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Abstract

This thesis develops novel statistical methodology for estimating the incidence and the
prevalence of Human Immunodeficiency Virus (HIV) using routinely collected surveillance
data. The robust estimation of HIV incidence and prevalence is crucial to correctly evaluate
the effectiveness of targeted public health interventions and to accurately predict the HIV-
related burden imposed on healthcare services.

Bayesian CD4-based multi-state back-calculation methods are a key tool for monitoring the
HIV epidemic, providing estimates of HIV incidence and diagnosis rates by disentangling
their competing contribution to the observed surveillance data. Improving the effectiveness
of public health interventions, requires targeting specific age-groups at high risk of infection;
however, existing methods are limited in that they do not allow for such subgroups to be
identified.

Therefore the methodological focus of this thesis lies in developing a rigorous statistical
framework for age-dependent back-calculation in order to achieve the joint estimation of
age-and-time dependent HIV incidence and diagnosis rates. Key challenges we specifically
addressed include ensuring the computational feasibility of proposed methods, an issue that
has previously hindered extensions of back-calculation, and achieving the joint modelling
of time-and-age specific incidence. The suitability of non-parametric bivariate smoothing
methods for modelling the age-and-time specific incidence has been investigated in detail
within comprehensive simulation studies.

Furthermore, in order to enhance the generalisability of the proposed model, we developed
back-calculation that can admit surveillance data less rich in detail; these handle surveillance
data collected from an intermediate point of the epidemic, or only available on a coarse scale,
and concern both age-dependent and age-independent back-calculation.

The applicability of the proposed methods is illustrated using routinely collected surveillance
data from England and Wales, for the HIV epidemic among men who have sex with men
(MSM).
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Chapter 1

Introduction

1.1 A brief history of the HIV/AIDS epidemic

The AIDS epidemic, caused by HIV virus infection, is one of the greatest and most tragic
global epidemics (i.e. pandemic) of the 20th and 21st centuries. From its beginning to the
end of 2016, around 76 million people have contracted the HIV virus, with approximately
45% of these dying of AIDS-related illnesses (UNAIDS, 2016).

In the summer of 1981, approximately 30 young sexually active homosexual men in Califor-
nia and New York were unexpectedly diagnosed with rare diseases such as Pneumocystis
Carinii pneumonia (PCP) and Kaposi’s sarcoma (Centers for Disease Control, 1981a,b).
These diseases, at the time only observed in elderly men or drug users, were associated with
a deficit in CD4 T-helper lymphocytes, a type of white blood cell that plays a key role in the
functioning of the immune system. The cases in young homosexuals were formally reported
by the Centers for Disease Control and Prevention (CDC) as the emergence of a new disease
in 1982. The disease, officially named as Acquired Immunodeficiency Syndrome (AIDS),
was defined to be "at least moderately predictive of a defect in cell-mediated immunity,
occurring in a person with no known cause for diminished resistance to that disease. Such
diseases include Kaposi’s sarcoma, PCP, and serious opportunistic infections" (Centers for
Disease Control, 1982).

It was only in 1983, that the link between Human Immunodeficiency Virus (HIV) infection
and AIDS occurrence was uncovered with HIV separately identified in AIDS infected patients
in both France and the US (Barre-Sinoussi et al., 1983; Levy et al., 1984). The first test
enabling detection of HIV was licensed in the US and Europe in 1985.
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The HIV virus was retrospectively identified in stored blood samples. The earliest known
case of HIV dates back to an adult female in 1960 from the Democratic Republic of Congo.
Phylogenetic analysis suggests that the HIV virus has been present in central Africa since the
early 1900s, but the epidemic only started to spread extensively in the 1960s with growing
urbanization (Worobey et al., 2008). Gilbert et al. (2007) suggest that HIV arrived in the US
via Haiti in the late 60’s, as a considerable number of Haitians was working in Congo at the
time.

Despite an enormous amount of effort and funding have been dedicated to HIV-related
research, no effective treatment to cure the HIV virus has been found to date. Zidovudine
(also known as AZT) was the first anti-retroviral drug released, in 1987, and aimed to attack
the HIV virus in order to limit its devastating effect on the immune system. Despite AZT
yielding clinical benefit, it was associated with several serious side effects with the HIV virus
becoming immune to AZT after prolonged therapy (Richman et al., 1987).

An effective contribution to HIV treatment was only developed in 1995. This is a Highly
Active Anti-Retroviral Therapy (HAART), comprising a fixed-dosed combination of multiple
anti-retroviral drugs, that has radically changed the dynamics of the HIV epidemic: the
number of AIDS-related deaths has plummeted since the mid 90s (Moore and Chaisson,
1999), and now, HIV is seen as a chronic, rather than a fatal condition. Nevertheless, even
though the widespread use of HAART has reduced HIV infection, it has not succeeded in
eliminating the epidemic.

In 2015, 46% (95% CI, 43%-50%) of the HIV-infected individuals worldwide were under
HAART treatment (UNAIDS, 2016). In some regions of the world where HAART coverage
is poor the HIV epidemic is still unacceptably severe. For instance, it is estimated that there
are approximately 1 million of new HIV infections per year in Africa. This compares to only
73,000 new yearly infections in western and central Europe and North America. Despite
relatively small, this number highlights that significant HIV transmission is still occurring in
regions where HAART is widely used.

In 2014, a breakthrough Pre-exposure Prophylaxis (PreP) treatment was approved in the US:
a new anti-retroviral drug (Truvada) is targeted at people that are not HIV infected, but are at
high risk of infection. Clinical trial results are thus far encouraging, as they suggest that PreP
is an extremely effective way to reduce the risk of infection (Grant et al., 2010; Baeten et al.,
2012; McCormack et al., 2016). In the UK, a new technology assessment of PreP and its
implementation are starting soon.
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1.2 Biological evolution of HIV/AIDS

The HIV virus is a mutation of Simian Immunodeficiency Virus (SIV), present in apes (chim-
panzees, gorillas and sooty mangabeys) but the mechanics of how cross-species transmission
occurred remain unclear. The most widely adopted explanation is the "hunter theory", which
supports that the exchange of fluids during ape hunting (from a bite, or cut) lead to SIV
transmission to humans (Sharp et al., 2001; Keele et al., 2006).

HIV transmission occurs via the exchange of certain fluids such as blood, semen, pre-seminal
fluid, rectal and vaginal fluids and breast milk. Hence, HIV transmission typically occurs via
sexual intercourse (anal, oral and vaginal), needle and syringe-sharing, blood transfusion,
and through infected mothers to their offspring.

HIV is a lentivirus (type of retrovirus) that penetrates the host’s body by attaching itself to
the surface of the CD4 protein. At this point, the virus starts replicating (i.e. the viral load
increases) and infecting, among other cells, the CD4 T-helper lymphocytes.

HIV infected individuals typically experience seroconversion within 3 weeks of HIV in-
fection, even though this may take up to three months (Horsburgh et al., 1989; Tindall
and Cooper, 1991). Seroconversion only lasts for a few weeks, and is characterised by a
strong immune system reaction to the virus, including development of antibodies and a sharp
decrease in the CD4-count (defined as the number of CD4 T-helper lymphocytes in a fixed
volume of blood) with flu-like symptoms (i.e. high fever, rashes, swollen lymphs nodes)
potentially developing. HIV testing typically involves the detection of antibodies developed
during seroconversion, hence the test’s results may be unreliable if the test is performed
between infection and seroconversion.

After seroconversion, the CD4-count returns to an almost normal level that is, however,
followed by a slow, yet sustained, decline of the CD4-count, and a progressive increase in
the viral load. In the absence of treatment, this leads in the long term to immunodeficiency
(i.e. the destruction of the immune system), AIDS-related diseases (e.g. Kaposi’s sarcoma)
and death.

The incubation period is defined as the period of time between infection and the development
of AIDS. In the absence of treatment, it lasts between 8 and 10 years (Bacchetti and Moss,
1989; Cori et al., 2015). The period of time between infection and seroconversion is known
as the window period. During this time, infected individuals are highly infective as HIV-
specific antibodies have not yet developed, for this reason this is also known as the acute
HIV infection period.
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1.3 Statistical methods for monitoring the HIV/AIDS epi-
demic

Robust quantification of HIV prevalence and incidence is key to the monitoring of the
epidemic and the design of targeted interventions. Prevalence and incidence measure the
proportion of the population infected with HIV and the rate of occurrence of new infections
respectively. Their estimation is not straightforward: due to the asymptomatic and long
natural history of HIV, infections times are typically unobserved and a large proportion of
the infected population remains undiagnosed for a long time.

These challenges have motivated the development of a number of original estimation methods
(see Brookmeyer and Gail (1994), Foulkes (1998), and Becker and Marschner (2001) for
comprehensive reviews), exploiting the progressively increased available information and
increasingly synthesising information from different sources, both cross-sectionally and
longitudinally.

1.3.1 Estimating prevalence

Studies designed to unbiasedly estimate HIV prevalence in various risk-groups are chal-
lenging, if not impossible. Unlinked Anonymous (UA) surveys, based on testing for HIV
anonymous blood samples originally collected for other purposes, represent the closest
approximation to such ideal surveys. UA surveys have been (and still are) used by the surveil-
lance systems of many developed countries. In England, UA testing has been historically
carried out in pregnant women, people who inject drugs, and attendees of sexual health
clinics, providing regular estimates of HIV prevalence in these groups. These prevalence
estimates have been combined with demographic data to derive population prevalence esti-
mates, using either direct (Karon et al., 1998; McGarrigle et al., 2006), or more sophisticated
Multi-Parameter Evidence Synthesis (MPES) methods (Goubar et al., 2008; Conti et al.,
2011). The MPES approach, in particular, has been developed to allow the explicit incorpora-
tion of information on biases in the data, to detect likely inconsistencies across data sources
(Presanis et al., 2008) and has been further extended to jointly estimate HIV prevalence and
incidence (Presanis et al., 2011; De Angelis et al., 2014).
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1.3.2 Estimating incidence

Cohort studies allow the direct estimation of HIV incidence by longitudinally following up a
cohort of uninfected, but at risk of infection, individuals. However, these studies are typically
very expensive, and may lack generalisability (Miller et al., 1995; Coovadia et al., 2007;
Jansen et al., 2011; and references in Karon et al., 2001) due to their typical small sample size
and to the limitations in the design. Inevitably, these studies involve individuals at different
risk of infection than the relevant population of interest and with irregular attendance, likely
depending on the risk behaviour. This will result in informative missingness and censoring. In
the HIV literature, survival analysis techniques have been employed and extended to address
these challenges, see De Gruttola and Lagakos (1989), Carstensen (1996), Farrington and
Gay (1999), Alioum et al. (2005) and Becker and Marschner (2001) for further details.

Single or serial cross-sectional prevalence surveys have also been used to estimate HIV
incidence, by using the relationship between incidence and prevalence (Keiding, 1991).
For example, Ades and Medley (1994) and Ades (1995) estimated age-and-time-specific
incidence from a series of UA sero-prevalence surveys and modelled the relative inclusion rate,
to account for the differential inclusion (in the survey) of infected and uninfected individuals.
Incidence estimates can be obtained both within a parametric and a non-parametric framework
(Marschner, 1996; Marschner, 1997; Nagelkerke et al., 1999; Williams et al., 2001 and Hallett
et al., 2008).

A further example of estimating incidence from a single prevalence study is the "snapshot
sampling" proposed by Brookmeyer and Quinn (1995). Here a random sample of individuals
is taken and tested for HIV. Prevalence of the p-24 antigen in HIV negative or indeterminate
individuals can then be used, together with the information on the average length of the
p24 positive period to estimate incidence. This is based on the idea that the p24 antigen is
typically detectable only for a certain period prior to seroconversion and hence characterises
recent infections. In this case incidence is estimated, through the approximate relationship
”prevalence = incidence×mean window period”, where prevalence is the p24 prevalence
and the mean window period represent the mean duration of the p24 positivity. This approach
has been over time extended to other biomarkers of recent infection (Janssen et al., 1998;
Karon et al., 2008; Sommen et al., 2011) and considerable work has been devoted to the
estimation of their mean window period (Sweeting et al., 2010; Kassanjee et al., 2017; Koulai
et al., 2017).

Dynamic compartmental transmission models (Anderson et al., 1992; Garnett, 2002; Grassly
and Fraser, 2008) have been predominantly used in the HIV literature to forward simulate the
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epidemic, under a number of different scenarios, in a deterministic manner (Punyacharoensin
et al., 2011). However recent work has focused on estimating the parameters of the infection
process. Examples include Alkema et al. (2007) considering a Bayesian melding approach
to inference and Presanis et al. (2011), who embedded a dynamic transition model within a
MPES framework, in order to better inform parameter estimation using multiple sources of
data (Presanis et al., 2011).

Furthermore individual-level simulation models, informed by multiple sources of data,
have been extended to estimate HIV incidence using various flavours of rejection sampling
(Phillips et al., 2015; Punyacharoensin et al., 2015; Punyacharoensin et al., 2016; Nakagawa
et al., 2017). These models require multiple sources of data and are time consuming and
very complex. In contrast, back-calculation is a conceptually simple approach which uses all
information available through a more parsimonious model.

1.4 Back-calculation

The method of back-calculation was first proposed by Brookmeyer and Gail (1986, 1988) in
order to obtain estimates of HIV prevalence and short-term projections of AIDS diagnoses.
HIV incidence was originally estimated on the basis of reported AIDS diagnoses and assumed
knowledge of the distribution of the incubation time, characterising the time between HIV
infection and the AIDS diagnosis. The distribution of the incubation time was then used to
relate the estimated incidence to obtain short term predictions of the minimum number of
future AIDS diagnoses.

Back-calculation has considerably been developed since then, and still plays a key role in the
monitoring of the HIV epidemic globally, with its focus progressively shifting from short-
term AIDS diagnoses prediction to the estimation of incidence. The core of back-calculation
methods is expressed by the following convolution:

d(t) =
∫ t

t0
h(s) f (t − s|s) ds (1.4.1)

t0 denotes the starting time of the epidemic, d(t) is the rate of AIDS diagnoses at time t,
and h(s) is the rate of new infections at time s. f (t − s|s) is the time-varying incubation
distribution and denotes the probability that an individual infected at s experiences an AIDS
diagnosis at time t. Knowledge of any two components of the back-calculation convolution,
allows estimation of the third one.
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Back-calculation is often expressed in discrete times, as diagnosis data are reported on a
discrete scale. Let us consider the time period (t0, tT ] spanning the HIV epidemic. This can
be split into T disjoint consecutive intervals (ti−1, ti], (i = {1, . . . ,T}). The discrete version
of Equation 1.4.1 is then:

di =
i

∑
i0=1

hi0 fi0,i−i0 (1.4.2)

where di is the expected number of diagnosis in the interval (ti−1, ti], hi0 is the expected
number of new infections in (ti0−1, ti0], and fi0,i−i0 is the probability that an individual
infected in the interval (ti0−1, ti0] experiences a diagnosis event in (ti−1, ti], for i ≥ i0 and
i = {1, . . . ,T}. The size of the intervals (ti−1, ti] is typically determined by the availability of
surveillance data (e.g. yearly or quarterly) and, for simplicity, the intervals are commonly
assumed to be of equal length, despite this is not necessary. Note that a smaller interval length
allows for a more refined modelling of the epidemic process, but is more computationally
burdensome.

Infections are typically assumed to follow a non-homogeneous Poisson process in the back-
calculation literature (Becker et al., 1991; Rosenberg and Gail, 1991). Hence the number
of new infections Hi0 in the intervals (ti0−1, ti0], i0 = {1, . . . ,T}, are independent identically
distributed (i.i.d) Poisson random variables with means hi0 = E[Hi0] =

∫ ti0
ti0−1

λ (s) ds. Linear
combinations of Poisson random variables are also Poisson-distributed variables. Thus
the number of new AIDS diagnoses Di in each interval (ti−1, ti], i = {1, . . . ,T} is also
Poisson distributed, with means di given by Equation 1.4.2. Extra-Poisson variation has been
previously addressed via the use of over-dispersion parameters (Brookmeyer and Liao, 1990;
Rosenberg et al., 1992), or by employing an alternative multinomial framework (Brookmeyer
and Gail, 1988; Rosenberg and Gail, 1991; Bellocco and Pagano, 2001).

The validity of back-calculation results principally depends on three components: the diag-
nosis data available, the assumptions made regarding the distribution of the number of new
infections over time, and the chosen incubation distribution (Bacchetti et al., 1993; Mariotti
and Cascioli, 1996).

Under-reporting, or under-ascertainment, is a common limitation of surveillance data result-
ing from changes in reporting conventions, or from reporting delays. Statistical methods
have been developed to estimate reporting delays (De Angelis and Gilks, 1994) and under-
reporting is typically adjusted for in back-calculation (following Brookmeyer and Damiano,
1989).
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Estimating the expected number of new infections over time hhh = (h1, . . . ,hT )
T is challenging

for two main reasons. Firstly, there is large uncertainty around estimates in the most recent
years: diagnosis data are only weakly informative about recent infections, as only a small
proportion of recent infections have had sufficient time to be diagnosed and be reported.
Secondly, back-calculation is ill-posed (O’Sullivan, 1986; Lessner, 1998) as T quantities (i.e.
expected number of new infections) are estimated from T data-points. Despite estimation
having a unique solution, the high dimensionality of hhh leads to high instability in estimation
and even small changes in the data may result in substantial changes in results.

In order to address identifiability issues, hhh is often modelled in terms of infection parameters
θθθ , which are of smaller dimension. Early literature employed parametric models from the
exponential family (e.g. Day et al., 1989; Aalen et al., 1994), however misspecification of
these results in biased estimates and overly narrow confidence intervals. The use of weakly
parametric models such as splines (e.g. Rosenberg and Gail, 1991) or piecewise-constant
step functions (e.g. Aalen et al., 1997) has been alternatively proposed. The latter are
either assumed constant over long time periods or/and are subject to smoothing constraints
(Marschner, 1994).

Modelling the incubation distribution is also challenging. This is separately estimated from
cohort studies and is typically assumed as known. However, uncertainty in the estimation
of the incubation distribution is typically not accounted for, and there is no guarantee that
the cohort used is representative of the population of interest. The incubation distribution
has been typically described via parametric distributions. Multi-state models have been
alternatively considered to more accurately characterise the different infection stages (e.g.
Longini et al., 1992; Dietz et al., 1994; Aalen et al., 1997) and inference is highly dependent
on the distribution chosen (Rosenberg and Gail, 1990; Bacchetti et al., 1992). The incubation
distribution has been further modified in order to account for the effect of treatment, delaying
the development of AIDS (Solomon and Wilson, 1990; Brookmeyer, 1991; Rosenberg, 1994).
The introduction of HAART complicated the implementation of back-calculation models,
which were reformulated to use endpoints other than AIDS diagnoses. The time of HIV
diagnosis for AIDS diagnosed individuals, was initially incorporated in back-calculation
models (Aalen et al., 1994; Dietz et al., 1994; Farewell et al., 1994; Marschner, 1994; De
Angelis et al., 1998). These were subsequently extended to accommodate HIV diagnoses not
necessarily followed by AIDS (Aalen et al., 1997; Bellocco and Marschner, 2000; Cui and
Becker, 2000; Chau et al., 2003; Sommen et al., 2009). This requires the characterisation
of the distribution of the time between infection and HIV diagnosis, but allows the HIV



1.5 Age-dependent back-calculation 9

diagnosis rates to be estimated (Marschner, 1994; Dietz et al., 1994; Chau et al., 2003; An
et al., 2015).

More recently, biomarker data have been further incorporated within a back-calculation
framework. CD4-count data have been employed to better characterise the time between
infection and diagnosis and to estimate trends in HIV testing probabilities, via population
multi-state models (Sweeting et al., 2005; Birrell et al., 2012). Yan et al. (2011) and Ndawinz
et al. (2011) used data on recent infection biomarkers to distinguish between recent and
remote in time infections.

From an implementation point of view, inference within a back-calculation is not straightfor-
ward. Base-case back-calculation models (Equation 1.4.2) can be expressed as GLMs (Rosen-
berg and Gail, 1991) so that estimation can be carried out via standard software. However, as
previously mentioned, estimation may be highly unstable. Moreover a GLM formulation
may not exist for back-calculation models synthesising multiple data sources. Thus, the
likelihood of the back-calculation model has been numerically maximized using either the
Newton-Raphson (Bacchetti et al., 1993) or the EM (Dempster et al., 1977) algorithms.
The latter often incorporates a smoothing step in order to improve the infection parameters
identifiability (EMS algorithm, Becker et al., 1991; Marschner, 1994; Yan et al., 2011).
Penalised likelihood has also been considered for this purpose (Greenland, 1996; Sommen
et al., 2009). Becker and Marschner (1993) showed that the EMS procedure is related to the
maximization of a certain penalised likelihood.

Carlin and Gelman (1993) first implemented back-calculation within a Bayesian framework,
which was later developed by several authors (Raab et al., 1994; De Angelis et al., 1998;
Mezzetti and Robertson, 1999; Sweeting et al., 2005; Birrell et al., 2012). The main advantage
of the Bayesian approach is that it allows for the uncertainty in the unknown components
of back-calculation models to be accommodated through the inclusion of appropriate prior
distributions.

Recent applications of back-calculation models include Birrell et al. (2013), Supervie et al.
(2014), Fellows et al. (2015), and van Sighem et al. (2015).

1.5 Age-dependent back-calculation

Back-calculation methods have been extended to derive age-specific estimates of HIV in-
cidence. These estimates can be used to identify sub-groups of the population that are at
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increased risk of infection, which is necessary if effective targeted public health interventions
are to be designed (Becker and Marschner, 1993; Rosenberg, 1995; Verdecchia and Mariotto,
1995; Greenland, 1996; Marschner and Bosch, 1998; Becker et al., 2003). Mezzetti and
Robertson (1999) first considered Bayesian age-dependent back-calculation, in application
to lung-cancer mortality data. Incorporation of age within back-calculation further allows the
incubation distribution to be better characterised; for instance, by accounting for the faster
progression for those infected at an older age (Rosenberg and Goedert, 1994). Age also helps
to refine the estimation of dates of infections, as it provides a lower bound for the time of
infection.

Returning to the back-calculation introduced in the previous Section, let us consider the time
period (t0, tT ] that span the HIV epidemic, and an appropriate age range (a0,aA]. These can
be split into T and A disjoint consecutive time and age intervals, i.e. (ti−1, ti], i = {1, . . . ,T}
and (a j−1,a j], j = {1, . . . ,A} respectively. If the simplifying assumption that time and
age are measured on the same scale is made, the time-and-age specific analogue of the
back-calculation in Equation 1.4.2 can be expressed using the following convolution:

di, j =
i

∑
i0=max(1,i− j+1)

hi0, j−i+i0 fi0, j−i+i0,i−i0 (1.5.1)

where di, j is the expected number of diagnoses in intervals (ti−1, ti] and (a j−1,a j] (i =
{1, . . . ,T}, j = {1, . . . ,A}); hi0, j−i+i0 denotes the expected number of infections in the time
interval (ti0−1, ti0 ], and age-interval (a j−i+i0−1,a j−i+i0 ]; and fi0, j−i+i0,i−i0 denotes the incuba-
tion distribution that is dependent on the time-and-age intervals of infection and the number
of intervals elapsing between infection and diagnosis.

The bivariate incidence surface (i.e. the time-and-age dependent expected number of new
infections) has been modelled by many authors using the following multiplicative model:
hi, j = hiπ j, where the expected number of infections over time hi, is multiplied by an age-
specific risk-factor π j (Becker and Marschner, 1993; Becker et al., 2003). However this
model assumes constant age effects over time, and thus can not capture different time-trends
across age-classes. Non-parametric modelling of hi, j has been considered in order to relax
this assumption and enhance the model’s flexibility: Rosenberg (1995), Marschner and Bosch
(1998) and Mezzetti and Robertson (1999) used step-functions.

Back-calculation has been alternatively extended to incorporate birth-cohort data. Greenland
(1996) and Wand et al. (2009) employed age-independent back-calculation on diagnosis data
stratified by birth-cohort, so that age-dependent incidence estimates were obtained combining



1.6 Aims of the thesis 11

the estimates from different cohorts. Verdecchia and Mariotto (1995) instead extended the
back-calculation model to include the population susceptible to HIV infection becoming
infected according to a rate that is parametrically modelled as a function of calendar time,
age and birth-cohort.

All the age-dependent back-calculation models discussed so far solely considered AIDS
diagnosis data. Only Becker et al. (2003) examined age-dependent back-calculation including
both HIV and AIDS diagnoses.

1.6 Aims of the thesis

This thesis aims to develop a comprehensive extended statistical framework for age-dependent
back-calculation, merging existing approaches and addressing limitations of previous work.

As previously discussed, the majority of age-dependent back-calculation models are solely
based on AIDS data, which are now increasingly sparse and minimally informative since
HAART. The only age-dependent back-calculation approach based on HIV diagnoses used a
bivariate incidence curve reliant upon strong multiplicative parametric assumptions (Becker
et al., 2003). The main contributions of this thesis are to extend Marschner and Bosch (1998)
and Becker et al. (2003) using a more flexible modelling of the time-and-age dependent
incidence curve and by including a richer, more informative, array of data.

Rosenberg (1995) used non-parametric bivariate step-functions with broad steps in the
time dimension and small steps in the age-dimension. Also Marschner and Bosch (1998)
considered a step function, subject to thin plate smoothing, which however rely on an
unverified isotropy assumption (i.e. equal smoothing in the age-and-time dimensions). We
employ tensor product splines (Eilers and Marx, 2003; Wood, 2006b) and Gaussian processes
(Rasmussen and Williams, 2006) to continuously model the incidence surface, without
defining discrete steps. Furthermore these smoothing models allows us to separately estimate
the amount of smoothing required in each dimension. Their properties have been thoroughly
investigated and compared within simulation studies.

As discussed by Sweeting et al. (2005) and Birrell et al. (2012) in an age-independent
back-calculation framework the incorporation of CD4-count data would allow, via the use of
an age-dependent population multi-state model, to estimate age-and-time dependent HIV
incidence as well as age-and-time dependent diagnosis probabilities and the prevalence of
undiagnosed infection, by age and disease state.
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In contrast to earlier age-dependent back-calculation approaches, the introduction of the
multiplicity of data-types prevent us from writing back-calculation as a standard Generalised
Linear Model (GLM), posing a challenge to the estimation as standard software cannot be
used. A maximum penalised likelihood and a Bayesian approach to inference have been
developed. The latter approach allows a more coherent propagation of uncertainty and
allows for a more straightforward calculation of model-derived quantities (e.g. the prevalence
of undiagnosed infection). In both frameworks, obtaining an efficient implementation of
the model is crucial to ensure that estimation is not hindered by prohibitively lengthy run
times.

1.7 Thesis outline

This thesis is structured as follows: Chapter 2 introduces the age-independent CD4-stage
back-calculation model (Birrell et al., 2012) that is used as a building block. The base back-
calculation model has been extended to consider the epidemic on a reduced time scale, which
is crucial when only incomplete surveillance data are available. The model has been further
adapted to accommodate surveillance data collected on a coarser time scale to that originally
considered. Chapter 3 discusses univariate non-parametric smoothing methods (splines
and Gaussian processes) and their implementation within the back-calculation framework
introduced in Chapter 2. Chapter 4 compares these non-parametric smoothing methods within
a back-calculation framework in a Bayesian simulation study. Chapter 5 extends the back-
calculation, discussed in Chapter 2, to age-specific settings. Chapter 6 considers bivariate
non-parametric smoothing methods and their implementation to estimate the bivariate (time-
and-age specific) incidence surface within the age-specific back-calculation framework
described in Chapter 5. Chapter 7 investigates the feasibility of age-specific back-calculation
and the appropriateness of the different non-parametric smoothing methods to model bivariate
incidence. Chapter 8 illustrates the application of the methods discussed in Chapters 2 and 5
to the HIV epidemic among men who have sex with men in England and Wales. Finally,
Chapter 9 summarizes the achievements of this thesis, discusses outstanding issues and
suggests ideas and directions for future work.



Chapter 2

Age independent back-calculation

2.1 Introduction

The back-calculation method proposed by Birrell et al. (2012), extending the work of De
Angelis et al. (1998) and Sweeting et al. (2005), is routinely used to monitor the status of the
HIV-epidemic among Men who have Sex with Men (MSM) in England and Wales (Kirwan
et al., 2016).

In this Chapter the motivating surveillance dataset is discussed (Section 2.2) and the back-
calculation model is reviewed in Section 2.3. Some extensions of the basic model are then
presented in Section 2.4 to handle the more realistic situation when data are not available
from the beginning of the epidemic and to deal with coarser data.

2.2 Motivating surveillance dataset

Public Health England (PHE) routinely collects surveillance data to monitor the HIV epidemic
in England and Wales. New HIV diagnoses are classified as early (denoted by HIV) or late
(denoted by AIDS), depending on whether clinical AIDS symptoms occur within 3 months
of diagnosis. CD4-counts taken within 3 months of the first positive test in specialized
haematology laboratories are a further source of information available since 1991 (Gupta
et al., 2000). These counts are linked by PHE to the registry of HIV/AIDS diagnoses via
patient identifiers (Brown et al., 2012).
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Let (t0, tT ] be the time-period spanning the HIV epidemic, split into T disjoint, consecutive
intervals (ti−1, ti], i = {1, . . . ,T}. The data available include:

• yH
i , the aggregated number of new HIV diagnoses in (ti−1, ti].

• yA
i , the aggregated number of new AIDS diagnoses in (ti−1, ti].

• A subset of yH
i of size ni has an associated CD4-count, taken around diagnosis.

These subsets are grouped into K categories, defined by CD4 thresholds: yyyHC
i =

(yHC
i,1 ,yHC

i,2 ,. . . ,yHC
i,K)T is a K ×1 of new HIV diagnoses in (ti−1, ti], with respective CD4-

cell counts being categorized into intervals [c1,∞), [c2,c1), . . . and [0,cK−1), where
c1 > c2 > · · ·> cK−1.

yH = (yH
1 , . . . ,y

H
T )

T and yA = (yA
1 , . . . ,y

A
T )

T are T × 1 vectors denoting the number of new
HIV and AIDS diagnoses over time respectively and yHC = {yyyHC

1 , . . . ,yyyHC
T } denotes the

collection of CD4-linked diagnoses.

2.3 Model
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d1,i d2,i dk,i dK,i

Fig. 2.1 Back-calculation multi-state model, for a general number of undiagnosed states
K. Dashed states {1, . . . ,K} denote undiagnosed states. Solid states {K + 1, . . . ,2K + 1}
denote states where diagnosis events are observed. qk denotes the probability of progressing
between the latent undiagnosed states k and k+1. dk,i represents the probability of being
diagnosed from the kth undiagnosed state in the ith time interval.

The basic discrete back-calculation introduced in Chapter 1, is extended to characterise
more accurately the HIV epidemic by incorporating all the sources of information described
above. Diagnosed individuals are a mixture of individuals with long-standing infections,
likely to have been tested as a consequence of HIV-related symptoms, and of recently-
infected individuals, likely to have been tested as a consequence of some recent risky
behaviour. Hence changes in both HIV transmission and in testing behaviour affect the
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number of HIV diagnosis. Consequently diagnoses are a result of three distinct interlinked
processes: transmission leading to infections, progression leading to HIV-related symptoms
and diagnosis. Disentangling the individual contribution of each process to the diagnoses is
only possible by reconstructing the complex mechanism underlying the data (Birrell et al.,
2013).

For this purpose, a discrete-time back-calculation method, based on a non-homogeneous
population-level CD4-count multi-state model (Figure 2.1) is proposed. The multi-state
model is characterised by 2K + 1 states: states {1, . . . ,K} are latent undiagnosed states,
describing disease progression through declining CD4-count. The remaining states are
absorbing, end-point (or diagnosis) states: AIDS is represented by state 2K +1, while HIV
diagnosis from the respective undiagnosed state is into states {K +1, . . . ,2K}.

Following most of the literature (Section 1.4) the infection process is approximated by a time
non-homogeneous Poisson Process with time varying rate λ (u), so that the expected size of
the infected cohort in (ti0−1, ti0] is hi0 =

∫ ti0
ti0−1

λ (u)du.

In successive intervals (ti−1, ti], i = {i0+1, . . . ,T} the infected cohort is subject to competing
disease progression and diagnosis pressure, represented by movements to undiagnosed states
with lower CD4-counts and to the absorbing diagnosis states respectively. By the end of the
surveillance period (i.e. the end of T th interval) individuals in the infected cohort are either
diagnosed with HIV in state k = {K +1, . . . ,2K}, diagnosed with AIDS in state 2K +1, or
remain undiagnosed in one of the latent states k = {1, . . . ,K}.

The progression and diagnosis processes are expressed in terms of probabilities. The
progression probabilities are denoted by qqq = (q1, . . . ,qk, . . . ,qK)

T , where qk is the prob-
ability of progressing from the undiagnosed state k to the state k + 1 (k = {1, . . . ,K}).
qqq describes the natural history of HIV infections and progression probabilities are as-
sumed to be known from external cohort studies (CASCADE Collaboration, 2000) and
to remain constant over calendar time. Diagnosis probabilities are instead denoted by
dddi = (d1,i, . . . ,dk,i, . . . ,dK,i)

T , i = {1, . . . ,T}, where dk,i is the probability of being diagnosed
(in state k+K) from the undiagnosed state k in the ith interval. Diagnosis probabilities are
allowed to vary by both calendar time and undiagnosed state as HIV-testing depends on both
HIV-related symptoms, that are more likely to occur in lower CD4-counts, and time-varying
public health intervention policies.

The inferential problem lies in estimating, in the intervals (ti−1, ti], i= {1, . . .T}: the expected
number of new infections H = {h1, . . . ,hT}, to which we refer as the incidence curve (or
incidence), and the diagnosis probabilities D = {ddd1, . . . ,dddT}. Both H and D will be
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characterised by parameters, i.e. H ≡ H(θθθ) and D ≡ D(δδδ ). In what follows the back-
calculation model is described in general terms without focusing on any parameterisation,
which will be discussed in Chapter 3. Also for notational convenience, unless otherwise
needed, the dependency of H(θθθ) and D(δδδ ) on parameters will be dropped.

Once parameters θθθ and δδδ have been estimated, a number of other population-level quantities
of significant epidemiological interest can be derived. The most important consists of the
number of undiagnosed infections over time, corresponding to the number of individuals in
undiagnosed states 1 to K of the model.

2.3.1 Transition matrices

It is assumed that the time interval (ti−1, ti] considered is small enough so that individuals
can at most experience one event (infection, progression and diagnosis) per interval. New
infections in the ith interval are assumed to occur at the beginning of the ith interval and are
hence not allowed to further progress or to be diagnosed in the interval of infection; both
diagnoses and progressions are instead assumed to occur at the end of the ith interval, the
former before the latter.

Transition matrices QQQi(δδδ ) and DDDi(δδδ ), also referred to as progression and diagnosis matrices,
are functions of progression qqq and diagnosis probabilities D respectively, as well as parame-
ters δδδ . The matrices describe the probabilities of moving between the undiagnosed states
{1, . . . ,K} of the model, and from the undiagnosed to the diagnosis states {K+1, . . . ,2K+1}
in interval (ti−1, ti]. For notational convenience, QQQi(δδδ ) and DDDi(δδδ ) will be denoted QQQi and DDDi

respectively.

QQQi is a K ×K matrix, whose (k, l)th entry is defined as:

(QQQi)k,l =


(1−dk,i)(1−qk) if l = k
(1−dk,i)qk if l = k+1 and k < K
0 elsewhere

(2.3.1)

DDDi is a K × (K +1) matrix, whose (k, l)th entry is defined as:

(DDDi)k,l =


dk,i if l = k
(1−dk,i)qk if l = K +1 and k = K
0 elsewhere

(2.3.2)
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2.3.2 Model dynamics

The model dynamics are described by a system of recursive equations that define the expected
behaviour over time, characterised in terms of the incidence curve H and progression and
diagnosis probabilities qqq and D. Let eeei(θθθ ,δδδ ) and µµµ i(θθθ ,δδδ ) denote the expected number
of undiagnosed infections in states 1 to K and the expected number of new diagnoses at
the end of the interval (ti−1, ti] respectively. These will be denoted eeei = (ei,1, . . . ,ei,K)

T and
µµµ i = (µi,1, . . . ,µi,K+1)

T for notational convenience. Let hhhi = (hi,0, . . . ,0)T denote the K ×1
vector of expected new infections in the ith interval. For i = {1, . . . ,T}:

eeei = QQQT
i eeei−1 +hhhT

i (2.3.3)

µµµ i = DDDT
i eeei−1 (2.3.4)

where eee000 = (0, . . . ,0)T is a K ×1 vector of zeroes.

2.3.3 Alternative representation of model dynamics

An alternative to the prescription of Equations 2.3.3 and 2.3.4 to represent the model dynamics
can be derived by writing a typical back-calculation convolution (as in Section 1.4). The
time to endpoints is characterised by the K × (K +1) matrix PPP(i0,i)(θθθ ,δδδ ), with (1,k)th entry
being the probability for individuals infected in the ith0 interval to be diagnosed in state k in
the ith interval. Again for notational convenience, the dependency on parameters θθθ and δδδ is
suppressed. Also recall (Section 2.3.1) that nor progression nor diagnosis events can occur in
the interval of infection, therefore PPP(i0,i) has the following structure:

PPP(i0,i) =

{
DDDi0+1 if i = i0 +1(

∏
i−1
u=i0+1 QQQu

)
DDDi if i > i0 +1

(2.3.5)

µi,k denotes the kth entry of vector µµµ i (Equation 2.3.4). This can alternatively be defined
as:

µi,k =
i−1

∑
i0=1

hi0P(i0,i)
1,k (2.3.6)

This formulation of model dynamics is less computationally efficient than the one given in
Section 2.3.2 as it requires storing T 2

2 PPP(i0,i) matrices during computations, against T QQQi and
T DDDi matrices for the formulation in Section 2.3.2 . This formulation is thus not further
pursued.
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2.3.4 Likelihood

Given the data introduced in Section 2.2, the likelihood can be formulated based on two
fundamental assumptions:

1. Infections arise from a non-homogeneous Poisson process.

2. The distribution of the CD4-counts is representative of the CD4 distribution at diagnosis
for all individuals; in other terms, the CD4-counts of unlinked diagnoses are missing
at random.

By the first assumption and the properties of the Poisson process (Cox and Isham, 1980),
the number of arrivals into each diagnosis state in intervals (ti−1, ti], i = {1, . . . ,T} forms a
set of independent Poisson random variables with means µµµ i (function of parameters θθθ and
δδδ ), obtained from Equation 2.3.4 (or 2.3.6). Hence the distribution of the HIV and AIDS
diagnoses (denoted Y H

i and Y A
i respectively) is given by independent Poisson variables with

means µH
t = µi,1 + · · ·+µi,K and µA

i = µi,K+1 respectively - i.e.:

Y H
i ∼ Po

(
µ

H
i
)

(2.3.7)

Y A
i ∼ Po

(
µ

A
i

)
(2.3.8)

The contribution of the subsample of size ni of the CD4-linked diagnoses in the ith interval
must be accounted for. The number of new HIV diagnoses in the ith interval is the sum of K
independent Poisson random variables with means µi,1, . . . ,µi,K . By the second assumption,
the conditional joint distribution YYY HC

i of the number of individuals diagnosed in states
{K +1, . . . ,2K} is:

YYY HC
i ∼ Multinomial(ni, pppi) (2.3.9)

where pppi = (pi,1, . . . , pi,K) and pi,k =
µi,k
µH

i
, k = {1, . . . ,K}.

Given the observed data yH , yA and yHC , the overall likelihood L(yH ,yA,yHC | µµµ) accounts
for the contribution of the three sources of information described in Section 2.2 and is:

L(yH ,yA,yHC | µµµ) = L(yHC | yH ,yA,µµµ) L(yH ,yA | µµµ) (2.3.10)

∝

T

∏
i=1

(
K

∏
k=1

(
pi,k
)y

HC
i,k

)
e−µA

i

(
µ

A
i

)yA
i

e−µH
i
(
µ

H
i
)yH

i

where yH , yA and yHC are the HIV, AIDS and CD4-linked diagnoses respectively.
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2.4 Model customization

The previous Section introduces a base-case back-calculation to be used as building block.
This however suffers from a number of limitations (van Sighem et al., 2015). Firstly, this
model does not account for under-reporting (see Section 1.4); Section 2.4.1 proposes a
modification to address this.

Secondly, the proposed model relies on the complete collection of HIV and AIDS diagnosis
data from the beginning of the epidemic, which is typically not the case in countries with
less developed surveillance systems (Riedner and Dehne, 1999). Section 2.4.2 considers
back-calculation from an intermediate time tb, assuming that surveillance data are then
fully available in (tb, tT ]. Moreover, as briefly shown at the end of this Section, considering
the whole epidemic history may be computationally burdensome; the computations can be
alleviated by considering only the period (tb, tT ]. As estimates of the recent number of new
infections are crucial to inform public health policies and interventions, there is typically
little value in fully reconstructing the epidemic history in (t0, tb].

Thirdly, in Section 2.3.2, individuals in the multi-state model are conveniently allowed at
most one move between the states per interval. This is appropriate when a small time scale is
employed. For instance in Birrell et al. (2012) a quarterly interval time scale on quarterly
surveillance data is used. However if data are only available at a coarser (e.g yearly) time
scale, continuing to permit only one movement between the states will not allow patients
to be diagnosed quickly enough (e.g. using K = 3 undiagnosed CD4 states, it would take a
minimum time of 3 years to develop AIDS). Section 2.4.3 further modifies back-calculation
to address this challenge.

The recursive equations (Section 2.3.2) require O(T ) computational time to be evaluated. As
i = {1, . . . ,T}, 2T matrices (i.e. DDDi, QQQi) of size K ×K +1 and 2T , K ×1 vectors (i.e. eeei, hhhi)
and K+1×1 vectors (i.e. µµµ i) must be stored. Running back-calculation from an intermediate
starting point or on a wider time scale, induces a smaller T and thus computational savings.
Fewer parameters θθθ and δδδ also need to be estimated for a shorter epidemic period, leading
to further computational gains.

Finally, note that the back-calculation methodology discussed suffers from a number of other
drawbacks, such as not accounting for mortality or immigration and emigration. These are,
however, outside of the scope of this thesis.
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2.4.1 Under-reporting

Both HIV and AIDS diagnoses may be subject to under-reporting that if left unaccounted
for, will underestimate the true number of infections (De Angelis and Gilks, 1994). The
CD4-linked diagnosis data refer to a subsample of the HIV diagnoses. Under-reporting
will result in a reduced sample size and accounting for under-reporting is not crucial as
long as it is possible to assume that the distribution of CD4 at diagnosis is the same for
reported and non-reported diagnoses. For the HIV and AIDS data, is is possible to correct
for under-reporting by extending the model to include additional parameters.

Let υH
i and υA

i denote the proportion of HIV and AIDS diagnoses in the interval (ti−1, ti] that
are reported by the end of the interval (ti−1, ti]; υυυ denotes the collection of parameters υH

i

and υA
i over time. The expected number of HIV and AIDS diagnoses can then be modified

to account for under-reporting as follows:

µ
H ′
i = υ

H
i µ

H
t (2.4.1)

µ
A′
i = υ

A
i µ

A
t (2.4.2)

The likelihood (Equation 2.3.10) can be modified by replacing µH
i and µA

i by µH ′
i and µA′

i

and will further depend on the under-reporting parameters υυυ .

Typically yH and yA are uninformative with respect to parameters υυυ . However external
evidence on under-reporting levels is often available and could be incorporated in the model
(Birrell et al., 2012).

2.4.2 Back-calculation over a reduced time period

Formulation of the back-calculation model is considered on a subset (tb, tT ] of the full
epidemic period (t0, tT ], tb > t0, requires specification of the state of the model at time
tb. πππ = (π1, . . . ,πK)

T denotes the expected number of undiagnosed infections, in states
k = {1, . . . ,K}, at time tb.

The choice of tb is either based on the availability of surveillance data or computational
constraints. In both cases, misspecification of πππ might lead to biased incidence and diagnosis
probabilities estimates.

The model dynamics in intervals (tb+i−1, tb+i], i = {1, . . . ,T −b} can be expressed using the
recursive Equations 2.3.3 and 2.3.4 and setting eee000 = πππ and i = {1, . . . ,T −b}.
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2.4.3 Back-calculation on a coarser time scale

Surveillance data may only be available at coarse time scale. In this situation, the challenge
is in defining appropriate model dynamics as the simple formulation of the transition and
diagnosis matrices (Equations 2.3.3 and 2.3.4), based on at most one transition between the
states of the model per time interval, does not allow infected individuals to be diagnosed
sufficiently rapidly.

Let (t0, tT ] be the time-period spanning the HIV epidemic, split into T disjoint sub-intervals
(ti−1, ti], i = {1, . . . ,T}. In turn, every interval (ti−1, ti] is further divided into Ns disjoint
sub-intervals (ti,s−1, ti,s], where s = {1, . . . ,Ns}, ti,0 ≡ ti−1 and ti,Ns ≡ ti. The assumption of at
most one move between states holds in the sub-intervals, but not in the larger interval.

Let hi,s, dk,i,s and qk,k+1,s denote the expected number of new infections and diagnosis and
progression probabilities from state k in (ti,s−1, ti,s] respectively, which must be estimated.
The transition and progression matrices, denoted QQQi,s and DDDi,s respectively, can be defined
(Equations 2.3.1 and 2.3.2) in (ti,s−1, ti,s] as only one movement between the states is allowed.
Further assume that the expected number of new infections and diagnosis probabilities, and
thus progression and transition matrices, are constant in the Ns sub-intervals constituting the
larger intervals - i.e.:

hi ≡ hi,1 = · · ·= hi,Ns, i = {1, . . .T}
dk,i ≡ dk,i,1 = · · ·= dk,i,Ns, i = {1, . . .T}, k = {1, . . . ,K}
qk,k+1 ≡ qk,k+1,1 = · · ·= dk,k+1,Ns, k = {1, . . . ,K −1}
QQQi ≡ QQQi,1 = · · ·= QQQi,Ns, i = {1, . . .T}
DDDi ≡ DDDi,1 = · · ·= DDDi,Ns, i = {1, . . .T}

The dynamic equations (Equations 2.3.3 and 2.3.4) can be then replaced with a pair of
equations providing the expected number of undiagnosed eee′′′iii and newly diagnosed individuals
µµµ ′′′

iii at the end of intervals (ti−1, ti], i = {1, . . .T}:

eee′′′iii = QQQ′T
i eee′′′i−1 +hhh′′′i (2.4.3)

µµµ
′′′
iii = DDD′T

i eee′′′i−1 +ddd′′′
i (2.4.4)

where eee000 is a K ×1 vector of zeros. The K ×K transition QQQ′
i and the K ×K +1 progression

matrices DDD′
i for (ti−1, ti] are constructed by aggregating the transition and progression matrices
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defined in the subintervals:

QQQ′′′
i = QQQNs

i DDD′′′
i =

Ns−1

∑
j=0

QQQ j
i DDDi (2.4.5)

where QQQ0
i is a K ×K identity matrix. Equation 2.4.5 could be interpreted as follows: in-

dividuals remaining undiagnosed in (ti−1, ti], must remain undiagnosed in each of the Ns

sub-intervals comprising the ith interval. This equates to raising the sub-interval transition
matrix QQQi to the power of Ns. If individuals are diagnosed in (ti−1, ti], the diagnosis must
have occurred in one of the comprising Ns sub-intervals. The DDD′′′

i formulation allows for the
diagnosis to occur in the first sub-interval, with probability DDDi, in the second sub-interval,
with probability QQQiDDDi, and so on.

