the concept cannot be learned. Neither can the concept be learned if one 
cannot represent the disjunction of yellow flowers and red flowers in the 
concept description.

Yet if one is maximally general in instance and concept representation, the 
learning process becomes unfeasible, since all objects in the universe must 
be shown, and the learner told whether they are red or yellow flowers or

1 Mitchell, 1980

41



Mitchell's Symbolic Technique Introduction

not. There is no basis for generalising from one instance to another. 
Indeed, with maximum generality, one cannot even represent colour, 
never mind the property of flower-ness.

To categorise a certain range of wavelengths of light as red, for example, 
would deny the ability to learn concepts that required a more specific 
distinction of colour, such as "blood red" or "ruby red". Indeed, for 
maximum generality in representation, one cannot make any 
categorisations. The colour of the flower could not be referred to as "red" 
— one could only refer to a specific measure of colour, such as the average 
wavelength of light reflected by the petals of the individual flower in the 
instance under consideration.

An infinite number of instances of red wavelengths of light would be 
needed to cover the range of real number wavelengths that are associated 
with the colour "red". The difficulty of learning disjunctive concepts with 
Mitchell's technique, however, means that the various wavelengths of 
light as associated with "red" could not be grouped together by 
disjunction such that they could be distinguished from those wavelengths 
of light associated with "yellow". So, in order to generalise, one would 
have to categorise in any case.

This categorisation and determination of relevance of properties is a bias, 
and will inhibit the learning of concepts requiring a different 
categorisation. However, the representation of instances necessarily 
implies categorisation of properties, and knowing which attributes may be 
relevant when describing the instance.

Hence Mitchell argues that biases in a concept learning system, far from 
hindering the ability to generalise, actually enable the inductive leap from 
the already learned classification of the training instances to giving the 
correct classification of a new, untrained instance.

The generalisation language ... is biased in the sense that it does not 

allow describing every possible set of instances.... Provided that this 

biased generalisation language allows describing the correct 

generalisation, the unambiguous classification of [an unseen training 

instance] is the correct classification. This ... provides an interesting

42



Mitchell's Symbolic Technique Introduction

insight into the significance of initial biases for allowing inductive 

leaps during generalisation.2

If an unbiased generalisation system is one that only uses information 
from the training instances to make decisions, without any further 
assumptions, then:

...it is not surprising that an unbiased generalisation system cannot 

make classifications of instances other than the training instances ...

[since] classifications of new instances do not logically follow from the 

classifications of the training instances.3

An unbiased generalisation system, according to Mitchell, is in essence, 
nothing more than a look-up table.4 Some of these issues are addressed in 
a paper by Denker et al5, and will be explored in more depth in Chapter 3.

In general, the bias in Mitchell's technique relates to the restrictions in the 
concepts that can be learned. It takes two forms. Firstly, in terms of 
representation, it relates to the way in which a specific instance or 
generalisation language favours the learning of certain concepts over other 
concepts, to the extent that some concepts are unlearnable with the given 
languages. Secondly, the learning mechanism itself may be biased. This 
can be due to the fact that the technique favours the learning of certain 
kinds of concept, and does not favour others (such as disjunctive concepts 
in this case), but is also due to underlying assumptions made about the 
nature of concepts. These points are summarised by Utgoff, who indicates 
the following sources of bias in a learning technique:

1 The language in which the [concepts] are described.

2 The space of [concepts] that the program can consider.

3 The procedures that define in what order [concepts] are to 

be considered.

2Mitchell, 1982, p. 217

3Mitchell, 1980, p. 4

4 Mitchell, 1980, p. 3

5Denker et al, 1987, § 10-15,17,18

43



Mitchell's Symbolic Technique Introduction

4 The acceptance criteria that define whether a search

procedure may stop with a given [concept] or should 

continue searching for a better choice.6

The generalisation problem for Mitchell is summarised as follows:7

Given:

• A language in which to describe instances,

• A language in which to describe generalisations [or concepts],

• A matching predicate that matches generalisations to instances,

• A set of positive and negative training instances of a target 
generalisation [or concept] to be learned.

Determine:

• Generalisations within the provided language that are consistent 
with the presented training instances.

When there is only one generalisation within the provided language that 
is consistent with the presented training instances, then the no-alternative 
situation has been achieved. All future instances presented will be 
correctly classified, within the constraints of the instance and 
generalisation languages and matching predicate.

Finding the no-alternative situation is a problem which Mitchell 
approaches using what he calls a "bidirectional search"8 strategy. This 
search strategy is explained and explored in the rest of this chapter. 
Mitchell's symbolic technique is used as a reference point during the 
development of the neural techniques (Chapters 5 and 6), and the 
bidirectional search strategy is the foundation of each.

6Utgoff, 1986, p. 107

7Mitchell, 1982, p. 204

8Mitchell, 1982, p. 213

44



Mitchell's Symbolic Technique Searching For No Alternative

2.2 Searching For No Alternative

2.2.1 The Search Space

Mitchell searches for the no-alternative situation in concept space. This 
space is set up using an instance language, a concept description (or 
generalisation) language, and a matching predicate that links the two. The 
matching predicate is used to determine whether or not an instance is 
consistent with a concept description.

Firstly, consider the space of all objects. A subset of this space is 
describable using a given instance language. Here, an object is represented 
by a p dimensional vector, where there are p object attributes being taken 
into consideration. Each object has a specific attribute value for each 
element of the vector. Each attribute value has its own unique symbol. The 
attributes are arbitrarily ordered in the vector.

An instance may be regarded as having an unordered set of objects as 
stimulus, with fixed cardinality, q, and a corresponding response. Training 
instances have the target response given. The task of the concept learning 
system during training is to reproduce the given target response of the 
stimulus for all training instances. Other instances, not used for training, 
do not have a target response. Once training is completed, the task of the 
concept learning system is to correctly predict the response of these 
unlearned instances, using the concept learned during training.

The target response depends upon the concept being learned. In Mitchell's 
technique, the target response is a binary decision, which is whether the 
stimulus is a positive or negative instance of the concept. For Mitchell, a 
concept is a matching filter, which enables the discrimination of the class 
of matching sets of objects in accordance with their attribute values. Other 
possibilities for the target response will be discussed in later chapters.

For example, if we were considering the observation of wild flowers, some 
relevant attributes might be the Latin name, and the month and place

45



Mitchell's Symbolic Technique Searching For No Alternative

seen.9 Irrelevant attributes could be such things as vehicle type, or year of 
publication. Thus, we might have the following instance (where q = 1):

{[Chrysanthemum vulgare, August, Derbyshire]}+

The + indicates that the instance is a positive instance for the current 
concept being learned, whatever that may be.

If we were considering poker hands, relevant attributes would be the suit 
and the number of the card. Here, an instance is a set of five objects, and 
hence we might have the following negative instance of a royal flush in 
Hearts:

{[2, Hearts] [7, Spades] [Ace, Diamonds] [3, Clubs] [10, Clubs]

A separate language is used to allow the representation of a concept. A 
concept, for Mitchell, is represented by an unordered set of q p- 
dimensional general object description vectors. The general object 
description vectors must have the same attributes for each dimension as in 
the instance language for the objects. Otherwise, the generalisation 
language has a bias that could prevent the desired concept from being 
learned.

Relative to a given language of instances, an unbiased generalisation 

language is one which allows describing every possible subset of 

these instances.10

Nevertheless, since Mitchell's technique is not strictly able to cope with 
disjunctive concepts (see later), all generalisation languages will have a 
degree of bias. Thus it will not be possible to represent concepts which 
allow the description of every possible subset of instances describable in the 
instance language. For example, it is not possible to represent a concept 
that allows the description of the following two instances only:

{[2, Hearts] [7, Spades] [Ace, Diamonds] [3, Clubs] [10, Clubs]}+ 
([3, Hearts] [7, Spades] [Ace, Diamonds] [3, Clubs] [10, Clubs]}+

9Taken from McClintock & Fitter, 1961

10Mitchell, 1980, p. 2

46



Mitchell's Symbolic Technique Searching For No Alternative

As mentioned in the introduction, bias in the generalisation language 
actually enables the concept to be learned. However, whilst all 
generalisation languages are biased, the extent of the bias should be kept 
under control. For example, in the poker scenario, if the generalisation 
language only has the attribute of suit, it would be possible to learn the 
concept of a flush in Hearts, but not a royal flush in Hearts, as would be 
possible if the number of the card was added to the language. However, 
note that the inability to learn disjunctive concepts means that one cannot 
learn the concept of a flush in any suit — royal or otherwise. As Mitchell 
puts it, it is a question of the appropriateness of the bias:

With the choice of a generalisation language the system designer 

builds in his biases concerning useful and irrelevant generalisations in 

the domain. This bias constitutes both a strength and a weakness for 

the system: If the bias is inappropriate, it can prevent the system from 

ever inferring correct generalisations; if the bias is appropriate, it can 

provide the basis for important inductive leaps beyond information 

directly available from the training instances.11

Each element of each vector contains either an attribute value symbol, or a 
special symbol indicating a wild card. The wild card is a symbol that will 
match any attribute value in that dimension. An asterisk (*) will be used 
to represent the wild card in subsequent examples.

For example, the concept of all flowers observed in Derbyshire, whatever 
the time of year, or Latin name, would be represented as follows:

{[*, *, Derbyshire]}

Or, we might define the concept of a flush in Hearts, in which case the 
concept would be represented thus, where the asterisk is a wild card 
allowing any card number to be matched:

{[*, Hearts], [*, Hearts], [*, Hearts], [*, Hearts], [*, Hearts]}

The choice of attribute values is also important when creating the 
generalisation and instance languages. The case of colour is a useful

^Mitchell, 1982, p. 223

47



Mitchell's Symbolic Technique Searching For No Alternative

example. What one person might call red, another might call scarlet, or 
blood red. In Mitchell's technique it is very important that one is precisely 
consistent about the attribute values chosen. It is fine to call something red 
if the concept is about distinguishing red from blue. This is not the case, 
however, if the concept is about distinguishing blood red from brick red.

The concept representation is not complete without the matching 
predicate. The matching predicate determines the output response, given 
the concept description and an instance. If an instance, which is a set of q 
object vectors (and a target response if it is a training instance) matches 
with a concept description, which is a set of q general object description 
vectors, then the output response is positive. Otherwise it is negative.

In general, the matching predicate is given by the user, since it depends on 
the instance and generalisation languages under consideration. An 
example of a matching predicate is given below, for use with the instance 
and generalisation languages given in the examples above.

Matching occurs at two main levels: the level of the general object 
description vector and the object vector; and the level of the instance and 
the concept. An object matches with a general object description vector if 
each element of the object vector matches with corresponding element in 
the general object description vector. Two elements match either if they 
are the same symbol, or if the element from the general object description 
vector is a wild card. The instance matches the concept if each object 
vector in the instance matches with a unique general object description 
vector in the concept.

For example,

{[ChrysanthoTLirn vulgare, July, Currbria]}

matches with

{[*, *, Currbria]}

but

{[Iris spuria, June, Dorset]}

48



Mitchell's Symbolic Technique Searching For No Alternative

does not.

The matching predicate is used to define consistency. A concept is 
consistent with a positive instance if it matches the instance. Conversely, a 
concept is consistent with a negative instance if it does not match the 
instance. Hence, a concept is consistent with a set of positive and negative 
instances if and only if it matches all the positive instances, and does not 
match any of the negative instances.

Given enough instances for a given instance and concept language, there 
will be only one concept description that is consistent with all the 
instances shown. This is the no-alternative situation, and it is this that the 
search is being conducted to find. Therefore the search must be conducted 
in the space of all concept descriptions for the current language.

2.2.2 Bidirectional Search in Mitchell’s Technique

Even when a search is conducted in the space of only those concepts 
describable by the current generalisation language, the search space is 
large. If a is a vector of dimensionality p, where p is the number of 
attributes each object has, and each element, ay, of a contains the number 
of permissible attribute values (not including the wild card) for that 
attribute, then equation [2.1] shows the number, n, of possible different 
general object description vectors there are for the generalisation 
languages used here.

n=n(a;+1) [211
?=i.p

For example, in poker, there are two attributes: suit and card number. 
There are four suits, and thirteen cards in each suit. The vector a is [4 13]. 
The number of possible general object description vectors includes the 
possibility for a wild card being placed in either attribute. This is 
equivalent to saying that there is an extra suit, and an extra card number. 
Hence the number of possible general object description vectors, n is 70.

Equation [2.2] shows the size of concept space for the generalisation 
languages used here, W, where there are q objects in an instance.

49



Mitchell's Symbolic Technique Searching For No Alternative

[2.2]

where nCr is the notation for the number of combinations of n things taken 
r at a time, without repetitions.12 Since a given general object description 
vector may be repeated in a single concept, repetitions are allowed. The 
number of combinations of n things taken r at a time with repetitions is the 
same as the number of combinations of n + r-1 things taken r at a time, 
without repetitions.13 Hence (W + r - i)Cr is the number of combinations of n 
things taken r at a time, with repetitions.

In the poker concept space, there are five objects in an instance, since there 
are five cards in a hand of poker. The number of possible concepts is 
therefore 70+5-1C5, or 16 108 764. Note that this allows repetitions of cards, 
and hence this is not the number of possible poker hands from a single 
deck of cards. This figure is 52C5, or 2 598 960, for comparison.

Bidirectional search, or search that proceeds from two initial points in the 
search space, is part of the key to enabling the recognition of the no
alternative situation. Bidirectional search alone cannot achieve this. To 
have that knowledge requires more than just searching from two initial 
states. It is also necessary to have only a single point where the two 
directions of the bidirectional search meet. Bidirectional search per se 
allows for the possibility of more than one meeting point of the two 
directions. In conjunction with search heuristics, however, to be discussed 
in the next section, and a partial ordering of the search space, there is the 
possibility for a single meeting point of the bidirectional search, and hence 
the assurance of the no-alternative situation.

Mitchell partially orders concept space using the more-specific-than 
relation. A concept, ci is more-specific-than another concept, C2 if and only 
if all the instances matched by ci form a proper subset of all the instances 
matched by C2-

For example,

12James & James, 1992, p. 66

13James & James, 1992, p. 67

50



Mitchell's Symbolic Technique Searching For No Alternative

ci = {[Viola odorata, *, New Forest]}

is more-specific-than

02 = {[*, *, New Forest]}

but not more-specific-than

q = {[*, April, *]}.

This is because the set of instances matched by ci is not a proper subset of 
the instances matched by C3. For example, the instance:

{[Viola odorata, March, New Forest] }+

is matched by ci (and ci}, but not by C3.

The partial ordering is used to guide the bidirectional search. Two sets of 
concept descriptions are used, S and G, the members of which form the 
maximal and minimal elements of all finite chains in the partial ordering.

S is the set of the most specific concept descriptions that are consistent 
with all of the instances shown at any stage during training. That is to say, 
there is no concept description more specific than any member of S that is 
consistent with all the instances shown so far.

G is the set of the most general concept descriptions that are consistent 
with all of the instances shown at any stage during training. So all concept 
descriptions that are consistent with the instances and are not members of 
G are more specific than members of G, and no member of G is more 
specific than any other member of G.

The most specific concept descriptions are those which are only as general 
as is necessary such that they match all the positive instances. Conversely, 
the most general concept descriptions are those which are only as specific 
as is necessary such that they do not match all the negative instances.

S and G, therefore mark the most extreme points (in terms of the partial 
ordering), or sets of points, that are consistent with the instances shown at 
a given time during training. The set of all concepts that lies between and 
including S and G in the partial ordering is called version space. Since

51



Mitchell's Symbolic Technique Searching For No Alternative

version space contains all concepts that are consistent with the instances 
shown so far, the search can be restricted to version space. Mitchell 
summarises the above as follows:

The advantage of the version space strategy lies in the fact that the set 

G summarises the information implicit in the negative instances that 

bounds the acceptable level of generality of hypotheses, while the set 

S summarises the information from the positive instances that limits 

the acceptable level of specialisation of hypothesis. Therefore, testing 

whether a given generalisation is consistent with all the observed 

instances is logically equivalent to testing whether it lies between the 

sets S and G in the partial ordering of generalisations.^

Version space is the essence of Mitchell's technique. At any time, during 
training, version space contains only those concepts that are consistent 
with the instances shown. This means that all the positive instances shown 
are instances of all concepts in version space, and all the negative 
instances shown are not instances of all concepts in version space. 
Therefore, all the possibilities for the final no-alternative concept are 
contained in version space at any given time, since all the possibilities for 
the final concept must match all the positive instances so far, and not 
match any of the negative instances so far.

To see how version space, V, cuts down the search for the instance and 
generalisation languages used here, it is worth showing the size of version 
space at the initial stage, after the presentation of the first positive 
instance. (Version space is undefined before this.) This is given in equation 
[2.3], where there are p elements in the general object description vector, 
and q general object description vectors in a concept:

#V0=2M [2.3]

Intuitively, this can be understood by realising that all the possible 
concepts in version space have either a * or not a * in each individual 
element of the set of general object description vectors. This is because, 
after the presentation of the first positive instance, the possible attribute

14Mitchell, 1982, p. 215

52



Mitchell's Symbolic Technique Searching For No Alternative

values for each attribute are known. In order to match the positive 
instance, every concept in version space must have either a wild card, or 
the same attribute value as in the instance, in each element of each general 
object description vector.

In the poker world, where the number of possible concepts is roughly 
sixteen million, the size of version space after the first positive instance is 
presented is 210, or 1 024, which represents a scale down factor of just 
under sixteen thousand. This is certainly a remarkably large reduction in 
the volume of search space. In the proverbial hunt for needles, it is 
roughly equivalent to cutting down the search from a haystack to a mere 
armful of hay.

S and G, and the partial ordering are the means by which version space is 
represented in Mitchell's technique:

In general, the number of plausible versions can be very large 

(possibly infinite) when the language of patterns for rules [concepts] 

is complex. The key to an efficient representation of version spaces 

lies in observing that a general-to-specific ordering is defined on the 

rule pattern space by the pattern matching procedure used for 

applying rules. The version space may be represented in terms of its 

maximal and minimal elements according to this ordering.15

2.2.3 Candidate Elimination

In the initial state, before any instances have been presented, G is the 
concept that matches all instances, and S is the concept that matches no 
instances. Version space is initially all concept descriptions possible with 
the current generalisation language.

Candidate elimination is the process of eliminating candidate concepts 
from version space as instances are presented. This is in order to maintain 
consistency with the presented instances. Since version space is 
represented by S and G, the elimination of candidate concepts is 
represented by making changes to S and G.

15Mitchell, 1977, p. 306

53



Mitchell's Symbolic Technique Searching For No Alternative

There are two kinds of change to S and G that can be made: updating and 
selection within. The change made depends on whether the instance is 
positive or negative. The need for these two kinds of change can be 
observed through the nature of S and G, and the corresponding effect of a 
positive or a negative instance.

To be maximally specific, each member of S must be only as general as is 
necessary to match all the positive instances. When a positive instance is 
presented, any member of S that does not match the instance (i.e. classifies 
the instance as negative) must be made more general, by the minimum 
amount necessary such that the member of S does match the new instance. 
This is called updating S.

When a negative instance is presented, any member of S that matches the 
instance (i.e. classifies the instance as positive) is removed from S, since 
that member of S cannot be made more general to prevent the positive 
classification. This is called selecting within S.

To be maximally general, each member of G must be only as specific as is 
necessary to avoid matching any negative instance. When a negative 
instance is presented, any member of G that matches the instances must be 
made more specific, by the minimum amount necessary such that the 
member of G does not match the new instance. This is called updating G.

When a positive instance is presented, any member of G that does not 
match the instance (i.e. classifies the instance as negative) is removed from 
G. This is because that member of G cannot be made more specific such 
that the positive instance is correctly classified. This is called selecting 
within G.

The two processes of selection within and updating maintain the 
consistency of each member of the sets S and G with the instances 
presented so far. Furthermore, there is the assurance that S can only be 
made more general, and G can only be made more specific. Any change to 
S or G means the two sets are brought closer to convergence. The action 
appropriate to the kind of instance presented to S or G is summarised in 
table 2.1.

54



Mitchell's Symbolic Technique Searching For No Alternative

Updating and selection within maintain S and G on the boundary of 
version space. These processes are the representation of the shrinking of 
version space as instances are added, just as S and G are the representation 
of version space itself. Ultimately, given sufficient instances, version space 
shrinks to a singleton. S and G represent the same concept at this point, 
which is the no-alternative situation.

Instance Class Classified as By a member of Action

Positive Positive S None
Positive Negative S Updates

Negative Positive S Select within S
Negative Negative S None

Positive Positive G None
Positive Negative G Select within G
Negative Positive G Update G
Negative Negative G None

Table 2.1 — Summary of the actions appropriate on presentation of an 

instance to S or G.

Section 2.2.5 contains a proof that S and G fully represent the boundaries 
of version space, and that updating and selection fully implement the 
change to version space when a new instance is added. It will also be 
shown that these changes can be made without the need to refer to 
previous instances, or to the rest of version space. If it were necessary to 
refer to the rest of version space, then S and G would not represent 
version space well enough, and there would be no point in using them. 
The ability to avoid referring to previous patterns is also an advantage in 
terms of processing time.

The process is called candidate elimination by Mitchell, because it eliminates 
candidate concepts from version space as they become inconsistent with 
the instances that are presented.

By modifying the version space in the above way, all rules (and only 

those rules) which conflict with the new training instances are 

eliminated from consideration.16

16Mitchell, 1977, p. 309

55



Mitchell's Symbolic Technique Searching For No Alternative

These eliminated candidate concepts from version space need not 
necessarily be members of S or G, because S and G are the boundary 
representatives of version space, and an instance may deny concepts that 
lie between S and G. The elimination of these concepts is implicit in the 
elimination of concepts from S and G during selection within and 
updating.

Any concept that lies on a chain in the partial ordering between a member 
of S, S(x), and a member of G, G(y), is removed from version space if 
either S(x) or G(y) is removed from S or G during selection within, unless 
the concept lies on a different partial order chain between other members 
of S and G. During updating, if S(x) is updated to the set Sx, then all 
concepts are eliminated from version space that lie on a chain in the 
partial ordering between S(x) and G(y), but do not lie on a chain in the 
partial ordering between a member of Sx and G(y), unless the concepts lie 
on a different partial order chain between other members of S and G. 
Therefore the search does not exhaustively examine all members of 
version space in order to determine the no-alternative situation.

This might appear controversial in the light of Rich and Knight, who claim 
that "the algorithm involves exhaustive, breadth-first search through the 
version space."17 However, the issue depends on what is meant by 
"exhaustive". Certainly, Mitchell exhaustively considers all alternatives 
that might lead to a solution at a given stage — as represented by the 
many members of S and G. It is not necessarily true, however, that 
Mitchell exhaustively considers all points in version space when working 
towards a solution. This can be seen in the version space example (2) in 
the next section.

An "exhaustive, breadth-first search through the version space" could be 
taken to imply that every possible concept in version space is considered, 
until the concept that is consistent with all the instances is found. To sum 
up the search in this way denies the methods Mitchell uses to prune the 
search, without compromising the possibility of reaching the no
alternative situation. Furthermore, no mention is made of the

17Rich & Knight, 1991, p. 468

56



Mitchell's Symbolic Technique Searching For No Alternative

bidirectionality of the search, which is the key to the termination 
condition: the convergence of S and G to the same single concept.

2.2.4 The Version Space Algorithm and Examples

Mitchell's version space learning algorithm is given below18:
1 Get the first positive instance, to.
2 Initialise S so that to is the only instance of S.
3 Initialise G so that all instances are instances of G.
4 For all subsequent instances tn:

4.1 If tn is a positive instance:
4.1.1 If ary marber of G classifies tn as negative, 

ronove that member fran G. (Selection Within)
4.1.2 If any manrber of S classifies tn as negative, 

make that member of S more general in all 
possible ways by the minimum amount necessary 
to make the instance be classified as 
positive ty S. (Updating)

4.2 If tn is a negative instance:
4.2.1 If ary marber of S classifies tn as positive, 

remove that mamber from S. (Selection Within)
4.2.2 If any member of G classifies tn as positive, 

make that member of G more specific in all 
possible ways ty the minimum amount necessary 
to make the instance be classified as 
negative ty G. (Updating)

4.3 If S = G, display: Concept (S) found; stop.
5 Display: Version space lies between (S) and (G) .
6 Step.

For the instance and generalisation languages used in the examples in this 
chapter, the algorithms for updating S and G are given at the end of 
section 2.2.5.

18Mitchell, 1982, p. 213

57



Mitchell's Symbolic Technique Searching For No Alternative

The following two examples illustrate the algorithm in practice. The first is 
simple, the second is more complex and also shows how version space 
decreases in size with each instance. Thus it may be seen from the second 
example that members of version space are removed which are not 
members of S or G. Since they therefore will not be considered by S or G at 
any point in the future, Mitchell's technique is not an exhaustive search of 
version space in the sense that not every single concept in version space is 
investigated when developing a solution.

2.2.4.1 A Simple Example

Given the first positive instance (a honeysuckle):

{[Lonicera periclymenum, June, Essex] }+

S is chosen such that it matches this instance only, and G such that it 
matches all instances:

S = {{[Lonicera periclymenum, June, Essex]}}
G = {{[*, *, *]}}

The second instance is a negative instance (a bluebell):

{[Hyacinthoides non-scripta, May, Yorkshire]}~

This is not an instance of S, therefore no member of S is removed during 
selection within. G must be updated in every way that moves towards a 
member of S, being made specific by the minimum amount necessary such 
that G does not match the negative instance.

G = {{[Lonicera periclymenum, *, *]} {[*, June, *]}
{[*, *, Essex]}}

The third instance is another positive instance:

{[Lonicera periclymenum, July, Hertfordshire]}+

G is selected within. All those concepts in G that do not match the positive 
instance are removed. {[*, June, *]} does not match the positive 
instance, neither does {[*, *, Essex]}. Thus, G now contains only one 
concept:

58



Mitchell's Symbolic Technique Searching For No Alternative

G = {{[Lonicera periclyirtenum, *, *)}}

S is now updated by the minimum amount necessary such that it matches 
the new instance. This means generalising the month and place 
dimensions. S is now represented as follows:

S = {{[Lonicera periclymenum, ★, *]}}

S and G are now equal singletons. The no-alternative situation has been 
achieved, and there can be no other concept consistent with the three 
instances presented. As stated in the introduction, this example shows that 
only a few instances are needed. This could be regarded as surprising in 
the light of the size of concept space. With roughly 1300 flowers in The 
Pocket Guide To Wild Flowers,19 100 counties in the UK, and 12 months in 
the year, there are just over 1.7 million possible concepts, from equation 
[2.2]. It should be pointed out, however, that after the presentation of the 
first instance, version space contains only 8 candidate concepts, from [2.3].

2.2.4.2 A More Complex Example

In this example, we consider an instance language and a generalisation 
language designed to learn a concept which pertains to two objects, rather 
than one. This more complex example enables the possibility of showing a 
case whereby S has more than one member.

This situation cannot arise for instance languages used to describe only 
one object at a time. It is best to illustrate this with an example. Take the 
concept found from example 1:

c = {[Lonicera periclymenum, *, *]}

The two wild cards are there because two positive instances occurred, 
with different attribute values for those attributes. For S to have more than 
one member at any given stage, there must be more than one specific 
attribute value for a given attribute that is consistent with all the positive 
instances seen so far. This cannot happen with one object only, since 
where attributes differ in positive instances, one must put in a wild card.

19McClintock & Fitter, 1961

59



Mitchell's Symbolic Technique Searching For No Alternative

There is no other possibility that ensures the consistency of S with all 
positive instances.

Thus, for a two-object concept, consider the concept of all flowers 
observed in the Chilterns at any time of the year, and all daisies (Beilis 
perennis) observed anywhere, at any time of the year. It just so happens, 
however, that all observations have taken place in April and May, and in 
the Chilterns and in Devon. Also, the only data available is for the daisy 
and the cowslip (Primula veris).

Given the first positive instance, of a cowslip observed in the Chilterns in 
April and a daisy observed in Devon in May, all members of version space 
can be constructed, as in figure 2.1. Membership of S or G is shown with a 
bold outline.

At this stage, S is simply the set containing the single concept that matches 
the first instance only:

S = {{[Primula veris, April, Chilterns]
[Beilis perennis, May, Devon]}}

G is the most general concept, i.e.:

G = {{[*, *, *] [*, *, *]}}

The next instance to be presented is another positive instance:

{[Beilis perennis, April, Devon]
[Primula veris, May, Chilterns]}+

This causes the removal of many concepts from version space, as shown 
by the shaded concepts in figure 2.2, which includes the membership of S. 
There are two possibilities for the minimal updating of S. The first is 
whereby the concept is all flowers seen anywhere in April and May, the 
second is whereby the concept is cowslips observed any time in the 
Chilterns, and daisies sighted at any time in Devon. S is now the following 
set of concepts:

S = {{[Primula veris, *, Chilterns] [Beilis perennis, *, Devon]} 
{[*, April, *] [*, May, *]}}

60



Mitchell's Symbolic Technique Searching For No Alternative

Instance 1 
(Positive)

nB B
A nA
C -.c

* B
A nA
C nC

* B
* nA
* -iC

nB B nB B
A ~»A A *
* ~>C C nC

-.B B
* nA
c -,c

-iB * -,B B
A nA A -iA
C nC C *

Key
b -iB Daisy, cowslip 
a -nA April, May 
c -iC Chilterns, Devon 
* Wild Card

* B * ★
* * A nA
c -,c * nC

★ B
A nA
* *

*
A
C

*
-iA

*

nB *
* ~>A
* nC

nB B nB *
* nA *
* * c *

nB *
A *
* -iC

-.B B
A ★
* . *

*
*
c

*
-nA
~’C

* B
* nA
c *

* B
A *
* ~iC

*
A
C

*
*

-iC

B
A *
C *

nB B nB *
* * * *
* nC c nC

nB B
* *
c *

nB *
A nA
* *

nB *
A *
c *

* k

* nA
* nC

* B
* nA
* *

* *
* nA
c *

* *
A *
k nC

k B
A *
k *

nB k

* k

k nC

nB B
* *
k k

nB *
A *
* *

* B
k *
k “>C

*
k

c

k

k

-tC

k B
k *
c *

k *
A nA
* *

k *
A k

C *

nB k nB k

* nA k k

* k c k

*
*
*

*
*

->C

k B
k *
k *

* k

A k

k k

k *
k nA
k *

k

k

C

k

k
k

nB k
* k
* k

k

k
k

k

k
k

Figure 2.1 — Version space after the first positive instance. Membership of 

S or G is shown with a thick outline — S in grey, G in black. Since the final 

concept is known already in this example (see text), the various elements can 

be represented by the attribute value, or not-the-attribute value. Note, 

however, that the same non-desired attribute value is used throughout — i.e. 

cowslip instead of daisy, May instead of April, and Devon instead of the 

Chilterns. This keeps the number of possible concepts to a maximum at any 

stage during learning, since other non-desired attributes will lead to the 

placing of a wild-card for that attribute in the concept.

61



Mitchell's Symbolic Technique Searching For No Alternative

Instance 2
(Positive)

-nB B
-nA A
c -nC

OldS -A Key
B -.b Daisy, cowslip 
A -.a April, May 
c -.c Chilterns, Devon 
* Wild Card 
PH Rejected concept 

Update

* I-.c
*
A

"ET
■nA

★

A
b•• ■
★ ♦

tt
-nA

->B
★

B
★

-nE
A

*
nA A

->6 *

< -nC C ->c * -C c --C * nC ★ '* c *

STS’
A nA

iC * ~>C

■S'

A
c ,c c

-A
*
★

* *

G unchanged

Figure 2.2— Version space after the second instance is presented (unshaded 

concepts only). The shaded concepts indicate eliminated concepts. The arrows 

show how S is updated, and the bold outlines show membership of S or G. 

The matching predicate is illustrated in figure 2.3. The thin lines between the 

concepts indicate the chains in the partial ordering of version space.

62



Mitchell's Symbolic Technique Searching For No Alternative

Object
vector:

J__ J.
Q 0

<1
27 27

r—r

Instance 2 — 
object vectors 
not ordered

OldS
(from NeW s 1 New S 2

fig. 2.2)

□ □ □ □
> <1 r> <i
27 □ □

□ □
□ □
27

Concepts to 
match the 
instance

Key

bd
iB 0
A>

->A<l

cZ7

*□

Matching tested for all arrangements of the object vectors. 
Two possibilities in this case.

□ n ED g □ r~i
M H a a 0
27 El El 27

Matches

First test for 
matching

Does not 
match

Does not 
match

Second test 
for matching

Does not Matches Does not
match match

If the concept matches the instance for one or more of the 
arrangements of the object vectors, then the concept matches 
the instance. Thus New S 1 and New S 2 match instance 2, but 
Old S does not match instance 2.

Figure 2.3 — The matching predicate used in these examples explained. The 

attribute values are represented by shapes, which are solid in the case of an 

instance, and are holes in the case of a concept. To match the instance, the 

holes in the concept must fit the shapes in the instance, rather like the child's 

toy. The wild card fits any shape.

63



Mitchell's Symbolic Technique Searching For No Alternative

In figure 2.2, it is possible to observe the double membership of S. Since 
there is no order to the objects in the instance, there are two ways in which 
one can be maximally specific to maintain consistency with the positive 
instances. Note that the fact that one member of S has fewer wild cards 
than another does not mean that it is more specific. Specificity is defined 
over the subset of all instances (taken from instance space, not just those 
seen at a given stage during learning) matched by a given concept (this 
will be defined formally in equation [2.6]), not by the number of wild 
cards in the general object description vector. Hence, the most specific 
concept so far could either be a cowslip in the Chilterns and a daisy in 
Devon, or any two flowers, one of which is observed in April, and another 
in May.

There is no change to G, since all positive instances are matched by the 
most general possible concept.

For G to change requires a negative instance, and it just so happens that 
the next instance is indeed negative:

{[Primula veris, April, Devon]
[ Prinula veris, April, Chilterns ]} “

The effect on the remains of version space is shown in figure 2.4. There are 
two possibilities for minimally making G more specific in order to avoid 
matching the new instance, one moving towards each member of S:

G = {{[*, *, *] [*, May, *]} {[*, *, *] [Beilis perennis, *, *]}}

S is unchanged by the third instance. The fourth instance, also negative, is 
given below:

{[Beilis perennis, April, Devon]
[Prinula veris, May, Devon]}"

The effect on version space is given in figure 2.5. S is selected within first, 
which removes the {[*, ?pril, *] [*, May, *]} concept from S. This 
means the more general version of this concept in G: {[*, *, *] 
[*, May, *]} cannot be updated, therefore it too is discarded.

64



Mitchell's Symbolic Technique Searching For No Alternative

Key
b -.b Daisy, cowslip 
a -,a April, May 
c ->c Chilterns, Devon 
* Wild Card 
PHI Rejected concept

Update

* B
* -A
* -.C

*
★

B
•>A

c ->C

* ★

A -'A
c -.c

B
->A
iC ->C

->B
*
C

->B
A
*

B ->B B

A -A

,c

*
->A
nC

->B B
A *
* *

A .A

if

-»B

c *
I

B B B

*

Old G

Figure 2.4 — Version space after the third instance is presented. The shaded 

lines indicate eliminated chains. The dashed lines indicate the updating 

history.

65



Mitchell's Symbolic Technique Searching For No Alternative

Instance 4
(Negative)

B ->B
A -A

-,c ->c

Member of S 
retained „

Key
b -,b Daisy, cowslip 
a -iA April, May 
c ->c Chilterns, Devon 
* Wild Card 
PH Rejected concept 

Update

*
*
c

-nB B 1
* ■
c * 1

* B ★ B * ★ ★ B ★ ★

•nA
i,

->B ★ ->B B -nB * -nB ★ •nB B
★
*

->A
-iC

★

c
★

->c
A
*
$ A

*
-■’A

* c
*
* ->C *

•nA * A
*
1 *

B
“.A

,B B

C

“•B
*
c *

New G Member of S 
eliminated

*
* *
* *

Figure 2.5 — Version space after instance 4 is presented.

The membership of S and G once the other member of G has been 
minimally updated is therefore:

S = {{[Primula veris, ★, Chilterns] [Beilis perennis, *, Devon]}} 
G = {{[*, *, Chilterns] [Beilis perennis, *, *]}}

Finally, instance 5, a positive instance, causes S and G to converge to a 
singleton (figure 2.6):

66



Mitchell's Symbolic Technique Searching For No Alternative

{[Beilis perennis, April, Chilterns] 
[Beilis perennis, May, Chilterns]}+

Thus, the final concept is:

S = G = {{[*, *, Chilterns] [Beilis perennis, *, *]}}

Instance 5 
(Positive)

B B
A -nA
C C

T "5"
A nA
* ->c

Key
B -.b Daisy, cowslip 
a -iA April, May 
c -.c Chilterns, Devon 
* Wild Card 
pp| Rejected concept 

Update
|- ->A 
C

, * 
A ->A 
C -C

|\ -.A

Figure 2.6 — S and G converge after instance 5 is presented.

-r * T" TT WIT -,£■ * "IT *
->A A * * -A * I * a},A A -nA A -nA
nC C -C * iC Cj-nC * |nC * ★ C *

-nB

*

*
*

-nC

-iB
A
*

~>B
A
*

*
nA

*

-»B
A

B

I

67



Mitchell's Symbolic Technique Searching For No Alternative

2.2.5 Formalism of Mitchell’s Technique

Mitchell gives a formalism for his technique in chapter 3 of his thesis.20 In 
this section, part of that formalism is reviewed, with regard to proving the 
following points:

• That version space may be represented by S and G.

• That updating and selection within maintain S and G at the 
boundary of version space.

It will also be shown in this section that updating and selection within can 
be implemented without the need to refer to past instances or to version 
space, for the family of instance and generalisation languages to which 
those used in this chapter belong.

Let I be the set of all instances representable by the instance language. Let 
T be the subset of I whose classification is known, and hence can be used 
to learn the concept. T is the union of two non-intersecting sets of positive 
and negative instances, T + and T. respectively.

A concept is learned through a sequence of training instances presented 
from T+ and T_. Let P+t be the subset of T+ that has been presented by time 
t, and P-t be the subset of T. that has been presented by time t. Let Pt be the 
union of P+t and P-t — the set of all instances that have been presented by 
time t.

Let W be the set of all concepts representable by the current generalisation 
language. Let M(w, p) be a matching predicate, where we W and p e Pt.M 
is true if p is classified by w as positive, and false if p is classified by w as 
negative.

Mitchell then defines the consistency predicate, K as in [2.4] below:

K(w, P+l1P_t)tt([(VpeP+l) M(w, p))A((VpeP„t) p))) [2.4]

20Mitchell, 1978, pp. 56-73

68



Mitchell's Symbolic Technique Searching For No Alternative

The goal of the concept learning problem is, given PV, M and Pf, to find the 
subset of W which are consistent with Pf. This is called the version space, 
Vt of Pt. Mitchell gives V} a formal definition as per [2.5]:

I K(w. P+„ P,)} [2.5]

Members of W are partially ordered by the more specific than or equal to 
relation (>), defined in [2.6]:

(Vwpw2 >w2)<=>({/el I i)}^{iel I Af(w2, z)}))[2.6]21

This relation provably has the properties that it is reflexive, antisymmetric, 
and transitive.22 These, for Mitchell, are the necessary and sufficient 
conditions for a partial ordering. Borowski and Borwein agree with 
Mitchell as to the necessary and sufficient conditions for a partial 
ordering.23 James and James give an equivalent definition, but from the 
point of view of the set rather than the relation 24

As mentioned in sections 2.2.2, 2.2.4.2, and as defined in equation [2.6], 
specificity is measured by looking at the instances recognised as positive 
by one concept relative to another concept. This is not just the instances 
shown so far, but the space of all instances. This begs the question of how 
specificity may be assessed, since it is undesirable to generate every 
possible instance. For the generalisation languages used in the examples in 
this chapter, one concept ci is more specific than another concept C2 if and 
only if for all general object description vectors in ci there is a unique 
general object description vector in C2 for which each element of the 
general object description vector in C2 is either equal to the corresponding 
element in ci, or is a wild card. This ensures that there are no instances 
matched by ci that are not matched by C2 and hence the instances matched 
by ci form a proper subset of those matched by C2-

The strict relation more specific than (>) is also defined by Mitchell [2.7]:

21Mitchell, 1978, p. 59

22Mitchell, 1978, p. 59

23Borowski & Borwein, 1989, p. 437

24James & James, 1992, p. 297

69



Mitchell's Symbolic Technique Searching For No Alternative

(Vwj,w2 e W)((w, > > w2)a(w, #w2))) [2.7]25

This is used to define the subset of maximally and minimally specific 
elements of a subset of W, A. The set of maximally specific elements of A is 
the set MAX(A), defined in [2.8], and set of the minimally specific 
elements of A is the set MIN(A), defined in [2.9]:

MAX(A) = {a e A I (V6 e A) -i(b > a)} [2.8]26

M IN( A) = {a e A I (Vh e A) -i(a > b)} [2.9]27

[2.8] and [2.9] can be used to give the definition of the sets St and Gt- St is 
the set of maximally specific elements of version space at time t, and Gt is 
the set of minimally specific elements of version space at time t:

S, = MAX(V,) [2.10]28

G, = MIN(V,) [2.11]29

At any time, Mitchell is content that the two sets S and G represent a 
version space V for a set of instances, P if and only if the condition in 
[2.12] is satisfied:

(Vw e W)((w 6 V)« (3$ e S)(3g e G)(s > w > g)) [2.12]30

The proof of [2.12] is given in Mitchell, 1978, pp. 62-63, and is reproduced 
below:

First prove that:

(Vw e V7)((w e V) <= (3s e S)(3g e G)(s > w > #)) [2.13]

25Mitchell, 1978, p. 59

26Mitchell, 1978, p. 59

27Mitchell, 1978, p. 60

28Mitchell, 1978, p. 60

29Mitchell, 1978, p. 60

30Mitchell, 1978, p. 60

70



Mitchell's Symbolic Technique Searching For No Alternative

Consider an arbitrarily chosen concept, w e W and s e S such that s > w.
By S c V from [2.10] we have:

(yPeP+\M(s, p)) [2.14]

and by s > w (axiom) from [2.6]:

{p s P I M(s, p)} C {p e P I M(w, p)} [2.15]

Thus, from [2.14] and [2.15]:

(VpeP+)(Af(w>, p)) [2.16]

Similarly, for arbitrarily chosen g g G such that w>g:

(VpeP_)(-M(g, p)) [2.17]

and by w > g (axiom) from [2.6]:

{peP I p)}c{pePI M(g, p)} [2.18]

Taking the complement of each set:

{pePi p)}s{peP I -iA/(£, p)} [2.19]

Thus, from [2.17] and [2.19]:

(VpsP_)(-J/(w, p)) [2.20]

By [2.16] and [2.20] we V.

Secondly, it is necessary to prove that:

(Vw g W)((w g V)=> (3i g S)(3g e G)(s >w>g)) [2.21]

This follows, provided that there exists a chain that contains w, with a 
maximum and a minimum element. From [2.10] and [2.11], any chain, A of 
V that contains w will have a member of S as its maximum element, and a 
member of G as its minimum element. The only possibility is that the 
chain has no maximum or minimum element. This depends on the 
matching predicate and generalisation language. If there exists a chain

71



Mitchell's Symbolic Technique Searching For No Alternative

with no maximum or minimum element, then the generalisation language 
is said by Mitchell to be inadmissible.31

Hence, for the class of admissible languages, version space is represented 
by S and G. The generalisation languages used in the examples in this 
chapter are admissible.

To prove that updating and selection within maintain S and G as the 
boundary representatives of version space, Mitchell gives the proof for the 
presentation of a new negative instance32 — the proof for a positive 
instance following by analogy.33

The proof for a negative instance is given in Mitchell, 1978, pp. 64-65, and 
is reproduced with a slight change in terminology below:

Consider the version space at time t, Vt, for the set of instances shown so 
far, and Pt = P+t^ P-t, with the boundary representatives, St and Gf. 
Consider also the version space at time t + 1, Vt + i, after the presentation 
of a negative instance, i. P. t + l = P-t {/}, and Pt + 1 ~ P+t^ P- f + 1- The 
boundary representatives of Vt +1 are St +1 and Gt +1-

Theorem: If the sets St + i and Gt +1 obey the following equalities, then G 
has been updated, and S has been selected within such that St +1 and 
Gt +1 are the boundary representatives of Vt +1:

G,+1 =MIN({veV, I i)}) [2.22]

S,+1 = {reS, I -M(s, ,)} [2.23]

[2.22] gives the formula for updating G. [2.23] gives the formula for 
selection within S. Both are based only on the state of affairs at time f and 
the new negative instance, i.

Proof: By definition of the consistency predicate [2.4], we have:

31Mitchell, 1978, p. 61

32Mitchell, 1978, pp. 64-65

33Mitchell, 1978, p.65

72



Mitchell's Symbolic Technique Searching For No Alternative

*(v, />.,)a-xW(v, 0) [2.24]

and by definition of Vt [2.5]:

y,+1 = {wewi k(w, p+(1+1), p(w1))}

By [2.24]: <=> VM = {w e W I K(w, P„, P.,) a -M(w, /)}

By [2.5]: <=> V,tl ={w s W I (w e V,) a-M(m\ i)}

Simplifying: V,+1={veV, I —iM(v, /)} [2.25]

Therefore, from [2.25]:

G1+1 = MIN(V,H) = MIN({v g V, I »)}) [2.26]

The first half of the theorem [2.22] is proven.

To prove [2.23], it is first necessary to prove that St +1 £ St.

Consider arbitrary s in St + i. We wish to prove that se St for all s. We 
begin with:

(VveV,)((veV,+1)v(v«V,+1)) [2.27]

By definition of St +1 [2.10] we know that:

(VveV/+1)((V5e5f+1)Hv>5))) [2.28]

Therefore: (Vv e V, )(((V^ e 5f+I )(-i(v >.?))) v (v g V,+1)) [2.29]

From [2.25]: (Vve V,)((vgV,+1)=> A/(v, i)=> ((Vs e 5'+j)(-«(v> s)))) [2.30]

Thus: (Vv e V, )((Vs e Sl+l )(-«(v > 5))) [2.31]

But: St = MAX(Vf) = {v e V, ! (Vw e Vf )(~n(w > v))} [2.32]

Therefore s e St for all s e St + 1, and we have proven that St + 1 £ St.

Since: S,+1 =MAX(V,W) = MAX({v e V, I -M(v, i)}) [2.33]

73



Mitchell's Symbolic Technique Searching For No Alternative

and:

we have:

5,+1 C s, c V, 

S,+1={SeS, I /)}

[2.34]

[2.35]

and the theorem is proven.

Mitchell gives the formulae for updating S [2.36] and selection within G 
[2.37], on presentation of a new positive instance, ; 34 The proof of these 
formulae is analogous to the proof of [2.22] and [2.23], according to 
Mitchell.

S,+1 = MAX({v e V, I M(y, »}) 

G,+1={geG, I M(g, j)}

[2.36]

[2.37]

The formulae for selection within [2.23] and [2.37] require only the 
knowledge of the current instance, and the old S and G. However, the 
formulae for updating [2.22] and [2.36] refer to the old version space, 
which might imply an algorithm that inspects the whole of version space 
to find the new members of S or G when updating.

The procedures for updating S and G are specific to the generalisation 
language, as Mitchell states in his thesis:

The functions UPDATE-G [and] UPDATE-S ... depend upon the 

particular concept description language.35

Mitchell does give a general strategy for updating S,36 which basically 
entails generalising each member of S as much as is necessary, and in 
every way possible until the positive instance is matched, until S contains 
only concepts that match the positive instance. Then members of S are 
removed that are more general than other members of S, or are not more 
specific than a member of G.

34Mitchell, 1978, p. 65

35Mitchell, 1978, p. 36

36Mitchell, 1978, p. 41

74



Mitchell's Symbolic Technique Searching For No Alternative

For the generalisation languages used in the examples in this chapter, 
updating can be done without reference to previous patterns, and without 
exhaustively examining every member of version space. The algorithm for 
updating S for the examples in this chapter is given below:
1 For each member of S, s (where S is an ordered array of 

concepts):
1.1 If s Hatches the new positive instance, retain s at 

the beginning of S.
1.2 Otherwise generate new members of S:

1.2.1 Generalise s in as many ways as possible by 
adding a * in one field. Let a given 
generalised s be t.

1.2.2 If t is not more specific than a member of G, 
discard t.

1.2.3 If there is a member of S that matches the 
new positive instance which is more specific 
than or equal to t, then discard t.

1.2.4 If t does not match the new positive 
instance, add t to the end of S.

1.2.5 If t does match the new positive instance, 
add t to the beginning of S.

2 Repeat until the end of S is reached.
3 Remove from S any concept that is more general than another 

member of S.

The algorithm for updating G is similar, except that the instance is 
negative, and hence concepts are retained in G that do not match the 
instance. Members of G are made more specific by replacing a wild card 
with the corresponding attribute value from a member of S.

The algorithm retains those members of S that match the new instance
(1.1) . If these were maximally specific elements of the old version space, 
then they must be maximally specific elements of the new version space. 
Those members of S that do not match the new instance are made more 
general in every way that is possible by adding only a single wild card
(1.2.1) . This is the minimum amount by which a member of S may be 
updated. If an updated member of S is not more specific than a member of 
G, it must be discarded (1.2.2), since it cannot be a member of version

75



Mitchell's Symbolic Technique Searching For No Alternative

space. Since S is the set of maximally specific elements of version space, if 
a member of S exists that correctly classifies the new positive instance and 
is more specific than an updated member of S, the updated member of S 
must be discarded (1.2.3). If an updated member of S still does not 
correctly classify the new instance, it is retained to be updated further 
(1.2.4). If an updated member of S does correctly classify the new instance, 
having not been discarded in 1.2.2 or 1.2.3, then it must be the maximally 
specific update (1.2.5).

The algorithm therefore chooses the most specific elements from the old 
version space that match the new positive instance to determine the 
update of S, as per the formula for updating S given in [2.36].

2.3 Problems With Mitchell’s Technique

This section examines some of the possible problems and criticisms that 
may be aimed at Mitchell's technique. Although the examples used above 
required relatively few instances, these instances were carefully 
constructed in order to illustrate the technique. Section 2.3.1 looks at how 
Mitchell's technique copes when there are not enough instances to allow 
the generation of the no-alternative situation. It will also be apparent from 
these examples that Mitchell's technique is very sensitive to the 
consistency of the data. Inconsistent data leads to an unlearnable concept 
in Mitchell's technique. Section 2.3.2 examines this problem, and briefly 
looks at a technique which aims to deal with it.37 Mitchell's technique may 
also be criticised for an inability to learn disjunctive concepts.38 Section
2.3.3 explores this issue. Also, from a practical standpoint, the 
representation of version space may entail unfeasibly large sets S and G. 
This problem is briefly examined in section 2.3.4.

37Hirsh, 1990

38Rich & Knight, 1991, p. 469

76



Mitchell's Symbolic Technique Problems With Mitchell's Technique

2.3.1 When No-Alternative Cannot be Found

The problem that a large number of instances may be required to achieve 
the no-alternative situation is one of which Mitchell is well aware.39 For 
example, let's take the state of S and G at the end of the second instance in 
the first example in section 2.2.4:

S = {{[Lonicera periclymenum, June, Essex]}}
G = {{[Lonicera periclymenum, *, *]} {[*, June, *]}

{[*, *, Essex]}}

There are over 1300 flowers listed in The Pocket Guide to Wild Flowers,40 
from which the instances used here are taken. There are eleven months of 
the year that are not June, and roughly 100 counties in the United 
Kingdom and Republic of Ireland. This means there are approximately 1.4 
million negative instances that could be presented, each of which would 
have no effect on either S or G. By no means can it be said, even for this 
very simple example that the no-alternative situation may be guaranteed 
with a small number of instances.

However, this can be looked at in two ways. Firstly, the fact that there are 
1.4 million instances that one can already definitely classify as negative is 
an impressive generalisation from only two instances learned.

Secondly, the unconverged version spaces may still be useful. When the 
no-alternative situation is not achieved, Mitchell distinguishes two types 
of classification of subsequent instances: ambiguous classification and 
unambiguous classification. Ambiguously classified instances are those for 
which members of S and G give different classifications — some positive, 
some negative. Unambiguously classified instances are those for which all 
members of S and G give the same classification.

For example, the instance below is an ambiguously classified instance:

{[Lonicera periclymenum, July, Lancashire]}

39Mitchell, 1982, pp. 216-218

40McClintock & Fitter, 1961

77



Mitchell's Symbolic Technique Problems With Mitchell's Technique

One member of G: {[Lonicera periclywenum, ★, *]} classifies it as 
positive, the others, along with S, classify it as negative.

The following instance is unambiguously classified as negative, however:

{[Pinguicula lusitanica, July, Lancashire]}

The unambiguous classification, according to Mitchell, must be the correct 
classification, given certain conditions:

It can be proven that any ... unambiguous classification is a correct 

classification, provided that (1) the observed training instances were 

correct, and (2) the generalisation language allows describing the 

target generalisation.41

The case of ambiguous classification is more difficult. In general, there is 
no heuristic that may be used which is guaranteed to give the correct 
classification, since any concept in version space could be the correct 
concept. There are, perhaps, possibilities for providing a reasonable guess 
at the correct classification, however:

By considering outside knowledge or by examining the proportion of 

generalisations in the version space which match the instance, one 

might still estimate the classification of such instances.42

In general, all instances whose attribute values differ from the first 
positive instance in every dimension must be unambiguously classified as 
negative, given the above two conditions, and the further condition that G 
is not the maximally general concept. The only guaranteed 
unambiguously classified positive instance is the first positive training 
instance. There may be others, but this depends on the individual case 
under examination. S and G may contain various concept descriptions at 
any stage, and it is quite possible that only the first positive instance will 
be an instance of all of them.

41Mitchell, 1982, p. 217

42Mitchell, 1982, p. 217

78



Mitchell's Symbolic Technique Problems With Mitchell's Technique

One can therefore say that a new instance chosen at random is far more 
likely to be given unambiguous negative classification than unambiguous 
positive classification. The smaller version space is, however, and hence 
the closer S and G are to convergence, the greater the number of instances 
that can be given unambiguous classification, positive or negative.

Version space can be used to determine the best instance to maximise 
removal of candidate concepts:

The instance which will provide on the average the most useful 

information is the instance which comes closest to matching one half 

of the generalisations in the version space. Regardless of its 

classification, ... [this] will allow rejecting one half of the currently 

plausible generalisations. Thus, by testing each instance to determine 

what proportion of the generalisations in the version space it matches, 

the most informative training instance can be selected.43

Thus, one has the possibility of developing an algorithm that could ask the 
instance provider for certain useful instances, and thereby increasing the 
likelihood of achieving the no-alternative situation in reasonable time. 
This, of course, assumes that the classifications of the desired instances can 
be found.

2.3.2 When the Data are Inconsistent

The problem of inconsistent data is far greater for Mitchell than that 
associated with insufficient training instances. The correctness of the first 
positive instance is crucial in building version space. If this instance is 
wrongly classified, or an element of it contains the wrong symbol, it is 
quite possible that the correct concept will not be a member of version 
space.

Subsequent instances, whilst not as crucial as the first, may still prevent 
the correct concept being found if they are inconsistent. However, an 
observation of Hirsh relating to the insufficient data problem can be taken

43Mitchell, 1982, p. 218

79



Mitchell's Symbolic Technique Problems With Mitchell's Technique

to infer that early instances are more important in the development of the 
concept than those that are shown later:

As each instance throws away candidate concept definitions, the 

version space gets smaller and smaller. As the version space decreases 

in size, the probability that a randomly chosen instance will make a 

difference — will be able to remove candidate concept definitions — 

becomes smaller and smaller.44

To show how Mitchell's technique fails when confronted with inconsistent 
data, let us again consider the state of version space after the second 
instance in the example in section 2.2.4.1:

S = {{[Lonicera periclymenum, June, Essex]}}
G = {{[Lonicera periclymenum, *, *]} {[*, June, *]}

{[*, *, Essex]}}

Suppose the third instance, which lead to the no-alternative situation in 
the example, had been wrongly classified as negative:

{[Lonicera periclymenum, July, Hertfordshire]}"

In that case, the first member of G, which this is an instance of, would be 
made more specific in two ways, to avoid the classification as positive of a 
negative instance by a member of G:

{[Lonicera periclymenum, *, *]} ->
{[Lonicera periclymenum, June, *]} and 
{[Lonicera periclymenum, *, Essex]}

Each of these is more specific than another member of G, hence G at the 
end of this instance would be the following set:

G = {{[*, June, *]} {[*, *, Essex]}}

The concept that was to have been the correct, final concept 
({[Lonicera periclymenum, *, *]}) has now been pruned from the 
search.

44Hirsh, 1990, p. 34

80



Mitchell's Symbolic Technique Problems With Mitchell's Technique

The problem is addressed to a certain extent in a paper by Hirsh.45 
Provided that the data has bounded inconsistency, one can "blur"46 
instances, by considering the training instances in the neighbourhood of 
each instance, and the concepts kept are those that correctly classify at 
least one of the set of the instance and its neighbours. A definition of 
neighbourhood must be given by the user.47

In an ordered space of instances, bounded inconsistency means that 
misclassified instances are those that occur near (where nearness is 
defined) the boundary between those instances which are matched by the 
concept, and those instances which are not. The definition of nearness is 
important in that it has a strong effect on the likelihood of a single concept 
being found:

Ideally, the result of this learning process would be a singleton 

version space containing the desired concept definition. However, if 

not given enough data the final version space will have more than one 

definition. This also happens if the definition of nearby is too 

generous, since it will allow too many concept definitions into the 

version space, and no set of instances will permit convergence to a 

single concept definition. The definition of nearby should be generous 

enough to guarantee that the desired concept definition is never 

thrown out by any instance, but not too generous to include too many 

things (or in the worst case, everything).48

For each instance, a version space is constructed that is consistent with the 
instance and its neighbours. The intersection of this version space with the 
version space formed from previous instances becomes the new version 
space, since this will contain concepts that have the minimum bounded 
inconsistency with all the instances so far. Concepts lying outside the 
intersection will either be inconsistent (beyond the bounds) with the 
instances so far, or with the new instance.

45Hirsh, 1990

46Hirsh, 1990, p. 33

47Hirsh, 1990, p.34

48Hirsh, 1990, p. 34

81



Mitchell's Symbolic Technique Problems With Mitchell's Technique

Mitchell's approach to the problem was to maintain parallel version 
spaces.49 If a concept cannot be found that is consistent with all the 
instances, then version spaces are constructed on the basis of consistency 
with all but one instance. If no concept can be found that is consistent with 
all but one instance, then consistency with all but two instances is used, 
and so on, using increasingly smaller subsets of the instances. This 
obviously requires the maintenance of several boundary sets S and G, and 
is extremely costly both in time and memory. As one would expect, Hirsh 
reports improvements in terms of time and memory required over 
Mitchell's method.50 51

2.3.3 When the Concept is Disjunctive

Mitchell's technique itself has a bias in that it cannot learn disjunctive 
concepts — e.g. the concept of "a flower observed in Kent or a flower 
observed in Sussex". No representational language and matching 
predicate can be provided that overcomes this problem, since the very 
nature of the technique, namely in the updating operation, assumes that 
when positive instances differ, it is necessary to generalise. When 
disjunctive concepts are allowed, however, differences between positive 
instances could mean that they belong to different disjuncts of the concept. 
Rich and Knight observe that disjunctive concepts are fundamentally 
unlearnable in this technique:

Generalisation can easily degenerate to the point where the S set 

contains simply one large disjunction of all positive instances.5^

For example, if S is the following set:

S = {{[M^osotis arvensis, July, Fife]}}

Then, given the positive instance of a forget-me-not observed in June in 
Fife:

49Mitchell, 1978, Ch. 5

50Hirsh, 1990, p. 36

51Rich & Knight, 1991, p. 469

82



Mitchell's Symbolic Technique Problems With Mitchell's Technique

{[Myosotis arvensis, June, Fife]}+

Instead of generalising the month, so that the concept is a forget-me-not 
observed in Fife at any time of the year, there is the possibility with 
disjunctive concepts being represented that the concept could be a forget- 
me-not observed in July in Fife, OR a forget-me-not observed in June in 
Fife. This process could continue, as more and more positive instances are 
added. S is simply the disjunct of all the positive instances, and is never 
generalised such that a given member of S matches more than one 
instance.

