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Lattice models, also known as generalized Ising models or cluster expansions, are widely used in many areas
of science and are routinely applied to the study of alloy thermodynamics, solid-solid phase transitions, magnetic
and thermal properties of solids, fluid mechanics, and others. However, the problem of finding and proving the
global ground state of a lattice model, which is essential for all of the aforementioned applications, has remained
unresolved for relatively complex practical systems, with only a limited number of results for highly simplified
systems known. In this paper, we present a practical and general algorithm that provides a provable periodically
constrained ground state of a complex lattice model up to a given unit cell size and in many cases is able to prove
global optimality over all other choices of unit cell. We transform the infinite-discrete-optimization problem into
a pair of combinatorial optimization (MAX-SAT) and nonsmooth convex optimization (MAX-MIN) problems,
which provide upper and lower bounds on the ground state energy, respectively. By systematically converging
these bounds to each other, we may find and prove the exact ground state of realistic Hamiltonians whose
exact solutions are difficult, if not impossible, to obtain via traditional methods. Considering that currently such
practical Hamiltonians are solved using simulated annealing and genetic algorithms that are often unable to find
the true global energy minimum and inherently cannot prove the optimality of their result, our paper opens the
door to resolving longstanding uncertainties in lattice models of physical phenomena. An implementation of the
algorithm is available at https://github.com/dkitch/maxsat-ising.
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I. INTRODUCTION

Lattice models have wide applicability in science
[1–10] and have been used in a wide range of applications,
such as magnetism [11], alloy thermodynamics [12], fluid
dynamics [13], phase transitions in oxides [14], and thermal
conductivity [15]. A lattice model, also referred to as a
generalized Ising model [16] or cluster expansion [12], is the
discrete representation of material properties, e.g., formation
energies, in terms of lattice sites and site interactions. In
first-principles thermodynamics, lattice models take on a
particularly important role as they appear naturally through
a coarse graining of the partition function [17] of systems
with substitutional degrees of freedom. As such, they are
invaluable tools for predicting the structure and phase diagrams
of crystalline solids based on a limited set of ab initio
calculations [18–22]. In particular, the ground states of a
lattice model determine the 0 K phase diagram of the system.
However, the procedure to find and prove the exact ground
state of a lattice model, defined on an arbitrary lattice with
any interaction range and number of species, remains an
unsolved problem, with only a limited number of special-case
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solutions known in the literature [23–29]. In general systems,
an approximation of the ground state is typically obtained
from Monte Carlo (MC) simulations, which by their stochastic
nature can prove neither convergence nor optimality. Thus, in
light of the wide applicability of the generalized Ising model,
an efficient approach to finding and proving its true ground
states would not only resolve longstanding uncertainties in
the field and give significant insight into the behavior of
lattice models, but would also facilitate their use in ab initio
thermodynamics.

In this paper, we present an efficient algorithm that, in many
cases, is able to find the global ground state of an arbitrary
lattice model in any dimension and of any complexity and to
prove the optimality of the solution. We first introduce the
formal structure of a general lattice model and the Hamil-
tonian used to describe it. We proceed to derive a solution
to this optimization problem by converging a periodically-
constrained upper bound and an aperiodic lower bound on
the total energy. For calculating the upper bound, we derive
an equivalence between the optimization of the Hamiltonian
under a fixed periodicity and MAX-SAT pseudo-Boolean
optimization (PBO), allowing us to leverage existing highly
optimized and mathematically rigorous programing tools. To
obtain the lower bound on the ground state energy, we derive
a computationally efficient approach based on a maximization
of minimum-energy local configurations. We demonstrate the
accuracy, robustness, and efficiency of our approach using both
an assortment of random Hamiltonians and an example of a
realistic Hamiltonian of an existing material. Finally, while we
are unable to guarantee that the global optimum can always be
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found and proven, we argue that our algorithm significantly
improves on the state-of-the-art in computational efficiency
and does not sacrifice any guarantees of optimality with respect
to established methodology.

II. NOTATION AND BACKGROUND

A lattice model is a set of fixed sites on which objects (spins,
atoms of different types, vacancies, etc.) are to be distributed.
Its Hamiltonian consists of coupling terms between pairs,
triplets, and other groups of sites, which we refer to as
“clusters”. A formal definition of effective cluster interactions
can be found in Ref. [12]. Before discussing the algorithmic
details of our method, it is essential to establish a precise
mathematical definition of a general lattice model Hamiltonian
and the task of determining its ground states. The ground state
problem can formally be stated as follows: Given a set of
effective cluster interactions (ECIs) J ∈ RC, where C is the
set of interacting clusters and R is the set of real numbers, what
is the configuration s : D → {0,1}, where D is the domain of
configuration space, such that the global Hamiltonian H is
minimized:

min
s

H = min
s

lim
N→∞

1

(2N + 1)3

×
∑

(i,j,k)∈{−N,...,N}3

∑
α∈C

Jα

∏
(x,y,z,p,t)∈α

Si+x,j+y,k+z,p,t

(1)

In the Hamiltonian given by Eq. (1), each α ∈ C is an
individual interacting cluster of sites. In turn, each site within
α is defined by a tuple (x,y,z,p,t), wherein (x,y,z) is the
index of the primitive cell containing the interacting site, p

denotes the index of the subsite to distinguish between multiple
sublattices in that cell, and t is the species occupying the
site. To discretize the interactions, we introduce the “spin”
variables sx,y,z,p,t , where sx,y,z,p,t = 1 indicates that the pth
subsite of the (x,y,z) primitive cell is occupied by species t ,
and otherwise, sx,y,z,p,t = 0. The energy can be represented in
terms of spin products, where each cluster α is associated with
an ECI Jα denoting the energy associated with this particular
cluster. To obtain the energy of the entire system, each cluster
needs to be translated over all possible periodic images of
the primitive cell, i.e., we have to consider all possible
translations of the interacting cluster α, defined as a set of
(x,y,z,p,t), by (i,j,k) primitive cell translations, yielding the
spin product

∏
(x,y,z,p,t)∈α si+x,j+y,k+z,p,t . Finally, the prefactor

1
(2N+1)3 normalizes the energy to one lattice primitive cell, and
the limit of N approaching infinity emphasizes our objective of
minimizing the average energy over the entire infinitely large
lattice. One remaining detail is that the Hamiltonian given in
Eq. (1) is constrained such that each site in the lattice must
be occupied. For the sake of simplicity, lattice vacancies are
included as explicit species in the Hamiltonian, so that all spin
variables associated with the same site sum up to one:

∑
t ∈ c(p)

sx,y,z,p,t = 1 ∀(x,y,z,p) ∈ F . (2)

FIG. 1. Illustration of a lattice Hamiltonian and examples of
cluster interactions. The primitive unit of the lattice is indicated by a
thin dashed line, and sites are represented by circles. Two different
site types are distinguished by black and red borders, respectively.
The nonvacancy species that can occupy the sites are indicated by
two different hatchings.