Let the K ×1 vector of new expected infections in (ti−1, ti] be hhhi = (hi,0, . . . ,0)T . hi individ-
uals are expected to be infected at the beginning of each subinterval (ti,s−1, ti,s], i = {1, . . .T}
and s = {1, . . . ,Ns}. New infections either remain undiagnosed hhh′′′iii or are diagnosed ddd′′′

iii by the
end of the interval (ti−1, ti], where:

hhh′′′i =

(
Ns−1

∑
s=1

QQQs
i

)T

hhhi ddd′′′
i =

(
Ns−1

∑
s=1

(Ns − s)QQQs−1
i DDDi

)T

hhhi (2.4.6)

The number of infected individuals being diagnosed and remaining undiagnosed by the
end of the infection interval (ti−1, ti] can be reconstructed by considering the sub-intervals
(ti,s−1, ti,s], s = {1, . . .Ns}.

Consider the infected individuals in the beginning of (ti−1,1, ti,1]; these can either remain
undiagnosed throughout or be diagnosed in one of the successive sub-intervals (ti,s−1, ti,s],
s= {2, . . .Ns}. The probability to remain undiagnosed is QQQNs−1

i . Diagnosis might occur in the
second sub-interval (s = 2) with probability DDDi, in the third sub-interval (s = 3, probability
QQQiDDDi) and so on, up to the s = Ns sub-interval (probability QQQNs−2

i DDDi). Similarly individuals
infected in the second sub-interval can remain undiagnosed throughout (ti,s−1, ti,s], s =
{3, . . . ,Ns} with probability QQQNs−2

i . Alternatively, diagnoses can occur in the s= 3 subinterval
(probability DDDi) and so on, up to the s = Ns subinterval (probability QQQNs−3

i DDDi). Summing
undiagnosed and diagnosed individuals over all sub-intervals constituting (ti−1, ti] yields
Equation 2.4.6.

Note that Equations 2.4.3 and 2.4.4 can be modified to model the epidemic from an interme-
diate point tb, as discussed in Section 2.4.2.
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2.5 Summary

In this Chapter the back-calculation model originally proposed for the surveillance of the
MSM HIV epidemic in England and Wales has been introduced (Birrell et al., 2012). To-
gether with the motivating dataset (Section 2.2) initial extensions have been proposed in
Sections 2.4.2 and 2.4.3. These increase the generalisability of the originally proposed model,
and render the model applicable to a wider range of HIV epidemics, where surveillance data
are only available less frequently or are not available from the start of the epidemic, or both.
A summary of the notation used is available in Appendix B.1.

Plausible parameterisations for the incidence curve H(θθθ) and diagnosis probabilities D(δδδ )

have not been discussed. The next Chapter proposes a number of non-parametric smoothed
models for H(θθθ) and D(δδδ ).





Chapter 3

Univariate non-parametric smoothing
methods

3.1 Introduction

Chapter 2 introduced back-calculation in general terms, without specifying parameterisations
for the incidence curve H(θθθ) and diagnosis probabilities D(δδδ ). The estimation problem
is ill-posed in the sense that small variations in the data, lead to large variations in the
estimates (Lessner, 1998). For HIV back-calculation, due to the relatively long time between
infection and diagnosis, estimates of recent infection levels are highly sensitive to the
parameterisations of H(θθθ) and D(δδδ ). To limit the reliance on strong parametric assumptions,
whilst ensuring appropriate flexibility, non-parametric methods have been considered in the
literature. Smoothing is introduced to improve identifiability, and this has been achieved by
integrating a kernel smoothing step into the EM algorithm or through the use of penalised
likelihood methods (Section 1.4).

Splines and Gaussian processes are instruments for smoothly modelling curves. Early work
on splines dates back to Reinsch (1967), Duchon (1977), De Boor (1978), Wahba (1980, 1983,
1990), and Silverman (1985). Excellent books on splines are Green and Silverman (1994),
Ruppert et al. (2003), Wood (2006c), and Fahrmeir et al. (2007). Gaussian processes have
been employed for decades in geo-statistics (Krige, 1966; Matheron, 1973), under the name
of kriging, but they became extremely popular in the machine learning community in the late
90’s (Williams and Rasmussen, 1996; MacKay, 1998). Both splines and Gaussian processes
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are still active and widely applied research fields (Marra and Radice, 2010; Hensman et al.,
2013; Roberts et al., 2013; Bauer et al., 2016).

Most of the literature focuses on scatter-plot smoothing purposes, where splines and Gaus-
sian processes are used to smooth out a set of observed data points. However, within the
back-calculation framework of Chapter 2, these methods need to be extended to model
latent processes, as both the incidence curve and the diagnosis probabilities are not directly
observed.

This Chapter begins by demonstrating the applicability of splines (Section 3.3) and Gaussian
processes (Section 3.4) to scatter-plot smoothing problems (Section 3.2). These are first
compared in Section 3.5, and are subsequently (Section 3.6) embedded in a back-calculation
framework to model the latent H(θθθ) and D(δδδ ). Note that understanding properties of
splines and Gaussian processes is fundamental to appropriately interpret the back-calculation
results.

The methodological overview on splines and Gaussian processes presented in this Chapter is
mostly based on Wood (2006a), Bowman and Evers (2013), and Rasmussen and Williams
(2006).

3.2 The problem

Consider data (yi,xi), i= {1, . . . ,n}, where yyy= [y1, . . . ,yn]
T is an n×1 vector of observations

made, conditional upon the n×1 vector of covariates xxx = [x1, . . . ,xn]
T . Linear regression is

one of the simplest statistical models, but is often not flexible enough to capture the trend
exhibited in the data.

As shown in Figure 3.1a polynomial regression offers greater flexibility, but suffers from a
number of drawbacks. A high degree polynomial needs to be considered in order to capture
the trend in the data. However this often displays strong oscillations, which are not supported
by the data and high curvature at both ends of the data-range. Non-parametric methods, such
as splines and Gaussian processes, have the added value of capturing complex trends in the
data in an accurate, yet smooth, manner; this is demonstrated in Figures 3.1b and 3.1c.

Non-parametric regression aims to find a smooth curve g(x), often called smooth, so that, for
i = {1, . . . ,n}:

yi = g(xi)+ εi (3.2.1)
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(a) Polynomial Regression
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Fig. 3.1 Comparison of fits obtained by a polynomial regression, a cubic spline and a Gaussian
process respectively, based on an illustrative dataset.

where g(x) is a smooth curve that does not have a pre-restricted shape (e.g. a straight line),
but instead adjusts its shape to smoothly capture the features of the data. This is also known
as the scatter-plot smoothing problem.

3.3 Splines

3.3.1 Introduction

Definition 3.3.1. A polynomial spline of degree d is a function g(x) : [a,b]→ R, defined on
a set of ordered knots κκκ = {a = κ1 < κ2 < · · ·< κk = b}, so that:

• g(x) is a polynomial of degree d in intervals (κi,κi+1), i = {1, . . . ,k}.

• g(x) is d −1 times continuously differentiable.

The degree d and the number and location of knots k characterise the polynomial spline, as
shown in Figures 3.2 and 3.3.
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Fig. 3.2 Polynomial splines of different degrees
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Fig. 3.3 Cubic polynomial splines with different number of knots.
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A spline of degree zero is a discontinuous step function (Figure 3.2a), a spline of degree
one is continuous with discontinuous derivatives (Figure 3.2b), a spline of degree two is
continuous with continuous first derivative (Figure 3.2c), and finally a third degree (cubic)
spline is continuous with continuous first and second derivatives (Figure 3.2d). Splines that
do not have enough knots can not capture the features of the data, while splines with a large
number of knots are likely to be wiggly, and sensitive to perturbations in the data due to noise
(i.e. can lead to overfitting). Figure 3.3 illustrates this behaviour for a cubic spline.

In summary, the flexibility of a polynomial spline increases with both the degree and the
number of knots. Typically the degree of a spline is fixed (e.g. cubic), while the number
of knots is allowed to vary. Flexibility is a double edged sword: it is necessary to capture
complex trends in the data, but if not carefully employed it may lead to overfitting.

A polynomial spline (Definition 2.1.1) is constructed as a linear combination of appropriately
defined basis functions b(x):

g(x) =
B

∑
j=1

β jb j(x)

This can be expressed in a regression format, ggg = XXXβββ , where:

ggg[n×1] =

g(x1)
...

g(xn)

 XXX [n×B] =

b1(x1) . . . bB(x1)
...

...
...

b1(xn) . . . bB(xn)

 βββ [B×1] =

β1
...

βB


the B× 1 vector [b1(x), . . . ,bB(x)]T contains the bases of the spline, which depend on the
spline chosen (Sections 3.3.4 to 3.3.7).

Penalised regression is typically considered for estimating the parameters of the spline and
will be discussed in the following Section.

3.3.2 Penalised regression

A strategy to control the flexibility of a spline consists in specifying a large number of knots,
while constraining their influence. A penalty term is introduced so that smooth curves are
favoured over wiggly ones, counteracting the overfitting induced by the large number of
knots. Penalised Least Squares (PLS) is then employed, consisting of the Ordinary Least
Squares (OLS) criterion and an additional penalty term:

min ||yyy−−−XXXβββ ||2 +λβββ
TTT SSSβββ (3.3.1)
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here SSS is a penalty matrix quantifying the quadratic roughness of parameters βββ , which varies
depending on the type of spline considered; λ is the smoothing parameter and controls the
trade off between goodness of fit, measured by the OLS term, and roughness, as measured by
the penalty term.

It can be shown that the vector β̂ββ minimizing PLS is given by (Wood, 2006a):

β̂ββ =
(

XXXTTT XXX +λSSS
)−1

XXXTTT yyy (3.3.2)

Estimated coefficients β̂ββ depend on the value of λ , which tunes smoothness by introducing
bias and reducing variance. If λ is equal to 0 the PLS solution is equivalent to the unbi-
ased, but potentially volatile, OLS estimate. Conversely for large λ values, β̂ββ leads to an
overly smooth curve with little variance, but potentially subject to large bias. Figure 3.4a
demonstrates the effect of λ .

The actual number of knots used to construct the spline is not crucial within a penalised
regression framework: a larger number of knots can always be specified leading to enhanced
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Fig. 3.4 Implications of the choice of λ and the number of knots. a) Three smoothing
parameter choices resulting in a overly smooth, a overly rough, and a suitable curve. b)
Splines with increasing number of knots. Once a minimum number of knots is reached
to ensure enough flexibility, similar results are obtained for all knots considered as the
smoothing parameter guards against overfitting.
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overfitting. This can be, however, offset by using a greater value of λ . Figure 3.4b further
clarifies this point.

While it is fundamental to choose a large enough number of knots to ensure enough flexibility,
it is however wasteful, especially in terms of computation time, to choose a number of knots
that is too large. Sensitivity analysis can help to address whether enough knots have been
chosen. The number of knots can be increased and if the results are comparable to those
obtained with fewer knots, it can be informally concluded that the number of knots chosen is
sufficient.

Recall that any spline is defined by a design matrix XXX and related parameter vector βββ . The
latter can be estimated via a penalised least square criterion (Equation 3.3.1), after introducing
a penalty matrix SSS. Hence defining explicitly βββ , XXX , and SSS allow us to embed splines within
the convenient penalised regression framework discussed in this Section. In what follows
(Sections 3.3.3 to 3.3.7) we discuss how this can be achieved for different types of splines. It
is key to understand how these splines are constructed and their properties, as these will be
subsequently considered within a back-calculation framework.

3.3.3 Optimal natural cubic splines

Recall that the SSS matrix somehow measures the roughness of a curve g(x) : [a,b] → R.
The integrated second derivative squared of g(x) is an appealing measure for quantifying
roughness, as high values of the second derivative squared characterise rougher curves.
Reinsch (1967) first proposed splines, arising as a solution to the minimization of the criterion,
in Equation 3.3.3, in the space of two times continuoulsy differentiable functions:

min
n

∑
i=1

( yi −g(xi) )
2 +λ

∫ b

a
{g′′(x)}2dx (3.3.3)

This objective function is a special case of penalised regression (Section 3.3.2) and it com-
promises between goodness of fit, as measured by the residual sum of squares, and the
roughness of the curve, as measured by the integrated second derivative of g(x). Again, λ is
the smoothing parameter.

Theorem. Equation 3.3.3 is uniquely minimized, in the space of continuously differentiable
function in [a,b], by a natural cubic spline with a knot for every unique xi.
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Natural Cubic Splines (NCS) are a particular type of polynomial splines, formally defined as
follows:

Definition 3.3.2. A Natural Cubic Spline is a function g(x) : [a,b]→ R, defined on a set of
ordered knots κκκ = {a = κ1 < κ2 < · · ·< κk = b}, so that:

• g(x) is a cubic polynomial in intervals (κi,κi+1), i = {1, . . . ,k}.

• g(x) is two times continuously differentiable - i.e. the first and second derivatives of
g(x) are continuous.

• g′′(a) = g′′(b) = g′′′(a) = g′′′(b) = 0, i.e. the second and third derivatives evaluated
at the boundary knots are zero.

The first two conditions characterise any polynomial spline of degree three. The last condition
ensures that extrapolation of the spline outside of the boundary knots is linear.

Green and Silverman (1994) show that a NCS can be written as follows, even though other
parameterisations exist (Wood, 2006a):

Definition 3.3.3. Consider a function g(x) : [a,b]→ R, defined by a set of ordered knots
κκκ = {a = κ1 < κ2 < · · ·< κk = b} and parameters α1,α2,δ1, . . .δk:

g(x) = α0 +α1x+
1

12

k

∑
j=1

δ j|x−κ j|3

This is a NCS if the following constraints are satisfied:

k

∑
j=1

δ j =
k

∑
j=1

δ jκ j = 0

Note that the basis for a NCS is:
{

1,x, 1
12 |x−κ1|3, . . . , 1

12 |x−κk|3
}

.

Thus NCS with a knot per observation (referred to as "optimal NCS" from now on) are
optimal: if roughness is measured using the integrated second derivative squared, there will
be no smoother curve than a NCS producing an equally good fit to the data. Optimal NCS
are "natural" in the sense that a NCS basis is "naturally" obtained as a solution to a specific
smoothing problem, rather than being arbitrarily defined.

The optimal NCS can be formulated within the penalised regression framework discussed in
Section 3.3.2, by expressing the smoothing problem in Equation 3.3.3 as the PLS criterion
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in Equation 3.3.1. This is crucial as it allows us to estimate the spline’s parameters using
Equation 3.3.2.

This can be achieved by defining parameter vectors ααα = [α0,α1]
T and δδδ = [δ1, . . . ,δn]

T , and
matrices TTT and EEE respectively of dimension n×2 and n×n:

TTT =

1 x1
...

...
1 xn

 EEE =


1

12 |x1 − x1|3 · · · 1
12 |x1 − xn|3

... · · · ...
1

12 |xn − x1|3 · · · 1
12 |xn − xn|3

 (3.3.4)

so that the optimal NCS, with one knot per observation, can be written as follows:

ggg = TTT ααα +++EEEδδδ s.t TTT TTT
δδδ === 000 (3.3.5)

Green and Silverman, 1994 (page 141), demonstrate that the roughness integral (in Equa-
tion 3.3.3) can be expressed in quadratic form:

∫ b

a
{g′′(x)}2dx = δδδ

TTT EEEδδδ

Hence, the smoothing criterion in Equation 3.3.3 can be rewritten as the following PLS
criterion:

min||yyy−−−TTT ααα −−−EEEδδδ ||2 +λδδδ
TTT EEEδδδ s.t TTT TTT

δδδ === 000 (3.3.6)

After some algebra, the above penalised least squared criterion, which is subject to two
constraints, can be reparametrised (using the QR decomposition of TTT , see Horn and Johnson,
2012 and Appendix C.1.1) into the simple PLS criterion ||yyy−−−XXXβββ ||2 +λβββ

TTT SSSβββ discussed in
Section 3.3.2. The mathematical details are available in Appendix C.1.2.

Optimal NCS require a knot, and therefore a parameter, per observation. As discussed in
Section 3.3.2, a large number of knots is often unnecessary, as penalised regression allows to
obtain similar estimates with fewer knots, by adjusting the smoothing parameter. "low-rank"
bases splines, that is with fewer parameters than observations, can also be employed. Despite
not having the optimality property of optimal NCS, these work well in practice and are
more computationally efficient (i.e. faster running time, less prone to numerical error). The
following Sections 3.3.4 to 3.3.7 will describe low-rank splines.
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3.3.4 Knots-based natural cubic splines

Recall that optimal NCS are a special case of NCS, where a knot is placed at each observa-
tion. Low-rank NCS can be defined based on a set of knots that is smaller than the set of
observations, expressed within the usual penalised regression framework.

Let κκκ = {a = κ1 < κ2 < · · ·< κk = b} be a set of knots of size k < n. Let ααα =
[
α0,α1

]T

and δδδ =
[
δ1, . . . ,δk

]T
be parameter vectors and let TTT , EEE and CCC be matrices of dimension

n×2, n× k and 2× k respectively:

TTT =

1 x1
...

...
1 xn

 EEE =


1
12 |x1 −κ1|3 · · · 1

12 |x1 −κk|3
... · · · ...

1
12 |xn −κ1|3 · · · 1

12 |xn −κk|3

 CCC =

[
1 1 · · · 1
κ1 κ2 · · · κk

]

A NCS characterised by a set of knots κκκ (Definition 3.3.2) can be written as:

ggg === EEEδδδ +++TTT ααα s.t CCCδδδ === 000 (3.3.7)

The quadratic roughness integral can be approximated as follows:

∫ b

a
{g′′(x)}2dx ≈ δδδ

TTT EEEδδδ

Hence the following constrained smoothing objective is considered:

min||yyy−−−TTT ααα −−−EEEδδδ ||2 +λδδδ
TTT EEEδδδ s.t CCCδδδ === 000 (3.3.8)

Analogously to Section 3.3.3, after employing suitable reparameterisations, the above con-
strained PLS criterion can be turn into the unconstrained PLS criterion ||yyy−−−XXXβββ ||2+λβββ

TTT SSSβββ

characterising penalised regression (Section 3.3.2) so that parameter estimates can easily be
obtained (using Equation 3.3.2). Mathematical details are available in Appendix C.2.

Knots based NCS work well in practice if a suitable number of knots is chosen; usually k
knots are placed at the k quantiles of yyy. Undertaking sensitivity analyses to verify that the
fitted curve does not depend on the knots location is crucial.
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3.3.5 Thin plate regression splines

Wood (2003) introduces thin plate regression splines which are another, more "optimal", low-
rank approximation to optimal (or full-rank) NCS. The main idea is to introduce a dimension
(or rank) reduction matrix, relating a low-rank NCS to a full-rank NCS. Using the same data,
these yield different fitted values and penalise roughness differently. Such differences can be
quantified and minimized by an "optimal" dimension reduction matrix.

Recall that an optimal NCS has n parameters δδδ , subject to two constraints (Section 3.3.3). A
dimension reduction matrix ΓΓΓkkk of size n× k is introduced to map the parameters δδδ of the
full-rank spline to parameters δδδ kkk (k < n) of the low-rank spline:

δδδ === ΓΓΓkkkδδδ kkk (3.3.9)

ΓΓΓkkk is a matrix of rank k, the columns of which form a k-dimensional orthonormal basis. Thus
ΓΓΓ

TTT
kkk ΓΓΓkkk === IIIkkk, but ΓΓΓkkkΓΓΓ

TTT
kkk ̸ ̸ ̸=== IIIn, where IIIl denotes an identity matrix of size l. The PLS fitting

criterion for thin plate regression splines is:

min||yyy−−−EEEΓΓΓkkkδδδ kkk −−−TTT ααα||2 +λδ
T
k ΓΓΓ

TTT
kkk EEEΓΓΓkkkδk s.t TTT TTT

ΓΓΓkkkδδδ kkk = 0 (3.3.10)

As ΓΓΓ
TTT
kkk ΓΓΓkkk === IIIkkk and δδδ === ΓΓΓkkkδδδ kkk, the above can be re-written in terms of δδδ , rather than δδδ kkk:

min||yyy−−− ẼEEkkkδδδ −−−TTT ααα||2 +λδ
T ÊEEkkkδ s.t. TTT TTT

δδδ = 0 (3.3.11)

where ẼEEk = EEEΓΓΓkkkΓΓΓ
TTT
kkk and ÊEEk = ΓΓΓkkkΓΓΓ

TTT
kkk EEEΓΓΓkkkΓΓΓ

TTT
kkk .

As both the low and full rank splines are expressed in terms of parameters δδδ , the fitting
criterion of optimal NCS (Equation 3.3.6) and thin plate regression spline (Equation 3.3.11)
can be compared. The fitting criteria differ in both the fitted values (((EEE −−− ẼEEkkk)))δδδ and the
roughness measure δδδ

TTT (((EEE −−− ÊEEkkk)))δδδ terms. It is desirable to find ΓΓΓkkk that jointly minimizes
changes in goodness of fit and roughness, however Wood (2003) claims that this is not
possible. Nonetheless the more loose criteria of "worst possible changes" in fit and roughness
can be simultaneously minimized over all values of δδδ .

Fit: Thin plate regression splines approximate EEE by ẼEEkkk. Since the fitted values of the
reduced-rank spline are ẼEEδδδ +++TTT ααα (and ααα is the same as for optimal NCS) the worst possible
change in fitted values is measured by:

ẽk = maxδδδ ̸=0
||(EEE −−− ẼEEkkk)))δδδ ||

||δδδ ||
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Roughness: The optimal NCS penalty matrix δδδ
TTT EEEδδδ is approximated by δδδ

TTT ÊEEkkkδδδ , hence the
worst possible change in fitted values is measured by:

êk = maxδδδ ̸=0
δδδ

T (EEE −−− ÊEEkkk)))δδδ

||δδδ ||2

Wood (2003) shows that ẽk and êk are jointly minimized by the "optimal" dimension reduction
basis ΓΓΓkkk ===UUUkkk, which is obtained from the eigen-decomposition of matrix EEE. Explicitly EEE
(defined in Equation 3.3.4, of size n×n) can be expressed as the matrix product UUUDDDUUUTTT . DDD
is a diagonal matrix, of dimension n×n, with the absolute values of the eigenvalues of EEE
sorted in ascending order along the main diagonal. UUU is the n×n matrix of eigenvectors. Let
UUUkkk be the n× k matrix consisting of the first k columns of UUU and DDDkkk be the top left k× k
submatrix of DDD.

After some algebra (Appendix C.3), the fitting criterion of Equation 3.3.10, with ΓΓΓkkk ===UUUkkk,
can be expressed as the usual penalised fitting criterion ||yyy−−−XXXβββ ||2 + λβββ

TTT SSSβββ in Equa-
tion 3.3.1.

Thin plate regression splines avoid choosing the knots location, as they are fully specified by
k parameters arising from the truncated eigen-decomposition. Analogously to the number
of knots, k needs to be large enough to ensure sufficient flexibity, but not too large to avoid
computational waste.

3.3.6 Thin plate regression splines with linear shrinkage

All splines considered so far (optimal NCS, knots-based NCS and thin plate regression
splines) have a penalty matrix SSS and are composed of: a linear term TTT ααα (i.e. α0 +α1x) and a
non-parametric term (i.e. EEEδδδ , often subject to reparameterisation).

As λ increases, the penalty matrix SSS shrinks the parameters δδδ towards zero while the
parameters ααα are not subject to any penalty term (see Equations C.1.7, C.2.2 and C.3.4).
Thus greater λ values shrink the spline towards a straight line (i.e. the unpenalised term) but
not towards zero. Marra and Wood (2011), within a context of variable selection, propose
a strategy to penalise the null-space (i.e. the space of unpenalised coefficients ααα) allowing
shrinkage to zero.

The eigendecomposition SSS =UUUDDDUUUTTT is considered, where UUU and DDD are as defined in Sec-
tion 3.3.5. As there are two unpenalised coefficients (i.e. α1, α2), the last two eigenvalues
are equal to zero. These are replaced by a small portion ε of the minimum strictly positive
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eigenvalue of DDD, creating matrix DDD′′′. The original penalty matrix SSS can be then replaced by
SSS′′′ =UUUDDD′′′UUUTTT . This gives SSS′′′ ≈ SSS, so that the null-space is penalised.

Marra and Wood (2011) show that ε = 1/10 works well in practice, thus the penalty imposed
on the null space is smaller than the one imposed on the originally penalised space. Hence
as λ increases the spline is first penalised towards a straight line, and then, if needed, the
straight line is further shrunk to zero.

Splines with shrinkage can be expressed via the usual penalised regression criterion ||yyy−−−
XXXβββ ||2 +λβββ

TTT SSS′′′βββ , where XXX , βββ and SSS (used to construct SSS′′′) depend on the spline considered.
Marra and Wood (2011) suggest using thin plate regression splines (Section 3.3.5) with linear
shrinkage.

3.3.7 P-splines

Eilers and Marx (1996), building on the work by O’Sullivan (1986), suggest a pragmatic
alternative to construct a low-rank spline that is not based on approximations of optimal NCS
(as in Sections 3.3.4 to 3.3.6). They consider P-splines, which are B-splines (De Boor, 1978)
estimated within a penalised regression framework (Section 3.3.2).

B-splines are low-rank polynomial splines characterised by a local basis, defined by degree d
and κκκ = {a = κ1 < · · ·< κk = b} equally spaced internal knots dividing the domain [a,b]
into k−1 disjoint intervals. The basis function Bd

i (x) is recursively defined:

Bd
i (x) =

x−κi−d

κi −κi−d
Bd−1

i−1 (x)+
κi+1 − x

κi+1 −κi+1−d
Bd−1

i (x) (3.3.12)

B0
i (x) =

1 for κi ≤ x ≤ κi+1

0 otherwise

A B-spline g(x) : [a,b]→ R is a sum of B-spline bases:

g(x) =
k−1+d

∑
j=1

Bd
j (x)β j (3.3.13)

The B-spline basis is:
{

Bd
1(x), . . . ,B

d
k−1+d(x)

}
and satisfies the following properties:

• 2d extra knots outside of [a,b] are necessary for the recursion in Equation 3.3.12 to be
valid, yielding a total number of knots of k+2d.
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Fig. 3.5 Basis for B-splines of degree 1 and 3, with internal knots (black dots) at
{0,0.2,0.4,0.6,0.8,1} and 2d external knots (black triangles). The original domain is
[0,1], and is delimited by the vertical dotted lines.

• Comprises d +1 polynomials of degree d.

• The polynomials join at the k inner knots.

• The derivative up to order d −1 are continuous.

• k−1+d polynomial bases are defined by the recursion.

• For every x ∈ (a,b) only d +1 bases are non-zero.

• For all x ∈ [a,b]: ∑
k−1+d
i=1 Bd

i (x) = 1.

Figure 3.5 shows bases of a B-spline of first and third degrees. These are the sum of a series
of piecewise linear or cubic polynomials, joined at the knots. Linear (or cubic) B-splines
require two (or six respectively) extra knots (denoted by black triangles) to be defined outside
the domain [a,b]. The basis function is local and ordered, meaning that successive bases (and
coefficients) only affect neighbouring parts of the curve.

Eilers and Marx (1996) define P-splines by estimating the coefficients of a B-spline subject
to a penalty. If successive coefficients take similar values, the fitted spline is smooth.
Consequently a difference matrix DDDrrr of degree r is used as penalty matrix, where r = 1 and
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r = 2 are most commonly used:

DDD111 =


−1 1 0 · · · 0
0 −1 1 · · · 0
... . . . . . . . . . ...
0 · · · 0 −1 1

 DDD222 =


−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
... . . . . . . . . . . . . ...
0 · · · 0 −1 2 −1


The penalty matrix SSS is obtained by multiplying: DDDTTT

rrr DDDrrr. For first and second order dif-
ference matrices the penalty term is equivalent to: βββ

TTT DDDTTT
111 DDD111βββ = ∑

k−2+d
i=1 (βi+1 −βi)

2 and
βββ

TTT DDDTTT
222 DDD222βββ = ∑

k−3+d
i=1 (βi+2 −2βi+1 +βi)

2.

A first order penalty shrinks the coefficients (and thus the spline) towards a common constant,
as only two equal successive coefficients are not penalised. In contrast, a second order penalty
shrinks coefficients towards a linear trend, as only three neighbouring coefficients forming a
linear trend are unpenalised.

As before, P-splines of degree d, with a penalty matrix of order r, can be expressed within
the usual penalised regression framework min ||yyy−−−XXXβββ ||2 +λβββ

TTT SSSβββ . Matrices XXX and SSS are
explicitly defined in Appendix C.4.

3.3.8 Splines beyond scatter-plot smoothing

Note that, so far, no distributional assumptions on the outcome vector yyy have been made as
coefficients β̂ββ were obtained by minimizing the PLS criterion (Equation 3.3.2). Akin to linear
regression, equivalent estimates for β̂ββ can be found by maximising the following penalised
log-likelihood criterion, assuming a normally distributed error term εεε , i.e. yyy ∼ N(XXXβββ , IIIσ2),
with XXX and βββ indicating the design matrix and parameters of a spline, and III an n×n diagonal
matrix:

maxβββ l(yyy|βββ )+λβββ
TTT SSSβββ

where l(yyy|βββ ) denotes the log-likelihood of the data.

When employed within a GLM or Generalized Additive Models (GAM) framework, splines
can be used to smoothly model more complex outcomes, with the existence of criterion
to determine the optimal amount of smoothing required λ̂ (Appendix C.5.2) and to obtain
confidence intervals (Appendix C.5.3). However the back-calculation model introduced in
Chapter 2 does not fall into such a framework and we have to look at alternative approaches
to inference.
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3.3.9 Bayesian inference

The main gain of using a Bayesian approach lies in its flexibility in that it allows for splines
to be integrated within more complex models (Wood, 2016), which cannot be expressed in
the GLM or GAM framework.

Within a Bayesian framework, the posterior parameter distribution, given the data f (βββ |yyy),
is proportional to the likelihood f (yyy|βββ ) and the prior distribution f (βββ ) of the parameters
(Wahba, 1983; Silverman, 1985; Wood, 2006c). On the log-scale:

l(βββ |yyy) ∝ l(yyy|βββ )+ l(βββ )

where l(βββ |yyy), l(yyy|βββ ), l(βββ ) are the log-posterior, log-likelihood and log-prior respectively.

The penalised likelihood criterion (Equation 3.3.8) can be re-interpreted from a Bayesian
perspective, with the penalty term λβββ

TTT SSSβββ corresponding to a multivariate Normal prior for
βββ , with mean 000 and precision matrix λSSS, and λ being implicitly assigned a flat prior.

The multivariate Normal prior is improper as SSS is rank-deficient for all splines discussed,
with the exception of thin plate regression splines with linear shrinkage. The parameters βββ

that are not subject to a penalty term (Equations C.1.7, C.2.2, C.3.4, C.4.1) are given flat
priors.

Formally, let p be the rank of SSS, and SSSp (of size p× p), be the full-rank sub-matrix of SSS. Let
βββ = [βββ ppp βββ uuu]

T , where βββ ppp and βββ uuu are the vectors of penalised and unpenalised coefficients,
of size p and u respectively. The penalty term can be then re-formulated, within a Bayesian
framework, using the priors:

βββ ppp ∼ Np
(
000,(λSSSp)

−1)
βββ uuu ∼U(−∞,∞)

(3.3.14)

Despite the Bayesian formulation of splines being established over 30 years ago (Silverman,
1985; Wahba, 1983), the earliest implementations of Bayesian splines only date back to
Fahrmeir and Lang (2001) and Lang and Brezger (2004) due to computational challenges,
resolved by the development of MCMC.

Splines can be implemented using general purpose Bayesian inference software (Appendix A.4)
such as BUGS (Lunn et al., 2000), JAGS (Plummer, 2003), or Stan (Stan Development Team,
2016b) to avoid developing bespoke MCMC algorithms.
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In practice, two reparameterisations can be employed to increase the computational efficiency
of MCMC sampling. The first reparameterisation, known as centering, allows any spline to
be re-written so that the first parameter is an unpenalised global intercept, and the sum of the
spline values over the covariates is zero (i.e. ∑

n
i=1 g(xi) = 0). The second reparameterisation

allows for the penalty matrix SSS to be re-written as a diagonal matrix with p ones and u zeroes
along the main diagonal. For the mathematical details on the two reparameterisations, see
Appendix C.6.

Following the sequential application of the two reparameterisations, the spline is characterised
by parameters βββ

′′′ and design matrix XXX ′′′. The centering reparameterisation, results in an
intercept term (β ′

1) and the first column of XXX ′′′ being a vector of ones. Given the diagonal
structure of the precision matrix SSS′′′ obtained from the second reparameterisation, i.i.d priors
are imposed on penalised coefficients β ′

Pi
∼ N(0,1/λ ), i = {1, . . . , p} and i.i.d flat priors are

imposed on unpenalised coefficients βββUUU .

JAGS, unlike Stan, does not allow the specification of improper priors; typically a vague
proper prior, usually i.i.d Normal, is instead specified for β ′

Ui
∼ N(0,1/λ0), i = {1, . . . ,u−1}.

The intercept term β ′
1 is generally given a distinct weakly informative prior. λ0 is a second

smoothing parameter, imposed on the originally unpenalised coefficients. λ0 can either be
fixed or can be estimated, as suggested in Wood (2016). Priors must be then assigned to the
smoothing parameters λ and λ0, with dispersed gamma or log-uniform priors (Wood, 2016),
or the Half-Cauchy ot Half-t priors (Gelman et al., 2006) being common choices.

Let yyy follow any distribution, not necessarily from the exponential family, with l(yyy|βββ ′′′) the
respective likelihood. A fully Bayesian spline can be then specified as follows:

yyy ∼ l(yyy|βββ ′′′)

β
′
1 ∼ f (β ′)

β
′
Pi
∼ N(0,1/λ ), i = {1, . . . , p}

β
′
Ui
∼ N(0,1/λ0), i = {1, . . . ,u−1}

λ ∼ f (λ )

λ0 ∼ f (λ0)

(3.3.15)

Where f (·) denotes a prior distribution.

Note that λ0 is only introduced for splines with more than one unpenalised coefficients (i.e.
u > 1) before reparameterisations. As previously mentioned, the centering parameterisation
transforms one of the originally unpenalised parameters to a global intercept. The remaining
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unpenalised coefficients are given a prior characterised by λ0. Only thin plate regression
splines with shrinkage and first order B-splines do not require λ0, as they have zero and one
originally unpenalised coefficients respectively. All the other splines discussed (optimal and
knots based NCS, thin plate regression splines and second order B-splines) do require λ0 as
they have two unpenalised coefficients (i.e. u = 2).

The jagam function in the R package mgcv automatically generates JAGS code to estimate
a spline in a Bayesian framework, using the parameterisations described in this Section.
The flexibility of the Bayesian framework allows to embed splines within more complex
models.

3.4 Gaussian processes

3.4.1 Introduction

Splines can be used to construct a smooth non-parametric curve g(x) : [a,b]→ R through
a flexible basis: in a Bayesian framework, the spline parameters βββ are assigned a prior
distribution and a posterior distribution is obtained, after conditioning on the data.

A more general approach for obtaining a smooth non-parametric curve g(x) involves placing
a prior over the set of all possible functions in [a,b]; this reflects prior beliefs regarding
properties of the functions considered, for example smoothness. The posterior distribution
over the set of functions g(x) can be then obtained. A prior can be placed on an uncountably
infinite set of possible functions using stochastic processes, as these specify, by definition, a
probability distribution over a set of functions.

3.4.2 Defining Gaussian processes

A Gaussian Processes (GP) (Rasmussen and Williams, 2006) is a stochastic process, consist-
ing of a (potentially infinite) collection of random variables, any finite number of which have
a joint Normal distribution.

A GP is specified via the mean and covariance of the joint multivariate Normal distribution.
These are constructed by specifying a mean m(xi) and a covariance function (often called
kernel) k(xi,x j|φφφ), characterised by hyper-parameters φφφ . The former is unrestricted, whereas
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the latter must ensure the positive-definiteness of the covariance matrix. Formally:

Definition 3.4.1. A Gaussian Process ggg ∼ GP(m(xi),k(xi,x j|φφφ)), is a collection of random
variables ggg = {g(x1), . . . ,g(xn)} which have a joint multivariate Normal distribution, for any
finite collection of covariates xxx = {x1, . . . ,xn}:

[g(x1),g(x2), . . . ,g(xn)]
T ∼ Nn(mmm,KKK)

where µµµ and KKK are an n×1 mean vector and a n×n covariance matrix respectively, with
elements mmmi = m(xi) and KKKi j = k(xi,x j|φφφ).

k(xi,x j|φφφ) relates the random variables g(xi) and g(x j) depending on the distance between the
covariates xi and x j. As numerous distance measures have been considered in the literature,
several choices of covariance functions exist (Rasmussen and Williams, 2006, Chapter 4;
Duvenaud, 2014). The default choice is the squared exponential function (or kernel) due to its
convenient properties. Firstly, it describes smooth functions with infinitely many derivatives.
Secondly it is stationary, as k(xi,x j|φφφ) only depends on the squared distance between xi

and x j, and is hence invariant to translations (i.e. the function values are unchanged if all
covariates are shifted by a constant).

For simplicity, here we start by considering the case where the mean is an n × 1 zero
vector, and the covariance function is the squared exponential kernel with hyper-parameters
φφφ = {η ,ρ}:

k(xi,x j|η ,ρ) = η
2exp

(
−
(xi − x j)

2

2ρ2

)
(3.4.1)

ρ is the length-scale, controlling the frequency and hence smoothness of the GP; lower
frequencies correspond to rougher functions, while larger frequencies lead to linear functions.
η is a scale factor determining the magnitude of the oscillation of the GP away from m(xi).
Figures 3.6 and 3.7 clarify the role of these hyper-parameters.

3.4.3 Gaussian process regression

Gaussian Process Regression (GPR) is similar to Bayesian regression, but yields a posterior
over a space of functions ggg, instead of parameters βββ . Reconsider the smoothing problem
posed in Equation 3.2.1 and a GP prior is imposed on ggg ∼ Nn(000,KKK). Observations yyy are
assumed to have i.i.d normally distributed errors, with mean 0 and variance σ2, so that
yyy|ggg ∼ Nn(ggg,σ2III). The posterior distribution over the space of functions ggg is obtained by
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Fig. 3.6 Realisations of a GP with η = 1 and different ρ values. The smoothness of the
functions increases with ρ .
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Fig. 3.7 Realisations of a GP with ρ = 0.5 and different η values. The range of the functions
increases with η .

exploiting the conditioning properties of the multivariate Normal distribution as follows. Let
zzz ∼ Nn(µµµ,ΣΣΣ) such that:

zzz =

[
zzz111

zzz222

]
µµµ =

[
µµµ111

µµµ222

]
ΣΣΣ =

[
ΣΣΣ11 ΣΣΣ12

ΣΣΣ
T
12 ΣΣΣ22

]

Let zzz111 and zzz222 be of dimension n1 and n2 (i.e n = n1 + n2). The conditional density of zzz222,
given zzz111, is also multivariate Normal:

zzz222|zzz111 ∼ Nn2

(
µµµ222 +ΣΣΣ

T
12ΣΣΣ

−1
11 (zzz111 −µµµ111), ΣΣΣ22 −ΣΣΣ

T
12ΣΣΣ

−1
11 ΣΣΣ12

)
(3.4.2)
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Fig. 3.8 Posterior mean (red line) and 100 samples (blue lines) from the posterior ggg|yyy, after
conditioning on an illustrative dataset.

By the properties of GP, the joint Normal distribution of (ggg,yyy) is:[
yyy
ggg

]
∼ N

([
000
000

]
,

[
KKK +σ2III KKK

KKK KKK

])
(3.4.3)

The posterior distribution ggg|yyy is obtained from Equation 3.4.2:

ggg|yyy ∼ N
(
KKK(KKK +σ

2III)−1yyy, KKK −KKK(KKK +σ
2III)−1KKK

)
(3.4.4)

Despite the prior mean being 000, the posterior mean is a non-zero function of the covariance
matrix KKK; thus the prior mean is typically set to zero in the literature. The posterior covariance
is the prior covariance minus a term quantifying the reduction in uncertainty after conditioning
on the data. Figure 3.8 plots the posterior mean along posterior distribution ggg|yyy samples for
an illustrative dataset.

The posterior distribution ggg|yyy is only specified at covariates xxx. Prediction at new covariates
xxx⋆ = {x⋆1, . . .x

⋆
m} can be achieved by finding the posterior-predictive distribution at xxx⋆, condi-

tional on data yyy. As a GP prior is defined over a set of functions, rather than covariates, it can
be extended to include function values ggg⋆ = [g⋆(x1), . . . ,g⋆(xm)]. The posterior-predictive
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distribution is derived, as in Equation 3.4.3, by the joint Normality of (yyy,ggg⋆):[
yyy
ggg⋆

]
∼ N

([
000
000

]
,

[
KKKxx +σ2III KKKxx⋆

KKKT
xx⋆ KKKx⋆x⋆

])
(3.4.5)

where the (i, j)-entry of any covariance matrix is defined by the covariance functions:

(KKKxx)i, j = k(xi,x j|φφφ) (KKKxx⋆)i, j = k(xi,x⋆j |φφφ) (KKKx⋆x⋆)i, j = k(x⋆i ,x
⋆
j |φφφ)

Figure 3.9 gives an illustrative example of how a posterior predictive distribution for unob-
served g(x⋆) is sequentially constructed for an increasing number of observations.
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(a) Prior, ρ = 0.1, η = 1
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(d) Prior, ρ = 0.4, η = 1
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(f) 5 observations, ρ = 0.4, η = 1

Fig. 3.9 Illustration of a GP prior (a and d) on functions ggg and the corresponding posterior-
predictive distribution, conditional upon 3 (b and e) and 5 observations (c and f). Two
different length-scales (ρ = 0.1 - top, ρ = 0.4 - bottom) are considered for the covariance
function. The shaded grey area and blue lines respectively represent the 95% credible
intervals and samples of functions from the GP posterior-predictive.
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3.4.4 Inference

Hyperparameters φφφ = {ρ,η} are typically estimated from the data, along with the residual
variance σ2. Even though Gaussian processes are naturally defined within a Bayesian
framework, frequentist inference approaches are typically used to avoid computationally
expensive MCMC methods (Rasmussen and Williams, 2006, Chapter 5).

The likelihood of the data is obtained by integrating over the set of latent functions ggg:

p(yyy|φφφ) =
∫

p(yyy|ggg,φφφ)p(ggg|φφφ)dggg (3.4.6)

In the case of Normal data (as in Section 3.4.3), the log-likelihood is equal to yyy|φφφ ∼
N(000,KKK +σ2III), for further details refer to Appendix C.7. If a likelihood with zero-mean yyy is
maximised, then the empirical Bayes estimates will have non-zero mean.

To carry out Bayesian inference, a prior p(φφφ) is assigned to the hyper-parameters. The
posterior distribution is:

p(φφφ |yyy) ∝ p(φφφ)p(yyy|φφφ) = p(φφφ)
∫

p(yyy|ggg,φφφ)p(ggg|φφφ)dggg

Informative priors can overcome the identifiability issues arising from data being uninforma-
tive about φφφ . Neal (1997) used Hamiltonian Monte Carlo for hyperparameters estimation, as
standard Metropolis-Hastings algorithms perform poorly. Recent work has considered Gibbs
and slice sampling (Gramacy et al., 2007; Murray and Adams, 2010).

Bayesian inference further integrates uncertainty in the hyperparameters into predictions:

p(ggg⋆|yyy) =
∫

p(ggg⋆|yyy,φφφ)p(φφφ |yyy)dφφφ

3.4.5 Gaussian processes beyond scatter-plot smoothing

In the previous Sections, we illustrated how GPR (Section 3.4.3) can be used within a scatter
plot smoothing framework. In theory, it is possible to extend this framework to non-normally
distributed observations yyy and inference can be carried as described in Section 3.4.4.

However, in practice this is not straightforward; the posterior distribution p(ggg|yyy) and likeli-
hood of non-normally distributed outcomes yyy can not be expressed analytically. This can only
be derived via approximations, such as the Laplace approximation (Williams and Barber,
1998) or Expectation Propagation (Minka, 2001).
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GP have been extensively used for classification problems, involving binary outcomes (Ras-
mussen and Williams, 2006, Chapter 3). Chan and Dong (2011) propose Generalized
Gaussian Processes to smoothly model the link function η(µ) of a GLM (as in Section 3.3.8)
with a GP prior. However the back-calculation model of Chapter 2 can not be expressed as a
GLM, and these methods are not applicable.

3.5 Comparing Gaussian processes and splines

Both splines and Gaussian processes are methods for non-parametric regression and can be
integrated in a Bayesian regression framework. Consider any linear function in βββ :

ggg = XXXβββ

If a multivariate normal prior βββ ∼ N(000,CCC) is chosen, a Gaussian process prior is implicitly
set on the space of functions ggg ∼ N(000,XXXCCCXXXTTT ). The Bayesian interpretation of splines
(Equation 3.3.14) is a special case of Bayesian regression where ggg ∼ N(000,XXXSSS−1XXXT ), i.e
SSS−1 ≡CCC. Recall that SSS may not be of full rank, due to the unpenalised parameters βββUUU having
a flat prior. For the previous statement to hold, this is replaced by a wide vague Normal prior
βββUUU ∼ N(0,ξ ) (ξ → ∞) so that SSS is of full rank.

Gaussian processes impose a prior over a set of functions g(x) ∼ N(000,KKK). KKK is not char-
acterised by basis functions, but by a covariance function k(xi,x j|φφφ). Gaussian processes
can, however, be expressed in terms of an infinite number of basis b(x) functions by Mer-
cer’s theorem (Williams, 1997), whereas splines are characterised by finite basis functions.
On the other hand, splines can be expressed as a GP prior. For instance (Rasmussen and
Williams, 2006, Section 6.3) optimal NCS (Section 3.3.3) can be obtained by considering
the space of functions g(x) = β1 +β2 + r(x) and imposing a N(000,KKKsp) prior on r(x), where

(KKKsp)i j =
|xi−x j|ν2

2 + ν3

3 and ν = min(xi,x j). The covariance function is continuous but only
once differentiable, hence rougher than the squared exponential kernel. Outside of the first
and last data-point of the domain defined by xxx the posterior mean reverts to the prior mean
for the squared exponential kernel, while extrapolates linearly for the spline kernel.

In summary, a Gaussian process is more flexible than a spline: from a Bayesian regression
perspective, the latter pre-specifies the covariance matrix while the former allows it to depend
upon hyperparametrs. Both Gaussian processes and splines incorporate uncertainty in g(x);
however splines assume homoskedastic confidence (or credible) intervals, whereas GP allow
for the credible interval size to vary depending on the distance between the xxx (Figure 3.9).
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GP are more computationally demanding: iterative algorithms, such as MCMC or numerical
likelihood maximizers, invert the covariance matrix KKK (with O(n3) cost) at every iteration.
Instead splines pre-specify SSS and thus require only one matrix inversion.

A number of R packages allows fitting splines and GP (see Appendix C.8) within standard
models (GLMs, GAMs and scatter-plot smoothing). However these are not flexible enough
to fit more complex models, such as the back-calculation discussed in Chapter 2.

3.6 Modelling the latent processes in back-calculation

Chapter 2 introduced multi-state back-calculation, without however specifying parameterisa-
tions for the incidence curve H(θθθ) and diagnosis probabilities D(δδδ ). Sections 3.3 and 3.4
introduced splines and GP within a scatter-plot smoothing framework. This Section shows
how these can be embedded within back-calculation, to model the latent H(θθθ) and D(δδδ )

processes. Finally, both penalised likelihood and Bayesian inference are discussed.

3.6.1 Incidence curve

To ensure positiveness of H(θθθ), the expected infections are modelled on the log scale.
Denote γi = log(hi) the log of the expected number of new infections in the ith interval. We
will refer to γγγ = (γ1, . . . ,γT )

T , the vector of log-expected infections, as the log-incidence
curve. Three parameterisations are considered for γγγ: step functions, splines and GP.