Yet, as Mitchell points out,52 biases can enable learning as well as 
hindering it. It is the very process of candidate elimination, the foundation 
of the whole technique, that undermines the ability of the technique to 
learn disjunctive concepts, and yet enables the technique to learn the 
concepts it is able to learn.

Mitchell's technique can still be used to learn disjunctive concepts, but 
again with costly adaptations.53 The approach uses several passes over the 
training data. In the first pass, a concept is found such that the maximum 
number of positive instances are instances of the concept, whilst not 
allowing any of the negative instances. Those positive instances that are 
matched by the concept found are removed from the training set, and a 
further concept is found in a similar way. When all the positive instances 
have been covered, the final concept is then simply the disjunct of all the 
concepts found during the learning process.

2.3.4 Controlling the Size of the Boundary Sets

For large search spaces, the boundary set representation of version space 
can itself become unwieldy. Mitchell copes with this problem by selecting 
instances that tend to reduce the size of S and G. There are two kinds of 
instance that are useful for this purpose:54

52Mitchell, 1980

53Mitchell, 1978, cited in Rich & Knight, 1991, pp. 469-470

54Mitchell, 1978, p. 91

83



Mitchell's Symbolic Technique Problems With Mitchell's Technique

• Instances that match half the concepts in each boundary set.

• Instances that match with all the attribute values in the concept 
but one.

The first strategy reduces the size of boundary sets that are already large, 
and applies to the process of selection within. The second strategy is 
aimed at reducing branching during updating. With only one differing 
attribute, the number of ways of specialising G or generalising S is 
reduced to one. For example, given:

G = {{[Lonicera periclymenum, *, *]} {[*, June, *]}
{[*, *, Essex]}}

and a negative instance:

{[Rhododendron ponticum, June, Essex]}“

the two members of G that match the instance are specialised, and G 
becomes:

G = {{[Lonicera periclymenum, *, *]}
{[Lonicera periclymenum, June, *]}
{[Lonicera periclymenum, *, Essex]}}

Note that there is only one possibility to minimally specialise each 
member of G that matches the negative instance, such that the instance is 
no longer matched. This is because the negative instance differed in only 
one attribute from the attribute values available.

Now these specialisations of G mean that they are now more specific than 
another member of G. Hence they are removed, and G is reduced to a 
single member:

G = {{[Lonicera periclymenum, *, *]}}

Suppose the negative instance had differed in more than one attribute:

{[Rhododendron ponticum, June, Avon]}-

84



Mitchell's Symbolic Technique Problems With Mitchell's Technique

There is now only one member of G that matches the instance, and it can 
be specialised in two ways:

{[*, June, *]} -> {[Lonicera periclymenum, June, *]} and 
{[*, June, Essex]}

Although these two are more specific than other members of G, and 
would be removed anyway, the point is made that there are more ways to 
specialise G with a negative instance that differs in many attributes, than 
for a negative instance that differs in only one attribute.

2.4 Conclusion

Mitchell's technique has been shown to find the no-alternative situation 
for a certain subset of concepts. The no-alternative situation, or knowing 
when to stop learning is a valuable facility. That which is of value to 
symbolic AI might also be of value to neural networks. Neural networks 
stand to gain considerably if they can make use of this, or any other 
technique in such a way that enables the knowledge of when the no
alternative situation has been reached.

In the symbolic domain, the representational languages used provide both 
a limit on the concepts that can be learned, and also the means by which 
those concepts are learned. The efficient representation of a vast space of 
alternative concepts improves feasibility of concept learning. The 
candidate elimination processes enable effective pruning of the search 
without impairing the certainty of finding the correct concept, given 
sufficient data. The results of the technique are still useful even when 
there is not enough data to give complete convergence, and there is the 
possibility of finding out the most useful instance in terms of eliminating 
candidate concepts from version space. Mitchell's technique is also able to 
detect when it has been given inconsistent data.

Thus Mitchell addresses himself to the three outstanding problems he 
outlines for concept learning in his thesis:55

55Mitchell, 1978, p. 8

85



Mitchell's Symbolic Technique Conclusion

• Knowledge of when the concept has been learned.

• Proposal of informative new instances.

• Detection of and recovery from inconsistent data.

Of these, the most important problem is the first one. Surely the most 
useful facility of Mitchell's symbolic technique is the fact that he is able to 
detect the no-alternative situation, and thus is able to know when to stop 
training.

The apparent weakness of the technique, bias, is paradoxically what 
enables learning. It is of philosophical interest that the categorisations 
made of the attributes and attribute values lead to the enabling of certain 
concepts being learned, whilst inhibiting the learning of other concepts.

The bias of the technique itself — a difficulty in learning disjunctive 
concepts — is due in part to the fact that the technique is couched in the 
symbolic AI domain. There is no capability to acquire a global sense of an 
embodiment of IO behaviour in a concept. This is because concepts must 
be described using a language, and hence disjunction explicitly 
represented, rather than taken as part of a whole. In neural networks there 
is no need for this. The concept is taken from the whole IO behaviour, and 
the disjunctive nature of the concept is not an issue.

That Mitchell made a significant contribution to symbolic AI and concept 
learning through this technique is undeniable. It is my belief that his 
method can also be employed in such a way as to be of benefit to learning 
with neural networks as well.

86



Generalisation in Neural Networks Introduction

3 Generalisation In Neural Networks
Generalisation is the ability of the learner to provide output for untrained, 
rather than just trained, input. The degree to which this output is 
consistent with the concept or function being learned indicates the degree 
of understanding the learner has of the concept. The study of 
generalisation aims to maximise the degree of fit the learner has with the 
concept being learned, without exhaustively training on all possible 
examples. In this chapter, after an introduction to some issues in 
generalisation in neural networks, section 3.2 examines more general 
issues in generalisation, and relates them to the choice of topology in 
neural networks, and section 3.3 discusses various ways of looking at 
generalisation in neural networks in the literature. Section 3.4 details the 
Mitchellian view of generalisation, and how it relates to neural networks.

3.1 Introduction

In the symbolic technique discussed in the preceding chapter, Mitchell 
had to use a special language in order to enable the representation of 
generalisation. Neural networks, however, are able to generalise by their 
own nature. Any neural network has a certain set of legal inputs, J, such as 
{1, 0}n, or Rn, for example, and an output can be calculated for any of these 
inputs, given a topology and a set of weights. If a training set, T, does not 
contain all members of I, then it is possible to calculate an output for an 
input that is not the input of a member of T.

If the inputs are taken from R”, then there are an infinite number of 
possible architectures that correctly classify a finite training set, T, and an 
infinite number of possible generalisations of T. There are an infinite 
number of possible topologies, since any number of hidden units can be 
used beyond the minimum number needed to correctly classify T. There 
are an infinite number of possible generalisations of T, since there are an 
infinite number of points outside T, each of which may be assigned a 
different output.

87



Generalisation in Neural Networks Introduction

The IO pictures given in figure 3.1 show the wide variety of possible 
generalisations that are to be found from the same set of patterns, for 
different architectures. All of these have zero classification error on the 
training set, but what is to be said about their generalisations to the rest of 
input space?

Figure 3.1 — Various generalisations of a set of random patterns. Patterns 

with a target of I are in black, those with a target of 0 are in white. (Top left: 

cascade architecture^ with 7 hidden units; Top right: standard feed-forward 

architecture with a 2*5*5*1 topology; Bottom left: standard feed-forward 

architecture with a 2*10*1 topology; Bottom right: cascade architecture with 

9 hidden units.)

Generalisation is clearly a natural and primary ability of neural networks. 
The ability to harness and understand this ability of neural networks

^Fahlman & Lebiere, 1991

88



Generalisation in Neural Networks Introduction

would be of benefit to the discipline. It would certainly have far reaching 
consequences in terms of the real-world applications to which neural 
networks could be reliably put to use.

Real-world training sets usually come from a distribution with an 
unknown underlying function. For example, one might consider using a 
neural network to predict the weather in a local area. The inputs could be 
readings of temperature, wind speed, and cloud cover, and the targets 
could be the same readings taken one hour later. The function that relates 
the readings between hourly intervals is unknown. If a group of people 
wanted to launch a hot-air balloon, and to know that the weather would 
be suitable over the one hour period it took them to do so, the prediction 
of the neural network would have crucial consequences. How then, is it 
possible to be sure that a neural network will be a reliable predictor of 
unseen instances? Without any knowledge of the underlying function, the 
accuracy of the prediction of the neural network can only be assessed on 
the basis of further sampling.

Much of the literature refers to "good", or "valid" generalisation.2 By this, 
it is usually meant that the neural network is a reliable predictor of unseen 
examples. Yet what basis is there for making the claim that a given 
learning technique is more likely to produce a network with a good 
generalisation than any other learning technique? When comparing 
techniques, it is important to observe the assumptions made about the 
data, the nature of input and output space, and any restrictions to the 
architecture, since these assumptions and restrictions often form the basis 
of the authors' claims.

Some techniques assume noiseless data when constructing the neural 
network. This is also the assumption of Mitchell, in the symbolic 
technique, and of some other techniques, such as Wolpert's HERBIE.3 In 
such cases, an exact realisation of the training set is a necessary condition 
of good generalisation. However, often the data sets do contain noise, (by

2E.g. Baum & Haussler, 1989; Burton & Faris, 1991; Kanaya & Miyake, 1991; 

Mato & Parga, 1992; Sietsma & Dow, 1991

3Wolpert, 1989,1990

89



Generalisation in Neural Networks Introduction

which it is meant that a pattern in the training set might have a misleading 
target for its input), in which case, attempting an exact fit to the data will 
lead to poor generalisation.

Inputs may be taken from such sets as Rw, {0,1 }n, or {-1, +1}” as mentioned 
earlier. Outputs may be from {0,1}W, {-1, +1}W, [0, l]m, [-1, +l]w, or Rm as 
is the case in function approximation. This is achieved in neural networks 
by not using an activation function (such as a sigmoid) on the output 
units, and using the excitation of the output unit as the output of the unit 
instead.4 Often, m is assumed to be 1, for the sake of simplicity.5

Techniques that aim to give good generalisation, must also give some 
definition of what is meant by "good". If by "good" it is meant that the 
network is a reasonably accurate predictor of unseen examples, then given 
a set of data, and no knowledge of the underlying function, there is no a 
priori way of deciding what constitutes a good generalisation beyond the 
data given, without making assumptions. Any generalisation of the data 
set is possible, and with no further information about the underlying 
function, it is impossible to give any rank to the alternatives, beyond these 
assumptions, which may be wrong. Therefore, techniques need to be 
realistic in their approach to generalisation.

4Hornik et al, 1989, p. 360; Kurkova, 1992, p. 502

5E.g. Hertz et al, 1991, pp. 148-149

90



Generalisation in Neural Networks Issues in Generalisation

3.2 Issues in Generalisation

In this section, the central issues in generalisation will be discussed. 
Although the thesis as a whole is concentrated on the classification 
paradigm, this section will be looking largely at function approximation. 
This is because the concepts are more easily described in this context. The 
concepts will be related back to the classification paradigm at the end of 
the section.

3.2.1 Assumptions about the Underlying Function

The most important issue in generalisation is probably that of the 
assumptions made about the underlying function of a particular data 
sample.6 A statistician, when trying to fit a set of data, will make some 
assumptions about the nature of the underlying function before trying to 
derive a function which fits the data as closely as possible. For example, 
take the three points in figure 3.2(a). A statistician might fit a linear (b), 
polynomial (c), or non-polynomial (d) function to these datapoints. Each 
would result in a very different generalisation.

In neural networks, the type of function fitted to the data is, perhaps, of 
less concern, especially when there are authors who state that neural 
networks can fit any function arbitrarily closely.7 The hope is that a neural 
network will somehow discover the underlying function without any a 
priori assumptions about what sort of function it is. This issue is addressed 
by Geman et al, in what they see as a trade-off between bias — the a priori 
assumptions made about the underlying function, and variance — the 
number of functions that a fitting mechanism can generate:

Much of the excitement about artificial neural networks revolves 

around the promise to avoid the ... process of articulating heuristics 

and rules for machines that are to perform nontrivial perceptual and 

cognitive tasks. ... We would naturally prefer to "teach" our machines

6Draghici, 1995, Ch. 3

7Funahashi, 1989; Homik et al, 1989

91



Generalisation in Neural Networks Issues in Generalisation

by example, and would hope that a good learning algorithm would 

"discover" the various heuristics and rules that apply to the task at 

hand.... Such a system may be said to be unbiased, as it is not a priori 

dedicated to a particular solution or class of solutions. But the price to 

pay for achieving low bias is high variance. A machine sufficiently 

versatile to reasonably approximate a broad range of input/output 

mappings is necessarily sensitive to the idiosyncracies of the 

particular data used for its training, and therefore requires a very 

large training set.8

/(X) J,

(b) (c) (d)

X

Figure 3.2 — Some data points (a), and possible fits to the data points by a 

linear (b), polynomial (c) and non-polynomial (d) function.

Of course, a specific neural network is not an unlimited function 
approximator. With a given number of units and weights, the kinds of 
functions that can be implemented are restricted. Therefore, the 
bias/variance trade-off is also related to the choice of topology:

8Geman et al, 1992, pp. 14-15

92



Generalisation in Neural Networks Issues in Generalisation

A small network, with say, one hidden unit, is likely to be biased, 

since the repertoire of available functions ... will in this case be quite 

limited. On the other hand, if we overparameterize, via a large 

number of hidden units ... then the bias will be reduced ... but there is 

then the danger of... significant variance...9

Hence, whilst neural networks in general represent a universal, high- 
variance approach, capable (in theory) of approximating any function, a 
specific neural network topology has a bias in the number and kinds of 
functions it can implement.

Some authors attempt to circumvent this trade-off through the use of 
automated topology determination, in which the topology is adjusted 
during training.10 There are two main approaches: that of starting with a 
small topology and adding units, and that of pruning units from an 
initially overlarge topology. There are some differences in opinion as to 
the generalisation abilities of such techniques. Smieja claims that the 
constructive techniques do not generalise as well as back-propagation,11 
whereas Hertz et al, state that such algorithms have "encouraging results" 
in terms of generalisation.12 Sietsma and Dow's pruning technique did 
not result in improved generalisation abilities:

The ... narrow, five-layer networks generalised far worse than their 

"parent" networks, indicating that fewer first-layer units, followed by 

more processing stages, does not lead to better generalisation.13

Chapter 4 discusses issues in topology determination, giving some 
insights into the capabilities of neural networks with various topologies in 
the classification paradigm.

9Geman et al, 1992, p. 12

10E.g. Baum & Lang, 1991; Brent, 1991; Fahlman & Lebiere, 1991; Fujita, 1992; Hirose et al, 

1991; Kameyama & Kosugi, 1991; Lee & Chung, 1990; Mezard & Nadal, 1989; Radcliffe, 

1993; Sietsma & Dow, 1991; Weigend et al, 1991a, 1991b; Wynne-Jones, 1993

^Smieja, 1993, p. 369

12Hertz et al, 1991, p. 162

13Sietsma & Dow, 1991, p. 79

93



Generalisation in Neural Networks Issues in Generalisation

3.2.2 Assumptions about the Data

The next assumption that someone who is trying to fit a function to a 
sample from the underlying function relates to the quality of that sample. 
The data may be perfect samples of the underlying function, in which 
case, it is desirable for a fitting function to pass through all the datapoints. 
However, the data may also contain noise, in which case, a function which 
passes through all the datapoints will not generalise well.

Noise is rather a difficult issue. To a certain extent, noise can be regarded 
as inaccuracies in sampling the underlying function. However, there is 
also the possibility that the underlying function is more complex than 
expected, and the samples are all correct. Hence noise is unwanted 
variation which may come in various forms. Assumptions about the 
amount of noise in the data are therefore also biases, since they represent 
an a priori preference for one kind of fit rather than another.

3.3.3 The Over-Fit/Under-Fit Dilemma

Finally, there is the issue of over-fitting and under-fitting the data. Put 
simply, over-fitting is whereby there are too many peaks and troughs in 
the fitting function, relative to a simple interpolation of the data. Under
fitting means that there are too few peaks and troughs in the fitting 
function as far as the sample points are concerned. Both result in poor 
generalisation. For example, consider a set of points which lie on the 
underlying function in figure 3.3(a). Figure 3.3(b) shows an over-fitting 
function, and figure 3.3(c) shows an under-fitting function, which does not 
go through all the sample points.

The difference between the over-fit/under-fit dilemma and the bias/ 
variance trade-off is that the former pertains to the fit to the data, whereas 
the latter pertains to the a priori assumptions which control the kind of fit 
that can be made.

If the data are noisy, then some datapoints must be assumed to be 
incorrect, and should not be fitted exactly by the fitting function. The 
amount of noise that is assumed in the data is a bias, since it will relate to 
the number of parameters chosen for the fitting function.

94



Generalisation in Neural Networks Issues in Generalisation

/(X) J,

(b) (0

V
Figure 3.3 — (a) A sample of 14 points from the underlying function, (b) A 

function which over-fits the 9 white samples, but then does not fit all of the 5 

black samples, (c) A function which underfits the 9 white samples.

Underestimating the degree of noise in the sample means the number of 
parameters used in the fitting function will be high relative to the 
underlying function. This may result in over-fit, since more datapoints 
have been assumed to be correct than actually are, and thus the fitting 
function may pass through incorrect datapoints. Conversely, 
overestimating the degree of noise in the sample means that too few 
parameters are used in the fitting function. This may result in under-fit.

Thus it may be seen that too much bias may result in under-fit, and too 
much variance may result in over-fit. Figure 3.4 shows a series of fits by 
neural networks with varying numbers of hidden units. The underlying 
function is sampled 100 times, and noise applied in order to encourage 
over-fit, where that is possible. Topologies with 2,15 and 35 hidden units 
are trained on the sample, using a combination of GA training and back- 
propagation. The number of hidden units chosen is a bias. The 2 hidden 
unit topology under-fits the underlying function, and the 35 hidden unit 
topology over-fits it, since it is capable of a more complex fit. The 15 
hidden unit topology gives a fit which is close to the underlying function.

The concepts of bias and variance must be separated from the concepts of 
over-fit and under-fit, however. There is no reason why the 15 or 35 
hidden unit topologies, with higher variance than the 2 hidden unit 
topology, might not also under-fit the data, if they were so trained.

95



Generalisation in Neural Networks Issues in Generalisation

d-
C

TJ
dC

O
 

d-
C

TJ
d-

C
O

 
d-

C
 d-C O

 
c+

 C
 "O

 <+ 
C

 O

Input

Figure 3.4 — From the top: The underlying function, and fits by 15, 2, and 

55 hidden units to a sample which approximates the underlying function. 

The 2 hidden unit fit under-fits and the 55 hidden unit fit over-fits. The 15 

hidden unit fit shows a good fit to the underlying function.

96



Generalisation in Neural Networks Issues in Generalisation

3.2.4 Over-Fit and Under* Fit in the Classification Paradigm

In the classification paradigm, there are only two possible values for an 
output unit. It is either active or inactive. The issue of over-fitting and 
under-fitting is slightly different from that of function approximation. 
Rather than relating to the number of peaks and troughs in the fitting 
function — which is equivalent to the value of the output of the neural 
network, the over-fit/under-fit dilemma may be seen as pertaining to the 
degree of complexity in the boundary found between inputs of different 
class. This would be measured relative to the simplest separation, given 
the data.

Consider a two-class scenario, for the sake of simplicity. There are two 
input axes, x and y. A decision boundary must be found which separates 
the black patterns from the white patterns, where black and white are the 
two classes. There are a set of patterns which belong to the training set, 
and a set of patterns which will be used to measure generalisation 
performance once training is finished.

Figure 3.5 shows some classification boundaries, with (a) representing a 
good boundary, which correctly classifies all the generalisation 
performance patterns. An over-fitting boundary is shown in (b) and an 
under-fitting boundary in (c). Neither of these correctly classify all the 
generalisation performance patterns.

x

yi

X

(a) (b) (c)

Figure 3.5 — A set of patterns are set aside for training (indicated bp the 

patterns in the shaded areas). Another set of patterns will be used to measure 

the generalisation performance, (a) A good separation, which correctly 

classifies all the generalisation performance patterns (b) An over-fitting 

separation, (c) An under-fitting separation.

97



Generalisation in Neural Networks Issues in Generalisation

The same issues with noise apply in the classification paradigm as they do 
with function approximation. If the data are noisy, then there are patterns 
in the training set which are given the wrong class for the position of input 
space they occupy. If the degree of noise in the training set is under
estimated and an appropriate topology chosen, the result may be an over
fitting class boundary. If the degree of noise is over-estimated, the 
topology chosen will yield an under-fitting class boundary. Both will 
result in poor generalisation ability. Chapter 4 has more detail on the 
complexity of decision region possible with a given topology.

3.3 Generalisation in Neural Networks in the Literature

The validation technique is a practical approach to training neural 
networks with a view to generalisation. This is discussed in section 3.3.1. 
A theory for calculating the average generalisation ability14 provides an 
alternative framework, which enables the prediction of the number of 
patterns that should be used to attain a given average generalisation 
performance. An overview of this is given in section 3.3.2.

As the relationship of neural networks to concepts in statistics and 
probability have been uncovered, deeper theoretical attitudes to 
generalisation have been forthcoming, and some techniques to go with 
them. A mathematical theory of Vapnik and Chervonenkis15 (abbreviated 
to VC hereafter) has been applied to provide the upper bounds on the 
number of patterns needed to be sure of good generalisation for a given 
neural architecture. This is discussed in section 3.3.3. The Bayesian view, 
outlined in section 3.3.4, is aimed at maximising the probability of a 
correct prediction for unseen points.

3.3.1 The Validation Technique

The validation technique is the most practical of the generalisation 
theories discussed in section 3.3. It is also the standard technique used in 
the neural community, and is based on the method of cross-validation in

14Schwarz et al, 1990

^Vapnik & Chervonenkis, 1971

98



Generalisation in Neural Networks Generalisation in the Literature

statistics. There are many implementable variants along a basic theme. The 
data are divided into two sets, a training set, and a validation set. Only the 
training set is used to determine the values of the weights. The validation 
set is used, during training, to measure the generalisation ability of the 
network, and to decide when to stop training. The algorithm proceeds as 
follows:

[The validation technique] employs a network with an excessive 

number of free parameters and stops training before the network 

reaches overlearning on the training set. ... Training is stopped when 

the performance on the validation set ceases to improve.16

Weigend et al17 actually suggest dividing the data into three parts, and 
using a prediction set (not used for training or for assessing when to stop 
training) which gives a measure of the expected future performance.

Over-fit and under-fit relate to training time for back-propagation. The 
longer a network is trained, the more peaks and troughs in the function 
implemented by the network. This is because back-propagation uses low 
random initial weights, which leads to low excitation values for each unit. 
This yields a roughly uniform initial function. As training proceeds, the 
weights increase in magnitude, and the excitation values increase. This 
gives rise to functions with more peaks and troughs.

Using too many hidden units during training ensures that there can be no 
under-fit in the final solution, since there will definitely be more than 
enough hidden units to realise the underlying function. Initially, the 
validation error will be high, as the network under-fits the data. As 
training progresses, and the under-fit is reduced, the validation error goes 
down. As the network is trained beyond the point of under-fitting the 
data, the validation error increases, as there are more incorrect outputs 
given for the members of the validation set. The network is now beginning 
to over-fit the data. This is a good time to stop training, since there is likely 
to be a good compromise between over-fit and under-fit.

16Hasegawa et al, 1992, p. 2459

17 Weigend et al, 1991a, p. 108

99



Generalisation in Neural Networks Generalisation in the Literature

Validation need not be restricted to an equilibration of over-fit and under
fit with over-sized topologies, however. With topologies with too few 
units to exactly fit the data, a minimum of validation error can be used to 
indicate when there is a balance in the errors of the validation set and the 
training set. This balance at the minimum of validation error means that 
further training, although it leads to an improved training error, will 
result in poorer performance on the validation set.

Training too far with any topology, over- or under-sized, will lead to an 
excessive fit to the training set, and hence an imbalance between the fits to 
the training set and the validation set. This is undesirable, since it is likely 
to lead to poor generalisation. Lang et al give the following report of 
training too far with their neural network:

Peak generalisation occurred after ... 10 000 epochs, at which point the 

network got 95.4% of the training cases, and 91.4% of the testing cases 

correct. During an additional 10 000 epochs of training, the network's 

performance increased to 98.1% on the training set, but generalisation 

fell to 88.1%.18

Figure 3.6 shows the effect on the IO of overtraining, for a simple problem 
(a linearly separable set) whose targets have been corrupted by noise. An 
overlarge topology has been used for the simple problem, and if training 
continues sufficiently beyond the first minimum of the validation error, 
then the network begins to fit the noise.

l^Lang et al, 1990, pp. 37-38

100



Generalisation in Neural Networks Generalisation in the Literature

The Effect on the IO of

19 -

17 --

U15 -

u13 ■■ 
LU

11 -

9 -

7 -

5 --

• ’ •
1992 cycles

10

Cycles

i raining validation
error error

Figure 3.6 — The change in the black and white picture produced by an 

overlarge topology for a noisy pattern set, over a period of 3 000 cycles. The 

topology had a single hidden layer of 5 units. Light grey indicates an output 

of 0 by the network, and dark grey indicates an output ofl. The pattern set is 

taken from a linearly separable pattern set of two hundred patterns, with 

25% noise on the targets. The patterns are indicated by black and white dots 

on the IO picture. A black dot indicates a target of 1, and a white dot a target 

ofO. (The patterns are shown in more detail in figure 3.7.)

The IO graph fits the noise more and more closely as training proceeds 

beyond the first minimum of validation error. At 37 cycles, the first 

minimum of validation error, the network realises a linear separation close to 

the underlying function. By 545 cycles, the separation is distorted slightly as 

it begins to fit the noise in the training set. By 1 992 cycles, the separation is 

severely distorted.

101



Generalisation in Neural Networks Generalisation in the Literature

□
□

r. ■A "■
□ ■ ■ ■

■ ".i
_ ■ °

" cP V.Dcj> □ O d
J3 SficP~~ t5fcL

03
. S, n 00 a a n°° 

•rT-acu CP □ -? % ■
cc □ □ °dd

Figure 3.7 — Close up of the pattern set used in figure 3.6. Solid black, 

squares indicate a target ofl, and the unfilled squares indicate a target ofO.

One problem with the technique is that the minimum of validation error 
stopped at need not be the best minimum in all cases. The original desired 
decision region in the above problem need not have been a linear 
partition, but the decision region shown at 1 992 cycles in figure 3.6. The 
same data set is used as for the simple problem, but now it is assumed that 
there is less noise. The same topology and initial weight state could also be 
used for this problem. However, the desired decision region, given these 
conditions, does not occur until the third minimum of validation error, 
which has lower training error relative to the first minimum of validation 
error. The decision to be content with a given minimum represents an 
assumption about the noise in the data.

Hence, the choice of which minimum to stop at is a bias. (See section 3.2.2, 
earlier.) This relates to the problem with validation discussed by Denker et 
al. Denker et al refer to validation as "rule extraction"19 (and do not assert 
any requirement for an over-sized topology). Given a training set, M, and 
a validation set, X, both of which are assumed to be representative 
samples of the rule to be extracted, they give a theoretical basis for 
expecting validation to work as follows:

The idea is to extract the rule from... M, and extend it to ... X.20

19Denker et al, 1987, pp.897-901

^Denker et al, 1987, p. 897

102



Generalisation in Neural Networks Generalisation in the Literature

Defining the extraction score as the accuracy with which the network 
predicts the validation set, Denker et al then go on to acknowledge a 
problem with the validation technique:

We emphasise that rule extraction is rather a slippery concept, since it 

is possible to change a network's extraction score (without changing 

the network) simply by changing one's mind about what rule was 

"supposed" to be extracted.21

This is a rather weak criticism of the technique, however. The assumption 
of representativeness must be broken if there is any major change of mind 
about the rule to be extracted. However, when the data are noisy, which 
must be taken to be the norm in real-world problems, the assumption of 
representativeness becomes an assumption of the degree of 
representativeness of the data. For the same data, differing assumptions of 
the amount of noise may yield different desired fits to the data, as is 
illustrated by the example in figure 3.6.

The validation technique makes no assumptions about the underlying 
function, other than that the data in the training set and the validation set 
are representative. It provides a means of deciding when to terminate 
training, at which point there is a balance between the memorisation of the 
training set, and the generalisation ability.

The validation technique provides no guarantees about the expected 
degree of fit beyond the available data. Even using a prediction set as per 
Weigend et al gives information about the available data only. The degree 
of expected fit to new data may only be based on the assumption that the 
data used for training and validation was representative. If this 
assumption is valid, then the technique should give satisfactory 
generalisation performance, but only in so far as the training regime 
produces the best fit to the training and validation data.

21Denker et al, 1987, p. 898

103



Generalisation in Neural Networks Generalisation in the Literature

3.3.2 Average Generalisation Error

Schwarz et al22 provide a formalism for computing the distribution of 
generalisation abilities given the number of patterns, and a prior 
distribution of generalisation abilities which embodies some kind of prior 
knowledge about the problem. The formalism is also discussed in Hertz et 
al,23 and the results are summarised in the following:

Let Vo he the volume of weight space. This could be finite if weight values 
were only considered within a certain range. Hertz et al suggest a range of 
[-10,10].24 Let Vo(/) he the volume of weight space (in the same region of 
weight space) that implements a given function f. (There might be more 
than one weight state that implements a given function due to symmetries 
in weight space. Chapter 5 has more on these. There is also the possibility 
that the functions implemented by weight states in a given neighbourhood 
do not differ significantly.)

Let fd be the target, or desired function. Let X be the set of all possible 
inputs, x. A given training set, T, takes random members x/ of X as input 
— the targets for each given by /rf(xz). Let £(/, x) be the following function:

’ [0 otherwise [3.1]

Let g(f) be the probability that f agrees with fd on any randomly chosen 
input — the generalisation ability of f. This is the mean value of E(f, x) for 
all members of X:

«(/) = (£(/,x)) [3.2]

Let po(g) be the prior distribution of generalisation abilities, g. This is the 
distribution of the fraction of weight space under consideration that has 
generalisation ability g:

22Schwarz et al, 1990

23Hertz et al, 1991, pp. 148-153

24Hertz et al, 1991, p. 148

104



Generalisation in Neural Networks Generalisation in the Literature

,, Z,W)5(s--•?(/))
Po (s) = —------- T,----------- [3.3]

where 5(x) is the Kronecker delta:

1
0

5(x) = <
if x = 0 
otherwise

Consider p patterns from T. Let Vp(f) be the volume of weight space 
consistent with a function f, and the p training examples, x,- from T:

Vp(/) = Vo(/)n£(/.*.) [3-4]
1=1,p

The product is 1 if the function is consistent with the training examples, 
and 0 otherwise. This represents the elimination of a function from the 
space of possible functions, if that function misclassifies a pattern. Vp(f) 
may be estimated using g(/) to give:

VJ,(/) = V„(/)[s(/)]'’ [3.5]

The distribution of generalisation abilities after p patterns, pp(g) is then as 
per [3.6] below, where Vp is the volume of weight space consistent with p 
patterns (or the size of version space):

PpU)=——-----------
vp

[3.6]

Using the estimate of Vp(f) in [3.5] above, pp(g) may also be estimated by 
substituting for Vp(f) in [3.6]:

P,(«) “ Z, Vp(/)<5(« - s(f))
[3.7]

= Z, V» (/)[«(/)]'’

can be taken outside of the sum as gP since if g(/) *g the Kronecker 
delta evaluates to zero. Thus, for the sum over all f, [g(/)]P is effectively 
constant and equal to gP. Therefore:

X/yo(/)U(/)r<5U -<?(/)) = Vo(/)5U “ s(f))x SppM [3-8]

105



Generalisation in Neural Networks Generalisation in the Literature

Hence the estimate of pp(g) can be written in terms of the prior 
distribution, pofe):

[3.9]

where the integral is used to normalise the distribution.

The average generalisation ability after p patterns, G(p), is the mean of the 
distribution of generalisation abilities:

G(p) = [3-10]

This can be estimated as well, and hence expressed solely in terms of the 
prior distribution of generalisation abilities, by substituting for the 
estimate of pp(g):

=[3.n]

This can be used to estimate the number of patterns needed to achieve a 
good average expected generalisation ability, given knowledge of the 
prior distribution of generalisation abilities. To calculate the prior 
distribution from [3.3] requires knowledge of the underlying function, 
however, which is not always possible. If the underlying function is not 
known, the prior distribution must be estimated:

The prior distribution of generalisation abilities po(g) is computed by 

testing all networks ... on a randomly chosen set of ... examples, large 

enough to obtain the intrinsic generalisation ability of each network 

with a precision of at least 6%.2^

This kind of estimation requires sufficient data sample sizes to be sure of 
the precision of the estimation. If the amount of available data is limited, 
this may not be possible.

25Schwarz et al, 1990, p. 380

106



Generalisation in Neural Networks Generalisation in the Literature

Even if the underlying function is known, it is still necessary to 
exhaustively consider all the possible weight states. Severe restrictions on 
allowable weight values are required if the prior distribution is to be 
feasibly calculated. Schwarz et al use weight values of ±1.26

For example, consider a simple topology with a single input unit and a 
single output unit. There are two weights: one weight, w, from the input 
unit to the output unit, and a bias weight, b, to the output unit. This 
topology separates the one dimensional input space into two halves, at the 
point x = -b/w. Let the weights, b and w be any non-zero integer between 
-10 and 10 inclusive. Let the input be any real number in the same range. 
The desired output is zero for all inputs between -10 and 3 inclusive, and 
1 for all other inputs in the given range. Figure 3.8 shows the problem, and 
indicates how the generalisation ability is calculated. For any given weight 
state f(w, b) with each weight taken from the specified set of values, the 
generalisation ability g(/) of the weight state for this problem is given by:

1- |x-3|

<?(/) = ’ 20
I*-31

where x =-----
w

[3.12]

20

Output 1 —
I
1

l
1™ ------- 1

-10 0 3 10

Input

w > 0

w < 0

Figure 3.8 — The simple problem is illustrated bp the solid line. The output 

is zero from -10 to 3, and rises to 1 thereafter. A candidate solution, which is 

indicated bp a dashed line, rises to 1 from 0 at a different point. The 

generalisation error is then represented bp the shaded area. The 

generalisation ability of the candidate solution is then represented bp the rest 

of input space between -10 and 10.

26Schwarz et al, 1990, p. 379

107



Generalisation in Neural Networks Generalisation in the Literature

The prior distribution of generalisation abilities can then be calculated for 
this problem by considering each weight state, and assuming it represents 
a unit volume of weight space. The expected average generalisation ability 
after p patterns can then be calculated using [3.11]. Figure 3.9 shows how 
the average generalisation ability increases as the number of patterns is 
increased for this problem. Also shown is the decrease in the size of 
version space with increasing patterns.

There are strong links with Mitchell in this technique. It shows how, as 
functions are eliminated from the space of all possible functions under the 
weight of increasing numbers of patterns (see equations [3.4] and [3.5]), 
the average expected generalisation error increases (equations [3.10] and 
[3.11]). This is akin to the concept of version space shrinking, leaving 
fewer and fewer candidate concepts under consideration. The remaining 
concepts have a greater degree of agreement with the target concept, and 
hence the average generalisation ability of the remaining concepts is 
increased.

® 400
re 350 
CL
w 300
§ 250
12 200 re
> 150 
o 100

o>
50 - 

0 - 
0

~t»............... I
50 100

Number of Patterns

(a) (b)

Figure 3.9 — (a) The effect on the average generalisation ability of 

increasing the number of patterns, (b) The corresponding effect on the size of 

version space.

108



Generalisation in Neural Networks Generalisation in the Literature

3.3.3 Vapnik Chervonenkis Theory

The relationship of VC theory to neural networks is discussed in several 
papers.27 The main concern of VC theory in neural networks is to provide 
a bound on the discrepancy between the estimated generalisation ability, 
gt(f) (equation [3.13]), based on a particular training sequence of p 

patterns, and the actual generalisation ability, g(f) from equation [3.2].

!rW,W(rt2 P.I3]

p

where E(/, x) is defined in equation [3.1].

The main result gives an upper bound on the probability that the function 
with the maximum discrepancy between gf(/) and g(/) has discrepancy 
greater than e, after p patterns have been trained:

p(max|g, (/) -g(/)| > e) < 4m(2p)e'^ [3.14]28

where m(x) is a function which gives the maximum number of different 
target sets that are realisable by the neural topology being used in this 
case, over all sets of x input vectors taken from the set of allowable inputs, 
X, where each target may be chosen from two possibilities. The function is 
2X until x equals the VC dimension, dye of the topology. This is because 
when x < dye, all possible targets for x patterns are realisable using the 
topology. Thereafter, certain possibilities for the targets are unrealisable. 
Hence the VC dimension for a topology, A, may be defined as one less 
than the number of patterns needed before it is possible to have an 
unrealisable target set for A.

For example, consider a simple topology with two input units, one output 
unit, and a bias weight to the output unit. Inputs are taken from R2. This 
topology allows weight states which are capable of an arbitrary linear

27Introductory: Abu-Mostafa, 1989; Hertz et al, 1991, pp. 153-156; Watkin et al, 1993. 

More detailed work on VC theory is to be found in Baum & Haussler, 1989; Haussler et 

al, 1994; Parrondo & Van den Broeck, 1993.

28Hertz et al, 1991, p. 154

109



Generalisation in Neural Networks Generalisation in the Literature

separation of input space. Figures 3.10(a)-(c) show that it can separate any 
combination of unlike targets for 3 patterns in general position. (The case 
of all patterns with the same target is also separable.) Figure 3.10(d) shows 
an inseparable target set for 4 patterns. Hence the VC dimension of the 
topology, with inputs from R2, is 3.

(d)

Figure 3.10 — (a)-(c) Show linear separability of any combination of unlike 

targets for three patterns in the same general position, (d) Shows 

inseparability of four patterns for a certain target set. Hence the VC 

dimension of a perceptron with 2 inputs and 1 output is 3.

In general, for any topology with n inputs, one output with a threshold 
activation function and a bias weight to the output, with inputs taken 
from Rn, the VC dimension of the topology is equal to (n + l).29

For topologies with hidden units, the VC dimension has not been so 
precisely formulated. Baum and Haussler give a lower bound for a feed
forward network with one hidden layer of h threshold units, taking input

29Haussler et al, 1994, p. 99

110



Generalisation in Neural Networks Generalisation in the Literature

from Rn (from which n input units may be inferred), and with 
outputs {-!,+!}:

dvc{n * h * 1) > 2 [3.15]30

where LxJ is the largest integer not greater than x, and n*/i*l indicates a 
completely connected feed-forward topology with n input units, h hidden 
units and 1 output unit.

The value of is approximately equal to the total number of
weights in the network, W, for large n and h. A later paper by Baum shows 
experimental results which indicate that the VC dimension is 
approximately equal to W for networks with two hidden layers of 
threshold units.31

There is also the need to estimate the function trz(x). Where the VC 
dimension is finite, there is an upper bound on m(x):

m(x) < xivc +1 [3.16]32

With a topology consisting of one input unit, and one output unit, it is 
possible to give a precise formula for m(x). The topology is capable of a 
single separation of a one dimensional input space. For any number of 
patterns, p, there are therefore 2p different sets of outputs that can be 
assigned to the patterns. (For example, see figure 3.11.)

Using this very simple topology, for which m(x) = 2x, it is possible to give 
a precise indication of the number of patterns recommended for a given 
probability bound and discrepancy. This is shown in figure 3.12. It is clear 
from this graph that the discrepancy has a far greater effect on the number 
of patterns than does the probability bound. It is also clear that the 
number of patterns recommended is rather high. Roughly ten thousand 
patterns are required to ensure that the maximum possible discrepancy

30Baum & Haussler, 1989, p. 157

31 Baum, 1990, p. 2

32Hertz et al, 1991, p. 154

111



Generalisation in Neural Networks Generalisation in the Literature

between the estimated and actual generalisation error is greater than 0.1 
with probability less than or equal to 0.1.

-)o—o—-□— [■ ■-----■-
—B-jo—-□—-a—

-o—-a— —D—□ [ ■

—■----4-CH- -a—a----- □-

Figure 3.11 — The eight possible sets of outputs for four patterns in a one 

dimensional input space being separated by a single hyperplane, which is 

indicated by the bold line. The arrow on the hyperplane indicates on which 

side of the hyperplane the output unit is 1. Black squares indicate an output 

ofl, white squares an output ofO.

A further point is that the formula in [3.14] does not guarantee values in 
the range [0,1]. For example, with a discrepancy of 0.1, 10 patterns, and 
m(x) = 2x, the probability bound in [3.14] is 158.01.

On a slightly different note, consider a situation whereby an exact 
realisation of a training set is required, and it is necessary to choose a 
topology which is certain to be capable of the realisation. If there were 
precise knowledge of the VC dimensions of different topologies, the VC 
dimension could be helpful in choosing the topology, by indicating the 
minimum topology needed to realise any combination of targets for that 
data set. This would provide certainty that the data set could be learned, 
and would remove the need for a trial and error approach in determining 
the topology.

112



Generalisation in Neural Networks Generalisation in the Literature

Figure 3.12 — Graph showing the number of patterns needed as the 

discrepancy, e, and the probability bound are varied. The number of patterns 

is much more dependent on the discrepancy than the probability bound.

3.3.4 Comparing VC and Average Generalisation Theories

The average generalisation theory of Schwarz et al may be used to indicate 
the number of patterns needed to acquire a reasonable average 
generalisation ability. VC theory may be used, as indicated above, to 
provide the number of patterns needed to bound the discrepancy between 
the actual and estimated generalisation abilities to a given value, e. 
However, it may also be used to give e for a given number of patterns and 
probability bound. Using the number of patterns from the average 
generalisation ability, the discrepancy for a given probability bound may 
be calculated. Figure 3.13 shows this, for the problem described in section 
3.3.2, which uses the same topology used in section 3.3.3 to give a precise 
formula for m(x).

The VC formula [3.14], when rearranged in terms of e, for m(x) = 2x, may 
produce values for the discrepancy which are greater than 1. Since the 
estimated and actual generalisation abilities ([3.13] and [3.2] respectively) 
are both in the range [0,1] inclusive, their difference must also be in this 
range. As section 3.3.3 indicated, the VC formula does not guarantee

113



Generalisation in Neural Networks Generalisation in the Literature

values for the probability bound in the range [0,1] inclusive. Thus, there is 
no reason to expect the discrepancy to also be in an appropriate range.

The chart in figure 3.13 shows that the discrepancy is rather large, even for 
extremely good expected average generalisation abilities. (A discrepancy 
of 1 means either that the estimated generalisation ability is 1, and the 
actual generalisation ability is 0, or vice versa.) This could bring the 
usefulness of VC theory into question, particularly for real-world 
problems, where large numbers of patterns may not be available.

>»u
c(0Q.<U
u0
Q

1 E-01

1-G(p)

1

0.8

0.6

0.4

0.2-1

1 E-06 

E-04

Figure 3.13 — Comparison of VC theory and average generalisation theory. 

The discrepancy between the estimated and actual generalisation ability is 

given for the average generalisation ability, G(p), and probability bound, P.

114



Generalisation in Neural Networks Generalisation in the Literature

3.3.5 Bayesian Frameworks for Generalisation

The relation of Bayesian probability theory to neural networks is 
discussed in several papers.33 The Bayesian approach to generalisation is 
based on the Bayes optimal classification algorithm.34 Given p inputs 
whose targets (e {0,1}) are known, this algorithm finds the most probable 
output of a new input, q. Let Vp be the volume of weight space that 
correctly classifies the p patterns seen so far. Let Pq+ be the proportion of 
Vp that gives an output of 1 to q. Let Pq~ be the proportion of Vp that gives 
an output of 0 to q. If Pq+ > Pq~ then q is given output 1, otherwise q is 
given output 0. Evaluating Pq± is equivalent to evaluating the Bayesian 
posterior probability that q has the given classification.35 Eisenstein and 
Kanter refer to this as the Bayes i algorithm,36 since one new input is tested 
at a time.

An important disadvantage with this technique, akin to the average 
generalisation error technique, is that it requires the knowledge of all the 
weight states that correctly classify the p patterns. Opper and Haussler37 
sample Vp by independently training N networks to minimum error from 
several different random initial weight states. This will result in different 
final solution trained weight states. A committee machine is then 
constructed which takes the outputs of the N networks as inputs, and 
gives output equal to the output given by the majority of the inputs. N 
must be odd so that there is always a clear majority one way or the other. 
For sufficiently large N, the output of the committee machine converges to 
the Bayes estimate. Compared with the validation technique, which only 
trains one network, Opper and Haussler's algorithm is very costly, 
particularly for large problems, and for large N.

33E.g. Kanaya & Miyake, 1991; Levin et al, 1990; MacKay, 1992a-d;

Opper & Haussler, 1991; Watkin et al, 1993

34See Opper & Haussler, 1991, p. 2678, and references therein.

35Watkin et al, 1993, p. 510

36Eisenstein & Kanter, 1993. p. 3668

37Opper & Haussler, 1991

115



Generalisation in Neural Networks Generalisation in the Literature

In the case of a set, Q, of cardinality n > 1 patterns to be generalised to, 
there is a choice of two possibilities for deciding the outputs for the 
members of Q. Firstly, one can apply the Bayesi algorithm n times. This 
means selecting the largest proportion of Vp to be the target for the first 
member of Q, qi, then, of that sub-volume, selecting the largest proportion 
for qi, and so on up to </n. The second possibility is to consider proportions 
of Vp for each possible set of targets for members of Q, and the largest 
proportion selected. This is termed the Bayesn algorithm.38 The difference 
between these algorithms is indicated in figure 3.14.

2 6 4
H -H

(a) (b)

Figure 3.14 — The difference between Bayesi (a) and Bayesn (b). In (a) each 

pattern is assessed sequentially, and the largest portion of the available 

weight states selected. In (b) all possible target sequences with the current 

architecture are assessed at once, and the largest area selected. Each pattern 

has a boundary hyperplane in version space which separates those zveight 

states which classify the pattern as 1, and those which classify it as 0. The 

arrows indicate on which side of the boundary each pattern is classified as 1.

Eisenstein and Kanter distinguish between three kinds of generalisation in 
order to show that the Bayesi and Bayesn algorithms are not necessarily 
optimal:

38Eisenstein & Kanter, 1993, p. 3668

116



Generalisation in Neural Networks Generalisation in the Literature

(i) To maximise the probability of correct classification of all 
members of Q. In this case, the aim is to choose the maximum 
probability outputs for all members of Q simultaneously. For this, 
the Bayesn algorithm is optimal.39

(ii) To maximise the average number of correct classifications of Q. 
Here, rather than considering all members of Q simultaneously, 
the aim is to be sure that on average, each member of Q will be 
correctly classified. For this, applying Bayesi n times is optimal.40

(iii) As (ii), but at least m patterns must be correctly classified. Here, 
neither Bayesn nor Bayesi is optimal.41 This is because neither 
algorithm can guarantee a given number of correct classifications 
from Q, since there is no a priori basis for selecting among the 
possibilities according to the proportion of Vp that they occupy. 
Figure 3.15 shows this. It is hard to imagine that any algorithm 
could guarantee the correct classification of a given number of 
patterns, however. Yet Eisenstein and Kanter claim to have an 
algorithm which is optimal in this case, though their description of 
it is not straightforward:

The optimal strategy for [case (iii)] is a table which indicates for each 

type of partition of the VS to make a prediction following a particular 

part of the VS, among 2n.42 [VS stands for version space, and is 

equivalent to Vp in the above discussion.]

MacKay has an alternative Bayesian approach which uses a single neural 
network.43 The general approach is to find the simplest, most probable 
interpolant of the data.44 This embodies Occam's razor, which is a 
principle stating that, given a choice, simple rules that explain a 
phenomenon are more likely to be true than complex rules.

39Eisenstein & Kanter, 1993. p. 3669

40Eisenstein & Kanter, 1993, p. 3669

41Eisenstein & Kanter, 1993, p. 3670

42Eisenstein & Kanter, 1993, p. 3670

43MacKay, 1992a-d

44MacKay, 1992a, p. 426

117



Generalisation in Neural Networks Generalisation in the Literature

In the classification paradigm, MacKay's approach to finding the 
maximum probability classification is to estimate the probability of each 
class for a given input, and choose the class with the highest probability.45 
Each output unit is dedicated to a particular class, and the analogue 
output of each unit is treated as an estimate of the probability that the 
current input has that class. This is in line with the view of Richard and 
Lippmann that neural network classifiers trained using back-propagation 
are good estimators of Bayesian a posteriori probabilities,46 though MacKay 
suggests several refinements to back-propagation.47

• Bayes(n)" ■

>4 >4 >4

>4 >4llli
Bayes(1) >4

Figure 3.15 — Regions that have at least 4 correct patterns for a true target 

sequence ofT = {0, 0,1, 0, 0, 0}. There is no basis for finding these on the 

basis of the relative volumes of weight space they occupy, and hence neither 

the Bayesi nor the Bayesn algorithms find an acceptable solution.

MacKay's approach to classification is therefore more in the line of surface 
fitting than of raw classification, in which only the class boundaries are 
required. Telfer and Szu point out that more complex topologies are 
needed to estimate the Bayesian a posteriori probabilities than to perform 
raw classification.48

This thesis is focused on estimating the class boundaries, rather than the a 
posteriori probabilities. This is because there is a better understanding of 
the topology needed to realise a given set of class boundaries than to fit a

45MacKay, 1992d

46Richard & Lippmann, 1991

47MacKay, 1992b

48TeIfer & Szu, 1994, p. 809

118



Generalisation in Neural Networks Generalisation in the Literature

given probability surface. MacKay deals with this by training using 
various topologies, and then choosing the best among these.49

The technique in chapter 6 has the topology as a bias of the user, and it is 
therefore important that the user has a reasonable idea of the capabilities 
of a given topology before using the technique. These capabilities are 
discussed in detail in chapter 4.

Bayesian learning in general represents the embodiment of certain a priori 
ideas of what constitutes a good generalisation. The most probable 
generalisation, however, cannot be guaranteed to be the best 
generalisation, even if it is the most likely.

The Bayesian approach is akin to the Mitchellian approach for partially 
learned concepts. When the Mitchellian version space does not converge 
to a singleton, there will be some instances for which there is 
disagreement among the various members of S and G as to whether it 
does or does not match the target concept. For such an instance, one of 
Mitchell's strategies is to take the decision of the majority of the members 
of S and G. The main difference between the Bayesian approach and the 
Mitchellian approach is that Mitchell uses the boundaries of version space 
only, whereas the Bayesian approach samples the whole of version space.

49MacKay, 1992b, pp. 450-451,1992c, pp. 470-471

119



Generalisation in Neural Networks The Mitchellian View

3.4 The Mitchellian View

3.4.1 Generalisation

In Mitchell's symbolic technique, no candidate generalisation is removed 
from version space until it is inconsistent with the data. Thus no 
preference is given by Mitchell's technique to one kind of generalisation 
over any other kind, within the given generalisation language. To 
Mitchell, generalisation can only be guaranteed when the cardinality of 
version space is 1.

Any generalisation of data involves making certain assumptions. Mitchell 
recognised this in the concept of bias in learning. To make generalisations 
requires bias, and without it, learning is simply the process of 
memorisation of the data in a look-up table form. This is because it is bias 
that enables the learner to look beyond the training examples to see the 
underlying pattern behind them, and thus to generalise. The nature of the 
bias determines the kind of underlying patterns the learner is able to see. 
Mitchell summarises this as follows:

The ability to make an appropriate "inductive leap" when 

generalising from a small set of training instances is only possible 

under a priori biases for choosing an appropriate generalisation out of 

the many possible.50

Without the ability to choose one generalisation over the others, learning 
can only be a rote learning process, whereby training examples are 
memorised. This is because there is no basis for generalisation. This 
should not be confused with the memorisation/generalisation dilemma in 
neural networks. Neural networks generalise naturally. For Mitchell, 
generalisation requires a generalisation language. Without the 
generalisation language, there is no basis for generalisation, and hence 
rote learning is the only possibility. However, with a given generalisation 
language, certain concepts are representable, while other concepts are not,

50Mitchell, 1980, abstract

120



Generalisation in Neural Networks The Mitchellian View

and this is a bias. Since neural networks generalise naturally, a given 
neural network has a bias. This will be discussed in the next section.

Since the generalisation language is specified by the user, the bias is made 
explicit. The assumptions of the user about the nature of the underlying 
function to be learned are clear from the start, and are not built in to the 
technique. (Note, however, that the inability to learn disjunctive concepts 
does represent a built-in bias of the symbolic technique.)

Mitchell's technique presents a realistic attitude to generalisation through 
the acknowledgement and embodiment in the technique of the following 
crucial points:

• Any generalisation is a valid generalisation. To be sure of reaching 
the correct generalisation, one should not discard representable 
candidate generalisations until they become inconsistent with the 
data.

• The process of generalisation requires bias. It is often impossible to 
explore all the possible generalisations, since there could be an 
infinity of alternatives. Since all generalisations are legitimate, the 
bias is needed to indicate which kind of generalisations are 
preferred. (For example, in the symbolic technique, concepts 
without disjunction are preferred.) Concept learning then becomes 
feasible. However, it is important to be sure that the bias does not 
exclude the target generalisation.

In the design of the technique, Mitchell makes use of a partial ordering of 
version space to enable the efficient representation of version space using 
boundary sets. This avoids the need for an exhaustive search of version 
space.

3.4.2 Relating Mitchell’s Technique to Neural Networks

For Mitchell, a concept is a link between instances, which groups certain 
instances under one category (those which match the concept) and other 
instances under another category (those which do not match the concept). 
If instances are seen as stimuli to a system, the only possible responses of 
the system are "Matches" or "Does not match".

121



Generalisation in Neural Networks The Mitchellian View

In this thesis, a concept shall be taken to be a body of IO behaviour. This 
allows for a more active model, with the potential for a richer set of 
responses than the two possibilities with Mitchell's technique. The concept 
of danger, for example, may be seen as the linking of certain stimuli to 
appropriate responses. For instance, given the stimulus of "toadstool", the 
trained response might be "don't eat". In neural terms, this broadening of 
the idea of a concept allows for the possibility of many output units. One 
output unit would suffice to provide a strict link with the symbolic 
technique. An output of 1 could indicate, "the input matches the concept", 
and an output of 0, "the input does not match the concept".

Since the weights and topology are what give rise to the IO behaviour in 
neural networks, concept space can be seen as the weight space for a given 
topology. The set of weights that correctly classify the patterns presented 
so far is referred to as the version space for that set of patterns by some 
authors.51 Weight space, however, is an indirect way of looking at the IO 
behaviour. The view of version space in this thesis will be the space of all 
IO behaviours that are consistent with the data. This space may be limited 
to the space of all IO behaviours realisable by the given topology. This 
provides the link with weight space.

Version space in neural networks is much larger in comparison to the 
symbolic technique, if weight space or IO behaviour is taken to be the 
analogue. This is because the weights may have any real number as a 
value, as indicated earlier, whereas the symbolic case has a fixed, finite set 
of symbols for attribute values in version space. Reaching the no
alternative situation in neural networks, even within a certain degree of 
accuracy, could take a long time because there are so many possibilities. 
This is indicated by VC theory.

Instances are simply the training patterns. Training patterns combine 
input and target vectors for the input and output units of the neural 
topology. The neural analogue of the instance language is the specification 
of the sets from which the inputs and targets may be drawn. For example,

51E.g. Opper & Haussler, 1991, p. 2678; Watkin et al, 1993, p. 504

122



Generalisation in Neural Networks The Mitchellian View

inputs might be from Rn, and targets from the set {1, 0},n, where n is the 
number of input units, and m is the number of output units.

The neural analogue of the generalisation language is the topology. This 
constrains the set of IO behaviours the neural network is capable of 
realising. The choice of topology represents the bias, in the Mitchellian 
sense, just as it does in the Geman et al sense, of the generalisation. In 
Mitchell's technique, the choice of generalisation language is made by the 
user. To maintain consistency with this, the neural implementations 
discussed in chapters 5 and 6 also either restrict the choice of bias (in 
terms of the topology), or leave it to the user. Therefore techniques for 
automatically determining the topology during training are not 
considered.

Mitchell's technique uses representatives of the boundaries of version 
space to mark the shrinking of version space as instances are introduced. 
In order to establish those boundaries, it is necessary to have an ordering 
of the concepts. Mitchellian neural partial orderings are hard to find 
because the general/specific relation is not there. There is no a priori way 
to order IO behaviour. For example, should a concept that has response 
"eat" to the stimulus "toadstool" come before or after one that has "don't 
eat", or "run away"? The work of this thesis centres around finding such 
orderings in order to implement Mitchell's technique in a neural 
environment.

A further requirement, once there is the possibility for representing the 
boundaries of version space, is the ability to make changes to those 
boundaries under pressure from the instances. These are the neural 
analogues of updating and selection within.

Thus, certain prime directives for a neural implementation of Mitchell's 
technique may be established. These are given below:

• The implementation must have an ordering of IO behaviour which 
enables boundary representation of version space, with a many- 
one correspondence between the IO behaviour and the ordering, 
and any two weight states deemed to have the same IO behaviour 
must also have the same value in the ordering. If this directive is 
not upheld, then two networks with the same IO behaviour might

123



Generalisation in Neural Networks The Mitchellian View

have different values in the ordering. The no-alternative situation 
is detected by the networks having the same value in the ordering. 
Hence, without this directive, it is not possible to guarantee the 
detection of the no-alternative situation using the ordering.

• There must be mechanisms for updating and selection within.

• Updating must always be by the minimum amount necessary for 
correct classification, in one direction for the S analogue, and in 
the opposite direction for the G analogue.

3.5 Conclusion

Mitchell's technique has the advantage that it is not necessary to examine 
all the possible concepts, through the use of boundary representatives of 
version space during learning. Exhaustive search techniques, such as that 
of Schwarz et al, and the sampling technique of Opper and Haussler, do 
not have this advantage, and suffer from relatively high computational 
costs.

The main advantage of the boundary representatives, however, is the 
ability to recognise the no-alternative situation. This is an important 
consideration for anyone who is trying to fit some data:

In some cases, we may be interested in global, rather than local 

questions. Not, "how good is this fit?", but rather, "how sure am I that 

there is not a very much better fit in some other corner of parameter 

space?"52

The bidirectional convergence of the search enables this valuable property, 
since if there is no alternative but the current solution, then the fit must be 
the best possible. Having found and recognised the no-alternative 
situation also gives a terminating condition. There is no point in training 
further if it is known that there are no better alternatives. The validation 
technique also has a terminating criterion, but as indicated in section 3.3.1, 
there is ambiguity about which minimum of validation error should be

52Press et al, 1988, pp. 517-518

124



Generalisation in Neural Networks Conclusion

used. Hence, the terminating criterion of the validation technique is not 
certain to recognise the optimum fit. MacKay's technique — which is also 
a unidirectional technique — also suffers from this disadvantage.