In Eq. (2), F is the set of all sites in the form of (x,y,z,p),
and c(p) denotes the set of species that can occupy subsite p.
The domain of configuration space D can be formally defined
as the set of all (x,y,z,p,t), with t ∈ c(p).

To further illustrate the notation introduced above, Fig. 1
depicts an example of a two-dimensional (2D) lattice Hamil-
tonian for a square lattice with two subsites in each lattice
primitive cell, i.e., p ∈ {0,1}. Each subsite may be occupied
by three types of species, so that t ∈ {0,1,2}, where t = 0
shall be the reference (for example, vacancy) species. Hence,
the energy of the system relative to the reference can be
encoded into t ∈ {1,2}. Furthermore, the Hamiltonian shall
be defined by only two different pairwise interaction types
with the associated clusters α = {(0,0,0,1,2),(1,2,0,0,1)} and
β = {(0,1,0,0,2),(0,0,0,1,2)}, and thus, the set of all clusters
is C = {α,β}. The first three of the five indices in parentheses
indicate the initial unit cell position, the fourth index corre-
sponds to the position in the unit cell (subsite index), and the
last index gives the species. The third component of the cell
index (x,y,z) was retained for generality but set to 0 for this 2D
example. The example configuration shown in Fig. 1 depicts
three specific interactions: The interaction represented on the
bottom left in the figure is of type α with (i,j,k) = (0,0,0),
corresponding to the spin product Jαs0,0,0,1,2 · s1,2,0,0,1. The
interaction in the center of the figure also belongs to type
α, but with (i,j,k) = (1,1,0), corresponding to the spin
product Jαs0+1,0+1,0,1,2 · s1+1,2+1,0,0,1 = Jαs1,1,0,1,2 · s2,3,0,0,1.
Lastly, the interaction on the right represents an interacting
β cluster, with (i,j,k) = (3,0,0), yielding a spin product of
Jβs0+3,1,0,0,2s0+3,0,0,1,2 = Jβs3,1,0,0,2s3,0,0,1,2.

Currently, the most common approach to find the ground
state of a generalized Ising model is simulated annealing [30]
based on Metropolis MC [31] in an ad hoc finite lattice
supercell. This approach has two major drawbacks. First,
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it is inherently an optimization over a finite set of sites,
whereas the true objective function is defined over an infinite
number of sites. Second, the result obtained from a MC
calculation is simply a particular low-energy configuration,
a local minimum of energy, with no guarantee that it is the true
ground state. This limitation becomes especially problematic
when the size of the ground state structure increases, since
the large number of degrees of freedom quickly renders it
infeasible to sample the low-energy configurations in the
cell. Hence, due to its stochastic nature and dependence on
a particular lattice supercell, simulated annealing can only
identify possible ground state candidates, but it can hardly
guarantee that the global ground state has been found.

An alternative approach that provides a provable ground
state is the configurational polytope method [32,33] com-
bined with vertex enumeration [34]. This method provides
a beautiful reformulation of the ground state problem as
linear programming (LP). Unfortunately, this approach has not
been applied to finding the ground states of complex realistic
Hamiltonians due to its computational inefficiency and the
fact that the method yields a polytope with an large number of
“inconstructible” vertices, i.e solutions that do not correspond
to realizable lattice configurations, and there is no general,
tractable algorithm to extract the true constructible polytope
[35,36]. Recently, the “basic ray” method has been proposed
and used to obtain the ground states of several small systems
[23–25]. However, a universal algorithm based on this method
is not known [24], and the number of systems solved by this
approach is limited.

In the following, we present a computationally efficient
algorithm that is able to provide a provable periodically
constrained ground state up to a set unit cell size and, in many
cases, prove that this ground state is the exact ground state
of the generalized Ising Hamiltonian over infinite space. We
derive the algorithm, demonstrate its applicability to arbitrary
lattices and general multicomponent systems, and demonstrate
its computational performance for practically relevant systems.
Finally, we compare our algorithm to the state-of-the-art
polytope method and discuss the relationship between the two
methods, the guarantees of optimality they are able to provide,
and their relative computational efficiency.

An implementation of this method, along with several
examples, is available in Ref. [37].

III. METHOD FORMULATION

Our general scheme for finding an exact ground state
of an Ising model is to calculate and converge upper and
lower bounds on the energy. We note that the energy of
any periodic configuration is an upper bound on the ground
state energy [38]. Thus, by enumerating periodicities and
finding the exact ground state for each, we can successively
tighten the upper bound on the true ground state energy. If an
exact periodic ground state structure exists, we are guaranteed
to obtain the tightest upper bound possible once we reach
the true periodicity by enumeration. However, there is no
way of knowing when this condition has been reached, i.e.,
when the enumeration should stop. We therefore require an
additional procedure to construct successfully tighter, rigorous
lower bounds on the ground state energy, so that periodicity

enumeration can be stopped when the upper and lower bounds
match, indicating that the exact ground state has been found.
Our approach for the construction of the lower bound is less
intuitive and involves the optimization over a nonperiodic
domain. We discuss both upper- and lower-bound procedures
separately.

Note that cluster expansions are often applied in both
canonical and grand canonical contexts, i.e., investigating the
ground states that arise at both fixed composition and fixed
chemical potential [39,40]. Our derivation focuses on the grand
canonical case, where the chemical potential of each species is
fixed by the “single-point” interaction terms. However, the
grand canonical solution obtained this way can be readily
used to obtain the canonical ground states using a convex hull
approach [41]. By construction, it removes compositions that
do not have a stable ground state. In thermodynamic language,
we minimize the Legendre transform of the energy (grand
potential) with respect to composition, rather than the energy
itself, as is the common procedure to find ground states as a
function of composition [39].

A. Enumerating periodicity

We begin our optimization of the upper bound on the
energy by enumerating all distinct periodicities up to a chosen
maximal unit cell size, which can be iteratively increased until
convergence of the upper and lower bounds has been obtained.
Note that all distinct periodic orderings on a lattice can be
represented by an all-integer supercell matrix in Hermite
normal form [42], whose determinant represents the size of
the periodic super cell. Thus, we can systematically enumer-
ate all periodicities by generating supercells of the lattice
primitive cell from all integer Hermite normal form matrices
up to a given determinant. We then proceed to solve the
fixed-periodicity ground state problem within each generated
supercell, achieving successively tighter upper bounds on the
infinite-lattice ground state energy.