Step functions

Step functions assume that the log-incidence curve is piecewise constant in intervals (t̃i−1, t̃i],
where i= {1, . . . , T̃}, T̃ ≤ T , t̃T̃ ≡ tT , and t̃0 ≡ t0. To improve identifiability, the time intervals
(t̃i−1, t̃i] are typically chosen to be large and/or γγγ is subject to smoothing constraints. From a
Bayesian perspective smoothness can be incorporated through first and second order random
walk priors (Section 1.4). For i = {2, . . . , T̃}:

γi ∼ N(γi−1,σ
2
I )

γi ∼ N(2γi−2 − γi−1,σ
2
I )

(3.6.1)

A first order random walk behaviour specifies a preference, a priori, for models with a
constant number of log-expected infections in successive time periods. A second order
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random walk favours, a priori, a linear increase (or decrease) in the log-expected number
of infections in the ith interval. The variance σ2

I controls the smoothing, i.e. how much the
log-expected infections vary between successive time periods. A prior on γ1 must be imposed,
reflecting beliefs on the log-expected number of infections in (t̃0, t̃1]. Using a piece-wise
constant function for H(θθθ), the infection parameters are θθθ = {γ1, . . . ,γT̃ ,σ

2
I }.

Splines

Using a spline model for the log-incidence curve (Section 1.4), let:

γγγ = XXXβββ (3.6.2)

where XXX is the design matrix of the spline. This parameterisation of the log-incidence curve
is characterised by parameters θθθ = {βββ ,λ}, where λ is the smoothing parameter.

Gaussian processes

If the log-incidence curve is modelled with a Gaussian Process, then:

γγγ ∼ GP(m(xi),k(xi,x j|φφφ)) (3.6.3)

where m(xi) is the mean function and k(xi,x j|φφφ) denotes the covariance function, charac-
terised by hyper-parameters φφφ (Section 3.4.2). In this case, the parameters are θθθ = φφφ .

3.6.2 Diagnosis process

A model for the diagnosis process D(δδδ ) needs to be specified. Diagnosis probabilities are
considered on a logistic scale δk,i = log

(
dk,i

1−dk,i

)
and are assumed to be piece-wise constant

in intervals (t̆i−1, t̆i], where i = {1, . . . , T̆}, T̆ ≤ T , t̆T̆ ≡ tT , and t̆0 ≡ t0.

Logistic regression

One candidate model is logistic regression:

δk,i = α +ζk +ξi +νk,i (3.6.4)
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subject to the identifiability constraint ζ1 = ξ1 = ν1,i = νk,1 = 0. ζk and ξi denote the effects
of undiagnosed state k and calendar interval (t̆i−1, t̆i] respectively. Using a logitic regression
parameterisation, parameters δδδ = {α,ζ1, . . . ,ζk,ξ1, . . . ,ξT̆ ,ν1,1, . . . ,νK,T̆}.

Step functions

Alternatively piecewise constant step-functions can be considered. Within a Bayesian
framework, independent first order random walk priors for each undiagnosed state can be
employed:

δk,i ∼ N(δk,i−1,σ
2
D,k) (3.6.5)

The diagnosis parameters are δδδ = {δ1,1, . . . ,δ1,T̆ , . . . ,δK,1, . . . ,δK,T̆ ,σ
2
D,1, . . . ,σ

2
D,K}.

Splines and Gaussian Processes

Analogously to the infection process, the logistic diagnosis probabilities could have been
modelled with a spline or a GP. To avoid examining an excessive number of parameterisations,
in this thesis we only considered the two latter parameterisations, following Birrell et al.
(2012). We focus on parameterisations for the incidence curve, rather than for the diagnosis
probabilities, as incidence estimates are more important for public health purposes.

3.6.3 Inference

Irrespectively of the parameterisation chosen, inference is not straightforward. Multi-state
back-calculation can not be expressed as a GLM; the likelihood (Equation 2.3.10) includes
two Poisson and one Multinomial term and a single link function can not be specified. The
expected number of diagnoses is a complex non-linear function of parameters θθθ and δδδ

(Equations 2.3.4 and 2.3.6). This implies that standard results and software allowing to
model the expected response of a GLM as a spline or as a Gaussian process can not be
employed. Moreover the derivatives of the likelihood are not analytically tractable, thus the
expectation-maximization equations of the EM(S) algorithm can not be computed.

We investigated a penalised likelihood approach to inference by modelling H(θθθ) and D(δδδ )

with a spline (Equation 3.6.2) and logistic regression (Equation 3.6.4) respectively. Within a
GLM framework (Section 3.3.8) standard algorithms are available to numerically maximise
the penalised likelihood and to obtain an optimal smoothing parameter λ (see Appendix C.5.1
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and C.5.2). However these are not applicable to multi-state back-calculation. We thus
numerically maximized the penalised likelihood using the quasi-Newton BFGS algorithm
(Nash, 1990) via the R function optimx (Nash and Varadhan, 2011). Following Wood et al.
(2016), an AIC criterion can be derived to estimate the optimal λ̂ and confidence intervals
can be constructed, as in Appendix Section C.5.3, from a large-sample posterior distribution
that is obtained re-interpreting the penalty as a prior. This procedure suffers from a number
of drawbacks: firstly, the model has to be refitted for a number of plausible λ s, to determine
λ̂ , which is computationally intensive. Secondly, only approximate confidence intervals, not
accounting for uncertainty in λ , can be obtained.

Note that a Bayesian approach overcomes both limitations, as both a posterior distribution
for λ and non-approximated credible intervals can be obtained. Bayesian inference has
a number of further advantages. Firstly, it does not require the likelihood to be arranged
in a convenient form (i.e. GLM). Secondly, latent variables and parameters can both be
readily sampled using MCMC hence latent random walks and Gaussian processes, can be
easily used to model H(θθθ) and D(δδδ ). Most importantly, a Bayesian framework allows to
easily incorporate external sources of information (e.g. under-reporting levels) and additional
data-sources (e.g. the CD4-count data) whilst enabling a coherent propagation of uncertainty.
Rather than developing an efficient bespoke MCMC sampler, general purpose Bayesian
inference software, such as JAGS (Plummer, 2003) and Stan (Stan Development Team,
2016b) is used (Appendix A.4). This ensures portability of the model, as the available code
can easily be used, and if needed modified, for other applications. Codes are available on
Github (https://github.com/frbrz25/Thesis_Codes).

3.7 Summary

This Chapter starts by describing the properties of two non-parametric smoothing meth-
ods: splines (Section 3.3) and Gaussian processes (Section 3.4). These are first compared
(Section 3.5) and are then embedded within a more sophisticated back-calculation model,
introduced in Chapter 2. After describing the back-calculation model, proposing suitable pa-
rameterisations and discussing appropriate inferential methods (Section 3.6), in the following
Chapter we will fit the back-calculation model.

https://github.com/frbrz25/Thesis_Codes


Chapter 4

Age independent back-calculation
simulations

4.1 Introduction

Chapter 2 introduced multi-state back-calculation, which characterised the observed surveil-
lance data as a complex function of the latent incidence curve H(θθθ) and diagnosis probabili-
ties D(δδδ ). This, along with the ill-posed nature of back-calculation and the large uncertainty
characterising the most recent years considered, renders the estimation of parameters θθθ and
δδδ challenging (Section 3.6). Chapter 3 discussed a number of non-parametric smoothing
models for H(θθθ) and D(δδδ ). This Chapter investigates, through a simulation study the
properties of these different smoothing methods within a back-calculation framework, to
establish whether some are more suitable than others.

This Chapter is structured as follows: first, in Section 4.2, the data-generating mechanism
is outlined. Section 4.3 discusses specific parameterisations for the non-parametric models
employed for H(θθθ) and D(δδδ ). Sections 4.4 and 4.5 describe the setup and the performance
assessment of the simulation study. Finally, results are presented in Section 4.6.

4.2 Data generating mechanism

Here, the back-calculation model described in Section 2.3 is employed with K = 4 latent
undiagnosed states (Figure 4.1). A quarterly time scale, allowing at most one movement
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Fig. 4.1 Back-calculation multi-state model, used for this simulation study with K = 4 undi-
agnosed states. Dashed states {1, . . . ,4} denote undiagnosed states. Solid states {5, . . . ,9}
denote diagnosed states.

between states per time interval is employed. Back-calculation is run from an intermediate
point of the epidemic (Section 2.4.2) for 80 quarters (i.e. T = 80), without including under-
reporting (Section 2.4.1).

The following data-generating mechanism is considered: the true incidence curve H⋆, true
diagnoses D⋆ and progression q⋆ probabilities are first specified, along with the expected
number of initially undiagnosed infections πππ⋆. True progression and diagnosis transition
matrices DDD⋆

iii (Equation 2.3.2) and QQQ⋆
iii (Equation 2.3.1) as well as the true expected number

of individuals in each diagnosis state µµµ⋆
iii (Equation 2.3.4) are then implicitly determined,

for each interval (ti−1, ti], i = {1, . . .80}. In turn, this specifies µH⋆
i , µA⋆

i and ppp⋆i the true
expected number of HIV diagnoses, AIDS diagnoses and CD4 proportions respectively
over time (see Section 2.3.4). HIV and AIDS diagnoses counts in the ith interval, Y H⋆

i and
Y A⋆

i , can be simulated from independent Poisson distributions with means µH⋆
i and µA⋆

i

respectively (Equations 2.3.7 and 2.3.8 respectively). Finally, CD4 diagnosis counts YYYC⋆
i

in the ith interval are simulated from a Multinomial(n⋆i , ppp⋆i ) (Equation 2.3.9). The last step
requires specification of n⋆i .

The values chosen for H⋆, D⋆, q⋆, πππ⋆, and n⋆i to simulate the data, are realistic values for
the MSM-HIV epidemic in England and Wales between 1995 and 2015. These are consistent
with findings from previous studies (Aalen et al., 1997; Sweeting et al., 2005; Birrell et al.,
2012).

Three plausible true incidence curves H⋆ are considered: an increasing, a decreasing, and a
flat one. These are assumed to be the same over the time span of the epidemic, apart from
the three most recent years (see Figure 4.2). We are particularly interested in understanding
how well incidence can be estimated in most recent years, as diagnosis data are typically
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only weakly informative regarding recent infections (Section 1.4). The true incidence curves
were purposely not obtained from any non-parametric model, not to advantage any of the
non-parametric models investigated.

Likewise true diagnosis probabilities D⋆ were not generated from a non-parametric model.
These are obtained by adding some zero-mean Gaussian noise to the diagnosis probabilities
estimated for the MSM-HIV epidemic in England and Wales, using the age-independent
back-calculation model (Chapter 2), with data up to end of 2015 (Kirwan et al., 2016).
Figure 4.3 shows that diagnosis probabilities, from each undiagnosed state, are slowly
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Fig. 4.2 True incidences: increasing (orange), flat (green) and decreasing (grey) plotted
quarterly (left) and yearly (right). The section where the curves coincide is plotted in black.
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increasing over time. Progression probabilities between undiagnosed states are set to
q⋆ = (0.0976,0.1150,0.1160,0.1480)T following Birrell et al. (2012) and references therein
(CASCADE Collaboration, 2000). The number of expected initially undiagnosed infections
is set to πππ⋆ = (1710.6796,1191.2027,1191.2027,870.0087)T . This is obtained by applying
an age-specific extension of the model by Aalen et al. (1997) to the MSM-HIV surveillance
data in England and Wales from 1978 to 1994. n⋆i is chosen so that the percentage of CD4
linked diagnoses over time is the same as in the surveillance dataset for the MSM-HIV
epidemic in England and Wales (Chapter 8). For instance if in (t0, t1]: Y H⋆

1 = 100 and 10%
of diagnoses are CD4-linked in the existing surveillance data, then n⋆1 = 10.

4.3 Back-calculation parameterisations

As demonstrated in Section 3.6, it is convenient to carry out inference within a Bayesian
framework; this Section discusses appropriate priors for the non-parametric methods for
the incidence curve H(θθθ) and diagnosis probabilities D(δδδ ) discussed in Sections 3.6.1
and 3.6.2.

4.3.1 Incidence curve

Random walk

The log-incidence γγγ can be modelled with a first or second order random walk (Equa-
tion 3.6.1), allowed to vary at every quarter, i.e. (t̃i−1, t̃i], i = {1, . . . ,80}, following the
notation of Section 3.6.1. A prior needs to be imposed on the starting values of the random
walk (γ1 and γ1, γ2 for a first and second order random walk respectively) and the variance
σ2

I :

γ1 ∼ N(5.52,0.29)

γ2 ∼ N(5.52,0.29)

σ
2
I ∼ Γ(1,32)

These are weakly informative priors on the level of log-expected infections in (t̃0, t̃1] and
(t̃1, t̃2] so that the expected number of quarterly infections in these intervals a priori lies in the
(140,445) interval. The variance σ2

I of the log-random walk is given a weakly informative
Gamma prior, so that the standard deviation σI lies with 95% prior probability in (0.03,0.335).
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Such prior allows the log-random walk to approximately vary by two standard deviations (i.e.
by at most 70%) between successive time intervals.

Splines

Here we consider the following splines to model γγγ: knots based NCS (Section 3.3.4), thin
plate regression splines with and without linear shrinkage (Sections 3.3.5 and 3.3.6), and first
and second order P-splines (Section 3.3.7). Equation 3.3.15 (here characterised by parameters
βββ rather than βββ

′ and by the standard deviation σ rather than the precision λ , for notational
convenience) allows expressing splines in a Bayesian framework. In this simulation study,
the following weakly-informative priors are imposed:

β1 ∼ N(5,1.5)

βPi ∼ N(0,σ2), i = {1, . . . , p}
βUi ∼ N(0,σ2

0 ), i = {1, . . . ,u−1}
σ ∼ t+(4,20)

σ0 ∼ t+(4,20)

where β1 is a global intercept, describing the average number of log-expected infections
per quarter; the Normal prior chosen imposes that this the expected number of quarterly
infections lies, with 95% prior probability, in (7,2980).

βββ P and βββU are the p penalised and the u unpenalised coefficients of the spline respectively.
All splines employed have been considered with 10 parameters (i.e. p+u = 10). The knots
locations need to be chosen for knots-based NCS: equidistant knots were placed on the
(t̃0, t̃T̃ ] range. The normal-prior employed for these coefficients are obtained from a Bayesian
re-interpretation of the penalty matrix SSS (Section 3.3.9).

Finally σ2 = 1/λ and σ2
0 = 1/λ0 are inverse smoothing parameters related to penalised and

unpenalised parameters respectively. Recall that (Section 3.3.9) thin plate regression splines
with shrinkage and P-splines of first order do not require the additional smoothing parameter
λ0. t+(d,s) denotes a half-t distribution, the absolute value of a Student-t distribution; this is
defined on the [0,∞) range, it is monotonically decreasing from zero, and it is characterised
by d degrees of freedom and a scale parameter s. Following Gelman et al. (2006) and
Stan Development Team (2016b), a t+(4,20) is chosen as prior for σ and σ0 as this is a
weakly-informative prior constructed so that 95% of the prior density of σ and σ0 lies within
the region [0,40]. Penalised and unpenalised coefficients are given the same prior following
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Wood (2016); a priori there is no reason to believe that one of the two sets of parameters
should be penalised more heavily than the other.

Gaussian Process

Finally, γγγ is modelled with a GP (Section 3.4):

γγγ ∼ N(000,KKK)

The covariates xi of the GP correspond to the time scaled to the [0,1] range. This is achieved
using the following transformation, for i = {1, . . .80}:

xi =
ti − t1

t80 − t1

The (i, j)th entry of KKK is characterised by a squared exponential covariance function:

k(xi,x j) = η
2exp

(
−
(xi − x j)

2

2ρ2

)
+1xi=x j0.0001

where 1xi=x j is an indicator function equal to 1 if xi = x j and to 0 otherwise and η and ρ

are the magnitude and length-scale hyper-parameters of the GP. Note that an extra small
value (0.0001) has been added to the squared exponential function, when xi = x j. This is to
avoid that lack of numerical precision renders the covariance matrix singular and hence not
invertible. Hyper-parameters η and ρ are restricted to be positive (to avoid non-identifiability
arising from (−η)2 = η2 and similarly for ρ) and are assigned priors:

η ∼ N+(4,1)
1
ρ
∼ t+(4,1)

where N+ denotes a Normal distribution truncated at zero, and t+ a half-t distribution.

The magnitude parameter η can be thought of as an approximation of the standard deviation
of γi, as the diagonal entries of KKK are k(x j,x j)≈ η2. Thus, a weakly informative Normal prior
can be employed so that γi lies in the 90% prior range [−2η ,2η ] a priori. Our prior choice
implies that the log-expected number of quarterly infections lie in [−12,12] a priori. Length-
scales ρ larger than the covariates’ range lead to straight line curves (Stan Development
Team, 2016b). As our covariates lie in the [0,1] domain, a half-t prior distribution is chosen
with four degrees of freedom and scale parameter equal to one, so that the 90% prior mass of
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the inverse length-scale 1/ρ is concentrated in [0,2] and smoother models are favoured over
rougher ones.

4.3.2 Diagnosis probabilities

Finally, diagnosis probabilities D(δδδ ) are parameterised: a logistic random walk (Equa-
tion 3.6.5) is chosen, allowed to vary at every quarter, i.e. (t̆i−1, t̆i], i = {1, . . . ,80} using
the notation of Section 3.6.2. The initial logistic random walk δk,1 values, and all variance
parameters are given the following prior distributions:

δ1,1 ∼ N(−3.2,0.2), δ1,2 ∼ N(−3.2,0.2), δ1,3 ∼ N(−3,0.2), δ1,4 ∼ N(−2.5,0.3)

σ
2
k,D ∼ Γ(1,32), k = {1,2,3,4}

Weakly informative priors are assigned to δk,1. The prior for σ2
k,D is interpreted as the prior

for σ2
I , when specifying a first order random walk for the log-incidence, with the difference

that the random walk for diagnosis probabilities is defined on the logistic scale.

4.4 Simulation study setup

A comparison of non-parametric models for log-incidence is now carried out using:

• 50 datasets generated for each of the three true incidence curve options (increasing,
decreasing, flat) resulting in a total of 150 datasets. The term true incidence scenario
will refer to the datasets generated under a specific true incidence (e.g. increasing).

• The latent incidence curve is modelled on each dataset based on eight different param-
eterisations: first and second order random walks (abbreviated rw1ord and rw2ord
respectively), knots based NCS (tpknotsloc), thin plate spline without and with shrink-
age (tp and ts respectively), first and second order cubic P-splines (bsord1 and bsord2)
and Gaussian Processes (GP). The term incidence model will refer to a specific param-
eterisation of the incidence curve (e.g. bsord1).

• The term simulation describes the combination of a true incidence scenario (e.g.
increasing), one incidence model (e.g. bsord1) and a dataset (e.g. dataset number 25);
1200 simulations have been undertaken.
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• For each simulation, inference is carried out using Stan, which employs Hamiltonian
Monte Carlo (HMC) methods (see Appendix A.2.2 and A.4). Three chains of length
2000 and burn-in of 1000 are used, resulting in a posterior sample of size 3000. Default
initial values are automatically generated by Stan.

4.5 Simulation study performance assessment

This Section covers performance evaluation within the simulation study considered, based
on a prominent Bayesian simulation study by Browne and Draper (2006) and various, non-
Bayesian, simulation studies on splines by Wood (e.g Wood, 2003).

Within a Bayesian framework, parameters (and functions of parameters) have a posterior
distribution for each simulation m, conveniently summarized by the posterior mean. For
simulation m, denote the posterior-mean of the incidence curve and diagnosis probabilities
from state k over time as Ĥm = {ĥm

1 , . . . , ĥ
m
T } and D̂k,m = {d̂m

k,1, . . . , d̂
m
k,T} respectively. These

are the (Bayesian) estimates of the true incidence curve and diagnosis probabilities for
simulation m. Uncertainty is quantified through α% credible intervals, corresponding to
the region lying within the α/2 and 1 − α/2 quantiles of the posterior distribution of
the parameter (or function of parameter) of interest. For simulation m, the quantile α

2
of the incidence curve and diagnosis probabilities from state k are denoted as Ĥα/2

m =

{ĥm,α/2
1 , . . . , ĥm,α/2

T } and D̂m,α/2
k = {d̂m,α/2

k,1 , . . . , d̂m,α/2
k,T }.

In simulation studies, performance is typically assessed via the Mean Squared Error (MSE)
which measures the bias and the variance of an estimate. In this study, the true incidence
curve H⋆ = {h⋆1, . . . ,h

⋆
T} is not a parameter and is instead characterised by the expected

number of true infections in intervals (ti−1, ti], i = {1, . . . ,T} (see Section 4.2); these are
estimated by the posterior mean of the incidence curve Ĥm = {ĥm

1 , . . . , ĥ
m
T }. Performance

is therefore assessed via the Predictive Mean Squared Error (PMSE), which is the mean of
squared errors, for the mth simulation:

PMSE(Ĥm) =
1
T

T

∑
i=1

(
ĥm

i −h⋆i
)2

(4.5.1)
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Higher PMSE(Ĥm) values indicate a higher mean squared bias. The mean-PMSE is derived
over the simulations as:

MPMSE(Ĥ) =
1
M

M

∑
m=1

PMSE(Ĥm) (4.5.2)

MPMSE(Ĥ) is calculated for each incidence model, under each true incidence scenario.
When comparing two, or more, incidence models (under the same incidence scenario) the
one associated with lower MPMSE(Ĥ) is considered to more accurately reconstruct the true
incidence curve. The distribution of PMSE(Ĥm) could be alternatively assessed (e.g using a
box-plot, see Section 4.6.3).

The same criterion is used to evaluate how well true diagnosis probabilities from state
k = {1, . . . ,4} are reconstructed. The PMSE for the mth simulation, for diagnosis probabilities
from state k is:

PMSE(D̂k,m) =
1
T

T

∑
i=1

(
d̂m

k,i −d⋆
k,i

)2
(4.5.3)

and the mean MPMSE(D̂k) can be calculated as in Equation 4.5.2. It is not necessary to
consider all time intervals in the calculation of PMSE. It is crucial to evaluate the perfor-
mance of estimates in the most recent years, as these are characterised by large uncertainty:
Section 4.6.3 considers the distribution of PMSE(Ĥm) and PMSE(D̂k,m) for the last twelve
quarters (three years).

Another important performance measure is coverage. For the incidence curve, in a given
time interval (ti−1, ti], the true value h⋆i may or may not lie within credible intervals. The
α%-coverage for the mth simulation is defined to be the percentage of intervals in which h⋆i
lies within the estimated confidence intervals:

Covgα(Ĥm) =
1
T

T

∑
i=1

1
h⋆i ∈

[
ĥm,α/2

i , ĥm,1−α/2
i

] (4.5.4)

1
h⋆t ∈[ĥ

m,α/2
t , ĥm,1−α/2

t ]
is an indicator function equal to one when the true expected infection

values h⋆i in the ith interval lie within credible intervals. α%-coverage should be equal to the
nominal α value, for well specified models. In Section 4.6.3, the distribution of Covgα(Ĥm),
over the datasets, is analysed. Mean α%-coverage is equal to:

MCovgα(Ĥ) =
1
M

M

∑
m=1

Covgα(Ĥm) (4.5.5)
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Coverage of true diagnosis probabilities is similarly defined:

Covgα(D̂k,m) =
1
T

T

∑
i=1

1
d⋆

k,i∈
[
d̂m,α/2

k,i , d̂m,1−α/2
k,i

] (4.5.6)

Mean α%-coverage for diagnosis probabilities from state k can be calculated as in Equation
4.5.5.

4.6 Simulation study results

4.6.1 Convergence assessment

As simulations are carried in a Bayesian framework, assessing convergence is key, yet non-
trivial. Inspecting the univariate trace plots of MCMC samples from each parameter quickly
becomes infeasible when, as in this situation, a large number of parameters in an even larger
number of simulations must be checked. Thus convergence is assessed using the R̂ statistics
(Gelman and Rubin, 1992), specifically a simulation is considered not to have converged if
R̂ > 1.05 for any parameter (refer to Appendix A.3 for more details). Table 4.1 shows the
percentage of non-convergent simulations under different incidence models and scenarios.
Very few simulations have not converged, and in most of these the inspection of trace plots for
the few parameters with R̂ > 1.05 reveals satisfactory mixing. Defining R̂ > 1.05 for a single
parameter as non-convergence may be too stringent, however to avoid any ambiguity in the
simulation study conclusions all non-convergent simulations have been discarded.

% bsord1 bsord2 GP rw1ord rw2ord tp tpknotsloc ts
Increasing 0 0 0 6 58 0 0 0

Flat 0 0 4 4 42 0 0 0
Decreasing 0 0 14 0 56 0 0 0

Table 4.1 Percentage of simulations that have not converged by true incidence scenarios and
models.

% bsord1 bsord2 GP rw1ord rw2ord tp tpknotsloc ts
Increasing 0 4 0 0 9 84 82 0

Flat 0 12 0 0 24 90 86 0
Decreasing 0 44 0 0 9 82 100 0

Table 4.2 Percentage of simulations that have at least one divergent transitions by true
incidence scenarios and models, after removing simulations that have not converged.
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Divergent transitions are an important diagnostic tool for HMC; these indicate that some
regions of the equilibrium distribution may be hard to explore, resulting in biased estimates
(see Appendix A.3 for more details). Table 4.2 shows how many simulations have at least one
divergent transition, after excluding non-convergent simulations. This reveals two incidence
model "groups", those with few or no divergent transitions (rw1ord, GP, ts, bs1ord) and
those with multiple divergent transitions (rw2ord, tp, tpknotsloc, bs2ord).

Understanding the causes of divergent transitions and non-convergence is key. The rw2ord
incidence model is first examined, as it suffers from both problems. Figure 4.4 plots posterior
samples of the random walk variance σ2

I against the corresponding posterior values of the
log-posterior; red dots indicate the σ2

I values leading to divergent transitions. Note that
higher log-posterior values are achieved with variances close to zero; however divergent
transitions show that the region of the parameter space where σ2

I is near 0 is ill-explored.
Trace plots in Figure 4.5 further illustrate slow mixing and high auto correlation for σ2

I .
Finally Figure 4.6 shows the respective trace plots for σ2

I for the rw1ord incidence model:
mixing, despite some auto correlation, is substantially better. Indeed rw1ord models do
not suffer from non-convergence nor divergent transitions. De Angelis et al. (1998) also
highlighted instability issues in estimating the variance parameter of second order random
walks, in a similar Bayesian back-calculation framework.

Note that some splines (tpknotsloc, tp, bsord2) exhibit divergent transitions, while other
(ts, bsord1) do not. This is due to the number of smoothing parameters to be estimated.
Some splines (tpknotsloc, tp, bsord2) require a second smoothing parameter λ0 to obtain
proper priors (Section 3.3.9). This likely induces convergence issues; the parameter λ0

is the prior precision of a single parameter βU1 so that there may not simply be enough
data for robust estimation. Figures 4.7 and 4.8 provide further evidence: posterior λ0

values mostly lie around zero, but occasionally wander off to very high values, where
divergent transitions occur. The smoothing parameter λ is instead the prior precision of eight
parameters {β2, . . . ,β8}, and can thus be estimated from the data as shown in Figure 4.9. ts
and bsord1 splines, that only have a single smoothing parameter, do not suffer from divergent
transitions (Figure 4.10).

One could attempt to eliminate, or reduce the number of divergent transitions by increasing
the HMC resolution (Appendix A), by reparameterising the model or preventing parame-
ters to wander in low-probability regions, typically by imposing more informative priors.
However, in this simulation study the HMC resolution is set to the maximum allowed, thus
divergent transitions highlight problems in the posterior distribution geometry. The non-
centered reparameterisation, which is typically employed in the case of divergent transitions
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values for rw2ord in three illustrative simulations; red dots denote divergent transitions.
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(Betancourt, 2017b), leads to an even higher number of divergent transitions. Finally, most
divergent transitions occur in parameter space regions where λ0 is large; an informative
prior forcing λ0 away from large values, i.e. pushing σ0 (equal to 1/

√
λ0) away from 0,

could be used. Recall that forcing σ0 away from 0 reduces the model’s smoothness, however
it is hard to judge a priori what are the sufficient level of smoothing required. It is more
sensible to simply favour, a priori, smoother over complicated models (by employing a half-t
prior for σ and σ0). A number of weakly informative priors for σ and σ0 (i.e. changing
the scale parameter of the t+ prior distribution) have been tested; estimates of σ are robust
to prior specifications, while all prior choices for σ0 result in poor mixing and divergent
transitions.

Based on the convergence results, it can be concluded that there is not enough data to estimate
the smoothing parameter λ0 on the null-space. This is not always the case, for instance Wood
(2016) successfully estimates such parameter in a scatter-plot smoothing context, rather than
a latent process within a hierarchical model. From now onwards, only splines with a single
smoothing parameter (i.e. ts and bsord1) will be considered.

4.6.2 Discussion on the results from the simulation study

The results of the simulation study under the three true incidence scenarios (increasing,
flat and decreasing) and four incidence models (rw1ord, ts, bsord1, GP) are displayed in
Section 4.6.3 (Figures 4.11 to 4.26). Specifically:

1. Figures 4.11, 4.13, 4.17 and 7.10 depict the posterior-mean (i.e. the estimates) of the
incidence curve Ĥm for each simulated dataset.

2. Figures 4.12, 4.14, 4.16 and 4.18 show the posterior-mean (i.e. the estimates) of the
diagnosis probabilities from state 1 (D̂1,m) for each simulated dataset.

3. Figures 4.19 to 4.22 depict PMSE(Ĥm) and PMSE(D̂1,m) distribution for the full
time-scale considered and for the last twelve quarters (i.e. three years) only.

4. Figures 4.23 to 4.26 show the Covg0.95(Ĥm) and Covg0.95(D̂1,m) distribution for the
full time-scale considered and for the last twelve quarters (i.e. three years) only.

At a first glance, all incidence models reconstruct the three true incidence curves sufficiently
well. A closer inspection reveals that the true incidence curve is, in all cases, accurately
reconstructed except from the first two and last three years. It seems that diagnosis data in
the first years of the epidemic are incorrectly attributed to new infections rather than initially
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prevalent individuals, resulting in over estimation of the true incidence curve. Eventually all
initially prevalent individuals are diagnosed, and incidence estimates become more accurate,
as all new diagnoses are then attributed to incidence. Incidence estimates in the earliest years
must be interpreted with care, as results heavily rely on the expected number of undiagnosed
individuals at the beginning of the epidemic (i.e. πππ).

Crucially, the results highlight a major pitfall: estimates of the incidence curves in the
most recent years are severely biased. In all true incidence scenarios, all infection models
greatly over estimate incidence, for almost every simulated dataset. Results are particularly
unsatisfactory when true incidence is decreasing as all incidence models, with the exception
of Gaussian processes, fail to detect the decreasing trend in incidence in the most recent
years. However, it is important to note that the credible intervals almost always include the
true incidence values in recent years (see the 95%-coverage plots for the incidence curve in
the last three years, Figure 4.25). Credible intervals in the last three years are as expected,
very wide (for all true incidence scenarios and incidence models), as recent diagnosis data
are not potentially informative of recent infections.

This over-estimation of the incidence curve is likely due to recent diagnoses (primarily
diagnosed from state 1 of the model, with CD4 > 500) being incorrectly attributed to an
increase in incidence rather than in diagnosis probabilities, resulting in underestimation of
the former and overestimation of the latter.

Let us now focus on which non-parametric models are best for estimating the true incidence
curves. The Bayesian implementation of different non-parametric incidence models involves
different prior assumptions on the shape of the incidence curve. However these seem
dominated by the likelihood, as the posterior means of the incidence curves are very similar
irrespectively of the parameterisation chosen. Examination of the distribution of PMSE(Ĥm)

reveals all incidence models perform equally well (Figures 4.19 and 4.21).

Splines and Gaussian processes are smoother processes than random walks hence choosing
between the two can be based on a bias-variance tradeoff. Close inspection of the estimates of
incidence reveals that random walks accurately capture the peaks of the true incidence curves
(in 2004 and 2007), whereas splines and Gaussian processes smooth these out (Figures 4.11,
4.13, 4.17 and 7.10). Thus random walks are associated with marginally less bias, evidenced
by the somewhat lower MPMSE(Ĥ), but wider credible intervals (i.e. greater variance)
than splines and Gaussian processes. The latter are associated with higher bias (i.e. higher
MPMSE(Ĥ)) but lower variance (i.e. smaller credible intervals). Figure 4.23 shows mean-
coverage MCovg0.95(Ĥ) for random walks of over 95%, whilst for splines and Gaussian
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processes approximately 85%, suggesting that random walks overestimate, whilst splines
and Gaussian processes underestimate uncertainty.

Incidence models can be further distinguished based on the behaviour of the estimated
incidence curves in the most recent years, where data are least informative, and consequently
the impact of different prior assumptions on the shape of incidence estimates is considerable.
Assuming a first order random walk model for the incidence curve implies that models with
flat incidence between successive time intervals are a priori preferred; indeed Figure 4.11
shows that incidence in the last years is mostly flat, independently of the true incidence
scenario. Recall that first order P-splines (bs1ord, Section 3.3.7) and thin plate splines (ts in
this case, Section 3.3.6) assume flat curves and curves with second derivative equal to 0 (i.e.
linear functions) to be the smoothest respectively. Hence incidence estimates from bsord1
splines flatten out (as for random walks), whereas those from ts extrapolate linearly in most
recent years (Figures 4.13 and 7.10). In absence of data Gaussian processes revert to the prior
mean (i.e. zero); Figure 4.17 demonstrates this as for several datasets incidence estimates
have an artificial hump, in the last years, subsequently tending towards zero. By reverting to
the zero prior mean, Gaussian processes a priori favours curves with decreasing incidence
and thus outperform other incidence models in the decreasing true incidence scenario.

Chapter 3 introduced a number of splines and we aim to establish whether some of them
estimate the true incidence curves better. Splines with two smoothing parameters (tp,
tpknotsloc, bsord1) are excluded from the comparison due to either non-convergence or
divergent transitions (Section 4.6.1). The simulations results suggest that bsord1 splines
outperform ts splines. Despite the distribution of PMSE(Ĥm) being overall similar for
both splines (Figure 4.19), in the last three years this favours bsord1 (Figure 4.21). As
previously discussed incidence estimates obtained with ts extrapolate linearly in most recent
years; this may lead to unrealistically high incidence estimates. Finally bsord1 splines have
MCovg0.95(Ĥ) closer to 0.95 than ts splines (Figure 4.23).

An alternative way of choosing between incidence models for estimating incidence would be
to compare model fit on the simulated data. In this study this is not practical, as all incidence
models fit the simulated data equally well (see Appendix D.1.2).

This Section only considers diagnosis probabilities from state 1, further details on diagnosis
probabilities can be found in Appendix D.1. Recall that recent diagnoses (i.e. from state 1)
are a result of competing infection and diagnosis processes, which leads to identifiability
issues in recent years. Estimates of diagnosis probabilities from states 2, 3 and 4 are typically
accurate as they are associated with undiagnosed individuals with long-standing infections,
which are relatively insensitive to shifts in recent incidence and diagnosis probabilities.
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In summary, this simulation study demonstrates that the proposed back-calculation model
estimates the true incidence and diagnosis probabilities reasonably well, despite some
identifiability issues in the most recent years. Although there is no single best non-parametric
model to estimate incidence, a number of recommendations can be made based on the study
findings: Gaussian processes must be used with care as reversion to the prior mean may
distort the incidence estimates in the latest years. This issue could be avoided by estimating
the mean of the Gaussian process. However, this increases the number of latent parameters to
be estimated, resulting in convergence problems. Among splines, first order B-splines appear
to be the most suitable for modelling incidence. Among random walks, first order random
walks estimate the true incidence curves adequately, while second order random walks suffer
from convergence issues. The choice between rw1ord and bsord1 is subjective, as it is based
on a variance-bias tradeoff; random walks are associated with slightly less bias and wide
credible intervals. Splines are associated with slightly more biased incidence estimates, but
with reduced variance and hence narrower credible intervals. Finally note that none of the
infection models considered avoids unidentifiability issues in the most recent years.



70 Age independent back-calculation simulations

4.6.3 Plots of the results from the simulation study

Results from the first order random walk incidence model
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Fig. 4.11 Estimated incidence curves: the red lines depict the three true incidence curves
(increasing - left, flat - center, decreasing - right). The black lines represent the estimates
(posterior means), for each dataset, of the incidence curve obtained using a rw1ord to model
incidence. Grey lines denote the respective 95% credible intervals.
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Fig. 4.12 Estimated diagnosis probabilities from state 1: the red lines depict the true diagnois
probabilities which are the same in the three true incidence scenarios considered (increasing
- left, flat - center, decreasing - right). The black lines represent the estimates (posterior
means), for each dataset, of the diagnosis probabilities from state 1 obtained using a first order
random walk. Credible intervals are only depicted on the left figure (in grey) to demonstrate
they overlap with the estimates, rendering the plot hard to interpret.
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Results from the thin plate spline with linear shrinkage incidence model
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Fig. 4.13 Estimated incidence curves: the red lines depict the three true incidence curves
(increasing - left, flat - center, decreasing - right). The black lines represent the estimates
(posterior means), for each dataset, of the incidence curve obtained using a ts spline to model
incidence. Grey lines denote the respective 95% credible intervals.
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Fig. 4.14 Estimated diagnosis probabilities from state 1: the red lines depict the true diagnois
probabilities which are the same in the three true incidence scenarios considered (increasing
- left, flat - center, decreasing - right). The black lines represent the estimates (posterior
means), for each dataset, of the diagnosis probabilities from state 1 obtained using a first
order random walk. Credible intervals are not depicted, as they overlap with the estimates.
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Results from the first order P-spline incidence model
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Fig. 4.15 Estimated incidence curves: the red lines depict the three true incidence curves
(increasing - left, flat - center, decreasing - right). The black lines represent the estimates
(posterior means), for each dataset, of the incidence curve obtained using a bsord1 spline to
model incidence. Grey lines denote the respective 95% credible intervals.
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Fig. 4.16 Estimated diagnosis probabilities from state 1: the red lines depict the true diagnois
probabilities which are the same in the three true incidence scenarios considered (increasing
- left, flat - center, decreasing - right). The black lines represent the estimates (posterior
means), for each dataset, of the diagnosis probabilities from state 1 obtained using a first
order random walk. Credible intervals are not depicted, as they overlap with the estimates.
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Results from the Gaussian process incidence model
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Fig. 4.17 Estimated incidence curves: the red lines depict the three true incidence curves
(increasing - left, flat - center, decreasing - right). The black lines represent the estimates
(posterior means), for each dataset, of the incidence curve obtained using a GP to model
incidence. Grey lines denote the respective 95% credible intervals.
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Fig. 4.18 Estimated diagnosis probabilities from state 1: the red lines depict the true diagnois
probabilities which are the same in the three true incidence scenarios considered (increasing
- left, flat - center, decreasing - right). The black lines represent the estimates (posterior
means), for each dataset, of the diagnosis probabilities from state 1 obtained using a first
order random walk. Credible intervals are not depicted, as they overlap with the estimates.
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Predicted Mean Squared Error
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Fig. 4.19 Distribution of PMSE for incidence curve, under three true incidence scenarios:
increasing (left), flat (center), decreasing (right).

●

●

● ●

●

● ●

●

●

●

●

rw1ord ts bsord1 GP

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

Models

P
M

S
E

 d
ia

gn
os

is
 p

ro
ba

bi
lit

ie
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

rw1ord ts bsord1 GP

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

Models

P
M

S
E

 d
ia

gn
os

is
 p

ro
ba

bi
lit

ie
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

rw1ord ts bsord1 GP

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

Models

P
M

S
E

 d
ia

gn
os

is
 p

ro
ba

bi
lit

ie
s

Fig. 4.20 Distribution of PMSE for diagnosis probabilities, under three different true inci-
dence scenarios: increasing (left), flat (center), decreasing (right).
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Fig. 4.21 Distribution of PMSE in the last 3 years for incidence curve, under three true
incidence scenarios: increasing (left), flat (center), decreasing (right).
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Fig. 4.22 Distribution of PMSE in the last 3 years for diagnosis probabilities, under three
true incidence scenarios: increasing (left), flat (center), decreasing (right).
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Fig. 4.23 Distribution of 95%-coverage for the incidence curve, under three true incidence
scenarios: increasing (left), flat (center), decreasing (right).

rw1ord ts bsord1 GP

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Models

C
ov

er
ag

e 
pr

ob
ab

ili
ty

 o
f d

ia
gn

os
is

 p
ro

ba
bi

lit
ie

s

rw1ord ts bsord1 GP

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Models

C
ov

er
ag

e 
pr

ob
ab

ili
ty

 o
f d

ia
gn

os
is

 p
ro

ba
bi

lit
ie

s

rw1ord ts bsord1 GP

0.
2

0.
4

0.
6

0.
8

Models

C
ov

er
ag

e 
pr

ob
ab

ili
ty

 o
f d

ia
gn

os
is

 p
ro

ba
bi

lit
ie

s

Fig. 4.24 Distribution of 95%-coverage for diagnosis probabilities from state 1, under three
true incidence scenarios: increasing (left), flat (center), decreasing (right).
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Fig. 4.25 Distribution of 95%-coverage for the incidence curve in the last three years, under
three true incidence scenarios: increasing (left), flat (center), decreasing (right).
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Fig. 4.26 Distribution of 95%-coverage for the last 3 years for diagnoses from state 1, under
three true incidence scenarios: increasing (left), flat (center), decreasing (right).
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4.6.4 Prior sensitivity analysis

The discussion thus far mostly focused on the incidence estimates. Let us take a closer look to
the estimated diagnosis probabilities; these are modelled, with a first order random walk for all
incidence models and scenarios. Recall that true diagnosis probabilities are underestimated in
the most recent years. Figure 4.24 shows that mean-coverage MCovg0.95(D̂) is approximately
70% suggesting that credible intervals for the diagnosis probabilities are unduly narrow.

This issue is investigated by examining the posterior mean of the variances of the logistic
random walk for the diagnosis probabilities from state 1, denoted σ̂2

D,m for the mth dataset.
Recall that the true logit-diagnosis probabilities are not generated from a first order random
walk (see Section 4.2), hence a "true" variance parameter does not exist. An "approximated
true" variance parameter may instead be constructed by fitting a first order random walk to the
true logit-diagnosis probabilities from state 1, and taking the posterior mean of the variance
to be the "approximated true" variance; this is denoted σ2

D,T and is equal to 0.0068.

Figure 4.27 plots the distribution of σ̂2
D,m, over the datasets: underestimation of σ2

D,T is
striking and is pertinent to all scenarios examined. This is likely to cause the estimated
diagnosis probabilities not to increase as rapidly as the true ones in most recent years.

Under-estimation of σ2
D,T may be due to a poor choice of prior. The sensitivity to prior

specifications is investigated under the true increasing incidence scenario, using the rw1ord
incidence model. We choose six different priors for both the log-infection and logit-diagnoses
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Fig. 4.27 Distribution of the posterior mean variance estimates σ̂2
D,m of diagnosis probabilities

for all incidence models, under three true incidence scenarios: increasing (left), flat (center),
decreasing (right). The "true approximated" variance parameter σ2

D,T is given by the red line.
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random walks’ variances (denoted σ2
I and σ2

D) and assess their impact on posterior estimates.
Let Γ(a,b) denote a Gamma distribution with shape parameter a and scale parameter b and
t+(d,s) denote a half-t distribution with d degrees of freedom, and scale parameter s.

Prior Scenarios:

1. σ2
D ∼ Γ(1,32) and σ2

I ∼ Γ(1,32). This is the reference case (as used in the simulation
study); the 90% standard deviation prior range is [0.0008, 0.115].

2. σ2
D ∼ Γ(1,64) and σ2

I ∼ Γ(1,64). These priors are tighter, and more informative, than
the reference priors and shift the prior mass towards zero; the 90% standard deviation
prior range is [0.0004, 0.057].

3. σ2
D ∼ Γ(1,8) and σ2

I ∼ Γ(1,8). These priors are wider, less informative, than the
reference priors and shift the prior mass away from zero; the 90% standard deviation
prior range is [0.003, 0.46].

4. σ2
D ∼ t+(4,0.1) and σ2

I ∼ t+(4,0.1). The half-t distribution is defined on [0,∞) and is
monotonically decreasing from zero; the 90% prior range for the standard deviation is
[0, 0.44]. The t+ distribution has a heavy right tail and is often used as an uninformative
prior, favouring smaller variances a priori (Gelman et al., 2006).

5. σ2
D ∼ t+(4,0.5) and σ2

I ∼ t+(4,0.5). These priors are less informative than the priors
in Scenario 4, as the 90% standard deviation prior range is [0, 1].

6. σ2
D ∼ N(0.0068,0.00001) and σ2

I ∼ N(0.0028,0.00001). This is the "approximately
true" scenario; extremely informative priors are specified, concentrating the prior mass
of the random walk’s variance around "true approximated" variances σ2

D,T and σ2
I,T .

Similarly to σ2
D,T , is the "true approximated" variance for infections σ2

I,T (0.0028) is
obtained by fitting a random walk model to log-expected infections.

With the exception of scenario 6, the same priors are assigned to both the infection and
diagnosis probabilities random walks’ variances. Different priors for the variances imply a
priori different levels of smoothness for the two processes; since there is no reasons to believe
that one process is smoother than the other, such cases are not further considered.

Results from the different prior scenarios are displayed in Figures 4.28 and 4.29. Scenarios 1
to 5 yield very similar incidence and diagnoses estimates. As before, the true incidence curve
is overestimated whereas the diagnosis probabilities are underestimated. Unsurprisingly the
"true approximate" scenario (6) is the best, yielding unbiased estimates of incidence and
diagnosis probabilities also in most recent years.
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(a) Scenario 1
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(b) Scenario 2
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(c) Scenario 3
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(d) Scenario 4
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(e) Scenario 5
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(f) Scenario 6

Fig. 4.28 Estimated incidence curves: the true increasing incidence curves are plotted in red.
The posterior means for each dataset are plotted in black and the associated 95% credible
intervals in grey.
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(e) Scenario 5
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Fig. 4.29 Estimated diagnosis probabilities from State1: the true diagnosis probabilities are
plotted in red. The posterior means for each dataset are plotted in black. The associated 95%
credible intervals are only depicted in Scenario 1, as they overlap with posterior means.
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To sum up, in this Section the back-calculation model is fit with five different weakly
informative priors, all yielding very similar estimates of incidence and diagnosis probabilities.
Estimates are robust to prior specifications, which is reassuring, however they are biased
in recent years. Bias reduction can be achieved by specifying strong priors with mass
concentrated on the "approximated true" values of the random walks’ variances. Clearly in a
real life context, true parameters are unknown and this approach can not be employed; thus
unidentifiability leads to poor estimates in recent years, irrespectively of prior specifications.
Care must be taken when interpreting back-calculation results in the most recent years, taking
large uncertainty into account.

4.7 Summary

This Chapter discusses a Bayesian simulation study for the age-independent multi-state
back-calculation (Chapter 2), involving a number of non-parametric models for the latent
incidence curve (Section 4.3). The simulation study intends to answer two questions:

1. Is back-calculation feasible? What are its strength and limitations?

2. Modeling the latent incidence curve is challenging. Are some non-parametric models
better suited than others for this purpose?

The answer to the first question is yes. The true incidence curve and diagnosis probabilities
were successfully reconstructed, except from the first and last three years of the epidemic.
In the most recent years, incidence and diagnosis probabilities are consistently over and
underestimated respectively. As discussed in Section 4.6.4 biased estimates do not appear
to be a consequence of poor prior specifications, but instead of unidentifiability issues
(Section 4.6.2). Unfortunately, such issues can not be addressed with the available data.

With regards to the second question, some incidence models (rw1ord and ts splines) are
indeed better suited than other to estimate incidence (Section 4.6.2). It is crucial to highlight
that none of the incidence models can provide valid estimates of the true incidence curve in
the latest years, where the impact of prior assumptions is more pronounced.

The following Chapter introduces an extension of the back-calculation model to age specific
settings. As discussed in Section 1.5, the incorporation of age allows to better characterise
the HIV epidemic.