There is more potential for the Opper and Haussler technique to indicate 
the no-alternative situation. If all the samples of version space give the 
same output for any randomly chosen input, then this might be taken to 
indicate the convergence of version space. This could, however, be due to 
poor or insufficient sampling of version space, rather than reaching the 
no-alternative situation.

The Bayesian literature relates to Mitchell's methods for partially learned 
version spaces. Selecting the most probable weight state from version 
space, or the most probable classification given the weight states in 
version space is a useful method for guessing the generalisation when it is 
clear that there are several alternatives for a given set of patterns.

VC theory and average generalisation theory provide measures which 
relate to the likely generalisation ability. The VC theory estimate has been 
shown in section 3.3.4 to place excessive demands on the number of 
patterns, through the high discrepancies between estimated and actual 
generalisation error it estimates even for extremely good average 
generalisation abilities.

Mitchell's technique is able to offer more than probabilities of 
generalisation, within a certain set of assumptions. If the no-alternative 
situation is reached, then Mitchell's technique can offer a guarantee that, 
given the assumptions, the generalisation is correct. This means that any 
unsatisfactory generalisation results arise from the assumptions of the 
user (and the designer of the technique), rather than being due to the 
probabilities not working in the favour of a good generalisation.

For example, if the average generalisation performance is estimated to be 
90% on the basis of a set of patterns, the actual generalisation performance 
need not, in fact, have this value. The explanation of why the 
generalisation performance is different from the expected value does not 
rest on the assumptions of the user, so much as on the particular set of 
patterns chosen.

125



Generalisation in Neural Networks Conclusion

The VC and average generalisation theories show that in neural networks, 
large data sets are needed to constrain the number of alternative IO 
behaviours to a reasonable quantity — each with an acceptable 
generalisation performance. The Mitchellian guarantee, which rests on a 
single alternative, might seem rather a remote possibility. The techniques 
discussed in chapters 5 and 6 will both show neural implementations of 
Mitchell's technique which, within certain constraints, aim to achieve the 
no-alternative situation using a reasonable number of carefully chosen 
patterns.

126



Issues in Topology Determination Introduction

4 Issues in Topology Determination

4.1 Introduction

Chapter 3 showed that the choice of topology had a strong effect on the 
generalisation — in terms of the bias a particular choice of topology has 
for the solution found. This chapter is included in order to provide 
guidelines for choosing a topology a priori when using the technique 
outlined in chapter 6, which assumes the topology is given as a 
Mitchellian bias of the learner.

This chapter will examine the work of various authors on the subject of a 
priori topology determination, looking at each layer in turn. Units with 
threshold activation functions [4.1] are considered throughout. If the 
output of a unit is 1, the unit may be said to be active, or on. Conversely, 
for an output of 0, the unit may be said to be inactive, or off.

output* = activation*
1 if excitation* > 0 

0 otherwise
[4.1]

The capabilities of networks with sigmoid units is briefly discussed in 
section 4.4. Sigmoid units have more complex capabilities than threshold 
units, so it is a good idea to look at the simpler threshold unit behaviour 
first. It is assumed that inputs are taken from RJ, where I is the number of 
input units. One output unit is assumed for simplicity.

The neural networks that will be discussed here divide input space into 
continuous regions. Within any given region, the binary output is the 
same for all points in that region. Neighbouring regions may have the 
same output, or a different output. A given training point is therefore 
correctly classified if and only if it lies in a region with the same output as 
the target of the training point.

The main approach of this chapter is to look at the regions, rather than the 
patterns. This means the question addressed is more, "What is topology X 
capable of?" rather than, "What topology is necessary for problem Y?" The 
problems encountered in this chapter are described in terms of regions,

127



Issues in Topology Determination Introduction

rather than in terms of the patterns from a pattern set. However, it is not 
the norm to train regions with neural networks — training is usually done 
using a specific set of training patterns. To answer the latter of the two 
questions, using the work in this chapter, it would be necessary to have 
some idea of the number of regions that the pattern clusters indicate.

Neural network training algorithms attempt to divide input space up into 
regions that match with pattern clusters in the training set. How the 
network divides input space into regions is discussed in section 4.2, and 
the means by which the regions are assigned their outputs in section 4.3. 
Hartigan's book1 contains several clustering algorithms, and finding the 
number of pattern clusters is also explored by some of the radial basis 
function literature.2 It is not explored further here.

If one could train the regions directly, without using the patterns, then the 
problem of generalisation would be solved. The output for any given 
input would be precisely defined. However, this would either require an 
infinite sample size, or a very precise knowledge of the problem. This may 
be referred to as infinite training. The approach to training with neural 
networks uses a finite set of patterns to approximate the infinite training 
case. This may be referred to as finite training.

The problem of determining a topology comes down to understanding the 
capabilities of neural topologies. A pioneering work on this subject is a 
paper by Lippmann,3 which suggests an interesting theory. Although 
erroneous in its conclusions, this paper is frequently cited,4 and its theory 
of the capabilities of various topologies is even cited in textbooks.5 The 
theory is summarised simply in that networks with one hidden layer can 
only realise a single convex decision region. Convex is taken to mean that 
all points on a line between any two points in a region also belong to that 
region, and the decision region is the set of all inputs which give rise to an

1Hartigan, 1975

2E.g. Mel & Omohundro, 1991, p. 761; Musavi et al, 1992, pp. 596-597; Roy et al, 1993

3Lippmann, 1987

4E.g. Barron, 1994, p. 33; Schmidt & Davis, 1994, p. 3389; Shonkwiler, 1993, p. 344

5Beale & Jackson, 1990, p. 87; Khanna, 1990, p. 71

128



Issues in Topology Determination Introduction

output of 1. Networks with two hidden layers can realise any combination 
of convex regions.

Lippmann's reasoning in the case of one hidden layer only is based on the 
consideration of a very restricted set of weights from the first hidden layer 
to the output node.6 The weights from the hidden units to the output unit 
are all 1, and the bias weight to the unit is set so that the output unit is 
only activated when all of the hidden units are activated. This computes a 
logical AND. For N hidden units, the excitation of the output unit, u^, is 
given in equation [4.2]:

excitation* = weightkjoutputj + bias* [4.2]

The weights considered by Lippmann to the output unit restrict [4.2] to 
the following equation only:

excitation* = output j + c*-N [4.3]

where 0 < cjt <1. The excitation is greater than 0 (and hence the output 
equal to 1) if and only if output j = 1 for all / = 1,..., N. The sum is then 
equal to N, and the lower bound for ensures that the excitation is 
greater than 0. The upper bound for q ensures that the excitation is less 
than 0 when the sum is less than or equal to N -1.

With these restrictions, Lippmann is correct to say that convex regions 
only may be realised with a single hidden layer. Take, for example, the 
three hyperplanes arranged as in figure 4.1. The regions are divided up 
into patterns of activity from the outputs of the three hidden units which 
give rise to the hyperplanes. With weights of 1.0 to the output units from 
the hidden units, and a bias weight of -2.5, there is only one region which 
has an output of 1 — the region (if it exists) which contains all three 
hidden units firing simultaneously, as shown in table 4.1.

However, there is no need to impose these restrictions on the weights. 
Even keeping the weights to the output unit as 1.0, it is possible to 
generate a concave decision region with a bias weight of -1.5. This is

6Lippmann, 1987, p. 16

129



Issues in Topology Determination Introduction

shown in table 4.2. Other authors, including Lippmann himself, have 
realised this.7

Figure 4.1 — Three hyperplanes. The arrows on each hyperplane show 

which side of the hyperplane the unit has an output of 1. The numbers in 

each region show which units are active (i.e. have an output of 1) in that

Table 4.1 — Calculation of decision region when weights are set in 

accordance with Lippmann. A convex region is formed.

Lippmann's more useful result is to show that two hidden layers are 
sufficient to realise any desired decision region.8 This imposes a 
theoretical limit on the number of layers required in the topology for any

7Huang & Lippmann, 1988, p. 388; Li, 1991, p. 509; Lippmann, 1989, p. 50; Makhoul et al, 

1989, p. 456; Wieland & Leighton, 1987, p. 387

8Lippmann, 1987, p. 16

130



Issues in Topology Determination Introduction

problem. The first hidden layer, with restricted weights to the next hidden 
layer, forms the boundaries of the convex polygons which are realised by 
units in the second hidden layer via a logical AND network. Each output 
unit then takes a logical OR of the units in the second hidden layer whose 
combined polygons form the desired decision region of the output unit. 
These decision regions may be concave, disjoint, or convex. Hence all 
possible desired decision regions are realisable with two hidden layers. 
(See figure 4.2.) A logical OR network is constructed with weights to the 
output unit from the units in the second hidden layer all equal to 1, and 
the bias weight equal to any real number between 0 and -1 (non
inclusive).

Hyperplane Activatio 
= © +

n
© + © -1.5 Output Decision Region© © ©

0 0 0 -1.5 0 U
0 0 1 -0.5 0 v j3
0 1 0 -0.5 0 C X—1
1 0 0 -0.5 0
1 0 1 +0.5 1
1 1 0 +0.5 1 I 3
1 1 1 +1.5 1 ® 6

Table 4.2 — Simply changing the bias weight from Lippmann's 

recommendations enables the formation of a concave decision region using 

one hidden layer only.

Arguably, therefore, there is never any necessity for a feed-forward neural 
network with more than two hidden layers for classification, since two 
hidden layers are sufficient to realise an arbitrary decision region. Sections
4.3.2 and 4.4.3 have some considerations of the possibilities for using 
further hidden layers, however.

Since Lippmann's theory is incorrect, further analysis is needed. Section
4.2 looks in more detail at the kinds of decision regions that can be formed 
by networks with one hidden layer, and the real reasons for requiring a 
second hidden layer.

131



Issues in Topology Determination Introduction

Output
Layer

Figure 4.2 — How Lippmann constructs his topology. The hyperplanes of 

the first hidden layer bound the convex regions. Each unit in the second 

hidden layer combines the hyperplanes that border the convex region it is to 

fire for. An AND network is used so that the unit only fires within the 

region. Each output unit takes an OR of all the regions it is to fire in. In this 

way, each output unit can respond to any arbitrary combination of convex 

regions, forming disjoint and concave regions if required.

There is also the question of approximating the desired decision region, 
rather than exact realisation. Funahashi9 and Hornik et al10 both show that 
a neural network with one hidden layer can approximate any function (of 
which classification functions are a subset) to an arbitrary degree of 
accuracy. Cybenko has also shown this with specific relevance to

9 Funahashi, 1989

10Homik et al, 1989

132



Issues in Topology Determination Introduction

classification.11 This applies to a network using any activation function, 
provided that it is non-decreasing, and that the output is 1 at +« and 0 at 
-oo. The sigmoid and threshold activation functions are two such 
functions. Hornik et al use their result to conclude that failure to provide 
the desired degree of accuracy with a given neural network has three 
possible causes:12

• The training algorithm fails to find the optimum weight state.

• There are not enough hidden units.

• The relationship between input and output is non-deterministic.

Sections 4.2.2.1 and 4.2.2.2 support this work empirically for ID and 2D 
inputs and classification problems. However, neural solutions which 
approximate decision regions using only one hidden layer may require 
excessive numbers of hidden units.13 Section 4.2.3 explores this issue in 
more detail.

These possible inhibitory factors in adhering to single hidden layer 
topologies necessitate a study of the second hidden layer. It will be shown 
that this layer enables an exact realisation without excessive numbers of 
units. This is covered in section 4.3.

Section 4.4 digresses from the discussion of threshold units only to explore 
the use of sigmoid units, and the increased capabilities thereof.

11Cybenko, 1989

12Homik et al, 1989, p. 363

13Cheng & Titterington, 1994, p. 19

133



Issues in Topology Determination First Hidden Layer

4.2 The First Hidden Layer

The first hidden layer divides input space up into regions. Each region has 
a unique pattern of activity from the outputs of the units in the first 
hidden layer. 4.2.1 gives an explanation of how this happens, and 
indicates the circumstances under which a second hidden layer is 
necessary. Section 4.2.2 shows that in these cases, an arbitrarily accurate 
approximation can be achieved with a single hidden layer. Section 4.2.3 
looks at the implications of this for deciding the topology.

4.2.1 Regions and the Requirement for a Second Hidden Layer

Each unit in the first hidden layer bisects input space into two halves. One 
half where the unit is on (i.e. has output 1), and the other where the unit is 
off (i.e. has output 0). The linear boundary in input space between the unit 
being on and the unit being off is termed the hyperplane of the unit. For 
all points on the hyperplane, the excitation of the unit is zero.

The position of the hyperplane, and on which side of the hyperplane the 
unit is active, is determined by the ratio and the sign of the weights. For 
example, in 2D input space (with axes x and y), a desired line of division 
of input space might be y = -2x + 3. If wx is the weight of the unit to input 
x, u>y is the weight of the unit to input y, and wb is the bias weight to the 
unit, the line of zero excitation is given by wx.x + Wy.y + wb = Q- There are a 
family of weights that implement the desired line of division, whereby 
wx - 2wy and wb = -3wy. If the unit is to be active when y > -2x + 3, then 
Wy should have a positive value, and for y < ~2x + 3, Wy should have a 
negative value.

When there are many units, each of which gives a different bisection of 
input space, there are many regions with linear edges. A region is 
bounded on its edges, by some or all of the hyperplanes. Each region is 
uniquely identified by the activity of the units in the first hidden layer. 
This is illustrated for a simple example in figure 4.1.

From figure 4.1, notice that there are seven regions formed. With three 
units, however, there are eight possible patterns of activity from the units

134



Issues in Topology Determination First Hidden Layer

in the first hidden layer. Clearly not all of these eight possibilities are 
realisable. The unrealisable patterns of activity are termed virtual cells by 
Makhoul et al.14 Mirchandani and Cao,15 and Makhoul et al16 both give 
the formula for the maximum number of regions, Rmax, that can be formed 
by N hyperplanes in an input space of d dimensions:

f 2n N<d
^■max ~ j £ N^j N > d [4.4]

where

" r r'.(n-r)\

This means that given a certain desired number of regions, R, a lower 
bound for the number of hyperplanes required to implement R regions 
can be provided using [4.4] so that Rmax This is a lower bound — the 
given number of hyperplanes need not realise the maximum number of 
regions. Figure 4.3 gives an example of this.

Figure 4.3 — (a) Three hyperplanes arranged to realise the maximum 7 

regions, (b) Three hyperplanes which realise only 6 regions.

The requirement for a second hidden layer for a given number of first 
hidden units is indicated by a linearly inseparable problem from the 
outputs of the first hidden layer to the targets for the regions they 
delineate. The simplest example of this, for 2D input is the "four-quadrant

14Makhoul et al, 1989, pp. 458-459

15Mirchandani & Cao, 1989, p. 661

16Makhoul et al, 1989, p. 456

135



Issues in Topology Determination First Hidden Layer

dichotomy in 2D"17, or the "real-valued XOR"18 , which will be called the 
chequer-board problem19 in this thesis, and is illustrated in figure 4.4. It is an 
infinite training problem, in which input space is divided into four 
portions. No two adjacent portions may have equal output. Four regions 
may be formed using two hidden units in a single hidden layer, whose 
targets for the chequer-board problem require the solution of XOR from 
the outputs of the hidden layer. The XOR problem is not linearly separable 
(by an output unit), and hence, a second hidden layer is required for an 
exact realisation.

Figure 4.4 — (a) The chequer-board problem. The problem is, in fact, 

unbounded, despite the square drawn round it. (b) A topology for attempting 

to solve the problem in (a), (c) Placing the hyperplanes on the boundaries of 

the regions, (d) The output unit cannot meet the requirements for the targets 

of the regions, since XOR must be solved, and hence this topology cannot 

realise the chequer-board problem.

The case of the chequer-board might seem to be counter to the theory of 
authors such as Hornik et al, that only one hidden layer is necessary to 
realise a given problem. There is a deterministic relation between input 
and output, and one might think that there are enough hidden units to 
realise the targets of the regions.

9

1 Unit
-TT) 12 Target

V I
0 0 0

2 1,2 0 1 1
1 0 1
1 1 0

(c) (d)

17Cosnard et al, 1993, p. 2293

18Makhoul et al, 1989, p. 459

19Weir, 1993

136



Issues in Topology Determination First Hidden Layer

This is an example of what may be termed partitioning, contrasted with 
separation. Here, partitioning is taken to mean that the hyperplanes have 
been placed along all borders between regions of opposite class. 
Separation implies that the output unit assigns the correct class to each 
region. This nomenclature applies henceforth. Two hidden units in a 
single hidden layer are sufficient to partition the chequer-board, but are 
not sufficient to separate it, because of the XOR problem at the first hidden 
layer. A second hidden layer is required for separation. In general, a single 
hidden layer may be sufficient for separation, though not always.

However, the chequer-board can be approximated, to an arbitrary degree 
of accuracy, without using a further hidden layer. This will be illustrated 
in section 4.2.2.2. It remains to be shown that no single hidden layer 
topology can exactly realise the chequer-board.

4.2.2 Overcoming the Requirement for a Second Hidden Layer

As indicated earlier, the work of Hornik et al claims that failure to realise 
the targets with a one hidden layer topology for a certain degree of 
accuracy during training is attributable to a lack of hidden units, given 
that the function is deterministic, and that the training algorithm returns a 
reasonable network. Topologies which partition the regions do not 
necessarily separate them, as shown by the example of the chequer-board 
attempted by a 2*2*1 topology. One way to achieve a separation is to add a 
second hidden layer, which is discussed in section 4.3. In this section the 
scope for approximating the desired decision regions with a single hidden 
layer is discussed, for those problems in which a partitioning single 
hidden layer cannot also separate the desired regions.

The sections that follow go through the dimensions of input space that 
have been studied in the literature. An indication is given, where 
appropriate, of those problems which cannot be separated by a single 
hidden layer which only performs a partitioning.

4.2.2.1 1D Input Space

When input space is one dimensional, there is no requirement for a second 
hidden layer, since any set of ID regions can be separated using a single

137



Issues in Topology Determination First Hidden Layer

hidden layer. There is therefore no need to approximate the desired 
decision regions, since they can be exactly realised.

The argument for this uses the VC dimension. Consider a multi-layer 
perceptron with N hidden units in a single hidden layer, one input unit 
and one output unit. There are p patterns whose targets are to be realised. 
One hyperplane is placed between each pair of adjacent patterns with 
opposite target in input space. For any p patterns, N = p - 1 hidden units 
are needed to realise their targets in the worst case, in which no two 
adjacent patterns has the same target. The worst case will be assumed.

Now consider the VC dimension of a perceptron with N input units and 
one output unit. This is the top half of the multi-layer perceptron 
considered previously, and is represented by the shaded part of the 
topology shown in figure 4.5. The VC dimension of a perceptron with N 
inputs is N + 1. (See chapter 3.) This means that the perceptron can give 
the correct output for any targets of up to N + 1 patterns, inclusive. Thus, 
with a 1*N*1 topology, in which each pattern generates a unique set of 
outputs from the N hidden units, the p patterns as ID input to the 1*N*1 
topology may be seen as p patterns with N-D input to the perceptron. 
Since N + 1 = p from above, the 1*N*1 topology can realise the targets of 
the p patterns.

It follows that any desired set of regions may be separated, since a pattern 
may be seen as representing a region, with the boundary of any two 
adjacent regions lying at the midpoint between their respective 
representative patterns.

Figure 4.5 — A single hidden layer topology with one input dimension. The 

shaded box shows the part of the topology under consideration as a N input 

perceptron.

138



Issues in Topology Determination First Hidden Layer

The realisability of any ID classification problem using a single hidden 
layer is also proved using a different approach by Gibson and Cowan.20

4.2.2.2 2D Input Space

Once the dimensionality of input space is more than 1, the maximum 
number of regions exceeds the VC dimension when more than 1 
hyperplane is used. Thus there is always the possibility that a single 
hidden layer which partitions the regions will not separate them. Gibson21 
has characterised the cases in which this possibility occurs for 2D input. 

From Gibson,22 there is the distinction of various kinds of hyperplane:

An inconsistent hyperplane. Consider the regions on either side of 
the hyperplane, from one end of the hyperplane to the other. 
There will be an equal number of regions, r, on either side of the 
hyperplane. Let ti(fy) be the vector of targets for the regions on the 
active side of hyperplane hj (i.e. the side of the hyperplane for 
which the unit has output 1). Let to(fy) be the vector of targets for 
the regions on the inactive side of the hyperplane. For any i, 
1 < i < r, tif(fy) is the target for the region exactly on the opposite 
side of the region for which toi(ty) is the target. Then the 
hyperplane is inconsistent if and only if there exist a and b such 
that toa(Aiy) = 0, tifl(fy) = 1, tob(fy) = 1/ and ti&(fy) = 0. (See figure 4.6.)

h.

h

Figure 4.6 — An inconsistent hyperplane, hi.

20Gibson & Cowan, 1990, p. 1592

21Gibson & Cowan, 1990; Gibson, 1992,1993,1994

22Gibson, 1994

139



Issues in Topology Determination First Hidden Layer

An essential hyperplane is one that forms part of the boundary of 
the desired decision region. Essential hyperplanes are necessary 
for a partitioning. Again, considering the vectors of targets for the 
regions on either side of a hyperplane, hj, to(ty) and ti(fy), hj is 
essential if and only if there exists a such that toa(/i») tifl(fy). (See 
figure 4.7.)

Figure 4.7 — An essential hyperplane, hj.

Gibson then has the result that for any desired bounded decision region, S, 
for which no three essential hyperplanes intersect, S is realisable using one 
hidden layer if and only if no essential hyperplane is inconsistent.23 This 
useful result means that it is possible to detect whether or not the essential 
hyperplanes can separate as well as partition the desired decision region, 
by inspection. However, where a separation is not possible by the essential 
hyperplanes, Gibson's technique does not tell you how many extra hidden 
units will be required, nor where to place their hyperplanes.24

For 2D inputs, a desired decision region can always be approximated, 
even if it does have an inconsistent hyperplane, by placing a parallel 
hyperplane to each inconsistent hyperplane. (See figure 4.8.) The distance 
between the parallel hyperplanes indicates the degree of accuracy of the 
approximation. However, the greater the degree of accuracy, the larger the 
number of hidden units that are required.

23Gibson, 1994, p. 914

24Gibson, 1993, p. 991

140



Issues in Topology Determination First Hidden Layer

Take, for example, the approximated chequer-board problem in figure 4.8. 
Using just the essential hyperplanes shown, the targets are unrealisable. 
Consider the excitation of the output unit:

outA + outBwB + outcwc + outDwD + bias = ex [4-5]

where outj e piz B, C, D] e {0,1} is the output of a hidden unit, WjE pi, B, C, D] 

is the weight from a hidden unit to the output unit, and bias is the bias 
weight to the output unit. Considering regions AC, AD, BC and BD alone 
from figure 4.8, there are the following simultaneous inequalities from 
[4.5] which must be solved to realise the approximated chequer-board:

wA 4- wc + bias > 0 [4.6]

wA + w0 + bias < 0 [4.7]

WB + < 0 [4.8]

WB+WD + ^iOS > 0 [4.9]

DD

B

D

t
B

7F

BD

B

D

B

fC A AD

c D

u

BC B

J

BD

Accuracy of 
approximation

B

D

Figure 4.8 — The chequer-board approximated by placing parallel 

hyperplanes to the inconsistent hyperplanes, removing the inconsistency. The 

region must be bounded to comply with Gibson's theorem.

Combining [4.6] and [4.7] gives wq > wd- Combining [4.8] and [4.9] gives 
wq < wp). Hence there is a contradiction, and weights cannot be found to 
achieve the desired decision region.

However, consider an IO diagram that is realisable using hyperplanes A to 
D in figure 4.8. For example, imagine trying to realise the same diagram as 
in figure 4.8, except for region AD which is black. This changes [4.7] to be 
greater than 0, and the contradiction is removed. (This could now be

141



Issues in Topology Determination First Hidden Layer

realised with weights to the output unit, wa = 4, = 2, wq = 2, wd - 4,
and bias = -5, for example.) An extra hyperplane can be added (E), as 
shown in figure 4.9, which, with a strong negative weight, we < -wa - 

wd - bias, to the output unit, would turn AD (now ADE) back to white. 
Hence, by adding in a non-essential hyperplane, the original desired 
decision region becomes realisable.

C D

C D

Figure 4.9 — A non-essential hyperplane (dashed line, hyperplane E) is 

placed, enabling the approximation to the chequer-board in figure 4.8 to be 

realised without a second hidden layer.

CE D
/c

z^
rf

i
e_

2_
_

ADE

c

z 
Q

✓

BC B

J
BD

C D

A

BE

However, as shown in figure 4.10, the closer the approximation to the 
chequer-board, the larger the number of hidden units required.25

(a) (b)

Figure 4.10 — The closer the approximation to the chequer-board, the 

greater the number of non-essential hyperplanes necessary for realisation 

with one hidden layer, (a) has 2, (b) has 4 and (c) has 8 non-essential 

hyperplanes. (Non-essential hyperplanes are indicated by dashed lines.)

(c)

25Gibson, 1992, p. 268

142



Issues in Topology Determination First Hidden Layer

Therefore, for approximating functions with ID or 2D input, an arbitrary 
degree of accuracy can always be achieved using a network with a single 
hidden layer — supporting the work of Hornik et al.

4.2.2.3 Higher Dimensions of Input Space

Gibson's theory does not generalise to higher dimensions, however.26 
Gibson has an example of a 3D decision region, with no inconsistent 
essential hyperplanes, which cannot be separated using just the essential 
hyperplanes.27 (See figure 4.11.) However, there is an inconsistent line of 
intersection of two hyperplanes, as shown in figure 4.11, and this, 
perhaps, is the source of the problem.

Until further work is done in this area, little can be said about how 
approximation in n dimensions can be achieved.

Figure 4.11 — An unrealisable 3D problem, and the inconsistent line of 

intersection of two of the hyperplanes, which is the possible cause of 

unrealisability.

Plan view

(Perpendicular to y axis)

4.2.3 One Hidden Layer or Two?

It is all very well to say that a single hidden layer can approximate any 
desired decision region, but this begs the question of whether it is worth

26Gibson, 1994, p. 915

27Gibson, 1994, Fig. 8, p. 917

143



Issues in Topology Determination First Hidden Layer

it. The work of Gibson does not indicate where the non-essential 
hyperplanes can be placed, nor how many should be placed, and the 
increasing numbers of hyperplanes required as the approximation gets 
closer is a further disadvantage. Gibson acknowledges these criticisms.28

In the example of the chequer-board, Gibson uses 10 hidden units to 
construct his approximation (with another 4 to bound it).29 More accurate 
approximations would require more hidden units. Using two hidden 
layers rather than one, an unbounded, exact realisation of the chequer- 
board is possible using 4 hidden units — 2 in the first, and 2 in the second 
hidden layer — a difference of 6 units. For a strict comparison between the 
two methods, Gibson's approximated chequer-board can be realised using 
4 units in the first hidden layer (and another 4 to make the boundary), and 
2 units in the second hidden layer — a difference of 4 units. The closeness 
of the approximation to the chequer-board is changed simply by moving 
the hyperplanes in the first hidden layer. No further alteration is 
necessary.

A further difficulty occurs in training. Gibson attempted to train the single 
hidden layer approximation to the chequer-board using back-propagation, 
with disappointing results.30 The fact that a realisation is possible with a 
given topology does not imply that it can be trained.

The theorem of Hornik et al is useful in that it indicates that one way to 
build a topology that will eventually be capable of generating (close to) 
the desired decision region is to add units to the first hidden layer until 
the desired degree of accuracy is achieved. The work of Gibson shows that 
there are certain practical difficulties with this strategy, which relate to the 
number and positioning of the non-essential hyperplanes, and to training. 
Chester also makes a similar point:

28Gibson, 1992, p. 268; Gibson, 1993, p. 991

29Gibson, 1994, p. 915

30Gibson, 1992, pp. 268-270

144



Issues in Topology Determination First Hidden Layer

The problem with a single hidden layer is that the neurons therein 

interact with each other globally, making it difficult to improve an 

approximation at one point without worsening it elsewhere.31

It would seem a better strategy, therefore, to use a network whose first 
hidden layer contained the essential hyperplanes only. Subsequent hidden 
layers can be used to overcome the difficulties of inconsistent hyperplanes. 
This strategy, however, is subject to the difficulty that it is necessary to 
have some idea of how many units will be required in the second hidden 
layer. This will be explored in the next section.

31Chester, 1990, p. 268

145



Issues in Topology Determination Second Hidden Layer

4.3 The Second Hidden Layer

The first hidden layer divides input space up into convex regions, 
bounded by the hyperplanes. Each region may be given a unique 
identifier, which is a combination of Is and Os from the outputs of the first 
hidden layer units. The outputs of the first hidden layer units all lie on a 
unit hypercube, of dimensionality N. The space in which this hypercube 
lies will be termed the first hidden layer output space (1HLO space), or 
equivalently, the second hidden layer input space (2HLI space). The purpose 
of the first hidden layer may then be said to be that of mapping input 
space onto the vertices of a hypercube.32 A second layer will be said to be 
needed from henceforth if a separation is not possible with the essential 
hyperplanes only.

Each region in input space is given a target, and since each region in input 
space is represented by a vertex of the 1HLO hypercube, targets can be 
assigned to each vertex. Some vertices will not be used (and hence have no 
target) if the number of hyperplanes exceeds the number of input units, as 
was indicated in the previous section. The need for a second hidden layer 
is indicated by the linear inseparability of the 1HLO hypercube.

The relationship between the 1HLO hypercube and input space is shown 
conceptually in figure 4.12, for a problem with three units in the first 
hidden layer, and two input units. The origin is not shown, because it is 
not used. If a given region is to be black, the target of the corresponding 
vertex becomes 1 — otherwise the target is 0. By looking at the targets to 
be realised on the hypercube, it is possible to gauge the number of units (if 
any) that will be required in the second hidden layer. For example, if 
regions 110, 010 and Oil were to be black, a single hyperplane will realise 
the targets of the vertices, and no second hidden layer is needed. If, 
however, regions 101, 010 and Oil were to be black, two hyperplanes are 
necessary to realise their targets, and a second hidden layer with two units 
is required.

32Nilsson, 1965, p. 104

146



Issues in Topology Determination Second Hidden Layer

B
The axes of 
1HLO space, 

from the origin

Figure 4.12 — The relationship of input space to the 1HLO hypercube. On 

the left hand side, the hyperplanes in input space are indicated by thin, black 

lines. The arrows indicate which side of the hyperplane the unit is on. The 

numbers indicate the pattern of activity of the outputs of the units in the first 

hidden layer, in the order A, B, C. The thick, shaded lines indicate the edges 

of the 1HLO hypercube

The effect of changing one of the hyperplanes, such that its unit is active 
on the opposite side is shown in figure 4.13. The 1HLO hypercube is 
rotated, but there is no effect on the number of hidden units required in 
the second hidden layer in order to separate a given desired decision 
region.

The number of units required in the second hidden layer is the number of 
hyperplanes necessary to realise the targets of the vertices of the 1HLO 
hypercube. In section 4.3.1, this number of units is examined in more 
detail.

In general, when considering the second hidden layer, it is useful to think 
of the first hidden layer as having performed a partitioning of the regions. 
The separating capabilities of the first hidden layer should be ignored. The 
purpose of the first hidden layer, as stated earlier, is to provide a unique 
vertex on the 1HLO hypercube for each region of input space — especially 
those which have a different target. It is up to the second hidden layer to 
place hyperplanes in the 1HLO/2HLI hypercube such that all the regions 
which are assigned different targets lie in a different region of 2HLI space.

147



Issues in Topology Determination Second Hidden Layer

This enables separation, and hence the correct output being assigned to 
each region.

Figure 4.13 — The effect on the hypercube of changing the direction of one 

of the hyperplanes.

B
The axes of 
1HLO space, 

from the origin

4.3.1 Number of Units Required

Section 4.3.1.1 considers the number of units required to perform a 
separation for one output unit only. Although only one output unit has 
been considered so far, it is necessary to consider the extra complexities of 
using many output units. This is considered briefly in section 4.3.1.2.

4.3.1.1 One Output Unit

This section illustrates an approach to realising the targets of the vertices 
of the 2HLI hypercube, which leads to a procedure for recommending the 
number of hidden units to be used in the second hidden layer.

The approach is based on the N-bit parity problem. To solve the parity 
problem, for each vertex of the hypercube, the output of the network must 
be 1 if there are an odd number of Is in the co-ordinate of the vertex, and 0 
otherwise. This problem is recognised by Rumelhart et al as being hard for 
neural networks, because "the most similar patterns (those which differ by

148



Issues in Topology Determination Second Hidden Layer

a single bit) require different answers."33 Hertz et al show that the N-bit 
parity problem is realisable with N hidden units with threshold activation 
functions in a single layer.34 The positions of the hyperplanes for N = 3 are 
shown in figure 4.14. The first hyperplane to be placed goes through the 
midpoints of those edges of the hypercube which extend from the origin. 
Subsequent hyperplanes are placed parallel to the first until all vertices of 
the hypercube with different targets lie in different regions of input space. 
(Nilsson has the general result that any set of patterns can be realised by 
placing a number of parallel hyperplanes.)35

Figure 4.14 — Realisation of the 3 bit parity problem with 3 hyperplanes.

The parity problem is described as a "worst function" by Minsky and 
Papert, though they do not say that it is the worst case.36 For the purposes 
of developing this procedure, however, the N-bit parity problem will be 
assumed to be the hardest problem for a hypercube of dimensionality N. 
"Hardest" here is taken to mean that the problem requires the most 
hyperplanes to solve, and that the solution of all other problems on the 
hypercube requires at least 1 fewer hyperplane. This is shown empirically 
for the 3D case in figure 4.15.

The logic behind all other problems requiring at least 1 fewer hyperplane 
is that if, for example, the vertex at the origin in figure 4.14 was to change 
its target, the hyperplane used to distinguish it from the three adjacent

33Rumelhart et al, 1986, p. 334

34Hertz et al, 1991, p. 131

35Nilsson, 1965, p. 109

36Minsky & Papert, 1988, p. 153

149



Issues in Topology Determination Second Hidden Layer

vertices is no longer required. Since the realisation of the 3 bit parity 
problem shown in figure 4.14 does not have to start at the origin, but can 
start from any vertex, 2 hyperplanes are sufficient for realisation of the 
targets if any vertex changes target.

(a)

(i)

*4

Figure 4.15 — All the possible different problems on the vertices of a cube.

Equivalent problems can be achieved bp rotating the hypercube or swapping 

the black and white targets, (a) 1 black, 7 white, (b) 2 black, 6 white.

(c) 3 black, 5 white, (d) 4 black, 4 white. Note that only the 3-bit parity 

problem in (d)(v) requires 3 hyperplanes for realisation.

Let us assume that the N-bit parity problem is the hardest problem, with 
N hyperplanes required for solution, and at most N -1 hyperplanes are 
required to solve any other problem. The procedure for calculating the 
number of hidden units in the second layer is then simply to use the

150



Issues in Topology Determination Second Hidden Layer

number of units required to realise the largest parity problem it is possible 
to get with the number of vertices that are used in the 1HLO hypercube. 
Thus, for the example in figure 4.12, seven vertices of the 1HLO hypercube 
are used, since there are seven regions in input space. The largest parity 
problem it is possible to generate on seven vertices is the 2-bit parity 
problem, and hence 2 hidden units in the second hidden layer should 
suffice for any desired final output. This gives the following formula for 
the number of units in the second hidden layer, M, in terms of the number 
of regions R the hyperplanes realise:

M = |_log2/?J [4.10]

where LxJ is the largest integer not greater than x. R may be reduced by 
only considering those regions which lie in a given bounded region of 
input space.

With a low ratio of input units to units in the first hidden layer, the 
number of units in the second hidden layer is likely to be significantly 
lower than the number of units in the first hidden layer. For example, with 
3 input units, and 100 hidden units in the first hidden layer, the maximum 
possible number of regions from [4.4] is 166 751. From [4.10] the maximum 
number of hidden units required in the second hidden layer is 14.

4.3.1.2 Many Output Units

When there are many output units, each output unit may give its own 
classification to various regions of input space, which have been 
partitioned by the first hidden layer. This is an extra complication from the 
one output unit case. Here, each output unit will place its own, unique 
demands on the second hidden layer. Consider the case of a topology with 
two output units, two input units and three hidden units. An example of a 
possible partitioning of input space, and targets for the output units is 
shown in figure 4.16.

In order to cope with any possible set of targets for an output, it may be 
necessary for the second hidden layer to make each region available to 
each output unit, in order to enable the output unit to give the desired 
classification to those regions. The simplest way to do this is to have a unit 
in the second hidden layer dedicated to each region. Each vertex of the

151



Issues in Topology Determination Second Hidden Layer

1HLO hypercube that is used is distinguished from the rest of the 
hypercube by a unit in the second hidden layer. This is shown in figure 
4.17, for the example in figure 4.16. Using this method, all of the possible 
outputs are realisable for any number of output units.

Output 1 Output 2 Shading
0 0 I I
0 1
1 0
1 1

Figure 4.16 — A possible partitioning of input space, indicated by the thin, 

black lines, and the targets for the two output units, indicated by the shading 

of the regions. The 1HL0 hypercube is represented by the thick, shaded lines, 

with the vertices indicated by the white circles.

The disadvantage with this method is that the number of regions may be 
prohibitively large for relatively small numbers of units in the input and 
first hidden layer. For example, with 4 input units, and 12 hidden units in 
the first hidden layer, there are 794 possible regions, using equation [4.4]. 
This is rather a large number of units to use in the second hidden layer, 
and it is unlikely that all of the 2794 possible outputs would be needed!

Another possibility is to apply the procedure in 4.3.1.1 once for each 
output unit. Thus, if there are O output units, the number of units in the 
second hidden layer should be O.M, where M is calculated as per [4.10]. 
Rather than 794 units in the second hidden layer indicated for the above 
example by the simple method, this method gives a very much smaller 
number: Llog2 794j = 9 units in the second layer for each output unit — a 
total of 36 units in the second hidden layer. Eighty-nine output units 
would be needed before this method exceeded the number recommended 
by the simple method.

152



Issues in Topology Determination Second Hidden Layer

Figure 4.17 — Using 7 units in the second hidden layer to represent each 

region in input space, from figure 4.16.

4.3.2 Further Hidden Layers

The work of Lippmann outlined in the introduction made it clear that any 
desired decision region could be realised with a two hidden layer 
topology. However, this work was not based on a proper understanding 
of the capabilities of topologies with one and two hidden layers. It has 
been shown above that the purpose of the second hidden layer is to solve 
any parity problems that arise in the realisation of the targets of the 1HLO 
hypercube.

Section 4.3.1.2 showed that whatever the targets of the vertices of the 
1HLO hypercube, a single hidden layer is sufficient for their realisation, 
albeit using a large number of units. This means that there is never any 
necessity for a third hidden layer, since a separation for any number of 
output units is always possible with two hidden layers. This result also 
indicates that if input space is the set {1, 0}w, then there is never any need 
for more than one hidden layer.

The question of the use of more than two hidden layers would arise if it 
was possible to use fewer than the N units required in the second hidden 
layer to solve an N-bit parity in 1HLO space, and compensate this 
somehow with extra hidden layers. This is not possible with threshold

153



Issues in Topology Determination Second Hidden Layer

units, in a strictly layered feed-forward topology, since the patterns with 
different targets must be realised by the hyperplanes at each stage. If 
fewer units are used in the second hidden layer, therefore, there is no full 
discrimination of the patterns on the vertices of the 1HLO hypercube, 
which means that there will be a vertex on the 3HLI hypercube with a 
target of both 1 and 0 for two different patterns.

4.4 A Brief Look at Sigmoid Units

In this section, some of the increased computing powers of neural 
networks with sigmoid nonlinearities, reported by authors such as 
Dasgupta and Schnitger,37 and Sontag38 are examined. Section 4.4.1 
explores these increased powers. It is demonstrated in section 4.4.2 that 
the chequer-board can be approximated without a second hidden layer, 
and without excessive extra units in the first hidden layer. Section 4.4.3 
shows how sigmoid units are capable of using fewer units in the first 
hidden layer, in such a way that a third hidden layer is required.

4.4.1 The Increased Power of Sigmoid Units

Sigmoid units are capable of realising more sophisticated regions than 
threshold units. This is because the magnitude of the excitation must be 
taken into consideration, as well as the sign. Since the output of a unit can 
be any real number between 0 and 1, the outputs of the units in each layer 
lie inside a unit hypercube, and the weights of each layer transform the 
unit hypercube of the previous layer into the unit hypercube of the next 
layer. (The points on the surface of the hypercube are only reached when 
the weight to of one of the lower units is ±°°.) So long as no two points 
with different targets are mapped onto the same point in the hypercube, 
each layer will preserve the possibility of solving the problem. The 
requirement for a further hidden layer is indicated by the linear 
inseparability of the points of different targets in the hypercube.

37Dasgupta & Schnitger, 1993

38Sontag, 1989

154



Issues in Topology Determination Sigmoid Units

The 3-bit parity problem, for example, can be solved using a 3*2*1 
topology. This, it will be noted, means that the hyperplanes in the hidden 
layer no longer segregate all the different classes in different regions of 
input space. The way the network solves the problem is actually rather 
subtle. Two hyperplanes are used, parallel to one another, which are 
positioned in relation to the patterns as shown in figure 4.18.

Hyperplane H1

Hyperplane H2

Figure 4.18 — Realisation of 3-bit parity using two sigmoid units in the 

first hidden layer. The arrows on each hyperplane show for which side of the 

hyperplane the output of the unit is more than 0.5. All patterns with the 

same letter are equidistant from each hyperplane and hence have the same 

output.

The magnitudes of the weights are set such that the patterns closer to H2 
have relatively low outputs from the hidden units, in comparison to the 
two patterns further away. Hl has a high magnitude of weights. The 
output unit then has to realise the patterns in figure 4.19, which shows the 
outputs of the hidden units for each pattern. This illustrates how 
controlling the magnitude of the weights, as well as their ratio and sign 
enables a more efficient solution.

By drawing double hyperplanes,39 which show the inputs for which the 
excitation is -q and +q, where q 4.6) is the excitation required to 
generate an output of 0.99, it is possible to see the distance in input space 
between where the output of the unit is close to 0 and where it is close to 
1. The double hyperplane drawn at +q is called the positive double

^Lansley & Clark, 1993; Storer, 1994

155



Issues in Topology Determination Sigmoid Units

hyperplane and that at -q the negative double hyperplane. Beyond ±q, the 
behaviour of the sigmoid unit is the same as the threshold behaviour. It is 
in the regions between +q and -q that the extra powers of the sigmoid are 
observed. (This will be illustrated by the example in section 4.4.2.)

Figure 4.19 — Realising the targets of the patterns at the output layer. The 

112 axis corresponds to the outputs for the patterns for hyperplane H2 in 

figure 4.18. The unit for this hyperplane has a large magnitude of weights, so 

the outputs for each pattern are close to 1 and 0. The U1 axis corresponds to 

hyperplane Hl in figure 4.18. This has a low magnitude of weights so that 

different output values are given for A, B, C and D. This enables a solution 

with a single hyperplane.

The closer the double hyperplanes are together, the smaller the regions 
between +q and -q, and hence the closer the approximation to the 
threshold behaviour. Figure 4.20 shows this for a simple example of the 
interaction of two hidden units.

Figure 4.20 also shows that the closeness of the double hyperplanes is 
related to the magnitude of the fan-in weight vector to the unit. The larger 
the magnitude of the weight vector, the closer the double hyperplanes. 
The formula for the positive double hyperplane of a unit Uj with weights 
wy l...jn to inputs yi...n, and bias bj is given in [4.11]; that for the negative 
double hyperplane in [4.12].

156



Issues in Topology Determination Sigmoid Units

+q —q

(a)

Figure 4.20 — The approximation to threshold units gets closer as double 

hyperplanes for each unit (parallel dashed lines) get closer, (a) Weight vector 

length to each hidden unit: 4V2. (b)Weight vector length: 8.

W + H';2y2+...+w>yB + bj — q = 0 [4.11]

+ ^2y2+- • -+wjnyn + bj+q = G [4.12]

Since these hyperplanes are parallel, the distance between them, dj, is 
equal to the difference between their perpendicular distances to the origin:

bj+q bj-q [4.13]
w w

where wy is the fan in weight vector [wyi,..., Wjn] to unit wy. Hence, the 
distance is given by the following proportionality:

< ■ n 14141

Thus, as the magnitude of wy approaches infinity, the distance between the 
double hyperplanes approaches zero, and the unit more and more closely 
approximates the behaviour of a threshold unit. Hence sigmoid units can 
realise any decision region that threshold units can, using the same 
topology.

157



Issues in Topology Determination Sigmoid Units

Although no more than two hidden layers are ever necessary, given 
sufficient units in each layer, it is possible that further hidden layers can 
be used to compensate for smaller numbers of units in earlier hidden 
layers. This is illustrated in section 4.4.3.

4.4.2 Approximation of the Chequer-Board With a Single Hidden 
Layer Using Sigmoid Units

Figure 4.21 shows the approximation of the chequer-board, and how it is 
achieved. The double hyperplanes are marked as well. This 
approximation — requiring 4 hidden units, can be made for an arbitrarily 
large, but finite region of input space, since the distance between the 
double hyperplanes (which partially controls the size of the chequer- 
board) can be extended by decreasing the magnitude of the weights to 
each hidden unit, enlarging the frame, X. An unbounded approximation 
would require infinitely small weights, and is therefore not possible. The 
distance between the hyperplanes themselves (which also has an effect on 
the size of the chequer-board) can be controlled by repositioning the 
hyperplane, which is controlled by the direction of the weight vector to 
each hidden unit. Hence the enlargeable approximation to the chequer- 
board, within a given region of input space, can be achieved with a 
constant number of 4 hidden units.

To explain the behaviour of the network which produces the output in 
figure 4.21, consider hyperplanes A and C. The double hyperplanes mark 
where each unit has an output of 0.99 and 0.01. Region AC is the region for 
which both units have an output more than 0.99. Region aC is the region 
for which unit A has an output between 0.01 and 0.99. and unit C has an 
output of more than 0.99; and vice versa for region Ac. Region ac is the 
region for which units A and C both have outputs between 0.01 and 0.99, 
and it is this region that is of interest for generating the chequer-board.

The weights to the output unit are set, roughly speaking, such that 
whenever the output of A is sufficiently greater than the output of C, the 
output unit has output interpreted as 1. This is achieved by C having a 
negative weight to the output unit which is slightly larger in magnitude 
than the positive weight of A. Hence, in region AC, the output of A is 
never sufficiently greater than C for an output of 1, and the output is zero

158



Issues in Topology Determination Sigmoid Units

in this region. However, in region Ac, where c is between 0.01 and 0.99, 
and A is always greater than 0.99, the output of A is sufficiently greater 
than the output of C for an output of 1. The slightly greater weight of C to 
the output unit means that C can be slightly less than 0.99, even though A 
is more than 0.99, and the output will be 0. This explains why the output is 
0 just inside the positive double hyperplane of C in region Ac.

C A

D B

Figure 4.21 — An approximation to the chequer-board using four hidden 

units, A, B, C and D. The chequer-board is approximated only within a 

specific bounded region (inside the frame, X), which is where the outputs of 

the hidden units are between 0.01 and 0.99. The hyperplanes of the hidden 

units are marked with solid lines; the double hyperplanes with dashed lines.

It is the double hyperplanes that are of interest when looking at the behaviour 

of networks with sigmoid units.

In region ac, which is bounded by the double hyperplanes of A and C, the 
black half shows where the output of A is sufficiently greater than that of 
C for an output of 1. This roughly divides the region into two halves. The 
curve in the bottom corner is where the output of C is low enough that the 
small, positive bias weight to the output unit compensates for the greater 
magnitude of weight of C than A to the output unit.

159



Issues in Topology Determination Sigmoid Units

The interactions between the other combinations of hyperplanes is similar, 
and the combined effect gives rise to the chequer-board.

4.4.3 The Possibility For Using More Than Two Hidden Layers

Using an extra hidden layer to compensate for a lack of units in an earlier 
hidden layer can be illustrated in the following example. The classical 
feed-forward topology for the XOR problem is 2*2*1. This uses two hidden 
units in a single hidden layer. However, using only one unit in the first 
layer, placing the hyperplane, as in figure 4.22(a), the XOR problem can be 
mapped onto the ID space indicated in figure 4.22(b). The patterns then 
require two further hyperplanes to realise their targets. This means that an 
alternative 2*1*2*1 topology can be found, which uses a second hidden 
layer to compensate for one unit in the first layer rather than two.

(a) (b)

Figure 4.22 —Solution of the XOR problem using a 2*1 *2*2 topology, (a)

First hidden layer. A single hyperplane is placed as shown. Targets with the 

same letter have equal output from the unit in the first hidden layer. The 

patterns are then mapped onto the ID space shown in (b). Two hyperplanes 

(diagonal lines) in a second hidden layer are required to realise their targets.

There is no real advantage to the 2*1*2*1 topology, since it requires more 
units, and more parameters40 than the 2*2*1 topology. It is also much more 
difficult to train. In tests, using standard back-propagation with a learning 
rate of 0.7 and a momentum of 0.9, the 2*2*1 topology had an 83% success

4oN.B. The parameters of the network are the weights and biases.

160



Issues in Topology Determination Sigmoid Units

rate with a limit of 1 000 training cycles,41 and the 2*1 *2*1 topology a 
success rate of 9% for the same limit. However, for higher-bit parity 
problems, savings can be made in terms of parameters using a reduced 
topology with an extra hidden layer.

The 4-bit parity problem, for example, which requires a 4*4*1 topology 
with threshold units (using 9 units and 25 parameters) can be solved using 
a 4*3*1 topology (with 8 units and 19 parameters), and a 4*2*2*1 topology 
(with 9 units and 19 parameters). The 4*3*1 solution is analogous to the 
3*2*1 solution of the 3-bit parity problem given above. The 4*2*2*1 
solution is more interesting. The 4-bit parity problem is mapped onto the 
1HLO unit square depicted in figure 4.23, using two units in the first 
hidden layer. (Appendix 4.A explains how this is achieved.) This requires 
two hyperplanes to realise the targets.

Note, from figure 4.23 that by analogy with the 2*1*2*1 solution of the 
XOR problem shown above, a 4*2*1*2*1 topology could also be used for 
the 4-bit parity problem. This is a topology with three hidden layers, 10 
units, and 20 parameters.

Experiments were done comparing the trainability of 4*2*1 *2*1, 4*2*2*1, 
4*3*1 and 4*4*1 topologies on the 4-bit parity problem. The results for 200 
runs of maximum 50 000 cycles using standard back-propagation with a 
learning rate of 0.3 and momentum 0.9 are shown in table 4.3. This also 
shows the percentage of runs which had converged by 10 000 cycles. The 
4*4*1 topology successfully trains the patterns more quickly than do the 
other topologies, training becoming harder as the number of units in each 
hidden layer are reduced, or the number of layers is increased. (Lang and 
Witbrock have also observed "an order of magnitude" slow-down for each 
hidden layer added in their experiments.42 They linked this to the 
weakening of the error signal as it passes through each layer. The problem 
was countered by directly connecting each layer to all the layers above it.)

41 One cycle is the calculation and implementation of the weight change for all the 

patterns.

42Lang & Witbrock, 1988, p. 52

161



Issues in Topology Determination Sigmoid Units

Unitl

D Target = 0 ■ Target =1

Figure 4.23 — Second layer of solution of the 4-bit parity problem using a 

4*2*2*l topology. The first hidden layer projects the problem onto a unit 

square. The targets are now separable using two hidden units in a second 

hidden layer, as indicated by the diagonal lines.

Topology Convergence (cycles)
50000 10000

4*4*1 61% 41%
4*3*1 71% 14%

4*2*2*1 28% 17%
4*2*1*2*1 46% 11%

Table 43 — Comparison of convergence rates for various topologies for the 

solution of the 4-bit parity problem.

The results show that the 4*3*1 topology is slower to train than the 4*4*1 
topology, but more likely to train in the long run. Similarly, the 4*2*1 *2*1 
topology is slower, but more likely to train in the long run than the 4*2*2*1 
topology. Interestingly, this does not reflect the results for the comparison 
of the 2*2*1 and 2*1*2*1 topologies in training the XOR problem.

The 4*3*1 topology trains significantly better than the 4*2*2*1 and 
4*2*1*2*1 topologies. This is because the latter topologies have roughly the 
same number of parameters, but a smaller volume of weight space that 
contains the solution state than the 4*3*1 topology. This is due, in part, to a

162



Issues in Topology Determination Sigmoid Units

larger number of regions in weight space that contain the solution state for 
the 4*3*1 topology, which relates to the symmetry of the ordering of 
hidden units in the hidden layer. Since it does not matter which hidden 
unit does what, there are 3! equivalent, and equally sized, regions in 
weight space that contain the same solution for the 4*3*1 topology.43 (This 
is called unit ordering symmetry, and is also explained in chapter 5.) The 
4*2*2*1 and 4*2*1*2*1 topologies both have 2 x 2! = 4, and therefore fewer 
equivalent regions that contain the solution state.

Unit ordering symmetry does not explain why the 4*3*1 topology trains 
more successfully than the 4*4*1 topology. The 4*4*1 topology, however, 
has roughly 20% more parameters than the 4*3*1 topology, and it may be 
that the reduced success rate is due to the higher dimensionality of weight 
space.44 This is termed the "curse of dimensionality" in the literature.45 It 
may also explain the improved results of those techniques such as that of 
Weigend et al46 which minimise the number of links as well as the pattern 
error during training.

It may be concluded that sigmoid units have additional capabilities to 
threshold units, since the magnitude of each unit's weight vector must 
now be taken into consideration. These additional powers result in three 
observations. Firstly, networks with sigmoid units are able to realise more 
complex IO pictures than the same networks with threshold units. 
Secondly, there may be a reduced requirement for units in a given hidden 
layer, but without the requirement for a further hidden layer (such as in 
the 3*2*1 solution of the 3-bit parity problem above). Finally, a further 
reduction in hidden units in a given layer may be compensated for by a 
further hidden layer. Hence, topologies with more than two hidden layers 
may be considered for sigmoid units. However, it should be pointed out 
that the fact that a topology is capable of solving a given problem does not 
imply that a given training algorithm will be capable of finding the 
solution weight state in a reasonable amount of time.

43Denker et al, 1987, p. 886-887

44Hrycej, 1990, p. 557

45Hertz etal, 1991, p. 198

46Weigend et al, 1991b

163



Issues in Topology Determination Conclusion

4.5 Conclusion

This chapter has shown some of the capabilities of various topologies in 
the classification paradigm. It also indicates heuristics for choosing the 
number of units in the first and second layers. The theorems of the various 
authors who prove that only one layer is necessary to approximate 
arbitrary mappings are useful theoretically, but are not practical. They are 
disadvantaged because they must restrict themselves to an approximation 
of the desired decision region rather than an exact realisation, and the 
number of units they use may be prohibitive.

It is possible to describe a method for constructing a two hidden layer 
topology for exact realisation, or for inexact realisation to a specified 
degree of accuracy. Adding a unit to the first hidden layer has the 
consequence of creating extra regions. This can be related to the number of 
units required in the second hidden layer to be sure of assigning the 
correct output to each region. To help summarise the points in the chapter, 
the following algorithm provides a constructive approach to a given 
problem using the principles discussed:

1 Let Hl be the nuirber of units in the first hidden layer.
2 Let H2 be the nuirber of units in the second hidden layer.
3 Hl = 1.
4 H2 = 0.
5 While the problem is unt rainable in a reasonable time, or 

is not trainable to a desired degree of accuracy in 
reasonable time using the current topology:
5.1 Increnent Hl.
5.2 Calculate the maximum number of regions, R, that Hl 

hyperplanes can form in input space, as per 
equation [4.4].

5.3 Calculate H2 on the basis of R (assuming the worst 
case), as per equation [4.10].

6 Stop.

If the number of desired regions is known in advance, then Hl can be 
initialised to be the minimum number of hyperplanes whose maximum

164



Issues in Topology Determination Conclusion

number of regions is greater than the desired number of regions, using 
equation [4.4]. H2 in this case is calculated on the basis of the desired 
number of regions, and remains constant throughout.

A further point is that the topology considerations do not account for the 
clustering of the data. It assumes that the number of regions has been 
decided already from the data, and this is not true in practice. Deciding 
the number of regions is itself a difficult task. The architectural 
considerations for ensuring good generalisation relate to constructing a 
topology that is capable of realising the desired regions, once the number 
of regions has been decided. The goodness of the generalisation is 
dependent upon the number of hidden units in the first layer, which 
corresponds to the number of regions formed by the network. More 
regions may mean a better fit to the data, but it may also mean over-fitting 
noisy data.

However, the positive side of the analysis in this chapter is that it shows 
what a network is capable of in its general response. This promotes a view 
towards learning which aims at training and generalisation 
simultaneously.

The Mitchellian approach does not deal with this side of the generalisation 
problem, except to say that whatever topology is chosen, this represents a 
bias of the learner. (See chapter 3.) This chapter has indicated some of the 
limits to concepts that can be learned using a given topology, and hence 
the bias the user might employ in the choice of topology for the neural 
implementation of Mitchell's technique discussed in chapter 6. (Chapter 5 
discusses a restricted neural implementation for topologies without 
hidden units.)

165



Issues in Topology Determination Appendix

Appendix

4.A Mapping the 4-Bit Parity Problem onto a Unit Square 
Using Two Units in the First Hidden Layer, Whilst 
Preserving Their Separability

A sample solution weight state to the 4-bit parity problem is given in table 
4.A.1, and the outputs of each unit in the network for each of the 16 
patterns in the 4-bit parity problem are reproduced in table 4. A.2.

Since the first and second hidden layers each have two units, it is possible 
to visualise the behaviour of the network in these layers, with relative ease 
in comparison with observing the placement of the hyperplanes of the 
units in the first hidden layer in the 4D input space of the problem. This is 
shown in figure 4.A.I. This shows that once the first hidden layer has 
placed its hyperplanes, it is not a problem for the rest of the network to 
assign the correct class to each pattern.

1 HL Unit 1

Target = 0

Target = 1

2HL Unit 1

2HL Unit 2

Figure 4.A.1 — First hidden layer outputs for each pattern in the 4-bit 

parity problem, and hyperplanes of the second hidden layer. The positions of 

the patterns in 1HLO space are marked as shown, and the numbers beside 

each correspond to the pattern numbers in table 4.A.2.

166



Issues in Topology Determination Appendix

Using figure 4.A.l, it is clear that the hyperplane of the first unit in the 
first hidden layer passes through patterns 2, 5, 8, 9, 12 and 15, since the 
output of the unit is 0.5 for those points. Similarly, the hyperplane of the 
second unit in the first hidden layer passes through patterns 8,12 and 15, 
and close to patterns 2, 5 and 9. Since this hyperplane is rather steeper, 
with a higher magnitude of weights (see table 4.A.l(a)), it is reasonable to 
assume that the hyperplanes occupy roughly the same space. Using two 
cubes to represent the 4D input space, figure 4. A.2 shows the positions of 
the hyperplanes for each unit in the first hidden layer.