B. Obtaining the ground state at a fixed periodicity

The first element of our solution to the ground state problem
is to efficiently find the ground state given a fixed periodicity
of the solution. While this problem is typically solved by
Metropolis MC simulated annealing in a prescribed simulation
cell, this approach cannot prove that the periodic solution
found is in fact optimal, even for a given periodicity.

To arrive at a methodology that yields a provably op-
timal solution, we convert the problem of minimizing the
Hamiltonian into a mathematical programming problem. The
advantage of this approach is that mathematical programming
algorithms not only yield good performance, but also require a
rigorous proof of solution correctness, i.e., optimality, before
termination. Classic examples of mathematical programming
algorithms are the simplex method in LP [43] and the branch
and bound method for integer programming [44], where
the algorithm itself is also a schematic of the proof of
optimality. As we will show in the following, the ground
state problem for a fixed periodicity can be transformed into a
maximum satisfiability problem [45], a well-researched class
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of optimization problems for which highly efficient solvers
exist [46,47].

Using the notation introduced in the previous section, we
note that calculating the periodic ground state is equivalent to
solving the finite optimization problem:

min
�s

∑
α∈C̃

Jα

∏
(x,y,z,p,t)∈α

�
sx,y,z,p,t (3)

subject to:
∑

t∈c(p)

�
sx,y,z,p,t = 1 ∀(x,y,z,p) ∈ Ffinite (4)

where �
sx,y,z,p,t is, as s in Eq. (2), the indicator variable of

species t on site (x,y,z,p), with the difference that �
s is now

defined on a smaller domain determined by the periodicity; C̃
is the set of all interacting clusters within the fixed periodic

system; and Ffinite is the set of sites within the fixed periodic
unit cell. Such an optimization over discrete {0,1} variables
can be equivalently posed as a logic problem by converting
the minimization problem into the negative of a maximization
problem and replacing the discrete variables by Boolean
equivalents. Following this insight, the minimization of the
finite Hamiltonian can be expressed in the form of a PBO
problem, allowing us to solve this optimization as a weighted
partial maximum satisfiability (MAX-SAT) [46,47] problem.
The essence of MAX-SAT is to model the discrete optimization
problem by maximizing the number of logical clauses that can
be satisfied in a Boolean formula of conjunctive normal form,
weighted by a set of arbitrary coefficients.

To illustrate this approach, we consider the example of a
binary one-dimensional (1D) system with a positive point term
J0 and a negative nearest-neighbor interaction JNN , on a 2-site
unit cell. For this system, the transformation is:

E = min
�s 0,

�s 1

(J0
�
s0 + J0

�
s1 + JNN

�
s0

�
s1)

= − max[J0(1 − �
s0) − J0 + J0(1 − �

s1) − J0 − JNN (�
s0

�
s1)]

= − max{J0(¬�
s0) − J0 + J0(¬�

s1) − J0 + (−JNN )[(1 − ¬�
s0)�

s1]}
= − max[J0(¬�

s0) − J0 + J0(¬�
s1) − J0 + (−JNN )�

s1 + (−JNN )(1 − ¬�
s0

�
s1) − (−JNN )]

= (2J0 − JNN ) − MAXSAT[J0(¬�
s0) ∧ J0(¬�

s1) ∧ (−JNN )(�
s1) ∧ (−JNN )(�

s0 ∨ ¬�
s1)], (5)

where the indicator variable �
si is now also a Boolean variable

in the MAX-SAT setting, and the ∧, ∨ and ¬ operators
correspond to logical “and”, “or”, and “not”, respectively. Note
that, although in a MAX-SAT problem the coefficient of each
clause needs to be positive, it is still possible to transform an
arbitrary set of cluster interactions Ji into a proper MAX-SAT
input, as in the example above.

The advantage of formulating the ground state problem
in this form is that MAX-SAT is one of the most ac-
tively researched non-deterministic polynomial-time (NP)-
hard problems [48], allowing us to leverage the extensive
literature written on the topic [49–52]. Note that any complete
MAX-SAT solver encodes a proof of optimality [50] and
includes a published proof of algorithm correctness (that
it is guaranteed to find the optimal solution) [46] and
efficiency [51,52]. Furthermore, the algorithms are run through
an annual MAX-SAT competition [49], which tests their
correctness, robustness, and efficiency. Under such stringent
criteria, by converting our problem into MAX-SAT, we can
safely guarantee provability, as well as further investigate
the advanced proof schemes and fast algorithms developed
over the last 20 years of MAX-SAT research [46,47,50]. The
particular MAX-SAT solver we chose, based on the results of
the MAX-SAT 2014 competition benchmarking and our own
testing, is CCLS_to_akmaxsat [47,53].

Another notable advantage of MAX-SAT over MC for
obtaining a solution of the ground state problem is that
state-of–the-art MAX-SAT solvers generally include sophis-
ticated methods to escape from local minima [51,52] to

arrive at the global minimum faster and more robustly than
MC.

To verify the efficiency, robustness, and accuracy of
the MAX-SAT solver compared to conventional MC, we
performed a series of tests of both algorithms. We constructed
a set of random 1D and 2D pair-interaction Hamiltonians
with interactions up to the 28th nearest neighbor in 1D and
up to the 10th nearest neighbor in 2D. We then attempted
to find the ground state of each system within unit cells
containing up to 50 sites by MAX-SAT and MC. Finally, we
considered only those Hamiltonians which could be classified
as “difficult”, which we define as having a ground state unit
cell with more than 4 sites in 1D, or more than 12 sites in 2D.
Among these “difficult” Hamiltonians, while our MAX-SAT
approach consistently provides a provable ground state under
the imposed periodicity constraints, we find that MC is unable
to find the ground state energy comparable to the MAX-SAT
result in 10% of cases. Thus, the MAX-SAT approach by itself
is an attractive method to obtain provably optimal, periodically
constrained ground states up to some maximum unit cell size,
separate from the problem of proving the optimality of the
solution over infinite space.

C. Lower-bound calculation

The second element of our algorithm is the optimization of
a lower bound to the ground state energy. The lower-bound
optimization provides both a proof of optimality of the ground
state energy independent of periodicity and a termination
condition for the periodicity enumeration discussed in the
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previous section. We must reiterate that the periodicity-
constrained upper-bound solutions described previously are
already guaranteed to be optimal within the periodicity
constraints provided, such that the lower-bound calculation
only serves as a proof that the solution obtained by periodicity
enumeration is optimal over all other possible periodicities.