Chapter 5

Age dependent back-calculation

5.1 Introduction

The back-calculation model described in Chapter 2 has proven to be, over the years, an
important public health tool for monitoring the MSM HIV epidemic in England and Wales
(Birrell et al., 2013; Kirwan et al., 2016).

However for a better monitoring of the epidemic, age-specific estimates of HIV incidence
are of crucial importance. Thus back-calculation, introduced in Chapter 2, is here extended
to age-specific settings. This entails two main challenges: modelling a two dimensional
(age-time) infection rate and developing a computationally efficient implementation.

This Chapter is structured as follows: the motivating dataset employed is first described
(Section 5.2), followed by a description of the age-dependent back-calculation model (Sec-
tion 5.3). Finally Section 5.4 discusses possible extensions.

5.2 Motivating surveillance dataset

The motivating surveillance dataset remains the same routinely collected aggregated surveil-
lance data for the MSM-HIV epidemic in England and Wales (see Section 2.2), further
stratified by age at diagnosis.

The age-independent back-calculation notation is extended as follows. Let (t0, tT ] be the
time-period spanning the HIV epidemic, which is split into T disjoint, consecutive intervals
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(ti−1, ti], i = {1, . . . ,T}. Similarly the age-range (a0,aA] is split into A disjoint, consecutive
intervals (a j−1,a j], j = {1, . . . ,A}. The data available include:

• yH
i, j, the aggregated number of new HIV diagnoses in the time interval (ti−1, ti] and age

interval (a j−1,a j].

• yA
i, j, the aggregated number of new AIDS diagnoses in the time interval (ti−1, ti] and

age interval (a j−1,a j].

• A subset of yH
i, j, of size ni, j, with associated CD4-count, taken within three months of

diagnosis. These subsets are grouped into K categories, defined by CD4 thresholds.
yyyHC

i, j = (yHC
i, j,1, yHC

i, j,2, . . . , yHC
i, j,K)T is a K ×1 vector containing the number of new CD4-

linked diagnoses in the intervals (ti−1, ti] and (a j−1,a j], with respective CD4-counts
being categorized according to intervals [c1,∞), [c2,c1), . . . and [0,cK−1), where
c1 > c2 > · · ·> cK−1.

yH = {yH
11, . . . ,y

H
1A, . . . ,y

H
T 1, . . .y

H
TA} and yA = {yA

11, . . . ,y
A
1A, . . . ,y

A
T 1, . . .y

A
TA} are TA×1 vec-

tors denoting the number of new HIV and AIDS diagnosis over time and age respectively.
yHC = {yyyHC

1,1, . . . ,yyy
HC
1,A, . . . ,yyy

HC
T,1, . . . ,yyy

HC
T,A} denotes the collection of CD4 diagnoses over time

and age.

5.3 Model

(∞,c1]

1
[c2,c1)

2
· · · [ck,ck−1)

k
· · · [0,cK−1)

K
AIDS

2K+1

HIV

(c1,∞]

K+1

HIV

[c2,c1)

K+2

· · ·
HIV

[ck,ck−1)

K+k

· · ·
HIV

[0,cK−1)

2K

hi, j q j0
1 q j0

2 q j0
k−1 q j0

k q j0
K−1 q j0

K

d1,i, j d2,i, j dk,i, j dK,i, j

Fig. 5.1 Age-dependent back-calculation multi-state model, for a general number of un-
diagnosed states K. Dashed states {1, . . . ,K} denote undiagnosed states. Solid states
{K + 1, . . . ,2K + 1} denote diagnosed states. dk,i, j denotes the probability of diagnosis
from the undiagnosed state k in the ith time interval and in the jth age interval. q j0

k denotes the
probability of progression between undiagnosed states k and k+1, given that the infection
occurred in the jth0 age interval.
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The non-homogeneous population-level CD4-count multi-state model in Chapter 2 (Fig-
ure 2.1) is extended to age-specific settings (Figure 5.1) by characterising the processes of
infection, progression and diagnosis in terms of both time, current age and age at infec-
tion.

New infections are now occurring according to a two dimensional non-homogeneous Poisson
Process with rate λ (u,v). Then the expected number of new infections in the time interval
(ti0−1, ti0] and in the age interval (a j0−1,a j0] is hi0, j0 =

∫ ti0
ti0−1

∫ a j0
a j0−1 λ (u,v) dudv.

Progression probabilities now depend on the age at infection, as the progression towards
AIDS is known to be substantially faster for individuals infected at an older age (CASCADE
Collaboration, 2000). Moreover diagnosis probabilities are also dependent on current age,
as the propensity to test for HIV may vary with age. Hence, diagnosis and progression
probabilities are denoted dddi, j = (d1,i, j, . . . ,dK,i, j)

T and qqq j0 = (q j0
1 , . . . ,q j0

K )T respectively, to
stress the dependency on the jth

0 age interval at infection.

Analogously to Chapter 2, the aim is to estimate the expected number of new time and
age specific infections H= {h1,1, . . . ,hT,A}, to which we refer as the incidence surface (or
simply incidence), and the diagnosis probabilities D = {ddd1,1, . . . ,dddT,A}, characterised by
parameters θθθ and δδδ respectively. From here onwards hi, j(θθθ) and dddi, j(δδδ ) will be written as
hi, j and dddi, j respectively, for notational convenience. Q= {qqq1, . . . ,qqqA} denotes the collection
of age-at-infection dependent progression probabilities.

5.3.1 Transition matrices

To start with, the time (ti−1, ti] and age intervals (a j−1,a j] are assumed to have equal length,
i.e. |ti − ti−1| = |a j − a j−1| (i = {1, . . . ,T}, j = {1, . . . ,A}). Similarly to Chapter 2, the
intervals are assumed to be small enough so that at most one transition event (diagnosis or
progression) can occur within any interval and newly infected individuals are not allowed to
progress nor to be diagnosed in the time and age intervals of infection. Recall that infections
are assumed to occur at the beginning of intervals (ti−1, ti] and (a j−1,a j], whereas diagnosis
and progression events are assumed to occur at the end of the interval (the former before the
latter).

QQQ j0
i, j(δδδ ) and DDD j0

i, j(δδδ ) are the progression and diagnosis transition matrices, which are functions
of qqq j0 and dddi, j. As before, the dependency of the transition matrices on the diagnosis
parameters is suppressed for notational convenience.
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QQQ j0
i, j is a K ×K matrix, whose (k, l)th entry is defined as:

(
QQQ j0

i, j

)
k,l

=


(1−dk,i, j)(1−q j0

k ) if l = k
(1−dk,i, j)q

j0
k if l = k+1 and k < K

0 elsewhere
(5.3.1)

DDD j0
i, j is a K ×K +1 matrix, whose (k, l)th entry is defined as:

(
DDD j0

i, j

)
k,l

=


dk,i, j if l = k
(1−dk,i, j)q

j0
k if l = K +1 and k = K

0 elsewhere
(5.3.2)

5.3.2 Model dynamics

The movement of the individuals in the model in the ith time interval is not exclusively
determined by the undiagnosed state where individuals are (as in age independent back-
calculation), but also by current age (as it characterises the diagnosis process) and age at
infection (describing the progression process).

To describe the dynamics of the model, the evolution of new infections in the ith0 time
interval and jth

0 age interval throughout the states of the model is followed over time intervals
(ti−1, ti] and (a j−1,a j] (i = {i0 +1, . . . ,T}, j = { j0 +1, . . . , j0 +T − i0}). As time and age
intervals have equal length, when a time interval elapses so does an age interval; moreover
the relationship i0 = i− j+ j0, linking the indices of the time and age intervals of infection
to the indices of the current time and age intervals, holds.

Let eee j0
i, j(θθθ ,δδδ ) be a K×1 vector, denoting the expected number of individuals in undiagnosed

states {1, . . . ,K} in the ith time and jth age intervals, from the cohort infected in the jth
0

age interval (and thus in the ith0 time interval). Similarly, the (K +1)×1 vector µµµ
j0
i, j(θθθ ,δδδ )

denotes the expected number of new diagnoses in states {K + 1, . . . ,2K + 1} in the ith

time and jth age intervals, from the infected cohort in the jth
0 age interval. For notational

convenience, the dependency on the parameters is removed, so eee j0
i, j = (e j0

i, j,1, . . . ,e
j0
i, j,K)

T

and µµµ
j0
i, j = (µ

j0
i, j,1, . . . ,µ

j0
i, j,K+1)

T are defined as follows, for i = {i0 + 1, . . . ,T} and j =
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{ j0 +1, . . . , j0 +T − i0}:

eee j0
i, j =

(
QQQ j0

i, j

)T
eee j0

i−1, j−1 (5.3.3)

µµµ
j0
i, j =

(
DDD j0

i, j

)T
eee j0

i−1, j−1 (5.3.4)

where eee j0
i0, j0 = (hi0, j0,0, . . . ,0)

T ,i0 = {1, . . . ,T −1}, j0 = {1, . . . ,A−1}.

Then, the expected number of individuals in undiagnosed states k = {1, . . . ,K} and the
expected number of new diagnoses in states k = {K + 1, . . . ,2K + 1} in the ith time and
jth age intervals (denoted eeei, j and µµµ i, j respectively) is obtained by summing the expected
number of individuals in the states of the model in the ith time and jth age intervals, infected
at different age-intervals j0:

eeei, j =
j

∑
j0=max(1, j−i+1)

eee j0
i, j (5.3.5)

µµµ i, j =
j

∑
j0=max(1, j−i+1)

µµµ
j0
i, j (5.3.6)

Note that the time and age intervals at diagnosis provide a lower bound for the age interval of
infection (e.g. if someone is diagnosed in the 5th time interval, the age interval of infection
can not be smaller than the age interval at diagnosis minus five).

5.3.3 Likelihood

The likelihood is formulated similarly to the age-independent likelihood, on the basis of
the same two underlying assumptions (Section 2.3.4). Hence the likelihood of HIV and
AIDS diagnoses (described in Section 5.2) is given by the product of independent Poisson
random variables (denoted as Y H

i, j and Y A
i, j respectively) with means µH

i, j(θθθ ,δδδ ) = µH
i, j =

µi, j,1 + · · ·+µi, j,K µA
i, j(θθθ ,δδδ ) = µA

i, j = µi, j,K+1. For i = {1, . . . ,T} and j = {1, . . . ,A}:

Y A
i, j ∼ Po

(
µ

A
i, j

)
(5.3.7)

Y H
i, j ∼ Po

(
µ

H
i, j
)

(5.3.8)

The subsample of CD4-linked diagnoses is instead distributed according to a Multinomial
random variable:

YYY HC
i, j ∼ Multinomial(ni, j, pppi, j) (5.3.9)
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where pppi, j = (pi, j,1, . . . , pi, j,K) and pi, j,k =
µi, j,k

µH
i, j
, k = {1, . . . ,K}.

The likelihood, expressed in terms of µµµ (and thus of θθθ and δδδ ) is proportional to:

L(yH ,yA,yHC | θθθ ,δδδ ) = L(yHC | yH ,yA,θθθ ,δδδ ) L(yH ,yA | θθθ ,δδδ ) (5.3.10)

∝

T

∏
i=1

A

∏
j=1

(
K

∏
k=1

(
pi, j,k

)y
HC
i, j,k

)
e−µA

i, j

(
µ

A
i, j

)yA
i, j

e−µH
i, j
(
µ

H
i, j
)yH

i, j

5.4 Model customization

The previous Section introduced a base-case age-specific back-calculation model to be used
as building block. Analogously to age-independent back-calculation (Section 2.4), this model
can be extended in a number of ways to account for under-reporting (Section 5.4.1); and
to handle situations where surveillance data are not available from the beginning of the
epidemic (Section 5.4.2); data are only available on a coarse scale (Section 5.4.3); or data are
available at different time and age scales (Section 5.4.4).

Furthermore age-dependent back-calculation is highly computationally intensive: O(TA2)

operations are required to evaluate the recursive Equations 5.3.3 and 5.3.4. Moreover a large
number (TA2) of QQQ j0

i, j and DDD j0
i, j matrices need to be stored. Hence considering back-calculation

on a reduce and/or coarse scale may substantially alleviate the computational burden of the
model and may achieve implementation within an acceptable computational time.

5.4.1 Under-reporting

Under-reporting can be incorporated within back-calculation, as in Section 2.4.1. However,
within an age-dependent framework, it is possible to consider age-dependent under-reporting
parameters if the proportion of reported diagnoses is believed to vary with age.

Let parameters υH
i, j and υA

i, j denote the proportion of new HIV and AIDS diagnoses in the
ith time and jth age intervals, that are actually reported by the end of the intervals. The
expected number of HIV and AIDS diagnoses (defined in Section 5.3.3) can then be modified
to account for age and time specific under-reporting as follows:

µ
H ′
i, j = υ

H
i, jµ

H
i, j (5.4.1)

µ
A′
i, j = υ

A
i, jµ

A
i, j (5.4.2)
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The likelihood (Equation 5.3.10) can be appropriately modified, by replacing µH
i, j and µA

i, j by
µH ′

i, j and µA′
i, j, to depend on the under-reporting parameters.

5.4.2 Back-calculation over a reduced time period

As described in Section 2.4.2, back-calculation can be run on a subset (tb, tT ] of the full
epidemic period (t0, tT ], tb > t0 by characterising the expected number of individuals initially
undiagnosed in the model at time tb. For age-dependent back-calculation, this needs to be
stratified not only by undiagnosed state {1, . . . ,K} (as for age-independent back-calculation)
but also by age (interval) at infection and current age at tb (as these characterise the diagnosis
and progression process).

In practice, characterising the number of individuals undiagnosed at tb by age at infection
is hardly feasible, as it requires knowledge of the infection time and age (pre tb) of these
individuals. Hence this requires to somehow model the epidemic before tb, where data may
simply not be available.

Therefore we assume that the individuals initially undiagnosed (at time tb) progress according
to their calendar age at tb, rather than their age at infection; this might lead to bias, as
individuals infected at a older age are assumed to progress faster towards AIDS.

Initially undiagnosed infections are denoted by the vectors πππ j = (π j,1, . . . ,π j,K)
T , ( j =

{1, . . . ,A}); the model dynamics, for time intervals (tb+i−1, tb+i] and age intervals (a j−1,a j]

(i = {1, . . . ,T −b}, j = {1, . . . ,A}), can be expressed simply by modifying the starting value
(e j0

i0, j0) of Equations 5.3.3 and 5.3.4 as follows:

eee j0
i0, j0 =

{
(hi0, j0 +π j0,1,π j0,2, . . . ,π j0,K)

T if i0 = 1
(hi0, j0,0, . . . ,0)

T if i0 > 1
(5.4.3)

Note that i0 = 1 now denotes the time interval (tb, tb+1], where initially undiagnosed infections
must be taken into account.

5.4.3 Back-calculation on a coarser time scale

Epidemic data may only be available on a coarse scale; in this situation allowing at most one
transition between the states of the model (as in Section 5.3.1) in an interval does not allow
infected individuals to be diagnosed rapidly enough. However the dynamics of the model
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over the coarse scale, can be reconstructed by considering smaller sub-intervals, where the
aforementioned assumption holds (see Section 2.4.3).

The period (t0, tT ] spanning the epidemic is thus split into T disjoint, consecutive, "large"
intervals (ti−1, ti], i = {1, . . . ,T} and the age-range (a0,aA] is further split into A disjoint,
consecutive "large" intervals (a j−1,a j], j = {1, . . . ,A}. Time and age intervals are split into
Ns intervals of equal length, denoted (ti,s−1, ti,s] and (a j,s−1,a j,s], where s = {1, . . . ,Ns} and
ti,0 ≡ ti−1, ti,Ns ≡ ti and a j,0 ≡ a j−1, a j,Ns ≡ a j. As in Section 2.4.3, it is assumed that at most
one move between the states of the model is allowed in the sub-intervals; consequently up to
Ns move between the states of the model are allowed in the intervals. Note that time and age
are measured on the same scale (for both the intervals and the sub-intervals), hence when
one time interval elapses so does the age interval.

Let hi0, j0,s denote the expected number of new infections (ti0,s−1, ti0,s] and (a j0,s−1,a j0,s].
dk,i, j,s is the diagnosis probability in (ti,s−1, ti,s] and (a j,s−1,a j,s] from undiagnosed state k,
whereas q j0

k,s denotes the progression probability from undiagnosed state k for an individual

infected in (a j0,s−1,a j0,s]. The transition (denoted by QQQ j0
i, j,s) and progression matrices (DDD j0

i, j,s)

can easily be defined (Equations 5.3.1 and 5.3.2) in (ti,s−1, ti,s] and (a j,s−1,a j,s] as only one
movement between the states of the model is allowed. It is further assumed that the expected
number of new infections and diagnosis probabilities, and thus progression and transition
matrices, are constant in the Ns sub-intervals, i.e.:

hi0, j0 ≡ hi0, j0,1 = · · ·= hi0, j0,Ns, i0 = {1, . . .T}, j0 = {1, . . .A}
dk,i, j ≡ dk,i, j,1 = · · ·= dk,i, j,Ns, i = {1, . . .T}, j = {1, . . . ,A}, k = {1, . . . ,K}
q j0

k ≡ q j0
k,1 = · · ·= q j0

k, j,Ns
, j0 = {1, . . . ,A}, k = {1, . . . ,K −1}

QQQi, j, j0 ≡ QQQi, j, j0,1 = · · ·= QQQi, j, j0,Ns, i = {1, . . .T}, j = {1, . . . ,A}, j0 = {1, . . . ,A}
DDDi, j, j0 ≡ DDDi, j, j0,1 = · · ·= DDDi, j, j0,Ns, i = {1, . . .T}, j = {1, . . . ,A}, j0 = {1, . . . ,A}

Now the expected number of undiagnosed infections (eee j0
i, j) and new diagnoses (µµµ i, j, j0) at the

end of the ith time and jth age interval, for infection occurring in the jth
0 age interval (and

implicitly in the ith time interval), can be expressed using the following recursive equations,
for i = {i0 +1, . . . ,T} and j = { j0 +1, . . . , j0 +T − i0}:

eee j0
i, j =

(
Q̃QQ

j0
i, j

)TTT
eee j0

i−1, j−1 (5.4.4)

µµµ
j0
i, j =

(
D̃DD

j0
i, j

)TTT
eee j0

i−1, j−1 (5.4.5)
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where:

Q̃QQ
j0
i, j =

(
QQQ j0

i, j

)Ns
D̃DD

j0
i, j =

Ns−1

∑
s=0

(
QQQ j0

i, j

)s
DDD j0

i, j (5.4.6)

and the initial values of the recursion are:

eee j0
i0, j0 =

(
Ns−1

∑
s=0

(
QQQ j0

i0, j0

)s
)T

hhhi0, j0 (5.4.7)

µµµ
j0
i0, j0 =

(
Ns−1

∑
s=1

(Ns − s)
(

QQQ j0
i0, j0

)s−1
DDD j0

i0, j0

)T

hhhi0, j0 (5.4.8)

where the K-vector hhhi0, j0 = (hi0, j0 ,0, . . . ,0)
T and QQQ0

i, j, j0 is a K ×K identity matrix.

The above equations are equivalent to Equations 2.4.5 and 2.4.6 and can be interpreted as
discussed in Section 2.4.3. The only difference is that, as age-dependent back-calculation
is considered, the infections vector and the diagnosis and progression transition matrices
further depend on the age intervals of infection and diagnosis.

5.4.4 Back-calculation on different age and time scales

So far the assumption that time and age are measured on the same scale has been central
to the formulation of age-dependent model-dynamics (in Sections 5.3.2, 5.4.3 and 5.4.3).
This assumption is here relaxed, as surveillance data are often available on a larger age
scale than time scale (e.g. quarterly time scale and yearly age scale for MSM in England
and Wales). Data could be aggregated to have equal scales, but this would entail a loss of
information.

Intervals (ti−1, ti], i = {1, . . .T}, and (a j−1,a j], j = {1, . . . ,A}, are now defined so that the
length of Na time-intervals is equal to the length of one age-interval (e.g. Na = 4 for a
quarterly time scale and a yearly age scale). All individuals in the model become one age-
interval older in the beginning of the (Na +1)th, (2Na +1)th intervals etcetera. This implies
that the number of age-intervals elapsing between the ith1 and the ith2 time interval is equal to:⌊

i2−ε

Na

⌋
−
⌊

i1−ε

Na

⌋
, where ε is an infinitely small positive value.

To begin, assume that at most one transition is allowed, between the states of the model, per
time interval. The dynamical Equations 5.3.3 and 5.3.4 can be re-written as follows, for
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i = {i0 +1, . . . ,T} and j0 = { j0,+
⌊

i0+1−ε

Na

⌋
−
⌊

i0−ε

Na

⌋
, . . . , j0 +

⌊
T−ε

Na

⌋
−
⌊

i0−ε

Na

⌋
}:

eee j0
i, j =


(

QQQ j0
i, j

)T
eee j0

i−1, j if i % Na ̸= 1(
QQQ j0

i, j

)T
eee j0

i−1, j−1 if i % Na = 1
(5.4.9)

where i % Na = 1 denotes the case where the remainder of the integer division of i by Na is
equal to one, identifying time intervals i = {Na +1,2Na +1, . . . ,⌊T/Na⌋+1}:

µµµ
j0
i, j =


(

DDD j0
i, j

)T
eee j0

i−1, j if i % Na ̸= 1(
DDD j0

i, j

)T
eee j0

i−1, j−1 if i % Na = 1
(5.4.10)

where eee j0
i0, j0 = (hi0, j0,0, . . . ,0)

T ,i0 = {1, . . . ,T −1}, j0 = {1, . . . ,A−1}.

Note that the assumption that at most one move per time interval can be also relaxed consider-
ing a coarser scale, following the instructions given in Section 5.4.3. In this context, the model
dynamics would be obtained by replacing Equations 5.4.9 and 5.4.10 with Equations 5.4.4
and 5.4.5. Hence the above matrices QQQ j0

i, j and DDD j0
i, j would be replaced by matrices Q̃QQ

j0
i, j and

D̃DD
j0
i, j (defined in Equation 5.4.6) and eee j0

i0, j0 would be defined as in Equation 5.4.7.

Scenarios where the time scale is wider than the age scale could also be easily considered, by
reversing the time and age indices used in this Section.

5.5 Summary

In this Chapter an extension of the multi-state back-calculation model (Chapter 2) has been
introduced to estimate the number of infections and the diagnosis probabilities by age.

Recall that parameterisations of H(θθθ) and D(δδδ ) have not yet been discussed. Modelling
the bivariate incidence surface is particularly challenging, thus the next Chapter will review
a number of non-parametric methods, which will subsequently be applied in a novel way,
within the proposed age-dependent back-calculation framework. A simulation study will be
undertaken to understand the appropriateness of these methods.

Sections 5.3.2, 5.4.3 and 5.4.4 proposed different time-and-age scales for modelling, moti-
vated by both the availability of data and computational considerations: choosing a coarser
scale may lead to computational savings, yielding however a rougher approximation of the
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underlying true epidemic process. The sensitivity of the results obtained on the choice of the
scale employed has not been assessed in the literature and thus will be further investigated in
this thesis.





Chapter 6

Two dimensional non-parametric
smoothing methods

6.1 Introduction

Age-specific back-calculation, as discussed in Chapter 5, requires modelling the latent
bivariate incidence surface. Thus far bivariate incidence has only been modelled using
strong parametric assumptions, or bivariate step functions (Rosenberg, 1995; Marschner and
Bosch, 1998). Here, we investigate extensions of the univariate non-parametric smoothing
models, discussed in Chapter 3, to bivariate settings. Consider data (yi,xxxi), i = {1, . . . ,n},
where yyy = [y1, . . . ,yn]

T is a n×1 vector of observations and xxx = {xxx1, . . . ,xxxn} are associated
covariates, so that xxxi = [xi1,xi2]

T is a 2×1 vector. It is of interest finding a smooth surface
g(xxx) : [a,b]× [c,d]→ R so that, for i = {1, . . . ,n}:

yi = g(xxxi)+ εi (6.1.1)

where εi are assumed to be i.i.d zero mean random variables. This is known as the scatter
plot smoothing problem.

The structure of this Chapter is similar to the one of Chapter 3: bivariate splines (Section 6.2)
and bivariate Gaussian processes (Section 6.3) are first considered in a simple scatter plot
smoothing framework, in order to understand their properties. These are subsequently applied
within the age-specific back-calculation framework of Section 6.4, where these smoothing
methods are extended to model the latent age-and-time specific incidence surface.
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6.2 Splines

6.2.1 Penalised regression

As in Chapter 3, bivariate splines are considered within a penalised regression framework,
using the following PLS criterion:

min ||yyy−−−XXXβββ ||2 +
Np

∑
i=1

λiβββ
TTT SSSiβββ (6.2.1)

where XXX is the design matrix of the spline and βββ the respective coefficients. In contrast
to univariate splines (Equation 3.3.1), βββ may be subject to more than a single quadratic
penalty matrix and thus there may be multiple smoothing parameters. This occurs when
roughness is not equally penalised in both dimensions (see Section 6.2.5), or when certain
reparameterisations are employed (see Section 6.2.7). Let Np be the number of quadratic
penalties (denoted SSS1, . . . ,SSSNp) and smoothing parameters (denoted λ1, . . . ,λNp).

It can be shown that the vector β̂ββ minimizing the PLS criterion is given by (Wood, 2006a):

β̂ββ =

(
XXXTTT XXX +

Np

∑
i=1

λiSSSiii

)−1

XXXTTT yyy (6.2.2)

Sections 6.2.2 to 6.2.5 will discuss various approaches for constructing bivariate splines and
will explicitly define XXX , βββ and SSS1, . . . ,SSSNp .

6.2.2 Optimal thin plate splines

Reinsch (1967) extends the univariate smoothing problem, posed in Section 3.3.3 to bivariate
settings, by measuring roughness in R2 (i.e. in two dimensions) using the Laplacian quadratic
integral. Hence the problem of finding a function g(xxx), in the space of twice continuously
differentiable functions, minimising the following criterion is considered:

min
n

∑
i=1

( yi −g(xxxi) )
2 +λ

∫ b

a

∫ d

c

(
∂ 2g(xxx)

∂x2
1

)2

+2
(

∂ 2g(xxx)
∂x1∂x2

)2

+

(
∂ 2g(xxx)

∂x2
2

)2

dx1dx2

(6.2.3)
Similarly to the univariate objective function (Equation 3.3.3), the above criterion is a special
case of penalised regression (see Section 6.2.1); it is a compromise between goodness of fit,
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as measured by the residual sum of squares (i.e. the first term in Equation 6.2.3), and the
curve’s roughness, as measured by the Laplacian quadratic integral. Again, the smoothing
parameter λ determines the trade-off between goodness of fit and smoothness. The following
theorem provides the solution to the minimization problem:

Theorem. In the space of continuously differentiable functions in [a,b]× [c,d], Equa-
tion 6.2.3 is uniquely minimized by a thin plate spline with a knot at every unique xxxi.

Thin Plate Splines (TPS) are formally defined as follows:

Definition 6.2.1. A thin plate spline is a function g(xxx) : [a,b]× [c,d]→ R defined on a set
of knots κκκ = {κκκ1, · · · ,κκκk}, where κκκ i = (κi1,κi2), so that:

g(xxx) = α0 +α1x1 +α2x2 +
k

∑
i=1

δiν(||xxxi −κκκ i||)

subject to the following constraints:

k

∑
i=1

δi =
k

∑
i=1

δiκi1 =
k

∑
i=1

δiκi2 = 0

where || · || denotes the Euclidean distance and ν(r) is a R→ R distance function:

ν(r) =

 1
16π

r2log(r2) if r > 0

0 otherwise

A TPS basis is thus: {1,x1,x2,ν(||xxx−κκκ1||), . . . ,ν(||xxx−κκκk||)}.

Thin plate splines with a knot per observation (referred to as "optimal TPS" from now on)
are optimal as if roughness is measured by the Laplacian integral, there is no smoother
spline with equal (or better) goodness of fit. Note that optimal TPS are simply optimal NCS
(Section 3.3.3) extended to bivariate settings.

Optimal TPS (Definition 6.2.1) can be formulated within a penalised regression framework
(Section 6.2.1), so that parameter estimates can be obtained. Let us start by defining the pa-
rameter vectors ααα = [α0,α1,α2]

T and δδδ = [δ1, . . . ,δn]
T , and matrices TTT and EEE (of dimension

n×3 and n×n respectively):
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TTT =

1 x11 x12
...

...
...

1 xn1 xn2

 EEE =

ν(||xxx1 − xxx1||) · · · ν(||xxx1 − xxxn||)
... · · · ...

ν(||xxxn − xxx1||) · · · ν(||xxxn − xxxn||)

 (6.2.4)

It can be shown that the roughness integral can be written in a quadratic form (Green and
Silverman, 1994):

∫ b

a

∫ d

c

(
∂ 2g(xxx)

∂x2
1

)2

+2
(

∂ 2g(xxx)
∂x1∂x2

)2

+

(
∂ 2g(xxx)

∂x2
2

)2

dx1dx2 = δδδ
TTT EEEδδδ

Hence, the smoothing criterion (Equation 6.2.3) can be reformulated as:

min||yyy−−−TTT ααα −−−EEEδδδ ||2 +λδδδ
TTT EEEδδδ s.t TTT TTT

δδδ === 000

The objective function above can be further reformulated into the unconstrained PLS criterion
of Equation 6.2.1, following the approach discussed for optimal NCS in Section 3.3.3 and
Appendix C.1.2. For the mathematical details refer to Appendix F.1.

Similarly to optimal NCS, optimal TPS require one parameter for each data-point. For large
data volumes, a large number of correlated parameters must be estimated, which may result
in long computational running time and potentially numerical problems. Within a penalised
regression framework (Section 6.2.1), the smoothing parameter λ offsets the overfitting effect
induced by a large number of knots. Thus a similar fit can be obtained with fewer knots and
a lower λ value (see Section 3.3.2 and Figure 3.4b). In practice, low-rank approximations of
optimal TPS, that is bivariate splines with fewer parameters than knots, produce very similar
results to optimal TPS, despite not having the optimality properties discussed. The following
Sections discuss various types of low-rank thin plate splines.

6.2.3 Knots based thin plate splines

In a similar way to NCS (Section 3.3.4), an optimal TPS can be approximated by a low-
rank knots-based TPS, that uses a subset of the observations as knots. Let κκκ = {κκκ1 <

· · · < κκκk} be a set of knots (k < n), so that κκκ i = (κi1,κi2). Let ααα = [α0,α1,α2]
T and

δδδ = [δ1, . . . ,δk]
T be parameter vectors and TTT , EEE and CCC matrices of dimension n×3, n× k
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and 3× k respectively:

TTT =

1 x11 x12
...

...
...

1 xn1 xn2

 EEE =

ν(||xxx1 −κκκ1||) · · · ν(||xxx1 −κκκk||)
... · · · ...

ν(||xxxn −κκκ1||) · · · ν(||xxxn −κκκk||)

 CCC =

 1 1 · · · 1
κ11 κ12 · · · κ1k

κ21 κ22 · · · κ2k


Following the same rationale as in Section 3.3.4, a knots based TPS can be expressed using
the following PLS criterion:

min||yyy−−−TTT ααα −−−EEEδδδ ||2 +λδδδ
TTT EEEδδδ s.t CCCδδδ === 000

This can be conveniently rearranged in the unconstrained PLS criterion min ||yyy−−−XXXβββ ||2 +
λβββ

TTT SSSβββ , characterising the penalised regression framework. For the mathematical details
refer to Appendix F.2.

The number of knots chosen must be large enough, to ensure sufficient flexibility, but not
excessively large, to avoid computational waste. Sensitivity analysis to the number of knots
and their location is essential.

6.2.4 Thin plate regression splines

Similarly to optimal NCS, an "optimal" (according to the definition given in Section 3.3.5)
low-rank approximation of optimal TPS can be obtained by extending thin plate regression
splines (Section 3.3.5), potentially with shrinkage (Section 3.3.6), to bivariate settings. A
thin plate-regression spline can be defined (as in Section 3.3.5) via the following PLS
criterion:

min||yyy−−−EEEUUUkkkδδδ kkk −−−TTT ααα||2 +λδ
T
k UUUTTT

kkk EEEUUUkkkδk s.t TTT TTTUUUkkkδδδ kkk = 0 (6.2.5)

where EEE and TTT are defined in Equation 6.2.4. DDDkkk is a k× k diagonal matrix containing,
in ascending order (i.e. from top left to bottom right), the k largest absolute values of the
eigenvalues of the matrix EEE. UUUkkk is the n× k matrix consisting of the first k columns of UUU
(the matrix of eigenvectors of EEE).

The criterion in Equation 6.2.5 can be expressed as the unconstrained criterion min ||yyy−−−
XXXβββ ||2 +λβββ

TTT SSSβββ , details are available in Appendix F.3.
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Shrinkage of thin plate regression splines towards zero can be further achieved (as in Sec-
tion 3.3.6) by imposing a penalty on the null-space (i.e. the ααα coefficients); this defines thin
plate regression splines with shrinkage.

Thin plate regression splines are defined in terms of the k largest eigenvectors, rather than
a set of knots, avoiding having to explicitly choose the knots location. The number of
parameters k shall be chosen to be adequately large to ensure sufficient flexibility, but not
excessively large, to avoid computational waste.

6.2.5 Tensor product splines

Tensor product splines were first introduced by De Boor (1978). Eilers and Marx (2003)
estimate these within a penalised regression framework, extending their work on P-splines
(Section 3.3.7) to bivariate settings. This approach has been further generalised, to consider
other type of splines, by Wood (2006b).

Tensor product splines are obtained by multiplying two univariate spline bases, each sepa-
rately defined on the marginal dimensions (i.e. x1 and x2). This is a pragmatic approach for
constructing bivariate splines; unlike bivariate TPS splines (Sections 6.2.2 to 6.2.4), these
are not motivated by the smoothing criterion in Equation 6.2.3 depending on the Lapla-
cian quadratic integral, which assumes isotropy, i.e. roughness is equally penalised in the
dimensions x1 and x2. Tensor product splines relax this assumption.

We start by considering two univariate splines g1(x1) : [a,b]→R and g2(x2) : [c,d]→R , with
bases {B11(x1), · · · ,B1t1(x1)} and {B21(x2), · · · ,B2t2(x2)}, coefficients βββ 111 = [β11, . . . ,β1t1]

T

and βββ 222 = [β21, . . . ,β2t2]
T , design matrices XXX (1) and XXX (2) (of dimension n× t1 and n× t2

respectively), and penalty matrices SSS(1) and SSS(2) (of dimension t1× t1 and t2× t2 respectively).
For i = {1, . . . , t1} and j = {1, . . . , t2} the tensor product basis is equal to:

Bi, j(x1,x2) = B1i(x1)B2 j(x2)

Hence the tensor product design matrix XXX , of dimension n× (t1t2), is:

XXX =

B1,1(x11,x12) · · · Bt1,1(x11,x12) · · · B1,t2(x11,x12) · · · Bt1,t2(x11,x12)
...

...
...

...
...

...
...

B1,1(xn1,xn2) · · · Bt1,1(xn1,xn2) · · · B1,t2(xn1,xn2) · · · Bt1,t2(xn1,xn2)
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(b)

Fig. 6.1 Measuring the bivariate roughness of a tensor product spline. The grey lines represent
the continuous bivariate spline surface. a) The green line denotes g(x1|x2) for a fixed x2.
Its roughness J1(g(x1|x2)) (in the x1 dimension) can easily be evaluated. b) g(x1|x2) (green
lines) and g(x2|x1) (blue lines), for a number of fixed x1 and x2 on a regular grid (black dots).
The marginal roughnesses J(g(x1|x2)) and J(g(x2|x1)) can be evaluated at each fixed x1 and
x2 respectively.

The ith row of XXX , denoted XXX i···, can be alternatively obtained from the Kroenecker product of
the ith rows of the marginal P-splines design matrices, XXX (1)i··· and XXX (2)i··· respectively, yielding
a (t1t2)×1 vector:

XXX i··· = XXX (1)i···⊗XXX (2)i··· (6.2.6)

The (t1t2)× 1 parameter vector of the tensor product spline is βββ = [β1,1, · · · ,βt1,1, · · · ,
β1,t2, · · · ,βt1,t2]

T .

The overall roughness of the tensor product spline can be quantified based on the idea that
we know how to measure roughness marginally (via the specification of SSS(1) and SSS(2)). For
a fixed x2, J1(g(x1|x2)) = βββ

T
111 SSS(1)βββ 111 quantifies roughness with respect to the x1 dimension

(Figure 6.1a). Evaluating J1(g(x1|x2)) for infinitely many fixed x2 and taking its average over
the x2 points yields the overall roughness with respect to x1. Roughness in the x2 direction is
similarly measured, fixing x1 instead. The overall roughness of g(x1,x2) is mathematically
expressed as:

J(g(xxx)) = λ(1)

∫ d

c
J1 (g1(x1|x2))dx2 +λ(2)

∫ b

a
Jx2 (g2(x2|x1))dx1 (6.2.7)
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This integral can not be analytically evaluated; a discrete approximation can be derived by
reparameterising the spline in terms of the values of the functions on a regular grid (depicted
by the black dots in Figure 6.1b). A set of equidistant values, denoted as xxx⋆1 = {x⋆11, . . . ,x

⋆
1t1}

and xxx⋆222 = {x⋆21, . . . ,x
⋆
2t2} respectively, is constructed in the x1 and x2 dimensions. It can be

shown that (Wood, 2006b):

∫ d

c
J1 (g1(x1|x2))dx2 ≈ h1

t2

∑
j=1

J1
(
g1(x1|x⋆2 j)

)
= h1 (βββ

T (AAA−T
111 SSS(1)AAA111

)
⊗ IIIt2βββ ) (6.2.8)

where AAA111 is a t1 × t1 matrix with entries (AAA111)i j = B1i(x⋆1 j), and h1 is a constant of proportion-
ality to account for the spacing of xxx⋆111. The integral for J2 (g2(x2|x1)) can be similarly approx-
imated, by defining instead h2 and a t2 × t2 matrix AAA222, with entries (AAA222)i j = B2i(x⋆2 j).

Tensor product splines can be expressed within the usual penalised regression framework
(Equation 6.2.1):

||||||yyy−−−XXXβββ ||||||222 +λ1βββ
TTT SSS111βββ +λ2βββ

TTT SSS222βββ (6.2.9)

where βββ = [β1,1, · · · ,βt1,1, · · · ,β1,t2, · · · ,βt1,t2]
T , λ1 = h1λ(1), λ2 = h2λ(2) and:

SSS111 =
(
AAA−T

111 SSS(1)AAA111
)
⊗ IIIt2

SSS222 = IIIt1 ⊗
(
AAA−T

222 SSS(2)AAA222
)

6.2.6 A comparison of splines

In contrast to the univariate case, there are substantial differences between the TPS family
of splines (optimal TPS, knots based TPS and thin plate regression splines, Sections 6.2.2
to 6.2.4) and tensor product splines (Section 6.2.5).

TPS splines are subject to a single penalty, given by the Laplacian quadratic integral. This
is invariant to rotation and translation in R2, but not to the rescaling of coordinates xxx. The
Laplacian quadratic integral is also isotropic, which is a desirable property when (x1,x2) are
measured using the same unit.

Tensor product splines relax the isotropy assumption, allowing for different smoothing levels
in different dimensions and ensure that results are unaffected by rescaling and translation of
coordinates xxx. However, they are not invariant to rotation of coordinates.

The appropriateness of the type of spline is application specific. Thin plate-splines are
typically well-suited for geographic smoothing problems where (x1,x2) are measured using
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the same unit (e.g. latitude and longitude in degrees). Rotational invariance ensures that
results obtained would be unaffected if the axis were to be rotated. Tensor product splines
are also suitable for this type of application, and can be used to informally test whether
the isotropy assumption holds; however tensor product splines do not guarantee rotational
invariance. On the other hand, tensor product splines are better suited when (x1,x2) are
measured on different scales (e.g. meters and years) as the isotropy assumption does not
hold in this case. Moreover the scale invariance property of tensor product splines (that does
not hold for TPS) ensures that the same results would be obtained if (x1,x2) were rescaled
(e.g. kilometres and quarters). Finally note that when covariates (x1,x2) are measured on the
same scale, but on very different ranges (e.g. [0,10] for x1 and [0,100] for x2), tensor product
splines should be used rather than TPS. In fact, it is unfair to equally penalise a unit change
in the x1 dimension (1/10) as a unit change in the x2 dimension (1/100). This issue could be
circumvented by rescaling both dimensions on the unit space; however using tensor product
splines is preferable as rescaling is arbitrary.

6.2.7 Bayesian inference

The advantages of Bayesian inference over penalised likelihood inference were discussed in
Section 3.3.9. Recall that the penalty term can be viewed as a prior on the spline’s coefficients
βββ ∼ N(000,(λSSS)−1). As splines of the TPS-family are subject to a single penalty term, they
can be formulated within a Bayesian framework using i.i.d Normal priors, after a suitable
reparameterisation (Section 3.3.9).

Tensor product splines instead have two different smoothing parameters and penalty matrices,
corresponding to the prior βββ ∼ N(000,(λ1SSS111 +λ2SSS222)

−1). However the above precision matrix
can not be reparameterised as an identity matrix (to obtain i.i.d priors); reasons are discussed
in Appendix F.4.

Depending on the definition of SSS111 and SSS222, the matrix SSS = SSS111 +SSS222 may not be of full rank, so
that the vector of coefficients βββ can be split into p penalised and u unpenalised parameters
βββ = [βββ ppp βββ uuu]

T . Let P = p+u be the length of the coefficient vector.

If SSS is not of full rank, the multivariate normal prior on βββ is improper. To avoid the use of the
improper prior, a "small" quadratic penalty SSS000 is introduced for the unpenalised parameters
βββ uuu, so that an approximate penalty S̃SS = SSS111 + SSS222 + SSS000 of full rank can be defined (Marra
and Wood, 2011). SSS000 is constructed starting from the positive-definite symmetric matrix
SSS = SSS111+SSS222 (size P×P and rank p). Its eigen-decomposition is SSS =UUUDDDUUUTTT , where UUU and DDD
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are defined as in Section 3.3.5. The last u eigenvalues of DDD are zero, and UUU000 are the columns
of UUU corresponding to the zero eigenvalues, and SSS000 is defined to be UUU000UUUTTT

000 . Thus a proper
multivariate Normal prior is obtained for βββ :

f (βββ ) ∼ NP

000,

(
2

∑
i=1

λiSSSiii +λ0SSS000

)−1
 (6.2.10)

which requires estimating a further smoothing parameter λ0, ruling the amount of smoothing
for the originally unpenalised coefficients βββUUU .

The centering reparameterisation (see Section 3.3.9) allows for the tensor product spline to
be rewritten in terms of parameters βββ

′′′ so that one of the originally unpenalised parameters
βββ uuu becomes the global intercept, and the sum of the spline values over the covariates is zero
(i.e. ∑

n
i=1 g(xxxi) = 0). For notational simplicity, let β ′

1 be the global intercept and βββ
′′′
P−1 the

remaining P−1 parameters βββ
′′′ = [β ′

1,βββ
′′′
P−1]

T .

Let yyy follow any distribution, not necessarily from the exponential family, with likelihood
function l(yyy|βββ ′′′). A Bayesian tensor product spline can be then specified:

yyy ∼ l(yyy|βββ ′′′)

β
′
1 ∼ f (β ′)

βββ
′′′
P−1 ∼ NP−1

000,

(
2

∑
i=1

λiSSSiii +λ0SSS000

)−1


λ ∼ f (λ )

λ0 ∼ f (λ0)

(6.2.11)

where f (·) denotes a prior distribution.

For tensor product splines, λ0 is only required if there is, at least, one marginal spline with
more than one unpenalised coefficients (i.e. u > 1) prior to reparameterisation (Section 3.3.9).
Thus if first-order B-splines (u = 1) or thin plate regression splines with linear shrinkage
(u = 0) are specified on both dimensions, λ0 is not required. All other univariate splines
considered (second degree B-splines, NCS, knots-based NCS and TPS) require λ0.
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6.3 Gaussian processes

Gaussian processes (GP), introduced in Chapter 3, can be extended to model data (yi,xxxi)

where covariates xxxi are two-dimensional; by definition this requires specifying a mean m(xxxi)

and a covariance function k(xxxi,xxx j|φφφ). The latter is typically constructed by multiplying
together covariance functions defined on each individual covariate (Duvenaud, 2014).

Using a squared exponential covariance function (Section 3.4), the covariance function of a
two dimensional GP can be written as follows:

k(xxxi,xxx j|η ,ρ1,ρ2) = η
2exp

(
−1

2

2

∑
d=1

(xid − x jd)
2

ρ2
d

)
(6.3.1)

where φφφ = {η ,ρ1,ρ2} are the GP hyper-parameters.

The specification in Equation 6.3.1 is called the Squared Exponential (SE) kernel, and like
a tensor product spline, allows for different levels of smoothing (given by ρ1 and ρ2) in
the x1 and x2 dimensions. Large values of ρi (i = {1,2}) indicate that y is independent of
the predictor xi as the exponential term of k(xxxi,xxx j|η ,ρ1,ρ2) approaches zero (Neal, 1996;
Williams and Rasmussen, 1996).

The covariance matrix KKK (dimension n×n), with (i, j)th entry (KKK)i, j = k(xxxi,xxx j|φφφ), is obtained
via a Kronecker product:

KKK = KKK111 ⊗KKK222 (6.3.2)

where KKK111 and KKK222 are the covariance matrices for each individual covariate, of dimension
n1 ×n1 and n2 ×n2 respectively, so that n = n1 ×n2 and with entries (KKK111)i, j = k(xi1,x j1|φφφ)
and (KKK222)i, j = k(xi2,x j2|φφφ).

The following Kronecker product property is key for efficient inference:

KKK−1 = KKK−1
111 ⊗KKK−1

222 (6.3.3)

Inverting the two individual covariance matrices, KKK111 and KKK222, is substantially faster compared
to inverting the full covariance matrix (O(n3

1)+O(n3
2) versus O((n1n2)

3) operations). Hence,
iterative algorithms for GP that require the inversion of the covariance matrix at each iteration,
substantially benefit from taking advantage of Kronecker product properties (Saatçi, 2012;
Flaxman et al., 2015).
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The posterior and predictive distributions are then directly obtained as in Section 3.4.3.
Inference can be carried in a frequentist framework, by maximizing the (marginal) likelihood,
or in a Bayesian framework (see Section 3.4.4).

6.4 Back-calculation

Chapter 5 introduced age-dependent multi-state back-calculation without, however, specify-
ing parameterisations for the incidence surface H(θθθ) and diagnosis probabilities D(δδδ ).

6.4.1 Incidence surface

To ensure positiveness of H(θθθ), log-expected infections γγγ = (γ11, . . . ,γTA)
T are modelled,

where γi j denotes the log-expected number of new infections log(hi j) in the ith time and
the jth age intervals. Three non-parametric methods were considered to model the age-
independent incidence curve (Section 3.6) and we now illustrate how these methods can be
further extended to model the bivariate time and age dependent incidence surface.

Step functions

Step functions, that are equivalent to random walk priors in a Bayesian framework, can be
employed to model the time-and-age dependent incidence surface using a multiplicative
model (Mezzetti and Robertson, 1999; Becker et al., 2003). This does not allow for the
age-profile of infection to vary over time and consequently we cannot assess the impact of
public health policies targeted at specific age-groups.

Splines

The incidence surface can be modelled using a bivariate spline model, as follows:

γγγ = XXXβββ (6.4.1)

where XXX is the design matrix of the spline. The spline parameterisation of the log-incidence
surface is characterised by infection parameters θθθ = {βββ ,λλλ}, where λλλ are the smoothing
parameters of the spline.