Figure 4.A.2 — Representation of the 4-bit parity problem as two 3D cubes.

The dotted lines indicate a change in input 1, which replaces the extra 

dimension. The vertices of each cube are numbered according to the pattern 

they represent in table 4.A.2. Both hyperplanes have an output close to 1.0 

for patterns 3 and 11 (see table 4.A.2), which means that each unit is active 

on the same side of its hyperplane as the other unit. Also, as discussed in the 

text, both hyperplanes are roughly in the same place.

There is a certain degree of similarity between this, and the hidden layer 
of the 3*2*1 topology solution of the 3-bit parity problem, shown in figure

167



Issues in Topology Determination Appendix

4.18. However, an extra hidden layer is necessary here, because of the 
additional complexity of the problem, which results in an inseparable 
1HLO hypercube.

Stork and Allen claim to be able to solve the N-bit parity problem with 
two hidden units, and no second hidden layer. However, they use a novel 
activation function.47 Another attempt by Minor, using sigmoidal 
activation functions, with 0.5N hidden units does not use a strictly layered 
topology.48 Such solutions are not possible with sigmoid units only in a 
strictly layered topology, with no connections that skip a layer.

Weights Hidden Layer 1
Input Layer Unit 1 Unit 2

Bias 1.01103 6.53674
Unitl -0.977516 -6.94597
Unit 2 -0.977516 -6.94597
Unit 3 0.979558 7.31745
Unit 4 -0.977516 -6.94597

(a)

Weights Hidden Layer 2
Hidden Layer 1 Unitl Unit 2 |

Bias -3.17681 2.00747
Unitl -9.9537 -10.7642
Unit 2 11.0873 11.5556

(b)

Weights Output Layer
Hidden Layer 2 Unit 1

Bias -5.98023
Unitl -14.5636
Unit 2 12.7787

(0

Table 4.A.1 — The weight state of the 4*2*2*1 topology used to solve the 4- 

bit parity problem, (a) Weight matrix between the input layer and the first 

hidden layer, (b) Weight matrix between the first and second hidden layers, 

(c) Weight matrix between the second hidden layer and the output layer.

47Stork & Allen, 1992, p. 924

48Minor, 1993, p. 707

168



Issues in Topology Determination Appendix

Pattern Input Hidden Layer 1 Hidden Layer 2 Output Target
1 2 3 4 Unit 1 Unit 2 Unit 1 Unit 2

1 0 0 0 0 0.73 1.00 0.64 1.00 0.07 0
2 0 0 0 1 0.51 0.40 0.02 0.76 0.97 1
3 0 0 1 0 0.88 1.00 0.30 0.98 0.90 1
4 0 0 1 1 0.73 1.00 0.65 1.00 0.07 0
5 0 1 0 0 0.51 0.40 0.02 0.76 0.97 1
6 0 1 0 1 0.28 0.00 0.00 0.27 0.07 0
7 0 1 1 0 0.73 1.00 0.65 1.00 0.07 0
8 0 1 1 1 0.51 0.49 0.06 0.90 0.99 1
9 1 0 0 0 0.51 0.40 0.02 0.76 0.97 1
10 1 0 0 1 0.28 0.00 0.00 0.27 0.07 0
11 1 0 1 0 0.73 1.00 0.65 1.00 0.07 0
12 1 0 1 1 0.51 0.49 0.06 0.90 0.99 1
13 1 1 0 0 0.28 0.00 0.00 0.27 0.07 0
14 1 1 0 1 0.13 0.00 0.01 0.65 0.90 1
15 1 1 1 0 0.51 0.49 0.06 0.90 0.99 1
16 1 1 1 1 0.28 0.00 0.00 0.27 0.07 0

Table 4.A.2 — The outputs of all the units in the network for each of the 16 

patterns in the 4-bit parity problem.

169



Weight Space Implementation Theory of the Weight Space Technique

5 Neural Implementation Based on Weight 
Space

This chapter documents the implementation of Mitchell's technique in 
neural networks, which uses weight space as its basis. The implemented 
technique works only for restricted examples, but provided some valuable 
insights into the nature of neural networks, which led to the development 
of the technique in chapter 6. Section 5.1 explores the theory of the neural 
technique for networks without hidden layers, and pattern sets assumed 
to be linearly separable. Section 5.2 gives the algorithm and some 
experimental results. Section 5.3 elucidates some of the problems 
associated with generalising the technique to cope with hidden layers.

The technique discussed in this chapter is an introductory implementation 
of Mitchell's technique in a neural environment — given the restrictions of 
no hidden layers in the architecture, and of linearly separable problems. 
This chapter reveals the circumstances under which a series of important 
principles can be observed about the nature of Mitchell's technique in 
neural networks.

5.1 Theory of the Weight Space Technique

As indicated in the prime directives given in chapter 3, when developing a 
neural implementation of Mitchell's technique, it is crucial that a solution 
state has a single representation in whatever ordering is used to measure 
version space. If there are many representations of a solution state in the 
ordering, then it is not possible to detect the no-alternative situation. This 
is because the no-alternative situation is detected by the boundary 
representatives of version space being measured at the same point in the 
ordering. If the goal state has many possible representatives in the 
ordering, then the boundary representatives may have reached the goal 
state without being at the same point in the ordering. If this happens, the 
no-alternative situation is not detected.

170



Weight Space Implementation Theory of the Weight Space Technique

This technique aims to address a problem from an earlier implementation 
which used output tolerance as a basis for the ordering.1 The earlier 
implementation broke the directive that equivalent weight states must 
have the same value in the ordering, since it could not cope with weight 
scaling symmetry.2

To explain weight scaling symmetry in more detail, consider an output 
unit with a sigmoid activation function, as per equation [5.1]:

output = activation = t + [5.1]

The range of this function, the output interval, will be any real number 
from 0 to 1. The position of the separating hyperplane is given when the 
excitation is 0. This corresponds to an output of 0.5. When the output is 
binary interpreted, outputs greater than 0.5 are interpreted as 1, and 
outputs less than 0.5 are interpreted as 0. Hence the output is 1 for all 
points on one side of the hyperplane, and 0 for all points on the other side 
of the hyperplane.

output = 1 + e-(tL,toiM) [5-2]

If the excitation in equation [5.1] is multiplied by a positive constant, b, as 
in equation [5.2], the output is still in the same half of the output interval, 
making no difference to the binary interpretation. Denker et al3 call this b- 
symmetry, and it is referred to by Watkin et al4 as the gauge freedom of the 
perceptron.

A technique was needed that used an ordering such that all weight states 
producing the same binary interpreted output would have the same 
measure in the ordering. If the weights to a unit are treated as a vector, 
then all linearly dependent weight vectors have an output in the same half 
of the output interval. This is captured in the concept of the spherical

1 Weir & Polhill, 1993

2 Weir & Polhill, 1993, p. 9

3Denker et al, 1987, p. 886

4Watkin et al, 1993, p. 503

171



Weight Space Implementation Theory of the Weight Space Technique

perceptron.5 Since the direction of the weight vector to an output unit is all 
that is important, the only weight states that need to be considered for the 
perceptron are those on the surface of a unit hypersphere. The technique 
in this chapter does not apply this restriction, however.

Therefore, an ordering is used in this implementation which measures the 
direction of the weight vector by measuring its angle relative to an 
arbitrary, constant, reference weight vector. All the weight states at the 
same position in the ordering therefore have a constant angle from the 
reference vector, and hence lie on the surface of a hypercone whose 
principal axis is the reference vector.

Learning is incremental, as in the symbolic technique, though the neural 
technique trains all the patterns seen so far and the new pattern, rather 
than just the new pattern. The weight states are encouraged to stay on the 
surface of the same hypercone during training, unless it is necessary to 
move away from the hypercone in order to correctly classify a new 
pattern. This is to be attempted using a cost function which measures the 
distance of the current weight state from the surface of the current 
hypercone, and is to be minimised using gradient descent. The cost 
function will be incorporated into a potential function which serves much 
the same purpose as updating and selection within in the symbolic 
technique. Weight space angle is changed by the minimum amount 
necessary to allow the correct classification of each new pattern as it is 
added to the training set.

Since the weight state only moves away from the hypercone in order to 
make a correct classification, it must be assumed that the training set is 
noiseless and realisable by the neural architecture used. If the network 
moves away from the hypercone in order to correctly classify an incorrect 
training pattern, then there is the possibility of premature convergence of 
the hypercones. Similarly, premature convergence is possible if the 
network moves away from the hypercone in order to correctly classify a 
pattern which cannot be realised by the topology. In fact, since in practical

5Watkin et al, 1993, pp. 520-521

172



Weight Space Implementation Theory of the Weight Space Technique

circumstances the network is trained to zero misclassification error, an 
unrealisable pattern will result in an inability to train.

This technique is not designed to deal with networks with hidden units, 
and hence a perceptron learning algorithm could be used for training. 
However, gradient descent is needed in order to combine training for 
correct classification with a function for keeping the weight state near the 
surface of a hypercone. Hence back-propagation is used.

Section 5.1.1 looks at the use of hypercones to implement the ordering. 
Section 5.1.2 examines the implementation of the processes of updating 
and selection within using error functions. Section 5.1.3 relates the neural 
implementation back to the symbolic technique.

5.1.1 Bidirectional Search Using Hypercones

Figure 5.1 shows the structure of the hypercones for a three dimensional 
weight space. The reference vector is No- Since the search is bidirectional, 
there are two hypercones, based on two neural networks, N and X, which 
are used to represent the boundaries of version space in terms of angle. 
Version space is the region of weight space lying between the two 
hypercones.

The internal hypercone marks the boundary of version space containing the 
weight state, N, at the minimum angle from No that correctly classifies all 
the patterns presented so far. The external hypercone marks the boundary of 
version space containing the weight state, X, at the maximum angle from 
No that correctly classifies all the patterns presented so far.

Separate hypercones are needed for each output unit of the neural 
network. For convenience, only networks with one output unit shall be 
considered henceforth. The procedure for many output units is the same 
as that for training each output unit individually.

The search proceeds from an angle, of 0 for N and an angle, ax, of 7t 
for X from the reference vector No- Patterns are added to the training set 
incrementally, as they are in Mitchell's technique. As each pattern is 
added, weight states for N and X are found that correctly classify all the 
patterns so far with the minimum change in their angles relative to No.

173



Weight Space Implementation Theory of the Weight Space Technique

The no-alternative situation is detected when N and X have the same 
angle relative to Nq. It will be shown (in section 5.1.1.3) that when N and X 
reach the no-alternative situation their weight vectors will be collinear. 
This means the separating hyperplanes of N and X are in the same 
position in input space.

Figure 5.1 — The internal and external hypercones in 3D weight space. The 

internal angles of each hypercone are as shown.

In order to comply with the prime directives outlined in chapter 3, it is 
necessary to show that N and X proceed in a single, convergent direction 
only during the search through version space. This means that the angle of 
N must always be increasing, and the angle of X must always be 
decreasing. This will be argued in section 5.1.1.1. If it is not the case that N 
and X necessarily always move closer together, then there can be no 
guarantee of convergence.

174



Weight Space Implementation Theory of the Weight Space Technique

It is also necessary to look at the terminating condition. Section 5.1.1.2 
shows that whilst there is freedom of movement, there are always 
correctly classifying weight states at different angles relative to No. Section
5.1.1.3 shows that N and X are therefore collinear at termination.

5.1.1.1 Monotonically decreasing angle between N and X

If there is no weight state with a smaller angle than that is consistent 
with all the patterns presented so far, then there can be no weight state 
with a smaller angle than on that is consistent with the patterns presented 
so far and any number of additional patterns. Any change in weight state 
in order to permit the correct classification of a new pattern must lead to a 
greater value for the angle, on-

Similarly, if there is no weight state with a greater angle than ax that is 
consistent with all the patterns presented so far, then there can be no 
weight state with a larger angle than ax that is consistent with the patterns 
presented so far and any number of additional patterns. Any change in 
weight state in order to permit the correct classification of a new pattern 
must lead to a smaller value for the angle, ax-

Therefore, as more and more patterns are added, N and X each only make 
movements towards one another, provided that at each stage, close to the 
minimum change is made to weight space angle (see figure 5.2) when 
finding a weight state for N and X that correctly classifies all the patterns 
presented. This means that when N and X meet (or pass slightly) in terms 
of angle, there is no other angle (within a certain accuracy) with correctly 
classifying weight states.

175



Weight Space Implementation Theory of the Weight Space Technique

Weight state that is 
ahead of the minimum, 
but not disastrously so

The network can go 
back in the ordering 

for P+2th pattern

.4
Angle after 
P patterns 
presented

—o-o-—o—

A
--------------•----------

Minimum
4

Minimum Angle found
angle for angle for after P+1th

P+1th P+2th pattern
pattern pattern

Direction of 
change in 

angle

O Minimum Angle
o Sub-optimum acceptable alternative 
# Sub-optimum unacceptable alternative

Figure 5.2 — There is the possibility for the netivork to go back in the 

ordering if the weight state strays too far from the hypercone of minimum 

change in angle. On presentation of the P+lth pattern, if the weight state 

moves to Y, there is the possibility that the network can go back in the 

ordering when classifying the P+2th pattern. X is preferred to Y in this 

sense.

5.1.1.2 Freedom of movement and hypercones

In IO space terms, the no-alternative situation is when the hyperplane has 
no freedom of movement. This is the situation whereby the patterns are so 
aligned that the hyperplane has no possibility to move whilst preserving 
correct classification, within a certain degree of accuracy. This is 
illustrated in figure 5.3.

With freedom of movement, there are always correctly classifying weight 
states on different hypercone surfaces.

To prove this, it is necessary to relate IO space to weight space. This 
allows the possibility of understanding how the angle of the hyperplane 
changes in IO space as the angle of the weight vector changes in weight 
space.

Consider the case of 2D input, and a network with 2D weight space (i.e. no 
bias weight). The hyperplanes of these weight states all go through the

176



Weight Space Implementation Theory of the Weight Space Technique

origin of input space. The freedom of movement will be between two 
hyperplanes, as shown in figure 5.4(a).

(a) (b)

degree of accuracy.

Figure 5.4 — (a) Shaded area shows freedom of movement of hyperplane, 

when there is no bias weight. Black indicates a target of 1, white indicates a 

target of 0. (b) The shaded region shows the region of weight space that gives 

the hyperplanes in the shaded region of input space.

For any weight state, W, with parameters wi and W2, the formula of the 
hyperplane is given by:

Figure 5.3 — Patterns for which the hyperplane (a) has freedom of 

movement, and (b) has no freedom of movement to within an acceptable

(b) Weight Space

+ w2y2 = 0 [5.3]

177



Weight Space Implementation Theory of the Weight Space Technique

where yi and 1/2 are the axes of input space. Consider an arbitrary point, 
Q = (^1/ <72) in input space, which determines a hyperpiane. From [5.3], we 
know that:

+ "Wi = 0 [5-4]

Hence, a weight state that produces correct output with a hyperplane that 
goes through Q may be given by wi = -q2 and W2 = qi, or by u>i = q2 and 
W2 = -qi, depending on which side of the hyperplane the output is to be 1 
or 0. (In figure 5.4 zvi = -q2 and W2 - qi gives correct output.) Therefore, for 
a point Q' = (gf, q2r) in weight space, where qi' = qi and ql - qir a vector 
from the origin to Q' is perpendicular to the weight state whose 
hyperplane goes through Q in input space. From this, and information 
from the patterns as to which side of the hyperplane should be 1 or 0, it is 
possible to determine the region of weight space that contains weight 
states whose hyperplanes lie within the region of freedom of movement in 
input space. This is shown in figure 5.4(b).

Note that the hyper cone is represented through two lines (Kj and K2 in 
figure 5.5), whereas the correctly classifying weight states in figure 5.4(b) 
occupy an area. It is clear that the surface of the hypercone always has a 
lower order of dimensionality than the portion of weight space that 
correctly classifies the patterns.

Figure 5.5 — K1 and K2 have the same angle A relative to a reference vector 

N0.

For the general n-D case, a small quantity, 5, (larger than the accuracy 
used to determine convergence) can be added to any of the weights 
(including the bias) of a separating hyperplane that does not lie too close

178



Weight Space Implementation Theory of the Weight Space Technique

to any of the patterns, and still correctly classify the patterns, if there is 
freedom of movement. Therefore there is freedom of choice of the weights 
in all dimensions of weight space. Hence, for n-D weight space, correctly 
classifying weight states occupy a hypervolume, of dimensionality n, of 
weight space. Those on the surface of a hyper cone occupy a hypersurface, 
of dimensionality (n - 1).

There is a pathological potential counter-example to this, which is where 
two patterns of opposite class are in fact arranged close together, such that 
a change in any individual weight on its own results in misclassification. 
Changing the bias weight moves the hyperplane up or down, resulting in 
misclassification. Changing any other weight changes the gradient of the 
hyperplane about the intercept, resulting in misclassification. All 
separating hyperplanes pass through the point P. The situation is shown, 
for a 2D input space example, in figure 5.6.

Figure 5.6 — Two patterns, A and B, restrict the freedom of movement of 

the hyperplanes, Hl and H2 to intersect at the point P. Hl' illustrates the 

bias weight restriction. Changing the bias weight only changes the intercept, 

whilst keeping the gradient the same, which results in the misclassification 

of B. H2' illustrates the restriction on the other weights. Here, the rveight 

from input 1 to the output unit is changed, which changes the gradient of 

H2, but retains the same intercept on the input 2 axis, resulting in the 

misclassification of A.

The set of weight states, A, whose separating hyperplanes pass through P, 
where P = (pi, pz, Pn) in the n dimensional input space case must satisfy 
the following equality:

179



Weight Space Implementation Theory of the Weight Space Technique

A = {w1,w2,...,w„,wB | w1p1+w2p2+...+w„p„+w5=0} [5.5]

where wg is the bias weight. This set corresponds to a hyperplane in 
weight space which passes through the origin, and has a normal in the 
vector v = (pi, p2, •••/ Pn, !)• A subset, W, of A correctly classify the patterns. 
This is indicated for the example in figure 5.6 by the shaded region in 
figure 5.7.

The set of weight states, C, lying on the surface of a hypercone with angle 
a from No is given by:

C = |w | w • No = ||w||||N0||cosa} [5.6]

where w = (wi, W2,..., wn, wb) is a vector in weight space. There is no 
hypercone, the surface of which contains all members of W, except when 
a = n/l. and No = (pi, p2, •••, p«, 1), which makes C = A (remembering that 
W c A). This is a pathological counter-example within a pathological 
counter-example. Ignoring this second order of pathology, the essence of 
the argument is that with the restriction imposed by the two patterns close 
to P, the correctly classifying weight states W all lie on a hyperplane in 
weight space, which is flat. The hypercone surface, C, is curved, and is of 
the same dimensionality as the hyperplane A, on which all members of W 
lie. Hence W cannot lie entirely on the surface of the hypercone.

Figure 5.7 — The set of weight states that intersect with P in figure 5.6 lie 

on a hyperplane with normal vector v, as shown. The shaded region (W) 

indicates those weight states which also correctly classify the patterns. The 

circle represents the hypercone with internal angle tt/2, and No = v.

180



Weight Space Implementation Theory of the Weight Space Technique

The weight states lying on the surface of a hypercone therefore either have 
a lower order of dimensionality than the set of weight states that correctly 
classify the patterns, or are on a curved, rather than a flat surface. Hence, 
there can be no single hypercone whose surface intersects with every 
single weight state in the correctly classifying hypervolume of weight 
space. When there is only one correctly classifying input space 
hyperplane, the hypervolume of correctly classifying weight states 
becomes a single line, which can lie on the surface of a hypercone in 
weight space.

The above shows then, that there are always weight states lying on the 
surfaces of different hypercones whilst there is freedom of movement.

5.1.1.3 Convergence

When there is no freedom of movement, all correctly classifying weight 
states are collinear. If N and X are collinear, they will lie on the surface of 
the same hypercone. If there is freedom of movement, N and X will lie on 
different hypercones, from 5.1.1.2, assuming they have been kept apart as 
much as possible. Therefore, N and X lying on the surface of the same 
hypercone is a necessary and sufficient condition for detecting no freedom 
of movement. This condition is termed locking.

5.1.2 Implementing Candidate Elimination Using Error Functions

A popular method for training neural networks is to use gradient descent, 
such as in the back-propagation technique.6 (For a discussion of gradient 
descent and back-propagation, see chapter 1.) Here, gradient descent is 
used to combine training with the directive of minimal updating in the 
ordering. This is achieved by using a potential function that adds a 
function which increases as the weight state deviates from the surface of 
the current hypercone to the sum of squared errors from standard back- 
propagation.

6Rumelhart et al, 1986

181



Weight Space Implementation Theory of the Weight Space Technique

5.1.2.1 Minimising the Distance from the Current Hypercone

The idea of using additional cost functions in the potential function is not 
new.7 For example, Joerding and Meador8 add a function to the sum of 
squared error to encourage a weight state that satisfies certain conditions, 
enabling the explicit representation of prior knowledge about the function 
to be approximated (such as its monotonicity) during the training of the 
neural network.9

Here, a function is added to the sum of squared error which increases as 
the weight state deviates from the surface of the current hypercone. Let 
E&j be this function, wy be the current weight vector, and vy be a vector on 
the surface of the current hypercone. Ejj- should be proportional to the 
squared difference in angle of wy from vy. This would be (a- p)2 in figure 
5.8. The angles of wy and vy are measured relative to Nq.

Figure 5.8 — Angles used to calculate the deviation from the current 

hypercone.

Instead of using the angles directly to measure the distance of the current 
weight state from the current hypercone, the cosines of the angles are 
used. Hence the scalar products of the weight vectors can be used as a

7Chauvin, 1989*, 1990*; Drucker & LeCun, 1991*; Hanson & Pratt, 1989*; Hinton, 1989*; 

Ishikawa, 1989*; Jean & Wang, 1994; MacKay, 1992b; Mozer & Smolensky, 1989*; 

Weigend et al, 1990,1991. (Starred references are taken from Xu et al, 1992.)

8Joerding & Meador, 1991

9Joerding & Meador, 1991, p. 852

182



Weight Space Implementation Theory of the Weight Space Technique

measure of the distance, which is easier for implementation purposes. The 
cosine of the angle has a one-one relationship with angles from 0 to n, 
which is the range of angles needed for consideration here.

Hence, Ed- can be given by the following equation:

EDj = (cos a- cos frf

Therefore:
Vj-N0.V

w; V'll 7

[5.7]

[5.8]=

To implement gradient descent, we set:

dED
A .. OC-----------

D ” dw„
[5.9]

where &DWji is the change in weights due to the deviation of the weight 
state from the current hypercone.

V Mj.w-N,,,
Thus: wj'No> V<NOJ

wy
n«ji - [5.1O]10^DWfi

rJIV A w

where h is a positive constant.

The angle cost function is designed to keep the weight path near the 
surface of the current hypercone as much as possible, whilst allowing the 
drive for correct classification of the patterns to guide the search as well. 
Of course, this method does not exhaustively search the surface of each 
hypercone for the best weight state before updating. This is not practical. 
The purpose of measuring the distance in terms of angle of the current 
weight state from the current hypercone is simply to prevent false locking

l°The following results are useful when deriving equation [5.18], where m is the 

dimensionality of weight space:

•(w;,n0>, + wj2n0j2+...+wjin0ji+...+w!mnv.^ = nOjid KT dW; -N,, .. =
Av, •

d "w,ll=d
dw~11 1Jl

2 +M'22+...+M'Ji+—+w>.)-n-212X = R

183



Weight Space Implementation Theory of the Weight Space Technique

by keeping N and X apart as much as possible, so that at convergence, N 
and X indicate the correct separating hyperplane.

5.1.2.2 An Error Function which is Zero for all Correctly Classified Patterns

The weight change due to the deviation of the weight state from the 
surface of the current hypercone is added to the weight change due to 
misclassification of patterns. The latter is based on a modification of the 
standard sum of squared error from back-propagation.11 The modified 
error function is zero for patterns on the correct side of the hyperplane.

Figure 5.9 compares various classification error functions. In standard 
back-propagation (a), the error function rises as the target is exceeded. 
This leads to the problem that the global minimum error point has 
misclassified patterns for certain classes of linearly separable pattern 
sets.12 The proposal of Sontag and Sussmann13 (b) is to use an error 
function that cuts off this rise by giving zero error to patterns whose 
outputs exceed the target. The counter examples of Brady et al no longer 
apply. (Chapter 1 has more detail on this.)

Extending the cut-off point to 0.5 so that all patterns on the correct side of 
the hyperplane have an error of zero, yields the error function in (c). Using 
this error function, however, effectively trains all patterns to give an 
output tending to 0.5, which means zero error is achieved when the 
weights are all zero. This is undesirable, since the increasingly low 
gradients mean that the patterns may remain unseparated.

The problem is dealt with by using the error function in (d), which has 
relatively high gradients at an output of 0.5. The calculation of the 
gradient at this point forces patterns into the correct half of the output 
interval. Although the error function is discontinuous, it is possible to 
calculate a gradient at all points along the curve. The gradient at 0.5, and 
when the pattern is misclassified, is defined to be the same as the gradient 
of (a) at that point, and the gradient when the point is correctly classified

^Rumelhart et al, 1986, p. 327

12Brady et al, 1988

13Sontag & Sussmann, 1988,1989

184



Weight Space Implementation Theory of the Weight Space Technique

(i.e. immediately beyond 0.5), is defined to be zero. For each point in 
weight space, each misclassified pattern contributes a direction to the 
suggested weight change. Steepest gradient descent on this error function 
always moves in the direction indicated by the misclassified patterns.

(a) (b)

(c) (d)

Figure 5.9 — Comparison of error functions, for a target of 0.8, and an 

output interval of 10, ll. (a) Standard back-propagation error function, (b)

Error function proposed by Sontag & Sussmann. (c) Extension of(b) so that 

there is zero error when the pattern is on the correct side of the hyperplane.

(d) Error function used in this implementation.

This leads to an error surface which has sudden increases and decreases 
resulting in a jump in the error for small changes in the weights. Sudden 
decreases in error are not a problem, since it is an indication that a pattern 
has become correctly classified.

Sudden increases in error are more difficult to justify, since it indicates 
that a pattern, p, has become misclassified. However, the gradient after the

185



Weight Space Implementation Theory of the Weight Space Technique

jump always leads to weight changes with a decrease in error — even 
though it may not point back to the correct classification of p if there is a 
greater gradient due to other patterns being misclassified. Sooner or later, 
once these patterns are correctly classified, p will be one of the only 
patterns left misclassified. The gradient to correctly classify p will become 
significant, and the weight path moves in that direction.

Since it is assumed that the problem to be solved is linearly separable, 
there is a region of zero error. The goal region, of correctly classifying 
weight states, is correctly represented by the global minima of the error 
function, since it is zero for all weight states in the goal region, and greater 
than zero for all other weight states.

Equation [5.11] gives the formula for the error function for pattern 
classification, Ecpj'

0 otherwise
[5.11]

where tpj is the target of pattern p for unit ;, Opj is the output of unit j on 
presentation of the input of pattern p, and /(x) is the following function:

/W=
x > 0.5 
x<0.5

5.1.2.3 Combining Correct Classification with Minimum Distance from the Current 

Hypercone

The total error is then the sum of the error due to misclassification of the 
patterns, and the distance in terms of angle of the current weight state 
from the surface of the current hypercone. This is given in equation [5.12], 
where p iterates over the patterns, and Epy is the measure of the distance 
of the current weight state for unit; from the current hypercone discussed 
in section 5.1.2.1, and defined in [5.8].

E,=l,Ecrl+EDj [5.12]

186



Weight Space Implementation Theory of the Weight Space Technique

In the symbolic technique, updating operates over a discrete search space. 
However, since weight changes, and hence changes to the concept, are 
made in a continuous search space, updating is a more gradual process.

With the overall error, Ej above, the network enters a local minimum 
when the drive to correctly classify patterns is matched by the drive to 
maintain the weight state on the current hypercone. At this point, the new 
pattern is not yet correctly classified, and this is the prime imperative. The 
hypercone must be updated, so that the ability of the network to reach a 
point whereby the new pattern is correctly classified is not impaired.

Therefore, when a local minimum is suspected, the current weight state 
becomes vy, the reference vector for the hypercone. This means that the 
deviation from the hypercone becomes zero, since the hypercone has been 
moved to the position of the current weight state. The path to correctly 
classify the new pattern can then proceed. This is illustrated in figure 5.10.

There are two alternative heuristics for local minimum detection. One is to 
wait until the total error change becomes very small. Another is to wait 
until a weight change results in an increase in error. The problem with the 
former test is that it is possible for the weight path to be oscillating along 
the bottom of a gently sloping ravine,14 in which case, the error changes 
are small, but the network is not stuck in a local minimum. Also, the 
sudden jump in error with the error functions used here means that local 
minima cannot always be detected by small chahges in error. Hence the 
latter method is used.

This, however, is subject to the problem that the jump up in error need not 
necessarily be due to the weight path being in a local minimum, and could 
be simply in the natural course of events as the weight path proceeds 
towards zero error. However, this technique uses incremental learning. 
This means that when a new pattern is introduced, the error will either be 
zero (if the pattern happens to be correctly classified by the current weight 
state), or there will be a direction of change due to the misclassification of 
the new pattern. This direction of change could be supposed to be unlikely

14Ochiai et al, 1994; Hertz et al, 1991, p. 129

187



Weight Space Implementation Theory of the Weight Space Technique

(b)

Figure 5.10— Continuous updating, (a) At the minimum of classification 

and deviation from hypercone error, the pattern is not correctly classified, 

(b) The current hypercone is reset, and the minimum is moved towards 

correct classification. After sufficient hypercone resettings, the pattern is 

correctlij classified, but with the minimum change in angle.

r

188



Weight Space Implementation Theory of the Weight Space Technique

to point back towards the misclassification of the old patterns, and hence 
the likelihood of a sudden jump up that is not due to a local minimum is 
reduced. Since updates are small, any false updates relating to this 
problem will not cause difficulties during learning. This will be discussed 
later in the light of experimental evidence (section 5.2.3).

The training procedure makes use of functions which are designed with 
the intention of ensuring that a weight state is found using the shortest 
path (in terms of angle) from the weight state after the last update to a 
correctly classifying weight state. The effectiveness of the functions used 
here in achieving this is discussed in section 5.2.2.

5.1.3 Relation to the Symbolic Technique

This technique deviates from the original symbolic technique in four main 
ways, summarised as follows: Firstly, in the nature of the search space, 
which is a discrete graph of states in the symbolic technique, and a 
continuous multi-dimensional space in this neural implementation. This 
means that the style of search, and the means of representing version 
space boundaries, updating and selection within in the neural technique 
will differ significantly from the symbolic case. Thirdly, there is a 
difference in the ordering of the concepts. Finally, the neural technique 
cannot make use of partially learned concepts, as is possible with the 
symbolic technique.

The similarities lie in the incremental presentation of patterns, the 
convergence of version space boundary representatives, and in the ability 
to recognise the no-alternative situation.

The ordering in the neural technique is a total ordering of the angle of 
weight vectors measured relative to an arbitrary constant reference vector 
in n dimensional space, no. A relation is a total ordering if it is reflexive, 
antisymmetric, transitive and connected.15 Let a R b represent the relation 
that the angle of a relative to no is greater than or equal to the angle of b 
relative to no, as per equation [5.13], where a and b are weight vectors:

15Borowski & Borwein, 1989, p. 422

189



Weight Space Implementation Theory of the Weight Space Technique

a ■ n A
a/?b <=> cos -i > cos -1 b- nr

viaiFoiiy Vii-nilno|iy
[5.13]

This relation is clearly a total ordering of angle, since greater than or equal 
to forms a total ordering of real numbers. However, it is not a total 
ordering of weight vectors. Consider the case of antisymmetry:

(Va,b e R")((a/?b) a (b7?a)) => cos 1 an

‘IWI,
= COS

-1 bnr
bt In

[5.14]
oily

From [5.14], it cannot be inferred that a = b, since a and b may be at 
different points on the hypercone. Since antisymmetry is also a necessary 
condition for a partial ordering, R does not form a partial ordering of 
weights either. Therefore, the use of weight vector angle does not give any 
ordering, either total or partial, to the weight vectors themselves.

As discussed in chapter 3, the neural equivalent of a concept is the IO 
picture. The basis of this technique is to give an ordering to the IO pictures 
through giving an ordering to the weight space angle. Although it is the 
weight space angle that is ordered, and not the weights or the IO pictures, 
it is nevertheless the case that this technique provides a mechanism for 
constraining the search through weight space such that the no-alternative 
situation can be recognised.

The continuous nature of the search space in the neural technique means 
that the style of the search is very different. Mitchell always exhaustively 
searches the boundary sets, and explicitly represents each boundary 
member of version space. This is not done in the neural case. The 
boundaries of version space in the neural case are the surfaces of the 
hypercones of N and X. It is infeasible and unnecessary to exhaustively 
search these. This is because the weight states of N and X are free to move 
in weight space, and are not restricted to particular chains in the partial 
ordering, as the boundary representatives are in the symbolic case. This 
means that one neural network representative is sufficient for each 
boundary. The neural network will move through weight space towards 
zero misclassification error at any stage during training. It is constrained 
using the angle measure, but by updating this, the ability to find zero 
misclassification error is not impaired.

190



Weight Space implementation Theory of the Weight Space Technique

The symbolic mechanisms of updating and selection within ensure that 
the minimum changes to the boundary sets S and G are made when a new 
instance is presented. The purpose of the angle function is to provide the 
means of ensuring that a new, correctly classifying weight state is found 
with minimum local change in weight space angle.

Whereas the symbolic technique is able to make use of partially learned 
concepts through the agreement of S and G on the classification of 
unfamiliar instances (see chapter 2), there is not the same usefulness in the 
neural case. The concept must lie between N and X, but this does not 
mean that if N and X agree on the classification of an untrained pattern 
that this pattern must therefore have that classification, because the 
hyperplanes of N and X do not represent the extremes of freedom of 
movement — they represent the extremes of weight space angle measured 
relative to an arbitrary weight vector. The two do not necessarily equate. 
Figure 5.11(a) shows the freedom of movement of the hyperplane for a 
problem in a ID input space. Figure 5.11(b) shows the corresponding 
correctly classifying region of weight space. If the reference vector, No, 
happens to correctly classify, as chosen in the diagram, then N stays at a 
minimum angle of 0 from No, but does not represent an extreme of 
freedom of movement. X does represent one of the extremes of freedom of 
movement — that at maximum angle in weight space from No

There are similarities between the symbolic technique and the angle 
technique. A key similarity is that patterns are presented incrementally. A 
pattern is added, and if misclassified, the network is changed until the 
pattern is correctly classified, through a series of updates. There is, 
however, a difference in that previous patterns must also be retrained, in 
order to ensure that correctly classifying the new pattern does not lead to 
misclassification of old ones. This is because the correctness of the 
classification does not depend on the hypercone. Thus updating the 
hypercone for the new pattern alone does not of itself preserve correct 
classification of previous patterns, as is the case in the symbolic technique.

A further similarity is that the boundary representatives always move 
closer together in the ordering. This has been proved in section 5.1.1.1.

191



Weight Space Implementation Theory of the Weight Space Technique

(a) (b)

Figure 5.11 — The extremes of angle that correctly classify relative to No 

need not be the extremes of freedom of movement, (a) A ID problem in IO 

space. The hyperplane of No, H(No) happens to correctly classify the patterns 

(black/white squares). The extremes of freedom of movement are indicated by 

the hyperplanes H(p) and H(q). (b) Weight space. The perceptrons to perform 

the separation have a weight, zv, to the input unit, and a bias zveight. The 

weight vectors which correspond to separations H(p) and H(q) in (a) are 

indicated by p and q. The shaded region indicates all zveight states that lie 

between p and q, and therefore correctly classify. N and X are indicated by 

bold lines.

5.2 Algorithm and Experimental Results

5.2.1 Algorithm

The algorithm for the implementation of the weight space technique is as 
follows. Note that in step3 NO is set to N's first trained weight state on the 
first pattern from step 2. N must be trained close to place the first pattern 
close to the boundary, as explained later, and illustrated in figure 5.13. 
Steps 2 and 3 ensure that no potential weight states are excluded from 
being searched.
1 Variables:

1.1 Let T = the training set.
1.2 Let P = the number of patterns.
1.3 Let C = the misclassification error.
1.4 Let D = the angle error, based on the angle between

the hypercone reference vector and NO.

192



Weight Space Implementation Algorithm and Experimental Results

1.5 Let E = an error function to train the first 
pattern to be correctly classified and close to the 
current hyperplane of the network.

1.6 Let N = the internal hypercone network.
1.7 Let NO = the reference vector.
1.8 Let Nh = the hypercone reference vector of N.
1.9 Let X = the external hypercone network.
1.10 Let Xh = the hypercone reference vector of X.

2 Train(T(0), T(0), N, E, _) .
3 Let NO = N.
4 Initialise X by setting all the weights of X to be -1 

multiplied ty the corresponding weight in NO.
5 If T(0) is misclassified ty X,

Train(T(0), T(0), X, C + D, Xh) .
6 For each subsequent pattern, T(n):

6.1 If T(n) is correctly classified ty N, go on to 6.2 
else Train(T(0), T(n), N, C + D, Nh) .

6.2 If T(n) is correctly classified ty X, go on to 6.3 
else Train(T(0), T(n), X, C + D, Xh) .

6.3 If N and X are collinear (within an acceptable 
tolerance) locking has been achieved. Terminate. 
Otherwise n = n + 1, and repeat frcm 6.1 until 
n > P.

7 Locking not achieved for patterns given. Step.
8 Procedure:

Train (Frcm_pat tern, To_pattem, Network, Errorjz unction, 
Hyperconejnetwork)

8.1 Train Network on all patterns fran Fran_pattem to 
TCjpattem using Error_function, until a minimum is 
detected.

8.2 If Error_function == E return.
8.3 Update hypercone. Hyperconejnetwork - Network.
8.4 Repeat fran 8.1 until C = 0.

The error functions C and D refer to the misclassification error, Ec, and the 
angle cost function, Ep, discussed in section 5.1.2.

193



Weight Space Implementation Algorithm and Experimental Results

The error function E in the algorithm above is simply the standard back- 
propagation error function, but with a target of 0.5 for the input of pattern 
T(0). This trains the network to put T(0) precisely on its hyperplane. This 
is necessary in order to enable N and X to have the maximum initial angle 
(7r) from each other, whilst still correctly classifying the first pattern. If the 
first pattern is some distance from the hyperplane of No, then it is not 
possible to have the initial weight vector of X close to an angle of n from 
the weight vector of Nq. Figure 5.12 illustrates this.

Figure 5.12 — The difference in initial weight space angle between X and 

No when No is not trained to be close to the first pattern, T(0), as shown on 

the left, and when No is trained to be close to T(0).

If the initial weight vector of X is not close to an angle of n from the weight 
vector of No, then it is possible for weight states at angles greater than the 
actual limit after T(0) is introduced to be left untested. Alternatively, it is 
possible for the angle between N and X to increase. This is illustrated in 
figure 5.13, which shows that if T(l) is presented as shown in figure 
5.13(a), then N moves from No to correctly classify, whilst X is unchanged, 
since it already correctly classifies, thereby increasing the angle between N

194



Weight Space Implementation Algorithm and Experimental Results

and X, as shown in figure 5.13(b). This is contrary to the requirement of 
the paradigm for a monotonic decrease in angle.

40 a ano Increase w1 & w2 >7? . ,1 in angle

Bias Weight

(a) (b)

Figure 5.13 — (a) N moves from No to correctly classify T(l). The shading 

represents the side of the hyperplane with classification 1. (b) This move 

results in an increase in angle between N and X.

5.2.2 Results for a Simple Experiment

In this experiment, the technique is demonstrated for a simple 2D linear 
binary partition, which is learned over a sequence of five patterns. This 
shows the ability of the technique to achieve locking in low dimensional 
input space using relatively few patterns. All that is required for the 
hyperplane is enough patterns to pin the hyperplane in place. In 2D, only 
three patterns, two of one class, and one of the other class, all close to the 
hyperplane boundary, are required. Two extra patterns are used at a 
distance from the hyperplane boundary. These are not strictly necessary, 
but act as an aid to guiding the hyperplane in place.

Figures 5.14(a) to (e) show the IO sequence of N and X as they converge to 
the same hyperplane. The problem is clearly a very simple one, yet it 
serves well as a demonstrator of the way in which the technique works.

195



Weight Space Implementation Algorithm and Experimental Results

Figure 5.14 — Sequence of IO graphs for N and X leading to convergence. 

The output of the network, with two input units and one output unit is 

plotted for each point in input space covered by the region of the graph. 

Where the output is one a black point is plotted, and where it is zero, a white 

point is plotted.

(a) The initial condition. The weights ofN and X are virtually opposite, both 

just correctly classifying the first pattern, close to the border, X having been 

minimally updated to correctly classify the pattern after its weights were all 

set to -1 multiplied by the corresponding weight ofN. The pattern is marked 

by a black square, with a white border, indicating a target of 1.

(b) The second pattern is introduced. N correctly classifies it already, hence 

there is no change. X misclassifies the pattern, and must move to correctly 

classify it. This is done with the minimum change in weight space angle. The 

new pattern is marked by a white square with a black border, indicating a 

target ofO.

196



Weight Space Implementation Algorithm and Experimental Results

Figure 5.14 confd.

(c) The third pattern is introduced. Again, N correctly classifies this already, 

and does not change. X must change again, however.

(d) The fourth pattern is introduced. N and X move to correctly classify it.

(e) N and X converge after N moves to correctly classify the fifth pattern.

197



Weight Space Implementation Algorithm and Experimental Results

The nature of the classification error function means that misclassified 
patterns are always trained to be close to the boundary of the hyperplanes. 
However, since there is no change if the pattern is correctly classified, N 
and X do not show the extent of the freedom of movement of the 
hyperplanes for the patterns under consideration. This is clear from figure 
5.14(b), where the IO behaviour of N would need to be nearly the opposite 
to that of X in order to indicate the freedom of movement.

5.2.3 Problems with the Technique

One of the main problems with the technique is that the detection of local 
minima is far more problematic than originally suspected. The naive 
views expressed in section 5.1.2 do not match with experimental results. 
Updating occurred as often as once out of every three training cycles in 
some runs. The reason for this is precisely due to the fact that weight 
states are always found that correctly classify the new pattern with the 
minimum change in angle.

Figure 5.15 shows a two dimensional weight space. Each line represents 
the boundary in weight space between the correct classification and the 
misclassification of a pattern. This boundary may be termed the solution 
manifold.16 The arrows show the direction of change that will be indicated 
by the error function. If a weight state just correctly classifies Pl, the first 
pattern, it is close to the solution manifold for that pattern. When the 
second pattern, P2, is introduced, the direction of change will be in 
accordance only with attaining the correct classification of this pattern, 
since Pl is correctly classified. This leads to the misclassification of Pl, and 
the error makes a sudden jump up. The new direction points back to the 
correct side of the solution manifold of Pl, and the oscillation continues.

This kind of oscillation means that the method chosen in section 5.1.2 
(which used an increase in error as an indication) cannot be used to detect 
a local minimum. For each oscillation, the error increases when the weight 
path moves to correctly classify P2 only, and misclassifies Pl as well as a 
result. This leads to a false update.

16Femandez, 1994

198



Weight Space Implementation Algorithm and Experimental Results

Figure 5.15 — How the weight path can oscillate along the solution 

manifold of the last correctly classified pattern (Pl) whilst trying to correctly 

classify the new pattern (P2). The circles indicate a series of weight states, 

and the arrows between the circles indicate the weight change.

Since the technique used an increase in error to indicate the need to 
update, and updating occurred frequently, the deviation from the 
hypercone rarely had a significant effect on the weight change. However, 
the results in section 5.2.2 show the technique converging. How can this 
be? The answer lies in the fact that the weight states have started from an 
initial angle of n. This, coupled with the fact that the misclassification error 
alone ensures the minimum change is made that allows for correct 
classification of the patterns (provided that the learning constant is small), 
means that the technique can work fine without using angles at all. 
Subsequent experiments without using the deviation from the hypercone 
to constrain the weights have confirmed this.

There is therefore some doubt about whether the angle cost function has a 
useful effect on the weight path in practice. The simple nature of the IO 
problems this technique can cope with means that there is no need to 
further constrain the search using the deviation from the hypercone. 
Starting from opposite directions, and using an error function for 
classification which drops to zero once a pattern is correctly classified, is 
sufficient to prevent either network from going beyond the goal angle, 
and therefore from allowing a false locking situation to arise.

199



Weight Space Implementation Algorithm and Experimental Results

A further problem is the dependence of the technique on the accuracy of 
the patterns. Such assumptions may be acceptable in symbolic AI, but 
neural networks tend to be used for problems where the data cannot be 
guaranteed 100% noise free. In noisy situations, or situations whereby the 
neural architecture cannot provide an exact fit to the pattern set, it could 
be hoped that the technique might provide a "best fit" to the underlying 
data. However, as illustrated in figure 5.16, it is possible to have patterns 
from an unrealisable training set which have fixed the hyperplane such 
that there is no freedom of movement, and yet the hyperplane is not in the 
position of best fit to the underlying function.

Unrealisable 
underlying function

Figure 5.16 — A hxjperplane with no freedom of movement with a non

optimum position with respect to the underlying function.

It was especially this point, combined with the difficulties in generalising 
the technique for hidden units outlined in the following section, that led to 
the development of the technique outlined in chapter 6.

5.3 Generalisation For Hidden Units

A great problem for the technique is the limitation to the networks it can 
be used to train. As mentioned in chapter 1, neural networks without a 
hidden layer cannot solve linearly inseparable problems. This means that 
there is a severe constraint on the problems that can be solved with this 
technique. This section documents some of the problems experienced with 
generalising the technique to apply for hidden units, which led, in 
combination with the problems outlined in section 5.2.3, to the 
development of a different neural implementation of Mitchell's technique, 
to be discussed in chapter 6.

200



Weight Space Implementation Generalisation For Hidden Units

5.3.1 Symmetries in Hidden Units

Symmetry of hidden units is an important issue when considering a 
neural implementation of Mitchell's technique based in weight space, 
where a concept is linked to IO behaviour. Given the directive that all 
equivalent solutions in terms of IO must have the same measured value in 
the partial ordering chosen, it is necessary to be sure that the partial 
ordering used takes into consideration all equivalent weight states.

The symmetries of weight states for neural architectures containing 
hidden units are indicated by Denker et al,17 and other authors.18 
Whenever an ordering is given to the hidden units (such as in software 
simulations) there is a symmetry, since any re-ordering of the units in a 
given hidden layer leaves the output behaviour unchanged. This will be 
termed unit ordering symmetry.

There is also symmetry due to unit polarity. If the activation function has 
rotational symmetry about the origin, then changing the signs of the fan-in 
and fan-out weights will yield the same output behaviour.

If the symmetry of the activation function is about the intercept then the 
same kind of equivalence exists, but an adjustment to the bias weights of 
the units in the higher level is necessary19. This will be termed unit polarity 
symmetry. For example, consider the sigmoid activation function [5.15], 
which has rotational symmetry about the point (netj, outj) - (0.0, 0.5):

P-15!x ' 1+e 1

where netj and outj are the excitation and output of a unit, Uj.

If the signs of the fan-in weights wji to a unit Uj are all changed, then the 
effect is to change the sign of the excitation of uj, netj. Changing the sign of 
the fan-out weights, w^j from uj does not compensate entirely for this, 
since:

17Denker et al, 1987, pp. 886-887

18E.g. MacKay, 1992b, p. 455; Smieja & Muhlenbein, 1990, p. 261; Sussmann, 1992, p. 590

19Denker et al, 1987, p. 886

201



Weight Space Implementation Generalisation For Hidden Units

l + ewtj l + e'netj

A correction, q, is needed to the bias weight of each fan-out unit,

vv...
c, -k i i netj1 + e 7 -net,+ e 1

Rearranging:
vv.. vv,,

k . -net, ' 1 net,1 + e J 1 + e 1
[5.16]Cu = +

Multiplying the top and bottom of the right hand term on the right hand 
side of [5.16] by exp(-ttefy):

w.
ck 1 i ~ne,j1 + e 1

__| ™k)e
-net, 1e J +11 + e'

<=> ck

<=> ck
^kj^ + e~netj)

1 i ~neh1 + e '

<=> = Wkj

This result is summarised in equation [5.17] for the sigmoid activation 
function in [5.15].20

^7/(ne^.)“ ^kjf^netj) + wki [5.17]

A further symmetry, not covered by Denker et al, is due to the nature of a 
class of problem that neural networks with hidden units are capable of 
solving. This exemplified by the approximation of a circle, for 2D input 
and one output unit, to an arbitrary degree of accuracy (see figure 5.17). 
Whether sigmoidal or threshold activation functions are used, a given 
degree of accuracy can be achieved using n hidden units in a single 
hidden layer, whose hyperplanes are arranged such that they combine to 
form an n-sided regular polygon around the circle.

20Balchin, 1993

202



Weight Space Implementation Generalisation For Hidden Units

Figure 5.17 — Rotational symmetry of a problem. A circle is being 

approximated by the hyperplanes of six hidden units forming a hexagon. Any 

angle of rotation of the hexagon yields the same approximation.

By rotational symmetry, there are an infinite number of orientations of a 
given polygon that will approximate the circle to the same degree of 
accuracy. (See figure 5.17.) This will be termed exact IO behaviour symmetry. 
This presents a rather awkward challenge for a Mitchellian technique 
based on weight space. There is not an obvious method for mapping 
weight states that are equivalent in this way onto the same point in an 
ordering.

5.3.2 Measuring Weight Space Angle with Hidden Units

When hidden units are used, the symmetries outlined in the previous 
section must be overcome whilst preserving the directive that weight 
states with equivalent IO behaviour must have the same position in the 
partial ordering. This means a decision must be made as to how the angle 
is to be measured. The most obvious method is to form a hypercone over 
the entire weight space for all units. This could be termed a network-based 
approach. Other approaches could use a sum of angles over hypercones 
for all the units in a layer, a sum of angles over hypercones for each unit, 
or even an approach based on links alone.

Each of these alternatives must be considered to see if they break any of 
the symmetries discussed in the previous section.

203



Weight Space Implementation Generalisation For Hidden Units

• The network and layer based approaches both involve putting 
hypercones over more than one unit. However, it can be 
demonstrated (figure 5.18) that hypercones over more than one 
unit cannot cope with unit ordering symmetry.

• The unit based approach would use the sum of the angles to give 
the position in the ordering. This cannot cope with unit ordering 
symmetry either, as shown in figure 5.19. If the fan-in and fan-out 
weights of units 1 and 2 are swapped, the angle of unit 3 will have 
a different value. Therefore although the sum of angles for units 1 
and 2 remains constant, the sum of angles for units 1, 2 and 3 does 
not.

• The link based approach cannot use hypercones, and would 
instead try and keep the difference in the sum of the distances 
between the current weight value and a reference weight value 
minimal, as per equation [5.18], where Ejjftnk is the sum of 
distances, vj is the weight value after the last update, and m is the 
number of weights in the network:

= t5'18!
7=l,m

Multiplying Wj by a positive constant yields a different value for 
EDHnk anj hence the link based approach cannot cope with weight 
scaling symmetry — the original motivation for creating 
hypercones in the first place.

Therefore, hypercones cannot be used with hidden units without 
encountering difficulties with one of the many neural symmetries that 
occur once hidden units are allowed.

204



Weight Space Implementation Generalisation For Hidden Units

Figure 5.18 — Two weight states, Wl and \N2, equivalent by unit ordering 

symmetry do not lie on the surface of the same hypercone, where that 

hypercone has been drawn over the weights of both units combined. Wl is a 

weight state with weight vector v to unit 1 and weight vector xv to unit 2. 

Provided that the fan-out weights of units 1 and 2 are swapped, W2 is an 

equivalent weight state with weight vector iv to unit 1 and v to unit 2. W2 

does not lie on the surface of the same hypercone over units 1 and 2 as Wl, 

and hence network, or layer based approaches, which have hypercones over 

more than one unit, do not have all equivalent weight states that lie on the 

surface of the same hypercone.

Figure 5.19 — A subsection of a neural architecture, wl is the fan-out 

weight of unit 1 to unit 3, and w2 is the fan-out weight of unit 2 to unit 3.

205



Weight Space Implementation Conclusion

5.4 Conclusion

The original purpose of developing this technique was to overcome 
weight scaling symmetry, which had been a problem for an earlier 
attempt to implement a Mitchellian style learning algorithm in neural 
networks. Hypercones are effective in this, and hence the technique 
achieves what it sets out to achieve. Although the angle ordering does not 
give an ordering of weight states, or of IO pictures, it does enable the 
detection of the no-alternative situation for a restricted class of problems.

With hindsight, there are ways in which the implementation could have 
been improved:

• The error function of Sontag and Sussmann (figure 5.9(b)) could 
have been tried. There was no essential need for the discontinuous 
error function. Although Sontag and Sussmann's error function 
gives an error to patterns which are on the correct side of the 
hyperplane, the weights can be scaled up, so that patterns close to 
the hyperplane have outputs close enough to 1 or 0 to be 
recognised as correctly classified. This would not have jeopardised 
the use of hypercones, which are designed to cope with weight 
scaling.

• Local minimum detection with the discontinuous error function 
need not be indicated using the error, and thus avoid the problems 
posed by discontinuity. A small change in the weights could be 
used instead, since it also indicates a shallow gradient. Also, with 
Sontag and Sussmann's error function, there are no problems with 
discontinuity, and hence a local minimum can be detected more 
reliably by a small change in error.

It seemed best to give an ordering to the weight space angle, since it is the 
weights that give rise to the IO behaviour (for a given neural architecture). 
Although the problems with the earlier implementation had been dealt 
with, the weight space angle technique brings to light several other 
problems. These indicate important principles for implementing Mitchell's 
technique in a neural environment:

206



Weight Space Implementation Conclusion

• A weight space implementation must take into consideration the 
symmetries in weight space of equivalent solutions. These 
symmetries were brought to light through working on this 
technique. The inability of the present technique to use hidden 
units because of the symmetries is an unacceptable restriction.

• Neural networks are rarely given noiseless data, for which an 
exact fit guaranteeing good generalisation can be attempted. 
Ideally, a neural implementation of Mitchell's technique should be 
able to cope with noisy data by providing a good, inexact fit. 
Figure 5.16 shows that the weight space angle technique based on 
freedom of movement of the hyperplane cannot cope with inexact 
fit.

It is clear that a weight space implementation is unlikely to yield 
satisfactory results for a large enough subset of problems. It is necessary to 
look at ways of using IO space as the space of search for a Mitchellian 
implementation. If a method could be found of recognising when two 
neural networks have equivalent IO, without the need to compare their 
weight states, then the various symmetries uncovered during the process 
of this work can be ignored. It is also necessary to provide the basis for 
recognition of equivalent inexact fits to the data. The following chapter 
details the technique that arose from these thoughts.

207



IO Space Implementation

6 Neural Implementation Based on IO 
Space

This chapter explores the development of a neural Mitchellian technique 
which uses IO space as the basis for the partial ordering of concepts rather 
than weight space. The result is a technique that is able, under certain 
conditions, to indicate when the global minimum misclassification error 
solution has been found to the given problem. This means that it is 
possible to guarantee the best fit possible to the data with the given fixed 
topology and a standard neural training algorithm. Generalisation is 
thereby guaranteed according to the assumptions of the user. These 
assumptions will be made clear in later sections, and pertain to the 
topology chosen, and the degree of accuracy in the input patterns.

The chapter is divided into two parts. The first part discusses the 
development of the theory, in the context of three paradigms which are 
based on IO space, each one building on the previous paradigms. The 
second part details experiments using the final paradigm, illustrating its 
ability to find when the best fit to the data has been found using a Genetic 
Algorithm (GA) to train the network. The technique is also compared with 
validation.

(i) Development of Theory

61.1 Partially Ordering the IO

61.1.1 Representing the IO

The weight space implementation described in chapter 5 suffered from 
various weight space symmetries. The techniques outlined in this chapter 
aimed to overcome these symmetries by using IO space as the basis for the 
Mitchellian search rather than weight space. The difficulty with using IO 
space is that there is no obvious way to give a partial ordering to the IO. 
Consider the four IO pictures for various neural topologies drawn in

208



IO Space Implementation Part (i) Partially Ordering the IO

chapter 3. (Figure 3.1.) How can one say that one of these pictures is 
partially ordered in some way relative to another?

The final solution to the problem arose out of an attempt to relate the 
generalisation error to the patterns. The generalisation error is the volume 
of input space that has a different classification from the underlying 
classification of input space. One of the problems with generalisation in 
neural networks is that a continuous picture is required from a set of 
discrete patterns. This is why the VC estimate of the number of patterns 
needed to bound the probability of worst-case generalisation is so high. 
(See chapter 3.) Effectively, it implicitly suggests that the only way to be 
sure of generalisation is to saturate input space with patterns so heavily 
that no other continuous IO picture is likely.

The number of patterns in the data set is finite and limited. The patterns 
nevertheless determine, through the trained weight state, the entire 
realised IO space. In a sense, a pattern stands for its local region of input 
space. The IO space can then be partitioned into regions, with one data 
point in each, using a Voronoi diagram,1 for example. With a Voronoi 
diagram, the regions are set such that any point in a given region is closest 
to the pattern which was used to construct the region. Then, rather than 
calculating the error of a pattern on a target - output basis, as in back- 
propagation, calculate its error on the basis of the region of input space it 
represents. (See figure 6i.l.) By adding the regions of misclassification to 
provide a total, an approximation to the generalisation error is obtained. 
The approximation is valid up to the resolution provided by the data set.

Practically speaking the calculation of these Voronoi regions is somewhat 
infeasible, especially for higher dimensionalities of input space, and large 
numbers of patterns.2 One way to get round this problem is to use a 
regular grid of patterns, which would enable each pattern to represent the 
same area of input space. Then, assuming unit error for each misclassified 
pattern, the generalisation error can be estimated. (See figure 6i.2.)

1 Voronoi, 1908

2Preparata & Shamos, 1985

209



IO Space Implementation Part (i) Partially Ordering the IO

Figure 6i.l — Estimating the generalisation error by estimating the area of 

input space each misclassified pattern represents as being misclassified. The 

black and white areas indicate the underlying classification of the network, 

the striped areas indicate the generalisation error estimate.

Figure 6i.2 — Estimating the generalisation error using a grid. Since each 

gridpoint stands for the same area of input space, each misclassified gridpoint 

contributes the same error to the generalisation.

Having considered the possibility of using a regular grid, further 
advantages of such grids become clear. Firstly, since a gridpoint is made 
to stand for a given area of input space, there is no need to saturate input 
space with patterns — leading to infeasible training times for a reasonable 
approximation to the underlying classification. Secondly, and more 
importantly for a Mitchellian approach, by sampling the input, a grid can 
be used to represent the IO relation of a neural network, in a manner 
which is independent of the symmetries in weight space. Given a partial 
ordering of the grids, it is no longer necessary to give an ordering to the 
weights, as was done in chapter 5, and hence the weight state by which

210



IO Space Implementation Part (i) Partially Ordering the IO

the IO is achieved is no longer a direct concern. This gives a method of 
representing the IO in a way which overcomes the difficulties encountered 
in chapter 5.