To start, we prove that minimization of the Hamiltonian
on a finite group of sites, without any periodic constraints,
provides a lower bound for the ground state energy. To see why
this statement is true, consider the bounds on the Hamiltonian:

H (s) = lim
N→∞

1

(2N + 1)3

×
∑

(i,j,k)∈
{−N,...,N}3

∑
α∈C

Jα

∏
(x,y,z,p,t)∈α

si+x,j+y,k+z,p,t (6a)

≡ lim
N→∞

1

(2N + 1)3

∑
(i,j,k)∈
{−N,...,N}3

Ei,j,k,s � min
i,j,k

Ei,j,k,s

� min
s0∈{0,1}B

Es0 (6b)

where Ei,j,k,s is defined as∑
α∈C Jα

∏
(x,y,z,p,t)∈α si+x,j+y,k+z,p,t and represents the

energy of a block configuration in the lattice at location (i,j,k)
for a specific s. Also, B is the block cluster containing the
relevant (x,y,z,p,t); formally B = Uα∈C α. Then s0 ∈ {0,1}B

is naturally defined as a block configuration and Es0 as the
energy corresponding to block configuration s0.

The first part of Eq. (6b) is a restatement of the total average
energy as an average over (i,j,k) of block configuration
energies Ei,j,k,s . As the left-hand-side of Eq. (6b) is an average
over (i,j,k) of Ei,j,k,s , it must be greater than or equal to the
minimum over (i,j,k) of Ei,j,k,s , the second part of Eq. (6b).
Hence, a minimization of Ei,j,k,s over configuration space (the
right-hand-side), provides a lower bound:

H (s) � min
s0∈{0,1}B

Es0 . (7)

As an example, consider a simple binary 1D lattice system
with interactions up to the next nearest neighbor (NNN). The
energy of this system is bounded from below by the energy of
the lowest energy block configuration:

H = lim
N→∞

1

(2N + 1)

∑
(i)∈{−N,...,N}3

(J0si + J1sisi+1 + J2sisi+2)

� min
s0,s1,s2

(J0s0 + J1s0s1 + J2s0s2). (8)

Thus, minimization over the block configurations
(s0,s1,s2) produces a valid lower bound, mins0,s1,s2

(J0s0 + J1s0s1 + J2s0s2), to the exact ground state energy.
Expressing the Hamiltonian in the above form assigns

all weights of the point term interaction J0 to the 0th site
of the block cluster, corresponding to a J0s0 term in the
energy. We could have just as well redistributed the point
term energy over all sites in the block cluster, transforming
J0s0 into 1

3 (J0s0 + J0s1 + J0s2), and similarly J1s0s2 into

1
2J1(s0s2 + s1s3):

H = lim
N→∞

1

(2N + 1)

∑
(i)∈{−N,...,N}3

[
1

3
(J0si + J0si+1 + J0si+2)

+1

2
J1(sisi+1 + si+1si+2) + J2sisi+2

]

� min
s0,s1,s2

[
1

3
(J0s0 + J0s1 + J0s2)

+1

2
J1(s0s2 + s1s3) + J2s0s2

]
. (9)

In the case of the exact infinite system Hamiltonian, this
transformation simply corresponds to interchanging the order
of the summation and thus imparts no difference to the total
energy. However, in the case of the lower bound, we have
obtained a new bounding condition, which is a key insight we
will use to systematically obtain the tightest possible lower
bound on the ground state energy.

D. Tightening the lower bound using translationally
equivalent ECIs

Generally, the direct minimization of Es0 as described in the
previous section gives a very loose lower bound. In principle,
a tighter lower bound could be generated systematically by
enlarging the block size |B| used for finite minimization
without periodicity constraints, thereby guaranteeing conver-
gence to the exact ground state, as we will show below.
Furthermore, by enlarging the periodicity used for periodic
minimization, the upper-bound energy is also guaranteed to
converge to the exact ground state. To see why this statement
is true, consider a minimization over larger and larger block
clusters and the resulting block configuration s0. We could
then translate and duplicate the configuration s0 to arrive at
a periodic configuration s over the entire lattice. The energy
of s, Es, will differ from the configuration energy of s0, Es0 ,
only at the block boundaries, and the difference will diminish
as blocks become larger and larger. This diminishing property
results from the fact that the bulk energy scales as r |D| and the
boundary energy scales as r |D|−1, where D is the dimension of
the physical system and r is the size of the cubic block cluster.
Here, Es0 − Es therefore scales as r |D|−1

r |D| = 1
r
. Therefore, the

difference between Es and Es0 approaches 0, while Es is an
upper bound and Es0 is a lower bound of the exact ground state
energy, proving that the lower-bound energy Es0 converges to
the exact ground state energy. We also note that, when we
perform periodic minimization with the same periodicity as s,
we arrive at an upper-bound energy smaller than or equal to Es,
while greater than the lower bound Es0 , which proves that the
upper bound also converges to the exact ground state energy
with increasing periodicity. Note that, despite the looseness of
this provable bound, we observe that, in practice, our algorithm
yields convergence superior to r |D|−1

r |D| = 1
r
, as we elaborate in

the discussion section.
Although in the limit of infinite block size, the lower bound

converges to the exact ground state energy, this approach is not
practical, since finite minimization is NP-hard with respect to
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the block size. In the following, we present a much more
efficient algorithm preserving the convergence property.

Given the original set of cluster interactions J ∈ RC, a
tighter lower bound can be obtained by introducing the set of
equivalent Jλ ∈ RC̄, which will be defined so as to leave the
Hamiltonian of the infinite system in Eq. (1) unchanged, but
will modify the Hamiltonian on a finite block. The Jλ ∈ RC̄ are
parameterized by λ ∈ Rn, which we define as a shift parameter.

Note that, although the Jλ will be defined to be equivalent
to J in the sense that they leave the global Hamiltonian
unchanged, finite minimization without periodicity constraints
does not yield the same lower bound. Thus, we can maximize
the lower-bound energy over λ to obtain the tightest lower
bound on the ground state energy:

max
λ

min
s∈{0,1}B

Eλ,s. (10)

One natural way to introduce equivalent Jλ is by redistribut-
ing an ECI over sites in the block cluster: given a fixed block
cluster B to minimize over, for each cluster α ∈ C such that
Jα 	= 0, we construct a set Cα such that all elements β ∈ Cα

are equivalent to cluster α with respect to translations of the
infinite lattice, and β ⊆ B. For each element β in Cα , we
assign weights λβ such that

∑
β∈Cα

λβ = 1, which relate the
translationally equivalent ECIs Jλ to the original ECIs, so that
for all α ∈ C and β ∈ Cα , Jλ,β = λβJα .