6.4 Back-calculation 105

Gaussian processes

A GP can also be employed to model the log-expected number of infections:

γγγ ∼ GP(000,k(xxxi,xxx j|φφφ)) (6.4.2)

where m(xxx) and k(xxxi,xxx j|φφφ) denote the mean and the covariance functions respectively (Sec-
tion 6.3). Using the GP parameterisation, the infection parameters are θθθ = {φφφ}, where φφφ are
the hyperparameters of the GP.

6.4.2 Diagnosis process

Diagnosis probabilities are defined on a logistic scale, i.e. δk,i, j = log
(

dk,i, j
1−dk,i, j

)
. To ensure

a parsimonious representation, δk,i, j are assumed to be piecewise constant in both the time
intervals (t̆i−1, t̆i] (i = {1, . . . , T̆}, T̆ ≤ T , t̆0 ≡ t0, and t̆T̆ ≡ tT ), and the age intervals (ă j−1, ă j]

( j = {1, . . . , Ă}, Ă ≤ A, ăă ≡ aA, and ăă ≡ aA).

Logistic Regression

Logistic regression can be considered for D(δδδ ), for k = {1, . . . ,K}:

δk,i, j = α +ζk +ξi +ϕ j +νk,i + ςi, j (6.4.3)

subject to the identifiability constraint ζ1 = ξ1 = ϕ1 = ν1,t = νk,1 = ς1,a = ςc,1 = 0. ζk, ξi

and ϕ j denote the fixed effects of undiagnosed state k, calendar interval (t̆i−1, t̆i] and age
interval (ă j−1, ă j] respectively. νk,i and ςi, j denote the interactions of state k with time
interval (t̆i−1, t̆i], and of the time interval (t̆i−1, t̆i] with the age interval (ă j−1, ă j]. Further
interactions could be similarly introduced. Using this parameterisation diagnosis parameters
are δδδ = {α,ζ1, . . . ,ζk,ξ1, . . . ,ξT̆ , ,ϕ1, . . . ,ϕĂ,ν1,1, . . . ,νK,T̆ ,ς1,1, . . . ,ςT̆ ,Ă}.

Step functions

Alternatively piecewise constant step-functions can be considered to model the diagnosis
probabilities. Within a Bayesian framework, these correspond to first order random walk
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priors for each undiagnosed state k = {1, . . . ,K}:

δk,i, j ∼ N(δk,i−1, j,σ
2
D,k) (6.4.4)

where δk,1, j ∼ N(α j,σ0) or δk,1, j ∼ N(α j,k,σ0). α j and α j,k are age and age as well as
state specific intercepts respectively which must be estimated, whereas σ0 are fixed. These
intercepts allow the incorporation of an age-effect (which may be undiagnosed state spe-
cific) on the diagnosis probabilities in a parsimonious manner. Using a random walk pa-
rameterisation, the diagnosis parameters are δδδ = {δ1,1,1, . . . ,δ1,T̆ ,Ă, . . . ,δK,1,1, . . . ,δK,T̆ ,Ă,

σ2
D,1, . . . ,σ

2
D,K}.

6.4.3 Penalised likelihood inference

Section 3.6 discussed the limitations of frequentist age-independent back-calculation infer-
ence. Nonetheless frequentist inference has been considered for age-specific back-calculation
and for instance Marschner and Bosch (1998) proposed, despite in a simpler framework,
penalised likelihood inference.

Age-specific back-calculation can not be expressed as a GLM, so that standard software
can not be employed to fit bivariate splines. However a penalised likelihood criteria can be
formulated if splines (Equation 6.4.1) and logistic regression (Equation 6.4.3) are employed
to model H(θθθ) and D(δδδ ) respectively. Splines theory (Section 6.2) suggests using the
following penalty term for the age-dependent back-calculation likelihood:

lp(yH ,yA,yHC | θθθ ,δδδ ) = l(yH ,yA,yHC | θθθ ,δδδ )− 1
2

Np

∑
i=1

λiβββ
TTT SSSiβββ (6.4.5)

where l(yH ,yA,yHC | θθθ ,δδδ ) denotes the log of the likelihood in Equation 5.3.10. Np and SSSi

depend on type of spline employed. For fixed λi, the above maximization problem does not
have an analytical solution.

The penalised likelihood criterion can be numerically maximized using the quasi-Newton
BFGS algorithm (Nash, 1990) via the R function optimx (Nash and Varadhan, 2011). In the
back-calculation literature the EMS algorithm has been extensively used; this is not applicable
in this situation as the derivatives of the likelihood are not analytically tractable.

Re-interpreting the penalty term as a prior (Section 6.2.7), Wood et al. (2016) show that the
following large-sample approximation of the posterior distribution of the spline parameters
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βββ holds for any likelihood (i.e. not necessarily a GLM):

f (βββ |Y)∼ MV N
(

β̂ββ ,
(

ÎII +SSSλ
)−1

)
(6.4.6)

where β̂ββ denote the estimated maximum penalised likelihood parameters and SSSλλλ = ∑
NP
i=1 λiSSSi.

ÎII is the expected information matrix (i.e. the negative Hessian) evaluated at β̂ββ .

The proposed age-specific back-calculation model employs a spline to model the incidence
surface, however, Equation 6.4.6 must be appropriately adjusted to account for the D diagno-
sis parameters δδδ . These, in contrast to βββ , are unpenalised. SSSλλλ denotes the augmented penalty
matrix (size (P+D) × (P+D)):

SSSλλλ =

[
(∑

NP
i=1 λiSSSi)[P×P] 000[P×D]

000[D×P] 000[D×D]

]

where 000 denote zero matrices.

φφφ =
[
βββ ,δδδ

]
(size P+D) is the vector of parameters of the age-specific back-calculation

model. The large-sample approximation of their asymptotic posterior distribution is:

f (φφφ |yH ,yA,yHC)∼ MV N
(

φ̂φφ ,
(

ÎII +SSSλλλ
)−1

)
(6.4.7)

where φ̂φφ denotes the maximum penalised likelihood estimate of φφφ , for fixed λλλ . ÎII is the
expected information matrix evaluated at φ̂φφ .

Confidence intervals are obtained by sampling parameters from the above asymptotic distri-
bution, which however ignores uncertainty in the smoothing parameters’ estimates; thus these
may be unduly narrow. Uncertainty in the smoothing parameter could be further taken into
account by modifying Equation 6.4.7, as in Wood et al. (2016). This has not been considered,
as it would involve obtaining further derivatives numerically, rendering the model even more
computationally intensive.

As the Hessian of the age-specific back-calculation model can not be analytically derived,
it is numerically evaluated using the R package NumDeriv; this requires however substan-
tial computational effort. Furthermore, due to algorithmic numerical instabilities, there is
no guarantee for ÎII to be positive definite; consequently ÎII + SSS may be non-invertible and
confidence intervals are unobtainable.
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An adapted version of the Aikake Information Criterion (AIC) is used to select the optimal
smoothing parameters. Wood et al. (2016) show that, under an asymptotic large-sample
assumption, the AIC is equal to:

AIC =−2l(φ̂φφ)+2 tr
((

ÎII +SSSλλλ
)−1

ÎII
)

(6.4.8)

The AIC must be evaluated over a grid of plausible λλλ values; the optimal smoothing parameter
vector λ̂λλ = {λ̂1, . . . , λ̂Np} correspond to the values yielding the smallest AIC.

Alternatively, parametric bootstrapping could have been considered to construct confi-
dence intervals (Efron and Tibshirani, 1994). Given φ̂φφ , the maximum penalised likeli-
hood estimates for the expected number of infections (µ̂H

i, j, µ̂A
i, j), and proportion of di-

agnoses in each state at each time and age intervals (p̂i, j,k) are obtained. N datasets
{Y A⋆

1 ,Y H⋆
1 ,YC⋆

1 , . . . ,Y A⋆
N⋆ ,Y H⋆

N⋆ ,YC⋆
N⋆ } can be then simulated from the parametric distribution of

the diagnosis data (i.e. Equations 5.3.7, 5.3.8, 5.3.9) with means µ̂A
t,a,µ̂H

t,a and p̂k,t,a respec-
tively. Bootstrapped estimates of the parameters {φ̂φφ

⋆
1, . . . , φ̂φφ

⋆
N⋆} are obtained using maximum

penalised likelihood; confidence intervals are derived from their empirical distribution. Para-
metric bootstrap does not make a large-sample approximation assumption, however it is
computationally strenuous as it requires re-fitting the model N⋆ times; hence it has not been
further pursued.

6.4.4 Discussion on inferential approaches

The penalised likelihood approach discussed in the previous Section has several drawbacks;
firstly, a large sample approximation based on a Bayesian re-interpretation of the penalised
likelihood is required to determine the optimal smoothing parameters and confidence intervals.
Moreover it may not be possible to evaluate the asymptotic distribution covariance matrix
due to a lack of numerical precision.

Furthermore inference (and numerically evaluating the Hessian) is very time consuming
even when the likelihood function is efficiently coded in the C++ language, and is called
from R via the Rcpp package (Eddelbuettel and François, 2011). The likelihood must be
maximized for a grid of smoothing parameters in order to determine optimal λ̂λλ ; this is
particularly burdensome for tensor product splines, characterised by two different smoothing
parameters.
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For instance, in the application for the MSM-HIV epidemic in England and Wales (Chapter 8)
two hours are required to numerically maximize the likelihood and to numerically obtain the
Hessian. If a tensor product spline, with a 10×10 grid of plausible λλλ values was considered,
200 hours would be required to estimate φ̂φφ and λ̂λλ ; 20 hours would instead be sufficient for
thin plate splines that involve a single smoothing parameter. Despite parallelisation reducing
almost linearly (in the number of cores) the computing time, a simulation study appropriately
comparing thin plate and tensor product splines is infeasible. Nevertheless, fitting tensor
product splines is crucial when the isotropy assumption is unjustified (Section 6.2.6).

Most of the aforementioned caveats can be addressed within a Bayesian framework. Firstly,
meaningful credible intervals (accounting for uncertainty in the smoothing parameter) are
obtained from the posterior distribution, without resorting to an unverifiable large-sample
approximation. Secondly, the model does not require refitting over a grid of plausible λλλ , as
a posterior distribution for λλλ is obtained; splines with two smoothing parameters can thus
be fit without (or very marginally) increasing computational times. Furthermore Bayesian
approaches allow for increased flexibility and is straightforward to consider (in contrast
to frequentist methods) random walks and GPs to model the incidence surface and the
diagnosis probabilities. Bayesian inference, on the other hand, requires specification of
appropriate priors and MCMC algorithms; these are application-specific and are discussed in
the following Chapter. Codes for age-dependent Bayesian back-calculation are available on
Github (https://github.com/frbrz25/Thesis_Codes).

6.5 Summary

This Chapter extends the univariate non-parametric smoothing methods introduced in Chap-
ter 3 to bivariate settings. Specifically, bivariate splines and Gaussian processes are described
in Section 6.2 and Section 6.3 respectively.

These can be employed (Section 6.4) to parameterise the bivariate latent incidence surface and
the diagnosis probabilities characterising the age-specific back-calculation model described
in Chapter 5. Section 6.4.4 argues that Bayesian inference is particularly convenient. In the
following Chapter the suitability of these parameterisations and the appropriateness of both
inferential methods will be investigated.

https://github.com/frbrz25/Thesis_Codes




Chapter 7

Age dependent back-calculation
simulations

7.1 Introduction

Section 6.4 described how bivariate splines and Gaussian processes can be employed in an
age-dependent multi-state back-calculation framework (Chapter 5) to smoothly model the
incidence surface.

This Chapter concerns a simulation study aimed to investigate the feasibility of age-dependent
back-calculation (i.e. whether the true incidence surface and diagnosis probabilities can be
accurately estimated) and the properties of the different non-parametric smoothing methods,
in order to establish which parameterisations are most suitable. Both a Bayesian and a
frequentist simulation study are undertaken. As previously discussed, Bayesian inference has
a number of advantages; however, it is important to demonstrate that similar results can be
obtained within a frequentist framework.

This Chapter starts by describing the data generating mechanism for the simulation study
(Section 7.2) and then moves on to specify a number of non-parametric models for incidence
and diagnosis probabilities Section 7.3. Hence both the Bayesian and the penalised likelihood
simulation studies are setup in Section 7.4 and performance assessment is discussed in
Section 7.5. Finally, results are presented in Sections 7.6 and 7.7.
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7.2 Data generating mechanism

[500,∞)

1
[350,500)

2
[200,350)

3
[0,200)

4
AIDS

9

HIV

[500,∞)

5

HIV

[350,500)
6

HIV

[200,350)
7

HIV

[0,200)
8

hi, j q j0
1 q j0

2 q j0
3 q j0

4
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Fig. 7.1 Age-dependent back-calculation multi-state model, used for this simulation study
with K = 4 undiagnosed states. Dashed states {1, . . . ,4} denote undiagnosed states. Solid
states {5, . . . ,9} denote diagnosed states.

The age-dependent back-calculation model described in Section 5.3 is employed with K = 4
undiagnosed states. States 1, 2, 3 and 4 have CD4-count [500,∞), [350,500), (200,350] and
(0,200] respectively. For reasons of computational feasibility, a yearly time scale (rather than
a quarterly one, as in the age-independent simulations) is employed for both the time and age
intervals; yearly dynamics are constructed by aggregating quarterly sub-intervals (Ns = 4,
see Section 5.4.3). Back-calculation is implemented without including under-reporting
(Section 5.4.1), from an intermediate point of the epidemic (Section 5.4.2), for 20 time
intervals and 52 age intervals, i.e. we consider (ti−1, ti] and (a j−1,a j] for i = {1, . . . ,20},
j = {1, . . . ,52}.

The data generating mechanism is very similar to the one described for age-independent
simulations (see Section 4.2 for the details): HIV, AIDS and CD4 diagnoses (denoted Y H⋆

i, j ,
Y A⋆

i, j and YYY HC⋆
i, j respectively) can be generated from the model after specifying a bivariate

true incidence surface, diagnosis and progression probabilities, and the expected number of
initially undiagnosed infections (i.e. H⋆, D⋆ Q⋆ and πππ⋆ respectively). As in Section 4.2, the
values specified for these quantities are chosen to be realistic for the MSM-HIV epidemic
in England and Wales between 1995 and 2015, for individuals aged between 15 and 66
years (these are denoted ages 1-52, to be consistent with the j indices referring to the age
intervals).

The true bivariate incidence surface is constructed using a multiplicative model hi, j = hivi, j;
hi denotes the total number of expected infections in the interval (ti−1, ti] (i.e. the time profile
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Fig. 7.2 Time and age-specific true incidence surfaces with three different time profiles.
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Fig. 7.3 Time profiles of the increasing (orange), flat (green) and decreasing (gray) incidence
surfaces, stratified by age-class.
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of expected infections), whereas vi, j is the proportion of hi in the jth age interval (note that

∑
52
j=1 vi, j = 1).

The increasing, decreasing and flat time profiles considered for age independent back-
calculation simulations are again employed for hi (Figure 4.2, Section 4.2). vi, j are con-
structed so that the mean age at infection shifts linearly from age 29, in the first time interval,
to 19, in the 20th time interval. vi, j is unchanged in each of the three time profile scenarios.
The incidence surface obtained is depicted in Figure 7.2. Figure 7.3 depicts the time profile of
the three incidence surfaces, stratified by age-class. Note that the flat incidence time profile
is masking contrasting trends in different age-classes. This is not the case for the increasing
and decreasing time profiles, where the number of expected infections in all age-classes is
increasing and decreasing respectively.

For consistency with the age-independent study and to limit the computational burden of the
simulation study, the age-independent diagnosis probabilities used in Section 4.2 are used
again (Figure 4.3). More precisely, the values in the first quarter of each year were considered,
as we are considering a yearly scale. Q⋆ and πππ⋆ involve 52 ages and 4 states and are chosen
to have realistic values for the HIV-MSM epidemic (see Appendix G.1). πππ⋆ denotes the
expected number of undiagnosed infections in 1995; these were obtained using a simple
age-dependent extension of the Aalen et al. (1997) model, applied to MSM surveillance
data from 1978 to 1994. We chose to model incidence with a bivariate step-function, so that
incidence is constant within age-classes 1-10, 11-20, 21-30 and 31-52. Q⋆ estimates were
obtained from the CASCADE cohort study (CASCADE Collaboration, 2000).

7.3 Back-calculation parameterisations

This Section discusses non-parametric models for the incidence surface H(θθθ) and diagnosis
probabilities D(δδδ ) introduced in Sections 6.4.1 and 6.4.2. We consider inference within both
a Bayesian and a frequentist framework. However, in this Section we predominantly focus
on the former inference methods, as the latter method was discussed in Section 6.4.

7.3.1 Incidence

The log-expected number of infections, over time and age, γγγ can be parametrised using the
bivariate smoothing methods described in Chapter 6.



7.3 Back-calculation parameterisations 115

Splines

Various types of TPS splines can be used for this purpose (knots-based, thin plate regression
splines and thin plate regression splines with shrinkage). As these have a single penalty, they
can be specified within a Bayesian framework using i.i.d Normal priors (see Equation 3.3.15
with parameters now denoted β rather than β ′ for notational simplicity, and priors on
the standard deviation rather than precision parameters). The following priors are thus
considered:

β1 ∼ N(0,30)

βPi ∼ N(0,σ2), i = {1, . . . , p}
βUi ∼ N(0,σ2

0 ), i = {1, . . . ,u−1}
σ ∼ t+(2,200)

σ0 ∼ t+(2,200)

(7.3.1)

where t+(d,s) denotes a half-t distribution with d degrees of freedom and scale parameter
s. σ2 = 1/λ and σ2

0 = 1/λ0. Let P be the number of coefficients: p and u of these are
penalised and unpenalised respectively (P = p+u). Knots based and thin plate regression
splines have u = 3, whereas for thin plate regression splines with shrinkage u = 0. Hence the
latter spline does not require an additional smoothing parameter σ0 (see Section 3.3.9). A
diffuse half-t distribution with 2 degrees of freedom and with scale parameter 200 is chosen
as prior for σ and σ0, so that 95% of the prior density lies in the [0,400] region, reflecting a
lack of knowledge for the β parameters. This, however, is a choice of prior to which outputs
are particularly insensitive.

Tensor-product splines can also be employed to model γγγ , defined by the following marginal
splines: thin plate regression splines (with and without shrinkage) and first and second order
B-splines (with first order and second order difference penalty respectively). Tensor product
splines can be expressed in a Bayesian framework (Equation 6.2.11, now characterised by
parameters βββ rather than βββ

′, for notational simplicity, and priors on the standard deviation
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rather than the precision parameters) without i.i.d Normal priors:

β1 ∼ N(0,30)

βββ P−1 ∼ NP−1

000,

(
2

∑
i=1

λiSSSiii +λ0SSS000

)−1


σ ∼ t+(2,200)

σ0 ∼ t+(2,200)

(7.3.2)

where SSS0 is a "small" penalty defined on the null space of SSS = SSS111 + SSS222. Recall that when
thin plate regression splines with shrinkage or first order B-splines with first order differ-
ence penalty are used as marginal splines, SSS000 (as well as λ0 and σ0) is not required (see
Section 6.2.7).

β1 is the global intercept (i.e. it describes the mean number of log-expected infections
per age and time interval) and is assigned a very weakly informative prior, so that β1 lies
with approximately 95% prior probability in the [−60,60] range. The choice of priors
on the parameters βββ P−1 are dictated by the penalty term re-interpretation as a precision
matrix.

All splines considered have 80 parameters. Knots-based TPS require specification of the
knots location: we specified these at intervals of two years in the time dimension, and every
6.5 years in the age dimension (i.e. for a total of 10 and 8 knots in the time and age dimension
respectively, resulting in 80 unconstrained parameters, see Section 6.2.3). For each of the
two marginal splines of a tensor product we specified 10 and 8 parameters in the time and
age dimension respectively (for a total of 80 parameters, see Section 6.2.5).

Recall that TPS splines can be estimated within a maximum penalised likelihood framework,
as described in Section 6.4. Also tensor product splines could theoretically be estimated
within a frequentist framework, however their implementation is hindered by the large
running times required.

Gaussian process

γγγ can be further modelled using a Gaussian process (GP) (Section 3.4). The covariates
xxxι = (xι ,1,xι ,2), ι = {1, . . . ,1040} of the GP are the time and age intervals, rescaled to the
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[0,1] range (Flaxman et al., 2015). This is achieved using the following transformation:

xι ,1 =
tι − t1
t20 − t1

xι ,2 =
aι −a1

a52 −a1

where 20 and 52 are the number of time and age intervals respectively. A zero-mean GP is
used to model the bivariate incidence surface:

γγγ ∼ NT (000,ΣΣΣ) (7.3.3)

The (l,m)th entry of the TA×TA covariance matrix ΣΣΣl,m is defined by the squared exponential
kernel:

ΣΣΣl,m = η
2exp

(
−
(xl,1 − xm,1)

2

2ρ2
1

−
(xl,2 − xm,2)

2

2ρ2
2

)
+1xxxl=xxxmmm0.00001

where 1xxxl=xxxm is an indicator function which is equal to 1 if xxxl = xxxm, 0 otherwise. As for
age-independent simulations (Section 4.3) a very small positive value value is added to the
diagonal entries of ΣΣΣ, to ensure its positive-definiteness. The infection parameters to be
estimated, θθθ = {η ,ρ1,ρ2}, are restricted to be positive. η is given the prior:

η ∼ N+(4,1)

where N+(µ,σ) denotes a truncated (at zero) Normal distribution, with mean µ and standard
deviation σ . η is approximately the standard deviation of the log-expected number of age
and time specific infections (Section 4.3). The weakly informative prior chosen ensures that
the 90% prior range for η lies in [2,6] so that the expected number of infections, over time
and age, lies in [exp(−12),exp(12)].

Two distinct priors are considered for the length-scales:

1. Half-t priors on the inverse length-scale: 1
ρ1

∼ t+(4,1) and 1
ρ2

∼ t+(4,1)

2. Truncated normal priors on the length-scale: ρ1 ∼ N+(0.5,0.5) and ρ2 ∼ N+(0.5,0.5)

The half t-priors t+(d,s), with d degrees of freedom and scale parameter s, on the in-
verse length-scales are weakly informative and are equivalent to the prior employed in the
age-independent simulation study (Section 4.3). The truncated-normal priors are more infor-
mative, as the length-scales ρ1 and ρ2 are centered a priori on half of the xxxi data-range.

The parameters of a Gaussian process, embedded in a back-calculation framework, can not
be easily estimated in a frequentist framework (Section 6.4).
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7.3.2 Diagnosis probabilities

Two candidate models are used for the diagnosis probabilities D(θθθ). Diagnosis proba-
bilities are modelled on a logistic scale, and are assumed to be independent of age, to
be consistent with the data generating mechanism (Section 7.2). The logistic-diagnosis
probabilities for state k in interval (t̆i−1, t̆i] is denoted δk,i = log

(
dk,i

1−dk,i

)
(i = {1, . . . , T̆} and

k = {1, . . . ,4}).

Random walk

The logistic diagnosis probabilities can be modelled independently for each of the four undi-
agnosed states using a yearly (i.e. T̆ = 20) first order logistic random walk parameterisation:
δk,i ∼ N(δk,i−1,σ

2
k,D) . The initial values δk,1 values and the variance parameters are given

the following priors:

δ1,1 ∼ N(−3.2,0.2), δ1,2 ∼ N(−3.2,0.2), δ1,3 ∼ N(−3,0.2), δ1,4 ∼ N(−2.5,0.3)

σ
2
k,D ∼ Γ(1,32), k = {1,2,3,4}

The above priors are equivalent to those used in the age-independent simulations (Sec-
tion 4.3).

Logistic regression

Random walk models can easily be fit within a Bayesian framework, however frequentist
inference is not straightforward. In a penalised likelihood back-calculation context, we
consider modelling the diagnosis probabilities using a logistic regression. Specifically we
employ two-year piecewise-constant time effects (i.e. T̆ = 10), and a state effect for each of
the undiagnosed states and their interaction. For i = {1, . . . ,10} and k = {1, . . . ,4}:

δk,i = α +ζk +ξi +νk,i (7.3.4)

Subject to the identifiability constraints: ζ1 = ξ1 = ν1,i = νk,1 = 0.
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7.4 Simulation study setup

A comparison of non-parametric methods for modelling is now pursued using the simu-
lated datasets; both Bayesian and frequentist (penalised likelihood) inferential methods are
considered.

An outline of the Bayesian simulation study is given below:

• 50 datasets are generated for each of the three true time profile of the incidence surface
options (increasing, decreasing, and flat incidence) resulting in a total of 150 datasets.
The term true incidence scenario will refer to a dataset generated under a specific true
incidence option (e.g. increasing).

• Eight different parameterisations of the incidence surface are implemented on each
dataset: Gaussian processes (GP), a knots-based TPS (tpknotsloc), a thin plate regres-
sion spline (tp), a thin plate regression spline with shrinkage (ts) and tensor product
splines with four different marginal splines (thin plate regression splines (ptenstp),
thin plate regression splines with shrinkage splines (ptensts), cubic B-splines with
first (ptensbsord1) and second order (ptensbsord2) difference penalties). The term
incidence model will refer to a specific parameterisation of the incidence surface (e.g.
bsord1). 80 knots (or parameters) are used for each spline: equispaced knots are
located every two years in the time dimension and every six years and a half in the age
dimension.

• The term simulation describes the combination of a true incidence scenario (e.g.
increasing), one incidence model (e.g. bsord1) and one dataset (e.g. dataset number
25); 1200 simulations have been undertaken.

• Inference is carried out using Stan, which employs HMC methods (see Appendix A.2.2
and A.4). Each simulation involves three chains of 2000 iterations with burn-in of
1000, resulting in a posterior sample size of 3000 iterations. Default initial values for
the HMC algorithm are automatically generated by Stan. The approximate running
time per simulation is 10 hours.

The penalised likelihood simulation study is described below:

• The same 150 datasets generated for the Bayesian simulation study are used.

• Only knots-based TPS (tpknotsloc), thin plate regression splines (tp) and thin plate
regression spline with shrinkage (ts) are considered, with 80 parameters. The knots
location chosen, for knots-based TPS, is as in the Bayesian simulation study.
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• The diagnosis probabilities are modelled using the logistic regression parameterisation.

• The term data scenario describes a specific scenario involving one true incidence
scenario (e.g. increasing) one incidence model (e.g. bsord1) and one dataset (e.g.
dataset number 25); 450 data scenarios have been considered.

• For each data scenario, the optimal smoothing parameter λ̂ is estimated by considering
a set of 10 candidate smoothing parameter values λ = {0,0.5,2,5,8,10,13,16,20,40}.
The optimal smoothing parameter is chosen by AIC (Equation 6.4.8) minimisation.

• The term simulation describes the combination of one true incidence scenario (e.g.
increasing), one incidence model (e.g. bsord1), one dataset (e.g. dataset number
25) and a plausible smoothing parameter (e.g. λ =2); 4500 simulations have been
undertaken.

• The numerical maximization algorithm (Section 6.4.3) requires initial values specifica-
tion for the infection and diagnosis parameters. The former are obtained by fitting a
Bayesian spline to the true incidence surface H⋆ with added noise; the initial values
are chosen to be samples from the posterior distribution of βββ . The initial values of
the diagnosis parameters are obtained by fitting the logistic regression model in Equa-
tion 3.6.4 to the true diagnosis probabilities, and subsequently adding some noise to
increase the variability of starting values.

Note that TPS splines require slightly different penalties in a frequentist and in a Bayesian
framework; recall that a small penalty is imposed on the unpenalised coefficients of TPS
splines to ensure proper priors (Section 3.3.9).

7.5 Simulation study assessment

The simulation study performance evaluation concepts introduced for age-independent back-
calculation (Section 4.5) are here extended to age specific settings and to be applied also in a
frequentist framework.

For a simulation (denoted by m), the incidence surface and the diagnosis probabilities
have an estimate. In a Bayesian context this corresponds to the mean of the posterior dis-
tribution of the quantities of interest. In a frequentist framework, the incidence surface
and the diagnosis probabilities estimates are obtained by first finding the parameters θ̂θθ

and δ̂δδ maximising the penalised likelihood (Equation 6.4.3) and then plugging these es-
timates in the definitions of γγγ (Equation 6.4.1) and δδδ k,i (Equation 7.3.4). The estimates
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of the incidence surface and diagnosis probabilities from state k are respectively denoted
as Ĥm = {ĥm

1,1, . . . , ĥ
m
1,A, . . . , ĥ

m
T,1, . . . ĥ

m
T,A} and D̂k,m = {d̂m

k1, . . . , d̂
m
kT}. Credible and confi-

dence intervals for the estimates of the incidence surface and the diagnosis probabilities
can be obtained both in a Bayesian and in a frequentist framework. For the mth simula-
tion, these are denoted Ĥα/2

m = {ĥm,α/2
1,1 , . . . , ĥm,α/2

T,A } and D̂m,α/2
k = {d̂m,α/2

k,1 , . . . , d̂m,α/2
k,T }.

Finally, H⋆
m = {h⋆1,1, . . . ,h

⋆
1,A, . . . ,h

⋆
T,1, . . .h⋆T,A} and D⋆

k,m = {d⋆
k1, . . . ,d

⋆
kT} denote the true

incidence surface and diagnosis probabilities from state k.

PMSE and MPMSE defined in Section 4.5, are useful summary statistics for performance
assessment. For the mth simulation, the infections PMSE is:

PMSE(Ĥm) =
1

TA

T

∑
i=1

A

∑
j=1

(
ĥm

i, j −h⋆i, j
)2

(7.5.1)

The mean-PMSE, which is the PMSE averaged across simulations, is obtained as:

MPMSE(Ĥ) =
1
M

M

∑
m=1

PMSE(Ĥm) (7.5.2)

α%-Coverage and mean α%-Coverage for the incidence surface are obtained as follows:

Covgα(Ĥm) =
1

TA

T

∑
i=1

A

∑
j=1

1
h⋆i, j∈

[
ĥm,α/2

i, j ,ĥm,1−α/2
i, j

] (7.5.3)

MCovgα(Ĥ) =
1
M

M

∑
m=1

Covgα(Ĥm) (7.5.4)

As diagnosis probabilities are modelled independently of age (Section 7.3), performance
assessment for diagnosis probabilities performance proceeds as in the age-independent
simulation study, using the formulae defined in Section 4.5 for PMSE(D̂k,m), MPMSE(D̂k),
Covgα(D̂k,m) and MCovgα(D̂k).

7.6 Bayesian simulation study results

This Section considers the Bayesian simulation study: convergence assessment is undertaken
in Section 7.6.1 and results are subsequently discussed in Section 7.6.2 and plotted in
Section 7.6.3.
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7.6.1 Convergence assessment

We start by assessing whether simulations have converged, following the same principles as
for the age-independent simulations (Section 4.6.1). Recall that a simulation is considered
not to have converged if R̂ > 1.05 for at least one parameter. Note that this is a stringent
criterion, as it is possible that when only a few of the parameters have R̂ > 1.05, the overall
mixing is still satisfactory.

Non-convergent simulations, stratified by true incidence scenario and incidence model, are
reported in Table 7.1. Convergence is achieved for all splines, with few exceptions. We further
inspected the trace plots of the parameters of splines that did not satisfy the set convergence
criterion; these still appear to mix satisfactorily. Nevertheless, to avoid any ambiguity in
interpretation, we discarded all simulations that did not achieve convergence.

GP on the other hand exhibit convergence issues: GP with Normal priors converge in
approximately 75% of the simulations and hardly any GP with t-priors converge. Consider,
for example, the trace plots of the hyperparameters {1/ρ1,1/ρ2,η} of a GP for datasets
number one and two, generated under the increasing true incidence scenario. In dataset
two convergence is achieved using Normal priors (Figure 7.5), but not t-priors (Figure 7.4),
while in dataset one, convergence is not reached irrespective of the prior chosen (Figures 7.6
and 7.7). It is well-known that estimating the parameters of a latent GP is non-trivial

% tp tp ts ptens ptens ptens ptens GP GP
knotsloc tp ts bsord1 bsord2 N-prior ρ t-prior 1/ρ

Increasing 0 0 2 0 0 0 0 26 92
Flat 0 0 4 0 0 0 0 14 94

Decreasing 0 0 2 2 0 0 0 22 84

Table 7.1 Percentage of simulations that have not converged by true incidence scenarios and
models.

% tp tp ts ptens ptens ptens ptens GP GP
knotsloc tp ts bsord1 bsord2 N-prior ρ t-prior 1/ρ

Increasing 4 0 0 0 0 0 0 0 0
Flat 8 4 0 0 0 0 0 0 0

Decreasing 0 6 2 0 0 0 0 0 0

Table 7.2 Percentage of simulations that have at least one divergent transitions by true
incidence scenarios and models, after removing simulations that have not converged.
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(Flaxman et al., 2015). Informative priors could be used to improve identifiability and thus
mixing. However, informative priors are challenging to specify when little, or no, prior
information on the shape of the incidence surface is available; in such cases understanding
the impact of the choice of prior on the results is crucial. From now onwards, the term
Gaussian Process or GP will only refer to GP with Normal priors, as t-priors hardly ever
achieve convergence and are therefore no longer considered.

Convergence assessment alone is not sufficient; divergent transitions must be analysed in
order to detect unwanted behaviour of the HMC algorithm. Table 7.2 shows the number
of simulations which have divergent transitions, after the exclusion of non-convergent
simulations. Only simulations with tp and tpknotsloc have at least one divergent transition.
As for age-independent simulations, divergent transitions are caused by the extra smoothing
parameter λ0 imposed on the null space of splines.

Scatter plots of posterior λ0 values against log-posterior values for tpknotsloc and tp splines
are depicted in Figures 7.8 and 7.9 respectively. Figures 7.8a and 7.9a correspond to datasets
without divergent transitions, where all posterior λ0 values are concentrated around zero.
In contrast, Figures 7.8b and 7.9b have a divergent transition (red dot). Even though most
λ0 posterior values are also concentrated around zero, λ0 occasionally wander off to high
values, where divergent transitions may occur; this might suggest that divergent transitions
occur when HMC chains are exploring the posterior distribution tails, however analysis
of trace-plots for λ0 (not displayed) demonstrate that chains do not "get stuck" in the
posterior distribution tails, hence divergent transitions may simply be due to numerical error.
Nonetheless, following a zero-tolerance policy for divergent transitions (Stan Development
Team, 2016b), all simulations with divergent transitions were discarded.

In theory, a number of actions could be taken to avoid divergent transitions: increasing the
HMC resolution, setting a tighter prior on λ0, or using the non-centred parameterisation.
However, in practice, the non-centred parameterisation leads to substantially more divergent
iterations, and the HMC algorithm is already considered with the highest possible resolution.
Finally a more informative prior than the current weakly informative half t-prior should force
λ0 away from zero; to achieve this, a prior pushing σ0 (i.e 1/

√
λ0) far from 0 must be chosen.

However, quantifying a priori the smoothness of a spline can be difficult.
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Fig. 7.4 Trace plots for 1/ρ1 (left), 1/ρ2 (center) and η (right) for GP using t-priors and
dataset number 1, increasing incidence.
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Fig. 7.5 Trace plots for 1/ρ1 (left), 1/ρ2 (center) and η (right) for GP using Normal priors
and dataset number 1, increasing incidence.
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Fig. 7.6 Trace plots for 1/ρ1 (left), 1/ρ2 (center) and η (right) for GP using t-priors and
dataset number 2, increasing incidence.
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Fig. 7.7 Trace plots for 1/ρ1 (left), 1/ρ2 (center) and η (right) for GP with Normal priors,
dataset number 2, increasing incidence.
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Fig. 7.8 Scatter plot of posterior λ0 values against log-posterior values for tpknotsloc splines
in datasets 6 (left) and 8 (right) in the increasing incidence scenario.
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Fig. 7.9 Scatter plot of posterior λ0 values against log-posterior values for tp splines for
datasets 5 (left) and 4 (right) in the increasing incidence scenario.

7.6.2 Comments on the results of the simulation study

The results of the simulation study under the three true incidence scenarios (increasing,
flat and decreasing) and the eight incidence models (tpknotsloc, tp, ts, ptenstp, ptensts,
ptensbsord1, ptensbsord2 GP) are displayed in Section 7.6.3. Specifically:

1. Figures 7.10, 7.13, 7.16, 7.19, 7.22, 7.25, 7.28 and 7.31 depict the posterior distribution
of the time profile of the incidence surface, for all datasets considered.

2. Figures 7.12, 7.15, 7.18, 7.21, 7.24, 7.27, 7.30 and 7.33 depict the posterior distribution
of the time profile of the incidence surface, by age-classes 1-10, 11-20, 21-30, 30-52
for all datasets considered.
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3. Figures 7.11, 7.14, 7.17, 7.20, 7.23, 7.26, 7.29, 7.32 plot the posterior distribution
of the diagnosis probabilities from undiagnosed state 1 (i.e. D̂1,m) for all datasets
considered.

4. Figures 7.34 to 7.37 depict PMSE(Ĥm) and PMSE(D̂k,m) distribution (over the
datasets) for the full time-scale considered and for the last three years only.

5. Figures 7.38 to 7.41 show the Covg0.95(Ĥm) and Covg0.95(D̂1,m) distribution (over
the datasets) for the full time-scale considered and for the last three years only.

All incidence models, apart from GP, appropriately reconstruct the time profile of the true
incidence for the three incidence scenarios. Taking a closer look, as for age-independent
simulations, the true time profiles of the incidence surface are accurately estimated in all but
the first, and last, three years of the epidemic. In the early epidemic stages, diagnosis data may
be explained by either initially undiagnosed infections or newly infected individuals being
diagnosed; incorrectly attributing diagnoses to either group, leads to bias in the incidence and
diagnosis probabilities estimates. The time-profiles estimated are poor, for some datasets, in
the early years with no consistent under or over estimation noted. As only incidence estimates
in most recent years are of interest for public health purposes, these subpar estimates in early
years are not a major concern.

On the other hand, the validity of incidence estimates in recent years is crucial. As for the
age-independent case, bias is introduced: in the flat and decreasing true incidence scenarios,
the time profiles of the true incidence surface is overestimated by most incidence models.
This is more pronounced for the decreasing true incidence scenario, where the negative trend
in the most recent years is hardly captured by any incidence model. On the positive side, the
credible intervals contain the true time profile of the incidence surface in almost 90% of the
datasets in the last 3 years (see Figure 7.40).

The overestimation of incidence in the latest years is induced by incorrectly attributing
recent diagnoses, in recent years, to increased incidence rather than increased diagnosis
probabilities. In fact, the diagnosis probabilities from state 1 (i.e. concerning recent infec-
tions) are underestimated in most recent years for all true incidence scenarios and incidence
models.

On a positive note, the age-specific time profile of the true incidences are adequately estimated
for all age-classes and incidence models, except for GPs. Note that age-specific time profile
estimates have the same issues as the respective population-level estimates: estimates are
inaccurate in earliest and latest years, and tend to be biased upwards. Overall, incidence
estimates are fairly accurate, even in the latest years, in the 1-10 and 11-20 age-classes, whilst
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estimates in the 21-30 and 30+ age-classes are more volatile and imprecise. This may be due
to fewer diagnosis occurring in the older age-groups, leading to less precise estimates.

GPs deserve a special mention as they are the only incidence model yielding unsatisfactory,
overly-smooth, incidence estimates, both at population and at age-specific level. Moreover,
incidence is under and over estimated in the youngest (1-10) and oldest (31-52) age-classes
respectively. Recall that the GP length scale parameters determine its smoothness; incorrect
specification of informative priors (Normal-priors) may lead to excessive smoothness, and
thus poor estimates. Other kernels (e.g. Matérn) may be more appropriate than the squared
exponential one, as the latter is known to produce overly smooth estimates.

We further compared the performance of different splines in order to establish whether there
is a most suitable model for incidence. Performance is assessed using the PMSE(Ĥm) and
Covg0.95(Ĥm) distributions, depicted in Figures 7.34 and 7.38 respectively. Four spline types,
tp, ts, ptensbsord1 and ptensbsord2, outperform the others; they have smaller PMSE(Ĥm)

values, and coverage (Covg0.95(Ĥm)) closer to the nominal 0.95 level. The first two splines
belong to the thin plate spline family, whereas the others are tensor product splines. Among
thin plate splines, tp and ts outperform tpknots, in agreement with Wood (2003). ts splines
have a similar coverage than tp, but are not associated with simulations with divergent
transitions (see Table 7.2), and allow shrinkage towards zero (see Section 6.2.6). Among
tensor product splines, ptensbsord1, ptensbsord2 (i.e. marginal cubic b-splines, with first and
second order penalty respectively) outperform ptenstp and ptensts (marginal cubic splines).
Furthermore ptensbsord1 is always superior to ptensbsord2 in terms of coverage.

Hence, the simulation results suggest that ts and ptensbsord1 are the two most appropriate
choices for estimating the incidence surface; their PMSE(Ĥm) values are comparable,
whereas Covg0.95(Ĥm) values are closer to the nominal level for ts. The incidence time
profiles estimated by ts and ptensbsord1 (Figures 7.16 and 7.25 respectively) are very similar,
apart from the latest years. Differences can be explained from a variance-bias perspective; ts
splines are less biased (i.e. more accurately reconstruct the true underlying trend, especially
for the true decreasing scenario) but more volatile (resulting in poor estimates for some
datasets). This contrasting behaviour is attributable to the prior having a considerable
impact on the incidence estimates in most recent years, where data are weakly informative.
ptensbsord1 tends to a priori flatten the incidence time profile (Section 3.3.7), whereas
ts splines favour surfaces with second derivatives equal to 0, resulting in a time profile
extrapolating linearly in most recent years. Linear extrapolation often captures better the true
incidence, but occasionally results in unrealistically high estimates.
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Nevertheless, ptensbsord1 are preferred over ts for their theoretical properties. ts are isotropic
(Section 6.2.6), which is only desirable if there are valid reasons to assume equal smoothing
in the two dimensions; this appears to be the case in this simulation study, as time and age
intervals are both considered yearly. However, it is easy to imagine an example where data are
collected on an uneven time and age scale. As the isotropy assumption is hardly testable, or
justifiable in practice, we recommend using tensor product splines, despite thin plate splines
slightly outperform tensor product splines in terms of MPMSE(Ĥ) in this study.

An alternative way of determining which incidence models are most suitable to estimate
incidence is by examining their fit to simulated data. However, in our case, this was
uninformative as all incidence models fit the simulated data (for the three true incidence
scenarios) equally well. Goodness of fit plots are available in Appendix G.2.2.

Appendix G.2.1 includes further details regarding the diagnosis probabilities; this Section
only considered diagnosis probabilities from state 1, as these characterise recent infections
and are poorly identified in most recent years. Diagnosis probabilities from states 2, 3 and
4 are instead typically accurately estimated, as they affect individuals with long standing
infections and are not affected by shifts in incidence or diagnosis probabilities from state 1 in
recent years.

To sum up, the proposed age-specific back-calculation model adequately estimates the true
incidence surface and diagnosis probabilities. GP are not recommended for modelling
bivariate incidence, whereas all bivariate splines, and in particular ts and ptensbsord1,
accurately reconstruct the true incidence; ptensbsord1 are recommended as they do not
assume isotropy. Finally estimates from the latest years must be interpreted with caution as,
identifiability problems often introduce bias.
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7.6.3 Plots of results from simulation study

Results for the tpknotsloc spline incidence model
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Fig. 7.10 Estimated time profile of the incidence surface: the red lines depict the three
true incidence scenarios (increasing - left, flat - center, decreasing - right). The black lines
represent the estimates (posterior means), for each dataset, of the incidence surface obtained
using a tpknotsloc spline to model incidence. Grey lines denote the respective 95% credible
intervals.
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Fig. 7.11 Estimated diagnosis probabilities from state 1: the red lines depict the true diagnois
probabilities which are the same in the three true incidence scenarios considered (increasing
- left, flat - center, decreasing - right). The black lines represent the estimates (posterior
means), for each dataset, of the diagnosis probabilities from state 1 obtained using a first order
random walk. Credible intervals are only depicted on the left figure (in grey) to demonstrate
they overlap with the estimates, rendering the plot hard to interpret.
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(a) Increasing, 1-10
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(b) Flat, 1-10
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(c) Decreasing, 1-10
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(d) Increasing, 11-20
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(e) Flat, 11-20
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(f) Decreasing, 11-20
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(g) Increasing, 21-30
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(h) Flat, 21-30
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(i) Decreasing, 21-30
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(j) Increasing, 31+
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(k) Flat, 31+
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(l) Decreasing, 31+

Fig. 7.12 Estimates (posterior means) of the time profile of the incidence surface, using a tpknotsloc
spline incidence model, stratified by age-class (1-10, 11-20, 21-30 and 31+ age-classes plotted in the
first, second, third and fourth column) under the three true incidence scenarios (increasing - left, flat
- centre, decreasing - right). Red lines represent the true time profile and gray lines the respective
credible intervals.
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Results for the tp spline incidence model
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Fig. 7.13 Estimated time profile of the incidence surface: the red lines depict the three
true incidence scenarios (increasing - left, flat - center, decreasing - right). The black lines
represent the estimates (posterior means), for each dataset, of the incidence surface obtained
using a tp spline to model incidence. Grey lines denote the respective 95% credible intervals.
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Fig. 7.14 Estimated diagnosis probabilities from state 1: the red lines depict the true diagnois
probabilities which are the same in the three true incidence scenarios considered (increasing
- left, flat - center, decreasing - right). The black lines represent the estimates (posterior
means), for each dataset, of the diagnosis probabilities from state 1 obtained using a first
order random walk. Credible intervals are not depicted.
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(a) Increasing, 1-10
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(b) Flat, 1-10
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(c) Decreasing, 1-10
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(d) Increasing, 11-20
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(e) Flat, 11-20
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(f) Decreasing, 11-20
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(g) Increasing, 21-30
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(h) Flat, 21-30
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(i) Decreasing, 21-30
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(j) Increasing, 31+
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(k) Flat, 31+
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(l) Decreasing, 31+

Fig. 7.15 Estimates (posterior means) of the time profile of the incidence surface, using a tp spline
incidence model, stratified by age-class (1-10, 11-20, 21-30 and 31+ age-classes plotted in the first,
second, third and fourth column) under the three true incidence scenarios (increasing - left, flat -
centre, decreasing - right). Red lines represent the true time profile and gray lines the respective
credible intervals.
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Results for the ts spline incidence model
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Fig. 7.16 Estimated time profile of the incidence surface: the red lines depict the three
true incidence scenarios (increasing - left, flat - center, decreasing - right). The black lines
represent the estimates (posterior means), for each dataset, of the incidence surface obtained
using a ts spline to model incidence. Grey lines denote the respective 95% credible intervals.
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Fig. 7.17 Estimated diagnosis probabilities from state 1: the red lines depict the true diagnois
probabilities which are the same in the three true incidence scenarios considered (increasing
- left, flat - center, decreasing - right). The black lines represent the estimates (posterior
means), for each dataset, of the diagnosis probabilities from state 1 obtained using a first
order random walk. Credible intervals are not depicted.
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(a) Increasing, 1-10
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(b) Flat, 1-10
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(c) Decreasing, 1-10
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(e) Flat, 11-20
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(h) Flat, 21-30
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(i) Decreasing, 21-30
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(j) Increasing, 31+
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(k) Flat, 31+
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(l) Decreasing, 31+

Fig. 7.18 Estimates (posterior means) of the time profile of the incidence surface, using a ts spline
incidence model, stratified by age-class (1-10, 11-20, 21-30 and 31+ age-classes plotted in the first,
second, third and fourth column) under the three true incidence scenarios (increasing - left, flat -
centre, decreasing - right). Red lines represent the true time profile and gray lines the respective
credible intervals.