In chapter 5, the assumption was made that the data are noiseless, and an 
exact fit to the data was attempted. This assumption is not practical for 
real-world problems, in which noisy samples are to be expected. When 
noisy data are considered, there is the possibility of a further symmetry of 
solutions, which will be termed inexact IO behaviour symmetry. This occurs 
when a topology is incapable of realising a pattern set, but there is more 
than one way to achieve the global minimum misclassification error of the 
pattern set. (See figure 6i.3.)

(a)

□
□
■
□
□
□

(b)

Figure 6i.3 — Two different ways to achieve the same global minimum 

misclassification error of five, using two hyperplanes.

Equivalence in the terms of inexact IO behaviour symmetry is represented 
as the same misclassification error of the grid. This means that grids are 
also able to cope with inexact fit solutions.

With noisy data, grids can have a beneficial blurring effect on the data, 
which, if the noise is not too high, may enable the elimination of the noise. 
The spacing between the gridpoints also reflects the accuracy to which the 
input may be measured. (See figure 6i.4.)

Grids have the further advantage that they represent an increased 
closeness to Mitchell's symbolic technique, since the grid as a whole can 
represent the entire instance language. This will be discussed in section 
6i.2.1.

211



IO Space Implementation Part (i) Partially Ordering the IO

It is important to distinguish between three types of grid. Firstly, there is 
the target grid. The target grid is based on the targets of the patterns. The 
method used to decide the targets of the gridpoints is discussed in section 
6i.2.1. Secondly, there is the output grid, which is based on the output of 
the neural network for the inputs corresponding to the gridpoints. The 
output and target grids have the same input points, which may be referred 
to as the input grid.

Original Pattern Set 25% Noise 50% Noise 75% Noise

Resolution 4:

Resolution 5:

□ --B□
□ □ r*-----------■£3

□
■

Figure 6i.4 — The partial restoration of the original pattern set from noise 

corrupted pattern sets using grids of increasing resolutions. Each gridpoint 

in the three resolutions given below the original pattern set (with varying 

degrees of noise) is assigned the target of the majority of the points in the area 

it occupies. More detail is given in section 6i.2.1.

212



IO Space Implementation Part (i) Partially Ordering the IO

The choice of topology for the neural network affects which of the target 
grids can be trained to give an IO with zero misclassification error. This 
represents a Mitchellian bias since, inevitably, certain IO relations are 
preferred to others, in that they can be realised exactly rather than 
inexactly. To keep this bias under user control, the topology is set by the 
user a priori, and is unchanged during learning.

61.1.2 Partially Ordering the Grids

Before defining a relation which gives a partial ordering to grids, consider 
the following method for representing any grid, no matter what the 
dimensionality of input space, or the number of gridpoints in the grid. 
Given that the position of each gridpoint in input space is already known, 
what is of interest about a grid, be it a target or output grid, is the class 
assigned to each gridpoint, which is either 1 or 0. Thus, by ordering the 
gridpoints, the class assignments to a grid can be written as a binary 
string, regardless of the number of dimensions of input space. Thus, for 
example, a 4 x 4 x 4 grid in a 3D input space, and an 8 x 8 grid in a 2D 
input space could both be represented by a 64 bit binary string.

Let the intersection of two grids, A and B, where the grids are of the same 
type and represented using binary strings, be defined by the AND binary 
string operator, as per equation [6i.l], The intersection of two grids is a 
grid whose gridpoints are black where both A and B are black, and white 
otherwise, where "black" represents a target or output of 1 assigned to the 
gridpoint, and "white" represents a target or output of 0 assigned to the 
gridpoint.

AnB = AND(A,B) [6i.l]

The reflexive, commutative and associative properties of the logical AND 
operator are carried across into the AND binary string operator.

Let the relation has at least the same black gridpoints as be denoted by >, 
defined in [6i.2]:

A>5«Anfi = 5 [6i.2]

213



IO Space Implementation Part (i) Partially Ordering the IO

The necessary and sufficient conditions for a partial ordering are that the 
relation that forms the ordering is reflexive, transitive and antisymmetric.3 
The relation > is reflexive, since A n A - A, and hence A > A. If > is to be 
transitive, then it is necessary to prove [6i.3]:

(A > B) a (B > C) => A > C [6i.3]

Expanding the terms on the left hand side, using [6i.2], gives:

(AnB = B)A(BnC = C) [6i.4]

Using the left hand conjunct, we may substitute A n B for B in the right 
hand conjunct to give:

=>(AnB)nC = C [6i.5]

Then, since n is associative, [6i.5] may be rearranged to give:

=>An(BnC) = C [6i.6]

Substituting for (B n C) using the right hand conjunct in [6i.4] gives:

=>AnC = C [6i.7]

Therefore, from [6i.2], A > C, and [6i.3] is proved.

If > is to be antisymmetric, it is necessary to prove [6i.8]:

(A > B) a (B > A) => A = B [6i.8]

Expanding the left hand side of [6i.8j using [6i.2] gives the following 
conjunction:

(AnB = B)A(BnA = A) [6i.9]

Since n is commutative, we may write:

AnB=BnA [6i.l0]

3Borowski & Borwein, 1989, p. 437

214



IO Space Implementation Part (i) Partially Ordering the IO

Using [6i. 10] to substitute for A n B in the left hand conjunct in [6i.9] 
gives:

(Bn A = B) a (Bn A = A) [6i.ll]

Using the right hand conjunct, we may substitute A for B n A in the left 
hand conjunct. Therefore A = B and [6i.8] is proved.

Thus the relation > forms a partial ordering of grids since it is reflexive, 
transitive and antisymmetric.

The lattice of partially ordered 3x3 grids realisable by a 2*1 topology is 
shown in figure 6i.5.

Figure 6i.5 — The lattice of partially ordered 3x3 grids realisable by a 2*1 

topology.

Therefore, it may be seen that by approximating the IO and the 
generalisation error through the use of a grid, it is possible to give a partial 
ordering to the IO. This opens up the possibility of implementing a 
Mitchellian technique using neural networks without the need to look at 
weight space.

215



IO Space Implementation Part (i) Learning Using Grids

6i.2 Learning Using Grids

61.2.1 Construction and Use of Grids

In this section, methods for constructing a grid from a given set of patterns 
are examined. This enables comparisons with Mitchell's instance language 
to be made. The use of grids in the learning process itself is also discussed.

Once the position and spacing of the gridpoints has been decided, the 
targets of the gridpoints may be calculated. For each pattern, the nearest 
gridpoint to that pattern is found. The pattern then has a vote for the 
target of its nearest gridpoint. Once all the patterns have been assigned to 
a gridpoint, the gridpoint is given the target of the majority of the patterns 
assigned to it. Where the number of patterns of each class assigned to a 
gridpoint are equal, the gridpoint is given the target of the nearest pattern.

This method of representing the input allows for an extra closeness to 
Mitchell. For Mitchell, the inputs along each dimension (attribute) take on 
a discrete set of values, as they do here, in the grid. However, the 
brittleness of symbolic representation means that the symbol navy_blue 

would be treated differently from the symbol rcyal_blue. This is all very 
well when the concept to be learned requires such fine distinctions of 
attribute values, but what if it is only required to know whether or not the 
colour is blue as opposed to red? The symbol navy_blue is not equal to the 
symbol blue, and hence a positive instance risks not being recognised as 
such. Using a grid, however, the colours can be enumerated — using the 
wavelength of light, for example. Gridpoints can be placed for the 
wavelengths of significant colours, and instances which may contain the 
various hues of these colours will be mapped onto the appropriate 
gridpoint Learning is then achievable with the desired degree of accuracy, 
and without the brittleness of symbolic representation.

When the output space is multi-dimensional each point on the input grid 
may be given different classifications by the output units. Therefore a 
separate output grid must be used for each output unit in order that each 
output unit's classification for each point on the input grid is represented.

216



IO Space Implementation Part (i) Learning Using Grids

Since each output unit has its own grid, it is easier to use a separate 
network with a given number of hidden units to train each output unit 
and grid than to try and reach the no-alternative situation for many grids 
at once. This gives rise to a modular topology. Figure 6i.6 shows an 
example of the topology used when there are three output units, with two 
input units, and three hidden units allocated to learn the grid for each 
output unit.

Combined 
all-classes 
output grid

Grids for each class learned separately:

Modular Topology:
Output Layer

Hidden Layer

Input Layer

Figure 6i.6 — A modular topology used for learning a problem with more 

than one output unit.

There is also the distinction between two types of gridpoint, which 
introduces the incremental nature of the learning process. A real gridpoint 
is a gridpoint which is trained using targets assigned from the underlying 
patterns. A hypothetical gridpoint is a gridpoint whose target has not yet 
been assigned a value from the underlying patterns. The process of 
assigning gridpoints their true targets from the underlying patterns — 
turning hypothetical gridpoints into real gridpoints — will be termed 
familiarisation. During learning, the gridpoints are familiarised 
incrementally. The hypothetical gridpoints may be trained, even though 
they do not have targets assigned to them from the patterns. Hypothetical 
targets may be assigned to them instead. At all stages of learning, the 
underlying target grid is the grid with targets assigned on the basis of the 
targets of the underlying patterns.

217



IO Space Implementation Part (i) Learning Using Grids

At each stage of familiarisation, there will be a number of possible 
underlying target grids. These possibilities may be found by considering 
combinations of each of the possibilities for the hypothetical gridpoints. 
Each of these target grids has one or more best fit output grids. The set of 
all output grids that are best fit grids to one or more of the possible 
underlying target grids at a given stage of learning forms the version 
space. As familiarisation continues, the number of possible underlying 
target grids is reduced, and with it the set of possible best fit grids and 
hence the size of version space.

The boundary representatives may therefore have different target grids at 
a given stage during learning, since they may have different targets for the 
hypothetical gridpoints. When all the gridpoints are familiarised, the 
resulting target grids for the boundary representatives are identical to the 
underlying target grid. At the final stage of learning, therefore, there can 
be no difference in the target grids for the boundary representatives. All 
the gridpoints are real gridpoints, and do not have their targets assigned 
hypothetically.

There is a single optimum degree of fit to the underlying target grid. In 
some cases there are various alternative output grids with this optimum 
fit to the underlying target grid. These must be viewed as equivalent by 
inexact IO behaviour symmetry (see section 6i.l.l).

Although the no-alternative situation may be reached at an earlier 
familiarisation, it is at least possible to be sure that it is always reached by 
the time all the gridpoints are familiarised. After full familiarisation, the 
target grids for each direction are equal to the underlying target grid. 
Once the learning process has reached this stage there is never any 
alternative consistent with all the examples presented except the optimum 
fit.

The attitude to generalisation is made closer to Mitchell than in chapter 5. 
The user is responsible for the biases (the grid and topology) which affect 
the kind of generalisation that will be made from the given underlying 
data. It is then the responsibility of the training algorithm (such as back- 
propagation or a GA) to find the best weight state to fit the presented data, 
with the user's given bias.

218



IO Space Implementation Part (i) Learning Using Grids

Here, this means finding the global minimum error neural network. There 
are some authors who claim to have algorithms which are able to find the 
globally optimal neural network, such as Baba et al, for example.4 Baba et 
al combine back-propagation with a random walk to escape local minima. 
However, the proof that the global minimum can be found relies on 
having an infinite amount of time available.5 This is impractical, and the 
technique has no ability to recognise when the global minimum error has 
been found. To my knowledge there are no techniques in the literature 
that feasibly and reliably guarantee an ability to find the global best fit.

Since it is not, in practice, possible to always guarantee finding the 
globally optimum fit, then it would be useful to be able to recognise the 
occasions when it has been found. This is what Mitchell's technique has to 
offer, since it can recognise the no-alternative fit situation.

The development of the three paradigms described in later sections has 
this goal in mind: to recognise when the optimum fit has been found to 
the underlying target grid using standard training algorithms. This goal is 
to be achieved through maintaining parallels with Mitchell's symbolic 
technique in the neural implementations as much as possible. 
Generalisation is then guaranteed, as with the symbolic technique, on the 
basis of the assumptions of the user — which are expressed in terms of the 
topology and the grid chosen.

6i.2.2 Generalisation and the Relation to Mitchell

When learning using grids, there are two main ways in which 
generalisation can be viewed. Firstly, generalisation can be considered 
using the gridpoints only as examples to be generalised to — this may be 
seen as discrete generalisation. With this view of generalisation, it is 
important to be able to reach the no-alternative situation with hypothetical 
gridpoints remaining — otherwise it can be argued that there has been no 
discrete generalisation, since all the possible instances have been learned. 
Therefore, in discrete generalisation, the success of a trial may be

4Baba et al, 1994

5Baba etal, 1994, p. 1257

219



IO Space Implementation Part (i) Learning Using Grids

measured in terms of the number of hypothetical gridpoints left when the 
no-alternative situation is reached. The more the number of hypothetical 
gridpoints remaining when the no-alternative situation is reached, the 
more the amount of discrete generalisation.

However, the grid technique allows that there may be full familiarisation 
of gridpoints before the no-alternative situation is reached. There are then 
no hypothetical gridpoints to generalise to. The discrete view of 
generalisation, confined to the gridpoints, is consequently not broad 
enough.

A broader, more common view of generalisation in neural networks is that 
of providing output for any input, including points that are not 
gridpoints. This will be termed continuous generalisation. The grid has been 
used to approximate a continuous picture. In this case, it does not matter if 
all the gridpoints have been familiarised, provided that the no-alternative 
situation has been reached. Generalisation is guaranteed to the rest of 
input space, within the limits of the boundaries found with the given grid 
resolution, the bounds of input space under consideration, and the 
topology chosen. This maintains the maximum consistency with the 
Mitchellian view, which is that generalisation follows from finding the no
alternative situation, given the biases of the user.

One deviation from Mitchell, however, is that there is no need to maintain 
multiple boundary representatives. One boundary representative is 
sufficient for each direction. This is because neural search is not 
constrained to a given chain in the partial ordering for each boundary 
representative. Any grid can, in theory, be generated at any time. This is 
an advantage of the neural technique, since it can then tackle problems 
that might be infeasible with the symbolic technique due to there being 
too many boundary representatives.

6i.2.3 Comparison with the Validation Technique

Validation aims to find the weight state that will best predict the 
validation set, given the training set. It trains until it appears that no better 
prediction can be found, since a minimum of validation error has been 
reached. This however, does not preclude the possibility of there being a

220



IO Space Implementation Part (i) Learning Using Grids

better predictive weight state at a later minimum of validation, or using 
different initial conditions for the search.

The grid technique, by contrast, aims to find the best degree of fit to the 
grid that is possible with the given topology. The technique continues 
learning until a best fit has been found and recognised. At each stage 
preceding the no-alternative situation, it is known that a better degree of 
fit is possible.

Adherents of the validation technique will be aware of Denker et al's 
kibitzer criticism, which pertains to the idea that transferring patterns 
from the validation set to the training set means improving generalisation, 
since the patterns to be generalised to are being trained.6 Using patterns 
set aside for validation to train the neural network undermines the 
validation technique, since fewer patterns in the validation set means that 
the predictive powers of the neural network are not so heavily tested. 
Therefore, anyone who suggests putting patterns from the validation set 
into the training set is a kibitzer. (A kibitzer is an observer who offers 
unwanted advice.)

Since, when learning using grids, the gridpoints are familiarised in a 
sequence, there is the possibility that this kind of learning may be seen as 
being open to Denker et al's "kibitzer" criticism. This is because there is a 
rough correspondence between extended familiarisation, and taking 
patterns from the validation set and putting them in the training set.

However, it is important to note that the grid technique does not aim at 
good prediction of the hypothetical gridpoints. The object of the grid 
technique is to show that it does not matter whether the true targets of the 
hypothetical gridpoints are black or white. Consequently, the kibitzer 
criticism does not apply to the grid technique.

6Denker et al, 1987, p. 898

221



IO Space Implementation Part (i) Learning Using Grids

6i.2.4 Features of Learning Using Grids

• Distinctions between Training, Generalisation and Learning

In standard neural techniques, training is seen as separate from 
generalisation.

[Training] is typically done incrementally making small adjustments 

in response to each training pair, so that the [weights] converge... to a 

solution in which the training set is "known" with high fidelity. It is 

then interesting to try patterns not in the training set, to see whether 

the network can successfully generalise what it has learned.7

In this thesis, training and generalisation are to be viewed together, under 
the heading of learning. The difference between generalisation and 
learning is that the former is an assessment of performance, and the latter 
is an incremental process of updating the concept specification until there 
is no alternative concept that is consistent with the available data. The 
difference between training and learning is that learning is aimed at 
providing a guarantee of generalisation when it terminates. Training 
makes no such guarantee. When taken separately training and 
generalisation do not offer any certainties about the correctness of the final 
concept found. Learning is a more comprehensive process which is able to 
offer such certainty once completed.

Training is then the process of finding an output grid for a given target 
grid. Learning is a higher level process, which provides an interpretation 
of the grids found by the training algorithm, and is based on a series of 
target grids to be trained. Essentially, training provides an output grid, 
and learning consists of a training sequence which culminates in the 
ability to know that the no-alternative situation has been reached.

• Bidirectional Search

The grid technique uses a bidirectional search, with one grid (and 
corresponding neural weight state) used to represent each direction of the 
search. Bidirectional search is used to enable the terminating condition to

7Hertz et al, 1991, p. 89

222



IO Space Implementation Part (i) Learning Using Grids

provide the guarantee that the no-alternative situation has been found. It 
also gives a measurement of the degree of learning achieved so far.

Conventional training techniques, such as back-propagation, are 
unidirectional. A single weight path is found from the initial state to a 
solution state. With only a single direction, it is not possible to recognise 
when the best fit weight state has been found for inexact fit. It may be 
argued, however, that bidirectional techniques take at least twice the 
amount of time to train than unidirectional techniques, though this does 
not take into consideration any heuristics for speeding up training that 
might apply in a specific implementation. See "Training Sequences" 
below.

Under ideal circumstances the weight path of a neural network during a 
search contains increasingly better weight states, in terms of their IO. So 
earlier IO behaviours along a weight path are rejected, and should never 
be revisited on the path to finding a solution. For any specific weight path 
it is only possible to look back along that path and say that all the IO 
behaviours along that path are worse. Whatever the circumstances, there 
is no possibility to look forward and say that all possible future IO 
behaviours arising from the continuation of the current weight path are 
also worse. This is why a unidirectional technique cannot make any 
guarantees about termination. There is always the possibility of finding a 
better weight state given further training.

Here, the IO behaviours are measured using a grid. A unidirectional 
technique can only reject the grids it has already passed through. Using a 
partial ordering would enable a unidirectional technique to eliminate 
other grids that are behind the visited grids without infeasible exhaustive 
search. However, such a technique then has a terminating problem. The 
single direction cannot look ahead and know that there is no better output 
grid than the output grid it is currently stopped at.

Using two directions which meet means that each direction may know 
what is ahead, since it has already been explored and rejected by the other 
direction. It is this that enables the guarantee to be made that it is time to 
stop, since neither direction can go ahead without impairing performance. 
This is the benefit that bidirectionality has to offer.

223



IO Space Implementation Part (i) Learning Using Grids

• Use of Grids

Grids are used to represent the IO behaviour of the neural network. The 
input positions and targets of the gridpoints are determined by the data 
sample. The networks are trained using the grids and not the data sample. 
Grids are a finite representation of IO space, and each gridpoint is taken to 
stand for its local area of input space. The error on the grid is a means for 
approximating the generalisation error.

This technique has advantages over methods that use the raw data only. 
The latter take relatively more time to train since the raw data may be 
expected to have a higher density of coverage of input space than the grid. 
This means that the time cost of using a bidirectional technique and a 
training sequence is not as high as it might seem at first glance. Also, if the 
raw data are irregularly distributed, the hyperplanes associated with the 
non-input units of the neural network are attracted to separating the 
regions more densely packed with training points. This occurs regardless 
of whether the resulting separations accurately reflect the underlying map 
or not, thus leading to poor generalisation.

• Terminating Condition

The grid technique has a terminating condition, which, if satisfied, 
guarantees that the best fit has been found to the grid, provided that the 
training conditions are met. The terminating condition is necessary to 
specify when the concept has been learned. This is when the two 
directions in the bidirectional search have reached equivalent grids in the 
partial ordering. This condition will be called locking, and this definition of 
locking supersedes the earlier definition in chapter 5.

After sufficient gridpoints have been familiarised, certain output grids in 
the version space may be globally optimum fits to all of the possible 
underlying target grids. These output grids are equivalent in the sense 
that they all have a globally optimum fit no matter what the true targets of 
the hypothetical gridpoints are. The terminating condition is designed to 
detect when these grids have been found by both of the directions in the 
search.

224



IO Space Implementation Part (i) Learning Using Grids

The terminating conditions of standard training techniques are based on 
local minima or preset maximum training times, and as such do not 
guarantee that the best fit grid has been found. Without a bidirectional 
search, standard techniques are unable to provide a terminating condition 
that makes this guarantee, since there is always the possibility of a better 
fit after continued training.

• Training Sequences

The grid technique is a learning technique which consists of a training 
sequence for each direction of the search. Each member of the sequence 
arises from the familiarisation of one or possibly more gridpoints. For each 
familiarisation, the target grids for each direction are trained using a new 
random initial weight state. To maintain maximum consistency with 
Mitchell, gridpoints are familiarised one at a time here. This is also part of 
a wider view, in which concept learning is seen as a process in which the 
instances are not all presented at once, but one by one.

The main practical benefit of this strategy is that the training algorithms 
are given more of a chance to find the optimum solution. The small, 
gradual changes to the target grids as the hypothetical gridpoints are 
familiarised one by one, allows minimal updating. Thus, if a training 
algorithm returns a sub-optimum grid at a certain stage, it is given more 
chances to catch up with the optimum classification in the ordering, and 
the distance to catch up is always kept as small as possible.

Standard iterative training techniques need only train once to find a 
solution — though in practice, several trials may be used to try and find 
better solutions using different parameters and initial weight states.8 This 
means that there may be an additional cost to training many times in this 
learning technique. This may be countered in that using grids, instead of 
large amounts of raw data, results in a saving on computer time.

8Weir, 1991, pp. 375-376

225



IO Space Implementation Part (i) Learning Using Grids

• Fixed Topology

The grid technique uses a fixed topology, which is interpreted as being a 
bias of the user. The aim of the technique is to find the best fit grid given 
the data sample, and the user's assumptions. By finding the best fit grid, it 
is able to provide the desired class boundaries.

Some techniques use a variable topology. This is because it may be 
difficult to know which topology to use in advance. Some guidelines for 
this have been given in chapter 4, however. This pioneering version of 
Mitchell's technique uses a fixed topology in order to investigate inexact 
fit, which is a problem for standard techniques. Variable topology systems 
risk over-fitting inexact fit problems. The simplest way to investigate 
inexact fit is to use a fixed topology.

• Keeping the Two Directions Apart

There will be two means described in this chapter of preventing the 
possibility of false locking, which is where the two directions in the search 
converge on a sub-optimum grid. The first is to use target reversal. Here, 
the output grids of the two directions are encouraged to be as different as 
possible by setting the hypothetical targets of one direction to be the 
opposite of the corresponding outputs of the other direction. The grids 
converge as the number of hypothetical targets diminishes and such 
targets have less effect on the trained grids.

The second is to use the partial ordering of grids. The partial ordering of 
grids is used in part to prevent false locking due to the training algorithm 
not returning the best fit grid at each stage of learning. This is achieved by 
ensuring that any sub-optimum grids are as far back in the ordering as 
possible.

The main use of the partial ordering, however, is to enable the elimination 
of output grids that were not on the weight paths of either of the two 
directions. Grids are eliminated from consideration by being behind the 
current grid for a direction in the ordering, as well as by being grids that 
have been actually visited in earlier stages of learning. This enables a 
space-wide elimination, and hence the certainty that, at locking, there is no 
output grid with a better fit to the underlying target grid.

226



IO Space Implementation Part (i) Learning Using Grids

If a potential function is used as a measure of fit, standard unidirectional 
techniques implicitly eliminate weight states and output grids of lower 
potential as the weight paths move to improved potential function values. 
Without the bidirectional search and partial ordering, though, these 
techniques are unable to know in general the totality of the output grids 
that have been eliminated. The partial ordering and bidirectional search 
combine to enable a guarantee of best fit to be made at termination. 
Standard techniques are unable to make such a guarantee.

6i.3 The H/HO Paradigm

The H/HO paradigm9 uses target reversal only to keep the two directions 
of the bidirectional search apart. Target reversal will be described in detail 
later. The partial ordering is not used. This means it does not eliminate 
any grids except those previously visited by one of the two directions, 
unless the locking condition is satisfied. Once the locking condition is 
satisfied, however, all other grids are guaranteed to be either as good a fit 
or worse than the grid found.

The purpose of this paradigm is to demonstrate the locking condition.

6i.3.1 Methodology of the H/HO Paradigm

In the bidirectional search, one direction is represented by H, which is an 
actual output grid with an optimum fit to the real gridpoints only. H is not 
trained on the hypothetical gridpoints, and represents a hypothesis for the 
generalisation to the hypothetical gridpoints.

The other direction is represented by HO, which is the output grid that 
best fits the hypothesis that the generalisation of H is entirely incorrect. 
HOt is the target grid for HO, with targets assigned in the following way. 
The real gridpoints have the targets assigned as per the underlying 
patterns. By contrast with H, HO is trained on the hypothetical gridpoints. 
The hypothetical gridpoints are assigned the opposite classification to the 
actual output of H for those points. This is the method of target reversal. H

9Weir & Polhill, 1994b, 1995

227



IO Space Implementation Part (i) The H/HO Paradigm

and HO will be assumed to have global minimum classification error on 
the targets they are given. The training algorithm is therefore assumed to 
be perfect, in that it always provides the optimum fit. Figure 6i.7 has an
example of target reversal.

□ □ □ o □ □ • □ □ • ■■ • • ■ o o ■ OOH
• • • o o o o o 6

(a) (b) (c) (d)

Figure 6i.7 — The target and output grids for H and HO. Squares indicate 

real gridpoints, and circles indicate hypothetical gridpoints. (a) Target grid 

for H, containing only the real gridpoints. Black squares indicate a target of 

1, and white squares indicate a target of 0. (b) Output grid for H. The shaded 

region shows where H gives an output ofl. The outputs of the gridpoints are 

then indicated in black if the output is 1, and white if the output is 0. (c)

HOf, the target grid for HO. The real gridpoints retain their targets, whilst 

the hypothetical gridpoints have the opposite target to the classification ofH.

(d) Output grid for HO, with global minimum error.

During learning, the gridpoints are familiarised one by one until the no
alternative situation is reached. The no-alternative situation is recognised 
by the satisfaction of the following terminating condition: termination 
occurs when (i) H and HO have the same misclassification error on the real 
gridpoints, and (ii) HO has given the same classification as H on the 
hypothetical gridpoints, despite being trained on the opposite class. This 
means that HO must have misclassified all hypothetical gridpoints 
according to HOy. When the above two conditions are satisfied, H and HO 
will be said to have locked. An example is given in figure 6i.8.

HOt's hypothetical targets are reversed from H's classification. At locking, 
HO misclassifies all of HOt's hypothetical targets with globally optimal fit 
on HOt as a whole. If any of the hypothetical gridpoints in HOt were to be 
familiarised, there are two possibilities. If any of their real targets are 
different from their hypothetical targets in HOy, then these gridpoints are 
correctly classified. If any of their real targets are the same as their 
hypothetical targets in HOy, then they have already been trained with that

228



IO Space Implementation Part (i) The H/HO Paradigm

target value, and the globally optimal fit misclassifies it. If any of these 
targets could have been correctly classified with better overall fit, then this 
would have occurred. There is therefore no point in further 
familiarisation, since H and HO will remain unchanged. The real targets 
will either be correctly classified or misclassified. In the latter case, if they 
could have been correctly classified, then they would have been during 
the training of HO. Appendix 6. A contains a proof that, at locking, HO has 
global minimum error whatever the true targets of the hypothetical 
gridpoints.

■ ■ 
■ ■ 
■ □ ■

0̂̂ 
0?]

■ ■ ■

■ OH
■ OH
■ □ ■ !□!

(a) (b) (c) (d)

Figure 6i.8 — Target and output grids for H and HO for an example of 

locking, (a) Target grid for H — the real gridpoints. (b) H's classification, (c)

HOp, with the hypothetical targets set as the reverse of H's classification, (d)

HO's classification. This has the same error, 1, as H on the real gridpoints, 

and the same classification as H on the hypothetical gridpoints.

It can be seen from figure 6i.8(c) and (d) that, at locking, any change to the 
hypothetical targets in the grid in (c) agrees with the classification of HO in 
(d). It follows that if HO has global minimum error on (c), then it must 
have global minimum error when any of the targets are reversed. 
Termination occurs in general when target reversal has no effect.

6i.3.2 Experiments on the H/HO Paradigm

6L3.2.1 Efficient Exhaustive Search

When a technique requires global minimum error, it is necessary to be 
able to provide some means of acquiring it. This necessitates an exhaustive 
search in the case of inexact fit, since there is no other means of providing 
an absolute certainty of having found the global minimum error, if its 
value is uncertain a priori. An exhaustive search of weight space may seem 
like a daunting prospect, and indeed it is, though there are ways in which

229



IO Space Implementation Part (i) The H/HO Paradigm

the search can be approximated and cut down. The goal of the search is to 
find all the possible output grids, given an input grid, and a topology. If 
these are found, the global minimum error for a given target grid can 
always be found by iterating through the output grids, saving the best 
grid found.

The first measure for cutting down the search to be considered is to 
constrain the weight values. This is the approach adopted by Schwarz et al 
in their exhaustive search.10 The extent to which the weights are 
constrained represents a Mitchellian bias in learning. There is therefore no 
need to regard such constraint in a negative light. Since the ratio and the 
sign of the weights is all that is of significance in determining the output 
of a threshold unit (see chapter 4), the range of weight values considered 
is of less concern than the sample interval, provided that the range is 
centred at the origin.

The range and sample interval of weight values considered for each 
weight will affect the output grids the topology can generate. For the 
experiments in this section, all the output grids that could be found were 
used. The heuristic for finding as many output grids as possible was to 
keep the range of weight values constant, and decrease the sample interval 
by an order of magnitude until two consecutive samples gave the same 
number of possible output grids.

For a topology with n weights, the number of samples, #s, required is 
given in equation [6i.l2], where wmax and wmin specify the range, and iw is 
the sample interval.

A"
#5 = [61.12]

For a simple 2*1 topology, with three weights, and a 3 x 3 grid, which 
requires a sample interval of 0.1 in a range of [-0.5, 0.5] for the weight 
values to obtain all the 58 possible output grids, the number of samples is 
1 000. This is not an unreasonable number of samples, and indeed, 1 000 
weight samples is perfectly acceptable in conventional training

10Schwarz et al, 1990, p. 379

230



IO Space Implementation Part (i) The H/HO Paradigm

algorithms, such as back-propagation. However, using a 2*2*1 topology, 
which has nine weights, means the sample size is increased to 109. This is 
an unreasonable number of samples, and hence a further measure is 
necessary in order to cut down the search.

The search can be dramatically cut down further by considering the 
purpose of each unit. For the purposes of this discussion, first layer units 
will be defined as all units with only and all the input units (and the bias, 
if used) as source. Similarly, second layer units will be defined as all units 
with only and all first layer units as source.

First layer units divide up input space, as discussed in chapter 4. All first 
layer units perform this same purpose. Finding all the possible output 
grids for a particular first hidden layer unit gives all the possible output 
grids for any first hidden layer unit. Thus, if all the possible output grids 
have been found for a 2*1 topology, this result can be re-used for all first 
layer units.

Using threshold units means that the only possible outputs from a unit are 
1 or 0. This means that the outputs from any layer of units lie on the 
vertices of a unit hypercube. This may be seen as a grid. The output 
combinations of the first layer units therefore form an input grid to the 
second layer units. The total number of second layer output grids is given 
by the number of linear separations of the second layer input grid for the 
various input combinations to the second layer units.

For example, consider a 2*2*1 topology, and a 3 x 3 grid. Using 1 000 
samples of weight space for a first hidden layer unit gives the 58 possible 
output grids from such a unit. 1 000 further samples of weight space for 
the output unit gives the 14 possible linear separations of the unit square. 
To find all the possible output grids of the network, it is necessary to 
consider all combinations of output grids from the first hidden layer, for 
each of the 14 separations found for the output unit. This means 
examining 14 x 582, or 47 096 output grids. Many of these are the same, 
and the eventual number of different possible output grids found is 320. 
The exhaustive search is complete, with 2 000 samples of weight space, 
and roughly 50 000 grid combinations — a significant reduction from 
examining 109 weight states.

231



IO Space Implementation Part (i) The H/HO Paradigm

Naturally, the search does not scale up well. Using a 2*3*1 topology on a 
3x3 grid entails 1 000 samples in the first layer, and 10 000 samples in the 
second, to get the 97 possible separations of the first layer units. The 
number of combinations of grids to be examined is then 97 x 583 ~ 2 x 107, 

to find the 508 possible output grids — three orders of magnitude increase 
in the number of combinations for one extra hidden unit. A 4 x 4 grid 
requires a sample interval of 0.05 to get all the 174 first layer possibilities, 
using the same range as above. This means 8 000 samples of weight space. 
For a 2*2*1 topology on a 4x4 grid, there are 14 x 1742 ~ 4 x 105 

combinations of output grids to be examined, to find the 3 066 possible 
output grids — an order of magnitude increase in combinations for seven 
extra gridpoints relative to a 3 x 3 grid.

Despite these measures for making the search more efficient, therefore, the 
time taken to find all the possible output grids can still be extremely 
lengthy. It is therefore not surprising that heuristic search is used in neural 
networks when finding weight states. Problems are therefore restricted to 
very simple topologies, but this is nevertheless sufficient to show the basis 
of the technique at work.

6L3.2.2 Demonstration of Termination

The fundamental questions of interest are whether or not locking is true or 
false, if locking is achieved before all the gridpoints have been 
familiarised, and if so, the maximum number of hypothetical gridpoints at 
locking for a given grid. False locking occurs when the output grids of H 
and/or HO are not one of the best fit grids of the underlying target grid. 
The number of hypothetical gridpoints at locking is significant for discrete 
generalisation (as defined in section 6i.2.2).

Once all the output grids have been found using exhaustive search, the 
software then runs through all the possible target grids. The set of target 
grids will typically be a larger set of grids than the set of output grids, 
unless the topology is capable of exactly realising any set of targets on the 
grid. A prespecified number of random familiarisation orders is carried 
out on each target grid, with the gridpoints being familiarised one by one 
each time. Each sequence of familiarisation until locking occurs, or all the 
gridpoints have been familiarised, counts as a single trial. The software

232



IO Space Implementation Part (i) The H/HO Paradigm

counts the trials which terminate with various numbers of hypothetical 
gridpoints, along with the false locking cases.

The software has facilities for excluding equivalent target grids. Two 
target grids are equivalent if one is the binary inverse of another, or if 
there is rotational, or reflective symmetries between the two grids and/or 
their inverses. Figure 6i.9 shows a set of equivalent grids.

0)
CC

u
H—©
CC

Reflect Reflect

■ ■ ■ 
MHO
□ ■ □

+■

■ ■ ■ 
□ ■ ■

□ ■ □

MM «M

■ □ □

■ ■ ■ 
■ ■ □

+■

□ □ ■

■ ■ ■
□ ■ ■

MM MR MM ■— — — MM MM MM

□ ■ □ □ ■ □ ■ ■ □ □ ■ ■

■ ■ □ □ ■ ■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■ □ □ □ □ ■

Rotate

□ □ □ □ □ □
1

□ ■ ■ ■ ■ □

□ □ ■ ■ □ □ Invert □ □ □ □ □ □

■ □ ■ ■ □ ■ □ □ ■ ■ □ □

+- +■

■ □ ■ ■ □ ■ □ □ ■ ■ □ □
□ □ ■ ■ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ ■ ■ MHO

Reflect Reflect

Figure 6i.9 — Sixteen grids equivalent by inversion, rotation or reflection.

Because the investigation is of inexact fit, those target grids which can be 
trained exactly by the current topology are ignored, and not used as 
underlying target grids.

The results for a 3 x 3 grid with the lower left-hand gridpoint having the 
co-ordinate (0,0) and a spacing of 1.0 between the gridpoints, using a 2*1 
topology, are as in table 6i.l. The choice of spacing and co-ordinates of the 
gridpoints is by and large arbitrary, and has no effect on the results. Any

233



IO Space Implementation Part (i) The H/HO Paradigm

regular 3x3 grid in input space has the same possible separations 
whatever its location and gridpoint spacing. Here each non-equivalent, 
inexact fit underlying target grid has 100 trials with a different random 
familiarisation order each time.

The results show that there is never any false termination, and that on 
average, there is roughly a 30% chance of terminating before all the 
gridpoints have been familiarised.

An example with 3 hypothetical gridpoints is given in figure 6i. 10(a). 
Figure 6i.9(b) shows that the final grid found at locking by H and HO is a 
global minimum error grid for all the target grids that can be generated by 
reversing the targets of the hypothetical gridpoints at locking.

Number of 
Hypothetical 
Gridpoints
At Locking

Number of 
Terminations

Percentage 
of Total

Number of 
False Locking 

Runs
0 3134 70 0
1 1083 23 0
2 252 6 0
3 31 1 0

Table 6i.l — Results for 100 trials of all non-equivalent inexact fit target 

grids.

234



IO Space Implementation Part (i) The H/HO Paradigm

Target grid (index 12) :
oox 1 2 3
xoo 4 5 6
ooo 7 8 9

Global minimum error grids:
oox
ooo
ooo

Number of familiarised
gridpoints: 6
Familiarisation order:
3 8 6 7 2 1 4 5 9

H's targets:
. .X ..X . .X . .X .ox oox

..............o . .o . .o . .o
. . . . o . . o . oo. oo. oo.

H's outputs:
oox oox oox oox oox oox
ooo ooo ooo ooo ooo ooo
ooo ooo ooo ooo ooo ooo

H's errors:
0 0 0 0 0 0

HO ' s targets
XXX XXX XXX XXX xox oox
XXX XXX xxo xxo xxo xxo
XXX xox xox oox oox oox

HO ' s outputs
XXX XXX XXX XXX XXX oox
XXX XXX xxo XXX XXX ooo
XXX XXX xoo oox oox ooo

HO ' s errors:
0 1 112 3

(a)

The grid found by H and HO at locking in (a) 
is a best fit grid for all possible true targets 
of the 3 remaining hypothetical gridpoints. 
The possible underlying target grids in (b) 
are indicated by the larger grids, which 
have the real gridpoints shaded. There are 
8 target grids, one for each possibility for 
the true targets of the hypothetical 
gridpoints at locking in (a). The target grids 
are shown contained within rectangles, 
each of which indicates a set boundary. 
The output grids are the smaller grids. All 
output grids inside a target grid’s boundary 
are globally optimum fit grids for that target 
grid and any other target grids with 
surrounding boundaries.____________

rr«

FI
ESS ESS

ma
(b)

■■1ssssr

Figure 6i.l0 — (a) An example run, showing the output generated by the 

software for that run. 'x' indicates a target or output of 1, 'o’ indicates a 

target or output ofO, and in H's targets indicates a hypothetical gridpoint 

which is given no target. The underlying target grid is given at the top, and 

underneath it, the global minimum error grids for that target grid. There is 

only one in this case, and H and HO converge on it after 6 familiarisations, 

(b) The grid found by H and HO at locking is the optimum whatever the true 

targets of the hypothetical gridpoints.

235



IO Space Implementation Part (i) The H/HO Paradigm

61.3.2.3 Maximum Number of Hypothetical Gridpoints at Locking

The maximum number of hypothetical gridpoints at locking for a given 
input grid is at most the maximum global minimum error, Emax(t), out of 
all the target grids, given all the output grids. Since HO must misclassify 
all the hypothetical gridpoints in HOt before locking can occur, the earliest 
point at which locking can happen is when HOt is a target grid whose 
maximum global minimum error is Emax(t)- HO would then correctly 
classify all the real gridpoints, and the number of hypothetical gridpoints 
(all of which are misclassified) would be For a 3 x 3 grid, and a 2*1
topology, Emarft) - 3. Table 6i.2 shows all the values of EmaX(t) for various 
grids up to size 5 x 5 for a 2*1 topology.

0 Maximum Global 
Minimum Error

0 1

1 2 3

1 3 4 6

2 4 6 8 10

1 2 3 4 5
Grid Dimension X

Table 6i.2 — Maximum global minimum error for any target grid for grids 

of dimension XbyY.(YbyX is equivalent.)

The results in table 6i.2 were found by generating all the possible output 
grids, and then running through all the target grids, to find a target grid 
with the maximum global minimum error. On reflection, however, these 
results can be explained, by considering a worst case grid for classification 
using a 2*1 topology, which has a single hyperplane. This is a grid which 
has alternating targets for the gridpoints. (See figure 6i.ll.)

For grids with equal dimension, the global minimum error classification is 
indicated by the shaded decision region in figure 6i.ll. The misclassified 
patterns will then always be a triangle number — specifically, the (x - l)th 
triangle number, where x is the dimension of the grid.

For other grids, where the grid dimensions, x and y are not equal, the grid 
may be divided into the largest square grid possible, with the remaining 
gridpoints as a rectangle. If x is the smaller dimension, an x x y grid would

236



IO Space Implementation Part (i) The H/HO Paradigm

be divided into an x x x grid joined onto a (y - x)x x grid. The minimum 
error classification is then the same as that for the x x x grid, with half of 
the remaining points misclassified. Figure 6i. 12 has an example.

Figure 6i.ll — A grid with alternating targets, and a global minimum error 

classification, indicated by the shaded decision region. The misclassified 

patterns sum to a triangle number.

The general result, therefore, can be summarised in equation [6i. 13], where 
Emax(t) is the maximum global minimum error over all the possible target 
grids, x <y are the grid dimensions, and LflJ is the largest integer not 
greater than a.

^(x-l) + x(y-x) x(y-l)
2 2 2

[6i.l3]

As the grids approach infinite size, the maximum global minimum error 
approaches half the number of gridpoints. This shows that for larger grids, 
there is the possibility of terminating with close to half of the gridpoints 
remaining hypothetical. This result applies only to 2*1 topologies, 
however, though there may be similar results for other n*l topologies.

Intuitively, it is unreasonable to expect locking to take place before half 
the gridpoints are familiarised. This is because the number of hypothetical 
gridpoints outnumbers the number of real gridpoints. The hypothetical 
gridpoints, with reversed targets from H's classification must all be 
misclassified before HO can lock with H. Before the number of real 
gridpoints outweighs the number of hypothetical gridpoints, HO will be

237



IO Space Implementation Part (i) The H/HO Paradigm

able to get lower error by correctly classifying the hypothetical gridpoints, 
rather than misclassifying them.

6x9 grid with alternating targets

Half of the gridpoints in the 
remaining 6x3 subgrid are 
misclassified

Misclassified gridpoints 
from 6x6 subgrid form 

a triangle number

Figure 6i.l2 — A grid with unequal dimensions. The global minimum error 

is equal to that for the largest equal-dimensioned subgrid, plus half of the 

remaining gridpoints. As the hyperplane is moved upwards, the six white 

gridpoints which currently border the hyperplane become misclassified. Then 

the next six black gridpoints are correctly classified, and the overall net 

change in error is zero.

The effect of adding hidden units is also worth considering. Since the 
number of inexact fit target grids is reduced when hidden units are added, 
it was thought that a 3 x 3 grid was too small. A 4 x 4 grid was used 
instead, and the results are summarised in table 6i.3. Ten runs were done 
on each inexact fit, non-equivalent target grid. There were a total of 43 090 
runs for the 2*1 topology, and 41 060 runs for the 2*2*1 topology. The 
fewer runs for the 2*2*1 topology are due to the extra grids that can be fit 
exactly, using a 2*2*1 topology rather than a 2*1 topology. Of the runs for 
the 2*1 topology, 72 terminated with 5 hypothetical gridpoints, and 5 
terminated with 6 hypothetical gridpoints. The 2*2*1 topology had 98 
terminations with 3 hypothetical gridpoints, and 1 termination with 4 
hypothetical gridpoints. Both results show how rare it is to terminate with 
the maximum number of hypothetical gridpoints.

238



IO Space Implementation Part (i) The H/HO Paradigm

The rarity of termination with the maximum number of hypothetical 
gridpoints is to be expected. If an underlying target grid has global 
minimum error E, then in order to terminate with the maximum number 
of hypothetical gridpoints, the E gridpoints which are misclassified must 
be the last to be familiarised. This is an example of the more general point 
that the number of hypothetical gridpoints at locking is related in part to 
the order in which the gridpoints are familiarised.

There are also results in table 6i.3 that show clearly that using just one 
extra hyperplane to separate the grids means an increased likelihood of 
terminating only after all gridpoints have been familiarised for the same 
grid.

Number of 
Hypothetical 
Gridpoints
At Locking

Topology 2*1 & 2*2*1 
Number of 

False Locking 
Runs

2*1 2*2*1
Percentage
Terminations

Percentage
Terminations

0 53 77 0
1 29 20 0
2 13 3 0
3 4 0 0
4 1 0 0
5 0 0 0
6 0 0 0

Table 6i.3 — Comparison of distribution of terminations by hypothetical 

gridpoints at locking for all 4x4 non-equivalent inexact fit target grids for a 

2*1 and a 2*2*1 topology.

6i.3.3 Assessment of the H/HO Paradigm

The tested implementation of the paradigm indicates that the theory is 
correct in that false locking does not occur. It also provides some insight 
into the stages of familiarisation at which convergence takes place.

The main problem with the technique is that if the global minimum error 
can already be guaranteed using a single direction, the usefulness of 
Mitchell is obscured, since the purpose of Mitchell's technique is to use 
two directions to recognise when the best fit has been found. If it is 
already known that the best fit is going to be found using either direction

239



IO Space Implementation Part (i) The H/HO Paradigm

singly since the training algorithm guarantees it, then there is no point in 
using Mitchell's bidirectional technique.

The technique does not use a partial ordering of concepts, either. This 
means that there is uncertainty in which grids can definitely be eliminated 
until termination is achieved. The only grids definitely eliminated are 
those which have already been used by H or HO during the familiarisation 
sequence. Using a partial ordering enables the further elimination of all 
grids behind the two directions in the ordering.

The benefits of the symbolic technique have therefore not been fully 
transferred into the neural technique. In its current form, it is limited by 
being open to false locking unless the training algorithm is perfect. The 
locking guarantee relies on H and HO having the global minimum error 
for the targets they have been trained on. If the global minimum error 
cannot be guaranteed by the training algorithm, then false locking is 
possible. Although a sub-optimum training algorithm may lock correctly, 
there are no measures in place to prevent false locking when a sub
optimum grid is returned by the training algorithm. There is a clear need 
for modifications which enable the use of conventional training 
algorithms. Conventional training algorithms are imperfect training 
algorithms in that the weight states they find are not always optimal.

6L4- The B/W Paradigm

The B/W paradigm uses the partial ordering to keep the boundary 
representatives apart, but does not use target reversal. The purpose of this 
paradigm is to demonstrate the use of the partial ordering when learning 
using grids, and to illustrate the requirement for target reversal.

61.4.1 Using the Partial Ordering

The B/W paradigm makes use of the partial ordering of the grids 
described in section 6i.l.2. The significance of the partial ordering for 
imperfect training per se is that it can be used to keep the two directions of 
the search apart, preventing false or premature locking due to the sub
optimum solutions returned by the training algorithms. The general 
significance of the partial ordering is that it enables candidate elimination

240



IO Space Implementation Part (i) The B/W Paradigm

that goes beyond just the grids already visited by either of the two 
directions during learning. The partial ordering enables the representation 
of boundary members in the lattice. A boundary representative is a grid 
that lies at the head of a sub-lattice of grids where the other grids cannot 
be the goal concept. It will be seen that all grids lying in the sub-lattice 
behind any boundary representative can be eliminated without having 
been explicitly searched.

The partial ordering lays the foundation for candidate elimination and for 
using imperfect training. On this foundation, the notion of an inherently 
better fit is built. This concept is useful when the globally optimal fit 
cannot be guaranteed. A change of output grid is only made from one 
familiarisation to the next if it is certain that the proposed new output grid 
is an inherently better fit to the underlying target grid than the current 
output grid. This means that a move can be made without the need to be 
sure that the new output grid is a globally optimum fit to its target grid. 
Simultaneously, other unexplored grids may be eliminated since they are 
inherently worse fits than the new output grid. See figure 6i.l3.

Figure 6i.l3 — Elimination of grids using the partial ordering, which has 

maximal and minimal elements MAX and MIN, respectively. All grids 

behind the boundary representatives for each direction in the ordering can be 

eliminated since they are inherently worse fits to the underlying target grid 

than the boundary representatives.

The partial ordering and the concept of inherently better fit are used to try 
and make sure that any sub-optimum grid is behind in the ordering from 
the optimum grid. Thereby the possibility of false locking is prevented

Eliminated Grids

£ Boundary
Representatives

241



IO Space Implementation Part (i) The B/W Paradigm

whilst enabling candidate elimination. An additional feature of the grid 
technique for imperfect training algorithms is the design of inherent fit 
functions which connect a given output grid found by the training 
algorithm to its place in the partial ordering. Section 6i.4.2 will introduce 
the inherent fit functions used in the B/W paradigm.

Before a potential technique can be used with imperfect training, it is 
necessary to check that it works with perfect training. The technique must 
be checked under ideal training circumstances to see if it allows false 
locking under these circumstances. Whatever merits a proposed technique 
may have, they must take second place behind the necessity of avoiding 
false locking. The B/W paradigm will be shown in section 6i.4.3 to be a 
technique which allows false locking.

What is to be done about claims concerning the no-alternative situation 
when the training algorithm is imperfect? The aim is to try and retain 
these claims as much as possible, by relaxing the requirements on the 
training algorithm. (See sections 6i.4.2 and 6ii.l.l.)

In section 6i.2.1 the point was made that when all gridpoints are 
familiarised, the no-alternative situation must be reached, given perfect 
training. However, with imperfect training, this is not so, since the actual 
boundary representatives might not have caught up with the optimum 
grids in the ordering by the time all the gridpoints have been familiarised. 
This means that the effectiveness of a training algorithm in finding the 
globally optimum grid may be indicated by the number of trials which 
satisfy the locking conditions by the time all the gridpoints have been 
familiarised. (See section 6ii.l.2.)

6i.4.2 Inherently Better Fit

A condition is needed which makes use of the partial ordering of grids, 
and yet does not depend on achieving the globally optimum solution at 
every stage in the training sequence. This condition is that of inherently 
better fit, as mentioned earlier. The predecessors of a grid, G, relative to a 
root grid, R, is a term that will be used henceforth to describe the set of 
grids which belong on any chain in the partial ordering which goes from R 
toG.

242



IO Space Implementation Part (i) The B/W Paradigm

The idea is that the grid chosen for one of the boundary representatives 
should always be an inherently better fit than any of its predecessors to 
the root grid, regardless of any future familiarisation. This enables any 
inherently worse fit than the grid chosen to be eliminated from the search, 
not just those which have been the current grids for earlier stages of 
learning. Using an inherently better fit is intended to enable boundary 
representatives to move without passing over the goal concept, even 
though they may not have the best fit to a target grid.

Two boundary representatives are used, as before, though they will be 
termed B and W. B has the all black grid as its root grid, Kb, and W has the 
all white grid as its root grid, Kw- The setting of the target grids for B and 
W is also different from the perfect training technique. The initial target 
grid for B, Tro, is equal to Kb, and similarly for the initial target grid for W. 
Thus, hypothetical target gridpoints are always equal to the root 
gridpoints. The familiarisation of a gridpoint means setting the gridpoint 
in the target grids of both B and W to have the true target, determined by 
the patterns, rather than using the root value as a default.

Let the absolute fit of a grid measure the fit of an output grid designed to 
indicate members of version space (including the boundary members) 
through their being equal to or above a particular fit. Let ALF be a 
function which measures the absolute fit of a grid G, with root grid, K, to a 
target grid, T. The absolute fit, ALF, of G will be considered in three stages 
of relaxing restrictions on G. In the first stage, the only gridpoints in G 
which are of colour opposite to K are correctly classified real gridpoints. 
Let this number of gridpoints be ORC. 'O' represents a colour opposite to 
the root grid for G. 'R' is used to indicate that the variable pertains to real 
gridpoints. 'C' indicates that the variable counts the correctly classified 
gridpoints (i.e. those for which G is equal to T).

All predecessors of G only differ from G in having less of the gridpoints 
that G has of opposite colour to K. (See figure 6i.l4.) Since G is given as 
correctly classifying all its points of opposite colour (which are real 
gridpoints), its predecessors must be poorer fits to any underlying target 
grid. This fact corresponds in this case to the predecessors having a less 
than perfect ORC score, which can therefore be used to eliminate them. 
That is, because the predecessors only differ from G in having more points

243



IO Space Implementation Part (i) The B/W Paradigm

of known misclassification, such grids must be inherently worse than G, 
regardless of any future familiarisation. Therefore, for the first stage, we 
have:

ALF" = ORC

a aa
R R R 
R R R 

'Predecessor^

ofG ru a 
R R R 
R R R

R R R 
R R R 
R R R

R Ra 
R R R 
R R R

u a
R R 
R R

4
a R R 
R R R 
R R R

Figure 6i.l4 — Grids that are predecessors of G have non-root gridpoints 

only where G has non-root gridpoints, and root-coloured gridpoints 

otherwise.

In the second stage, the restriction on G is relaxed, in that some of the 
opposite colour real gridpoints in G may misclassify their targets. Let 
ORM be this number of points, where ZM' is used to represent 
misclassified gridpoints. With this relaxation of restriction on G, the 
predecessors may have a worse, equal, or better degree of fit relative to G. 
However, G may be optimised to have the best degree of fit, by 
subtracting ORM from ALF, so that the predecessors cannot have a better 
fit. The degree of fit to the real gridpoints of opposite colour to R is now:

ALF'= ORC- ORM

Even after optimisation, there remains the possibility that a predecessor 
may have the same best degree of fit that G has. This fit is an integer and 
so the problem may be dealt with by adding a fractional score between 0 
and 1 to reflect the closeness of each grid to the root grid. Optimisation

244



IO Space Implementation Part (i) The B/W Paradigm

then yields the grid with the best degree of fit in terms of ORC - ORM that 
is the closest to the root grid.

In more detail, let the fractional closeness score be given by CLS. This term 
counts the number of gridpoints in G that have root-coloured output. The 
number is then expressed as a fraction between 0 and 1. We have:

n-y . , «, -G, 
CLS = ------- -

n + 1
[6i.l4]

where n is the number of gridpoints, and G/ e {1, 0} be the value of the ith 
gridpoint of grid G.

The overall degree of fit is therefore given by:

ALF'+CLS [6i.l5]

In the third stage, the restriction on G is relaxed further, to allow the 
remaining possibility of hypothetical gridpoints in G which are opposite 
in colour to the root grid, R. Since the hypothetical gridpoints all have 
targets equal to R's targets, all opposite colour hypothetical gridpoints in 
G are misclassified. Let OHM be this number of gridpoints, where 'H' is 
used to represent hypothetical gridpoints. OHM needs to be a penalty 
term since the hypothetical targets could have root values in reality. That 
is, OHM is subtracted from ORC - ORM, since this prevents the possibility 
of there being a grid behind G which might have a better absolute fit to the 
true (i.e. real) targets of the hypothetical gridpoints, if those targets turn 
out to be root targets.

The absolute fit is now given by:

ALF = ORC- ORM- OHM [6i.l6]

The possibility that a predecessor may have the same best degree of fit 
that G has is dealt with again by adding a CLS term. The overall inherent 
fit, IHF, which when maximised indicates the boundary members of 
version space, is given by:

IHF = ALF+CLS [6i.l7]

Figure 6i.l5 summarises the terms used for any absolute fit formula.

245



IO Space Implementation Part (i) The B/W Paradigm

As each gridpoint is familiarised, the grid with maximum inherent fit for B 
and W is selected, in the ideal case. Termination occurs when (i) the 
classification error of B on Tw is equal to the classification error of W on 
?W/ and (ii) the classification error of W on Tb is equal to the classification 
error of B on Tb- At this point, B and W have converged, and no grid on 
the same chain as B and W has a better inherent fit to the true target grid.

The satisfaction of conditions (i) and (ii) mean that there is no point in 
learning any further, for if B has the same error as W on W's targets, then 
there is no point in making B any whiter through familiarisation of the 
hypothetical gridpoints, since W's corresponding targets are already all 
white with no change in the degree of fit. Similarly, if W has the same 
error as B on B's targets, then there is no point making W any blacker, 
since B's targets are already all black with no change. This is therefore a 
locking point.

Real Hypothetical

Equal 
Colour 
to Root

Opposite 
Colour to 

Root

Equal 
Colour 
to Root

Opposite 
Colour to 

Root

me CRC EHC CHC Correctly
Classified

ERM ORM EHM OHM Misclacsified

Figure 6i.l5 — Summary of terminology for absolute fit formulae.

Since B is the blackest grid with the maximum inherent fit to B's targets, 
no grid behind B in the ordering will be better. Similarly, no grid behind 
W will be better, since W is the whitest grid with maximum inherent fit to 
W's targets. Therefore, no grid which lies in the same sub-lattice as B or W 
can be a better fit to the underlying target grid.

6i.4.3 False Locking Using the B/W Paradigm

Although B and W have the best inherent fit within their sub-lattices, this 
may not correspond to the best underlying fit. This is because the best 
inherent fit does not guarantee that there is no other grid in a different 
sub-lattice with lower classification error than B or W, given the true

246



IO Space Implementation Part (i) The B/W Paradigm

targets of the hypothetical gridpoints. There may be grids in different sub
lattices from B and W with better performance on the true targets. This can 
be shown in practice through the exhaustive search method used in the 
H/HO paradigm to test the performance of the B/W paradigm under ideal 
training conditions. An example of termination on grids which are not 
globally optimal is given in figure 6i.l6.

B and W falsely lock in figure 6i.l6 because the familiarisation order is 
such that B and W remain on the wrong sub-lattice in the ordering. The 
global minimum error grids lie on a different sub-lattice. This is indicated 
by the lattice in figure 6i.l7, which indicates the sub-lattices, B(Z) and W(Z), 
on which B and W lock, and the sub-lattices, B(o) and W(o) which contain 
the best fit grids. Grid P is the grid on which B and W lock, which has an 
absolute fit of 1 for W, and an absolute fit of 5 for B. Grids Q and R are the 
global minimum error grids (see figure 6i.l6), which lie on separate sub
lattices from the locking sub-lattices. Q has an inherent fit of 0 for W, and 
R has an inherent fit of 4 for B. This indicates that there are multiple 
boundary representatives for B and W, which lie on different sub-lattices 
in the ordering, with different absolute fit scores for the best inherent fit 
grids, which lie at the pinnacles of the sub-lattices.

In none of the runs that were done using this paradigm (under perfect 
training circumstances), did B or W ever go back in the ordering. This 
gives experimental support for the theory, that using inherently better fit 
guarantees that grids behind B and W in the ordering can be eliminated 
from consideration.