Returning to the 1D example of a NNN binary system given
in Eq. (8), the conversion is:

H = lim
N→∞

1

(2N + 1)

∑
(i)∈{−N,...,N}3

(J0si + J1sisi+1 + J2sisi+2)

= lim
N→∞

1

(2N + 1)

×
∑

(i)∈{−N,...,N}3

[J0(λ1si + λ2si+1 + (1 − λ1 − λ2)si+2)

+J1(λ3sisi+1 + (1 − λ3)si+1si+2) + J2sisi+2]

� min
s0,s1,s2

{J0[λ1s0 + λ2s1 + (1 − λ1 − λ2)s2]

+J1[λ3s0s1 + (1 − λ3)s1s2] + J2s0s2}, (11)

where the last expression provides a lower bound on the
ground state energy, dependent on λ. The rationale behind
the λ transform is analogous to that seen in Eq. (9): We
exploit the fact that we can evenly distribute cluster interactions
across sites, leaving the system unchanged, but obtaining a
different lower bound on the ground state energy. Note that
we are not limited to partitioning point terms equally over
all sites, i.e., we could assign a contribution of the point
term energy to site 0 with weight λ1, to site 1 with λ2, and
to site 2 with 1 − λ1 − λ2. In this way, we can generally
convert J0s0 to J0[λ1s0 + λ2s1 + (1 − λ1 − λ2)s2], and J1s0s2

into J1[λ3s0s1 + (1 − λ3)s1s2], arriving at the lower bound
expression of Eq. (11).

From this algorithm, we arrive at mins∈{0,1}B Es,λ, which is
a lower bound dependent on λ. Thus,

max
λ

min
s∈{0,1}B

Eλ,s, (12)

provides the maximal lower bound in the space defined by B
and λ.

Finally, we note that Eq. (12) is a convex optimization
problem. If s is fixed, Eλ,s is a linear function with respect
to λ. Then f (λ) = mins∈{0,1}B Eλ,s is the minimum of a set
of linear functions evaluated at λ. Thus, f (λ) is a concave
function and maxλ f (λ) is a maximization over a concave
function, which is equivalent to a minimization over a convex
function, and thus is a convex optimization problem [54]. Due
to its piecewise linear characteristic, this problem belongs to
the class of nonsmooth convex optimization problems, where
the objective function value is provided by MAX-SAT. In our
implementation, we use the level method [55] as a subclass of
the bundle method [56] to efficiently solve this optimization.

E. Further refinement of the lower bound

The introduction of equivalent Jλ allows us to use finite
minimization without periodicity constraints to obtain an
exact lower bound on the ground state energy. Even when
Eq. (12) cannot provide the exact lower bound for small |B|, by
enlarging |B| and naturally introducing a higher dimensional
λ space, an exact lower bound can usually be obtained. For
example, in the same 1D NNN binary system, |B| can be
enlarged, and λ space can be expanded as:

H = lim
N→∞

1

(2N + 1)

∑
(i)∈{−N,...,N}3

(J0si + J1sisi+1 + J2sisi+2)

� min
s0,s1,s2,s3

[J0(λ1s0 + λ2s1 + λ3s2 + (1 − λ1 − λ2 − λ3)s3)

+J1(λ4s0s1 + λ5s1s2 + (1 − λ4 − λ5)s2s3)

+J2(λ6s0s2 + (1 − λ6)s1s3)]. (13)

Another alternative to introduce a refined lower bound
without increasing |B| is by enlarging λ space through the
introduction of new clusters. For example:

H = lim
N→∞

1

(2N + 1)

∑
(i)∈{−N,...,N}3

(J0si + J1sisi+1 + J2sisi+2)

� min
s0,s1,s2,s3

{J0[λ1s0 + λ2s1 + λ3s2 + (1 − λ1 − λ2 − λ3)s3]

+J1[λ4s0s1 + λ5s1s2 + (1 − λ4 − λ5)s2s3]

+J2[λ6s0s2 + (1 − λ6)s1s3] + λ7s0s1s2 − λ7s1s2s3}.
(14)

In cases where enlarging |B| is computationally very
expensive, this second approach would be the only viable
way to refine the lower bound. It remains unclear how such
clusters should be introduced, given that there are, in general,
an exponential number of them. However, this discussion
is beyond the scope of this paper and will be addressed in
future work. In this paper, exact lower bounds are obtained by
enlarging |B| as demonstrated in the first example.

We note that, at the optimal λ to the MAX-MIN optimiza-
tion in Eq. (12), there are N ∼= Dim(λ) supporting hyperplanes
at the optimal vertex. Thus, there are N block configurations
s ∈ {0,1}B, which are optimal under such a λ shift. If these
N block configurations can tile the whole space, the tiling
is the exact ground state, and the true ground state energy
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FIG. 2. 1D schematic illustrating (a) the energy of a global
configuration, and (b) several choices of block energies, with the
interaction weighted by an arbitrary λ shift. The red arrows represent
the point term (J0) and nearest neighbor (J1) interactions, while
the blue rectangles depict tiling compatibility between adjacent
blocks, ensuring that the collection of blocks sums up to the global
configuration in (a).

is equal to the lower-bound value. Enlarging Dim(λ) allows
higher freedom in the tiling and thus provides a more accurate
lower bound. As a result, in practice, exact lower bounds are
usually obtainable without much computational expense by
expanding Dim(λ) naturally.

Note that, for aperiodic ground states whose representations
are given in terms of tiling [57–59], this method provides
a way to obtain the exact ground state, where periodicity
enumeration (upper-bound calculation) is not appropriate.
Thus, this method may be useful in finding aperiodic ground
states on a fixed lattice.

F. Demonstration using a 1D example

To further illustrate our methodology, we present a simple
1D example to demonstrate the key ideas of our algorithm.
Consider the 1D system with nearest neighbor and point term
interactions (chemical potentials) shown in Fig. 2(a). The
central idea of our algorithm is that the Hamiltonian can be
written as an average of block energies, shown in Fig. 2(b),
under the constraint that the blocks whose energies we consider
must sum up to the global Hamiltonian, as shown visually
in Fig. 2(a), where the blocks must be able to tile to form
the extended structure. Since the choice of how energy is
partitioned into blocks is not unique, different ways can be
used to describe the block energy, yielding the expression:

H = 〈J0si + J1sisi+1〉 =
〈

1

2
J0(si + si+1) + J1sisi+1

〉

= 〈J0[λsi + (1 − λ)si+1] + J1sisi+1〉, (15)

where angle brackets are used to represent averages and
the terms inside the angle brackets are the so called “block
energies”.