7.6 Bayesian simulation study results 135

Results for the ptenstp spline incidence model

5 10 15 20

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

Year

E
x
p

e
c
te

d
 N

u
m

b
e

r 
o

f 
N

e
w

 I
n

fe
c
ti
o

n
s

5 10 15 20

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

Year

E
x
p

e
c
te

d
 N

u
m

b
e

r 
o

f 
N

e
w

 I
n

fe
c
ti
o

n
s

5 10 15 20

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

Year

E
x
p

e
c
te

d
 N

u
m

b
e

r 
o

f 
N

e
w

 I
n

fe
c
ti
o

n
s

Fig. 7.19 Estimated time profile of the incidence surface: the red lines depict the three
true incidence scenarios (increasing - left, flat - center, decreasing - right). The black lines
represent the estimates (posterior means), for each dataset, of the incidence surface obtained
using a ptenstp spline to model incidence. Grey lines denote the respective 95% credible
intervals.
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Fig. 7.20 Estimated diagnosis probabilities from state 1: the red lines depict the true diagnois
probabilities which are the same in the three true incidence scenarios considered (increasing
- left, flat - center, decreasing - right). The black lines represent the estimates (posterior
means), for each dataset, of the diagnosis probabilities from state 1 obtained using a first
order random walk. Credible intervals are not depicted.
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(a) Increasing, 1-10
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(b) Flat, 1-10
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(c) Decreasing, 1-10
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(d) Increasing, 11-20
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(e) Flat, 11-20

5 10 15 20

0
5

0
0

1
0

0
0

1
5

0
0

Year

E
xp

e
ct

e
d

 N
u

m
b

e
r 

o
f 

N
e
w

 I
n

fe
ct

io
n

s

(f) Decreasing, 11-20
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(g) Increasing, 21-30
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(h) Flat, 21-30
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(i) Decreasing, 21-30
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(j) Increasing, 31+
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(k) Flat, 31+
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(l) Decreasing, 31+

Fig. 7.21 Estimates (posterior means) of the time profile of the incidence surface, using a ptenstp
spline incidence model, stratified by age-class (1-10, 11-20, 21-30 and 31+ age-classes plotted in the
first, second, third and fourth column) under the three true incidence scenarios (increasing - left, flat
- centre, decreasing - right). Red lines represent the true time profile and gray lines the respective
credible intervals.
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Fig. 7.22 Estimated time profile of the incidence surface: the red lines depict the three
true incidence scenarios (increasing - left, flat - center, decreasing - right). The black lines
represent the estimates (posterior means), for each dataset, of the incidence surface obtained
using a ptensts spline to model incidence. Grey lines denote the respective 95% credible
intervals.
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Fig. 7.23 Estimated diagnosis probabilities from state 1: the red lines depict the true diagnois
probabilities which are the same in the three true incidence scenarios considered (increasing
- left, flat - center, decreasing - right). The black lines represent the estimates (posterior
means), for each dataset, of the diagnosis probabilities from state 1 obtained using a first
order random walk. Credible intervals are not depicted.
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(a) Increasing, 1-10
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(b) Flat, 1-10
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(c) Decreasing, 1-10

5 10 15 20

0
5

0
0

1
0

0
0

1
5

0
0

Year

E
xp

e
ct

e
d

 N
u

m
b

e
r 

o
f 

N
e
w

 I
n

fe
ct

io
n

s

(d) Increasing, 11-20
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(e) Flat, 11-20
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(f) Decreasing, 11-20
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(g) Increasing, 21-30
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(h) Flat, 21-30

5 10 15 20

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

Year

E
xp

e
ct

e
d

 N
u

m
b

e
r 

o
f 

N
e
w

 I
n

fe
ct

io
n

s

(i) Decreasing, 21-30
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(j) Increasing, 31+
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(k) Flat, 31+
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(l) Decreasing, 31+

Fig. 7.24 Estimates (posterior means) of the time profile of the incidence surface, using a ptensts
spline incidence model, stratified by age-class (1-10, 11-20, 21-30 and 31+ age-classes plotted in the
first, second, third and fourth column) under the three true incidence scenarios (increasing - left, flat
- centre, decreasing - right). Red lines represent the true time profile and gray lines the respective
credible intervals.
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Fig. 7.25 Estimated time profile of the incidence surface: the red lines depict the three
true incidence scenarios (increasing - left, flat - center, decreasing - right). The black lines
represent the estimates (posterior means), for each dataset, of the incidence surface obtained
using a ptensbsord1 spline to model incidence. Grey lines denote the respective 95% credible
intervals.
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Fig. 7.26 Estimated diagnosis probabilities from state 1: the red lines depict the true diagnois
probabilities which are the same in the three true incidence scenarios considered (increasing
- left, flat - center, decreasing - right). The black lines represent the estimates (posterior
means), for each dataset, of the diagnosis probabilities from state 1 obtained using a first
order random walk. Credible intervals are not depicted.
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(a) Increasing, 1-10

5 10 15 20
0

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

Year

E
xp

e
ct

e
d

 N
u

m
b

e
r 

o
f 

N
e
w

 I
n

fe
ct

io
n

s

(b) Flat, 1-10
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(c) Decreasing, 1-10
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(d) Increasing, 11-20
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(e) Flat, 11-20

5 10 15 20

0
5

0
0

1
0

0
0

1
5

0
0

Year

E
xp

e
ct

e
d

 N
u

m
b

e
r 

o
f 

N
e
w

 I
n

fe
ct

io
n

s

(f) Decreasing, 11-20
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(g) Increasing, 21-30
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(h) Flat, 21-30

5 10 15 20

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

Year

E
xp

e
ct

e
d

 N
u

m
b

e
r 

o
f 

N
e
w

 I
n

fe
ct

io
n

s

(i) Decreasing, 21-30
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(k) Flat, 31+
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(l) Decreasing, 31+

Fig. 7.27 Estimates (posterior means) of the time profile of the incidence surface, using a ptensbsord1
spline incidence model, stratified by age-class (1-10, 11-20, 21-30 and 31+ age-classes plotted in the
first, second, third and fourth column) under the three true incidence scenarios (increasing - left, flat
- centre, decreasing - right). Red lines represent the true time profile and gray lines the respective
credible intervals.
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Fig. 7.28 Estimated time profile of the incidence surface: the red lines depict the three
true incidence scenarios (increasing - left, flat - center, decreasing - right). The black lines
represent the estimates (posterior means), for each dataset, of the incidence surface obtained
using a ptensbsord2 spline to model incidence. Grey lines denote the respective 95% credible
intervals.
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Fig. 7.29 Estimated diagnosis probabilities from state 1: the red lines depict the true diagnois
probabilities which are the same in the three true incidence scenarios considered (increasing
- left, flat - center, decreasing - right). The black lines represent the estimates (posterior
means), for each dataset, of the diagnosis probabilities from state 1 obtained using a first
order random walk. Credible intervals are not depicted.



142 Age dependent back-calculation simulations

5 10 15 20

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

Year

E
xp

e
ct

e
d

 N
u

m
b

e
r 

o
f 

N
e
w

 I
n

fe
ct

io
n

s

(a) Increasing, 1-10

5 10 15 20
0

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

Year

E
xp

e
ct

e
d

 N
u

m
b

e
r 

o
f 

N
e
w

 I
n

fe
ct

io
n

s
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(c) Decreasing, 1-10
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(e) Flat, 11-20
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(f) Decreasing, 11-20
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(g) Increasing, 21-30
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(h) Flat, 21-30
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(i) Decreasing, 21-30
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(j) Increasing, 31+
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(k) Flat, 31+
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(l) Decreasing, 31+

Fig. 7.30 Estimates (posterior means) of the time profile of the incidence surface, using a ptensbsord2
spline incidence model, stratified by age-class (1-10, 11-20, 21-30 and 31+ age-classes plotted in the
first, second, third and fourth column) under the three true incidence scenarios (increasing - left, flat
- centre, decreasing - right). Red lines represent the true time profile and gray lines the respective
credible intervals.
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Fig. 7.31 Estimated time profile of the incidence surface: the red lines depict the three
true incidence scenarios (increasing - left, flat - center, decreasing - right). The black lines
represent the estimates (posterior means), for each dataset, of the incidence surface obtained
using a GP to model incidence. Grey lines denote the respective 95% credible intervals.
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Fig. 7.32 Estimated diagnosis probabilities from state 1: the red lines depict the true diagnois
probabilities which are the same in the three true incidence scenarios considered (increasing
- left, flat - center, decreasing - right). The black lines represent the estimates (posterior
means), for each dataset, of the diagnosis probabilities from state 1 obtained using a first
order random walk. Credible intervals are not depicted.
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5 10 15 20
0

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

Year

E
xp

e
ct

e
d

 N
u

m
b

e
r 

o
f 

N
e
w

 I
n

fe
ct

io
n

s
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(h) Flat, 21-30
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(i) Decreasing, 21-30
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(j) Increasing, 31+
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(k) Flat, 31+
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(l) Decreasing, 31+

Fig. 7.33 Estimates (posterior means) of the time profile of the incidence surface, using a GP
incidence model, stratified by age-class (1-10, 11-20, 21-30 and 31+ age-classes plotted in the first,
second, third and fourth column) under the three true incidence scenarios (increasing - left, flat -
centre, decreasing - right). Red lines represent the true time profile and gray lines the respective
credible intervals.
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Fig. 7.34 Distribution of PMSE(Ĥm) for all incidence models, under three true incidence
scenarios: increasing (left), flat (center), decreasing (right).
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Fig. 7.35 Distribution of PMSE(D̂1,m) for all incidence models, under three different true
incidence scenarios: increasing (left), flat (center), decreasing (right).
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Fig. 7.36 Distribution of PMSE(Ĥm) for all incidence models in the last 3 years only, under
three true incidence scenarios: increasing (left), flat (center), decreasing (right).
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Fig. 7.37 Distribution of PMSE(D̂1,m) for all incidence models in the last three years only,
under three true incidence scenarios: increasing (left), flat (center), decreasing (right).
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Simulations Performance - Coverage
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Fig. 7.38 Distribution of Covg0.95(Ĥm) for all incidence models, under three true incidence
scenarios: increasing (left), flat (center), decreasing (right).
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Fig. 7.39 Distribution of Covg0.95(D̂1,m) for all incidence models, under three true incidence
scenarios: increasing (left), flat (center), decreasing (right).
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Fig. 7.40 Distribution of Covg0.95(Ĥm) for all incidence models in the last three years, under
three true incidence scenarios: increasing (left), flat (center), decreasing (right).
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Fig. 7.41 Distribution of Covg0.95(D̂1,m) for all incidence models for the last three years,
under three true incidence scenarios: increasing (left), flat (center), decreasing (right).
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7.7 Maximum penalised likelihood simulation study

This Section presents the results of an age-dependent back-calculation simulation study based
on maximum penalised likelihood (see Section 6.4.3). Convergence assessment is discussed
in Section 7.7.1, then Section 7.7.2 summarizes the study findings and plots of the results
obtained are available in Section 7.7.3.

7.7.1 Assessing simulation convergence

Convergence within a frequentist framework involves verifying that the numerical penalised
likelihood maximization routine (implemented by the R function optimx) successfully reaches
a maximum. Note that we assume that the maximum found is indeed the global maximum
of the likelihood. This cannot be formally tested, however we did check that parameters
successfully maximised their profile likelihood. Occasionally, the numerical routine did fail
to reach a maximum and displayed a related error message.

A further reason the estimation procedure may fail concerns the observed information matrix
ÎII. This is numerically evaluated (via the NumDeriv R package) and hence is not guaranteed
to be positive definite; ÎII +SSS is then non-invertible and hence the confidence intervals and the
AIC score are unobtainable.

Tables 7.3 and 7.4 show the number of simulations that encountered convergence issues,
stratified by incidence model and by the value of the smoothing parameter λ respectively.
Numerical errors occur less often for ts splines (in approximately 3% of simulations involving
ts splines) than for tp and tpknotsloc splines (5% and 15% of simulations respectively). We
further note that numerical errors are more likely when λ is large, which may lead to
unrealistically smooth curve and therefore convergence issues.

% tp tpknotsloc ts
No maximum found 0 2 0

(I+S) not positive definite 5 13 3
No error 95 85 97

Table 7.3 Percentage of simulations that encountered convergence issues and that successfully
converged, by incidence model.
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λ (%) 0 0.5 2 5 8 10 13 16 20 40
No maximum found 0 0 1 0 0 0 0 0 1 2

(I+S) not positive definite 5 5 5 6 6 7 6 8 9 7
No error 85 85 85 84 84 83 84 82 80 81

Table 7.4 Percentage of simulations that encountered convergence issues and that successfully
converged, by the value of fixed smoothing parameter λ .

7.7.2 Comments on the results of the simulation study

The evaluation of the simulations’ performance is pursued as described in Section 7.5. In
Section 7.7.3 results from the tpknotsloc, tp and ts incidence models are plotted. Specifi-
cally:

• Figures 7.42, 7.45 and 7.48 depict the time profile of the estimated incidence surface.

• Figures 7.43, 7.46 and 7.49 illustrate the estimated diagnosis probabilities from state 1.

• Figures 7.44, 7.47 and 7.50 show the time profile for the 1-10, 11-20, 21-30, 31+
age-classes.

The tpknotsloc splines (Figures 7.42 and 7.44) struggle to estimate the true incidence surface,
overall and by age-class, in contrast to the Bayesian setup (Section 7.6.3). The estimated
time profile of the true incidence surface is over-smoothed for several datasets. However
this is not the case for both tp and ts, that produce fairly accurate estimates. A head-to-head
comparison reveals that the incidence estimates obtained with ts splines are more accurate,
and thus preferable. This finding is further supported by the Bayesian simulation study in
which ts splines outperformed all other thin plate splines types.

Overall, time profile estimates of the true incidence surface obtained using ts splines within
the Bayesian (Figure 7.16) and penalised likelihood framework (Figure 7.48) are comparable;
the true incidence is accurately reconstructed but in the earliest and latest years of the
epidemic. More in-depth examination reveals that maximum penalised likelihood time
profiles estimates are more biased in the recent years, but less variable, compared to the
respective Bayesian estimates. The true time profiles of the incidence surface are consistently
overestimated in most recent years within a frequentist framework; in a Bayesian framework,
respective estimates do not suffer from the same issue but are on occasions extremely poor in
most recent years.
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Figure 7.51 depicts Bayesian and frequentist quantities of interest obtained using ts splines,
for an example dataset (number 25) generated under the three true incidence scenarios, in
order to illustrate the differences between the two frameworks.

A plausible explanation for the contrasting behaviour of estimates from different frameworks,
may concern the λ̂ estimates. These have a different interpretation in the two frameworks; the
optimal λ̂ is considered to be in a Bayesian framework, the mean of the posterior distribution
of λ , whereas in a frequentist framework this is considered to be the λ minimizing the AIC
(over a grid of candidate λ values). Figure 7.52 suggests that the larger number of higher
λ̂ values are estimated in the likelihood framework for the ts incidence model. Greater λ

values enforce a higher level of smoothing, hence stronger bias may be induced to reduce the
variability of the estimates. This can be noted when comparing the estimated time profiles
of the incidence surfaces (with the ts incidence model) within a Bayesian and frequentist
framework (Figures 7.16 and 7.48).

A further explanation for the differences in incidence estimates between frameworks con-
cerns the diagnosis probabilities. These are more severely underestimated in a likelihood
framework, resulting in a greater bias in the incidence estimates. This is because, in a
Bayesian framework, diagnosis probabilities are assumed to be constant within a one-year
rather than in a two-years interval as in the frequentist framework. The increased flexibility
of the Bayesian set-up guarantees a better fit, but also results to some of the estimates being
very poor in the most recent years.

Finally, note that confidence intervals, for the time profile of the incidence surface in the
most recent years, are narrower than the respective Bayesian credible intervals. This is
probably due to the approximate asymptotic posterior distribution (Equation 6.4.7) from
which confidence intervals are derived being an insufficient approximation (Section 6.4.3).
Further evidence on the poor performance of the credible intervals is provided by the lower
coverage Covg0.95(Ĥ).
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7.7.3 Plots of results from simulation study

Results for the tpknotsloc spline incidence model
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Fig. 7.42 Estimated time profile of the incidence surface: the red lines depict the three true
incidence scenarios (increasing - left, flat - center, decreasing - right). The estimates of the
time profile of the incidence surface for each dataset are plotted in black and their respective
95% credible intervals in gray.
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Fig. 7.43 Estimated diagnosis probabilities from state 1: the red lines depict the three true
diagnosis curves (the same for all true incidence scenarios). The black lines represent the
posterior means for each dataset; credible intervals are only depicted (in grey) on the left
figure as these overlap with posterior means, rendering the plot hard to interpret.
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(h) Flat, 21-30
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(j) Increasing, 31+
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(k) Flat, 31+
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Fig. 7.44 Estimated time profile of the incidence surface, stratified by age-class (1-10, 11-20, 21-30
and 31+ classes depicted in the first, second, third and fourth column) under the three incidence
scenarios (increasing - left, flat - centre, decreasing - right). True incidence is plotted in red and
credible intervals in grey.
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Results for the tp spline incidence model
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Fig. 7.45 Estimated time profile of the incidence surface: the red lines depict the three true
incidence scenarios (increasing - left, flat - center, decreasing - right). The estimates of the
time profile of the incidence surface for each dataset are plotted in black and their respective
95% credible intervals in gray.
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Fig. 7.46 Estimated diagnosis probabilities from state 1: the red lines depict the three true
diagnosis curves (that are the same for all true incidence scenarios).The black lines represent
the posterior means for each dataset; credible intervals are not depicted.
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(h) Flat, 21-30
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(j) Increasing, 31+
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(k) Flat, 31+
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Fig. 7.47 Estimated time profile of the incidence surface, stratified by age-class (1-10, 11-20, 21-30
and 31+ classes depicted in the first, second, third and fourth column) under the three incidence
scenarios (increasing - left, flat - centre, decreasing - right). True incidence is plotted in red and
credible intervals in grey.
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Results for the ts spline incidence model
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Fig. 7.48 Estimated time profile of the incidence surface: the red lines depict the three true
incidence scenarios (increasing - left, flat - center, decreasing - right). The estimates of the
time profile of the incidence surface for each dataset are plotted in black and their respective
95% credible intervals in gray.
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Fig. 7.49 Estimated diagnosis probabilities from state 1: the red lines depict the three true
diagnosis curves (that are the same for all true incidence scenarios).The black lines represent
the posterior means for each dataset; credible intervals are not depicted.
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(h) Flat, 21-30

5 10 15 20

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

Years

#
In

fs

(i) Decreasing, 21-30

5 10 15 20

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

Years

#
In

fs

(j) Increasing, 31+
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(k) Flat, 31+
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Fig. 7.50 Estimated time profile of the incidence surface, stratified by age-class (1-10, 11-20, 21-30
and 31+ classes depicted in the first, second, third and fourth column) under the three incidence
scenarios (increasing - left, flat - centre, decreasing - right). True incidence is plotted in red and
credible intervals in grey.
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Comparison of a Bayesian and MPL simulation results using a ts spline
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Fig. 7.51 Estimated Time Profile of Incidence Surface (top row) and diagnosis probablities from state
1 (bottom row) for dataset 25 under the three true incidence scenarios (increasing - left, flat - center,
decreasing - right). The true time profile of the incidence surface is given in red and the estimated time
profile within a penalised likelihood and Bayesian framework is given in blue and green respectively.

Fig. 7.52 Distribution of the estimated smoothing parameter λ̂ originating from the penalised
likelihood (blue) and Bayesian (green) frameworks.
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7.8 Summary

This chapter comprised two main components, a Bayesian and a frequentist back-calculation
simulation study. These have been designed to answer the following three questions:

1. Is age-specific back-calculation feasible? What are its strengths and limitations?

2. Can back-calculation’s parameters be estimated within both a frequentist and a Bayesian
framework?

3. Are some semi-parametric models more appropriate than others to model the latent
age-and-time specific incidence surface?

The answer to the first question is yes. In all simulations considered the "true" incidence
surface and diagnosis probabilities were satisfactorily reconstructed, except in the most
recent years where identifiability issues occur (Section 4.7). Various priors for the smoothing
parameters and the variance of the logistic random walks for the diagnosis probabilities have
been investigated (results not shown) in order to asses the sensitivity of the estimates on the
prior choice (as considered in Section 4.6.4 for age-independent back-calculation). Incidence
and diagnosis probabilities estimates are robust to prior specifications.

As far as question two is concerned, both inferential frameworks allow for accurate estimates
of the incidence surface and the diagnosis probabilities to be obtained. However Bayesian
inference is preferable for a number of reasons, discussed in Section 6.4.4. Furthermore
the implementation of the model is superior in terms of computational speed in a Bayesian
framework (8 hours versus 15 hours for the frequentist estimate).

Let us now focus on question three. Our Bayesian simulation study considered a number
of thin plate and tensor product splines as well as bivariate, quadratic exponential kernel,
Gaussian processes for modelling the incidence surface. The latter did not perform well,
while ts and ptensbsord1 splines were found to be the most appropriate for this purpose. As
discussed in Section 6.2.6, thin plate splines make the assumption of equal smoothing in the
time and age dimensions, which is difficult to justify. Consequently we believe that using
tensor product splines (ptensbsord1) is more appropriate; this further supports adopting a
Bayesian perspective, as tensor product splines can not be implemented within a reasonable
timeframe in a frequentist framework.





Chapter 8

Application to real data

8.1 Introduction

In this Chapter the back-calculation models developed in Chapters 2 and 5 are applied
to surveillance data provided by PHE, on the HIV-MSM epidemic in England and Wales.
These data are described in Section 8.2 and the applications of the age-independent and age-
dependent back-calculation models are considered in Sections 8.3 and 8.4 respectively.

8.2 Description of the dataset

In 2015, approximately 101,000 people were living with HIV in England and Wales, with
about 13,000 (≈ 13%) of these being unaware of their infection status (Kirwan et al., 2016).
Over 95% of infections are estimated to have occurred via a sexual route, about half of these
through homosexual contact. Amongst the heterosexual population, black African men and
women are at particular risk of infection; notably, even though they represent only 3.5% of
the total UK population, they constitute approximately 30% of the heterosexual population
living with HIV.

Monitoring the epidemic is carried out through the collection of relevant surveillance data.
The establishment of regular reporting of new AIDS and HIV diagnosis from clinicians
and microbiologists dates back to early 1980s, leading to one of the most comprehensive
electronic registries in developed countries. New diagnoses are reported quarterly to PHE,
together with a range of information, such as ethnicity, country of birth and the age at
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diagnosis. HIV diagnoses are classified as early (or HIV) or late (AIDS) diagnoses, according
to whether clinical AIDS symptoms occur within 3 months of the first positive test.

From 1991, also information on the CD4-cell counts around diagnosis (i.e. taken within 3
months of the first positive test and before the uptake of treatment) is available. The national
CD4 surveillance dataset (Chadborn et al., 2006), which collects data on all CD4-counts
performed by laboratories in England and Wales, is linked to the registry of diagnosis of PHE
via unique patient identifiers (Brown et al., 2012). This linkage is not perfect and not all HIV
diagnoses have CD4-cell information. However, the fact that the collection of CD4-count
data is carried out independently of any other information related to HIV diagnosis justifies
the assumption (made in Chapters 2 and 5) that the distribution of the available CD4-count is
representative of the distribution of all CD4-counts.

The risk exposure group is unknown for a small percentage of diagnoses; these cases are
further investigated by PHE to reconstruct missing exposure information. Missing exposure
diagnoses are more common in recent years, as there is a time lag between chasing, obtaining
and subsequently linking exposure information. To avoid under estimating the extent of
the epidemic, PHE imputes as MSM individuals with unknown risk exposure, based on
their empirical distribution. Age-dependent back-calculation further requires specification
of age at diagnosis for individuals with missing exposure; we carried out individual-level
imputation, using individual-level information available, including age at diagnosis, on the
diagnoses with unknown exposure. Note that the distribution of the age at diagnosis for
individuals with missing exposure is not similar to the corresponding distribution of age at
diagnosis for MSM (Figure 8.1d). Imputing the CD4-count for unknown exposure diagnoses
is not necessary, as the CD4-count is assumed to be available for a subsample of the HIV
diagnosis only (Section 2.3.4).

A total of 45,972 MSM diagnoses (HIV and AIDS) have been recorded since 1995, six
diagnoses did not have age at diagnosis and have been excluded from the analysis. Trends in
diagnosis data are shown in Figure 8.1a, aggregated by year. Figure 8.1b displays trends in
diagnoses by CD4-category over time, stratified by categories [500,∞), [350,500), [200,350)
and [0,200). Figure 8.1c plots the diagnoses by age-classes 15-24, 25-34, 35-44 and 45+
(without considering the age of individuals with unknown exposure at diagnosis). From
Figure 8.1 the total diagnoses have been steadily increasing since 2000, until 2015. Linkage
with CD4 information (Figure 8.1a) increased from 60% in 1995 to 90% in 2015, in which
there is a substantial increase in diagnoses with CD4 ≥ 500, whereas the contribution of
AIDS to total diagnoses dropped from 30% in 1995 to 5% in 2015. Age at diagnosis ranges
between 15 and 88 years. From 2010 onwards, HIV diagnoses for individuals aged between
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15 and 34 years steadily increased, with this increase being most marked in the 25-34 age-
class. On the other hand there was a decrease in diagnoses at older ages. Consequently the
median age at diagnosis dropped from 36 years in 2010 to 33 years in 2015.

This preliminary analysis of the data poses a series of questions: is this observed increase in
diagnoses due to an increase in infections or due to increased testing (or both)? In which
age-groups is HIV incidence particularly pronounced? Is the decrease in median age at
diagnosis due to increasing infections among young people or a consequence of the reduced
time to diagnosis?

We will employ back-calculation methods, allowing the estimation of incidence and diagnosis
probabilities, in order to answer the above questions. Note that age-independent back-
calculation can only address the first question, an extension to a novel age-dependent back-
calculation is required to tackle the second and third problems.

8.3 Age independent back-calculation case-study

We start with considering a case study involving the application of the age-independent
back-calculation model, discussed in Chapter 2, to the MSM-HIV epidemic in England and
Wales.

8.3.1 The model

The epidemic is modelled from 1995 to 2015, employing a quarterly (T =84) back-calculation
model with K = 4 undiagnosed states, as described in Figure 4.1 (see Section 4.2). The
expected number of undiagnosed infections in 1995 and the progression probabilities are
chosen to be equal to πππ⋆ and qqq⋆ as defined in Section 4.2. The values of qqq⋆ are so that the
average time spent in each of the undiagnosed states, ordered from CD4 ≥ 500 to CD4 < 200,
is 2.56, 2.17, 2.15, 1.68 years respectively, and that newly infected individuals require, on
average, 8.56 years to develop AIDS.

The only difference with respect to the back-calculation model of Section 4.2 lies in the
incorporation of under-reporting. This is considered to only affect AIDS diagnoses, to
reflect a change in reporting conventions in 2000, resulting in some AIDS diagnoses being
considered less relevant for surveillance purposes and not being subsequently reported.
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Under-reporting is assumed to be constant over time, as defined in Section 2.4.1:

υ
H
i = 1, i = {1, . . . ,84}

υ
A
i = 1, i = {1, . . . ,20} (8.3.1)

υ
A
i = υ , i = {21, . . . ,84}

where υ is the under-reporting parameter to be estimated. Based on expert opinion, approxi-
mately two-thirds of AIDS diagnoses have been reported from year 2000 onwards, so we
choose an informative Beta(236,118) prior for υ to reflect this.

Chapter 4 investigated non-parametric methods to model the latent log-incidence curve.
Results, summarized in Section 4.7, suggested to use first order random walks (rw), univariate
thin plate regression splines (ts) and cubic B-splines with first order difference penalty splines
(bsord1) or Gaussian Processes (GP). Four distinct quarterly-varying first order random walks
on the logistic scale δk,i ∼N(δk,i−1,σ

2
D,k), i= {1, . . . ,84}, k = {1, . . . ,4} were used to model

diagnosis probabilities (Section 4.3).

Inference is only carried in a Bayesian framework and implementation is based on Stan,
with four parallel chains of 2000 iterations, 1000 of which are burn-in, resulting in total of
4000 posterior draws. Results are obtained within five minutes. Again, convergence was
assessed using trace plots and R-hat statistics (as shown in Section 4.6.1) and was achieved
for all models considered.

Results are first presented in Section 8.3.2. Section 8.3.3 explores the differences between
running back-calculation from the beginning or from an intermediate point of the epidemic.
Finally, Section 8.3.4 reports a sensitivity analysis on the specification of πππ⋆.

8.3.2 Results

Throughout this Chapter, in every Figure, unless otherwise stated, solid lines represent the
means of the posterior distributions of interest, and dashed lines denote the corresponding
95% credible intervals (CrI).

Figure 8.2 depicts the results obtained using a first order random walk, ts and bsord1 splines
and a Gaussian Process as incidence models respectively. The incidence curve estimates are
very similar for all incidence models (Figure 8.2a): the expected number of yearly infections
declines from approximately 2250 in 1995 to 1750 in 1999, and subsequently smoothly
increases until 2004, to approximately 2750. After 2004, the number of expected yearly
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Fig. 8.2 Age-independent back-calculation results; rw = first order random walk, bs = first degree
P-splines, ts = thin plate spline with shrinkage and GP = Gaussian process. State 1: CD4 ≥ 500,
State 2: 350 < CD4 ≤ 200, State 3: 350 < CD4 ≤ 200, State 4: CD4 < 200.
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(e) CD4, State 3
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Fig. 8.3 Age-independent back-calculation goodness of fit; rw = first order random walk, bs = first
degree P-splines, ts = thin plate spline with shrinkage and GP = Gaussian process. State 1: CD4
≥ 500, State 2: 350 < CD4 ≤ 200, State 3: 350 < CD4 ≤ 200, State 4: CD4 < 200.
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infections has been slowly decreasing until 2008 and has since been increasing, reaching
a plateau of approximately 3000 expected infections per year. In the most recent years,
diagnosis data are not informative about recent infections (Section 1.4), resulting in widening
credible intervals.

The incidence estimates for the splines (ts and bsord1) and the first order random walks
incidence models are essentially identical, with splines resulting in narrower credible intervals
(see Section 4.6.2). In contrast to rw, ts, and bsord1, GP suggests that incidence is decreasing.
As discussed in Section 4.6.2, this is due to the prior mean (zero) reversion property of
Gaussian processes.

For all undiagnosed states, diagnosis probabilities increased over the last 15 years, with a
further increase being observed in the last five years (excluding the CD4 < 200 state). It is
interesting to note that diagnosis probabilities from the CD4 > 500 state have substantially
increased in the last five years.

Figure 8.2b shows trends in the expected number of individuals living with undiagnosed HIV;
this steadily increases from 6080 (95% CrI 5870, 6350) in 1995 to 11750 (95% CrI 11200,
12200) in 2005, due to incidence having increased. Subsequently the expected number of
HIV undiagnosed infections drops, reaching a minimum of approximately 10350 (95% CrI
9920, 10800) in 2009 and subsequently stabilizes at approximately 11,000 individuals as a
result of increasing diagnosis pressure counteracting the effect of increasing incidence.

To assess goodness of fit, the posterior-predictive distribution for the data is plotted (see
Figure 8.3) for the replicated data that could have been observed (Gelman et al., 2014, Chapter
6). All incidence models considered accurately fit the data. The credible intervals for the HIV
posterior-predictive distribution are narrower in the early years of the epidemic as uncertainty
around the number of undiagnosed infections in 1995 (πππ) is ignored. Approximately 85%
of the AIDS and HIV diagnosis data are covered by the 95% credible interval; this lack
of coverage is particularly severe in the earliest years. In fact, this figure is revised to
approximately 92% when considering data from 2000 onwards. All CD4-count data are
covered by the posterior-predictive credible intervals at the nominal 95% level, suggesting
they are particularly influential. The noisy fit of the CD4-count data in Figures 8.3c to 8.3f
suggests that overfitting may be present, which typically leads to poor predictive performance.
It is recommended to avoid using back-calculation for predictive purposes, as the incidence
estimates obtained, in the most recent years, are highly uncertain and result in highly volatile
predictions. However, it is of interest understanding whether overfitting leads to substantial
changes in incidence estimates, when small changes in the data are introduced. This is further
investigated in Section 8.4.2.
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8.3.3 Plausibility of back-calculation on a reduced time period

We here examine the sensitivity of results to running back-calculation from the beginning of
the epidemic (1978-model) compared to running it from a midpoint (1995-model). In this
sensitivity analysis, the log-incidence is modelled by a first order random walk.

Results

Figure 8.4 shows the results from the 1978-model and the 1995-model. Table 8.1 compares the
pre-specified expected number of undiagnosed infections in the 1995-model to the expected
number of undiagnosed infections in 1995 estimated with the 1978-model. Estimates of
the incidence curve from the two models substantially differ only in the first two years, as
the expected number of undiagnosed infections in 1995 is lower for the 1995-model (see
Table 8.1). Thus, the incidence estimates from the 1995-model are inflated in the late 90’s,
to ensure that diagnosis data are accurately captured. Goodness of fit plots (Appendix H.1)
confirm that both models fit equally well throughout the epidemic.

Credible intervals are somewhat narrower for the 1995-model. The estimated incidence curve
from the 1978-model is quite volatile in the 80’s but smooths out from the 90’s onwards. Since
the variance of the log-expected incidence first order random walk is assumed to be constant
over time, the greater variability in the 80’s is reflected in wider credible intervals.

Estimated diagnosis probabilities from the two models are also very similar, with the ex-
ception of the first four years for states 1 to 3. Given that the fixed number of expected
undiagnosed infections in the 1995-model is lower (with the exception of state 4) than the
estimate number of undiagnosed people from the 1978-model (Table 8.1), higher diagnosis
probabilities are necessary to accurately fit the data.

Model State 1 State 2 State 3 State 4
1978-model 2176.89 1539.08 1340.96 838.36
1995-model 1710.67 1191.20 1191.20 870.00

Table 8.1 Comparison between the expected number of undiagnosed infections in the be-
ginning of 1995, as estimated through the 1978-model and the fixed number used in the
1995-model.
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Fig. 8.4 Age-independent back-calculation estimates; rw_1978 model run with a first order random
walk as incidence model from the beginning of the epidemic. rw_1995 model run with a first order
random walk as incidence model from an intermediate point (1995) of the epidemic.
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8.3.4 Sensitivity analysis to the specification of the expected number of
initially undiagnosed infections

A sensitivity analysis to assess the impact of the expected number of initially undiagnosed
infections on the estimates of incidence and diagnosis probabilities has been conducted.

We consider πππ⋆ used so far as the "baseline" value. Two scenarios are examined; in the first
scenario, the baseline expected number of undiagnosed infections in each state, and thus the
overall expected number of undiagnosed infections π⋆

tot , is multiplied by a constant κ . The
second scenario considers that the total number of expected undiagnosed infections is the
same as for the baseline case (π⋆

tot = 4963.07), but the distribution of individuals across the
undiagnosed states is modified; Tables 8.2 and 8.3 provide further details.

Results

Figure 8.5 displays the posterior mean and 95% credible intervals of the posterior distribution
of incidence and the expected number of undiagnosed infections for all cases considered

Model κ π⋆
1 π⋆

2 π⋆
3 π⋆

4 π⋆
tot

Baseline 1 1710.67 1191.20 1191.20 870.00 4963.07
Case A 0.05 85.53 59.56 59.56 43.50 248.15
Case B 0.5 855.33 595.60 595.60 435.00 2481.53
Case C 0.75 496.30 992.61 1488.92 2481.53 5459.36
Case D 1.25 2138.33 1489.00 1489.00 1087.50 6203.83
Case E 1.75 2566.00 1786.80 1786.80 1305.00 7444.60
Case F 1.95 3335.80 2322.84 2322.84 1696.50 9677.98

Table 8.2 Expected number of initially undiagnosed specification, scenario 1

Model κ1 κ2 κ3 κ4 π⋆
1 π⋆

2 π⋆
3 π⋆

4 π⋆
tot

Baseline 0.34 0.24 0.24 0.18 1710.67 1191.20 1191.20 870.00 4963.07
Case A 0.15 0.25 0.25 0.35 744.48 1240.76 1240.76 1737.07 4963.07
Case B 0.5 0.2 0.2 0.1 2481.53 992.62 992.62 496.30 4963.07
Case C 0.1 0.2 0.2 0.5 496.30 992.62 992.62 2481.53 4963.07
Case D 0.94 0.02 0.02 0.02 4665.29 99.26 99.26 99.26 4963.07
Case E 0.02 0.94 0.02 0.02 99.26 4665.29 99.26 99.26 4963.07
Case F 0.02 0.02 0.94 0.02 99.26 99.26 4665.29 99.26 4963.07
Case G 0.02 0.02 0.02 0.94 99.26 99.26 99.26 4665.29 4963.07

Table 8.3 Expected number of initially undiagnosed specification, scenario 2



170 Application to real data

under both scenarios; Figure 8.6 depicts the corresponding estimates for the diagnosis
probabilities.

Looking at the incidence curve estimates, from the first scenario, it appears that from 2000
onwards the estimates coincide for all values of κ specified. Case A (κ = 0.05), which
amounts to considering expected initial number of undiagnosed infections close to zero, is
the only exception: the estimated incidence curve is extremely volatile in this case. In the
earliest years considered, different κ values lead to different estimated expected number
of infections. Lower κ values assume fewer initially undiagnosed infections, thus a higher
incidence estimate is required to appropriately reconstruct the observed diagnosis data.

Analogously, estimates of the diagnosis probabilities (Figures 8.6a to 8.6d) only behave
similarly from 2002 onwards, with the exception of Case A. Figures 8.6a to 8.6d only feature
diagnosis probabilities estimates from undiagnosed states 1 and 4; state 2 and 3 estimates
behave similarly (Appendix H.2).

The number of expected undiagnosed infections over time (Figure 8.5c) is also affected by
assumptions on πππ⋆, as this is a function of incidence and diagnosis probabilities. Estimates
agree from 2002 onwards, for all cases, except for Case A.

Note that the choice of κ crucially affects the size of credible intervals for both incidence,
diagnosis probabilities, and number of expected undiagnosed infections. The infection and
diagnosis processes are modelled by first order random walks with constant variance, thus
highly variable estimates in the early years lead to wider credible intervals throughout the
epidemic.

Goodness-of-fit plots (see Figure 8.6e) are useful for assessing whether κ , and hence πππ⋆, is
appropriately specified. Unrealistic κ choices (e.g. Case A and Case F) lead to poor data fits
in the earliest considered. Instead suitable choices of κ (Cases C to E) result in a satisfactory
fit to the data even in the early years considered.

In the second Scenario, the estimates’ sensitivity to the pre-specified distribution of πππ⋆ is
considered. Cases A, B and C only slightly modify the baseline distribution of initially
undiagnosed infections into the four undiagnosed states. Cases D, E, F and G are more
extreme; the expected number of initially undiagnosed infections is almost fully allocated
to a single state. Estimates obtained for incidence, diagnosis probabilities and undiagnosed
infections behave as for Scenario 1: the posterior means differ in the first years, whereas
from (approximately) 2002 onwards estimates coincide and are robust to πππ⋆ specifications.
Credible intervals are similarly affected by the variability of estimates in the early years.
Case D is an exception as incidence, diagnosis probabilities and expected undiagnosed
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(c) Expected undiagnosed infections,
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Fig. 8.5 Age-independent back-calculation estimates; Scenarios and cases are described in
Tables 8.2 and 8.3.
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(a) Diagnosis probabilities, state 1, scenario 1
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(b) Diagnosis probabilities, state 1, scenario 2
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(c) Diagnosis probabilities, state 4, scenario 1
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(d) Diagnosis probabilities, state 4, scenario 2
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Fig. 8.6 Age-independent back-calculation estimates and goodness-of-fit. Scenarios and
cases are described in Tables 8.2 and 8.3.
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infections estimates differ from the other cases also after 2002. The expected number of
initially undiagnosed infections is fully concentrated in State 1 and somewhat unexpectedly
the estimated incidence is extremely high in the first year. A large number of diagnoses
with CD4-count less than 500 (i.e. from undiagnosed states 2, 3, 4) occur in the early
years; however, by assumption, only a few initially undiagnosed infections are in such states.
Consequently a large number of infections is estimated in the first year so that a sufficiently
high number of individuals can be subsequently diagnosed in states 2, 3 and 4. In the late
90’s, estimated incidence drops to almost zero, to avoid over-estimation of the diagnosis data.
As a result, incidence and diagnosis probabilities estimates are extremely volatile throughout
the epidemic.

Goodness-of-fit plots for CD4-count data (Appendix H.2) provide evidence on the appropri-
ateness of πππ⋆ specification. Cases D to F poorly fit CD4-count data in the early years for at
least one state, whereas the baseline and cases A to C correctly describe these data.

In summary, with the exception of the first seven years considered, back-calculation starting
at an epidemic mid-point yields estimates of incidence, diagnosis probabilities, and expected
undiagnosed infections are robust to πππ⋆ specifications. If the estimation of these quantities in
the first seven years is key, then back-calculation should be either run from the beginning
of the epidemic, or from an earlier starting point. In any case estimates from the first seven
years must be interpreted with caution, and a buffer bigger than seven years can be practically
used for safety reasons. πππ⋆ misspecification inflates the credible intervals size. Finally,
goodness-of-fit plots can be used to informally assess the appropriateness of assumptions on
the expected number of initially undiagnosed infections.

8.4 Age-dependent back-calculation

8.4.1 A preliminary model

This Section discusses the application of the age-dependent back-calculation model (Chap-
ter 5) to the surveillance dataset for the MSM-HIV epidemic in England and Wales (Sec-
tion 8.2), further stratified by age at diagnosis. The underlying multi-state model was
discussed in Section 7.2 (Figure 7.1). To begin with, age-dependent back-calculation is
considered on a yearly time and age scale, constructed by aggregating quarterly intervals (Sec-
tion 5.4.3), to keep the computation burden of the model manageable as in Chapter 7.
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The year 1995 is assumed to be the starting point of back-calculation so that the expected
number of initially undiagnosed infections πππ⋆ is chosen to be the same as the one used in
the age-dependent simulation study (Section 7.2, detail in Appendix G.1). A total of T = 21
and A = 52 yearly time and age intervals are considered, individuals are assumed to only be
infected between 15 ( j = 1) and 66 ( j = 52) years of age. In Section 8.3.4 we have seen that
the specification of πππ⋆ only affects incidence and diagnosis probabilities estimates in the
early years after the chosen starting point; further investigations (not reported) revealed that
similar results hold for age-dependent back-calculation.

Progression probabilities, depending on the age at infection (Q in Section 5.3) are as
set in Section 7.2 (details in Appendix G.1). Table 8.4 shows the mean time spent in
each undiagnosed state, stratified by age at infection. Under-reporting is modelled as in
Section 8.3.

Simulations (Chapter 7) have demonstrated that both thin plate splines (ts splines) and tensor
product splines, with marginal B-splines with a first order difference penalty, (ptensbsord1)
are appropriate to model the latent log-incidence surface. The features of the splines used (i.e.
the number of parameters, the priors used) are described in Section 7.3. Diagnosis probabili-
ties are modelled independently of age using logistic random walks (as in Section 7.3).

Models are implemented in Stan. We run four parallel chains of 2,000 iterations, of which
the first 1,000 were discarded as burn-in. The resulting posterior sample of 4,000 iterations
was obtained in approximately 8 hours for ptensbsord1 and 30 hours for ts splines. Con-
vergence was achieved for all models and was again assessed using trace plots and R-hat
statistics.

Age at inf State 1 State 2 State 3 State 4 Time to
a0 (CD4 ≥ 500) (500 <CD4 ≤ 350) (350 <CD4 ≤ 200) (CD4 > 200) AIDS
15 2.77 2.13 2.23 1.76 8.90
25 2.70 2.14 2.19 1.73 8.76
35 2.62 2.13 2.13 1.68 8.54
45 2.53 2.08 2.03 1.59 8.23
55 2.5 2.08 1.92 1.47 7.97
> 65 2.30 1.86 1.68 1.31 7.16

Table 8.4 Mean time (in years) spent in each undiagnosed state, stratified by age at infection.
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Results

Figures 8.7 and 8.8 show results from the age-dependent back-calculation model, using both
a ptensbsord1 spline and a ts spline. The estimated time-and-age dependent incidence surface
is depicted in Figures 8.7a and 8.7b, with Figures 8.7c, 8.8a and 8.8b showing the time and
age profiles (for selected years) of the surface obtained. The ts spline estimates a higher
incidence than the ptensbsord1 splines in the last two years, where diagnosis data are weakly
informative about infection levels. This is likely due to the properties of ptensbsord1 splines,
which a priori favour a flat time profile for the incidence surface, whereas ts splines favour
a linear trend (see Section 7.6.2). The age-profile of infections has slightly shifted towards
younger ages since 2000. This is further highlighted in Figures 8.8c and 8.8d depicting the
incidence time profile by age-class. Estimated infections within the 25-34 age-class appear
to be sharply increasing since 2010, whereas incidence is approximately constant in the most
recent years in all other age-classes.

Figure 8.7d plots the estimated diagnosis probabilities from the CD4 > 500 undiagnosed
state. Estimates obtained using ts and ptensbsord1 splines are very similar and diagnosis
probabilities have steadily increased since 2000.

It is well-known that back-calculation produces highly uncertain estimates in the most recent
years and these estimates are sensitive to the amount of information available in the model.
We investigate the robustness of this model to the sequential inclusion of further years of
data.

Figures 8.8e and 8.8f displays the estimates of the time profile of the incidence surface and
diagnosis probabilities for these sequential analyses. Denote ĥi,e the estimate of incidence in
the ith year, obtained with data up to the end of the eth year.

The estimated number of expected infections decrease by 500 (out of approximately 3500)
between ĥ12,12 and ĥ12,13, and between ĥ13,13 and ĥ13,14. Using data up to the end of 2012 or
2013, the age-dependent model estimates approximately 4000 infections per year in 2012
and 2013. However estimates of incidence in 2012 and 2013 decrease to approximately 2500
using data up to the end of 2015, when data become informative about infection levels in 2012
and 2013. Hence the increasing trend estimated in the most recent years by the age-dependent
model, using data up to the end of 2012 and 2013, is potentially artificial.



176 Application to real data

1995
1998

2001
2004

2007
2010

2013

15
20

25
30

35
40

45
50

55
60

65

50

100

150

200

Year

Age

Number 
 Expected 

 New 
 Infections

(a) Incidence Surface, ptensbsord1

1995
1998

2001
2004

2007
2010

2013

15
20

25
30

35
40

45
50

55
60

65

50

100

150

Year

Age

Number 
 Expected 

 New 
 Infections

(b) Incidence Surface, ts

1995 2000 2005 2010 2015

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

Year

E
x
p

e
c
te

d
 n

e
w

 i
n

fe
c
ti
o

n
s

Model

ts
ptensbsord1

(c) Incidence Time Profile

1995 2000 2005 2010 2015

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

Year

P
ro

b
a

b
ili

ty

Model

ts
ptensbsord1

(d) Diagnosis probabilities, State 1

Fig. 8.7 Results from age-dependent back-calculation model; ts denotes a thin plate spline
and ptensbsord1 denotes tensor product splines.



8.4 Age-dependent back-calculation 177

20 30 40 50 60

0.
00

0.
01

0.
02

0.
03

0.
04

Age

%
 E

xp
ec

te
d 

ne
w

 in
fe

ct
io

ns

Year

2000
2005
2010
2015

(a) Incidence Age Profile, ptensbsord1

20 30 40 50 60

0.
00

0.
01

0.
02

0.
03

0.
04

Age

%
 E

xp
ec

te
d 

ne
w

 in
fe

ct
io

ns

Year

2000
2005
2010
2015

(b) Incidence Age Profile, ts

1995 2000 2005 2010 2015

0
50

0
10

00
15

00
20

00
25

00

Year

E
xp

ec
te

d 
ne

w
 in

fe
ct

io
ns

Age−Class

15−24
25−34
35−44
45+

(c) Incidence by age-class, ptensbsord1
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(e) Model robustness, ptensbsord1
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Fig. 8.8 Results from age-dependent back-calculation model; ts denotes a thin plate spline
and ptensbsord1 denotes tensor product splines.
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8.4.2 Investigating the robustness of the age-dependent back-calculation

It is key to further investigate the lack of robustness of the model in the most recent year.
Allowing for enhanced flexibility may allow the model to better adapt to recent changes
in the data, but may also result in overfitting. This can be achieved by considering a finer
time scale and/or relaxing the assumption that diagnosis probabilities are independent of
age.