247



IO Space Implementation Part (i) The B/W Paradigm

Target grid:
oxox 12 3 4
ooax 5 6 7 8
xctxo 9 10 11 12
oxoo 13 14 15 16

Global mininum error grids:
Q R
ooax axxx
ooax ooax
oooo oooo
oooo oooo

Nunber of familiarised gridpoints: 12 
Familiarisation order:
7 16 14 3 9 10 12 15 8 5 6 1 4 13 11 2

W's targets:
oooo oooo oooo ooOo ooOo ooOo ooOo ooOo ooOo ooOo ooOo OoOo
ooOo ooOo ooOo ooOo ooOo ooOo ooOo ooOo ooOX OoOX OOOX OOOX
oooo oooo oooo oooo Xooo XQoo XOoO XOoO XOoO XOoO XDoO XOoO
oooo oooO oXoO

W's outputs:

oXoO oXoO cXoO oXcO aXOO aXOO aXOO aXOO aXOO

P
oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo
oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo
oooo oooo oooo oooo xooo xooo xooo xooo xooo xooo xooo xooo
oooo oooo oooo oooo

W's absolute fits:

xxoo xxoo xxoo xxoo xxoo xxoo xxoo xxoo

0 0 0 
W's choices:

0 1 1 1 1 1 1 1 1

111 1 1 1 1 1 1 1 1 1

B's targets:
xxxx xxxx xxxx xxQx xxQx xxQx xxQx xxQx xxQx xxQx xxQx QxQx
xxQx xxQx xxOx xxQx xxQx xxQx xxQx xxQx xxOX QxQX OOOX OOOX
xxxx xxxx xxxx xxxx Xxxx XQxx XQxO XQxO XQxO XOxO XQxO XQxO
xxxx xxxO xXxO

B's outputs:

xXxO XXxO xXxO xXxO xXOO xXOO XXOO xXOO xXDO

P
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx oooo
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx oooo
xxxx xxxx xxxx xxxx xxxx xxxx XXXO XXXO XXXO XXXO XXXO XDOO
XXXX XXXO XXXO XXXO

B's absolute fits:

XXXO XXXO XXXO xxoo xxoo xxoo xxoo xxoo

Oil 
B's choices:

1 1 1 2 3 3 3 3 5

111 1 1 1 1 1 1 1 1 1

Figure 6i.l6 — B and W converge, but on the wrong sub-lattice. They are

the best inherent fit grids on their sub-lattice, but the global minimum error 

grid lies on a different sub-lattice. Upper case gridpoints in the targets 

indicate real gridpoints. The index numbers of the gridpoints are indicated 

next to the target grid, which are used to indicate the order in which the 

gridpoints are familiarised. The number of choices and the absolute fits ofB 

and W are indicated for each familiarisation. B and W lock on grid P, shown 

in the lattice in figure 6i.l7.

248



IO Space Implementation Part (i) The B/W Paradigm

Root(W)

Root(B)

Figure 6i.l7 — Complete lattice of 4 x4 output grids, showing the sub

lattices of B and W at locking, B(l) and W(l), and the sub-lattices which 

contain the optimum grids for B and W, B(o) and W(o). Intersection of sub

lattices is indicated by the darkest shaded areas. Note that sub-lattice B(o) 

appears to be on both sides of the lattice as a whole. In order for a neat 2D 

representation of the whole lattice, certain grids are repeated on the left and 

right hand sides. Therefore the two sides ofB(o) are actually all part of the one 

sub-lattice. Grids P, Q and R lie at the pinnacles of the sub-lattices in which 

they are contained.

249



IO Space Implementation Part (i) The I/IO Paradigm

6i-5 The I/IO Paradigm

The H/HO paradigm, in section 6i.3, provided correct locking whilst the 
B/W paradigm provides candidate elimination, and a means for coping 
with imperfect training. The two paradigms are combined in the I/IO 
paradigm, which uses target reversal and the partial ordering to keep the 
boundary representatives from locking falsely. The I/IO paradigm is 
shown by the experiments in part (ii) of this chapter to have promising 
results for knowing when the no-alternative situation has been found.

The H/HO paradigm had terminating conditions which were able to 
guarantee correct locking when it occurred. The key was that target 
reversal of HO's hypothetical gridpoints from H's classification made no 
difference to the classification of the hypothetical gridpoints by HO. 
However, for imperfect training, the H/HO paradigm's defence against 
the possibility of false locking was limited to target reversal only. This 
defence was insufficient since false locking may occur in the H/HO 
paradigm due to the two directions being imperfectly kept apart when the 
training algorithm returns sub-optimum results.

This target reversal, however, would also be useful in the context of the 
B/W paradigm, in that it could encourage the boundary representatives to 
lie on different sub-lattices in the ordering where possible. This would 
prevent the boundary representatives from falsely locking in the way that 
occurred in the B/W paradigm.

Essentially, the new paradigm uses the B/W paradigm for one boundary 
representative, and the H/HO paradigm for the other, with a modified 
inherent fit formula.

Let I be the boundary representative based on the B/W paradigm. This 
will be a hypothesis for generalisation on the basis of inherent fit. The root 
grid of I, Ri, depends on the target of the first real gridpoint. If the first 
gridpoint to be familiarised has a target of 1, then the root grid of I is Rb> 

Otherwise the root grid of I is Ry/- The targets for I are then set in 
accordance with the B/W paradigm, and I is found by maximising the 
inherent fit formula in [6i.l7].

250



IO Space Implementation Part (i) The I/IO Paradigm

10 is then the boundary representative for the opposite direction, and is 
taken from the H/HO paradigm, which corresponds closely with HO. 10 
represents the hypothesis that the generalisation of I to the hypothetical 
gridpoints is entirely incorrect, but with the opposite root grid, Rio, to I. 
The targets of 10 are set in the same way as the targets of HO — real 
gridpoint targets are set according to the underlying patterns, and 
hypothetical targets are set to be the opposite of the classification of I for 
those points. The absolute fit formula for 10 must be modified from [6i. 16] 
to take into consideration the fact that the hypothetical targets have been 
made the opposite of the classification of I, whereas in [6i.l6] the 
hypothetical targets all take values corresponding to those of the root grid.

The cases whereby I correctly classifies its hypothetical targets yield the 
same targets for 10 as in the B/W paradigm, i.e. the root values for 10. The 
difference is when I misclassifies any hypothetical targets. The 
corresponding hypothetical targets in 10's target grid will then be of the 
opposite colour to the root grid for 10, rather than the same colour as in the 
B/W paradigm. 10 must be encouraged to correctly classify these targets, 
in order that its outputs for the hypothetical gridpoints should be as 
different from I as possible. This retains consistency with the H/HO 
paradigm, in that 10 is working on the assumption that the generalisation 
of I is incorrect. Therefore OHC is added to ALF from [6i.l6], to give the 
absolute fit formula for the 10 direction, ALFio, in [6i. 18].

ALF,0 = ORC- ORM- OHM+ OHC [6i.l8]

and thus the inherent fit for the 10 direction, IHFio:

IHFI0 = ALFI0+ CLS [6i.l9]

10 is then found by maximising the inherent fit formula in [6i.l9]. This 
may well mean that 10 will go back and forth in the ordering for certain 
familiarisation sequences, as the hypothetical targets for 10 are changed in 
accordance with Ts classification. This means that there is no certainty that 
grids which lie behind 10 in the ordering are necessarily discarded for 
good. However, there is this certainty for I.

As well as using the CLS term to make sure that I and 10 encourage 
minimal change along Mitchellian lines, a further heuristic is used.

251



IO Space Implementation Part (i) The I/IO Paradigm

Specifically, a change in output grid for I or 10 is only accepted if that grid 
has a better inherent fit than the last output grid on the new target grid. 
Hence, any change in output grid is made only when it is necessary for an 
improved fit.

The terminating condition is the same as for the H/HO paradigm: 10 must 
misclassify all the reversed targets of the hypothetical gridpoints, with the 
same error on the real gridpoints as I. Thus, 10 agrees with the 
generalisation hypothesis of I despite being trained with the opposite 
hypothesis so that there is no better fit to the underlying target grid.

The I/IO paradigm makes weaker demands on the training algorithm than 
the H/HO paradigm. The H/HO paradigm requires the globally optimum 
grid to be chosen for H and HO at each stage. Here, a sub-optimum 
(inherently better) grid may be chosen, with a lower absolute fit than the 
optimum grid, which will not constitute a risk of false locking while it is 
further back in the ordering than the optimum grid. The CLS term in the 
inherent fit functions and the minimal change heuristic above are 
intended to ensure this as much as possible.

The following gives a high-level algorithm for the implementation of the 
I/IO paradigm (comments are given to the right of the vertical lines):
1 Get input grid and data sanple.
2 Assign targets to the gridpoints using the data sanple.

(See section 6i.2.1.) Let T be the underlying target grid.
3 Let T(I) (n) be the target grid for I at the nth

familiarisation. Let T(I0) (n) be the target grid for 10 at 
the nth familiarisation. Let 0(1)(n) be the output grid for 
I at the nth familiarisation. Let 0(10) (n) be the output 
grid for 10 at the nth familiarisation.

4 Let F(n) be the familiarisation sequence. For the nth 
familiarisation, F(n) gives the index of the gridpoint to 
be changed from hypothetical to real.

5 Let n = 1
6 Set T(I) (1) to be the target of gridpoint F(l) frcm T for 

all gridpoints.
Initialise Ts target grid to be a root 
grid.

252



IO Space Implementation Part (i) The I/IO Paradigm

7 Repeat

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

The familiarisation loop begins here.
Obtain the real target, t, of gridpoint F(n) from
T.
Set the F(n)th gridpoint of T(I) (n) to be t.

This familiarises the nth gridpoint 
for I's target grid.

Set the F(n)th gridpoint of T(I0) (n) to be t.
This familiarises the nth gridpoint 
for IO's target grid.

Obtain 0(1) (n) using the training algorithm to find 
the best inherent fit to T(I) (n) using equation 
[6i.l7], starting from a new randan initial weight 
state.

Find a new output grid for I using 
the training algorithm.

If n > 1 and 0(1) (n-1) has an equal or better 
inherent fit as per [6i .10] to T(I) (n) than 
0(1) (n), then 0(1) (n) = 0(1) (n-1) .

Do not accept a new output grid for I 
unless it is better than the previous 
one.

Set the hypothetical targets of T(I0) (n) by using 
the reverse of the outputs of 0(1) (n) .
Obtain 0(10) (n) using the training algorithm to 
find the best inherent fit to T(I0) (n) using 
equation [6i.l9], starting from a new randan 
initial weight state.

Find a new output grid for 10 using 
the training algorithm.

If n > 1 and 0(1) (n-1) has an equal or better 
inherent fit as per [6i .12] to T(IO) (n) than 
0(10) (n), then 0(10) (n) = 0(10) (n-1) .

Do not accept a new output grid for 
10 unless it is better than the 
previous one.

253



IO Space Implementation Part (i) The I/IO Paradigm

7.9 If 0(10)(n) misclassifies all its hypothetical 
targets in T(I0) (n) with the same fit as 0(1) (n) to 
the real targets in T(I) (n) and T(I0)(n), then 
locking has occurred.

| Test for locking

7.10 Increment n.
8 ... While n <= the total number of gridpoints and locking 

has not occurred.
| End of the familiarisation loop.

9 If locking has occurred then report this, else report that 
locking has not occurred before all gridpoints have been 
familiarised.

6i.6 Conclusion to Part (i)

The use of grids enables optimum classification boundaries to be found, 
whilst relating the performance on the grid to continuous generalisation, 
as each gridpoint is made to stand for its local area of input space. If more 
finely detailed boundaries are required, then a finer grid resolution or 
richer topology should be chosen.

A use of the grid technique not discussed here is for those cases where 
there are gridpoints whose targets are not determined by the data sample. 
The task is to see if these uninstantiated gridpoints can be found a suitable 
generalisation from the familiarisation of the other gridpoints. Learning 
using uninstantiated gridpoints will not be examined here, since the aim is 
to show that the techniques can reach the no-alternative situation. If the 
no-alternative situation is not reached when there are uninstantiated 
gridpoints, then it is not possible to tell whether this is a problem of the 
technique, or whether there are too many uninstantiated gridpoints. It is 
thought best to avoid this extra dimension of complexity in this initial 
development and exploration of techniques.

The H/HO paradigm illustrates the correctness of the terminating 
condition. It shows the ability to recognise when H and HO are grids that 
have globally optimum fits whatever the true targets of the hypothetical 
gridpoints. Given a nearly perfect training algorithm, it would rarely lock 
falsely at the early stages of learning.

254



IO Space Implementation Part (i) Conclusion

In the discussion of the H/HO paradigm it was pointed out that, given 
perfect training, the usefulness of Mitchell's no-alternative situation in 
neural networks, is obscured by there being no better alternative than an 
optimum solution by definition. This, coupled with the fact that (short of 
exhaustive search) no truly perfect training algorithm exists in practice, 
means that the usefulness of Mitchell's technique becomes clearer when 
considered for imperfect training algorithms — those which cannot provide 
a guaranteed global minimum misclassification error solution. Imperfect 
training algorithms may well arrive at optimum solutions some of the 
time, but it is difficult to be sure that this is indeed the case when it does 
occur, unless the optimum solution is known in advance.

The B/W paradigm shows the usefulness of the partial ordering and the 
concept of inherent fit as further means to keep the boundary 
representatives apart. This enhances the use of imperfect training 
algorithms. It has the further benefit of candidate elimination, which 
means that grids can be eliminated without needing to be inspected by 
either of the boundary representatives. The terminating condition of the 
B/W paradigm was not strong enough, since it used the partial ordering 
only as a basis. It recognised when B and W had locked, but was unable to 
prevent the possibility of the existence of grids outside the set of 
predecessors of B and W that were better overall fits. The H/HO 
paradigm's stronger terminating condition is also needed.

Part (i) of this chapter has established a theoretical framework for 
recognising when a best fit grid has been found, in the form of the I/IO 
paradigm. By combining target reversal, the partial ordering and the 
inherent fit functions, the I/IO paradigm is designed to keep the boundary 
representatives apart until locking occurs on a grid with the optimum fit 
to the underlying target grid. This is explored empirically in part (ii).

The important theoretical contribution that Mitchell's technique has to 
make is that it can provide a method for recognising when the goal state 
has been reached in situations where there are no unique features by 
which the goal state can be distinguished from local minima. For inexact 
fit, the goal cannot be recognised by zero misclassification error, as is the 
case with exact fit. With inexact fit, if the global minimum 
misclassification error is unknown, then there is no possibility to directly

255



IO Space Implementation Part (i) Conclusion

detect when the goal has been reached. Gradient descent methods are able 
to detect when a minimum has been reached, but the minimum could be 
local. Mitchell's technique provides a mechanism for recognising the goal 
state indirectly.

256



IO Space Implementation Part (ii) Experiments and Results

(ii) Experiments on the I/IO Paradigm

6ii-1 Experiments and Results

In part (ii), some experiments are reported which show the I/IO paradigm 
at work. One main object of interest was whether or not the I/IO paradigm 
could falsely lock, in the same way as the B/W paradigm did. Were the 
modifications to the inherent fit formula and the H/HO-style target 
settings enough to prevent false locking? Tests were conducted using 
exhaustive search on a 4 x 4 grid. All 216 possible target grids were tested 
with a single random presentation order each. There were no false locking 
examples in any of the trials.

Having thereby established some empirical support for the paradigm, 
tests were conducted using imperfect training. A GA was used as an 
imperfect training algorithm. Appendix 6.B describes the weight state 
encoding mechanism and the selection procedure. A population size of 
100 was used, with a mutation probability of 1.0 and a crossover 
probability of 1.0. See appendix 6.C for an explanation of these 
probabilities.

An example trial is given in section 6ii. 1.1. Further experiments were done 
which compared the performance of the GA with perfect training (6ii.l.2), 
and which compared the performance of the I/IO paradigm against the 
H/HO paradigm (6ii.l.3).

In section 6ii. 1.4, there is a comparison with validation, which shows that 
validation regularly finds a poorer overall solution than the I/IO 
paradigm, and that there is uncertainty, using validation, about when to 
stop training. Section 6ii.l.5 shows that the size of validation set makes 
little difference to the overall performance.

Section 6ii.l.6 explores the scalability of the technique, using a larger grid, 
and a topology with hidden units.

Finally, section 6ii.l.7 shows how the technique may be used to tackle a 
simple symbolic concept-learning problem.

257



IO Space Implementation Part (ii) Experiments and Results

611.1.1 Example Run

The purpose of the example run is to show how imperfect training can 
work with the I/IO technique. A GA is used, and the example run will 
demonstrate how 10 may go back in the ordering due to the hypothetical 
targets changing back and forth between black and white, as Ts 
classification of them changes. Also shown is how I and 10 may jump 
chains during the search — meaning that one boundary representative for 
each direction is sufficient for the neural technique. Finally, the recovery 
from a sub-optimum grid returned by the GA is illustrated, leading to 
correct termination with 16% of the gridpoints remaining hypothetical.

This experiment, and some of the following experiments, will be based on 
a simple problem, which is to be approached using a 2*1 topology. Figure 
6ii.l(a) shows the underlying distribution from which the patterns are 
taken, and figure 6ii.l(b) shows the desired solution. The thin strip in 
figure 6ii.l(a) is not to be correctly classified by the neural network, with 
the simple topology finding a rule which matches with the majority of the 
data. The topology is deliberately kept simple so that its IO behaviour (a
linear separation) can be easily seen. 

(0.8) (8,8)

(0,0) (8,0)

(0.8) (8,8)

(0,0) (8,0)

(a) (b)

Figure 6ii.l — (a) Underlying distribution of experiment, (b) Desired final 

solution to be found by 2*1 topology.

A sample of 200 patterns are taken from the underlying distribution, and a 
grid constructed with targets assigned in accordance with the patterns. 
The grid and patterns are shown in figure 6ii.2.

258



IO Space Implementation Part (ii) Experiments and Results

8-] 0,0

6 ■

4 ■

2 2 ■

0 —

□ □ dd

i ?a

0 2 4 6 8
Input 1

Figure 6ii.2 — Gridpoints and patterns for a simple experiment. The 

patterns are indicated by the smaller squares, and the gridpoints by the larger 

squares. Black squares indicate a target of 1, and white squares indicate a 

target of 0.

The example run given below used 100 generations to train each target 
grid for I or IO to try to find the maximum inherent fit value in the allotted 
time. The trial below shows selected portions of the output generated by 
the software. The gridpoint index numbers are given first. The apparently 
random assignment of index numbers to gridpoints is based on the order 
in which the patterns in the sample from the underlying distribution 
appear in the file that contains them. The software creates the grid 
automatically, given a grid spacing and the co-ordinates of a single 
potential gridpoint. When a pattern is processed from the file, it must be 
assigned to a gridpoint. If a suitable gridpoint has not been created, then 
the software creates a new gridpoint. The order of familiarisation of the 
gridpoints is given below the gridpoint index numbers.

The trial itself shows, for each familiarisation, the number of the 
familiarisation, the index of the gridpoint being familiarised, and the 
target grid, output grid and absolute fit (ALF) of I and 10. Also shown is 
whether or not I or 10 have gone back in the ordering for the given 
familiarisation. This is indicated by the letter 'B' to the right of the output 
grid which has gone back in the ordering. The trial was also performed 
using perfect training with the same familiarisation sequence, in order to 
see how close the GA was to the optimum at each stage. The headings at

259



IO Space Implementation Part (ii) Experiments and Results

various stages through the trial indicate some of the features of learning 
using the I/IO paradigm illustrated by the grids found. The output shown 
is from the GA trial.

Index nunbers for gridpoints:

17 10 19 21 22
24 15 12 9 13

6 2 11 14 8
20 7 1 4 3
25 18 5 23 16

Familiarisation sequence:
21 7 6 3 9 17 2 23 14 18 4 13 24 20 15 22 11 12 1 10 16 19 5 25 8

Moving through the ordering.

The perfect training and GA trials choose the same grids for I and 10 
during the early familiarisations, as indicated by the following output 
from the GA trial.

Fam no. GP no. I target I output I ALF 10 target 10 output 10 ALF

1 21 oooOo oooOo 0 xxxQx xxxXx 0
ooooo ooooo xxxxx xxxxx
OOOOO ooooo xxxxx xxxxx
OOOOO ooooo xxxxx xxxxx
OOOOO ooooo xxxxx xxxxx

I and 10 remain on the root grid until familiarisation 6:

6 17 OooOo OooOo . 0 QxxQx OxxXx 1
oooXo 000O0 xxxXx xxxXX
Xoooo Ooooo Xxxxx Xxxxx
ctXooO 0O00O xXxxO xXxxX
ooooo ooooo xxxxx xxxxx

At familiarisation 6,10 moves to correctly classify gridpoint 17 (top left), 
which has just been familiarised. The GA has found the optimum 
solutions so far for each familiarisation.

• Staying back in the ordering when the GA does not find the 
optimum grid.

On familiarisation 10, the perfect training trial makes a change for I and 10, 
to move to better fits. (See figure 6ii.3.) The GA does not find these fits, 
and I and 10 retain the grids from familiarisation 6, which are behind the 
optimum grids in the ordering. This ensures that the boundary

260



IO Space Implementation Part (ii) Experiments and Results

representatives are kept apart and prevented from locking prematurely 
due to the training algorithm not returning the optimum grid at each 
stage. This shows how the use of the partial ordering has enabled the I/IO 
paradigm to cope with imperfect training algorithms better than the 
H/HO paradigm would.

OooOo OOOOO OxxOx XXXXX
oooXo OOOOO xxxXx XXXXX
XXoOo xoooo XXxOx XXXXX
0X00O XXOOO oXxxO OXXXX
0X0X0 XXOOO oXxXx oxxxx

(a) (b) (0 (d)

Figure 6ii.3 — Perfect training results for familiarisation 10. (a) Target grid 

for I at familiarisation 10. (b) Output grid for I using perfect training.

(c) Target grid for 10 at familiarisation 10. (d) Output grid for 10 using 

perfect training.

• Illustrating target reversal and chain jumping.

The following output illustrates the state of 1,10 and their target grids at 
familiarisation 13 of the GA trial.

Fam no. GP no. I target I output I ALF 10 target 10 output 10 ALF

13 24 OooOo OooOo 2 CxxOx XxxXx 2
XooXO XooOO XxxXO XxxXX
XXoOo XOoOo XXXQx XXXXx
0X0OO xXoOO oXxOO oXxXX
oXaXo xXoOo oXxXx oXxXx

On familiarisation 13 of the GA trial, I moves to a better absolute fit 
position than the root grid, and catches up with the perfect training trial, 
which has exactly the same grids for I and 10 at this point. The two 
hypothetical gridpoints in the bottom left (numbers 20 and 25) are now 
given the opposite classification to Ts root grid. IO's target grid then has 
targets which are of opposite colour to IO's root grid for these gridpoints. 
10 moves to a better absolute fit position which correctly classifies these 
targets. Note that 10 is no longer on the same chain in the partial ordering 
as it was in familiarisation 6.

261



IO Space Implementation Part (ii) Experiments and Results

10 may go back in the ordering.

The following output illustrates the state of 1,10 and their target grids at 
familiarisation 14 of the GA trial.

Fam no. GP no. I target I output I ALF 10 target 10 output 10 ALF

14 20 OooOo OooOo 4 QxxQx XxxXx B 1
XooXO XooOO XxxXO XxxXX
XXoOo XOoOo XXxQx XXxXx
XXoOO XXoOO XXxOO XXxXX
0X0X0 xXoOo oXxXx oXxXx

Gridpoint 20 is familiarised next. Ts classification of it was correct
previously, and hence there is no change to I. However, the change to IO's 
target grid means that a better absolute fit grid can be obtained by 
correctly classifying the now real gridpoint 20, which leads to 10 going 
back in the ordering. This is indicated by the letter B to the right of the 
output grid. The perfect training trial does exactly the same thing at this 
point. The I/IO paradigm allows that 10 may go back in the ordering 
occasionally as the hypothetical targets are changed due to a change in Ts 
classification or familiarisation occurs.

The GA does not always return grids that meet with the 
specifications of the 1/10 paradigm that are necessary in order to 
guarantee true locking.

The grids of I and 10 in the imperfect training trial remain the same until 
familiarisation 19. The perfect training trial changes 10 at familiarisation 
17. However, the GA does not find a better solution than the grid from 
familiarisation 14 until now:

19 1 OooOO OooOO 6 QxxOO XxxOO
XOOXO XOOOO XOOXO XXOOO
XXOOo XXOOo XXOQx XXOOo
XXXOO XXXOO XXXOO XCOOO
0X0X0 xXxXo oXbXx 0O0O0

3

Here, I moves to correctly classify the majority of real gridpoints — with 
only one real gridpoint misclassified. Target reversal means that the two 
gridpoints on the top row — numbers 10 and 19, are assigned targets that 
disagree with the final desired solution grid. These targets are correctly 
classified by 10, which moves to a better fit grid than it had after 
familiarisation 14.

262



IO Space Implementation Part (ii) Experiments and Results

However, though this grid is a better fit than that at familiarisation 14, it is 
not the optimum grid. The optimum grid is shown in figure 6ii.4(a). This 
does not matter. What is of more significance is that the grid found for 10 
is not the closest grid to IO's root grid with an absolute fit of 3. A grid 
which is on the same chain as the grid found for 10 at familiarisation 19, 
lies behind it in the ordering, and has the same absolute fit of 3, is shown 
in figure 6ii.4(b). There is also a grid with a better absolute fit than the grid 
found for 10 at familiarisation 19, which also lies behind it in the ordering. 
This is indicated in figure 6ii.4(c).

OOOOO xxxoo xxxoo
XOOOO XXXXO xxooo
xxooo xxxxx xxooo
xxxoo xxxxx XXOOO
xxxxx xxxxx XXOOO

(a) (b) (0

Figure 6ii.4 — (a) Optimum grid for 10 at familiarisation 19, with an 

absolute fit of 6. (b) Grid with same absolute fit as the grid found for 10 at 

familiarisation 19, but lies behind it, on the same chain in the ordering.

(c) Grid with a higher absolute fit of 4, lying on the same chain behind the 

grid found for 10 at familiarisation 19.

Thus, the GA, although an imperfect training algorithm, still does not 
meet the requirements of the I/IO paradigm necessary to always guarantee 
true locking. This is because as well as not being able to guarantee the 
optimum grid, a GA also cannot guarantee that any sub-optimum grid 
found is behind the optimum grid in the ordering. The CLS term in the 
inherent fit function can only encourage the GA to go for solutions which 
are closer to the root grid. It cannot guarantee the closest grids to the root 
grid, which would assure that any grid found by the GA would always be 
at or behind the optimum grid in the ordering. This means that it is 
possible for the GA to return grids which are ahead in the ordering. It is 
for this reason that the claims at locking must be watered down, as false 
locking could possibly occur when the GA returns grids that are ahead of 
the optimum grid in the ordering. It may be necessary in future to 
distinguish between ideal imperfect training algorithms, that meet the I/IO 
training specifications, and substandard imperfect training algorithms, 
that do not.

263



IO Space Implementation Part (ii) Experiments and Results

The imperfect training algorithm may catch up with the perfect 
training algorithm, locking just as quickly.

The following output illustrates the state of 1,10 and their target grids for 
the last two familiarisations of the GA trial.

20 10 OOoOO
XOOXO
XXOOo
xxxoo
oXaXo

OOoOO
XOOOO
XXOOo
XXXOO
xXxXo

6 OQxOO
XOOXO
XXOQx
XXXOO
oXoXx

XXxOO
XXOOO
XXOOo
XOOOO
0O0O0

3

21 16 OOoOO OOoOO 6 OQxOO OOoOO 9
XOOXO XOOOO XOOXO XOOOO
XXOOo XXOOo XXOQx XXOOo
XXXOO XXXOO XXXOO xxxoo
oXoXO xXxXO aXoXO xXxXO

Finally, after familiarisation 21, 10 finds the solution grid, and I and 10 
lock. There are four gridpoints remaining to be familiarised. Figure 6ii.5 
shows the final solutions of I and 10 for this trial. The perfect training trial 
also terminates at familiarisation 21. This shows that it is possible for 
imperfect training to lock at the same time as perfect training.

□

Figure 6ii.5 — Final solutions found by (a) I and (b) 10. The underlying 

target grid is represented by the black and white squares. The solutions found 

by I and 10 are represented by the light and dark grey areas. The dark grey 

areas represent an output ofl. The light grey areas represent an output ofO.

■a

® : g s © ©

264



IO Space Implementation Part (ii) Experiments and Results

• The accuracy of the generalisation is given by the resolution of 
the grid.

Although the separating hyperplanes are in the correct position for the 
grid, it is interesting to note the precise positions of the hyperplanes found 
for I and 10 in figure 6ii.5. The hyperplane for I lies close to the black 
gridpoints, and the hyperplane for 10 lies close to the white gridpoints. 
This means that patterns from the original pattern set are likely to be 
misclassified in this borderline region. The grid philosophy, however, is 
that if greater accuracy is required on the borderlines between black and 
white gridpoints, then a more refined grid should be used, with a greater 
number of gridpoints.

In summary, this trial shows how it is possible to recover from the 
suboptimum solutions returned by the GA, and still terminate correctly 
with the same number of hypothetical gridpoints as a perfect training trial 
would. The partial ordering and inherent fit functions have discouraged I 
and 10 from falsely locking in this trial, and by familiarisation 21,1 and 10 
have locked on the best fit grid to the underlying target grid. The 
requirement for a globally optimum solution at all times during 
familiarisation has been successfully relaxed.

6H.1.2 Comparison with Perfect Training

It is interesting to observe the difference in overall as well as individual 
performance between perfect and imperfect training. This is the purpose 
of this experiment, which is designed to show the effect of better and 
better training on the ability of the technique to find the no-alternative 
situation. The same underlying distribution and input grid as in section
6ii.l.l may be used to compare perfect and imperfect training using the 
I/IO paradigm. One hundred trials were performed, using different 
random presentation orders, for each training mechanism — exhaustive 
search and a GA with 1, 5, 10 and 50 generations allocated for each 
familiarisation, to compare performance. The results are given in 
table 6ii.l.

The number of false locking trials are indicated, where appropriate. False 
locking occurs only because the training algorithm does not meet the

265



IO Space Implementation Part (ii) Experiments and Results

requirements of the I/IO paradigm, not because there is anything wrong 
with the theory. The incidents of false locking are dramatically reduced as 
the training improves. The N = 1 trials falsely lock most of the time. 
Indeed, only two of the trials that locked were not false locking trials. It is 
rather unreasonable, however, to expect any kind of performance from 
using only a single generation to train the network. With N = 5, there are 
only three false locking trials — a huge reduction for only a few extra 
generations of training. None of the trials with 10 or 50 generations per 
familiarisation locked falsely.

Termination
Genetic Algorithm with N generations Exhaustive

SearchN = 1 N = 5 N = 10 N =50
I false false

Unterminated 76% N/A 39% N/A 13% 2% 0%
0 hypothetical 10% 100% 33% 3% 38% 36% 29%
1 hypothetical 8% | 88% 16% 6% 30% 33% 30%
2 hypothetical 2% | 50% 4% 25% 11% 14% 19%
3 hypothetical 2% I 100% 6% 0% 6% 8% 12%
4 hypothetical 0% 0% 2% 0% 2% 3% 5%
5 hypothetical 1% I 100% 0% 0% 0% 3% 2%
6 hypothetical 1% 100% 0% 0% 0% 1% 3%

Table 6ii.l — Comparison of perfect and imperfect training with various 

numbers of generations for 100 different random presentation orders on the 

underlying target grid in section 6ii.l.l. The percentages are of the number 

of trials (i.e. 100) for the training mechanism in that column, except for the 

"false" columns. The "false" columns for N - 1 and N = 5 indicate the 

percentage of false locking trials with the number of hypothetical gridpoints 

at termination in that row. There were no false locking trials for N = 10,

N = 50, or for perfect training.

Also shown is that the ability to terminate with hypothetical gridpoints 
remaining increases as the training algorithm improves. Only 14% of the 
trials using a GA with 1 generation per familiarisation terminate with 
hypothetical gridpoints remaining. This rises through 28% for 5 
generations, and 49% for 10 generations to 62% for 50 generations. The 
termination profile broadly matches that of perfect training with N = 50 
generations.

The GA, although it has fewer terminations with hypothetical gridpoints 
remaining than exhaustive search, nevertheless shows the ability to reach

266



IO Space Implementation Part (ii) Experiments and Results

locking, with at least some hypothetical gridpoints remaining. It should be 
remembered that the ability to reach locking is far more important than 
terminating with hypothetical gridpoints remaining as it represents 
achieving the best fit to the underlying target grid. The general trend of 
fewer unterminated trials as the training improves also shows that the I/IO 
paradigm can also be used to indicate how well the training algorithm is 
doing in finding the optimum grids.

611.1.3 Comparison with H/HO

The H/HO paradigm may be compared with the I/IO paradigm to observe 
the effects of using the inherent fit function and partial ordering on the 
ability to terminate with hypothetical gridpoints remaining. It would be 
desirable to compare the two paradigms using identical familiarisation 
sequences for each trial. As it happens, however, the software is unable to 
guarantee the same orders of familiarisation for any two batches of more 
than one trial at a time. To get round this, large batch sizes were used, 
which counteracted the effect of any bias due to the H/HO and I/IO 
paradigms having different random presentation orders. Perfect training 
was used in two batches of 2 000 trials with different random presentation 
orders for each trial on the underlying target grid used in section 6ii.l.l, 
one batch for the H/HO paradigm and the other for the I/IO paradigm. 
The results are given in table 6ii.2.

Termination I/IO H/HO
Unterminated 0% 0%
0 Hypothetical 33% 21%
1 Hypothetical 25% 20%
2 Hypothetical 18% 20%
3 Hypothetical 11% 15%
4 Hypothetical 8% 13%
5 Hypothetical 4% 8%
6 Hypothetical 1% 3%
7 Hypothetical 0% 1%
8 Hypothetical 0% 0%

Table 6ii.2 — Comparison of the H/HO and I/IO paradigms using perfect 

training on 2 000 different random presentation orders of the underlying 

target grid used in section 6H.1.1.

267



IO Space Implementation Part (ii) Experiments and Results

The results in table 6ii.2 show that the I/IO paradigm is less likely to 
terminate with hypothetical gridpoints than the H/HO paradigm. Since 
both paradigms represent potential goal grids at every stage, this may 
seem paradoxical.

Recall from chapter 6 part (i) that version space consist of those output 
grids which are globally optimum solutions for any of the possible target 
grids formed by reversing any combination of any number of the targets 
of the hypothetical gridpoints. As discussed in chapter 6 part (i) and 
proved in appendix 6.A, the locking condition of the H/HO and I/IO 
paradigms detects when H and HO (or I and 10) have found output grids 
that are globally optimum fits to all of the possible target grids. These 
output grids are special members of version space that are the locking 
grids.

When there are locking grids in version space, there may nevertheless be 
other output grids in version space that are globally optimum fits to one 
or more, but not all of the possible target grids. The H/HO paradigm may 
choose any grid in version space as the output grids for the two directions 
of the search. The I/IO paradigm, however, must choose those output 
grids that are at the edge of version space in the partial ordering. When 
there is a locking grid that is not at the edge of version space, the H/HO 
paradigm may lock sooner than the I/IO paradigm if it happens to select 
this grid for both H and HO.

Consider, for example, the two runs on a 3 x 3 grid shown in figure 6ii.6, 
one for the H/HO paradigm (a), and the other for the I/IO paradigm (b). 
Both have the same underlying target grid and familiarisation sequence. 
However, the H/HO paradigm terminates earlier than the I/IO paradigm.

Figure 6ii.7 shows all the possible underlying target grids at 
familiarisation 6, when the H/HO paradigm terminates. It will be seen that 
H and HO are globally optimum fits to all possibilities. They have 
therefore found the best fit solution, and it is correct for the H/HO 
paradigm to terminate.

268



IO Space Implementation Part (ii) Experiments and Results

Target grid (index 34): Target grid (index 34):
oxo 1 2 3 0X0 1 2 3
oox 4 5 6 oox 4 5 6
ooo 7 8 9 ooo 7 8 9

Fami 1 iarisat ion order: Familiarisation order:
2 9 8 14 6 7 5 3 2 9 8 14 6 7 5 3

H's targets: I's targets:
.X. .X. .X. OX. OX. OX. xXx xXx xXx OXx OXx OXx OXx OXx

0. . o.x XXX XXX XXX XXX Oxx QxX QxX OOX
..0 .00 .00 .00 .00 XXX xxO xOO xOO xOO xOO OOO OOO

H's outputs: I's outputs:
XXX XXX xxo oxx oxx oxx XXX XXX XXX XXX XXX XXX XXX oxx
xxo XXX xxo oox ooo oox XXX XXX XXX XXX XXX XXX oxx oox
xxo xxo xoo ooo ooo ooo XXX xxo xoo xoo xoo xoo ooo ooo

H's errors: I's inherent fits:
0 0 0 0 0 0 0 1 2 2 2 2 4 6

H's choices: I's choices:
29 17 14 2 2 1 1 1 1 1 2 2 2 1

HO's targets: IO's targets:
oXo oXo aXo OXo OXo OXo oXo oXo dXo OXo OXo OXo OXo OXo
oox ooo oox xxo Oxx QxX ooo ooo ooo ooo Ooo OoX OoX OOX
oox ooO oOO xOO xOO xOO ooo ooO cOO oOO oOO oOO OOO OOO

HO 1s outputs: IO's outputs:
oxx oxx oxx xxo xxo QXX oxx oxx QXX oxx oxx QXX oxx oxx
oox ooo oox xxo xxo oox ooo ooo ooo ooo ooo oox oox oox
oox ooo ooo xoo xoo ooo ooo ooo ooo ooo ooo ooo ooo ooo

HO's errors: IO's inherent fits:
1 1 1 1 3 3 2 2 2 2 2 3 3 3

HO's choices: IO's choices:
2 3 1 1 8 8 1 1 1 1 1 1 1 1

(a) (b)

Figure 6ii.6 — Two runs using the same familiarisation order and 

underlying target grid, showing that the H/HO paradigm (a) may terminate 

earlier than the I/IO paradigm (b).

(a)

r&a □■■
(b) (c) (d) (e) (h)

Figure 6ii.7 — (a)-(h) show the various possible underlying target grids at 

the sixth familiarisation for the runs in figure 6ii.6. The hypothetical 

gridpoints are indicated by the shaded cells.

269



IO Space Implementation Part (ii) Experiments and Results

Figure 6ii.8 shows version space at the 6th familiarisation. This contains 
more grids than just the grid found by H and HO. The I/IO paradigm is 
restricted to the boundary grids in the partial ordering. It cannot terminate 
until both directions find a grid that is the best fit to all possible target 
grids. In the run in figure 6ii.6(b), the I direction must choose a blacker 
grid than the goal grid, since there are blacker grids on the same chain 
leading to Ts root grid. 10 may choose the goal grid, since there is no 
whiter grid in version space that is on the same chain to the root grid for 
10. The H/HO paradigm may therefore lock earlier, since it has a wider set 
of possible choices for H and HO. The significance of this is that the choices 
include the special member of version space that is a globally optimum fit 
to all possible underlying target grids.

10 direction

4

I direction

Figure 6ii.8 — Lattice of version space at familiarisation 6. The H/HO 

paradigm may choose any of these. The locking grid is the grid which is a 

globally optimum fit to all possible target grids. 10 may choose the locking 

grid, since it is the closest to IO's root grid on that chain in the partial 

ordering. There are grids closer to Ts root grid, however, and I must select 

one of these. Therefore I and 10 cannot lock.

270



IO Space Implementation Part (ii) Experiments and Results

The following summarises the general points to be made from this 
example:

• The choice of output grids for the H/HO paradigm may include 
the locking grid at an earlier familiarisation than in the I/IO 
paradigm.

• The wider choice for the H/HO paradigm also includes pairs of 
grids that do not satisfy the locking condition, amongst which are 
the pair of grids chosen by I and 10 at the same stage.

• The I/IO choice is restricted to pairs of grids that do not satisfy the 
locking condition until there is no alternative left but the locking 
grid or grids.

The apparent paradox mentioned earlier may now be resolved. Some 
potential goal grids in version space, Xf, can, in fact, be eliminated under a 
certain condition. This condition is that there exist other output grids in 
version space, Y/, that are best fits to all the possible target grids that X/ are 
best fits to, as well as some other possible target grids that X/ are not best 
fits to. These other grids are locking grids.

The wider choice of available grids for H/HO than I/IO may be illustrated 
by counting the average numbers of alternatives for H, HO, I and 10 for 
each familiarisation. Table 6ii.3 shows the average number of choices for 
each of H, HO, I and 10 for each familiarisation during the 2 000 trials 
above. This shows that the H/HO paradigm always has a greater choice of 
grid than the 1/10 paradigm.

271



IO Space Implementation Part (ii) Experiments and Results

Average number of choices of grid
Familiarisation I I0 H HO

1 1.00 1.00 201.00 1.17
2 1.00 1.01 105.59 1.31
3 1.01 1.03 59.68 1.50
4 1.02 1.04 42.17 1.67
5 1.03 1.06 31.14 1.85
6 1.05 1.09 24.89 1.95
7 1.06 1.11 19.52 2.09
8 1.08 1.12 15.80 2.20
9 1.09 1.13 12.79 2.22
10 1.10 1.14 10.69 2.34
11 1.12 1.15 9.11 2.41
12 1.13 1.16 7.82 2.39
13 1.13 1.17 6.58 2.45
14 1.13 1.16 5.55 2.47
15 1.13 1.15 4.54 2.53
16 1.12 1.13 3.80 2.48
17 1.11 1.11 3.22 2.57
18 1.10 1.10 2.78 2.47
19 1.08 1.08 2.42 2.43
20 1.07 1.06 2.12 2.22
21 1.04 1.04 1.90 1.95
22 1.03 1.02 1.74 1.77
23 1.01 1.01 1.59 1.46
24 1.00 1.00 1.42 1.19
25 1.00 1.00 1.00 1.00

Table 6ii.3 — Average number of choices of grid for 1,10, H and HO for each 

familiarisation during the 2 000 trials carried out in section 6H.1.3.

6ii.1.4 Comparison with Validation

In order to compare the I/IO paradigm with validation, the validation 
technique was used in conjunction with a GA. Validation using a GA 
differs from using a gradient descent technique in that the latter aims at 
steadily reducing training error, rather than evolving a sample of weight 
space. However, by considering the best member of the population for 
each generation, a sequence of weight states is given which has a general 
trend of improvement in training error.

The validation technique is given the same underlying set of data as in the 
experiment in section 6ii.l.l. This is the set of 200 data points which has 
been used in the previous experiments to determine the targets of the 
gridpoints. For each trial, the data are divided at random into a training

272



IO Space Implementation Part (ii) Experiments and Results

set and a validation set, with 100 patterns in each. The same 2*1 topology 
is also used in each trial.

The training set is used to determine the chance a member of the 
population has of becoming a parent. Those members of the population 
with lower error on the training set are given a better chance of 
reproducing. The validation error is calculated for the member of the 
population in each generation with the best performance on the training 
set. This gives a single validation error value for each generation. A 
minimum of validation error is detected when the validation error rises in 
one generation, after having fallen in a previous generation.

At each minimum of validation error, the overall error on all 200 
datapoints is recorded, as well as the generation number at which the 
minimum occurred. In contrast to the standard technique, the minimum of 
validation error with the best overall performance is taken to be the 
solution of the trial.

One hundred trials were performed, recording the overall error at each 
minimum of validation error during a period of 100 generations for each 
trial. The GA otherwise had the same parameters as used in the 1/10 
paradigm in all the other experiments, i.e. the population size was 100, the 
mutation probability was 1.0 and the crossover probability was 1.0.

To compare the performance of the validation technique with that of the 
1/10 paradigm, the IO behaviour of several candidate weight states with a 
known error on the set of 200 patterns was superposed onto the grid used 
in the preceding experiments in sections 6ii. 1.1-3. (See figure 6ii.2.) It was 
found that an overall misclassification error of 45 or less was needed in 
order to achieve the equivalent of the desired separation of the gridpoints. 
This, then, is the threshold at which a solution will be considered to be a 
good solution. Solutions with a higher overall misclassification error will 
be considered to be bad solutions.

Of the 100 trials, 30 had minima that were all bad solutions, with the 
remaining 70 trials having at least one good solution. The information 
recorded at each minimum included the generation number at which the 
minimum occurred (see above). Using this information, it was possible to 
determine how many of the 100 trials had found a good solution in one of

273



IO Space Implementation Part (ii) Experiments and Results

their minima by 25 generations. The result was that 54 of the 100 trials had 
at least one good solution by the 25th generation.

Figure 6ii.9 shows some profiles of the overall performance at each 
minimum of validation for three of the 100 trials. Profile A shows a trial in 
which none of the minima were good solutions. Profile B shows a trial in 
which all of the minima were good solutions. Profile C shows a trial in 
which some of the minima were good, and some of the minima were bad.

These results indicate that, for a given fixed period of training, there is no 
certainty offered by validation that a good solution has been found. All 
but one of the 100 trials had at least one minimum of validation error, and 
of the 1464 minima of validation that occurred over all the trials, just over 
half (58%) were good solutions.

Therefore, there is no great degree of empirical certainty when using the 
validation technique that further training will not yield a better solution. 
The improvement may not be a matter of fine tuning either. This is 
supported by the observations made at 25 generations, which show that 16 
trials found good solutions after 25 generations, having found only bad 
solutions beforehand. This is illustrated in the case of profile C, which 
does not find good solutions until after 25 generations.

In conclusion, these trials show clearly that the validation technique is not 
especially useful for deciding when to stop training, and that poor 
solutions are a regular occurrence. Contrasting this with the 1/10 
paradigm, which can accurately determine the point at which learning is 
completed, the optimum solution is returned in the vast majority of the 
cases in which it terminates. (See table 6ii. 1.)

274



IO Space Implementation Part (ii) Experiments and Results

— Profile A

— Profile B

----------o— Profile C

““ Good/Bad
Threshold

“25
Generations

Generation Number

Figure 6ii.9 — Three training profiles, A, B and C. For each profile, the 

overall misclassification error is indicated bp the markers, which are placed at 

each minimum of validation error during the trial from which the profile is 

taken. The threshold between a good solution and a bad solution (at a 

misclassification error of 45) is indicated by the solid line. The 25 generation 

point is indicated by the dashed line.

6ii.1.5 Validation Set Size

Denker et al observe "rather poor" overall performance even when most 
of the available data is used for training.1 In this experiment, the effect of

1 Denker et al, 1987, p. 898

275



IO Space Implementation Part (ii) Experiments and Results

the size of the validation set on the solution found is explored in the 
context of the same problem discussed in section 6ii.l.4.

The same 200 patterns are used, with a 2*1 topology, and a GA as the 
training algorithm. The method for determining minima of validation 
error is the same as in section 6ii.l.4, and the same training parameters 
were used.

In this experiment, five sizes of validation set are considered. Each size is 
given 20 trials, and the overall performance on all 200 patterns is 
measured for each minimum of validation error. The average best 
minimum of validation error over the trials gives the final score for the 
given size of validation set. In all cases, any patterns not used for 
validation are used for training.

The following splits of data into validation set and training set 
respectively were considered: 1, 199; 5, 195; 10, 190; 50, 150; and 100, 100. 
The results are indicated in the histogram in figure 6ii.l0. This shows that 
the validation set size has little effect on the ability to find a good solution. 
The variability is within 5% of the estimated maximum misclassification
error of 175.

»- o . 
= * c o

c UJ> o E
® c c to ~ EE© o 5 ° D) ” *-
© •— © >. M W -c o> w © =
> © DO co 

O <♦_ ></) o

Number of Patterns in Validation Set

Figure 6ii.l0 — The effect of the size of validation set on the overall solution 

found.

276



IO Space Implementation Part (ii) Experiments and Results

6ii. 1.6 Scalability of the Technique

In this section the I/IO paradigm is tested on a new problem. The purpose 
is to show that the I/IO paradigm works using a more difficult problem 
which requires hidden units. The underlying distribution from which the 
patterns are taken is shown in figure 6ii.ll(a). A 2*3*1 topology will be 
used to attempt the problem, with the desired final decision region being 
one which ignores the two circles, and concentrates on the triangle, as 
shown in figure 6ii. 11(b).

(a) (b)

Figure 6ii.ll — (a) Underlying distribution of experiment, (b) Desired final 

solution to be found by 2*3*1 topology.

A 7 x 7 grid is used, and its targets, based on a random sample of 500 
patterns from the underlying distribution, are given in figure 6ii.l2.

A single trial was done which used imperfect training with a GA with 
2 000 generations per familiarisation, after preliminary trials with 200 and 
300 generations per familiarisation. The preliminary trials had excessive 
numbers of runs whereby I and 10 had not locked after all gridpoints were 
familiarised. The results from experiment 6ii.l,2 indicate that more 
generations might yield better results. Figure 6ii.l3 shows the final grids 
found for I and 10 with 2 000 generations per familiarisation.

277



IO Space Implementation Part (ii) Experiments and Results

Figure 6ii.l2 — Automatically produced diagram of the underlying target 

grid, based on a sample of 500 patterns from the underlying distribution 

shown in figure 6ii.ll(a). Large squares are gridpoints, and small squares are 

patterns.

I 10

Figure 6ii.l3 — The final solutions found for I and 10 in a single trial with 

2000 generations per familiarisation. The gridpoints are shown slightly 

smaller than in figure 6ii.l2, so they do not excessively obscure the decision 

regions of 1 and 10.

With the I/IO paradigm, there is certainty that, at termination of a single 
trial (though it may be a long one), either the best fit grid has been found, 
or improved training is known to be necessary. Other methods without

278



IO Space Implementation Part (ii) Experiments and Results

this certainty, such as validation, might use several training trials in any 
case, choosing the best solution found overall. Despite this, they still 
cannot be certain of having the globally optimum solution.

The single trial took over 24 hours to run. This is a long time to wait. The 
problem may be larger than other problems in this chapter, but it is not 
large enough to justify a learning time of over a day. However, the time 
taken is more due to the slowness of the GA rather than the fact that 48 
familiarisations were used (with the trial having a single hypothetical 
gridpoint at locking).

6ii.1.7 A Symbolic Problem

Here a simple symbolic concept is attempted, using a sample of real-world 
data. The purpose is to show how a symbolic problem may be given an 
interpretation on a grid and that the I/IO paradigm is able to cope with 
inconsistent data when learning the rule. Inconsistent data are data which 
do not agree with the rule to be learned. For Mitchell's symbolic technique 
this would mean, for example, presenting the instance 
{[Red, Fungus, Poisonous]} as positive when the concept to be learned is 
{[*, *, Edible]}, where represents the wild-card. (See chapter 2.) For the 
neural technique, this means the stripe in figure 6ii.l(a) and the two circles 
in figure 6ii.ll(a) are inconsistent data.

When learning to recognise trees, one method involves looking at the 
shape of the tree. One of the most basic classifications of trees is whether 
or not they are evergreen or deciduous. This is the task to be undertaken 
here. The shape of the tree will be represented rather crudely by its 
breadth and its height. This is on the basis that evergreens, especially the 
firs, tend to be tall and narrow, whereas deciduous trees tend to be 
shorter, and broader. Some exceptions to the rule are poplars, which are 
tall, thin deciduous trees, and the cedar of Lebanon, which can be broad 
and short, but is evergreen. Figure 6ii.l4 indicates the general rule, and 
shows the exceptions.

A sample of rough measurements of the height and breadth of some adult 
trees in metres was taken during a walk in a forest, and is shown in figure 
6ii. 15(a). The idea is to have symbols which represent short, medium and

279



IO Space Implementation Part (ii) Experiments and Results

tail for the height dimension, and thin, medium and broad for the breadth 
dimension. This means using a 3 x 3 grid. However, the data are not 
widely spread, since there are not many trees which are very tall and very 
narrow, nor very short and very broad. The grid used is therefore not a 
regular horizontal/vertical grid, but a slanted grid, that fits the 
distribution as shown in figure 6ii. 15(b), which also indicates the 
underlying target grid. Note that each gridpoint still represents the same 
area of input space.

(a) (b) (c) (d)

Figure 6ii.l4 — (a) A typical evergreen tree, which is tall and thin, (b) A 

typical deciduous tree, which is shorter and broader, (c) A counter-example 

evergreen tree, the cedar of Lebanon, which is short and broad, (d) A counter

example deciduous tree, the poplar, which is tall and thin.

The cedar of Lebanon causes a spurious black gridpoint target (bottom 
right), which is a counter-example to the rule to be learned. The symbolic 
technique would be unable to learn the concept under these 
circumstances, since the underlying data are inconsistent with the overall 
concept to be learned.

Fifty trials were done using a GA with 100 generations per familiarisation. 
Forty of the trials found the best fit grid by the time all the gridpoints had 
been familiarised. The remaining ten trials did not terminate after all the 
gridpoints had been familiarised.

Figure 6ii. 16 shows the entire search space of output 3x3 grids that can be 
generated by a 2*1 topology, and the chains in the partial ordering. The 
path of I and 10 through the ordering for one of the trials which 
terminated with 2 hypothetical gridpoints is also indicated.

280



IO Space Implementation Part (ii) Experiments and Results

2

80 —i ■ ■ 80 —i ■ ■

60 —
• ..■

■
I 60 —

■ -■* - ■
■ ■ ■■ □

□
n
P

■ - ° an40 — ■ □ □□ u 40 —
. ■ u■ £ <] □ ■ t ■ o □ ■

20 —
{Q □

2 20 — ■
□ □o —J o —J

1........1..... 1 1 I I 1 1 1 1—1—
0 10 20 30 40 50 0 10 20 30 40 E

Input 1 Input 1

(a) (b)

Figure 6ii.l5 — (a) A sample of measurements of the heights and breadths 

of evergreen and deciduous trees. Input 1 is the breadth and input 2 is the 

height. Both are measured in metres. The evergreens are indicated by black 

points, the deciduous trees by white points, (b) The slanted target grid, 

designed to fit the distribution of trees.

Figure 6ii.l7 shows the absolute fit values of I and 10 at the seventh 
familiarisation in the trial in figure 6ii.l6, at which I and 10 lock using 
imperfect training. There is only one choice of highest absolute fit for I, 
which is the goal grid. For 10, there are three choices of absolute fit, but 
only one choice of inherent fit, since one of the three choices of absolute fit 
is closer to the root grid for 10 that any of the others. In the imperfect 
training trial in figure 6ii.l6,10 does not choose this grid, choosing the goal 
grid instead, and I and 10 lock.

The search spaces and absolute fits indicated in figure 6ii.l7 show why 
false locking is such a rare event, even though it is, in theory, possible. For 
example, suppose a somewhat arbitrary selection of grids is made, such as 
those with an absolute fit greater than zero (i.e. better than the root grid). I 
has a choice of 15 grids with an absolute fit greater than zero, and 10 has a 
choice of 12 such grids. The estimated odds of I and 10 choosing the same 
sub-optimum grid with a value greater than zero are therefore 1 in 180.

This estimate does not take into consideration the following two points, 
which make it difficult to give an accurate estimate. Firstly, target reversal

281



IO Space Implementation Part (ii) Experiments and Results

of the sub-optimum grids I chooses will encourage 10 not to choose a grid 
which will allow the satisfaction of the locking conditions. Secondly, I and 
10 do not necessarily have to be the same grid for locking to occur.

The probability of false locking would nevertheless seem in crude terms to 
be low, which would indicate why it is so rare for I and 10 to falsely lock. 
The experiments in section 6ii.l.2 also show that as the quality of the 
training algorithm improves, the chance of false locking goes down 
further. This leads to the general point that even if the training algorithm 
is a sub-standard imperfect training algorithm, the chances of false locking 
are somewhat remote.

10

Figure 6ii.l6 — The partial ordering of all the 3x3 grids. The chains in the 

ordering are indicated by the thin lines. The goal grid (G) is emphasised by 

being larger than all the other grids. In the trial indicated in this diagram, I 

starts at the all black grid, R(I), and 10 starts at the all white grid, R(I0). On 

the fourth familiarisation, I moves from R(I) to grid A, which lies on a chain 

between R(I) and G in the ordering, Also, 10 moves from R(I0) to grid B. On 

the sixth familiarisation, 10 moves from B to the goal grid, G. On the seventh 

familiarisation, 1 moves from A to G, and locking happens to occur with two 

hypothetical gridpoints remaining.

282



IO Space Implementation Part (ii) Experiments and Results

(a) Absolute fit values for 1

Guide to absolute fit values for I and 10.
3 2 1 0 -1 -2 -3 -4

R(IO) R(l)

(b) Absolute fit values for 10

Figure 6ii.l7 — Absolute fit values for (a) I and (b) 10 on the seventh 

familiarisation of the trial in figure 6H.16 are indicated by the size of the grid. 

The I representative chosen to determine the hypothetical targets for 10 is grid 

X. The absolute fit values in (b),for 10, are calculated on this basis.

283



IO Space Implementation Part (ii) Assessment of the I/IO Paradigm

6ii.2 Assessment of the I/IO Paradigm

The I/IO paradigm has managed to combine the benefits of the H/HO 
paradigm in terms of a guaranteed locking condition for perfect training, 
and the benefits of the B/W paradigm in terms of the use of a partial 
ordering. The partial ordering enables the boundary representatives to be 
kept apart in the ordering as much as possible to cope with sub-optimum 
training, whilst still enabling convergence on the correct grid.

No false locking trials occurred with perfect training, though section 6ii.l.3 
showed that the I/IO paradigm tends to lock a little later than the H/HO 
paradigm. Section 6ii.l.2 showed that using imperfect training rather than 
perfect training further exaggerates this effect, and that when the training 
algorithm does not meet the specifications, there is the possibility of false 
locking.

The experiment in section 6ii.l.l demonstrates the I/IO paradigm at work 
with imperfect training, and shows how a sub-optimum grid at one stage 
during training can be recovered from at a later stage. Therefore there is 
no longer the requirement that with every familiarisation, the optimum 
grid must be found, as is the case with the H/HO paradigm.

The ideal is to be able to find a grid which is at or behind the optimum 
grid in the ordering. This is a weaker requirement for training because 
there is no longer the need to find the optimum grid at every stage of 
learning. The demands on the training algorithm therefore have been 
relaxed, to a certain extent. However, they have not been relaxed enough 
such that the actual training algorithms used are able to meet the 
conditions necessary to ensure the prevention of false locking.

Nevertheless, there were no false locking trials out of the fifty trials 
conducted in section 6ii.l.7 (though in section 6ii.l.2 there were 22 false 
locking trials when the GA had 1 generation per familiarisation, and 3 
false locking trials when the GA had 5 generations per familiarisation). 
The reason that false locking is typically such a rare event is that there is a 
greater choice of sub-optimum grids than optimum grids for I and 10, and 
it is unlikely that any two such grids chosen will lock. This is indicated in

284



IO Space Implementation Part (ii) Assessment of the I/IO Paradigm

section 6ii.l.7. Despite this, false locking is nevertheless a possibility, and 
thus the locking guarantee must be watered down a little when a GA is 
used as the training algorithm.

Validation's weakness as a unidirectional process is highlighted in section 
6ii.l.4. It was shown here that there is a fundamental problem with 
knowing when to terminate, and that poor solutions occur regularly. 
Section 6ii.l.5 showed that the size of validation set makes little difference 
to the overall performance.

Section 6ii.l.6 illustrated the extra time required when the problem is 
made more complex than a linear separation. A much larger number of 
generations is required to get a GA to be close enough to the optimum 
such that it terminates with hypothetical gridpoints. However, this is more 
of a training problem than a problem that specifically relates to the I/IO 
paradigm. Note also that a single trial using a GA provides either a 
guarantee of the optimum solution or the indication that better training is 
needed. Other techniques may use several trials, in the hope that they 
have sampled weight space enough to find the best solution.