Since the global energy is the average of block energies, it
must be greater than or equal to the smallest possible block
energy. Thus, given interaction parameters J , the smallest
possible block energy can be found through minimization over
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FIG. 3. Illustration of block energy in terms of λ in the case
of J0 = −1 and J1 = 2. Each line corresponds to one block
configuration whose block energy is dependent on λ.

spins in the chosen blocks, leading to a lower bound on the
total energy:

H =
〈

1

2
J0(si + si+1) + J1sisi+1

〉

� min
si ,si+1

[
1

2
J0(si + si+1) + J1sisi+1

]
, (16)

for the case of evenly distributed point term interactions, or
more generally,

H = 〈J0[λsi + (1 − λ)si+1] + J1sisi+1〉
� min

si ,si+1

{J0[λsi + (1 − λ)si+1] + J1sisi+1}, (17)

for the case of a λ shift. Finally, since Eq. (17) is valid for all
possible choices of λ, we can obtain a maximally tight lower
bound by maximizing this expression over all possible choices
of λ:

H � max
λ

min
si ,si+1

{J0[λsi + (1 − λ)si+1] + J1sisi+1}. (18)

In this simple example, it is clear that Eq. (18) presents
a convex optimization problem. By enumerating all pos-
sible choices of (si,si+1) for the 1D example of Fig. 2:
(0,0),(0,1),(1,0),(1,1), Eq. (18) is

H � max
λ

min {0,(1 − λ)J0,λJ0,J0 + J1}. (19)

Each term in the curly brackets is a linear function of λ,
and therefore their minimum is concave. We illustrate this
optimization in Fig. 3 for the case where J0 = −1 and J1 = 2.
At each λ, four linear functions corresponding to four different
block configurations are considered; the minimum of them at
each fixed λ is one valid lower bound. The maximization of the
lower bound (maximization of a concave function = convex
optimization) results in the lower bound being −0.5 with λ =
0.5 and supporting hyperplanes being (0,1) and (1,0). Since
(0,1) and (1,0) are the block configurations with minimum
block energy and they can tile into a global configuration,
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we can guarantee that · · · 010101010 · · · configuration is
the global ground state even without knowing any upper
bound. Furthermore, one easily verifies that · · · 010101010 · · ·
configuration indeed has energy of −0.5. Thus, the upper and
lower bounds match, proving the global optimality of this
solution.

In general, for realistic systems, there are exponentially
many hyperplanes with respect to the number of sites in a
block cluster. One distinct advantage of our method is that
we use the MAX-SAT solver to search over such exponential
complexity, which as a result provides the concave function
and its subgradient, which can then be used by the convex
optimization solver. Naturally, due to the intrinsic complexity
of the ground state problem, some NP-hard steps are unavoid-
able. However, with conversion of such computationally com-
plex steps into MAX-SAT, we are handling such complexity
with state-of-the-art efficiency.

IV. DISCUSSION

A. Comparison to previous methods

The algorithm introduced above provides a range of
important advantages over existing approaches towards ground
state optimization in cluster expansions. The most common
approaches to this problem in the literature are based on MC
and are not adequate for proving lattice model ground states, as
they only provide a loose upper bound on the energy with no
way to determine convergence. Our method both improves
the upper-bound calculation (by significantly reducing the
prefactor in this generally NP-hard problem) and introduces
an approach to derive a (typically sufficient) lower bound. The
basic-rays method [23–25], a previously reported approach to
the ground state problem, does not provide a lower bound on
energy. Furthermore, its ground state solution to a particular
set of ECIs (J ) requires that basic rays are established at
all vertices that define the configurational polytope facet
containing J . No general approach to accomplish this has
been demonstrated to work for cluster expansion systems of
complexities relevant to physical systems. In contrast, our
methodology is directly applicable to solving systems with
a defined J vector of relatively complex Hamiltonians, or at
least provides tight bounds on the solution. To our knowledge,
the only other method that can provide upper and lower bounds
on lattice model ground states is the configurational polytope
method [32,33] that establishes bounds on the solution by
means of LP. However, as far as we know, there is no
reported algorithmic system to generate the LP constraints
for complex cluster expansions. Additionally, even if these
constraints were known, the LP requires exponentially many
variables or constraints with respect to the size of the unit cell
being considered, which renders it intractable for complex
Hamiltonians. Therefore, we believe that our method is
unique in its ability to tackle complex Hamiltonians in a
mathematically rigorous way.

B. Connection to the configurational polytope method

Even though our method has been derived independently
of the configurational polytope method, there exists a strong
connection between our lower-bound calculation and one

form of the configurational polytope method. Namely, in
relation to the most rigorous form of the configurational
polytope method, which involves an exponential number of
variables as it relies on strict equality constraints rather
than inequalities, our approach provides a route for efficient
column generation (see Ref. [60] for further details on
column generation techniques in LP). This improvement
expands the applicability of the method to complex, realistic
Hamiltonians.

More precisely, if we start with Eq. (10) and reformulate its
LP problem and its dual, Eq. (10) is equivalent to

max
λ

z,

s.t. : z � Eλ,s =
∑
α∈C

∑
β∈Cα

λβJα

∏
i∈β

si ∀s ∈ {0,1}B,

∑
β∈Cα

λβJα = Jα ∀α ∈ C. (20)

By reorganizing the terms, we have:

max
λ

z,

s.t. : z −
∑
α∈C

∑
β∈Cα

λβJα

∏
i∈β

si � 0 ∀s ∈ {0,1}B

∑
β∈Cα

λβJα = Jα ∀α ∈ C. (21)

We could then apply LP to obtain its dual (grouping λβJα

as one variable to allow for Jα = 0). For each constraint,
we construct corresponding dual variables, ρs and ρα (which
physically represent the “appearance frequency” of spin
configuration s and cluster α, as derived later), yielding the
dual problem:

min
ρ

∑
α∈C

ραJα, (22)

s.t. :
∑

s∈{0,1}B

ρs = 1, (23)

−
∑

s∈{0,1}B

ρs

∏
i∈β

si + ρα = 0 ∀α ∈ C,β ∈ Cα, (24)

ρs � 0 ∀s ∈ {0,1}B. (25)

We arrive at one formulation of the configurational polytope
method in its general form, with an exponential number of
variables and constraints. We interpret ρs as the probability of
finding spin configuration s when we look at some block B, i.e.,
the “appearance frequency” in the configurational polytope
method formulation. Therefore, the natural interpretation of
Eq. (23) is that some block configuration must appear within
a given block cluster, and the probability of observing all
possible configurations sums to one. Similarly, Eq. (25) can
be interpreted to mean that the appearance probability of each
block configuration is greater than 0. Finally, Eq. (24) is the
central equality that constrains the configurational polytope.
It is equivalent to ρα = ∑

s∈{0,1}B ρs
∏

i∈β si ∀α ∈ C,β ∈ Cα ,
where

∏
i∈β si = 1 if the block configuration exactly matches
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β, the translated interacting cluster, and
∏

i=β si = 0 oth-
erwise. Therefore, ρα is the appearance probability of an
interacting cluster, constrained by Eq. (24) to be translationally
invariant. As a result, Eq. (22) can naturally be interpreted
as a minimization of the configurational energy, with the
appearance frequency of each interacting cluster ρα multiplied
by its interaction constant Jα .