So far an age-dependent yearly back-calculation model has been considered; this is based on
yearly aggregated diagnosis data and its dynamics are constructed by aggregating quarterly
intervals. It is assumed that the diagnosis probabilities and the expected number of infection
remains constant over the quarters of a year (Section 5.4.3). Quarterly models make a fuller
use of surveillance data, by considering quarterly data and allowing incidence and diagnosis
probabilities to vary quarterly.

Thus far diagnosis probabilities, for both age-independent and age-dependent back-calculation,
have been modelled using time dependent first order logistic random walk for each undi-
agnosed state - i.e. δk,i ∼ N(δk,i−1,σ

2
D,k), k = {1, . . . ,4}, i = {1, . . . ,T} (see Sections 3.6.2

and 6.4). This assumes independence of the diagnosis process on the current age-interval
(a j−1,a j], j = {1, . . . ,A}. This strong assumption can be relaxed, by allowing the di-
agnosis probabilities to depend on current age. Independent random walks are consid-
ered for each state and age-class, i.e. δk,i, j ∼ N(δk,i−1, j,σ

2
D,k) where δk,1, j ∼ N(α j,σ0) or

δk,1, j ∼ N(α j,k,σ0). Here α j and α j,k are age and age-state specific intercepts respectively,
which must be estimated, whereas the variance σ0 is fixed (see Section 6.4). All intercept
parameters are given a N(0,1) prior. Diagnosis probabilities are assumed to be constant
within four age intervals: (a0,a10] (i.e. age 15-24), (a10,a20] (i.e. age 25-34), (a20,a30] (i.e.
age 35-44), and (a30,a52] (i.e. age 45+).

Thus six models can be considered:

1. Yearly time scale (T = 21) and yearly age scale (A = 52), age-independent diagnosis
probabilities (Yr-AiDx). This has been discussed in the previous section.

2. Yearly time scale (T = 21) and yearly age scale (A = 52), age-dependent diagnosis
probabilities with δk,1, j ∼ N(α j,σ0) intercept (Yr-AdDx1).

3. Yearly time scale (T = 21) and yearly age scale (A = 52), age-dependent diagnosis
with δk,1, j ∼ N(α j,k,σ0) intercept (Yr-AdDx2).
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4. Quarterly time scale (T = 84) and yearly age scale (A= 52), age-independent diagnosis
probabilities (Qt-AiDx).

5. Quarterly time scale (T = 84) and yearly age scale (A = 52), age-dependent diagnosis
probabilities with δk,1, j ∼ N(α j,σ0) intercept (Qt-AdDx1).

6. Quarterly time scale (T = 84) and yearly age scale (A = 52), age-dependent diagnosis
with δk,1, j ∼ N(α j,k,σ0) intercept (Qt-AdDx2).

The abbreviations given in brackets will be subsequently used to refer to these models.

All models assume the same expected number of initially undiagnosed infections πππ and pro-
gression probabilities Q, as defined in Section 8.4. However there are two main differences:
the time scale employed and the parametrization chosen for the diagnosis probabilities.

Incidence is only modelled using a ptensbsord1 spline, as the isotropic smoothing assumption,
underlying the ts spline (see Section 7.6.2), is not appropriate when different time and age
scales are considered. Note that the ptensbsord1 spline is defined by 80 parameters for both
quarterly and yearly models. Intuitively quarterly models require enhanced flexibility and
thus a larger number of parameters as they allow the incidence surface to vary quarterly
rather than yearly. However splines, produce similar results for any sufficiently large number
of parameters (see Figure 3.4b in Section 3.3.2). In fact, we did considered larger number of
parameters without, however, noting any change to the results.

Model implementation was undertaken in Stan. We run four parallel chains with 1000 and
2000 iterations, of which 500 and 1000 burn-in for quarterly and yearly models respectively.
The posterior sample was obtained in approximately 70 and 8 hours for quarterly and yearly
models with age-independent diagnosis probabilities respectively (and in 80 and 12 hours
when considering age-dependent diagnosis probabilities). Note that quarterly age-dependent
back-calculation models are highly computationally expensive and this may limit their
applicability. Convergence was again assessed using trace plots and R-hat statistics and was
achieved for all models.

Results

Figure 8.9 displays the sensitivity of the estimated time profile of the incidence surface to
the sequential addition of further years of data. ĥ12,12 ≈ 4200 for the yearly models Yr-AiDx
and Yr-AdDx1. After the inclusion of data to the end of 2015, the 2012 incidence estimate
(ĥ12,15) is revised to ≈ 3250. From 2012, estimates in the most recent year considered appear
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(a) Yr-AiDx
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(b) Qt-AiDx
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(c) Yr-AdDx1
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(d) Qt-AdDx1
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(e) Yr-AdDx2
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Fig. 8.9 Sensitivity of the estimated time profile of incidence to the sequential addition of
years of data, by model considered.
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to be consistently revised to a lower number when a further year of data is added. On the
other hand, revised estimates ĥ12,13, ĥ12,14 and ĥ12,15 lie within the wide credible intervals of
ĥ12,12. Note that the Yr-AdDx2 model produces incidence estimates that are less sensitive
to the addition of further years of data. For instance, ĥ12,12 is ≈ 3750 and this is similarly
revised to ≈ 3250 when using data up to the end of 2015.

The robustness of the model is further investigated using quarterly age-dependent back-
calculation models. Note that the incidence estimates obtained from the yearly and quarterly
model, that use the same data, are similar in the earliest years considered. Nonetheless the
quarterly scale mitigates the potentially artificial increase in incidence in most recent years.
For instance, as for the age-independent models, ĥ12,15 ≈ 3250; however ĥ12,12 ≈ 3700
for Qt-AiDx and Qt-AdDx1 models (versus ĥ12,12 ≈ 4200 for the respective yearly models
Yr-AiDx and Yr-AdDx1).

Figure 8.9 demonstrates that the Qt-AdDx2 model is the most robust among the models
considered. Estimates of incidence, both at population and at age-specific level (Figure H.10,
in Appendix H.4) in the last year are only slightly revised when further years of data are
added, suggesting that the estimated trends in incidence are not artificial.

Goodness of fit plots (see Appendix H.4) can be further used for model selection. HIV data
are fit equally well by all models, however the Yr-AdDx2 and Qt-AdDx2 models improve the
fit to the AIDS and CD4-count data, especially in the 15-24 and 45+ age-classes. The 15-24
age-class is the only age-class with an increasing number of CD4-count diagnoses in states
2 and 3, between 2005 and 2010. The enhanced flexibility of the Yr-AdDx2 and Qt-AdDx2
models, using a state-and-age dependent intercept for modelling diagnosis probabilities,
allows to capture this feature of the data. For all age-classes, the data posterior-predictive of
CD4-count data include all data-points, but credible intervals are wide. Despite overfitting
may be present, the Qt-AdDx2 successfully achieves robust incidence estimates.

Hence this investigation shows that increased flexibility, achieved by employing a quarterly
time scale and age-dependent diagnosis probabilities (Qt-AdDx2), overcomes the lack of
robustness and improves goodness of fit of the originally discussed age-dependent back-
calculation model (Section 8.4.1). Results from the Qt-AdDx2 are presented in the following
Section.
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8.4.3 Results from quarterly age-dependent back-calculation with age-
dependent diagnosis probabilities (Qt-AdDx2)

Figures 8.10 and 8.11 show results from the Qt-AdDx2 model along with results from the age-
independent model, discussed in Section 8.3. Comparing the models is not straightforward
as they use different data and model the infection and diagnosis processes in different ways.
Nevertheless, it is important to informally verify that the age-dependent and age-independent
back-calculation yield similar estimates.

Figure 8.10a plots the expected number of infections over time. After reaching a minimum
of ≈ 1500 (95% CrI 1350, 1650) yearly expected infections in 1998, incidence increases to
≈ 2700 (95% CrI 2550, 2850) expected infections in 2003. Incidence subsequently smoothly
decreases to ≈ 2400 (95% CrI 2250, 2540) expected infections in 2007. From 2007 onwards
expected infections steadily increase, even though incidence appears to reach a plateau in
the three latest years. In 2015, 3335 (95% CrI 2480, 4440) new expected infections are
estimated. It is reassuring to note that incidence estimates are similar to those obtained using
age-independent back-calculation.

Age specific incidence is plotted in Figure 8.10b. Incidence is mostly concentrated within
the 25-34 age-class, where it steadily increases from 845 expected infections (95% CrI 775,
915), in 2007, to 1495 (95% CrI 1070, 2020) expected infections in 2015. Incidence in the
15-24 age-class, increases from 540 (95% CrI 500, 590) expected infections in 2007 to 760
(95% CrI 430, 915) expected infections in 2013; despite the decreasing trend in the two last
years, credible intervals remain very wide so that the possibility of decreasing incidence can
not be precluded. Incidence slowly increases between 2007 and 2015, shifting from 670
(95% CrI 615, 740) to 780 (95% CrI 545, 1100) expected infections for 35-44 year olds and
from 340 (95% CrI 300, 375) to 400 (95% CrI 265, 555) expected infections for 45+ year
olds. Over the last fifteen years, the age at infection shifted to younger ages: in 2000, 17%,
42%, 30%, 11% of individuals were respectively newly infected in age-classes 15-24, 25-34,
35-44 and 45+, compared to 19%, 45%, 24%, 12% of individuals in 2015.

Estimated diagnosis probabilities for Qt-AdDx2 have been gradually increasing since 2000
for all CD4 states (Figures 8.10c to 8.10f), with a further sharp increase in state 1 in the last
three years. This finding is consistent with the results of the age-independent model and the
observed steady increase in HIV diagnoses with a CD4 > 500 since 2010 (Figure 8.1b). The
diagnosis probabilities in the 25-34 age-class are higher compared to those for the 35-44
and 45+ age-groups in all undiagnosed states. However diagnosis probabilities for the 15-24
age-class behave unexpectedly: they are the lowest of all age-classes in state 1, whilst they
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Fig. 8.10 Estimates for the Qt-AdDx2 model of the time profile of incidence (a), the time profile
stratified by age-class (b), and of diagnosis probabilities stratified by state (c to f). State 1: CD4
≥ 500, State 2: 350 < CD4 ≤ 200, State 3: 350 < CD4 ≤ 200, State 4: CD4 < 200.
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(a) Expected undiagnosed infections
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(b) Expected undiagnosed infections, by age
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(c) Expected undiagnosed infections, by state

Fig. 8.11 Estimates obtained for the AdDx2 model. State 1: CD4 ≥ 500, State 2: 350 <
CD4 ≤ 200, State 3: 350 < CD4 ≤ 200, State 4: CD4 < 200.
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are the highest of all age-class in states 2 to 4. This finding suggests that recently infected
individuals aged 15-24 have a small probability of getting diagnosed, that rapidly increases
as time from infection increases.

This unusual behaviour could be due to misspecification of progression probabilities. Recall
that infected individuals are subject to two competing processes: progression and diagnosis
pressure (Section 5.3). It is plausible that the model specification does not allow for aged
15-24 to progress rapidly enough from the first to the second undiagnosed state; hence
low diagnosis probabilities are estimated. Conversely, undiagnosed 15-24 year-olds are
potentially assumed by the model to progress towards lower CD4-undiagnosed states too
rapidly, which in turn requires higher diagnosis probabilities. Another plausible explanation
concerns the size of the 15 to 24 age-class; there is substantial heterogeneity in sexual
behaviour of individuals aged 15 to 24. Teenagers (18 years of age or less) are substantially
less sexually active than individuals in their twenties, and as such these two groups are
associated with different risk behaviours and thus diagnosis probabilities.

Diagnosis probabilities are assumed to be constant within the 15-24, 25-34, 35-44 and
45+ age-classes. It would be more appropriate to allow diagnoses to smoothly vary with
age, for instance by forming smaller age-classes and imposing some smoothing between
neighbouring age-groups. Different trends over time could further be allowed for diagnosis
probabilities from different age-groups. These models have not been further pursued as they
require a large number of parameters, rendering computations extremely intensive.

The posterior mean of the expected number of undiagnosed infections has been approximately
flat between 2010 and 2015 (see Figure 8.11). This suggests that increasing diagnosis pressure
counteracts the effect of increasing infections, preventing an increase in the number of
undiagnosed infections. Figure 8.11c stratifies undiagnosed infections by latent undiagnosed
state. Undiagnosed prevalence mostly concerns recently infected individuals (state 1);
within the last 15 years the expected proportion of long-standing undiagnosed infections
has decreased, as the percentage of expected undiagnosed infections in CD4-states 1 to 4
shifted from 52%, 28%, 16% and 5% in 2000 to 56%, 27%, 13% and 4% in 2015. The
expected number of undiagnosed infections has substantially decreased since 2005 in the
35-44 age-class (Figure 8.11c). However, the expected number of undiagnosed infections in
the 25-34 age-class has steadily increased; thus the increase in diagnosis probabilities has not
been sufficient to counteract the increase in incidence. The expected number of undiagnosed
infections has been constant in the last ten years for the 15-24 and 45+ age-classes. In
conclusion, the age of undiagnosed infections has decreased, probably as a consequence of
increasing infections amongst younger people.
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8.5 Summary

In this Chapter, we have applied age-independent (Section 8.3) and age-dependent (Sec-
tion 8.4) back-calculation models to estimate HIV incidence and diagnosis probabilities for
MSM in England and Wales using routinely collected surveillance diagnoses data.

In Chapters 2 and 5 we extended back-calculation to only consider a subset of the whole
epidemic period, after specifying an expected number of undiagnosed infections πππ⋆ at
an intermediate starting point considered. Thus we carried a sensitivity analysis on the
specification of πππ⋆, in an age independent context (Sections 8.3.3 and 8.3.4). The results
obtained when back-calculation is run from the beginning of the epidemic or from an
intermediate point typically match (except for extreme cases) after a number of years from
the intermediate starting point considered. In our application, seven years are sufficient.
Similar results (despite not reported) have been obtained in an age-dependent context.

We then considered age-dependent back-calculation, starting from the yearly model with
age-independent diagnosis probabilities employed for the simulations in Chapter 7. However,
when applied to real data, this model shows a lack of robustness to the sequential addition
of further years of data; this is likely due to unidentifiability in the most recent years. This
drawback was circumvented by considering a more flexible model (Qt-AdDx2) based on a
quarterly time scale and allowing diagnosis probabilities to depend on age.

Despite it is well known that incidence estimates obtained with back-calculation are highly
sensitive to the addition of data, no formal methods to assess model robustness have been
considered in the back-calculation literature. Subsequently adding further years of data is a
step in this direction.

It would be interesting to formally investigate the differences between the quarterly and the
yearly, and between the age-dependent and the age-independent back-calculation models
(Section 8.4.2) within a simulation study. However long running times for quarterly models
(≈ 80 hours) prevented us from doing so. Despite this is a critical issue when the model
has to be fitted a large number of times (e.g. when building and testing the model), this
is not crucial for public health purposes. In fact HIV is not a rapidly evolving epidemic
and surveillance data are typically updated quarterly, thus back-calculation must only be
occasionally run.



Chapter 9

Conclusions and further work

Over 35 years have elapsed since the beginning of the HIV pandemic, yet the global fight to
control the pandemic is far from over. Despite the encouraging reduction in the number of
infections globally, from approximately 3.2 million in 2000, to 2.1 million in 2015, and the
18-fold increase in the HAART uptake from 1 million in 2000 to 18.2 million in 2015, HIV
still poses a great challenge for public health (UNAIDS, 2016).

The core target of the Joint United Nations Programme on HIV/AIDS (UNAIDS) is to
eradicate the AIDS pandemic by 2030; in absence of a cure, the only way this can be
achieved is by eliminating HIV transmission. Therefore, to achieve further improvements,
it is crucial that the populations at highest risk of infection are identified, interventions
are targeted to these populations, and their efficacy is evaluated. A number of statistical
models have been developed in the last three decades to tackle these issues; however existing
approaches have several limitations and must be continuously re-evaluated and extended,
both to better characterise the HIV epidemic, and to allow for the use of newly available,
more informative data sources.

9.1 Thesis contributions

This thesis focuses on extending back-calculation methods, in order to address limitations of
currently applied formulations. Back-calculation plays a vital role in monitoring the HIV
epidemic, as it can be used to reconstruct historical trends in HIV incidence based on routinely
collected registries of confirmed HIV and AIDS diagnoses (Chapter 1). In particular the
method can accommodate different national surveillance data, that are increasingly becoming
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available. The CD4-staged back-calculation methods by Sweeting et al. (2005) and Birrell
et al. (2012) improve upon the original formulations of back-calculation (Section 1.4), by
incorporating CD4-count data, taken around HIV diagnosis; these act as a marker of the
time-since-infection. Together with knowledge of the natural history of HIV infection these
contribute to the estimation of HIV incidence at a population-level, whilst also permitting
estimating trends in diagnosis probabilities.

Nevertheless, what is crucial for public health purposes, is the estimation of incidence for
specific age-groups; research on age-dependent back-calculation is scarce and the few models
available suffer, in practice, from important implementation issues (Section 1.5). In this
thesis we identified and addressed this methodological gap by developing the first, to our
knowledge, Bayesian CD4-based multi-state back-calculation model, allowing the joint
estimation of age and time specific HIV incidence, as well as age and time specific diagnosis
probabilities. We further propose novel extensions that can handle surveillance data only
available on a coarse scale, or from an intermediate point of the epidemic; these enhance the
method’s applicability by further allowing for its use in countries with less rich surveillance
data (Chapter 5).

Estimates of incidence in most recent years are subject to a lack of identifiability due to
diagnosis data being only weakly informative, and smoothing methods are essential to
improve their identifiability. However, existing age-specific back-calculation models have
modelled the incidence surface using strong multiplicative assumptions, non-smoothed and
smoothed step functions. This thesis proposes smoothing methods (tensor product splines
and Gaussian processes) that, unlike previous approaches, allow for differential smoothing in
the time and age-dimension (Chapter 6) and continuous modelling of the incidence surface,
yielding age-specific estimates on a fine-level of detail (52 age-classes). Furthermore we
put an emphasis on comparing these non-parametric bivariate smoothing methods within
an age-dependent back-calculation framework. The appropriateness of these methods was
established via extensive simulation studies (Chapter 7).

Despite age-dependent back-calculation being the methodology focus of this thesis, novel
extensions of age-independent back-calculation have also been proposed. The current state-
of-the-art model by Birrell et al. (2012) is extended so that it can be used even when coarse
or incomplete (or both) surveillance data are available (Chapter 2). Several modelling
options for the incidence curve are further proposed (Chapter 3); of these only Gaussian
processes have not been previously considered in the back-calculation literature. However
these methods have only been studied in isolation in the past, and there we undertook a
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comprehensive simulation study in Chapter 4 to understand whether some methods are more
appropriate than others.

Finally, a fundamental objective of this work was to ensure the computational feasibil-
ity of the proposed methods, an issue that has previously hindered the development of
back-calculation methods. Hence considerable effort has been devoted to implement these
computationally intensive models using Stan (Stan Development Team, 2016b); this is a
widely applicable and flexible probabilistic programming language and avoids the need of
writing bespoke MCMC algorithms. The run time for the age-independent model plummeted
from eight hours (Birrell et al., 2012) to merely ten minutes. The implementation of the
age-dependent back-calculation model is more challenging; for instance, it requires four days
to run if the combination of a quarterly time and a yearly age scale is considered. Never-
theless, it is important to highlight that, despite time-consuming, implementation via Stan
has rendered CD4-based age-dependent back-calculation feasible, which was not possible
previously.

9.2 Main thesis findings

This thesis thoroughly investigated the properties of CD4-based multi-state back-calculation,
both in age-independent and an age-dependent framework. The implementation of multiple
non-parametric smoothing methods in order to model HIV incidence has been been examined
in two extensive Bayesian simulation studies and a maximum penalised likelihood one
(in an age-dependent context). The main findings are briefly recounted in the following
Sections.

9.2.1 Age independent back-calculation methods

Past trends in incidence and diagnosis probabilities are accurately reconstructed, with the
exception of the last three years of surveillance data, where incidence and diagnosis proba-
bilities (from the CD4 > 500 undiagnosed state, concerning recent infections) are over and
underestimated respectively in the last three years. This is due to surveillance diagnosis data
typically being uninformative about recent infection levels.

Among all the non-parametric smoothing methods investigated first order random walks,
thin plate regression splines with shrinkage, and cubic B-splines with a first order difference
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penalty are the best-suited to model incidence, whereas second order random walks, knots-
based thin plate splines, thin plate regression splines, and cubic B-splines with a second
order difference penalty encountered convergence issues. Zero mean Gaussian processes
revert to the prior mean in most recent years, yielding a potentially artificial decreasing
trend in incidence. We further showed that the specification of priors has little impact on the
incidence and diagnosis probabilities estimates obtained.

9.2.2 Age dependent back-calculation methods

Inference has been carried in a frequentist and in a Bayesian framework, and estimates
obtained within the two frameworks are comparable. Bayesian inference has a number of
advantages (Section 6.4.4): the credible intervals and an estimate of the optimal smoothing
parameters can be obtained without resorting to a large-sample approximation. Moreover
computational constraints do not hinder (as in the frequentist framework) the computational
feasibility of tensor product splines and, finally, the Bayesian framework allows for a coherent
propagation of uncertainty for the parameters of interest and model derived quantities.

As with the age-independent case, the time profile of the incidence surface is accurately
reconstructed with the exception of the last three years of data, where the time profile of
incidence and diagnosis probabilities (from the CD4 > 500 undiagnosed state) are over and
underestimated respectively in the last three years. Note that the age profile of the incidence
surface is accurately captured.

The simulation results suggest thin plate splines with shrinkage and tensor product splines
(constructed by using cubic B-splines with a first order difference penalty as marginal splines)
are the best-suited for modelling incidence. We suggest, however, to employ tensor-product
splines; even though thin plate splines perform better in terms of predictive mean squared
error, they require an isotropy assumption that can not be verified and that does not hold
when different time and age scales are considered.

9.2.3 Back-calculation in practice

Key findings on the applicability of the proposed methods based on the HIV MSM epidemic
in England and Wales, are here discussed.

The age-dependent and age-independent models produce consistent incidence and diagnosis
probabilities estimates, with the exception of the last four years of the epidemic, where
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the age-dependent back-calculation model yields higher incidence and lower diagnosis
probabilities (from the CD4 > 500 undiagnosed state) than the age-independent model. This
difference is likely due to the surveillance data used; in the last five years, the number of HIV
diagnoses is sharply increasing in the 25-34 age-class (the largest in size, 45% of all cases),
whereas the total number of HIV diagnoses is only overall slowly increasing.

Age-dependent back-calculation has been considered both on a yearly and a quarterly scale,
and with age-independent as well as age-dependent diagnosis probabilities; these models
yield different estimates in the latest years. Model selection has been (informally) undertaken
on the basis of the robustness of incidence estimates in most recent years to the subsequent
addition of further years of data in the model, as these have been found to be quite volatile in
some cases. The age-dependent model characterised by a quarterly time and a yearly age
scale, and diagnosis probabilities with age and state dependent intercept, produced robust
estimates (this model was denoted Qt-AdDx2 in Chapter 8). We recommend the use of
this model model and we stress the importance of both taking into account wide credible
intervals for the incidence estimates in most recent years and analysing the robustness of
such estimates to the addition of further years of data. Age-dependent models on a yearly
time scale and on a quarterly time scale without age-dependent diagnosis probabilities should
be avoided as they yield unrobust incidence estimates.

Incidence has been increasing since 2010, reaching a plateau of approximately 3000 expected
infections per year in the last two years (2014-2015); this finding is supported by both the age-
independent and the age-dependent Qt-AdDx2 model. Rather worryingly, incidence appears
to be steadily increasing in the 25-34 age-class, the most prominent in the data, whereas it
flattens out in the remaining age-classes. Diagnosis probabilities for recent infections (i.e.
from the CD4> 500 state) are increasing. Allowing for age-dependent diagnosis probabilities
suggests that diagnosis pressure is higher in the 25-34 age-class. The expected number of
undiagnosed HIV-infected individuals has been approximately constant since 2010; this is
likely a consequence of the increase in the probability of being diagnosed counteracting the
increase in HIV incidence.

If back-calculation models are considered on a reduced time scale, the incidence, diagnosis
probabilities estimates are sensitive to the specification of the initially undiagnosed number
of individuals for the first seven years only. Thus we recommend considering at least the
last fifteen years of epidemic data, and estimates obtained for the first seven years must be
interpreted with caution.
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9.3 Future work

There are two main obstacles to the widespread usage of back-calculation models. The first
obstacle concerns data, rather than model limitations. High-quality surveillance data are
not always available, or are limited in the amount of information recorded; for instance the
CD4-count around diagnosis is not recorded by some surveillance systems. The second
obstacle is the complexity of the model proposed; implementation is challenging, and fitting
is often computationally burdensome; thus the degree to which these models can be extended
is determined by the capabilities and limitations of software currently available.

Possible extensions of back-calculation models, described in the following Sections, include
modelling mortality and migration, incorporating newly available data characterising recent
infections sources, integration with other statistical methods to better monitor the epidemic,
and software developments.

9.3.1 Mortality and migration

The current back-calculation model assumes that newly infected HIV individuals will sub-
sequently be HIV (or AIDS) diagnosed. In reality, HIV-infected individuals may die of
outside causes before diagnosis. Similarly, they may migrate. Ignoring these effects may
well lead to under-estimation of infection levels. The converse is true when the number
of HIV-infected individuals entering the country is sufficiently large. Whilst the effects of
migration are considered negligible when working with data from the MSM exposure group,
back-calculation is not currently applied to the heterosexual HIV epidemic in England and
Wales due to the non-ignorable number of imported infections (mostly from sub-Sahran
Africa).

To account for the impact of either requires external information. Mortality could be incor-
porated with the inclusion of a ‘death’ state in the multi-state model, with transition rates
to death informed from mortality registries. However, quantifying the impact of migration
on diagnoses is particularly challenging as HIV incidence is highly heterogeneous among
different migrant populations (UNAIDS, 2016). Without information on the prevalence of
undiagnosed HIV among migrants, the best that can be achieved is to estimate infection rates
amongst people who will be eventually diagnosed in England and Wales.
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9.3.2 Spatial modelling of the infection process

We may be further interested in identifying infection hot-spots, areas where testing rates
are low and to assess the targeting of localised public health interventions. This could be
achieved through stratifying the diagnosis data by regions and considering spatio-temporal
modelling of the infection process. However, the infection and diagnosis events may occur in
different regions, as a consequence of the long time elapsing between infection and diagnosis.
Thus incorporating information on internal migration (i.e. within the country of interest)
becomes crucial. This could be achieved by, for example in England and Wales, the use of
Office for National Statistics (ONS) data on internal migration trends (ONS, 2015).

9.3.3 Incorporating new biomarker data on recent infections

To address the limitation of back-calculation whereby incidence in the most recent years
is difficult to estimate with any certainty, the proposed back-calculation model could be
further extended to incorporate data from tests for the presence of biomarkers whose levels
can be indicative of recent infection. Such approaches have been implemented in different
healthcare settings (Ndawinz et al., 2011; Yan et al., 2011).

In England and Wales, in 2009, PHE introduced the routine application of Recent Infection
Testing Algorithms (RITA) to new HIV diagnoses, allowing for the identification of ‘recent’
infections (i.e. in the 6 months prior to testing, Aghaizu et al., 2014). These data could
eliminate much of the uncertainty around recent estimates of incidence. The existing multi-
state backcalculation framework is relatively easy to adapt to use such data, through the
addition of "recent infection" undiagnosed states for newly infected individuals to pass
through prior to reaching the CD4 states of the current model. Figure 9.1a illustrates a
naive adaptation of the model. In practice, however, modifying the age-independent back-
calculation to allow for the incorporation of RITA data is not so straightforward. RITA
and CD4-count data are incomplete, so that only a sample of new HIV diagnoses have an
associate RITA result (approximately 25% in 2009, up to 50% in 2012) and only a sub-sample
of these has an associated CD4-count. As can be seen from Figure 9.1b, it is the CD4-counts
of the non-early diagnoses that are of interest, but we do not know which these are unless a
RITA test is also taken.

Model formulations that will fully exploit all the information held in both the RITA testing
data and the CD4-counts are currently being explored. This will involve adding additional
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states to the CD4-structured model, potentially leading to an increased computational demand
and complexity. Figure 9.1b illustrates one such a proposed complex model.

9.3.4 Long term developments

As a longer term aim, back-calculation may be integrated within a prevalence-based MPES
framework (see Section 1.3 and Presanis et al., 2011). These are two complementary com-
partmental models, informed by distinct datasets, that provide independent assessments of
incidence. A composite model would account for both transmission and disease progres-
sion simultaneously, yielding incidence estimates subject to less bias, and consequently an
improved understanding of the disease stage at which transmission occurred.

An alternative route that merits further investment in research concerns individual-level
back-calculation, or other individual-based simulation methods (De Angelis et al., 1998;
Taffe and May, 2008; Fellows et al., 2015; Nakagawa et al., 2017). Since 2010, linkage of
the date of the most recently available negative HIV test with the date of the first positive
test is undertaken by PHE for new HIV diagnoses. This information provides an extremely
valuable lower bound on the time of infection. However these data pose several challenges;
missingness is likely to be informative and to be associated with infrequent testers. Further
research is required to establish whether infrequent are more likely than frequent testers to
have a long-standing infection; if this would be the case the propensity of each individual to
be tested would also need to be modelled.

9.3.5 Software

As demonstrated throughout this thesis, the implementation of back-calculation models can
be a challenging task particularly for statisticians without relevant expertise, due to both
the mathematical and computational complexity of these methods. Hence it is crucial, to
increase the wide applicability of these methods, to provide detailed practical guidance and
general purpose software to facilitate the implementation of back-calculation models.

As far as software is concerned, to our knowledge, there are two implementations of back-
calculation in R; the backprojNP function in the surveillance package (Meyer et al., 2017)
and the hivbackcalc package (Fellows, 2017). The former only implements the simple
AIDS based back-calculation by Becker et al. (1991), and the latter only implements the
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individual-level back-calculation method by Fellows et al. (2015) that requires the date of
last negative HIV test for all individuals to be available.

Hence there is a gap concerning software for back-calculation. We support, as a key step
forward, the construction of an R package accommodating the implementation of back-
calculation methods for a wide range of surveillance data. A potential strategy to achieve
this would be constructing an R function that would allow users to specify a bespoke back-
calculation model (e.g. multi-state or simple, quarterly or yearly, age-specific or not). This
R function would first automatically generate Stan code for the back-calculation model
specified, and subsequently fit the model; these feature of the R function would be appealing
to statisticians with limited, or no experience with the Stan language. This idea is central to
the rstanarm and brms packages (Stan Development Team, 2016a; Bürkner, 2017).

Future research should also focus on how computational aspects of the model could be
enhanced; parallelisation (potentially using GPUs) and other efficient inference method
should be investigated, such as sequential Monte Carlo (Doucet et al., 2001), approximate
Bayesian computation (Beaumont et al., 2002) and variational Bayes (Blei et al., 2017).
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Appendix A

Bayesian Inference

"Bayesian inference is the process of fitting a probability model to a set of data and summa-
rizing the result by a probability distribution on the parameters of the model" (Gelman et al.,
2014).

This Appendix begins by reviewing Bayesian inference and then focuses on Monte-Carlo
Methods and available software to implement Bayesian hierarchical models. Finally the
implementation of back-calculation using available Bayesian software is discussed. Most
of the material discussed in this Appendix is based on Gilks et al. (1996) and Betancourt
(2017a).

Note that in this Appendix θθθ denote any general parameters, in contrast to the main body of
this thesis where θθθ denoted the infection parameters.

A.1 A brief introduction to Bayesian inference

Statistical models describe a set of data YYY through the means of unknown parameters θθθ .
Within a maximum likelihood framework, parameters are assumed to be fixed, whereas within
a Bayesian framework they are assumed to follow a certain distribution (prior). Bayes’ rule
provides a probabilistic tool for updating our "beliefs" on the prior distribution of parameters
θθθ , conditional on some observed data yyy.

Inference within a Bayesian framework requires the specification of the likelihood function
for the data p(yyy|θθθ), as well as the prior distribution p(θθθ). The posterior distribution of the
parameters p(θθθ |yyy), conditional on the data yyy being observed, can be then derived via Bayes’
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rule as follows:
p(θθθ |yyy) = p(θθθ)p(yyy|θθθ)∫

p(θθθ)p(yyy|θθθ)dθθθ
(A.1.1)

The posterior distribution p(θθθ |yyy) is the quantity of primary interest in Bayesian analysis, and
its features (e.g. moments, quantiles) can be expressed in terms of posterior expectations of
functions g(θθθ) as follows:

Ep(θθθ |yyy)[g(θθθ)] =
∫

g(θθθ)p(θθθ)p(yyy|θθθ)dθθθ∫
p(θθθ)p(yyy|θθθ)dθθθ

(A.1.2)

In practice, the integrals in the numerator and denominator (and thus E[g(θθθ ] itself) are often
analytically intractable. However, if we were able to obtain a sample {θθθ

(1),θθθ (2), . . . ,θθθ (n)}
from p(θθθ |yyy) (i.e. a posterior sample), the expectation in Equation A.1.2 could be approxi-
mated by the sample mean:

Ep(θθθ |yyy)[g(θθθ)]≈
1
n

n

∑
i=1

g(θ (i)) (A.1.3)

Drawing independent samples {θθθ
(1),θθθ (2), . . . ,θθθ (n)} from p(θθθ |yyy) is typically impossible.

However, Markov chain Monte Carlo (MCMC) allow to obtain a correlated sample {θθθ
(1),θθθ (2),

. . . ,θθθ (n)}, for which the above Equation still holds.

A.2 Markov chain Monte Carlo methods

The problem introduced in the previous Section for Bayesian inference, can be expressed in
a more general for via the following expectation:

E f [g(θθθ)] =
∫

g(θθθ) f (θθθ)dθθθ (A.2.1)

where f (θθθ) is a target distribution (e.g. p(θθθ |yyy) in Section A.1).

MCMC methods aim to construct a Markov chain {θθθ
(1),θθθ (2), . . . ,θθθ (n)}, that converges to

some stationary distribution; if the algorithm is correctly specified, the stationary distribution
corresponds to the target distribution of interest, so that its sample mean can be used to
approximate the integral in Equation A.2.1.

The challenge is in ensuring that the stationary distribution of the Markov chain is indeed
the target distribution; this can be achieved by ensuring that the transition kernel of the
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chain k(θθθ |θθθ ′), specifying the transition probability between the states, preserves the target
distribution, i.e. f (θθθ ′) =

∫
f (θθθ)k(θθθ ′|θθθ)dθθθ . Satisfying the detailed balance is a sufficient

criterion, for further technical details Gilks et al. (1996). The following Sections describe
algorithms that construct Markov chains so that these properties are satisfied.

A.2.1 Metropolis-Hastings algorithm

The Metropolis-Hastings (Hastings, 1970) algorithm proceeds as follows: given a starting
value θθθ

(0) for the parameters, updated values {θθθ
(1), θθθ

(2), . . . , θθθ
(k), . . .} are obtained at each

iteration k+1 as follows:

1. A candidate θθθ
′′′ is generated from the transition kernel k(θθθ ′|θθθ (k)) .

2. The candidate is accepted with probability:

α(θθθ ′|θθθ (k)) = min

(
1,

f (θθθ ′)k(θθθ (k)|θθθ ′)

f (θθθ (k))k(θθθ ′|θθθ (k))

)
(A.2.2)

If accepted, the updated θθθ
(k+1) is assigned the candidate value θθθ

′, otherwise the
previous value θθθ

(k) is carried forward.

The transition kernel can have any form and the Markov chain will converge to the target
distribution subject to mild regularity conditions (Gilks et al., 1996).

Note that to compute Equation A.2.2 f (θθθ) must be known only up to a proportionality
constant. This is particularly advantageous within a Bayesian inference context (Section A.1),
as the (potentially intractable) normalizing constant of p(θθθ |yyy) (Equation A.1.1) does not
need to be evaluated.

Several Metropolis-Hastings variants exist; for instance, the Metropolis algorithm only
considers symmetric proposals (i.e. k(θθθ ′|θθθ) = k(θθθ |θθθ ′)) so that the acceptance probability
simplifies to min(1, f (θθθ ′)/ f (θθθ (k))). One of the most widely used variant is the random-
walk Metropolis-Hastings, specifying a normally distributed proposal - i.e. k(θθθ ′|θθθ) =
N(θθθ ′|θθθ ,ΣΣΣ).

It is often simpler to update the components of θθθ = {θ1, . . . ,θm} individually rather than
simultaneously; this is known as the single-component Metropolis-Hastings. Note the each
iteration k+1 involves m further updates, assumed (for simplicity) to occur in increasing
order of components for θθθ . Now, a value θ ′

i is proposed for the ith component according to
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a transition kernel k(θ ′
i |θ

(k)
i ,θθθ

(k)
−i ), where θθθ

(k)
−i = {θ

(k+1)
1 , . . . ,θ

(k+1)
i−1 ,θ

(k)
i+1, . . .θ

(k)
m }, and the

acceptance probability is:

α(θ ′
i |θ

(k)
i ,θθθ

(k)
−i ) = min

(
1,

f (θ ′
i |θθθ

(k)
−i )k(θ

(k)
i |θ ′

i ,θθθ
(k)
−i )

f (θ (k)
i |θθθ (k)

−i )k(θ
′
i |θ

(k)
i ,θθθ

(k)
−i )

)
(A.2.3)

where f (θ (k)
i |θθθ−i) is the full conditional distribution for θi.

Gibbs Sampling (Geman and Geman, 1984) is a special case of the single-component
Metropolis Hastings algorithm where for the ith component, the transition kernel is equal
to the full conditional distribution of θi (i.e. k(θ ′

i |θ
(k)
i ,θθθ

(k)
−i ) = f (θ ′

i |θθθ
(k)
−i )) rendering the

acceptance probability in Equation A.2.3 equal to one.

Finally, Metropolis-Hastings can be also used to update multiple, but not all, components
simultaneously; this is known as block-sampling.

A.2.2 Hamiltonian Monte Carlo

It is well known (Betancourt, 2017a) that the efficiency of Metropolis-Hastings algorithms
decreases as the dimension of θθθ increases. This is because finding a transition kernel, making
relevant proposals θθθ

′, becomes challenging and results in poor algorithmic performance.
Hamiltonian Monte Carlo (HMC) is a variant of MCMC that explores the target distribu-
tion more efficiently, by making proposals based on geometrical properties of the target
distribution.

Given a m×1 vector of parameters θθθ , HMC introduces an m×1 vector of auxiliary momen-
tum parameters ρρρ . The joint density for θθθ and ρρρ is:

f (θθθ ,ρρρ) = f (ρρρ|θθθ) f (θθθ)

Hamiltonian dynamics are widely used in the fields of physics and differential geometry,
and could be also applied in a Monte-Carlo context. In a physics context, the negative joint
log-density is referred to as the Hamiltonian function

H(θθθ ,ρρρ)≡−log f (θθθ ,ρρρ) =−log f (ρρρ|θθθ)− log f (θθθ) = K(ρρρ|θθθ)+U(θθθ)
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and K(ρρρ|θθθ) and U(θθθ) are referred to as the kinetic and potential energy respectively. Note
that the potential energy is fully specified by the target distribution whereas the kinetic energy
must be appropriately chosen.

In physics, Hamiltonian dynamics describe the conservation of energy over time. The same
value of the Hamiltonian function H(θθθ ,ρρρ) (i.e. Hamiltonian energy level) can be obtained
by different (θθθ ,ρρρ) combinations, described by the following set of differential equations (i.e.
Hamilton’s equations):

dθθθ

dt
=+

∂H
∂ρρρ

=+
∂K
∂ρρρ

dρρρ

dt
=−∂H

∂θθθ
=−∂K

∂θθθ
− ∂U

∂θθθ

Given an initial value θθθ
(0) and a conditional distribution for the momentum f (ρρρ|θθθ), an ideal

HMC sampler would construct a Markov chain {θθθ
(1), θθθ

(2), . . . , θθθ
(k), . . .} as follows at the

k+1th iteration:

1. A momentum ρρρ is sampled from its conditional distribution - i.e. ρρρ ∼ f (ρρρ|θθθ (k)).

2. The given Hamiltonian energy level is explored, by integrating the Hamilton’s equa-
tions for a certain time t from the starting point (ρρρ,θθθ (k)). This yields (ρρρ ′,θθθ ′).

3. θθθ
(k+1) is set to θθθ

′

In practice, the integral of Hamilton’s equations can not be solved analytically, and are
thus numerically approximated by a leap-frog algorithm; this is not numerically perfect and
introduces bias. To ensure that the detailed balance is satisfied a Metropolis acceptance
step is included (Betancourt, 2017a) by modifying step 2 and step 3 of the algorithm as
follows:

2. The integral of Hamilton’s equations for a certain time t from the starting point (ρρρ,θθθ (k))

is approximated using the leap-frog algorithm. This yields (ρρρ ′,θθθ ′).

3. The candidate θθθ
(k) is accepted with probability:

α(θθθ ′′′|θθθ (k)) = min(1,exp(H(θθθ ,ρρρ)−H(θθθ ′,ρρρ ′))

If accepted, the updated θθθ
(k+1) is assigned the new candidate value θθθ

′,otherwise the
previous value θθθ

(k) is carried forward

Note that the performance of HMC depends on the fine-tuning of the leap-frog algorithm
and on the distribution chosen for f (ρρρ|θθθ). The time limit of the integral evaluated by the
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leap-frog algorithm must be large enough to ensure that the new proposal made is sufficiently
different from the current value; once a "sufficiently far" proposal is made, based on a
pre-determined criterion, the algorithm proceeds to step 3. In practice f (ρρρ|θθθ) is typically
multivariate normal N(000,ΣΣΣ), so that f (ρρρ|θθθ) is independent of θθθ . ΣΣΣ shall be appropriately
chosen, so that the sampled momentum avoids the algorithm from getting stuck in regions
characterised by low θθθ mass. Riemaniann HMC is an extension of HMC, that considers
f (ρρρ|θθθ) not to be independent of θθθ (Girolami and Calderhead, 2011).

A.3 Convergence

In the previous Sections we constructed a Markov Chain so that it asymptotically tends to
its stationary (i.e. target) distribution; however convergence may take very long, especially
when the algorithms are initiated in low-probability regions of the stationary distribution.
Thus the first burn-in iterations from MCMC algorithms are typically discarded.

Convergence assessment is a key yet non-trivial task. Diagnosing convergence is non-trivial,
as no formal method of establishing convergence exists. A number of convergence tests do
exist that provide evidence (but not guarantee) of achieved convergence. A widely used test
involves inspecting univariate trace plots of MCMC samples of the parameters of interest
and if these resemble a random scatter-plot (i.e. a "fat hairy caterpillar") one may conclude
that a lack of convergence cannot be detected. The R̂ statistics (Gelman and Rubin, 1992)
provides another test for convergence, based on analysis of variance for multiple chains with
over-dispersed starting points. The variance between single chains should be comparable
to the variance within all chains: the test assesses whether the difference in these is such to
suggest lack of convergence. Values of R̂ greater than 1.05 are taken, as a rule of thumb, to
indicate non-convergence.

Divergent transitions (or divergences) are another helpful tool to diagnose lack of convergence,
which is only available for HMC. These indicate that the Markov chain has encountered
regions of high curvature in the target distribution that cannot be adequately explored,
resulting in biased estimates of the parameters of interest (Betancourt, 2017b).

As discussed in Appendix A.2.2, HMC simulate Hamiltonian dynamics using a leap-frog
algorithm, which is governed by the resolution or step size. The resolution rules how far
the proposal can be from the initial state, in order to make "optimal" proposals. If the
resolution chosen is too large the leap-frog algorithm may fail in regions of high-curvature
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of the posterior distribution. An excellent analogy for resolution is1: if one walks down
a mountain by taking very large steps, falling is natural. The only way to explore the
mountain is by taking smaller steps. When the resolution is too big, the leap-frog proposal
diverges to infinity resulting in numerical errors. The obvious solution is picking a smaller
resolution, but this does not always solve the problem and makes the algorithm slower. The
geometry of the posterior distribution is often too complex to be adequately explored and
requires a model reparameterisation (e.g. the non-centered parameterisation). Unfortunately
re-parameterisations are not guaranteed to have nice geometries. A zero-tolerance policy for
divergent transitions is typically employed in Stan (Stan Development Team, 2016b).

A.4 JAGS and Stan

JAGS (Plummer, 2003) and Stan (Stan Development Team, 2016b) are two probabilistic
programming language for Bayesian analysis. Both software are designed to take a user’s
description of a hierarchical model and returning an MCMC sample of the posterior dis-
tribution. These are black-box software, avoiding users having to explicitly code MCMC
sampler. Despite JAGS and Stan have similar objectives, their implementation substantially
differs.

JAGS is an acronym for Just Another Gibbs Sampler and has been developed and is maintained
by Dr. Martyn Plummer. It was first released in 2003 and version 4.3 is the latest available.
JAGS is based on the BUGS language, that was originally developped for WinBUGS and
OpenBUGS. The BUGS language is declarative; the user is only requested to specify the
relationships among the variables, in terms of probabilistic or deterministic functions. Based
on the user’s specification of the prior and the likelihood of a model, JAGS builds a directed
acyclic graph, which expresses a hierarchical model.

From a directed acyclic graph, the the posterior distribution can be derived as well as
the full conditional distributions f (θ ′

i |θθθ
(k)
−i ). Gibbs sampler is then applied, sometimes

in combination with other samplers including Metropolis–Hastings algorithm (Chib and
Greenberg, 1995), Slice sampling (Neal, 2003), and the Adaptive Rejection sampling (Gilks
et al., 1995).

Stan is named after Stanislaw Ulam, a mathematician who was one of the pioneers of Monte
Carlo methods in the 40’s; it has been developed and is maintained by the Stan Development

1http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
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Team, lead by Dr. Andrew Gelman and Dr. Bob Carpenter. Stan version 1.0 was released in
2012 and version 2.16 is the latest available.

As briefly discussed in Section A.2.2, a number of drawbacks prevent the widespread practical
implementation of HMC; partial derivatives of the negative log-likelihood U(θθθ) must be
taken with respect to each parameter θi, i = {1, . . . ,m}. Moreover tuning the leap-frog
integrator and choosing the momentum’s distribution covariance matrix ΣΣΣ appropriately is
not straightforward.

Stan provided solutions to these problem by implementing automatic differentiation (Car-
penter et al., 2015) and by using the No U-Turn Sampler (NUTS) (Hoffman and Gelman,
2014); this is a highly optimized HMC algorithm which achieves fine tuning of the leap-frog
iterator and ΣΣΣ.

Stan and JAGS are both state-of-the-art software for Bayesian analysis. The former tends
to be more efficient and faster than JAGS (in terms of effective sample size, for the same
hierarchical model). However, unlike JAGS, Stan does not allow inference for discrete
parameters as the underlying differential equations require parameter to be differentiable and
thus continuous.

A.5 Application to back-calculation

Age-independent and age-dependent back-calculation have been implemented using both
JAGS and Stan. Despite the results obtained with the two software are very similar, back-
calculation is, in my opinion, simpler to implement in Stan, as equivalent results are obtained
quicker than in JAGS and requires less ad-hoc specifications.

The only "trick" that was required for efficiently implementing back-calculation in Stan was
considering both the centred and non-centred parameterisation for the parameters of interest
(Betancourt, 2017b). For the diagnosis parameter the latter was more efficient than the
former. Recall the logit diagnosis parameters are modelled with a first order logistic random
walk - i.e. δk,i ∼ N(δk,i−1,σ

2
D,i), where k denotes a progression state and i denotes the ith

time interval. Note that this is equivalent to δk,i = δk,i−1 +σD,k zk,i, where zk,i ∼ N(0,1),
i = {1, . . . ,T}, k = {1, . . . ,K}. Sampling {z1, . . . ,zT}, yields a higher effective sample size
for {δk,1, . . . ,δk,T}, than if we were to sample the δk,i directly.