A symbolic problem was the focus of section 6ii.l.7. The display of the 
entire search space enabled the illustration of how single boundary 
representatives can move through the partial ordering, but are not 
constrained to a particular chain. The need for multiple boundary 
representatives — a costly problem with the symbolic technique — is 
thereby shown empirically as well as theoretically to be unnecessary in the 
neural implementation. Section 6ii.l.7 also showed that the grids need not 
be constrained to strictly regular horizontal and vertical lines of 
gridpoints.

The strengths and weaknesses of the I/IO paradigm may now be 
summarised.

• The I/IO paradigm offers the ability to recognise when a globally 
optimum solution has and has not been found for an inexact fit 
even if training is imperfect.

• The extended training sequence during the learning process 
means that concepts may take longer to learn than with

285



IO Space Implementation Part (ii) Assessment of the I/IO Paradigm

conventional training methods. The differences in training times 
between the multiple serial training stages of the I/IO paradigm 
and the multiple initial weight states of techniques such as cross
validation needs investigation. If the differences prove to be 
excessive, the I/IO paradigm should be evolved further (see 
chapter 7).

There are not yet any training algorithms which fully meet the 
specifications an ideal paradigm using a partial ordering would 
demand in order to guarantee that no false locking occurs — in 
particular that sub-optimum grids selected for the two directions 
must be at or behind the optimum grid in the ordering. However, 
despite this, false locking is nevertheless unlikely until learning is 
effectively complete.

The I/IO paradigm may be used to indicate the effectiveness of a 
training algorithm, in terms of whether or not learning should 
continue and in general how well the training algorithm is able to 
find a best fit solution.

The I/IO paradigm is able to cope with noisy and inconsistent 
data, and may also be used to tackle symbolic problems.

Unlike Mitchell's symbolic technique, the I/IO paradigm requires 
only a single boundary representative for each direction.

Unlike Schwarz et al's technique2 there is no need to use 
exhaustive search in order to estimate the generalisation ability.

Unlike VC theory, there is no need to saturate input space with 
patterns in order to guarantee generalisation. Generalisation 
follows from having found the best fit given the user's 
assumptions.

Unlike validation and other unidirectional processes, there is the 
certainty provided by bidirectional convergence as to when to stop 
learning.

2Schwarz et al, 1990

286



IO Space Implementation Part (ii) Conclusion

6ii.3 Conclusion to Part (ii)

Overall, the grid technique in the form of the I/IO paradigm has overcome 
the difficulties of weight symmetries that were present in the angle 
technique in chapter 5. The problems with weight space symmetries are 
effectively dealt with by sampling IO space at regular intervals, as 
discussed in section 6i.l. More significantly, the grid technique has set up 
a theoretical framework for being able to recognise when the best fit 
solution has been found using conventional training algorithms.

Two main techniques have been presented. Firstly, the H/HO paradigm 
shows how grids may be used during learning to enable a guarantee of 
correct locking. This paradigm does not use a number of core Mitchellian 
principles. Nevertheless, the H/HO technique also reveals a problem to be 
overcome in combining the symbolic technique with neural networks: that 
of having to assume perfect training of the neural network.

Mitchell does not have to worry about whether or not the optimum 
concepts are found at each stage for the boundary representatives. The 
correct concepts for the boundary representatives are deduced using 
pattern matching, on the basis of the instances and the bias of the concept 
and instance representation language. There is no question of not finding 
these representatives, as there is in this neural implementation. This is 
therefore an extra problem for a neural implementation to consider.

The I/IO paradigm is an attempt to overcome such difficulties, by an 
increased closeness to Mitchell. The use of a partial ordering ensures that 
the fact that training algorithms cannot necessarily guarantee optimal 
boundary representatives is accommodated. The algorithms are instead 
encouraged to keep the boundaries apart from one another as much as 
possible through the use of appropriate potential functions.

The I/IO technique puts the user in control of the biasing factors, in the 
grid and the topology, which affect the kind of generalisation that will be 
found, just as Mitchell's symbolic technique does through the user- 
specified concept and instance languages. The ability to recognise locking, 
also inherited from Mitchell's technique, is an advantage over standard

287



IO Space Implementation Part (ii) Conclusion

generalisation techniques such as validation. The terminating condition 
for the validation technique does not offer the same certainty, as discussed 
in chapter 3, because it is not known when to terminate.

Both H/HO and I/IO are also able to deal with inexact fit, which means 
there is a tolerance of inconsistent and noisy data. Such tolerance is not 
present in the symbolic technique without extensive and expensive 
alterations. This also represents a further improvement on the angle 
technique, which relied on consistent data as well. Section 6ii.l.7 showed 
the I/IO paradigm learning a simple concept which would not be learnable 
by Mitchell's symbolic technique.

There is also the possibility to represent disjunctive symbolic concepts, if 
need be, through appropriate choice of the grid and topology. The 
symbolic concept of {[*, lorry] v [blue, van]} is represented as shown in 
figure 6ii.l8.3 Thus, there are gains for Mitchell's technique through the 
grid technique being useful for symbolic problems.

car 1.0 - □ □ □

van 0.5 - □

lorry 0.0 - ■ ■ ■
I

0.0
1

0.5
1

1.0
red green blue

Figure 6ii.l8 — Through the representation of symbols by the ordinates of

the gridpoints on each axis of input space, concepts such as

{[*, lorry] vlblue, van]} can be learned. The separation is represented by the 

line through the grid.

Hence there has been considerable success in merging a symbolic 
technique with neural networks to mutual benefit. The neural networks 
are able to cope with noise, and the partial ordering adapted from the 
symbolic technique enables a directed search which results in a guarantee 
of generalisation, given training algorithms which meet the required 
specifications. The guarantee must be watered down a little in the face of

3 Weir & Polhill, 1995

288



IO Space Implementation Part (ii) Conclusion

training algorithms that do not meet these specifications. However, false 
locking is unlikely until learning is effectively complete due to the large 
choice of sub-optimum grids for I and 10 that would not satisfy the locking 
conditions.

The grid technique with inherent fit gives a theoretical framework for 
providing guaranteed learning of the concepts. It provides a guaranteed 
terminating condition, provided the training algorithm meets the required 
specifications.

289



IO Space Implementation Appendices

Appendices

6.A Proof of Locking for the H/HO Paradigm

The goal of this proof is to show that, at locking, HO has the best fit 
whatever the true targets of the hypothetical gridpoints. This provides the 
basis for the idea that target reversal of the hypothetical gridpoints makes 
no difference to the classification boundaries.

Let Z be the set of hypothetical target gridpoints at locking. Let A be the 
set of real target gridpoints at locking. It is assumed that HO has the global 
minimum error fit to its target grid, HOj = A + Z, at locking. Thus, for any 
arbitrarily chosen neural network, N:

EN(A + Z) >J^0 (A+ Z) [6.A.1]

where Ep(G) is the misclassification error of a neural network F on the set 
of gridpoints G.

The set Z will be split into two arbitrary subsets, X and Y. Let the set X* be 
the set of input gridpoints from X but with opposite targets from X for 
those points. The set Z* = X* + Y is then the same set of hypothetical 
gridpoints as Z but with some of the targets of those gridpoints reversed. 
The goal of the proof is to show that, given [6.A.1], for any arbitrarily 
chosen neural network, N:

E^A + Z'j^^A + Z') [6.A.2]

If [6.A.2] holds, then since the split of Z is arbitrary, HO gives the best fit 
regardless of the true targets of Z. The proof has three main steps. The first 
step is to relate Eho(Z) to Eho(Z*)- The second step is to relate E/v(Z) to 
En(Z*). The third step is to substitute for Eho(Z) and Ejv(Z) in [6.A.1] using 
the expressions found in the first two steps.

HO misclassifies all members of Z at locking. This is necessary in order to 
satisfy the terminating conditions. Writing the cardinality of Z as #Z, 
therefore, Eho(Z) = #Z. Since Z is comprised of X and Y, 
Ero(Z) = #X + #Y. Since X* has reversed targets from X, all members of X*

290



IO Space Implementation Appendices

are correctly classified. Therefore Eho(Z*) = #Y. This gives the following 
expression relating Eho(Z) to Eho(Z*):

£^0(Z)=#X + ^,0(Z-) [6.A.3]

For the second stage, X and Y will be considered separately. Since X* has 
reversed targets from X, the error of N on X is related to the error of N on 
X* as follows:

EN(X) =#X- En(x*) [6.A.4]

Since when Gi n G2 = 0, Ep(Gi + G2) = Ep(Gi) + Ep(G2) (as is the case 
here), En(Z*) may be re-written as per [6.A.5]:

£N(Z-) = £w(X‘) + £A,(r) [6.A.5]

Hence,

£w(y) = £4z*)-£„(%*) [6.A.6]

Since Ejv(Z) = E/v(X) + En(Y), from [6.A.4] and [6.A.6]:

£W(Z) =# X - £„(x‘) + £„(z‘) -£„(%*) [6.A.7]

Simplifying:

£W(Z)=#X+£W(Z*)-2£JV(X*) [6.A.8]

Expanding [6.A.1] gives:

EN(A) + EN(Z) > E^ + E^Z) [6.A.9]

Substituting for Eho(Z) and E^(Z) in [6.A.9] using [6.A.3] and [6.A.8] 
respectively gives, for the third step:

£„(A) + £„(z‘)+#X - 2EK(X") > J^o(A) + £^0(Z")+#X [6.A.10]

Simplifying [6.A. 10] gives:

E„(A + Z*)-2EN(X*) > Eao(A + Z‘) [6.A.11]

Since EN(X*) > 0:

291



IO Space Implementation Appendices

EN(A + Z')iEno(A + Z^) [6.A.12]

Thus, [6.A.2] is proved, and since N and the split of Z into X and Y were 
arbitrary, HO has global minimum error fit whatever the true targets of Z, 
the hypothetical gridpoints.

6.B Genetic Encoding of Neural Network and Selection 
Mechanism

6.B.1 Genetic Encoding of Neural Network Weight State

The coding mechanism uses a binary string for each member of the 
population. This binary string is used to specify the entire weight state of 
the neural network. The topology is fixed, and hence there is no need for 
the coding mechanism to include this.

Each member of the population is assigned the same number of bytes, y, 
for each weight value of a single connection in the network. A network 
with a 2*2*1 topology has 9 connections, for example. The length of the 
binary string for each member of the population would then be 9y bytes.

Of the y bytes, a number of bits, i + 1, is specified to be the integer part of 
the weight value, with the remaining bits barring the last bit of y being 
used to represent the rational part of the weight value. The last bit of y 
specifies the sign. If the last bit is 1, then the weight is negative, otherwise 
it is positive. For the GA used in this chapter, y was set at 2, and i was set 
at 5. The maximum and minimum weight values are then +63.998046875 
and -63.998046875 respectively.

The weights are Gray coded,4 to avoid Hamming cliffs. A Hamming cliff 
occurs between, for example, 01111 (15) and 10000 (16). Five simultaneous 
mutations are required to go from one consecutive value to the next. Gray 
coding ensures that there is always a single mutation path between any 
two consecutive numbers.

4Hamming, 1986, pp. 97-99

292



IO Space Implementation Appendices

If G is a Gray coded binary number, and B is a binary number, then to 
encode from B to G do the following: for each bit, j, of B, where j reads 
from left to right, if 7 = 1 then Gj - Bj, otherwise if Bj = Bj _ 1, Gj - 0 and if 
Bj * Bj-i, Gj = 1. For example, 01111 becomes 01000 under the Gray code, 
and 10000 becomes 11000. This means there is a difference of only 1 bit 
between the Gray coded binary numbers for 15 and 16. To decode from G 
to B: for each bit j of G, if j = 1 then By = Gj, otherwise if Gj = Bj _ 1, Bj - 0, 
and if Gy * Bj -1, By = 1.

Having decoded the binary string, the leftmost bit represents 2*, with the 
next bit representing 2*-1. In general, the nth bit from the leftmost bit 
represents the (z - n)th power of 2.

For example, consider a neural network with a single weight, with y = 1 
and i = 3. A member of the population consists of the following binary 
string:

10 1110 10

The binary string is decoded to give the following:

110 10 0 11

Each bit represents the following number, or sign in the case of the last bit: 

23 22 21 20 2-1 2~2 2“3 ±ve

And hence the decoded binary string represents the following sum:

23 + 22 + 20 + 2-3 -Ve

The weight value of the single weight in the neural network represented 
by the above member of the population is therefore -13.125.

6.B.2 Selection Mechanism

The selection mechanism works as follows.5 The members of the 
population are sorted in order of preference, with the best members last

5Harvey, 1994

293



IO Space Implementation Appendices

and the worst first. A number of tickets is then assigned to each member 
of the population, which will be used to buy their way into propagating 
into the next generation. The number of tickets for each member of the 
population is equal to its position in the sorted preference list. The worst 
member gets 1 ticket, and the best member gets a number of tickets equal 
to the size of the population, s.

The members of the population of the next generation are then chosen by 
picking a random member of the population, p, and choosing a random 
number, r, between 1 and s. If p has a number of tickets greater than r, 
then it is copied into the next generation, and its number of tickets is 
reduced by 1. This process is repeated until s offspring have been selected.

Sometimes it is desirable to bias the selection process in favour of the 
better members. This is achieved in this implementation by raising the 
number of tickets assigned above to the power of a constant, k, giving a 
new number of tickets. The selection process continues in the same way, 
except that the random number r is chosen between 1 and sk. This gives 
the better members of the population considerably more chance of being 
chosen to be in the next generation. After several trials with various 
values, the value for k used in the experiments above was 10. This is high 
relative to the norm, but the poorer members of the population still have a 
chance (albeit an extremely small chance) of passing their genes on to the 
next generation.

6.C Crossover and Mutation Probabilities

The crossover probability represents the probability that a crossover 
operation will be performed on a member of the population selected for 
the gene pool. Two alternatives were considered for crossover. One 
possibility was to perform a crossover on the bit string for each weight 
belonging to a member of the population. The other was to perform a 
single crossover on the entire bit string of the member of the population. 
The latter alternative was chosen.

Each bit of the bit string of a member of the population selected for the 
gene pool was given a chance of mutating. Yet the mutation probability 
specified should indicate the average probability of a single mutation

294



IO Space Implementation Appendices

occurring in the member of the population. This means the probability of 
mutation of each bit in the bit string is the specified mutation probability 
divided by the number of bits in the gene.

295



Conclusions and Further Work Achievements to Date

7 Conclusions and Further Work

7.1 Achievements

The central aim of the thesis is to abstract the tenets of Mitchell's 
technique, and evolve and implement it in a neural environment. This was 
with a view to guaranteeing generalisation in neural networks without 
resorting to comprehensible rule extraction, by finding the no-alternative 
classification situation. The work discussed in chapters 5 and 6 showed 
four attempts to achieve this, culminating in the I/IO paradigm of the grid 
technique in chapter 6. The I/IO paradigm showed the following points, 
theoretically and empirically:

• A close implementation of Mitchell's technique, which uses a grid 
and a partial ordering of the grids, can guarantee generalisation 
given a training algorithm that meets the required standard. This 
standard is that when the optimum grid is not found by an 
imperfect training algorithm, the grid found must be behind the 
optimum in the ordering. The generalisation guarantee rests on 
the user's assumptions given that the implementation has found 
the best fit to the underlying target grid.

These principles were demonstrated in the example run in section 
6ii.l.l, which showed how an imperfect training algorithm may 
find the best fit output grid to the underlying target grid. The 
experiments in sections 6ii. 1.4 and 6ii.l.5 showed that validation is 
regularly unable to find the best fit grid, and that there is no 
certainty of termination as there is with the I/IO paradigm.

• If there is imperfect training which does not meet the above 
standards, how close the training algorithm is to the optimum 
may be indicated by the number of trials which do not lock after 
all the gridpoints are familiarised. This was shown in the 
experiment in section 6ii.l.2.

• Unlike Mitchell's symbolic technique, the neural implementation 
does not require fully explicitly represented sets of boundary

296



Conclusions and Further Work Achievements to Date

representatives, but instead may rely on a single explicit 
representative of each set at each stage. In addition, there is the 
possibility to tolerate noise in the data. This was shown in the 
experiment in section 6ii.l.7.

This has shown that there have been gains for neural networks through 
the borrowing of ideas from Mitchell's technique. The ability to recognise 
when the best fit has been found to a target grid is a useful contribution to 
the discipline.

This work also indicates that Mitchell's technique does indeed have a 
wider applicability than just symbolic AI. This view may well apply to 
other techniques in symbolic AI, and thus it may be the case that in 
general symbolic AI and neural networks may gain by developing ideas 
taken from one another.

An underlying theme, which first arose in chapter 2, was the concept of 
bias. This, in many ways, underpins the core of Mitchell's technique. Good 
generalisation is not feasible without a priori assumptions which enable 
the generaliser to provide a concept which fits the data.

Bias arose in a neural network context in chapter 3, where the work of 
Geman et al1 shows that bias can be found in the number of parameters in 
the generaliser and hence, in neural networks, in the topology. 
Approaches such as the average generalisation and VC theories indicate 
that the only way to guarantee generalisation in an unbiased fashion is to 
saturate input space with patterns, such that no other alternative exists. 
Such approaches are not practical, since a learner may typically not have 
the luxury of exposure to a near-exhaustive set of data with which to learn 
the concepts. It is for this reason that Mitchell emphasises the essential role 
of biases in concept learning.2

The capabilities of various topologies was discussed in chapter 4, which 
also provided guidelines for determining the number of units to be used 
in the first and second hidden layers.

1 Geman et al, 1992

2Mitchell, 1980

297



Conclusions and Further Work Achievements to Date

Chapter 5 attempted to find the no-alternative situation for an exact fit to a 
simple topology capable of a linear separation. The weight states with the 
most extreme separation in terms of angle were found as patterns were 
familiarised. The technique could not be generalised to networks with 
hidden units, though, due to weight space symmetries making it difficult 
to measure the angle. Neither could it be generalised to an inexact fit.

In addition to the choice of topology, a bias may be found in the choice of 
grid in the grid technique. The grid chosen determines the accuracy to 
which the neural network may be expected to generalise. This was 
discussed in chapter 6, which resulted in the I/IO paradigm. The I/IO 
paradigm is capable of finding the best inexact fit for any feed-forward 
topology given a suitable training regime.

7.2 Further Work

There are several possibilities for further work which arise from the work 
done in this thesis. The following sections briefly describe some thoughts 
for ways in which the I/IO paradigm could be improved.

7.2.1 Keeping IO Strictly Behind in the Ordering

In the I/IO paradigm in chapter 6, it is possible for 10 to go back in the 
ordering, for certain hypothetical target familiarisations. This leads to the 
possible theoretical concern that there may be false locking, even with 
perfect training. However, when 10 does go ahead in the ordering, there is 
a different classification of the hypothetical gridpoints. This means the 
locking conditions cannot be satisfied, and hence there is no possibility of 
false locking using the I/IO paradigm and a training algorithm that meets 
the standards required.

However, keeping 10 strictly behind in the ordering would be useful, since 
more information could be gained from cases in which I and 10 do not 
lock. This is because the grids that are behind 10 in the ordering could be 
eliminated from consideration, as well as those behind I.

In essence, this would mean the development of other inherent fit 
functions for the 10 direction.

298



Conclusions and Further Work Further Work

7.2.2 Using the Network Trained from the Previous Familiarisation

One of the problems with the technique is training from multiple random 
initial weight states as new output grids are searched for with each 
familiarisation. There is the positive point that the use of a grid will reduce 
training times for a single target grid in comparison to training with the 
underlying patterns. For example, the experiment in section 6ii.l.6 had 500 
underlying patterns, but a grid of size 49. This represents more than a ten
fold reduction in the amount of data used for training. Another positive 
point is that the grid technique does not have to have multiple runs to 
stochastically sample for a best fit. Such sampling occurs in Opper and 
Haussler's Bayesian approach,3 and might also be used in conjunction 
with validation. However, such reduction in the grid technique's training 
time may not always outweigh the cost of multiple training. There is also 
the point that more conventional techniques could use a grid as well.

Currently, the training mechanism does not use any information from the 
grid found at the previous familiarisation. It is often the case that the 
subsequent output grid may differ only slightly from the grid of the 
previous familiarisation. This is especially true for the I direction where 
there is only one change of target for each familiarisation. (An ideal 10 
direction would have this property too.) Hence the consecutive weight 
states could be found more easily by using the weight state resulting from 
the previous familiarisation.

One possibility is to restrict the search of the GA to a given hypersphere of 
weight space, which is centred around the output grid that was found at 
the last familiarisation. This would increase the chance of finding good 
grids which are close to the current output grid, and thus reduce the 
chance of I going ahead in the ordering due to sub-standard training. The 
radius of the hypersphere could be increased during training if nothing 
better than the current output grid could be found.

3Opper & Haussler, 1991

299



Conclusions and Further Work Further Work

7.2.3 Relaxing the Training Requirements Further

Currently, if the training algorithm cannot guarantee the globally 
optimum grid over the whole lattice, it is asked to be able to guarantee a 
grid which is at least not ahead of the optimum grid in the ordering. Since 
the optimum grid is not known, this requirement effectively means that 
the grid found must be the closest grid to the root grid with the inherent 
fit found. This is because there is currently no other way to encourage the 
grid found to be behind the optimum grid in the ordering when there is 
more than one output grid with the same potential function value, some of 
which are ahead of the optimum grid in the ordering. This means that the 
condition on the training algorithm is stricter than that required by the 
framework. Requiring output grids to be as close as possible to the root 
grid is more restrictive than requiring output grids to be at or behind the 
optimum grid in the ordering.

There may be methods for improving training by searching intervening 
weight states between a candidate output grid and its root grid to try and 
find output grids which are closer to the root grid but have the same 
inherent fit as the candidate. The closest such output grid to the root grid 
should then be returned from the training algorithm in place of the 
original candidate. However, this strategy would still not be able to 
guarantee that the final grid found was as close as possible to the root 
grid. It would merely improve the chances of finding the grid.

7.2.4 Proposal of New Instances

The ability to propose the familiarisation of gridpoints that are significant 
in advancing locking would lead to faster locking. This has the 
consequence of fewer familiarisations, and therefore less time spent 
training. The familiarisation order would be chosen on an informed basis, 
rather than at random, as it is in the current implementation.

Although not investigated in this thesis, the I/IO paradigm could also be 
used to generalise to gridpoints whose targets are not determined by 
patterns a priori. These uninstantiated gridpoints would always be 
hypothetical gridpoints. If the technique was unable to lock with a given 
set of uninstantiated gridpoints, then this would indicate either that there

300



Conclusions and Further Work Further Work

are too many uninstantiated gridpoints, or that the training algorithm is 
sub-standard.

Assuming that the training algorithm meets the requirements of the I/IO 
paradigm, then if I and 10 could not lock, the familiarisation of some of the 
uninstantiated gridpoints might enable locking. It would be useful if the 
technique could indicate which of the uninstantiated gridpoints are the 
most likely to enable locking.

Whatever the truth underlying the indication is, the ability to propose 
which gridpoints should be familiarised next would be desirable. A 
possible rule is to familiarise those hypothetical gridpoints for which I and 
10 give different classifications. This could equivalently be used to suggest 
those uninstantiated gridpoints which should be found real targets. The 
benefit of familiarising such gridpoints is that it would at least partially 
resolve the differences between I and 10.

7.3 Conclusion

A better understanding of generalisation in neural networks is essential if 
they are to rival existing non-neural techniques. This thesis has made an 
initial step based on bidirectional convergence into providing a practical 
technique which can give some guarantees about generalisation. The 
biasing factors, in the form of the grid and topology are put in the control 
of the user.

There are three properties that Mitchell outlined as being the key 
properties that learning techniques in symbolic AI lacked before the 
advent of his concept and version spaces technique:4

(i) Knowledge of when the concept has been learned.

(ii) Proposal of informative new instances.

(iii) Detection of and recovery from inconsistent data.

4Mitchell, 1978, p. 8

301



Conclusions and Further Work Conclusion

Properties (i) and (iii) have been transferred into a neural technique. The 
no-alternative situation is recognisable in the technique in chapter 5, and 
in the H/HO and I/IO paradigms of chapter 6. The I/IO, B/W and H/HO 
paradigms are also all able to cope with inconsistent data, as indicated in 
the experiment in section 6ii.l.7. The blurring effect of the grid also helps 
cope with inconsistent underlying data in that it reduces the effect of 
noise. Proposal of new instances has not been addressed in this thesis, 
though it has been argued above in section 7.2.4 that there is scope for 
fruitful research in this area.

Thus, two out of the three properties outlined above have been 
transferred, which shows the extent to which Mitchell's technique has 
been transferred into neural networks. Neural networks now have some 
ability to shout "Eureka!" (or perhaps "Neureka!") when learning 
concepts, without resorting to exhaustive search, excessively large training 
sets, or multiple training runs through version space. Press et al, as 
mentioned at the end of chapter 3, acknowledge the difficulty of reaching 
a globally optimum fit:

In some cases, we may be interested in global, rather than local 

questions. Not, "how good is this fit?", but rather, "how sure am I that 

there is not a very much better fit in some other comer of parameter 

space?" ... This kind of problem is generally quite difficult to solve.5

The ability to reach the no-alternative situation in neural networks means 
that there is knowledge of when to stop training, and that the optimum fit 
has been found, from which generalisation is guaranteed, given the biases 
of the user. This is not possible with standard neural training algorithms.

The generalisation framework outlined in chapter 6 indicates that stronger 
training is needed. Although it is not possible to prove a general rule from 
the single approach developed in this thesis, it nevertheless seems 
reasonable to say that one cannot expect good generalisation without good 
training algorithms.

5Press et al, 1988, pp. 517-518

302



Conclusions and Further Work Conclusion

Training is not an issue for Mitchell, since the concept representation is 
modified exhaustively through pattern matching to maintain the two sets 
of boundary representatives. Neural networks do not need exhaustive 
pattern matching in order to be able to generalise, however, and they are 
also able to tolerate inconsistent data. This benefit has a cost in that 
finding the best fit neural network is heuristic rather than algorithmic — 
though the heuristic has been shown to be a powerful one.

Learning of the sort described in this thesis integrates generalisation and 
training. Existing neural training algorithms aim to find the best fit to the 
training data, but are unable to recognise when it has occurred over all the 
data. Generalisation occurs on the basis of the assumptions of the user 
once training ceases. Neither training nor validation performance alone 
guarantee that the best fit grid has been found. Learning here is the 
process of finding the best fit by combining generalisation, through testing 
the hypotheses of the boundary representatives during learning, with 
training, which finds the weight states that make these hypotheses in the 
first place. Having found the best fit output grid to the underlying target 
grid, the assumptions and biases of the user may be reliably known to 
have been fully exploited.

303



Appendix A File Formats

A Software Manual
A large amount of software was written during the creation of this thesis. 
This appendix demonstrates the usage of the most important applications 
used for the work in this thesis.

A.1 General Points and File Formats

In general, all the applications display a message indicating their usage 
when the command to run them is entered to the C-shell. This usage will 
indicate the files that are expected, and any options the software has. All 
the applications are command-line driven from C-shell, rather than using 
menus and user-friendly interfaces. This is because it makes it easier to 
run the processes in the background, without having to worry about 
whether the process will ask for any input from the user at any stage. (To 
run a process in the background, add an ampersand after the command. If 
the process is likely to take a long time, then prefix the whole command 
with "nohup nice".)

Some of the applications use library archives which I have written, and 
will not compile unless the compiler knows where to find these libraries, 
and their header files. The libraries are contained in /user/rsch/gary/lib, 
and it is necessary to add a line to your .cshrc file in your home directory 
to tell the compiler where to look for them:

setenv LD_LIBRARY_PATH 'printenv LD_LIERARY_PATH': /user/rsch/gaxy/lib

This adds the directory containing the extra libraries to your library path, 
and any applications which use them should now compile successfully.

In the event that /user/rsch/gary has been removed, the current directory 
containing these library files should replace /user/rsch/gary/lib in the 
above command. When changing the directory of the libraries, please note 
that the software expects the header files to be in the specified location, 
and it will be necessary to change any #include statements which include 
header files in /user/rsch/gary/lib.

304



Appendix A File Formats

There are three main file formats which are used by the software. Other 
file formats which are unique to the application concerned will be 
specified in the description of that application. The file formats specify the 
topology and learning constants, the weights, and the patterns.

A.1.1 Format of Topology Files

All topology files must have a ".net" suffix. They are text files, and the 
following illustrates a topology file for a 2*3*1 topology:

nurrfcer_of_weights: 13
nutrber_of_jneurans: 6
nunt)er_of_layers: 3
nutrber_of_ir$xit_units: 2
units_in_jiext_layer: 3
nuntoer_of„cutput_units: 1
max_init_weight: 1.0
mir\_init_weight: -1.0
learn_ty_epoch: true
high_target: 0.9
lcw_target: 0.1
output_tolerance: 0.1
bias_unit_putjxit: 1.0
leaming_rate: 0.5
ircmentum: 0.0
signoicLcoefficient: 1.0
full

If more layers are required, then the number of units in these layers 
should be specified on additional lines which start "units_in_next_layer: ", 
all of which must precede the line beginning "number_of_output_units: ".

The other constants should be self-explanatory. The maximum and 
minimum values for choosing the initial weights are specified on the 
"max_" and "min_init_weight" lines. The "high_" and "low_" target lines 
specify the sigmoid output which is to be treated as 1 and 0 respectively.

The word "full" on the final line is used to imply that a strictly layered 
topology file with full connectivity of the weights is to be specified. For 
other (feed-forward) topologies, the word "full" should be replaced by a 
list in square brackets [] of connections which are to be added to or taken 
away from full connectivity, or a list in curly brackets {} specifying the 
only connections to be made. (Bias weights are always connected. If no 
bias weights are required, the bias_unit_output constant should be set to 
0.0.) A connection to be added should be written a+b, where a and b are

305



Appendix A File Formats

the unit indexes of the units to be connected (which start at 0 for the first 
input unit). A connection to be removed should be written a-b. Each 
connection is separated by a comma, with no white space. E.g. 2*1*1 XOR:1 
[0+3,1+3]. This could also be written {0+2,1+2,0+3,1+3,2+31

A.1.2 Format of Weight Ries

All weight files must have a ".wgt" suffix. They are text files, with each 
line specifying the information for a single connection. The order in which 
the weights are specified is important, and it is best to let the software 
create a weight-file for the topology you wish to use, and then edit the 
weight-file to set the weights manually. This can be done using the library 
of procedures, using the following set of commands:

#include */user/rsch/gary/lib/oldnn/nn.h*

char * _lfcpology_f ile_pame_;
char * _Weights_file_jiame_;

load_tcpolcgy (_Tfcpology_file_name_) ; 
total_pnum = 1; 
oonnect_.net ();
savejweights (_Weights_file_pame_);

The complete program must be compiled with "-Inn" at the end of the 
compiling command to C-shell. The weights file can then be edited. Do 
not edit the first two numbers of each line. These specify the unit in the 
higher layer, followed by the unit in the lower layer of the connection. The 
next number is the weight value. The last two numbers should be ignored. 
Bias weights are at the end of the file, and the bias unit is given the highest 
index of any unit. Otherwise, the units are numbered incrementally 
beginning at 0 for the input unit. Here is an example of a weight file for a 
2*3*1 topology: .

2 0 54.897461 0.000000 0.000000
3 0 -19.791016 0.000000 0.000000
4 0 47.112305 0.000000 0.000000
2 1 -15.149414 0.000000 0.000000
3 1 -3.985352 0.000000 0.000000
4 1 21.898438 0.000000 0.000000
5 2 50.956055 0.000000 0.000000 
5 3 49.203125 0.000000 0.000000

Rumelhart et al, 1986, p. 321

306

oonnect_.net


Appendix A File Formats

5 4 -26.395508 0.000000 0.000000
2 6 29.316406 0.000000 0.000000
3 6 53.229492 0.000000 0.000000
4 6 61.515625 0.000000 0.000000
5 6 -60.447266 0.000000 0.000000

The two input units are numbered 0 and 1; the three hidden units 2,3 and 
4; the output unit 5; and the bias unit 6. The layer of the bias unit is 
considered to be below all other layers. This is because the bias unit 
receives no input, and its output is always fed forward to other units.

A.1.3 Format of Pattern Files

All pattern files must have a ".pat" suffix. Pattern files are text files, with 
the following format: The first line contains the string 
"number_of_patterns: " followed by a number which specifies the number 
of patterns in the file. The subsequent lines specify the patterns, with one 
line dedicated to each pattern. The input is specified first. The input values 
for each unit must be specified, separated by a white space. Then a vertical 
bar " I" follows, and then the target values for the input are specified. 
Target values may be written "hi" and "lo", in which case, they will take 
their values from high_target and low_target in the topology file, 
respectively. The following is an example of a pattern file for the XOR 
problem:

nunber_of_pattems: 4
0.0 0.0 I lo
0.0 1.0 | hi
1.0 0.0 | hi
1.0 1.0 | lo

A.2 Grid Technique Simulators

In this section the applications which were used to obtain the results for 
the grid technique are discussed. There are two. The first uses exhaustive 
search in weight space to find all the possible grids, and then finds the 
optimum grid each familiarisation. It has a variety of paradigms. The 
second uses a GA, and is only for the 1/10 paradigm in chapter 6.

307



Appendix A Grid Technique Simulators

A.2.1 Perfect Training Version Using Exhaustive Search

The exhaustive search application is contained in the directory 
/ user/rsch/gary/sim/grid/exhaustive. You will need "mexhstv7.c" in 
that directory to compile it. The "v7" at the end of the filename specifies 
the version number. At the time of writing, version 7 is the latest version. 
If there are higher versions, compile the highest one. Higher version 
numbers have more options, and also may correct any bugs in the lower 
versions. To compile version 7, type "acc -o mexhstv7 mexhstv7.c" to the 
C-shell.

Having compiled it, type "mexhstv7" at any time to get the following help 
message, which explains the usage of the application:

Usage: mexhstv7 [options] <ws hypercube size> <ws hypercube spacing>
<grid origin 1> <grid origin 2> <grid points 1> <grid points 2>
<grid spacing 1> <grid spacing 2> <seed> <runs>

Options are:
-a Use a 2-2-1 topology instead of a 2-1 topology 
-b Print runs which go back in the ordering only 
-B n Print n runs which go back in the ordering 
-d Printed runs must have different output grids at locking 
~e Ignore equivalent target grids
-E Send e-mail when process finished
-f Print false locking runs only 
-F n Print n false locking runs
-g Print number of optimal grids for each target grid.
-G Ditto, but no other information printed.
-h x Use a 1 hidden layer topology with x hidden units
-i When printing, show all best grids each familiarisaticn
-I When printing, show all grids each familiarisation
-j Just print cne exanple, then stop
-m Print each run which exceeds maximum unfamiliar so far
-M Print the max no of unfamiliars for each target grid 
-n u Print all runs with u unfamiliar gric^oints at locking 
-Nun Print n runs with u unfamiliar gridpoints at locking 
-o f Send run outputs to file f
-O ... Specify familiarisation order 
-p p Use paradigm p, whsre p =

0 => old BW
1 => new BW
2 => new BW blackest /whitest
3 => as above, but only if increase in E value
4 => as above, but using new better fit measure
10 => H/HO
11 => blackest/whitest H/HO
20 .=> best fit H/HO
21 => new best fit H/HO
22 => all new best fit H/HO

-q Quiet output for background process running 
-r Print the end report only 
—s Print successful runs only
—S n Print n successful runs
-t p q Use targets between indexes p and q inclusive

308



Appendix A Grid Technique Simulators

-T g Use target grid g, represented ty o's and x's 
-u Print runs which do not terminate only 
-U n Print n runs which do not terminate 
-x Inexact fit grids only
-X Exact fit grids only 

Maximum grid size: 32 gricfc>oints

The options will be explained later. The rest of the command informs the 
program of various constant settings. <ws hypercube size> specifies the 
size of one edge of the hypercube (centred at the origin) which will be 
searched to find possible grids. Note that since the neural networks used 
here have threshold activation functions, the size of the hypercube is not 
especially important. As the weight values are scaled up, the output of 
each unit will always be the same. By default, a 2*1 topology is used, 
which has a total of three weights. If 1.0 is entered here, then the program 
will search the unit cube centred at the origin, with vertices at ±0.5 in each 
dimension.

<ws hypercube spacing> specifies the interval at which weight states will 
be sampled for every dimension of weight space. A value of 0.1 would 
mean 11 samples per dimension, at -0.5, -0.4, -0.3, -0.2, -0.1, 0.0, 0.1, 0.2, 
0.3, 0.4 and 0.5, which for a 3 dimensional weight space would mean ll3 
or 1331 samples. For a 3 x 3 grid, and a weight space hypercube size of 1.0, 
0.1 is a small enough spacing to find all 54 output grids possible with a 2*1 
topology. For a 4 x 4 grid, this figure is 0.05, and for a 5 x 5, 0.01 is needed 
before all the grids are found.

The program assumes 2D input. The next constants to be specified in the 
command give details of the input grid to be used. The first two numbers 
specify the co-ordinates of the bottom left hand corner of the grid (the 
"grid origin"). The next two numbers specify the number of gridpoints in 
each direction. The next two numbers specify the spacing between the 
gridpoints in each direction. For example, a 4 x 3 grid with (0.0,0.0) as the 
origin, a horizontal spacing of 1.0, and a vertical spacing of 0.4 would be 
specified by the sequence of numbers: 0.0 0.0 3 4 0.4 1.0. The program can 
cope with any grid size up to a maximum of 32 gridpoints in total (i.e. a 
4x8 grid). Runs using more than 25 gridpoints in total are likely to take a 
very long time, however (i.e. more than 1 week) unless the number of 
target grids explored is restricted using the -t, or -T options (see later).

309



Appendix A Grid Technique Simulators

The next number is the seed. The seed should be an integer if a 
deterministic run is required. Any two runs with the same value for the 
seed will have the same seed of the random number, and therefore, all else 
being equal, will produce the same output. Otherwise the word "time" 
may be used instead, in which case, the run is seeded by the amount of 
time the computer has been on for.

Finally, it is necessary to specify the number of runs. The program 
automatically goes through every possible target grid for the input grid 
specified. The "runs" constant specifies the number of different random 
pattern presentation orders that will be tried for each target grid. A value 
of 1 for this constant means that a single presentation order will be tried 
for each target grid.

Here is an example using a 2 by 1 grid. The following command is typed 
to the C-shell: mexhstv7 1.0 0.1 0.0 0.0 1 2 1.0 1.0 99 1. The output is given 
below.

Ibtal nurrber of grids: 4
Running all target grids 1 times...
Termination after all gric^oints familiarised
Tctrget grid (index 0):
oo 12

Global minimum error grids:
oo

Nurrber of familiarised gridpoints: 2 
Familiarisation order:
1 2

H's targets:
o. oo

H’s outputs:
oo oo

H's errors:
0 0

HO's targets:
ox oo

HO's outputs:
ox oo

HO's errors:
0 0

H went back in the ordering
Termination after all gridpoints familiarised

310



Appendix A Grid Technique Simulators

Target grid (index 1):
xo 1 2

Global minimum error grids: 
xo

Mmber of familiarised gridpoints: 2 
Familiarisation order:
1 2

H's targets:
X. xo

H's outputs:
XX xo

H's errors:
0 0

HO's targets:
xo xo

HO's outputs:
xo xo

HO's errors:
0 0

Termination after all gric^oints familiarised 
Target grid (index 2): 
ox 1 2

Global minimum error grids:
ox

Umber of familiarised gridpoints: 2 
Familiarisation order:
1 2

H's targets:
o. ox

H's outputs: 
oo ox

H's errors:
0 0

HO's targets: 
ox ox

HO's outputs:
ox ox

HO's errors:
0 0

Termination after all gric|?oints familiarised 
Target grid (index 3): 
xx 12

311



Appendix A Grid Technique Simulators

Global minimum error grids: 
xx

Nunber of familiarised gridpoints: 2 
Familiarisation order:
2 1

H's targets: 
.X XX

H's outputs: 
ox xx

H's errors:
0 0

HO's targets: 
XX XX

HO's outputs: 
XX XX

HO's errors:
0 0

Unfam Term 
0 4
1 0
2 0
Nunber of times 
Nunber of times 
Nunber of times

FalseH FalseHO H!=H0
0 0 0
0 0 0
0 0 0
H went back in ordering: 1
HO went back in ordering: 0
unterminated after all gridpoints presented: 0

The output is interpreted in the following way: For each run, comments 
are printed, such as "H went back in the ordering", or "Termination after 
all gridpoints familiarised". Then the target grid is printed, along with a 
unique identifying number, its index. The grid is printed with an 'x' 
representing a target or output of 1, and a 'o' representing a target or 
output of 'O'. The gridpoint numbers are then printed.

Subsequently, the set of globally optimal grids is printed for that target 
grid. A false locking run is a run in which either of the boundary 
representatives does not belong to the set of globally optimal grids once 
the terminating condition is satisfied for that run.

Then the number of gridpoints familiarised before the terminating 
condition is satisfied is displayed, followed by the order of familiarisation 
of the gridpoints. The order of familiarisation uses the index numbers for 
the gridpoints, which are displayed next to the target grid.

312



Appendix A Grid Technique Simulators

Then the run itself is printed. Familiarisation proceeds horizontally across 
the screen, with the target, output and error (which is the fit for other 
paradigms), for each boundary representative.

At the end of all the runs, a report is printed, which shows the number of 
terminations for a given number of hypothetical gridpoints. Also shown is 
the number of false locking runs, and the number of runs for which the 
boundary representatives were not equal at termination. At the bottom of 
the table, further information is printed, which shows the number of times 
each boundary representative goes back in the ordering. (This is 
meaningless in the H/HO paradigm.) Also displayed is the number of 
runs which did not satisfy the terminating criteria even after all the 
gridpoints were familiarised.

There are various options which may be used, which affect the 
information that is displayed, the target grids used, which paradigm to 
test, and the topology.

-a This option uses a 2*2*1 topology rather than the default 2*1 
topology. Be aware that many more grids are possible, even 
though only one extra hyperplane has been drawn. Runs will 
therefore take rather longer, as there are a larger number of grids 
to search to find the optimum for each target grid.

-b Rather than printing all the runs, as is the default, this option 
displays only those runs in which one or both of the boundary 
representatives goes back in the ordering at least once.

-B n This limits the number of going back in the ordering runs 
displayed to the first n.

-d This option only displays those runs in which the boundary 
representatives are different grids at locking. This is an entirely 
legitimate possibility for inexact fit target grids with more than 
one optimum fit.

-e In this option, any target grids which are equivalent to previous 
target grids which have been tried are ignored. Target grids are 
equivalent by various symmetries — see chapter 6.

313



Appendix A Grid Technique Simulators

-E This option sends e-mail informing the user when the program 
has finished running. This is useful for lengthy process which are 
run in the background.

-f Only runs in which either of the boundary representatives does 
not belong to the set of optimal fits to the target grid are 
displayed. These are false locking runs.

-F n The number of false locking runs displayed is restricted to the first 
n.

-g With this option, each run printed also shows the number of 
choices that a boundary representative has for each 
familiarisation. When the runs are completed, a table follows the 
final report, which displays the average number of choices for 
each boundary representative at each familiarisation.

-G For each run, the number of choices only is printed, and other 
information is not printed.

-h x This option enables the user to set the number of hidden units in a 
single hidden layer. There is currently no possibility to use two 
hidden layer topologies with this program. You are warned that 
with numbers of hidden units above 3, you will be facing a very 
long wait whilst the program finds all the possible grids.

-i This option enables more information to be printed for each 
familiarisation. It is similar to the -g option, with the exception 
that the actual optimal grids are displayed each familiarisation, 
rather than the number of optimal grids.

-I All the possible grids are printed with their errors/inherent fits, 
depending on the paradigm. Be warned that this may generate a 
great deal of output.

-j The program stops after the first run printed.

-m A run is only printed if the number of hypothetical gridpoints at
locking exceeds the previous run printed.

314



Appendix A Grid Technique Simulators

-M This really applies when several runs are being done per target 
grid. The program prints the maximum number of hypothetical 
gridpoints at locking over all the runs done on each target grid.

-n u Only print those runs which have u hypothetical gridpoints at 
locking.

-N u n Only print n runs which have u hypothetical gridpoints at locking.

-of The output of the program is saved in the file with name/. At the 
top of the file, the whole of the command is printed. This informs 
the user of the settings used to achieve the output in the rest of the 
file.

-O ... Specify the familiarisation order. The order in which the 
gridpoints are to be familiarised each run may be specified. Very 
little in the way of checking is done here, so be sure that the order 
is entered correctly. The numbering of the gridpoints is as 
specified by the numbers displayed next to the target grid. The 
familiarisation order must be the first option on the command line. 
At least one other option must be used, such as options -t or -T.

-p p Change the paradigm. The default is the H/HO paradigm (p = 10). 
p should be a number, which corresponds to the desired 
paradigm. The following values of p are of interest with relevance 
to the paradigms discussed in chapter 6:

4 The B/W paradigm, as described in chapter 6.

10 The H/HO paradigm, as described in chapter 6.

22 The I/IO paradigm, as described in chapter 6.

-q No output is sent to the terminal. This is for background process 
running.

-r Only print the end report. This option just produces the table of 
results at the end of all the runs.

—s Only those runs with one or more hypothetical gridpoints at
locking are printed. These are the successful runs.

315



Appendix A Grid Technique Simulators

-S n The first n successful runs are printed.

-t p q Rather than running through all the possible grids, as is the case 
by default (unless the -e, -x, or -X options are selected), this runs 
through all grids from p to q, inclusive, p and q are the index 
numbers of the target grids, and p must be less than or equal to q.

-T g Use target grid g. Rather than using index numbers to represent 
the grid, g is a string of 'o' and 'x' characters, which specify the 
underlying target grid for all runs. They must be in the order 
specified by the numbers printed next to the target grid in a run 
using the same size of grid as g. This order starts at 1 for the top 
left hand gridpoint, and increases across the grid before going 
down.

-u Only print those runs which do not terminate. These are the runs 
for which the terminating condition of the paradigm is not 
satisfied even after all the gridpoints have been familiarised.

-U n Print n runs which do not terminate.

-x Rather than using all the target grids, the only target grids selected 
are those which are not realisable exactly by the current topology.

-X As -x, but the only target grids selected are those which are 
exactly realisable.

The following example shows the software being used with a 2*2*1 
topology, and a specified 3x2 target grid. Information about the errors for 
all the grids is displayed for each familiarisation, and the H/HO paradigm 
is used. Also displayed are the number of choices for H and HO at each 
familiarisation. A single successful run out of 30 is to be displayed. For the 
displayed run, the entire run and familiarisation sequence is printed first. 
Then, the extra information is printed, which shows the misclassification 
error of each output grid on the target grid of each boundary 
representative at each familiarisation. Real gridpoints are indicated by 
upper case characters. Seed 99 is used.

mexhstv7 -a -T xqxcsxd -g -I -p 10 -S 1 1.0 0.1 0.0 0.0 2 3 1.0 1.0 99 30 
Getting 1HL grids...
Ccrtbining 1HL grids to output grids...

316



Appendix A Grid Technique Simulators

Tbtal nuirber of grids: 62
Extra grids fran 2-2-1 topology: 34
Nurrber of separations of 1HL units: 14
Running target grids between 21 and 21 30 times... 
Target grid (index 21) : 
xox 123
oxo 4 5 6

Global minimum error grids:
oox xoo xxx xox xox xox
oxo oxo oxo ooo xxo axx

Number of familiarised gridpoints: 5
Familiarisation order:
1 2 4 5 3 6

H's targets:
x.. xo. XD. xo. xox 
.................o.. ox. ox.

H’s outputs:
xox xoo xox xoo xox
oxx xox oox oxo axx

H's errors:
OOOOO
H's choices:
31 15 7 3 1

HO's targets:
xxo xox xoo xox xox
xoo exo ckd oxx oxo

HO's outputs:
xxo xox xoo xox xox
xoo ooo exo oxx oxx

HO's errors:
0 10 0 1
HO's choices:
16 116

Familiarisation 1: Gridpoint 1
Thrget grids: (H, HO)
Xoo Xxo
ooo xoo

Output grids:
Ooo Oox Oox Oox Ooo Ooo Oxx Oxx Ooo Ooo Oox Oxx Oxx Ooo Xoo Xxx Xxx Xxx Xoo Xxx 
ooo ooo oox oxx oox oxx oax oxx xoo xxx xxx xxx ooo xxo ooo ooo oox oxx xoo xxx

Errors on H's target grid:
11111111111111000000
Errors on HO's target grid:
34564545245433223413

Xoo Xoo Xxo Xxo Xxo Xxo Xxx Xxx Ooo Oox Oxo Oxo Oxo Oxo Oxx Oox Oox Oxo Oxo Oxo 
xxo xxx ooo xoo xxo xxx xoo XXO CKD OXO OOO OOX 0X0 OXX OXO xoo xxo xoo xxo xxx

Errors on H's target grid:

317



Appendix A Grid Technique Simulators

00000000111111111111 
Errors on HO's target grid:
23101212452334434123

Qxx Qxx Xoo Xxo Xoo Xoo Xxo Xxo Xxx Xox Xox Xox Xqx Oqx Xqx Xox Xxx Xqx Ooo Xoo 
XOO XXO OQX OQX OXO QXX OXO QXX 0X0 OOO XOO XXO XXX XOX OOX XOX XQX QXX XOX XQX

Errors on H's target grid:
11000000000001000010 
Errors on HO's target grid:
23323423332344432532

Xxo Qxx

xqx xox

Errors on H's target grid:
0 1
Errors on HO's target grid:
1 3

Cutput grids chosen: (H, HO)
Xox Xxo
qxx xoo

Familiarisation 2: Gridpoint 2
Ihrget grids: (H, HO)
XOo XQx
ooo oxo

Output grids:
OOo OCX 00X OQX OOo OOo QXx OXx OCo OOo OCX QXx QXx OOo XOo XXx XXx XXx XQo XXx 
ooo ooo oox axx oox axx oax axx xoo xxx xxx xxx ooo xxo ooo ooo oqx qxx xoo xxx

Errors on H's target grid:
11111122111221011101
Errors on HO's target grid:
32324343443433223233

XQo XOo XXo XXb XXo XXb XXx XXx OOo OCX QXo QXo QXo QXo OXx OQx OCX QXo QXb QXb 
xxo xxx ooo xoo xxo XXX XOO XXO OXO OXO ooo OCX QXD QXX QXO XOO XXO XOO XXD xxx

Errors on H's target grid:
00111111112222211222
Errors on HO's target grid:
23343432214534232545

OXx OXx XOo XXb XOo XOo XXb XXb XXx XQx XQx XQx XQx OQx XQx XQx XXx XQx OCto XQo 
xoo XXO OOX OOX CKO OXX QXD OXX CKO OOO XOO XXO XXX XOX OOX XOX XOX CKX XOX XQX

Errors on H's target grid:
22010011100001001010
Errors on HO's target grid:
43341223112124234154

XXo OXx
XOX XQX

Errors on H's target grid:
1 2

318



Appendix A Grid Technique Simulators

Errors on HO's target grid:
5 5

CUtput grids chosen: (H, HO) 
XOo XQx 
XQX OOO

Familiarisation 3: Gridpoint 4
Target grids: (H, HO)
XOo XOo
Ooo Oxo

Output grids:
OOo OQx OQx OCx OOo OOo OXx QXx OOo OOo OQx QXx OXx OOo XOo XXx XXx XXx XOo XXx 
Ooo Ooo Oox Oxx Oox Oxx Oox Oxx Xoo Xxx Xxx Xxx Ooo Xxo Ooo Ooo Oox Oxx Xoo Xxx

Errors on H's target grid:
11111122222322011112
Errors on HO's target grid:
23433254334542134324

XOo XOo XXo XXo XXb XXo XXx XXx OOo OCx OXo OXo OXo OXo QXx OQx OQx OXo QXb QXb 
Xxo Xxx Ooo Xoo Xxo Xxx Xoo Xxo Oxo Oxo Ooo Oox Oxo Oxx Oxo Xoo Xxo Xoo Xxo Xxx

Errors on H's target grid:
11122222112222222333
Errors on HO's target grid:
12232343123423343434

QXx OXx XOo XXo XOo XOo XXb XXb XXx XQx XQx XQx XQx OQx XQx XQx XXx XQx OOo XOo 
Xoo Xxo Oox Oox Qxo Oxx Oxo Oxx Oxo Ooo Xoo Xxo Xxx Xbx Oox Xox Xox Oxx Xox Xox

Errors on H's target grid:
33010011101112012021
Errors on HO's target grid:
54230112223235345243

XXb QXx
Xox Xox

Errors on H's target grid:
2 3
Errors on HO's target grid:
4 6

Output grids chosen: (H, HO)
XQx XOo
Oox Qxo

Familiarisation 4: Gridpoint 5
Target grids: (H, HO)
XOo XQx
OXo OXx

319



Appendix A Grid Technique Simulators

CUtput grids:
OOo OCx OCX OCX OOo OOo OXx QXx OOo OOo OCX QXx OXx OOo XOo XXX XXX XXX XOO XXx 
OOo OOo OCX OXx OCX OXX OCX QXX XOo XXx XXx XXx OOo XXo OOo OOo OCX OXX XDo XXx

Errors on H's target grid:
22212132322332122122 
Errors on HO's target grid:
43213232532344332142

XDo XOo XXo XXo XXb XXo XXX XXx OOo OCX OXo QXo QXo OXo QXx OQx OCX OXo OXb OXo 
XXo XXx OOo XOo XXo XXx XOo XXb OXb OXo OOo OQx OXb QXx OXb XOo XXo XOo XXb XXX

Errors on H's target grid:
11232232113322232433 
Errors on HO's target grid:
32454343325443343654

QXx OXX XDo XXb XOo XOo XXb XXb XXX XQx XQx XQx XQx OQx XQx XQx XXX XQx OOo XOo 
XOo XXb OQx OQx OXo QXX OXb QXx QXo OOo XOo XXb XXX XQx OQx XQx XQx OXx XQx XQx

Errors on H's target grid:
43120011112113123032 
Errors on HO's target grid:
54232132223213123043

XXo QXx
XQx XQx

Errors on H's target grid:
3 4
Errors on HO's target grid:
4 4

Output grids chosen: (H, HO)
XOo XQx
OXo OXx

Familiarisation 5: Gridpoint 3
Thrget grids: (H, HO)
XQX XOX
QXo OXb

Output grids:
OOO OOX OOX OOX OOO OOO OXX QXX OOO OOO OQX QXX OXX OOO XOO XXX XXX XXX XOO xxx 
OOo OOo OQx OXx OQx OXx OQx QXx XDo XXx XXx XXx OOo XXo OOo OOo OQx QXx XOo XXx

Errors on H's target grid:
32213232432333222132
Errors on HO's target grid:
32324343443433223233

XOO XOO XXO XXO XXO XXO XXX XXX OOO OOX OXO QXO QXO OXO OXX OQX OOX 0X0 QXO OXO 
XXo XXx OOo XOo XXo XXx XQo XXo QXo OXo OOo OQx OXo OXx OXb XOo XXo XOo XXb XXx

Errors on H's target grid:
22343332214433232544
Errors on HO's target grid:
23343432214534232545

320



Appendix A Grid Technique Simulators

OXX OXX XOO XXO XOO XOO XXO XXO XXX XOX XQX XOX XQX OQX XQX XCK xxx xox ooo xoo 
XOo XXo OQx OQx QXo OXx OXb OXx QXb OOo XOo XXo XXx XQx OQx XCK XCK OXx XQx XQx

Errors on H's target grid:
43231122112113123043
Errors on HO's target grid:
43341223112124234154

XXO QXX
XQx XQx

Errors on H's target grid:
4 4
Errors on HO's target grid:
5 5

CXutput grids chosen: (H, HO)
XOX XOX
OXx OXx

Unfam Term FalseH FalseHO H!=H0
0 25 0 0 18
1 5 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
Number of times H went back in ordering: 29
Number of times HO vent back in ordering: 46
Number of times unterminated after all gridpoints presented: 0
Average number of choices for H and HO each familiarisation:
Fam H HO
1 31 1.66667
2 15 1.33333
3 7 1.16667
4 3 1.5
5 1 6
6 6 6

Finally, the following example shows the maximum number of
hypothetical gridpoints at locking for the 1/10 paradigm for 20 runs on
each non-equivalent, inexact fit 4 x 4 target grid between indexes 6 and 15
inclusive. Seed 77 is used. Only the report is printed, along with the 
maximum number of hypothetical gridpoints for each target grid tested. 
The total number of grids is the total number of output grids found for the 
weight states sampled.

mexhstv7 -e -M -p 22 -r -t 6 15 -x 1.0 0.05 0.0 0.0 4 4 1.0 1.0 77 20 
Total number of grids: 174
Running target grids between 6 and 15 20 times...
Ignoring equivalent target grids.
Inexact fit target grids only.
Max. unfamiliar gric^oints for target grid 6: 3 (1 times)
Max. unfamiliar gric^oints for target grid 9: 4 (1 times)
hfex. unfamiliar gricfcoints for target grid 10: 3 (2 times)

321



Appendix A Grid Technique Simulators

Max. unfamiliar gric^oints for target grid 11: 3 (1 times)
Unfam
0
1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16

Term
37
23
15
4
1
0
0
0
0
0
0
0
0
0
0
0
0

Falsel
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

FalselO
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

=10

Nuntoer of times I went back in ordering: 0
Number of times 10 want back in ordering: 3
Nuirber of times unterminated after all gridpoints presented: 0

Target grids 7, 8,12,14 and 15 are ignored because they are all realisable. 
Target grid 13 is ignored because it is symmetrically equivalent to target 
grid 11. Figure A.1 shows the target grids.

□ ■ ■ □ ■ ■■□ □ □□■ ■ □ □ ■ □ ■ □ ■
□ □□ □ □ □□□ OOOD □ □ □ LJ □ □□□
□ □□□ □ □□□ □ □□□ □ □□□ □ □□□
□ □□□ □ □□□ □ □□□ □ □□□ □ □□□

6 7 8 9 10

□ ■■■ ■ ■ ■■
□ □□ □ □ □□□ □ □□□ □ □ □ □ □ □ □□
□ □ □ □ □ □ □ □ □ □□□ □ □ □ □ □ □ □□
□ □□□ □ □□□ □ □□□ □ □□□ □ □□□

11 12 13 14 15

Figure A.1 — The 4x4 target grids with indexes from 6 to 15 inclusive.

A.2.2 Imperfect Training Version Using a GA

The imperfect training application is contained in the directory 
/user/rsch/gary/sim/grid/imperfect. You will need the library files and 
the files makefile and mmgav9.c to compile it. There may be later versions, 
as for the exhaustive search technique. Version 9 is the most up to date 
version at the time of writing. However, the makefile should be set up 
such that you can just type "make" to C-shell, and the most up to date

322



Appendix A Grid Technique Simulators

version will be compiled. Having done so, the following help message can 
be obtained at any time by typing "mmgav9":

Usage: mmgavS [options] <X origiro <Y origin> <X spacing> <Y spacing>
<Maxirtun number of generations>
<GA constants> <lItpology> <Pattems> <Weights> <Seed> <Trials>

Options are:
-b Breakdown of inherent fit displayed
-d o Restricted display option, o, vhich may be one of:

report Print report only
nofams Do not print familiarisation sequence 

-f Constant familiarisation sequence for all trials 
-g f Save gric^oints to pattern file f (with .pat suffix)
-G Just train the grid using a GA and MCE 
-i f Use (irregular) grid fran pattern file f 
-m n Terminate validation after n generations 
-M Send mail vhen runs ccrrplete
—o f CUtput to file f
-p x Progress report interval for GA = x
-t f Test saved solutions on samples fran files whose names

are of the following format: 
fMJ.pat

where f is specified on the canrand line, and MJ is a two digit 
nurrber starting at 01 and increasing in units of 1.
T distribution data are available for values of MJ up to 16.