Equation (24) is the central equation that derives constraints
in the configurational polytope method. For a 1D system with
nearest neighbor and NNN interaction, where we take B to be
a three-site block cluster, these constraints are:

ρ[11] = ρ
[
11∗] = ρ[111] + ρ[110]

= ρ[011] + ρ[111] = ρ[∗11],

ρ
[
1∗1

] = ρ[111] + ρ[101],

ρ[1] = ρ
[
1∗∗] = ρ[100] + ρ[101] + ρ[110] + ρ[111]

= ρ
[∗1∗] = ρ[010] + ρ[011] + ρ[110] + ρ[111]

= ρ
[∗∗1

] = ρ[001] + ρ[011] + ρ[101] + ρ[111].

These relations establish links between the appearance
frequencies of small clusters ρ[1], ρ[11], ρ[1∗1] and that
of larger clusters ρ[000] ∼ ρ[111] [32]. In order to avoid
an exponential growth in the number of variables to be
generated, which would render LP optimization infeasible,
the configurational polytope method introduces different types
of constraints [32,61], replacing equalities with inequalities.
These alternate constraints weaken the formulation relative to
the underlying relationship given in Eq. (24), but are necessary
for all but the simplest systems [61]. Our approach to the
problem of exponential growth in the number of variables
is equivalent to a column generation scheme [60], where
we use the MAX-SAT solver as our column generation
oracle [60], enabling us to solve this LP system without
departing from its most rigorous constraints. Therefore, our
approach holds an advantage over the configurational polytope
method in terms of accuracy. Naturally, our lower-bound
calculation may still yield inconstructible solutions, which
means that we cannot guarantee convergence between our
periodically optimal upper-bound solution and lower-bound
energy in the most general case. Nonetheless, the net result is
a solution at least as rigorous as that offered by the traditional
polytope method, with numerous advantages in computational
efficiency, rigidity of constraints, and feasibility in handling
exponential complexity. Thus, we have demonstrated that our
formulation is at least as strong as the configurational polytope
method if all intermediate clusters used in deriving constraints
in the configurational polytope method are introduced into our
MAX-MIN formulation.

An important detail regarding the computational complex-
ity of the problem is that the interacting cluster set C in the
primal problem [Eq. (21)] and dual problem [Eq. (24)] must be
the same for the equivalence relationship to hold. As a result,
if we include only the nonzero interacting clusters C in the
MAX-MIN formulation, it is equivalent to the configurational
polytope method in its general form incorporated with only
nonzero interacting clusters in Eq. (24). Even in this case,
both the MAX-MIN formulation and the configurational
polytope method have exponential complexity, since the

primal problem has an exponential number of constraints,
each of which is associated with one configuration s ∈ {0,1}B.
Similarly, the dual problem has exponentially many nonzero
variables ρs, for each s ∈ {0,1}B. Therefore, exponential
complexity persists in both primal and dual problems. The
advantage that the MAX-MIN formulation offers is that we
can tackle such exponential complexity with a state-of-the-art
procedure, implemented as the MAX-SAT solver. Nonethe-
less, we must emphasize that the duality transformation
itself does not change the computational complexity of the
problem.

C. Empirically observed finite convergence property

An important assertion in our derivation of the method is
that, even though we can only mathematically prove that the
convergence rate of the lower bound (without a λ shift) is 1

r
,

where r is the length of the cubic block cluster, the empirical
performance for most realistic or hypothetical systems is that
they exhibit a finite convergence property when the λ shift
is introduced, meaning that the upper and lower bounds can
be matched exactly at some computationally feasible block
size. The formal statement of finite convergence is, given an
arbitrary cluster expansion, there exists some particular block
size N such that the ground state algorithm would terminate
(i.e., the lower bound equals the upper bound) when we con-
sider the block size up to N. Unfortunately, in the most general
sense, this statement cannot be proven, as presence of aperiodic
ground states means that the ground state problem is generally
undecidable, meaning that there is no algorithm that could
always guarantee an exact solution [62]. Correspondingly,
there exists no algorithm with the finite convergence property
for the ground state problem, as finite convergence implies
decidability.

Although finite convergence cannot be mathematically
proven for our or any other algorithm, it is possible to
heuristically reason when we could expect good performance,
as we empirically observe for our approach. A key feature of
our method that enables such performance is the λ shift and
the corresponding tilability of block clusters. Without the λ

shift procedure (meaning that λ is fixed to some constant),
the convergence rate of the lower bound with block size is
indeed 1

r
. Optimization in λ space yields an improvement as

it requires N ∼= Dim(λ) supporting hyperplanes at the optimal
vertex in λ space. Each supporting hyperplane corresponds
to a block configuration, meaning that these N ∼= Dim(λ)
block configurations have the same block configurational
energy at the optimal λ. The lower bound obtained does
not equal to the exact ground state energy only if these
N ∼= Dim(λ) block configurations do not tile infinite space.
Generally, larger N ∼= Dim(λ) makes it more likely that block
configurations tile the space. Therefore, we expect that there
is an additional H [Dim(λ)] improvement on the convergence
rate, where H (�) is some nondecreasing function, yielding
an overall convergence of rate of approximately 1

r·H [dim(λ)] .
While we cannot determine the mathematical form of H (�),
we speculate that H (�) is the main advantage of our method
that provides finite convergence in most cases, as it is based
on the strong mathematical and physical intuition of tilability.
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FIG. 4. Single-core computation time needed to find and prove
the ground state of a 1D, 2D, and 3D pair-interaction Hamiltonian
for unit cells up to 50 sites in size across an increasing range of
pair-interactions. In all cases, the solver finds the ground state for all
unit cells up to 50 atoms in size and calculates a tight lower bound
on the true ground state energy without enlarging |B|. Each point
corresponds to the geometric average runtime of 100 such calculations
with random interaction coefficients, while the shading gives the
spread between the 20th and 80th percentiles.

Nonetheless, we must emphasize that this argument remains
a speculation on the convergence behavior, and we are unable
to prove convergence beyond 1

r
. Thus, most generally, we

refer to our earlier proof that our method converges at least
as quickly and is at least as rigorous as the configura-
tional polytope method, while offering definite computational
advantages by means of the MAX-SAT column-generation
oracle.