-T Just shew the target grid 
-v Carpare with validation cn grid 
-V Carpare with validation cn patterns
-w n Just do validation on grid with n gridpoints in v. set 
-W n Just do validation on patterns with n patterns in v. set

The options will be explained later. The program is designed to work for 
2D input and ID output only, with the I/IO paradigm, as described in 
chapter 6. <X origin> is the co-ordinate of the origin of the grid on the 
horizontal axis. It is akin to <grid origin 2> in mexhstv7. <Y origin> is the 
co-ordinate of the origin of the grid on the vertical axis. <X spacing> and 
<Y spacing> are again similar to <grid spacing 2> and <grid spacing 1> in 
mexhstv7. Here, however, the grid is (by default) calculated on the basis of 
the patterns file specified. The grid origin specifies the co-ordinate at 
which to start the grid. For each pattern, the nearest gridpoint is found 
and defined by making increments of the appropriate spacing value on 
each dimension until the nearest gridpoint is found. The only gridpoints 
that will be defined are those which have been found on the basis of the 
patterns. This means that each gridpoint can be potentially familiarised.

The <maximum number of generations> specifies the maximum number 
of generations allowed to find the best output grid for I or 10 with each 
familiarisation.

323



Appendix A Grid Technique Simulators

The next four items on the command line are files. The format of the 
patterns, weights and topology files are as shown in section A.1. The 
patterns file contains the patterns from which the grid will be constructed. 
The weights file specifies the filename which the final weights will be 
saved to. The topology file specifies the topology which is to be used on 
the given grid. The user is warned that the more weights there are in the 
topology, the more generations will be needed to find a good fit each 
familiarisation. The GA constants file is of a format indicated by the 
following example:

pcpulaticrv_size: 100
crossover_profcability: 1.0
rautatiorvprobability: 1.0
nurri3er_of3^es_per_chrcinoecms: 2
nmrber_of_bits_before_binary_point: 5
best_gene_selectionJoias: 10.0

All GA constants files must end with the suffix ".gac".

The first three constants in the GA constants file are self-explanatory.

The number_of_bytes_per_chromosome constant specifies the number of 
bytes that will be allocated for each weight. This means that for a 2*2*1 
topology, with 9 weights in total, the following file will use a string of 
length 18 x 8 = 144 bits to represent the entire weight state. There was 
some confusion about genes and chromosomes and which was a smaller 
DNA sequence than which when writing the software. I thought that there 
were many chromosomes on a gene, and thus it seemed appropriate to 
label a single weight as being a chromosome. Naturally, it turned out to be 
the other way round, and thus it would have been better to make a 
correspondence between a gene and a weight. Since it is all completely 
meaningless, and I had already created several files with this format, the 
convention stuck, however.

The number_of_bits_before_binary_point constant specifies how many 
bits out of the number of bytes allocated for each weight will count 
towards the integer part of the weight value when the binary string is 
decoded. The value 5 here means that the maximum integer part weight 
value is 63. The remaining 11 bits are used for the rational part of the 
weight value.

324



Appendix A Grid Technique Simulators

The best_gene_selection_bias constant gives the strength of the bias that 
will be assigned to the best gene in the population when it comes to 
selecting genes for the next generation. This line of the file is optional, and 
if not included, the default value is 2.0. The higher the value, the more 
likely the next generation is to contain genetic material from the best gene 
in the current generation.

After all the files have been specified, in the order indicated, the seed may 
be specified, in the same way as mexhstv7. Finally, the number of trials to 
be run on the target grid based on the pattern file is indicated. This 
specifies the number of different random presentation orders that will be 
tried on the target grid. A full sequence of familiarisation is tested for each 
trial, until the terminating condition is satisfied, or all the gridpoints have 
been familiarised.

Thus, before the program can be run, a pattern file, topology file and GA 
constants file must be prepared. The following pattern file may be used to 
deliberately create the 3x3 grid shown in figure A.2:

number_of_pattems: 9
0.0 0.0
1.0 0.0
2.0 0.0
0.0 1.0
1.0 1.0
2.0 1.0
0.0 2.0
1.0 2.0
2.0 2.0

hi
hi
hi
lo
hi
hi
hi
lo
hi

2.0 -n ■ □ ■
1.0 - □ ■ ■
0.0 - ■ ■ ■

I
0.0

I
1.0

"1
2.0

Figure A.2 — The grid to be used in the following examples.

A topology file is also created for a 2*1 topology, and the GA constants file 
illustrated above will also be used. In /user/rsch/gary/sim/grid/ 
imperfect, the directory in which mmgav9 is to be found, there are also 
subdirectories containing various topology, pattern, GA constants and

325



Appendix A Grid Technique Simulators

weight files. These directories are given single letter names, which are "a", 
"p", "g" and "w" respectively. The topology file is "a/2-1. net", the GA 
constants file is "g/wild.gac" and the pattern file is "p/appdx.pat". Thus, 
if "mmgav9 0.0 0.0 1.0 1.0 50 g/wild.gac a/2-l.net p/appdx.pat 
w/appdx.wgt 99 1" is typed to C-shell, with /user/rsch/gary/sim/grid/ 
imperfect as the current working directory, the output is as follows:

Index nunbers for gridpoints:

7 8 9
4 5 6
12 3

Familiarisation sequence:
892631745

Fam no. GP no. I target

oOo
ooo
ooo

I output

oOo
ooo
ooo

I ihf

0

10 target

xOx
xxx
xxx

10 output

xXx
xxx
xxx

10 ihf

01 8

2 9 oQX oOO 0 xQX xXX 0
ooo ooo xxx xxx
ooo ooo xxx xxx

3 2 oQX oOO 0 xQX xXX 0
ooo ooo xxx xxx
aXo oOo xXx xXx

4 6 oOX OQX 2 xQX xXX 1
ooX oaX xxX xxX
oXo aXx xXo xXo

5 3 oOX oQX 4 xOX xXX B 0
oaX ooX xxX xxX
QXX oXX xXX xXX

6 1 oQX oOX 4 XOX xXX 0
ooX oaX xxX xxX
XXX OXX XXX XXX

7 7 XOX OOX 4 XOX XXX 0
oaX ooX xxX xxX
XXX OXX XXX XXX

8 4 XOX OOX 4 XOX OOX 1
OoX OaX QxX QxX
XXX OXX XXX XXX

326

l.net


Appendix A Grid Technique Simulators

9 5 XQX OQX 6 XOX OQX 1
OXX OXX axx QXX
xxx XXX xxx xxx

Termination achieved with 0 unfamiliar gridpoints

Underlying target grid

XCK
QXX
XXX

I's final output grid

OOX
axx
xxx

IO's final output grid

oox
CKX
XXX

Report: -------------------------------------------

Trial Uhfam I mce 10 mce I != 10 I back 10 back
1* 0 1 1 0 0 1

* - Saved weight state of I and 10.

The first part of the output informs the user of the index numbers of the 
gridpoints. (An index number of 0 means that the gridpoint 
corresponding to that position is undefined. This is not the case here.) The 
familiarisation sequence is then given, followed by a table, which, for each 
familiarisation, prints the index number of the gridpoint familiarised, and 
the target output and inherent fit for I and 10. (Note that the CLS term is 
ignored in the inherent fit value.) If either I or 10 go back in the ordering, a 
B is printed next to the output grid. (See 10 in familiarisation 5.)

The same convention is used for printing the grids as in mexhstv7. An 
upper case letter means the gridpoint is real, with an zzx" (or "X") 
representing a target or output of 1, and an "o" (or "O") representing a 
target or output of 0.

When the terminating condition is satisfied, or all gridpoints have been 
familiarised, whichever comes first, the underlying target grid, and final 
output grids of I and 10 are printed. If many trials are being done, the

327



Appendix A Grid Technique Simulators

software then proceeds to the subsequent trial. Only 1 trial was used in the 
above example.

Once all trials are finished, a report is printed. This shows, for each trial, 
the number of hypothetical gridpoints at locking (which is -1 if I and 10 
had not locked after all gridpoints were familiarised), the misclassification 
errors of I and IO's locking grids, whether or not I and 10 were the same 
grid at termination, and how many times I and 10 went back in the 
ordering during the trial.

Although the asterisk indicates the saved weight state, version 9 actually 
saves the weight states of all trials. The run above creates the following 
files in the directory w:

w/appdx. I-t01. wgt w/appdx. 10-t 01.wgt
w/appdx. I. wgt w/appdx. 10.wgt

The weight state for I and 10 each trial is saved as $.I-tNN.wgt and $.10- 
tNN.wgt respectively, where $ represents the filename entered on the 
command line minus the .wgt suffix ("w/appdx" here) and NN is the 
number of the trial. The starred trial in the report is also saved as $.I.wgt 
and $.I0.wgt for the weight states of I and 10. This is always the trial with 
the greatest number of hypothetical gridpoints at locking.

There are various options which may be used, to enable comparisons with 
validation, training using just a GA, and the information that is displayed:

-b Display a breakdown of the inherent fit of I and 10 each 
familiarisation. All the possible inherent fit values are displayed: 
OFC, OFM, OUM, OUC, SFC, SFM, SUM, SUC, and CLS. See 
chapter 6 for an explanation of the terminology.

-d o Restricted display options. Less information is printed. This is 
especially good for situations whereby many trials are to be done, 
which would otherwise result in a great deal of output, o is a 
string which may be one of:

"report" Only the report is printed.

328



Appendix A Grid Technique Simulators

"nofams" The familiarisation sequence is not printed, but the 
underlying target grid, and output grids of I and 10 are 
printed at the end of each trial.

-g f The gridpoints are saved to a file/./must have a ".pat" suffix.

-G The grid is used as the set of patterns for a GA to train, with
misclassification error as the function to be minimised. No 
Mitchellian processes are used. This is basically treated as a 
scenario in which validation is to be done on the grid, only with 
no points in validation set. It is useful for deciding how many 
generations may be needed to find a near-optimum solution on 
the grid based on the given patterns.

-i / File / (with a ".pat" suffix) is used as the set of gridpoints in the 
grid. The targets of the gridpoints are decided using the patterns 
in the patterns file entered after the GA constants file on the 
command line. Each pattern has a vote for the target of its nearest 
gridpoint. Each gridpoint assumes the target of the majority of the 
patterns who have a vote for it. Equal votes are cast in favour of 
the nearest pattern to the gridpoint. Each gridpoint must have a 
target assigned to it by at least one of the patterns, otherwise an 
error message is displayed, and the program terminates.

-m n By default, validation continues until the validation error goes up 
from one generation to the next. This option enables the setting of 
a maximum number of generations, n, to be used, in case 
validation takes too long.

—o/ The output is sent to file/, rather than to the terminal. The first line
of/contains the command entered to C-shell, so that you can tell 
how the output was generated.

-p x A progress report is printed during training every p generations. 
This takes the following format:

verr=0 gen=99 glob=4 rrax=4 (freq=95) min=2 mode=4 (freq=95) diff=3

"verr" is the validation error. It is not printed if the GA is being 
used to train I or 10. "gen" is the number of the generation, "glob"

329



Appendix A Grid Technique Simulators

is the best solution found so far. (N.B. The GA maximises a 
function. When training using the -G option above, the value 
printed here is the fit, rather than the misclassification error.) 
"max" is the best solution in the current population, and in 
parentheses after it is "freq" which is the total number of members 
of the population which have this solution, "min" is the worst 
solution in the current population, and "mode" is the most 
popular, with the frequency of the most popular solution in 
parentheses, "diff" is the number of different solutions in the 
population.

-tf A paired f-test is done using the best validation trial and the best 
Mitchellian trial (the grid found by I is used), to see which has the 
better validation performance on a number of samples of 
untrained patterns. There is a bug, in that when validation and the 
I/IO paradigm have the same solution, the t statistic is displayed 
as "NaN" which means "not a number". The bug is not crucial, 
and could be fixed by checking that validation and the I/IO 
paradigm do not have the same classification of the patterns in the 
untrained sample. If they do, a message should be printed saying 
so, and that there is therefore no point in comparing their 
performance using a f-test.

The number of samples in the test depends on how many files 
there are with the required filename./is a prefix to the files, with 
the remainder of the filenames being a 2 digit number and the 
".pat" suffix. The 2 digit number must start at "01" and increase in 
steps of 1 to the last sample.

For example, if 5 samples are being used to compare the 
performance of validation and the I/IO paradigm, then a set of 
pattern files would be: exampleOl.pat, example02.pat, 
example03.pat, example04.pat and exampleOS.pat. In this case, / 
would be the string "example".

-T The underlying target grid only is shown. No training takes place. 
This is useful for checking that the underlying grid is close to the 
one you are looking for on the set of patterns being used to

330



Appendix A Grid Technique Simulators

determine the grid. If the grid is not desired, then you know that a 
different pattern sample should be chosen.

-v A comparison is made with validation on the grid. The best 
Mitchellian trial (which is the trial with the maximum number of 
hypothetical gridpoints at locking) is used to determine the 
number of gridpoints which are to be in the validation set. 
Validation is then done using a GA as the training algorithm until 
the first minimum of validation error on the validation set.

-V The same as -v, except that the underlying patterns are used, 
rather than the grid. The proportion of patterns in the validation 
set is the same as the proportion of gridpoints which are 
hypothetical at locking in the best Mitchellian trial.

-w n The same as -v, except that the Mitchellian trials are not done, and 
n specifies the number of gridpoints which are to be in the 
validation set.

-W n The same as -V, except that the Mitchellian trials are not done, 
and n specifies the number of patterns which are to be in the 
validation set.

A.3 IO Visualisor

The IO visualisor is a useful facility for observing the behaviour of neural 
networks with 1 or 2D input, and one output unit. It is to be found in the 
directory /user/rsch/gary/bin and the command is "io". The source code 
is in /user/rsch/gary/bin/source. To compile it, you will need the 
makefile in /user/rsch/gary/bin. Type "make io" to the C-shell. The 
source code requires the library archives in /user/rsch/gary/lib. Having 
compiled the program, type "alias io /user/rsch/gary/bin/io" to C-shell, 
and then you can use io in any current working directory. Type io at any 
time to get the following help message:

Usage : io [options] <tcpology> <weights> <rasdata> <raster>
Cptions are:

-a <xmrk> <ymrk> [<xtck> <ytck> <size>]
Draw axes

-d [ex] ++ Add double hyperplanes [at <ex>]
Default for <ex> = +/-4.595 (out = 0.01/0.99)

331



Appendix A IO Visualisor

-g Use grey level rasterfile
-G <gridpoints> [[S]size] ++

Add gridpoints fran <gridpoints> file
-h ++ Add hyperplanes
-n Don't plot IO of network
—o Overwrite rasterfile if it exists
-p <pattem> [[S]size]

Add patterns fran <pattem> file
-P <greylevel> +

Draw patterns in <grey level>
-q Quit if rasterfile exists
-r Don't add a report
—s <style> ++ Style of 10 graph plot

<style> may be one of:
bw Black and white
BW * Dark grey & Light grey
cfN MJ coitours
glO 10 grey level oaitour map
gett'J NN coitours filled with grey
smooth Shade of grey proportional to output
smcM4 As smooth, but with NN contours

•S <greylevel> <thickness> +
Grey level and thickness of ID plot 

-x <funo Use activation function <funo
-X <func> As -x but applies to output only

<funo may be one of:
sig * Sigmoid function 
lin Linear function
pet Threshold function
act No function (output only)

* — Default

+ — ID input only
++ — 2D input only -

The options will be discussed later. The command requires four files to be 
specified. The topology and weights files are of the format specified in 
section A.1. <rasdata> is a text file which must end in a ".rsd" suffix, and 
is of a format illustrated by the following example:

-10.0 -10.0
20.0 20.0
192 192

The first two numbers specify the co-ordinate in input space of the bottom 
left hand corner of the IO plot for 2D input space. For ID input, the first 
number specifies the input value on the left hand side of the IO plot, and 
the second number specifies the output value at the bottom of the IO plot. 
The second two numbers give the amount of input space that is to be 
covered on each axis for 2D input. For ID input, the first number specifies 
the length of input space to be covered. The second number specifies the 
height of output space.

332



Appendix A IO Visualisor

Thus, for the above example, if the graph were for 2D input, the bottom 
left hand corner of the rasterfile would be at (-10, -10) in input space, and 
the top right hand corner would be at (10,10). If the input was ID, then 
the left hand side of the rasterfile would represent an input of -10, and the 
right hand side an input of 10. The bottom of the rasterfile would 
represent an output of -10, and the top of the rasterfile would represent an 
output of 10.

Finally the last two numbers give the width and height of the rasterfile in 
pixels, respectively.

<raster> is the name of the Sun format rasterfile (cf. man rasterfile) to be 
created, which must have a ".ras" suffix.

To import a rasterfile into Microsoft Word, use Converter to convert it into 
a PICT format file, and then load it into a drawing application which can 
read PICT format. Please note that Converter can only convert 
monochrome rasterfiles. For colour rasterfiles, convert the rasterfile to a 
postscript file using the C-shell command "ras2ps". For example, the 
rasterfile "example.ras" is converted to a postscript file by typing "ras2ps 
example.ras > example.ps" to C-shell. Postscript files should have a ".ps" 
suffix. MS Word can then read the postscript file, but be warned that it 
may take a long time to load in, and when it has, you will not be able to 
see the image in MS Word. Instead, the screen will show some of the 
image data in the frame set aside for the picture, such as the date and time 
of creation, and the original filename. When the Word document is finally 
printed, however, the original image will be there.

To view the rasterfile, type /user/rsch/gary/bin/loadscrn <raster>, and 
to print it, type Ipr -v -Plw <raster> where Iw is the name of a printer with 
postscript capability. In the absence of /user/rsch/gary/bin/loadscrn, the 
rasterfile can be converted to postscript as indicated above, and then 
viewed using a standard viewer such as ghostview, or page view. The 
image quality may be unsatisfactory, however. Failing this, you'll just 
have to waste paper.

The example in figure A.3 shows the 2D IO space from training a 2*10*1 
topology for 165 cycles of standard back-propagation with a learning rate 
of 0.2 and a momentum of 0.7 on a single revolution of Lang and

333



Appendix A IO Visualisor

Witbrock's 2 spirals problem.2 The command entered to C-shell, with 
/user/rsch/gary/bin/source as the current working directory was:

io fcp/a/2-10-1.net fcp/w/2spir.wgt fcp/r/2spir.rsd fcp/io/2spir.ras

::::::::::::: liiiliiiiiiiimiiiiiiiiiiHiiiii  JIHIHIltllltllllilllllllHIllllllIllIIllHIIIIIlltOllllllIlllIl^M BI

:::::::::::::

■ ^miHttiituniHiimuff |{tnli

11!
M..... wiiiihiihim Bo

: : : ; : : :::'^tliiH»nlHHH|: ::; : : ::: :: : . lltimiHIIHIHHHB ItlilU■■ ?.:aH;;;i:;hhuh;;::;;:u;:u;=;n;uflUIllIHUll^^^ 8B8t
llllHlllllli!il

:::::::::::::

::::::::::::: iiiiihiffH tl t H HtitiltW tttffi

OPpiH:::: :H.- • i-J ■ /• • =• IB

hi.i j i =• i : - : i :.i • ••• • • ••

Bottom Top
Activation: Sigmoid
Topology: bp/a/2-10-1 Weights: bp/w/2spir

Figure A.3 — Rasterfile produced for the solution zveight state found for the 

2 spirals problem. Note the addition of the report at the bottom of the 

rasterfile. This is to inform the user of the files that zvere used to create the 

rasterfile.

Figure A.4 shows a ID input space example. This is a fit to a single cycle of 
sin(x), using a 1*10*1 topology. The problem was trained using a variable 
learning rate, for 20 000 cycles. The excitation of the output unit is treated 
as the output of the network. This means there is no sigmoid on the 
output unit during training. To reflect this, when printing the IO graph, it 
is necessary to use the -X option (see later). The command entered to C-

2 Lang & Witbrock, 1988

334

1.net


Appendix A IO Visualisor

shell, with the same directory as before being the current working 
directory was:

io -X act bp/a/1-10-1.net kp/w/sin.vxjt tp/r/sin.rsd bp/io/sin.ras

Topology: bp/a/1-10-1 Weights: bp/w/sin

Figure A.4 — Approximation to the sin function using a 1*10*1 topology.

The excitation of the output unit is treated as the output of the network, and 

hence there is no activation function on the output unit. This information is 

reflected in the report beneath the IO graph.

These graphs are rather uninformative, and the options enable more 
information to be printed on the graphs. The options available are: 

-axmym [x( yt s]

Axes are displayed, with mark intervals xm and ym for the 
horizontal and vertical axes, respectively. Optionally, the number 
of tick intervals between the marks on the horizontal and vertical 
axes may be specified (xf and yt respectively), along with the size, 
s, of the axes, xt, yt and s must all be specified together, if any of 
these values is to be changed. The size, s, should be a whole

335

1.net


Appendix A IO Visualisor

number which specifies the amount by which the size of the axes 
is to be multiplied. The effect is to give thicker lines, and larger 
lettering, which is useful if the rasterfile is to be printed onto a 
slide.

-d [ex] Double hyperplanes are drawn at excitation values ±ex for each 
first hidden layer unit. The default value draws double 
hyperplanes when the output of each hidden unit is 0.01 and 0.99. 
The double hyperplanes are drawn with dashed lines. See chapter 
4 for more on double hyperplanes. This facility is available for 2D 
input only.

-g Use a colour rasterfile. The default is a monochrome rasterfile. 
With colour rasterfiles, there are 256 shades of grey, rather than 
the 17 shades simulated on monochrome rasterfiles by using 
different patterns of pixels. However, colour rasterfiles take up 
eight times more memory, and are not so easy to import into a 
Word document.

-G/[[S]s]

Gridpoints are plotted on the rasterfile from a pattern file, f 
specifying the location and targets of the gridpoints. The pattern 
file must have a ".pat" suffix. The gridpoints are indicated by 
squares, centred at the appropriate position in input space. Black 
squares indicate a target of 1, white squares indicate a target of 0. 
The size of the squares plotted may be changed optionally. If 
larger squares are required, a whole number is specified which 
indicates the amount by which the default size is to be multiplied. 
If smaller squares are required, a whole number, preceded by the 
letter 'S' is entered, which indicates the number of pixels to be 
subtracted from the default size. For example if gridpoints are to 
be plotted from the gridpoint file "example.gridpoints.pat" and 
they are to be twice the normal size, the option would be written 
-G example.gridpoints.pat 2. If, however, they are to be 4 pixels 
smaller than the normal size, the option would be written 
-G example.gridpoints.pat S4, with no white space between the S 
and the 4.

336



Appendix A IO Visualisor

-h The hyperplanes are drawn, for each hidden unit in the first 
hidden layer. This option applies to 2D input only.

-o If the rasterfile specified on the command line exists already, then 
it is automatically over-written. This is useful for running io in the 
background. If this option is not specified, and the rasterfile exists, 
then you are asked if you want to replace the old rasterfile with 
the new one. Type 'y' if you do, and 'n' if you do not.

-p/[[S]s]

This option works in exactly the same way as -G, except that it is 
for patterns, rather than gridpoints. When patterns and gridpoints 
are to be plotted on the same rasterfile, it is a good idea to make 
the patterns smaller, so that they can be discriminated from the 
gridpoints.

-P g The patterns are printed in grey level, g, which should be an 
integer between 0 (white) and 255 (black). In monochrome 
rasterfiles, grey levels are simulated by various combinations of 
pixel patterns. This option is available for ID input only, and is 
useful to enable the discrimination of the patterns from the IO 
function.

-q The program terminates if the rasterfile exists already. This is 
useful for running io in the background, when you want to be sure 
that any existing rasterfiles will not be over-written.

-r The report at the bottom of the rasterfile is not added. This is 
useful when the rasterfile is to be put into a document such as a 
PhD thesis!

—s style The kind of graph drawn can be varied. There are seven possible 
values for style:

bw A black and white plot. A black point is plotted where the 
output is 1 and a white point where the output is 0.

BW As for bw, except that dark grey and light grey are used in 
place of black and white. This is the default.

337



Appendix A IO Visualisor

cNN NN contours are plotted as the output increases from 0 to 
1. Note that there must be no white space between the 'c' 
and the number of contours to be plotted.

glO Ten grey levels are plotted, as the output increases from 0 
to 1. Five lighter shades of grey are plotted from 0 to 0.5, 
and darker shades are used from 0.5 to 1. Thus the 
black/white boundary is shown clearly.

gcNN As for cNN, except that the regions between the contours 
are filled with a uniform shade of grey, which is light for 
outputs close to 0, and becomes darker as the output goes 
to 1. This style works best when a colour rasterfile is 
plotted using the -g option.

smooth A shade of grey proportional to the output is plotted for 
each point in input space. This style works best in 
conjunction with the -g option.

smcNN This style combines the smooth plot above with a 
contoured plot. It differs from the gcNN style in that the 
shade of grey between the contours will not be uniform. 
Again, the best effects are observed with the -g option.

-S g t For ID input, the shade of grey and thickness of the line drawn for 
the IO function may be changed to g and t respectively. If either 
are to be changed, both must be specified when using this option.

-xf The activation function for all non-input units in the network may 
be specified by/, which is one of the following strings:

"sig" A sigmoid activation function. This is the default.

"lin" A linear activation function. (See chapter 1.)

"pet" A threshold activation function.

-Xf The activation function for the output unit only may be specified./ 
may be any of the functions as for -x, but with the following 
additional possibility:

338



Appendix A IO Visualisor

"act" No activation function. The excitation of the output unit is 
treated as the output. This is useful for ID input, when the 
output may be have a different range than [0,1].

To illustrate some of these options, figure A.5 shows a colour rasterfile 
version of figure A.3 generated using style smcNN, complete with 
patterns and axes. Figure A.6 shows a colour rasterfile version of figure 
A.4, with the patterns (in a shade of grey) and axes marked. The command 
entered for figure A.5 was:

io -a 1.0 1.0 5 5 1 -g -p fcp/p/2spir .pat -s smclO fcp/a/2-10-1.net
fcp/w/2spir.wgt fcp/r/2spir. rsd fcp/io/2spir .ras

The command entered for figure A.6 was:

io -a 1.0 1.0 -g -p fcp/p/sin.pat -P 100 -S 255 2 -X act fcp/a/1-10-1.net 
fcp/w/sin.wgt tp/r/sin.rsd fcp/io/sin.ras

Bottom left: <-5, -5) Top right: <3.5, 3.5) Cont 
Activation: Sigmoid
Topology: bp/a/2-10-1 Heights: bp/w/2spir 
Patterns: bp/p/2sp i r

Figure A.5 — Grey level plot of solution to simple 2 spirals problem

339

1.net
1.net


Appendix A IO Visualisor

Activation: Sigmoid Output units: None 
Topo1ogy: bp/a/1-10-1 We i ghts: bp/w/s i n 
Patterns: bp/p/s i n

Figure A.6 — Plot of fit to sin(x) with axes and patterns.

340



Bibliography

Bibliography
Abu-Mostafa, Y. S. (1989) "The Vapnik-Chervonenkis Dimension: 
Information Versus Complexity in Learning" Neural Computation Vol. 1 
No. 3 pp. 312-317

Aha, D. W. (1992) "Tolerating Noisy, Irrelevant and Novel Attributes in 
Instance-Based Learning Algorithms" International Journal of Man-Machine 
Studies Vol. 36 No. 2 pp. 267-287

Aha, D. W. and Kibler, D. (1989) "Noise-Tolerant Instance-Based Learning 
Algorithms" Proceedings of the Eleventh International Joint Conference on 
Artificial Intelligence, Detroit, pp. 794-799, Morgan Kaufmann

Baba, N. (1989) "A New Approach for Finding the Global Minimum of 
Error Function of Neural Networks" Neural Networks Vol. 2 No. 5 
pp. 367-373

Baba, N., Mogami, Y., Kohzaki, M., Shiraishi, Y. and Yoshida, Y. (1994) "A 
Hybrid Algorithm for Finding the Global Minimum of Error Function of 
Neural Networks and Its Applications" Neural Networks Vol. 7 No. 8 
pp. 1253-1265

Bahrami, A. and Dagli, C. H. (1994) "Hybrid Intelligent Packing System 
(HIPS) Through Integration of Artificial Neural Networks, Artificial- 
Intelligence, and Mathematical-Programming" Applied Intelligence Vol. 4 
No. 4 pp. 321-336

Balchin, M. (1993) Personal Communication

Barron, A. R. (1994) "Neural Networks: A Review from a Statistical 
Perspective — Comment" Statistical Science Vol. 9 No. 1 pp. 33-35

Baum, E. B. (1990) "When are K-Nearest Neighbor and Back Propagation 
Accurate for Feasible Sized Sets of Examples" Lecture Notes in Computer 
Science Vol. 412 pp. 2-25

Baum, E. B. and Haussler, D. (1989) "What Size Net Gives Valid 
Generalisation?" Neural Computation Vol. 1 pp. 151-160

341



Bibliography

Baum, E. B. and Lang, K. J. (1991) "Constructing Hidden Units Using 
Examples and Queries" in Lippmann, R. P., Moody, J. E. and 
Touretzky, D. S. (Eds.) Advances in Neural Information Processing Systems: 
Proceedings of the 1990 Conference pp. 904-910, Morgan Kaufmann

Beale, R. and Jackson, T. (1990) Neural Computing: An Introduction, Adam 
Hilger

Boden, M. (1987) Artificial Intelligence and Natural Man (Second Edition)
MIT Press

Booker, L. B., Goldberg, D. E. and Holland, J. H. (1989) "Classifier Systems 
and Genetic Algorithms" Artificial Intelligence Vol. 40 No. 1-3 pp. 235-282 

Borowski, E. J. and Borwein, J. M. (1989) Dictionary of Mathematics, Collins

Brady, M., Raghavan, R. and Slawny, J. (1988) "Gradient Descent Fails to 
Separate" Proceedings of the IEEE International Conference on Neural Networks 
1988 Vol. 1 pp. 649-656

Brent, R. P. (1991) "Fast Training Algorithms for Multilayer Neural Nets"
IEEE Transactions on Neural Networks Vol. 2 No. 3 pp. 346-354

Bryson, A. E. and Ho, Y.-C. (1969) Applied Optimal Control, Blaisdell, NY

Burton, R. M. and Faris, W. G. (1991) "Reliable Evaluation of Neural 
Networks" Neural Networks Vol. 4 No. 3 pp. 411-415

Carbonell, J. G., Michalski, R. S. and Mitchell, T. M. (1983) "An Overview 
of Machine Learning" in Michalski, R. S., Carbonell, J. G. and 
Mitchell, T. M. (Eds.) Machine Learning: An Artificial Intelligence Approach, 
Tioga, Palo Alto

Charniak, E. and McDermott, D. (1985) Introduction to Artificial Intelligence, 
Addison-Wesley

Chauvin, Y. (1989) "A Back-Propagation Algorithm with Optimal Use of 
the Hidden Units" in Touretzky, D. (Ed.) Advances in Neural Information 
Processing Systems: Proceedings of the 1988 Conference, Morgan Kaufmann

342



Bibliography

Chauvin, Y. (1990) "Generalisation Performance of Overtrained 
Backpropagation" in Almedia, L. B. and Wellekens, C. J. (Eds.) Proceedings 
of the EURASIP Workshop on Neural Networks, pp. 46-55, Springer-Verlag

Cheng, B. and Titterington, D. M. (1994) "Neural Networks: A Review 
from a Statistical Perspective" Statistical Science Vol. 9 No. 1 pp. 2-30

Chester, D. L. (1990) "Why Two Hidden Layers are Better than One" 
Proceedings of the International Joint Conference on Neural Networks, 15-19 
January 1990 Washington DC, Vol. 1 pp. 265 268

Church, A. (1936) "An Unsolvable Problem of Elementary Number 
Theory" American Journal of Mathematics Vol. 48 pp. 345-363

Coombs, M. J., Pfeiffer, H. D. and Hartley, R. T. (1992) "e-MGR: An 
Architecture for Symbolic Plasticity" International Journal of Man-Machine 
Studies Vol. 36 pp. 247-263

Cosnard, M., Koiran, P. and Paugam-Moisy, H. (1993) "A Step Towards 
the Frontier Between One-Hidden-Layer and Two-Hidden-Layer Neural 
Networks" Proceedings of the International Joint Conference on Neural 
Networks 25-29 October 1993 Nagoya, Japan, Vol. 3 pp. 2292-2295

Cybenko, G. (1989) "Approximation by Superposition of a Sigmoidal 
Function" Mathematics of Control, Signals and Systems Vol. 2 No. 4 
pp. 303-314

Dasgupta, B. and Schnitger, G. (1993) "The Power of Approximating: A 
Comparison of Activation Functions" Hanson, S. J., Cowan, J. D. and 
Giles, C. L. (Eds.) Advances in Neural Information Processing Systems: 
Proceedings of the 1992 Conference pp. 615-622, Morgan Kaufmann

Denker, J., Schwarz, D., Wittner, B., Solla, S., Howard, R., Jackel, L. and 
Hopfield, J. (1987) "Large Automatic Learning, Rule Extraction, and 
Generalization" Complex Systems Vol. 1 pp. 877-922

Draghici, S. (1995) "Using Constraints to Improve Generalisation and 
Training of Feed-Forward Neural Networks: Constraint Based 
Decomposition and Complex Backpropagation" PhD Thesis, Department of 
Mathematical and Computational Sciences, University of St. Andrews

343



Bibliography

Drucker, H. and Le Cun, Y. (1991) "Double Backpropagation Increasing 
Generalisation Performance" Proceedings of the International Joint Conference 
on Neural Networks 1991, Seattle, Vol. 2 pp. 145-150

Duda, R. O. and Shortliffe, E. H. (1983) "Expert Systems Research" Science 
Vol. 220 No. 4594 pp. 261-268

Duda, R. O., Gaschnig, J. G. and Hart, P. E. (1980) "Model Design in the 
PROSPECTOR Consultant System for Mineral Exploration" in Michie, D. 
(Ed.) Expert Systems in the Microelectronic Age, pp. 153-167, Edinburgh 
University Press

Dyer, M. G. and Lee, G. (1995) "Goal Plan Analysis Via Distributed 
Semantic Representations in a Connectionist System" Applied Intelligence 
Vol. 5 No. 2 pp. 165-197

Eisenstein, E. and Kanter, I. (1993) "Generalisation Performance of 
Complex Adaptive Tasks" Physical Review Letters Vol. 70 No. 23 
pp. 3667-3670

Fahlman, S. E. and Lebiere, C. (1991) "The Cascade-Correlation Learning 
Architecture" Technical Report CMU-CS-90-100, August 1991, Carnegie- 
Mellon University

Fang, H. L., Ross, P. and Corne, D. (1993) "A Promising Genetic Algorithm 
Approach to Job-Shop Scheduling, Rescheduling, and Open-Shop 
Scheduling Problems" in Forrest, S. (Ed.) Proceedings of the Fifth 
International Conference on Genetic Algorithms, San Mateo, pp. 375-382, 
Morgan Kaufmann

Fernandez, A. (1994) Personal Communication

Fogel, D. B., Fogel, L. J. and Porto, V. W. (1990) "Evolving Neural 
Networks" Biological Cybernetics Vol. 63 No. 6 pp. 487-493

Fu, L. M. (1994) "Rule Generation from Neural Networks" IEEE 
Transactions on Systems, Man and Cybernetics Vol. 24 No. 8 pp. 1114-1124

Fujita, O. (1992) "Optimization of the Hidden Unit Function in 
Feedforward Neural Networks" Neural Networks Vol. 5 No. 5 pp. 755-764

344



Bibliography

Funahashi, K. (1989) "On the Approximate Realisation of Continuous 
Mappings by Neural Networks" Neural Networks Vol. 2 No. 3 pp. 183-192

Geman, S., Bienenstock, E. and Doursat, R. (1992) "Neural Networks and 
the Bias/Variance Dilemma" Neural Computation Vol. 4 No. 1 pp. 1-58

Gibson, G. J. (1992) "Constructing Functions Using Multilayer Perceptrons 
— Towards a Theory of Complexity" Journal of Systems Engineering Vol. 2 
pp. 263-271

Gibson, G. J. (1993) "A Combinatorial Approach to Understanding 
Perceptron Capabilities" IEEE Transactions on Neural Networks Vol. 4 No. 6 
pp. 989-992

Gibson, G. J. (1994) "Some Results on the Exact Realisation of Decision 
Regions Using Feed-Forward Networks with a Single Hidden Layer" 
Proceedings of the IEEE International Conference On Neural Networks 28 June 
-2 July 1994, Orlando, Florida Vol. 2 pp. 912-917

Gibson, G. J. and Cowan, C. F. N. (1990) "On the Decision Regions of 
Multilayer Perceptrons" Proceedings of the IEEE Vol. 78 No. 10 
pp. 1590-1594

Goldberg, D. E. (1989) Genetic Algorithms, Addison-Wesley

Guo, H. and Gelfand, S. B. (1991) "Analysis of Gradient Descent Learning 
Algorithms for Multilayer Feedforward Neural Networks" IEEE 
Transactions on Circuits and Systems Vol. 38 No. 8 pp. 883-894

Hamming, R. W. (1986) Coding and Information Theory: Second Edition, 
Prentice-Hall

Hanson, S. J. and Burr, D. J. (1990) "What Connectionist Models Learn: 
Learning and Representation in Connectionist Networks" Behavioural and 
Brain Sciences Vol. 13 pp. 471-518

Hanson, S. J. and Pratt, L. Y. (1989) "Some Comparisons of Constraints for 
Minimal Network Construction with Backpropagation" in Touretzky, D. 
(Ed.) Advances in Neural Information Processing: Proceedings of the 1988 
Conference, Morgan Kaufmann

345



Bibliography

Hartigan, J. A. (1975) Clustering Algorithms, John Wiley and Sons 

Harvey, I. (1994) Personal Communication

Hasegawa, A. Matoba, O., Itoh, K. and Ichioka, Y. (1992) "Learning 
Generalization by Validation Set" Japanese Journal of Applied Physics Vol. 31 
Part 1 No. 8 pp. 2459-2462

Haussler, D., Kearns, M. and Schapire, R. E. (1994) "Bounds on the Sample 
Complexity of Bayesian Learning Using Information Theory and the VC 
Dimension" Machine Learning Vol. 14 No. 1 pp. 83-113

Hertz, J., Krogh, A. and Palmer, R. G. (1991) Introduction to the Theory of 
Neural Computation, Addison-Wesley

Hinton, G. E. (1989) "Connectionist Learning Procedures" Artificial 
Intelligence Vol. 40 pp. 185-234

Hirose, Y., Yamashita, K. and Hijiya, S. (1991) "Back-Propagation 
Algorithm which Varies the Number of Hidden Units" Neural Networks 
Vol. 4 No. 1 pp. 61-66

Hirsh, H. (1990) "Learning from Data with Bounded Inconsistency" 
Proceedings of the Seventh International Conference on Machine Learning 
pp. 32-39

Hofstadter, D. R. (1980) Godel, Escher, Bach: An Eternal Golden Braid, 
Penguin

Holland, J. H. (1975) Adaptation in Natural and Artificial Systems, University 
of Michigan Press, Ann Arbor

Holland, J. H. (1986) "Escaping Brittleness: The Possibilities of General- 
Purpose Learning Algorithms Applied to Parallel Rule-Based Systems" in 
Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.) Machine 
Learning: An Artificial Intelligence Approach Volume II, Morgan Kaufmann

Hopfield, J. J. (1982) "Neural Networks and Physical Systems with 
Emergent Collective Computational Abilities" Proceedings of the National 
Academy of Sciences USA, Vol. 79 pp. 2554-2558

346



Bibliography

Hornik, K. Stinchcombe, M. and White, H. (1989) "Multilayer
Feedforward Networks are Universal Approximators" Neural Networks 
Vol. 2 No. 5 359-366.

Hrycej, T. (1990) "A Modular Architecture for Efficient Learning" 
Proceedings of the IEEE INNS International Joint Conference on Neural 
Networks 1990, San Diego Vol. 1 pp. 557-562

Huang, W. M. and Lippmann, R. P. (1988) "Neural Net and Traditional 
Classifiers" in Anderson, D. Z. (Ed.) Neural Information Processing Systems, 
pp. 387-396, American Institute of Physics.

Ishikawa, M. (1989) "A Structural Learning Algorithm with Forgetting of 
Weight Link Weights" Proceedings of the International Joint Conference on 
Neural Networks 1989 Washington DC, Vol. 2

James, R. C. and James, G. (1992) Mathematics Dictionary (Fifth Edition), Van 
Nostrand Reinhold

Jean, J. S. N. and Wang, J. (1994) "Weight Smoothing to Improve 
Generalisation" IEEE Transactions on Neural Networks Vol. 5 No. 5 
pp. 752-763

Joerding, W. H. and Meador, J. L. (1991) "Encoding A-Priori Information 
in Feedforward Networks" Neural Networks Vol. 4 No. 6 pp. 847-856

Kameyama, K. and Kosugi, Y. (1991) "Neural Network Pruning by Fusing 
Hidden Layer Units" IEICE Transactions on Communications, Electronics, 
Information and Systems Vol. 74 No. 12 pp. 4198-4204

Kanaya, F. and Miyake, S. (1991) "Bayes Statistical Behavior and Valid 
Generalization of Pattern Classifying Neural Networks" IEEE Transactions 
on Neural Networks Vol. 2 No. 4 pp. 471-475

Khanna, T. (1990) Foundations of Neural Networks, Addison-Wesley

Kitano, H. (1990) "Empirical Studies on the Speed of Convergence of 
Neural Network Training Using Genetic Algorithms" AAAI 1990 
pp. 789-795, MIT Press

347



Bibliography

Kolen, J. F. and Pollack, J. B. (1991) "Back Propagation is Sensitive to Initial 
Conditions" in Lippmann, R. P., Moody, J. E. and Touretzky, D. S. (Eds.) 
Advances in Neural Information Processing Systems: Proceedings of the 1990 
Conference pp. 860-867

Kurkova, V. (1992) "Kolmogorov's Theorem and Multilayer Neural 
Networks" Neural Networks Vol. 5 No. 3 pp. 501-506

Lang, K. J. and Witbrock, M. J. (1988) "Learning to Tell Two Spirals Apart" 
in Touretzky, D. (Ed.) Proceedings of the 1988 Connectionist Models Summer 
School, San Mateo, California, pp. 52-59, Morgan-Kaufmann

Lang, K. J., Waibel, A. H. and Hinton, G. E. (1990) "A Time-Delay Neural 
Network Architecture for Isolated Word Recognition" Neural Networks 
Vol. 3 pp. 23-43

Lansley, S. and Clark, A. (1993) "The Minimum Topology Finder"
SH Project, Department of Mathematical and Computational Sciences,
University of St. Andrews

Lee, T. and Chung, F. L. (1990) "Determining the Number of Hidden 
Nodes by Progressive Training" Electronics Letters Vol. 26 No. 16 
pp. 1318-1320

Levin, E., Tishby, N. and Solla, S. A. (1990) "A Statistical Approach to 
Learning and Generalization in Layered Neural Networks" Proceedings of 
the IEEE Vol. 78 No. 10 pp. 1568-1574

Li, L. K. (1991) "On Computing Decision Regions with Neural Nets" 
Journal of Computer and System Sciences Vol. 43 pp. 509-512

Lippmann, R. P. (1987) "An Introduction to Computing with Neural Nets" 
IEEE ASSP Magazine, April 1987, pp. 4-22

Lippmann, R. P. (1989) "Pattern-Classification Using Neural Networks" 
IEEE Communications Magazine Vol. 27 No. 11 pp. 47-64

MacKay, D. J. C. (1992a) "Bayesian Interpolation" Neural Computation 
Vol. 4 No. 3 pp. 415-447

348



Bibliography

MacKay, D. J. C. (1992b) "A Practical Bayesian Framework for
Backpropagation Networks" Neural Computation Vol. 4 No. 3 pp. 448-472

MacKay, D. J. C. (1992c) "Information-Based Objective Functions for 
Active Data Selection" Neural Computation Vol. 4 No. 4 pp. 590-604

MacKay, D. J. C. (1992d) "The Evidence Framework Applied to 
Classification Networks" Neural Computation Vol. 4 No. 5 pp. 720-736

Makhoul, J., El-Jaroudi, A. and Schwartz, R. (1989) "Formation of 
Disconnected Decision Regions with a Single Hidden Layer" Proceedings of 
the International Joint Conference on Neural Networks, June 1989,
Washington DC Vol. 1 pp. 455-460

Mato, G. and Parga, N. (1992) "Generalization Properties of Multilayered 
Neural Networks" Journal of Physics A: Mathematical and General Vol. 25 
No. 19 pp. 5047-5054

McClelland, J. L. and Rumelhart, D. E. (1988) Explorations in Parallel 
Distributed Processing: A Handbook of Models, Programs and Exercises, MIT 
Press

McClelland, J. L., Rumelhart, D. E. and Hinton, G. E. (1986) "The Appeal 
of Parallel Distributed Processing" in Rumelhart, D. E., McClelland, J. L. 
and the PDP Research Group (Eds.) Parallel Distributed Processing: 
Explorations in the Microstructure of Cognition Vol. 1 Ch. 1, MIT Press

McClintock, D. and Fitter, R. S. R. (1956) The Pocket Guide to Wild Flowers, 
Collins

McCulloch, W. S. and Pitts, W. (1943) "A Logical Calculus of Ideas 
Immanent in Nervous Activity" Bulletin of Mathematical Biophysics Vol. 5 
pp. 115-133

Mel, B. W. and Omohundro, S. M. (1991) "How Receptive Field 
Parameters Affect Neural Learning" in Lippmann, R. P., Moody, J. E. and 
Touretzky, D. S. (Eds.) Advances in Neural Information Processing Systems: 
Proceedings of the 1990 Conference pp. 757-763

349



Bibliography

Mezard, M. and Nadal, J. P. (1989) "Learning in Feedforward Layered 
Networks: The Tiling Algorithm" Journal of Physics A: Mathematical and 
General Vol. 22 pp. 2191-2203

Minor, J. M. (1993) "Parity with Two Layer Feedforward Nets" Neural 
Networks Vol. 6 pp. 705-707

Minsky, M. L. and Papert, S. A. (1969) Perceptrons, MIT Press

Minsky, M. L. and Papert, S. A. (1988) Perceptrons: An Introduction to 
Computational Geometry (Expanded Edition) MIT Press

Mirchandani, G. and Cao, W. (1989) "On Hidden Nodes For Neural Nets" 
IEEE Transactions on Circuits and Systems Vol. 36 No. 5 pp. 661-664

Mitchell, T. M. (1977) "Version Spaces: A Candidate Elimination 
Approach to Rule Learning" Proceedings of the Fifth International Joint 
Conference on Artificial Intelligence, Vol. 1 pp. 305-310, MIT Press

Mitchell, T. M. (1978) "Version Spaces: An Approach to Concept 
Learning" PhD Thesis ST AN-CS-7 8-711, Stanford University, December 1978

Mitchell, T. M. (1980) "The Need for Biases in Learning Generalizations" 
Technical Report CBM-TR-117 Computer Science Department, Rutgers 
University, May 1980

Mitchell, T. M. (1982) "Generalization as Search" Artificial Intelligence 
Vol. 18 pp. 203-226

Mozer, M. C. and Smolensky, P. (1989) "Skeletonisation: A Technique for 
Trimming the Fat from a Network Via Relevance Assessment" in 
Touretzky, D. (Ed.) Advances In Neural Information Processing Systems: 
Proceedings of the 1988 Conference pp. 349-357, Morgan Kaufmann

Musavi, M. T., Ahmed, W., Chan, K. H., Faris, K. B. and Hummels, D. M. 
(1992) "On the Training of Radial Basis Function Classifiers" Neural 
Networks Vol. 5 No. 4 pp. 595-603

Newell, A. and Simon, H. A. (1976) "Computer Science as Empirical 
Inquiry: Symbols and Search" Communications of the ACM Vol. 19 No. 3

350



Bibliography

Nilsson, N. J. (1965) Learning Machines: Foundations of Trainable Pattern
Classifying Systems, McGraw-Hill

Ochiai, K., Toda, N. and Usui, S. (1994) "Kick-Out Learning Algorithm to 
Reduce the Oscillation of Weights" Neural Networks Vol. 7 No. 5 
pp. 797-807

Opper, M. and Haussler, D. (1991) "Generalization Performance of Bayes 
Optimal Classification Algorithm for Learning a Perceptron" Physical 
Review Letters Vol. 66 No. 20 pp. 2677-2680

Parker, D. B. (1985) "Learning Logic" Technical Report TR-47, Centre for 
Computational Research in Economics and Management Science, MIT

Parrondo, J. M. R. and Van den Broeck, C. (1993) "Vapnik-Chervonenkis 
Bounds for Generalization" Journal of Physics A: Mathematical and General 
Vol. 26 No. 9 pp. 2211-2223

Pople, H., Myers, J. and Miller, R. (1975) "DIALOG: A Model of Diagnostic 
Logic for Internal Medicine" Proceedings of the Fourth International Joint 
Conference on Artificial Intelligence, pp. 848-855

Preparata, F. P. and Shamos, M. I. (1985) Computational Geometry: An 
Introduction, Springer-Verlag

Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1988) 
Numerical Recipes in C: The Art of Scientific Computing, Cambridge 
University Press

Radcliffe, N. J. (1993) "Genetic Set Recombination and its Application to 
Neural Network Topology Optimisation" Neural Computing and 
Applications Vol. 1 pp. 67-90

Rich, E. (1983) Artificial Intelligence, McGraw-Hill

Rich, E. and Knight, K. (l991)Artificial Intelligence (Second Edition), 
McGraw-Hill

Richard, M. D. and Lippmann, R. P. (1991) "Neural Network Classifiers 
Estimate Bayesian A Posteriori Probabilities" Neural Computation, Vol. 3 
pp. 461-483

351



Bibliography

Romaniuk, S. G. and Hall, L. O. (1993) "SC-Net — A Hybrid
Connectionist, Symbolic System" Information Sciences Vol. 71 No. 3 
pp. 223-268

Rosenblatt, F. (1958) "The Perceptron: A Probabilistic Model for 
Information Storage and Organization in the Brain" Psychological Review 
Vol. 65 No. 6 pp. 386-408

Rosenblatt, F. (1962) Perceptrons and the Theory of Brain Mechanisms Spartan 
Books, Washington DC

Roy, A., Kim, L. S. and Mukhopadhyay, S. (1993) "A Polynomial Time 
Algorithm for the Construction and Training of a Class of Multilayer 
Perceptrons" Neural Networks Vol. 6 No. 4 pp. 535-545

Rumelhart, D. E. and Zipser, D. (1986) "Feature Discovery by Competitive 
Learning" in Rumelhart, D. E., McClelland, J. L. and the PDP Research 
Group (Eds.) Parallel Distributed Processing: Explorations in the 
Microstructure of Cognition Vol. 1 Ch. 5, MIT Press

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986) "Learning 
Internal Representations by Error Propagation" in Rumelhart, D. E., 
McClelland, J. L. and the PDP Research Group (Eds.) Parallel Distributed 
Processing: Explorations in the Microstructure of Cognition Vol. 1 Ch. 8, MIT 
Press

Schmidt, W. A. C. and Davis, J. P. (1994) "Generation of Neural Network 
Decision Surfaces: A Pattern Classification Example" Optical Engineering 
Vol. 33 No. 10 pp. 3388-3397

Schwartz, D. B., Samalam, V. K., Solla, S. A. and Denker, J. S. (1990) 
"Exhaustive Learning" Neural Computation Vol. 2 pp. 371-382

Shavlik, J. W. (1994) "Combining Symbolic and Neural Learning" Machine 
Learning Vol. 14 No. 3 pp. 321-331

Shonkwiler, R. (1993) "Separating the Vertices of N-Cubes by Hyperplanes 
and its Application to Artificial Neural Networks" IEEE Transactions on 
Neural Networks Vol. 4 No. 2 pp. 343-347

352



Bibliography

Shortliffe, E. H. (1976) Computer-Based Medical Consultations: MYCIN, 
American Elsevier

Sietsma, J. and Dow, R. J. F. (1991) "Creating Artificial Neural Networks 
That Generalize" Neural Networks Vol. 4 No. 1 pp. 67-79

Sikora, R. (1992) "Learning Control Strategies for Chemical Processes — A 
Distributed Approach" IEEE Expert Vol. 7 No. 3 pp. 35-43

Smalz, R. and Conrad, M. (1994) "Combining Evolution with Credit 
Apportionment: A New Learning Algorithm for Neural Nets" Neural 
Networks Vol. 7 No. 2 pp. 341-352

Smieja, F. J. (1993) "Neural Network Constructive Algorithms — Trading 
Generalization for Learning Efficiency" Circuits Systems and Signal 
Processing Vol. 12 No. 2 pp. 331-374

Smieja, F. J. and Muhlenbein, H. (1990) "The Geometry of Multi-Layer 
Perceptron Solutions" Parallel Computing Vol. 14 pp. 261-275

Sontag, E. D. (1989) "Sigmoids Distinguish More Efficiently than 
Heavisides" Neural Computation Vol. 1 pp. 470-472

Sontag, E. D. and Sussmann, H. J. (1988) "Back-Propagation Separates 
When Perceptrons Do" Technical Report SYCON-88-12, Rutgers Center for 
Systems and Control, December 1988

Sontag, E. D. and Sussmann, H. J. (1989) "Backpropagation Separates 
When Perceptrons Do" Proceedings of the International Joint Conference on 
Neural Networks, June 1989, Washington DC Vol. 1 pp. 639-642

Storer, J (1994) "ISLAND: Interactive Single-layer Linear Activation 
Network Display" SH Project, Department of Mathematical and 
Computational Sciences, University of St. Andrews

Stork, D. G. and Allen, J. D. (1992) "How to Solve the N-Bit Parity Problem 
with Two Hidden Units" Neural Networks Vol. 5 pp. 923-926

Sun, R. and Bookman, L. (1993) "How Do Symbols and Networks Fit 
Together: A Report from the Workshop on Integrating Neural and 
Symbolic Processes" AI Magazine Vol. 14 No. 2 pp. 20-23

353



Bibliography

Sussmann, H. J. (1992) "Uniqueness of the Weights for Minimal 
Feedforward Nets with a Given Input-Output Map" Neural Networks 
Vol. 5 No. 4 pp. 589-593

Telfer, B. A. and Szu, H. H. (1994) "Energy Functions for Minimizing 
Misclassification Error with Minimum-Complexity Networks" Neural 
Networks Vol. 7 No. 5 pp. 809-818

Turing, A. M. (1936) "On Computable Numbers with an Application to 
the Entscheidungsproblem" Proceedings of the London Mathematical Society 
Vol. 42 pp. 230-265

Utgoff, P. E. (1986) "Shift of Bias for Inductive Concept Learning" in 
Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.) Machine 
Learning: An Artificial Intelligence Approach Volume II, Morgan Kaufmann

Vapnik, V. N. Chervonenkis, A. Y. (1971) "On the Uniform Convergence 
of Relative Frequencies of Events to Their Probabilities" Theory of 
Probability and its Applications Vol. 16 pp. 264-280

Voronoi, G. (1908) "Nouvelles Applications des Parametres Continus a la 
Theorie des Formes Quadratiques. Deuxieme Memorie: Recherches sur les 
Paralleloedres Primitifs" /. Reine Angew. Math. Vol. 134, pp. 198-287

Watkin, T. L. H. Rau, A. and Biehl, M. (1993) "The Statistical Mechanics of 
Learning a Rule" Reviews of Modem Physics Vol. 65 No. 2 pp. 499-555

Weigend, A. S., Rumelhart, D. E. and Huberman, B. A. (1991a) "Back- 
Propagation, Weight Elimination, and Time Series Prediction" in 
Touretzky, D. S. (Ed.) Proceedings of the 1990 Summer School pp. 105-116, 
Morgan Kaufmann

Weigend, A. S., Rumelhart, D. E. and Huberman, B. A. (1991b) 
"Generalisation by Weight-Elimination with Application to Forecasting" 
in Lippmann, R. P., Moody, J. E. and Touretzky, D. S. (Eds.) Advances in 
Neural Information Processing Systems: Proceedings of the 1990 Conference 
pp. 875-882, Morgan Kaufmann

354



Bibliography

Weir, M. K. (1991) "A Method for Self-Determination of Adaptive 
Learning Rates in Back Propagation" Neural Networks 1991 Vol. 4 
pp. 371-379

Weir, M. K. (1993) Personal Communication

Weir, M. K. and Polhill, J. G. (1993) "A Neural Implementation of 
Mitchell's Concept and Version Spaces Technique" Technical Report 
CS/93/12, Department of Mathematical and Computational Sciences, University 
of St. Andrews

Weir, M. K. and Polhill, J. G. (1994a) "Implementing Mitchell's Concept 
and Version Spaces Technique in Neural Networks Using Weight Space 
Angle as the Partial Order Analogue" Technical Report CS/94/10 Department 
of Mathematical and Computational Sciences, University of St. Andrews

Weir, M. K. and Polhill, J. G. (1994b) "Bidirectional Convergence: A 
Cognitive Approach to Generalisation" Proceedings of the IEEE International 
Conference on Neural Networks, 28 June-2 July 1994, Orlando, Florida, Vol. IV 
pp. 2285-2290

Weir, M. K. and Polhill, J. G. (1995) "Neural Bidirectional Convergence: A 
Method for Concept Learning in Neural Networks and Symbolic AI" 
Proceedings of the International Conference on Brain Processes, Theories and 
Models, Canary Islands, To Appear

Werbos, P. J. (1974) "Beyond Regression: New Tools for Prediction and 
Analysis in the Behavioural Sciences" PhD Thesis, Harvard University

Wieland, A. and Leighton, R. (1987) "Geometric Analysis of Neural 
Network Capabilities" IEEE First Initial Conference on Neural Networks 1987 
pp. 111-385

Winston, P. H. (1975) "Learning Structural Descriptions from Examples" 
in Winston, P. H. (Ed.) The Psychology of Computer Vision, Ch. 5, 
McGraw-Hill

Wolpert, D. H. (1989) "A Benchmark for How Well Neural Nets 
Generalize" Biological Cybernetics Vol. 61 No. 4 pp. 303-313

355



Bibliography

Wolpert, D. H. (1990) "Constructing A Generalizer Superior to NetTalk 
Via a Mathematical-Theory of Generalization" Neural Networks Vol. 3 
No. 4 pp. 445-452

Wynne-Jones, M. (1993) "Node-Splitting: A Constructive Algorithm for 
Feed-Forward Neural Networks" Neural Computing and Applications Vol. 1 
pp. 17-22

Xu, L., Klasa, S. and Yuille, A. (1992) "Recent Advances on Techniques of 
Static Feedforward Network Training Techniques with Supervised 
Learning" International Journal of Neural Systems Vol. 3 pp. 253-290

Zadeh, L. A. (1973) "Outline of a New Approach to the Analysis of 
Complex Systems and Design Processes" IEEE Transactions on Systems, 
Man and Cybernetics, Vol. SMC-3, pp. 28-44

Zupan, J. and Gasteiger, J. (1991) "Neural Networks — A New Method for 
Solving Chemical Problems or Just a Passing Phase" Analytica Chimica Acta 
Vol. 248 No. 1 pp. 1-30

356