D. Computational performance

To test the performance of this approach on practically
relevant systems, we measure the runtime of our algorithm
on binary 1D, 2D square, and three-dimensional (3D) cubic
lattices over random sets of ECIs across a spectrum of
interaction ranges. First, we restrict ourselves to only pair
interactions, calculating runtimes for up to 28 pair interactions
on unit cells with up to 50 sites, where the energy of each
interaction takes on a random value. In the 1D, 2D, and 3D
cases, this limit corresponds to all interactions up to and in-
cluding the 28th, 10th, and 5th nearest neighbors, respectively.
The results of these calculations on a single Intel E5-1650
3.20 GHz core are given in Fig. 4. It is important to note
that the code performance could be significantly improved by
parallelization—the upper-bound implementation is perfectly
parallelizable up to at least hundreds of compute cores, and
the lower-bound calculation parallelizes favorably based on
the method chosen for the nonsmooth convex optimization.

The results reveal that the primary source of runtime
complexity is the range and number of interactions included
in the Hamiltonian, with a secondary dependence on the
dimensionality of the problem. As could be expected, in-
creasing the range of interactions results in an exponential

increase in runtime due to the exponential increase in the
size of the spin configuration space. Fortunately, the increase
in runtime with the number of interactions at a given range
is polynomial. The effect of dimensionality is more subtle:
dimensionality determines the number of distinct interactions
at a given interaction range, and the number of possible unit
cells containing no more than a set number of sites. We find
that the former condition is important to the lower-bound
calculation runtime, while the latter condition determines the
variation in the upper-bound runtime.

In all cases, our implementation gives a very promising
single-core runtime on the order of hours for realistic Hamil-
tonians, which typically include fewer than 100 interactions.
The runtime scales more favorably when all the interactions
included in the Hamiltonian are kept below some maximum
range—for example, a Hamiltonian with 100 interactions
limited to the eighth nearest neighbor range in 3D can be
solved in 3 h on a single core. This performance is consistent
with the trends presented in Fig. 4. In a 3D cubic system, there
are 61 pair interactions at or below the eighth nearest neighbor
range, which based on the trend in Fig. 4 would indicate a
runtime of approximately 104 s, or 2.7 h. Thus, if we include
three- and four-body terms in the Hamiltonian, the runtime is
comparable to that of a pair-interaction Hamiltonian with the
same interaction range.

A curious detail of the runtime data presented in Fig. 4
is that the computation time required for the 1D problem is
similar to that of the 3D problem, considering that the number
of periodicities is on the order of O(N ) in 1D and O(N3) in 3D,
where N is the maximum unit cell size under consideration.
One qualitative explanation of this behavior relies on the fact
that, in our implementation, we first compute the lower bound
on energy, and then attempt to converge the upper bound. Given
a fixed number of pair interactions M , the convex optimization
in the lower-bound calculations has Dim(λ) = O(M D

√
M) for

a D dimensional system. Therefore, we may expect that the
lower-bound calculation is more expensive in 1D than in 3D at
a fixed number of interactions M . Furthermore, we find that, in
3D, we are often able to terminate the upper-bound calculation
quickly as it converges to the lower bound at a relatively
small periodicity, foregoing the general O(N3) MAX-SAT
calculations. One possible explanation of this behavior relates
to the fact that we measure problem complexity by the number
of interactions rather than their range. Consequently, in 3D,
the M interactions are more mutually exclusive in relation to
1D as they are confined to a much shorter range, reducing the
effective number of interactions relevant to the solution.

E. Application to a realistic Hamiltonian

Finally, we apply our method to obtain the exact ground
state of a cluster expansion Hamiltonian used to model sodium-
vacancy orderings in the layered NaxNiO2 compound as a
function of composition. The J interactions for this system are
determined from density functional theory (DFT) calculations
of 400 structures through standard approaches [12,63]. In this
cluster expansion, there are 72 interacting clusters, including
pair, triplet, and quadruplet terms. We emphasize that no
previous method exists that could in practice prove the exact
ground states for a system with such interactions. In the
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FIG. 5. Ground states found for a cluster expansion Hamiltonian
of sodium-vacancy orderings in layered NaxNiO2. The red triangles
indicate the mathematically proven ground states of the lattice model,
whereas the gray squares are the originally proposed ground states
from DFT calculations of 400 possible Na-vacancy arrangements.
The ground state configuration for x = 1/2 is shown in the inset.

configurational polytope method [32,33], a LP system with
about 232 variables and 232 constraints would be required to
capture the frustration effect necessary to provide a tight lower
bound. Such a LP system cannot be solved in a practically
relevant amount of time. In contrast, our method not only
finds the exact ground states, but also proves their optimality
on a timescale of minutes to hours.

As can be observed in Fig. 5, our algorithm finds ground
states at x = 2/5, 1/2, and 3/5 that were not within the set
of DFT input structures initially used to derive the cluster
expansion. As we are able to prove that the solutions are
optimal, we can guarantee that there are no other configurations
that are lower in energy. The inset shows the unusual ground
state predicted at x = 1/2, which is unlikely to be proposed
from intuition.

V. CONCLUSION

We have introduced a computationally efficient and math-
ematically rigorous MAX-MIN procedure which is, in many

cases, able to obtain the exact ground state of a generalized
Ising model and prove its optimality both within a constrained
periodicity and with respect to all possible periodicities. To the
best of our knowledge, our approach is the only known method
of approaching the problem of proving exact ground states of
generalized Ising Hamiltonians with interactions of practically
relevant complexity. In developing our procedure, we have
derived an efficient approach to find an upper bound on the
energy by transforming the finite optimization into a Boolean
problem in the form of MAX-SAT, which provides a provable
periodically constrained optimum for the Hamiltonian. We
also derived a lower bound on the energy from convex
optimization over translationally equivalent clusters. We then
converged the upper and lower bounds on the energy to attempt
to prove the global optimality of the periodic ground state.

We find that our method is formally related to the most
rigorous form of the traditional configurational polytope
method, but provides a practical approach for handing the
generally exponential number of variables and constraints.
Thus, while we are unable to guarantee a provable global
ground state solution in all cases, we are able to (1) find
and prove a periodically constrained ground state up to a
predetermined unit cell size, (2) guarantee global optimality
in certain cases, and (3) guarantee accuracy at least at the
level of the most rigorous configurational polytope method,
while offering numerous advantages in terms of computational
efficiency. We demonstrate that, in practice, our procedure
performs very well and has made it possible to determine the
exact ground states of many formerly intractable systems, e.g.,
the cluster expansions of battery systems.
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