Implementing the model with JAGS required a much higher level of ad-hoc knowledge and
could have not been achieved without the help of Dr. Martyn Plummer.



A.5 Application to back-calculation 221

The log-expected number of individuals diagnosed in the ith time and jth age intervals in
state k can be written as a sum of latent variables statified by the age jth

0 (and implicitly the
time interval jth

0 ) of infection. The latent variables are denoted ε
j0

i, j,k (i = {1, . . . ,T}, j =
{1, . . . ,A}, j0 = {1, . . . , j}, k = {1, . . . ,K}) and can be formulated as a log-linear model
ε

j0
i, j,k = γi0, j0 + log(p( j0, j,i)

1,k ), where p( j0, j,i)
1,k denotes the probability of being infected in the ith0

time and jth
0 age intervals and being diagnosed in state k in the ith time and jth age intervals.

These correspond to the kth entry of the vector defined in Equation 5.3.4. Recall that this
log-linear formulation (discussed in Section 2.3.3 for age-dependent back-calculation only)
is less efficient than the recursive equations.

JAGS updates the parameters of a log-linear Poisson regression models (i.e. the infection
parameters for back-calculation) using the latent variable based auxiliary mixture sampling
algorithm (Frühwirth-Schnatter et al., 2009). Diagnosis parameters are modelled using
standard Metropolis-Hastings. The main challenge lies in ensuring that the latent variables
are updated while remaining consistent with the data. JAGS’ sum sampler is subsequently
employed to sample with replacement pairs of latent variables; this adds and subtracts x
(sampled from a geometrical distribution) to the first and second latent variable respectively,
so that the sum of the latent variables is unchanged. Note that the introduction of the sum
sampler in version 4.0 of JAGS was also motivated by the need to implement age-specific
back-calculation models.
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Appendix for Chapter 2

B.1 Notation

Recall that (t0, tT ] is the time-period spanning the HIV epidemic, which is split into T disjoint,
consecutive intervals (ti−1, ti], i = {1, . . . ,T}:

• The ith interval refers to (ti−1, ti], i = {1, . . . ,T}.

• The ith0 interval usually denotes(ti0−1, ti0], i0 = {1, . . . ,T}, when infections occur.

A summary of the notation introduced in Chapter 2 is here presented: appropriate definitions
are given in the main body, the list below only serves as reference:

• K is the number of undiagnosed states in the proposed multi-state model.
States 1 to K denote latent undiagnosed states, state 2K + 1 corresponds to AIDS
diagnosis and states K +1 to 2K identify HIV diagnosis with a certain CD4-count.
k = {1, . . . ,2K +1} denotes one of the states.

• hi ≡ hi(θθθ) represents the expected number of infections occurring in the ith interval.
H≡H(θθθ) = {h1, . . . ,hT} denotes the incidence curve, parametrised by θθθ .

• dddi ≡ dddi(δδδ ) = (d1,i, . . . ,dK,i) refers to the diagnosis probabilities in the ith interval from
undiagnosed states k={1, . . . ,K}.
D ≡D(δδδ ) = {ddd1, . . . ,dddT} refers to the collection of diagnosis probabilities over time,
parametrised by δδδ .

• qqq = (q1, . . . ,qK) denotes undiagnosed probabilities between undiagnosed states k =

{1, . . . ,K}, within any interval i, as these are assumed constant over time.
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• QQQi ≡ QQQi(δδδ ), of size K ×K, and DDDi ≡ DDDi(δδδ ), of size K ×K +1 are the transition and
progression matrices of the multi-state model. They describe the transition probabilities
in the ith interval between undiagnosed states k = {1, . . . ,K} and from undiagnosed to
diagnosis states k = {K +1, . . . ,2K +1} respectively.

• eeei ≡ eeei(θθθ ,δδδ ) is a K × 1 vector, containing the expected number of individuals in
undiagnosed states k = {1, . . . ,K} in the end of the ith interval.

• µµµ i ≡ µµµ i(θθθ ,δδδ ) is a (K +1)×1 vector, describing the expected number of new arrivals
in diagnoses states k = {K +1, . . . ,2K} at the end of the ith interval.
µA

i ≡ µA
i (θθθ ,δδδ ) and µH

i ≡ µH
i (θθθ ,δδδ ) respectively refer to the expected number of new

AIDS and HIV diagnoses at the end of the ith interval.

• pppi ≡ pppi(θθθ ,δδδ ) describes the expected proportion of diagnoses in each of the HIV-states
k = {K +2, . . . ,2K +1} at the end of the ith interval.

• υυυ = {υH
1 , . . .υH

T ,υA
1 , . . . ,υ

A
T } denotes the collection of under-reporting parameters

over time-intervals.

• πππ , a K ×1 vector, that refers to the initial expected number of undiagnosed infections
in states k = {1, . . . ,K}.
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Appendix for Chapter 3

C.1 Further details for Section 3.3.3

C.1.1 The QR decomposition

This Appendix provides the details of the QR decomposition. For further details refer to
Wood, 2006a, page 46 and 334.

Let XXX be a n×m matrix, where n ≥ m. XXX can always be decomposed as follows:

XXX = QQQ

[
RRR
000

]
=
[
QQQ111 QQQ222

][RRR
000

]
= QQQ111RRR111 (C.1.1)

Where RRR is an upper triangular m×m matrix, 000 is a (n−m)×m matrix and QQQ is a n× n
orthogonal matrix. QQQ can be further split into QQQ111 (dimension n×m) and QQQ222 (dimension
n×n−m), both with orthogonal columns.

Now consider the specific case where a linear (or spline) model XXXβββ is subject to the constraint
CCCβββ = 0. CCC is a c×m matrix, imposing c distinct constraints.

The aim is to to reparametrize the linear (or spline) model in terms of βββ
′′′ containing m− c

free parameters, rather than m parameters subject to c constraints. To do so it is necessary
finiding a matrix ZZZ, of dimension m× (m− c), so that:

βββ = ZZZβββ
′′′ (C.1.2)

CCCZZZ = 0 (C.1.3)
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After re-parameterisation in Equation C.1.2, the constraint term becomes CCCZZZβββ
′′′ = 0. Then the

condition in Equation C.1.3 allows βββ
′′′ to take any value, while satisfying the constraint.

Finally, ZZZ is constructed using the QR decomposition of CCCTTT .

CCCTTT =
[
QQQ111 QQQ222

][RRR
000

]
(C.1.4)

Now set ZZZ = QQQ222 and consider:

CCCZZZ =
[
RRRTTT 000

][QQQTTT
111

ZZZTTT

]
ZZZ =

[
RRRTTT 000

][000
III

]
= 000 (C.1.5)

QQQ111 and QQQ222 span different columns of the same orthogonal matrix, thus the dot product
characterising each entry of QQQTTT

111 QQQ222 = QQQTTT
111 ZZZ is made by orthogonal vectors and is equal to

zero.

C.1.2 Mathematical details for reformulating Equation 3.3.6 as Equa-
tion 3.3.1

Recall that the smoothing objective can be rewritten as follows for an optimal NCS:

min||yyy−−−TTT ααα −−−EEEδδδ ||2 +λδδδ
TTT EEEδδδ s.t TTT TTT

δδδ === 000

Note that TTT TTT
δδδ === 000 imposes two constraints on δδδ , thus it would be simpler working with the

vector δδδ
′′′ having n−2 free parameters. δδδ and δδδ

′′′ can be linked via an orthogonal dimension
(or rank) reduction matrix ZZZ, of size n× n− 2, so that δδδ === ZZZδδδ

′′′ and the constraint term
becomes TTT TTT ZZZδδδ

′′′ = TTT TTT
δδδ = 0. By constraining TTT TTT ZZZ to be 000, the constraint is satisfied for

any value δδδ
′′′, which then becomes an unconstrained vector. The matrix ZZZ is obtained via

a QR decomposition (of TTT ), for further details see Appendix C.1. Equation 3.3.5 can be
reformulated using this reparameterisation as:

min||||||yyy−−−TTT ααα −−−EEEZZZδδδ
′′′||||||2 +λδδδ

′T ZZZTTT EEEZZZδδδ
′′′ (C.1.6)

Finally, the above can be rewritten as in Equation 3.3.1:

min ||yyy−−−XXXβββ ||2 +λβββ
TTT SSSβββ (C.1.7)
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Where βββ [n×1] =
[
α0 α1 δ ′

1 · · · δ ′
n−2

]T
and :

XXX [n×n] =
[
TTT [n×2] EEE [n×n]ZZZ[n×n−2]

]
SSS[n×n] =

 000[2×2] 000[2×n−2]

000[n−2×2] ZZZTTT EEEZZZ[n−2×n−2]



C.2 Further details for Section 3.3.4

Recall that Equation 3.3.8 describes a knots based thin plate spline as follows:

min||yyy−−−TTT ααα −−−EEEδδδ ||2 +λδδδ
TTT EEEδδδ s.t CCCδδδ === 000 (C.2.1)

Thus knots-based NCS are defined by k+2 parameters, subject to two constraints. As for
optimal NCS, a QR decomposition (of CCCT ) can be employed to find ZZZ (of size k× k−2) so
that δδδ === ZZZδδδ

′′′ and CCCZZZ === 000; this makes δδδ
′′′ unconstrained. The PLS criterion (Equation 3.3.1)

for knots-based NCS is:
min ||yyy−−−XXXβββ ||2 +λβββ

TTT SSSβββ (C.2.2)

where βββ [k×1] =
[
α0 α1 δ ′

1 · · · δ ′
k−2

]T
and:

XXX [n×k] =
[
TTT [n×2] EEE [n×k]ZZZ[k×k−2]

]
SSS[k×k] =

 000[2×2] 000[2×k−2]

000[k−2×2] ZZZTTT EEEZZZ[k−2×k−2]



C.3 Further details for Section 3.3.5

This Appendix demonstrates the missing algebra steps, necessary to achieve the usual
PLS criterion (Equation 3.3.1) from the PLS criterion for thin plate regression splines
(Equation 3.3.10).

Recall that UUUkkk is obtained from the eigen-decomposition of matrix EEE. The following identities
hold:

EEEUUUkkk =UUUkkkDDDkkk

DDDkkk =UUUTTT
kkk EEEUUUkkk
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Building upon linear algebra results, Wood (2003) shows that ẽk and êk are jointly minimized
by the "optimal" reduction basis ΓΓΓkkk ===UUUkkk. It follows that:

Ẽk = EEEUUUkkkUUU
TTT
kkk =UUUkkkDDDkkkUUU

TTT
kkk

Êk =UUUkkkUUU
TTT
kkk EEEUUUkkkUUU

TTT
kkk =UUUkkkDDDkkkUUU

TTT
kkk

Thus the "optimal" low-rank fitting criterion in Equation 3.3.11 becomes:

min||yyy−−−UUUkkkDDDkkkUUU
TTT
kkk δδδ −−−TTT ααα||2 +λδδδ

TTTUUUkkkDDDkkkUUU
TTT
kkk δ s.t. TTT TTT

δδδ = 0 (C.3.1)

Given that δδδ kkk =UUUTTT
kkk δδδ , this can be re-expressed in terms of parameters δδδ kkk matching Equa-

tion 3.3.10:

min||yyy−−−EEEUUUkkkδδδ kkk −−−TTT ααα||2 +λδδδ
TTT
kkk DDDkkkδδδ kkk s.t. TTT TTTUUUkkkδδδ kkk = 0 (C.3.2)

The constrained minimisation problem can be turned into an unrestricted one by finding
(via the QR decomposition) an orthogonal matrix ZZZ (size k× k−2) so that TTT TTTUUUkkkZZZ = 0 and
δδδ kkk === ZZZδδδ

′′′:
min||yyy−−−EEEUUUkkkZZZδδδ

′′′−−−TTT ααα||2 +λδδδ
′T ZZZTTT DDDkkkZZZδδδ

′′′ (C.3.3)

This can be expressed within the usual penalised regression framework (Equation 3.3.1):

min ||yyy−−−XXXβββ ||2 +λβββ
TTT SSSβββ (C.3.4)

Where: βββ [k×1] =
[
α1 α2 δ ′

1 · · · δ ′
k−2

]T
and:

XXX [n×k] =
[
TTT [n×2] EEE [n×n]UUUkkk[n×k]ZZZ[k×k−2]

]
SSS[k×k] =

 000[2×2] 000[2×k−2]

000[k−2×2] ZZZTTT DDDkkkZZZ[k−2×k−2]



C.4 Further details for Section 3.3.7

P-splines of degree d, with a penalty matrix of order r, can be expressed within the following
penalised regression framework.

min ||yyy−−−XXXdddβββ ||2 +λβββ
TTT SSSrrrβββ (C.4.1)
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Where:

βββ [k×1] =
[
β1 · · · βk−1+d

]T
XXXddd[n×(k+1−d)] =

Bd
1(x1) · · · Bd

k−1+d(x1)
...

...
...

Bd
1(xn) · · · Bd

k−1+d(xn)



SSSrrr[(k−1+d)×(k−1+d)] =

 000[r×r] 000[r×(k−1+d−r)]

000[(k−1+d−r)×r] (((DDDTTT
rrr DDDrrr)))[(k−1+d−r)×(k−1+d−r]


d and r are suppressed for notational simplicity, letting XXX = XXXddd and SSS = SSSrrr.

C.5 Further details for Section 3.3.8

C.5.1 GLMs and GAMs

Generalised Linear Models (GLMs) first introduced by Nelder and Wedderburn (1972) offer
an extension to ordinary linear regression (McCullagh and Nelder, 1989). These allow for
the outcome variable yyy to be from any distribution in the exponential family fψ(yyy) and use a
link function η(µµµ) to linearly relate the expected response of YYY with the unknown model
parameters. If the identity function is specified as link function a simple linear model is
obtained. Mathematically a GLM is defined as follows:

yi ∼ fψ(yi) = exp
(

yiψ −b(ψ)

a(φ)
+ c(yi,φ)

)
E[yyy] = µµµ = η

−1(XXXβββ )

A list of distributions from the exponential family and related parameters φ , functions a(φ),
b(ψ), c(yi,φ) and link functions η(µµµ) can be found in Wood (2006a), page 61.

Splines can be employed within a GLM framework to model the link function η(µµµ) = XXXβββ

in a smooth rather than linear fashion. Parameter estimates are obtained by maximizing a
penalised log-likelihood criterion:

maxβββ l(yyy|βββ )+λβββ
TTT SSSβββ (C.5.1)

The penalty term is the same as for the PLS criterion (Equation 3.3.1) while the residual sum
of squares, quantifying goodness of fit, is replaced by the log-likelihood l(yyy|βββ ).
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For a fixed λ , Equation C.5.1 only has an analytic solution for normally distributed outcomes
yyy; this is equivalent to the PLS one (Equation 3.3.2).

Generalised Additive Models (GAMs) enhance the flexibility of GLMs, by allowing the
link function η(µµµ), of data arising from the exponential function, to be written as a sum of
smooth functions (Hastie and Tibshirani, 1990; Wood, 2006a, Chapter 3). An example of a
link function for data yyy (arising from the exponential family) modelled with a GAM is:

η(µµµ) = α +XXXψψψ + f1(x1)+ f2(x2)+ f12(x1,x2)+ ... (C.5.2)

The above is made of three components: the intercept α , a strictly parametric term XXXψψψ

and smooth non-parametric functions fi, typically specified by splines. Parameter estimates
can be obtained within the aforementioned penalised regression framework, by using the
Penalised Iteratively Re-weighted Least Squares (P-IRLS) algorithm to obtain β̂ββ numerically,
for a given λ (Wood, 2006a).

C.5.2 Smoothing parameter selection criterion

Increasing values of λ reduce the effective number of degrees of freedom for β̂ββ . Wood,
2006a, Section 4.4 defines these as the trace of the hat matrix HHH:

HHH = XXX(((XXXTTTWWWXXX +λSSS)))−1XXXTTT (C.5.3)

Where µ̂µµ = XXX β̂ββ be the estimated mean and WWW be a diagonal matrix of weights, with entries
WWW ii = (η ′(µ̂i)V (µ̂i))

−1.

The optimal amount of smoothing λ̂ is generally estimated via Cross Validation (CV), which
is a measure of the model’s predictive performance: for a given λ value, the model is fitted
using all but one data point. The fitted model is subsequently used to predict the data point
which was originally excluded. This procedure is repeated for all data points. In practice,
it is typically unnecessary to re-fit the model sequentially excluding all data points, as, for
GLM, CV can be expressed analytically. However, CV is not scale invariant: different
parameterisations of XXX lead to the same values of β̂ββ but to different CV scores. Generalized
Cross Validation (GCV) is an extension of CV that is scale-invariant; the optimal λ̂ is chosen
to minimize the GCV score. To avoid naively evaluating GCV over a grid of plausible λ

values, Wood (2006a) Sections 4.6, 4.7, proposes a Newton-Raphson algorithm to minimize
GCV with respect to λ , in combination with P-IRLS to maximize β̂ conditional on λ . GCV
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is equal to:

GCV (λ ) =
m||

√
WWW (zzz−−−XXX β̂ββ )||2

(m− tr(HHH))2 (C.5.4)

In the above formula zzz are "pseudo-data", zi = η ′(µ̂µµ)(yi − µ̂i)+XXX iiiβ̂ββ . HHH is the hat matrix
defined above.

C.5.3 Confidence intervals

Within a GLM framework, confidence intervals for parameters are typically constructed
by exploiting the asymptotic normality property of estimators: β̂ββ ∼ N(E[β̂ββ ],V [β̂ββ ]), where
E[β̂ββ ] = β̂ββ and V [β̂ββ ] = I−1 (the inverse of Fisher’s information matrix). However, within a
penalised regression (or likelihood) framework, bias is introduced to reduce variance (see
Section 3.3.2). EEE[[[β̂ββ ]]] is no longer equal to β̂ββ and thus asymptotic confidence intervals have
poor coverage.

An empirical Bayesian approach is used to construct approximate confidence intervals,
based on the Bayesian re-interpretation of penalised likelihood, described in Section 3.3.9.
Equation 3.3.14 yields priors for penalised (βββ ppp) and unpenalised (βββ uuu) coefficients that are
equivalent, from a Bayesian perspective, to the penalty matrix S.

Approximate confidence intervals are constructed from a large-sample approximation of the
posterior distribution (Wood, 2006c), given in the Equation below, to circumvent the use of
Markov Chain Monte Carlo (MCMC) which is computationally cumbersome.

βββ |||yyy ∼ N
(

β̂ββ ,(XXXTTTWWWXXX +λSSS)−1
φ

)
(C.5.5)

Despite the prior on βββUUU being improper, the resulting posterior distribution is proper. The
above expression is exact if observations yyy are normally distributed. WWW is a diagonal matrix of
weights and is distribution specific (see Appendix C.5.2). Confidence intervals are obtained
by sampling from the approximate posterior distribution; these have been shown to have
satisfactory coverage properties (Wood, 2006c).

Confidence intervals could be further modified to account for uncertainty in λ via a simulation
based method, proposed by Wood (2006c). However this is computationally intensive and
has hardly been used in practice.
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C.6 Further details for Section 3.3.9

In the two following Subsections the mathematical details of the centering and prior-precision
reparameterisation are presented. The starting spline, which is subject to re-parameterisations,
is characterised by parameters βββ (size k) and design XXX and penalty SSS matrices, respectively
of size n× k and k× k.

C.6.1 Centering re-parameterisation

Any spline, as defined above, can be made subject to the constraint that the sum of the
spline values over the coordinates of the data is equal to zero (i.e. ∑

n
i=1 g(xi) = 0). In matrix

notation this is equivalent to
111TTT XXXβββ = 0 (C.6.1)

Where 111 is a n× 1 vector. The above constraint can be integrated using the usual QR
decomposition (of 111TTT XXX) approach. An orthogonal matrix ZZZ, of dimension k× (k− 1), is
found so that βββ === ZZZβββ

′′′ and 111TTT XXXZZZ = 0. After reparameterisation, the quadratic penalty matrix
for βββ

′′′, of size (k−1)× (k−1), is ZZZTTT SSSZZZ.

Notice that in integrating such constraint results in loosing a degree of freedom. This is
compensated by the introduction of a global intercept α . Thus the resulting reparametrized
spline has k parameters β̃ββ =

[
α βββ

′′′
]
, design matrix X̃XX =

[
111T XXXZZZ

]
of size k×k and finally

S̃SS =

[
000T

ZZZTTT SSSZZZ

]
, where 000 is a vector of zeroes of size k.

Further details about this re-parameterisation are available in Wood, 2006a, Section 4.2.

C.6.2 Prior-precision re-parameterisation

To increase the efficiency of MCMC sampling, splines with a single penalty matrix SSS (i.e. all
univariate splines) can be reparametrized to have an identity matrix as penalty matrix.

Recall that SSS is reinterpreted, within a Bayesian framework, as the precision matrix of a
multivariate normal prior on coefficients βββ . Hence having SSS = III leads to iid Normal priors for
the βββ components. This reparameterisation is only undertaken for computational purposes,
as having a multivariate Normal prior on βββ , rather than iid Normal priors on the component
of βββ , leads to slower MCMC updating, in my experience.
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Consider any (βββ ,XXX ,SSS) spline where ρ ≤ k is the rank of SSS. If some of the βββ coefficients are
unpenalised, then ρ < k. Denote βββUUU and βββ PPP, of size k−ρ and ρ , unpenalised and penalised
coefficients.

Apply the eigendecomposition SSS =UUUDDDUUUTTT . DDD is a diagonal matrix, with entries being the
eigenvalues of SSS sorted in ascending order and UUU is the matrix of corresponding eigenvectors.
Due to positive semi-definiteness of SSS all eigenvalues are positive, with the exception of
k−ρ zero eigenvalues. Further let ΛΛΛ be a diagonal matrix, with entries Λii =

√
Dii so that

DDD === ΛΛΛ
TTT

ΛΛΛ. The penalty becomes:

λβββ
TTT SSSβββ = λβββ

TTTUUUDDDUUUTTT
βββ = λβββ

TTTUUUΛΛΛ
TTT

ΛΛΛUUUTTT
βββ (C.6.2)

Where:

UUUΛΛΛ
TTT

ΛΛΛUUUTTT =

[
III[ρ×ρ] 000[ρ×k−ρ]

000[k−ρ×k−ρ] 000[k−ρ×k−ρ]

]
Now let βββ

′′′ === ΛΛΛUUUTTT
βββ and notice that the penalty term is equivalent to:

βββ
TTTUUUΛΛΛ

TTT
ΛΛΛUUUTTT

βββ = βββ
TTT
PPPIIIβββ PPP

By orthogonality of UUU it holds that:

βββ = (((ΛΛΛUUUTTT )))−1
βββ
′′′ = (((UUUTTT )))−1(((ΛΛΛ)))−1

βββ
′′′ = (((UUU−1)))−1

ΛΛΛ
−1

βββ
′′′ =UUUΛΛΛ

−1
βββ
′′′

Hence the original design and penalty matrices of the spline are now reparametrized as:

XXXβββ = XXXUUUΛΛΛ
−1

βββ
′′′

λβββ
TTT SSSβββ = λβββ

TTT
PPPIIIβββ PPP

Further details about this reparameterisation are available in Wood (2006a). JAGS requires
specifying a proper prior distribution for all parameters, including originally unpenalised βββUUU .
It is suggested to use a vague proper prior, usually iid Normal i.i.d for β ′

U j ∼ N(0,1/λ0).
Hence the original penalty is now replaced by the following approximation:

λβββ
TTT SSSβββ ≈ λβββ

TTT
PPPIIIβββ PPP +λ0βββ

TTT
UUU IIIβββUUU (C.6.3)
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C.7 Further details for Section 3.4.4

If a GP (Normal) prior is assumed over a set of functions, modelling normally distributed
data, then the log-likelihood is equal to:

− 1
2

log|KKKy| −
1
2

yyyT KKK−1
y yyy − n

2
log(2π) (C.7.1)

where KKKy = KKK +σ2III. The (marginal) log-likelihood depends on both hyper-parameters φφφ

and covariates xxx, as these define KKKyyy via a covariance function (see Section 3.4.2).

The terms of the log-likelihood have a precise interpretation. As the length-scale ρ increases
and the magnitude η decreases, the model becomes smoother (hence simpler) but less flexible,
resulting in a poorer model fit. The − 1

2yyyT KKK−1
y yyy term relates the hyperparameters to data-fit,

as it increases for larger ρ and smaller η . The −1
2 log|KKKy| term is a negative complexity

penalty, which counteracts overfitting by increasing for increasing ρ and decreasing η . The
last term is a normalizing constant.

An expression for hyper-parameters φ̂φφ , maximizing the likelihood can not be derived ana-
lytically. The likelihood may instead be numerically maximized by gradient-descent tech-
niques (Rasmussen and Williams, 2006, Section 5.4) as partial derivatives of the covariance
matrix with respect to each parameter can be typically derived. These techniques may suffer
from multiple local optima, especially for a large number of hyperparameters φφφ . Alternative
parameter estimation methods via predictive measures, e.g. cross validation, have been
explored (Sundararajan and Keerthi, 2000).

C.8 Further details for Section 3.5

Splines can be used for scatter-plot smoothing purposes, for smoothly modelling the expected
response of a GLM, or as part of more complex models such as: GAM, Generalized Additive
Mixed Models (GAMM) (Wood, 2006a) and Structured Additive Regression (STAR) (Belitz
and Lang, 2008; Brezger and Lang, 2006; Fahrmeir et al., 2004).

To date, there are two main R packages for splines: BayesX (Kneib et al., 2014) and mgcv
(Wood, 2012). The former builds upon the P-splines work of Eilers and Marx (2003, 1996)
and considers STAR models in a penalised regression, Bayesian and empirical Bayesian
(mixed model) frameworks. mgcv is based upon the extensive work of Wood (2006a,
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2003, 2016) and implements all splines discussed (and some others too...) for scatter-plot
smoothing, GLM, GAM and GAMM models within a penalised regression framework.

The jagam function in the mgcv package automatically generates JAGS code for a spline
estimation in a Bayesian framework, with the parameterisations described in Section 3.3.9
(Wood, 2016). BayesX is more efficient for standard GLM, GAMM and STAR model
estimation. However, the flexibility of JAGS can be exploited to extend such model, including
them as a part of a more complex stochastic model.

A number of packages are available for GP: gpfit (MacDonald et al., 2015), gptk (Kalaitzis
et al., 2015), tgp (Gramacy, 2007); the first two implement likelihood inference, whereas tgp
focuses on Bayesian estimation. Stan can be also used for Bayesian inference (Flaxman et al.,
2015; Stan Development Team, 2016b). Rue et al. (2009) propose a fast approximation to
MCMC for latent Gaussian models (which include both GP and splines), based on Integrated
Nested Laplace Approximations (INLA).
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Appendix for Chapter 4

D.1 Further details for Section 4.6.2

D.1.1 Estimated diagnosis probabilities from states 2, 3, and 4

In this Section posterior means (estimates) of diagnosis probabilities from states 2, 3 and
4 for all incidence models, under the three true incidence scenarios, are presented. Recall
that diagnosis probabilities (from all states) are constant in the three incidence scenarios. It
can be observed that, for all incidence models and under all incidence scenarios, diagnosis
probabilities are reasonably well estimated and, unlike diagnosis probabilities from state 1,
no consistent bias appears in the most recent years.
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Fig. D.1 Estimated diagnosis probabilities from states 2, 3 and 4 under the three different
incidence scenarios, as indicated by captions. Red and black lines depict the true diagnoses
curves and the posterior means for each dataset, credible intervals are not depicted.
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ts incidence model
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Fig. D.2 Estimated diagnosis probabilities from states 2, 3 and 4 under the three different
incidence scenarios, as indicated by captions. Red and black lines depict the true diagnoses
curves and the posterior means for each dataset, credible intervals are not depicted.
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bsord1 incidence model

1995 2000 2005 2010 2015

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Year

P
ro

b
a

b
il
it
y

(a) State 2, Increasing

1995 2000 2005 2010 2015

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Year

P
ro

b
a

b
il
it
y

(b) State 2, Flat

1995 2000 2005 2010 2015

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Year

P
ro

b
a

b
il
it
y

(c) State 2, Decreasing

1995 2000 2005 2010 2015

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Year

P
ro

b
a

b
il
it
y

(d) State 3, Increasing

1995 2000 2005 2010 2015

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Year

P
ro

b
a

b
il
it
y

(e) State 3, Flat

1995 2000 2005 2010 2015

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Year

P
ro

b
a

b
il
it
y

(f) State 3, Decreasing

1995 2000 2005 2010 2015

0
.0

0
.1

0
.2

0
.3

0
.4

Year

P
ro

b
a

b
il
it
y

(g) State 4, Increasing

1995 2000 2005 2010 2015

0
.0

0
.1

0
.2

0
.3

0
.4

Year

P
ro

b
a

b
il
it
y

(h) State 4, Flat

1995 2000 2005 2010 2015

0
.0

0
.1

0
.2

0
.3

0
.4

Year

P
ro

b
a

b
il
it
y

(i) State 4, Decreasing

Fig. D.3 Estimated diagnosis probabilities from states 2, 3 and 4 under the three different
incidence scenarios, as indicated by captions. Red and black lines depict the true diagnoses
curves and the posterior means for each dataset, credible intervals are not depicted.
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GP incidence model
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Fig. D.4 Estimated diagnosis probabilities from states 2, 3 and 4 under the three different
incidence scenarios, as indicated by captions. Red and black lines depict the true diagnoses
curves and the posterior means for each dataset, credible intervals are not depicted.
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D.1.2 Goodness of fit plots

In this Section, goodness of fit plots are presented, for the dataset number 25 generated under
the true flat incidence scenario. This comprises three data sources: HIV, AIDS and CD4.
After estimating the parameters in a Bayesian framework, fitted values for the three different
data-sources are obtained, using four different incidence models (rw, bsord1, ts, GP). All
incidence models considered provide very similar and very satisfactory fit for all data-sources
considered.
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Fig. D.5 Goodness of fit plots for HIV and AIDS diagnoses in dataset 25 (generated with flat
incidence). The coloured lines and crosses respectively represent all incidence models and
the simulated data points
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Fig. D.6 Goodness of fit plots for CD4 diagnoses, stratified by state as indicated in captions,
for data 25 (generated with flat incidence). The coloured lines and crosses respectively
represent all incidence models and the simulated data points.
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Appendix for Chapter 5

E.1 Notation

Recall that (t0, tT ] is the time-period spanning the HIV epidemic, which is split into T disjoint,
consecutive intervals (ti−1, ti], i= {1, . . . ,T}. Moreover (a0,aA] is the age-range spanning the
HIV epidemic, which is split into A disjoint, consecutive intervals (a j−1,a j], j = {1, . . . ,A}.
Age and time intervals are typically assumed to have equal lengths, with the exception of
Section 5.4.3.

• The ith interval refers to (ti−1, ti], i = {1, . . . ,T}.

• The jth interval refers to (a j−1,a j], j = {1, . . . ,A}.

• The ith0 interval usually denotes (ti0−1, ti0], i0 = {1, . . . ,T}, when infections occur.

• The jth
0 interval usually denotes (a j0−1,a j0 ], j0 = {1, . . . ,A}, when infections occur.

A summary of the notation introduced in Chapter 5 is here presented: appropriate definitions
are given in the main body, the list below only serves as reference:

• K is the number of undiagnosed states in the proposed multi-state model.
States 1 to K denote latent undiagnosed states, state 2K + 1 corresponds to AIDS
diagnosis and states K +1 to 2K identify HIV diagnosis with a certain CD4-count.
k = {1, . . . ,2K +1} denotes one of the states.

• hi0, j0 ≡ hi0, j0(θθθ) represents the expected number of infections occurring in the ith0 time
and jth

0 age intervals.
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H≡H(θθθ) = {h11, . . . ,hTA} denotes the incidence surface, i.e. the expected number
of infection over time and age, parametrised by θθθ .

• dddi, j ≡ dddi, j(δδδ ) = (d1,i, j, . . . ,dK,i, j) refers to the diagnosis probabilities in the ith time
and jth age intervals from undiagnosed states k={1, . . . ,K}.
D ≡D(δδδ ) = {ddd1, . . . ,dddT} refers to the collection of diagnosis probabilities over time,
parametrised by δδδ .

• qqq j0 = (q j0
1,2, . . . ,q

j0
K,K+1) denotes progression probabilities between undiagnosed states

k = {1, . . . ,K}, for an individual infected in the jth
0 age interval (and hence implicitly

in the ith0 time interval).
Q = {qqq1, . . . ,qqqA} denotes the collection of age-at-infection dependent progression
probabilities, which are known from external cohort studies.

• QQQ j0
i, j ≡ QQQ j0

i, j(δδδ ), of size K ×K, and DDD j0
i, j ≡ DDD j0

i, j(δδδ ), of size K ×K + 1 are the transi-
tion and progression matrices of the multi-state model. They describe the transition
probabilities between the undiagnosed states k = {1, . . . ,K} and from the undiagnosed
to diagnosis states k = {K + 1, . . . ,2K + 1} respectively, in the ith time and jth age
intervals for individuals infected in the jth

0 interval (and hence implicitly in the ith0 time
interval).

• eee j0
i, j ≡ eee j0

i, j(θθθ ,δδδ ) is a K ×1 vector, containing the expected number of individuals in
undiagnosed states k = {1, . . . ,K} in the end of the ith time and jth age intervals for
individuals infected in the jth

0 interval.

• µµµ
j0
i, j ≡ µµµ

j0
i, j(θθθ ,δδδ ) is a (K+1)×1 vector, describing the expected number of new arrivals

in diagnoses states k = {K +1, . . . ,2K} at the end of the ith and jth age intervals for
individuals infected in the jth

0 interval.
µA

i, j ≡ µA
i, j(θθθ ,δδδ ) and µH

i, j ≡ µH
i, j(θθθ ,δδδ ) respectively refer to the expected number of new

AIDS and HIV diagnoses at the end of the ith time and the jth age intervals.

• pppi, j ≡ pppi, j(θθθ ,δδδ ) describes the expected proportion of diagnoses in each of the HIV-
states k = {K +1, . . . ,2K} at the end of the ith time and jth age intervals.

• υυυ = {υH
11, . . .υ

H
TA,υ

A
11, . . . ,υ

A
TA} denotes the collection of under-reporting parameters

over time-intervals.

• πππ j is a K × 1 vectors, that refers to the initial expected number of undiagnosed
infections in states k = {1, . . . ,K} for individuals aged j.
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Appendix for Chapter 6

F.1 Further details for Section 6.2.2

Hence, the smoothing criterion (Equation 6.2.3) can be reformulated as:

min||yyy−−−TTT ααα −−−EEEδδδ ||2 +λδδδ
TTT EEEδδδ s.t TTT TTT

δδδ === 000

The TPS parameters δδδ are subject to three constraints. A n− 3 vector of unconstrained
parameters δδδ

′′′ is defined by letting δδδ = ZZZδδδ
′′′, where ZZZ is a n×n−3 matrix, obtained via a

QR decomposition of TTT , so that TTT TTT ZZZ = 000. Hence Equation 6.2.3 can be rewritten within the
usual penalised regression framework:

min ||yyy−−−XXXβββ ||2 +λβββ
TTT SSSβββ (F.1.1)

where βββ [n×1] =
[
α0 α1 α2 δ ′

1 · · · δ ′
n−3

]T
and

XXX [n×n] =
[
TTT [n×3] EEE [n×n]ZZZ[n×n−3]

]
SSS[n×n] =

 000[3×3] 000[2×n−3]

000[n−3×3] ZZZTTT EEEZZZ[n−3×n−3]
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F.2 Further details for Section 6.2.3

We aim to express a knots-based TPS within the usual PLS criterion (Equation 6.2.1) for
penalized regression:

min ||yyy−−−XXXβββ ||2 +λβββ
TTT SSSβββ (F.2.1)

where βββ [k×1] =
[
α0 α1 α2 δ ′

1 · · · δ ′
k−3

]T
and:

XXX [n×k] =
[
TTT [n×3] EEE [n×k]ZZZ[k×k−3]

]
SSS[k×k] =

 000[3×3] 000[3×k−3]

000[k−3×3] ZZZTTT EEEZZZ[k−3×k−3]


where ZZZ is a k× k−3 matrix, obtained via a QR decomposition of CCC, so that δδδ = ZZZδδδ

′′′ and
CCCZZZ = 000. ZZZ links the vector δδδ of k coefficients (subject to three constraints) to the vector δδδ

′′′

of k−3 unconstrained coefficients.

F.3 Further details for Section 6.2.4

We aim to express a thin-plate regression spline, within the usual PLS criterion (Equa-
tion 6.2.1) for penalized regression:

min ||yyy−−−XXXβββ ||2 +λβββ
TTT SSSβββ (F.3.1)

where βββ [k×1] =
[
α1 α2 δ ′

1 · · · δ ′
k−2

]T
and:

XXX [n×k] =
[
TTT [n×3] EEE [n×n]UUUkkk[n×k]ZZZ[k×k−3]

]
SSS[k×k] =

 000[3×3] 000[3×k−3]

000[k−3×3] ZZZTTT DDDkkkZZZ[k−3×k−3]


where EEE and TTT , DDDkkk and UUUkkk are defined in Sections 6.2.3 and 6.2.4. The n-vector of δδδ

parameters defining the optimal thin plate spline is linked to a k−3 vector of unconstrained
parameters δδδ = UUUkkkZZZδδδ

′′′. ZZZ is a k× k− 3 matrix so that TTT TTTUUUkkkZZZ = 0, obtained via the QR
decomposition of TTT .
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F.4 Further details for Section 6.2.7

In Appendix C.6 the following decompostion was considered so that the penalty/precision
matrix can be reparametrized to have an identity matrix as prior considering the eigen-
decomposition of SSS.

λβββ
TTT SSSβββ = λβββ

TTTUUUDDDUUUTTT
βββ = λβββ

TTTUUUΛΛΛ
TTT

ΛΛΛUUUTTT
βββ (F.4.1)

Letting βββ
′′′ === ΛΛΛUUUTTT

βββ , the penalty term is equivalent to:

βββ
TTTUUUΛΛΛ

TTT
ΛΛΛUUUTTT

βββ = βββ
TTT
PPPIIIβββ PPP

Where βββ PPP are the originally penalized parameters of the spline.

Unfortunately splines with two (or more) penalty terms can not be re-parametrized as above.
This is because:

λβββ
TTT SSS111βββ +βββ

TTT SSS222βββ = λβββ
TTTUUU111ΛΛΛ

TTT
111 ΛΛΛ111UUUTTT

111 βββ +λβββ
TTTUUU222ΛΛΛ

TTT
222 ΛΛΛ222UUUTTT

222 βββ

Reparametrizing as βββ
′′′ === ΛΛΛUUUTTT

βββ is not possible because ΛΛΛ111 ̸= ΛΛΛ222 and thus the penalty term
can not be rewritten as above.
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Appendix for Chapter 7

G.1 Further details for Section 7.2

The table below reports the expected number of initially undiagnosed individuals πππ chosen
for the simulation study, for each CD4 undiagnosed state and age at time 1.

Age at t1 Stage1 Stage2 Stage3 Stage4
(CD4 ≥ 500) (500 <CD4 ≤ 350) (350 <CD4 ≤ 200) (CD4 > 200)

1 8.36 1.75 1.75 0.31
2 13.14 3.90 3.90 1.16
3 15.86 5.91 5.91 2.32
4 17.41 7.56 7.56 3.54
5 19.84 11.06 11.06 6.64
6 21.24 13.74 13.74 9.34
7 22.04 15.74 15.74 11.56
8 22.44 17.08 17.08 13.17
9 22.62 17.97 17.97 14.30

10 22.74 18.81 18.81 15.43
11 46.25 24.55 24.55 17.30
12 59.51 31.31 31.31 20.54
13 66.91 37.09 37.09 23.91
14 71.01 41.83 41.83 27.44
15 71.96 43.54 43.54 28.93
16 72.42 44.86 44.86 30.23
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Age at t1 Stage1 Stage2 Stage3 Stage4
(CD4 ≥ 500) (500 <CD4 ≤ 350) (350 <CD4 ≤ 200) (CD4 > 200)

17 72.61 45.83 45.83 31.28
18 72.60 46.48 46.48 32.04
19 72.51 46.91 46.91 32.56
20 72.33 47.06 47.06 32.74
21 72.13 47.19 47.19 32.89
22 71.93 47.28 47.28 33.01
23 71.72 47.33 47.33 33.07
24 71.50 47.37 47.37 33.11
25 71.28 47.37 47.37 33.09
26 71.05 47.36 47.36 33.07
27 70.82 47.34 47.34 33.03
28 70.59 47.32 47.32 33.00
29 70.35 47.29 47.29 32.96
30 70.11 47.26 47.26 32.91
31 39.80 40.21 40.21 31.53
32 23.02 31.72 31.72 28.02
33 13.74 24.04 24.04 23.40
34 8.59 17.83 17.83 18.68
35 5.78 13.19 13.19 14.53
36 4.18 9.72 9.72 11.02
37 3.27 7.18 7.18 8.21
38 2.78 5.51 5.51 6.23
39 2.53 4.42 4.42 4.87
40 2.37 3.62 3.62 3.82
41 2.26 2.99 2.99 2.97
42 2.19 2.50 2.50 2.28
43 2.17 2.42 2.42 2.16
44 2.15 2.35 2.35 2.06
45 2.14 2.33 2.33 2.03
46 2.12 2.31 2.31 2.01
47 2.11 2.30 2.30 2.00
48 2.10 2.28 2.28 1.98
49 2.08 2.27 2.27 1.97
50 2.07 2.26 2.26 1.95
51 2.06 2.24 2.24 1.94
52 5.88 11.43 11.43 11.48
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The table below reports the progression probabilities Q values used in the simulation study,
for each CD4 undiagnosed state and age at time 1.

Age at inf Stage1 Stage2 Stage3 Stage4
a0 (CD4 ≥ 500) (500 <CD4 ≤ 350) (350 <CD4 ≤ 200) (CD4 > 200)
1 0.09 0.12 0.11 0.14
2 0.09 0.12 0.11 0.14
3 0.09 0.12 0.11 0.14
4 0.09 0.12 0.11 0.14
5 0.09 0.12 0.11 0.14
6 0.09 0.12 0.11 0.14
7 0.09 0.12 0.11 0.14
8 0.09 0.12 0.11 0.14
9 0.09 0.12 0.11 0.14

10 0.09 0.12 0.11 0.14
11 0.09 0.12 0.11 0.14
12 0.09 0.12 0.11 0.14
13 0.09 0.12 0.11 0.15
14 0.09 0.12 0.11 0.15
15 0.09 0.12 0.12 0.15
16 0.09 0.12 0.12 0.15
17 0.09 0.12 0.12 0.15
18 0.09 0.12 0.12 0.15
19 0.09 0.12 0.12 0.15
20 0.10 0.12 0.12 0.15
21 0.10 0.12 0.12 0.15
22 0.10 0.12 0.12 0.15
23 0.10 0.12 0.12 0.15
24 0.10 0.12 0.12 0.15
25 0.10 0.12 0.12 0.15
26 0.10 0.12 0.12 0.15
27 0.10 0.12 0.12 0.15
28 0.10 0.12 0.12 0.15
29 0.10 0.12 0.12 0.16
30 0.10 0.12 0.12 0.16
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Age at inf Stage1 Stage2 Stage3 Stage4
a0 (CD4 ≥ 500) (500 <CD4 ≤ 350) (350 <CD4 ≤ 200) (CD4 > 200)
31 0.10 0.12 0.12 0.16
32 0.10 0.12 0.12 0.16
33 0.10 0.12 0.12 0.16
34 0.10 0.12 0.13 0.16
35 0.10 0.12 0.13 0.16
36 0.10 0.12 0.13 0.16
37 0.10 0.12 0.13 0.16
38 0.10 0.12 0.13 0.16
39 0.10 0.12 0.13 0.17
40 0.10 0.12 0.13 0.17
41 0.10 0.12 0.13 0.17
42 0.10 0.13 0.13 0.17
43 0.10 0.13 0.14 0.17
44 0.10 0.13 0.14 0.17
45 0.10 0.13 0.14 0.18
46 0.11 0.13 0.14 0.18
47 0.11 0.13 0.14 0.18
48 0.11 0.13 0.14 0.18
49 0.11 0.13 0.14 0.18
50 0.11 0.13 0.15 0.19
51 0.11 0.13 0.15 0.19
52 0.11 0.13 0.15 0.19

G.2 Further details for Section 7.6.2

G.2.1 Estimated diagnosis probabilities from states 2, 3, and 4

In this Section the posterior means (estimates) of diagnosis probabilities from states 2, 3
and 4 are depicted for all incidence models, under the three true incidence scenarios. Recall
that the true diagnosis probabilities (from all states) are constant in the three true incidence
scenarios. It can be observed that, for all incidence models and under all incidence scenarios,
diagnosis probabilities are reasonably well estimated and, unlike diagnosis probabilities from
state 1, no consistent bias appears in the most recent years.
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Fig. G.1 Estimated diagnosis probabilities from states 2, 3, and 4 under the three different
incidence scenarios, as indicated by captions. Red and black lines depict the true diagnoses
curves and the posterior means for each dataset, credible intervals are not depicted.
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tp incidence model
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Fig. G.2 Estimated diagnosis probabilities from states 2, 3, and 4 under the three different
incidence scenarios, as indicated by captions. Red and black lines depict the true diagnoses
curves and the posterior means for each dataset, credible intervals are not depicted.
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Fig. G.3 Estimated diagnosis probabilities from states 2, 3, and 4 under the three different
incidence scenarios, as indicated by captions. Red and black lines depict the true diagnoses
curves and the posterior means for each dataset, credible intervals are not depicted.
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Fig. G.4 Estimated diagnosis probabilities from states 2, 3, and 4 under the three different
incidence scenarios, as indicated by captions. Red and black lines depict the true diagnoses
curves and the posterior means for each dataset, credible intervals are not depicted.
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Fig. G.5 Estimated diagnosis probabilities from states 2, 3, and 4 under the three different
incidence scenarios, as indicated by captions. Red and black lines depict the true diagnoses
curves and the posterior means for each dataset, credible intervals are not depicted.
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Fig. G.6 Estimated diagnosis probabilities from states 2, 3, and 4 under the three different
incidence scenarios, as indicated by captions. Red and black lines depict the true diagnoses
curves and the posterior means for each dataset, credible intervals are not depicted.
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Fig. G.7 Estimated diagnosis probabilities from states 2, 3, and 4 under the three different
incidence scenarios, as indicated by captions. Red and black lines depict the true diagnoses
curves and the posterior means for each dataset, credible intervals are not depicted.
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GP incidence model
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Fig. G.8 Estimated diagnosis probabilities from states 2, 3, and 4 under the three different
incidence scenarios, as indicated by captions. Red and black lines depict the true diagnoses
curves and the posterior means for each dataset, credible intervals are not depicted.
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G.2.2 Goodness of fit plots

In this Section, goodness of fit plots are presented. Dataset 25 generated under the true flat
incidence scenario is considered. This comprises three data sources: HIV, AIDS and CD4.
For each data source, goodness of fit is considered at population level and is further stratified
within the usual four age-classes: 15-24, 25-34, 35-44, 45+. All incidence models considered,
with the exception of GP (red lines), provide very similar goodness of fit for all data-sources
considered. Data are always extremely well fitted, both at population and at age-specific
level. Only CD4-count data stratified by age-class are not particularly well fitted.
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Fig. G.9 Goodness of fit plots for HIV and AIDS diagnoses in data 25 (generated with
flat incidence). The different colored lines and crosses respectively represent all incidence
models and the simulated data points.
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(c) 35-44
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(d) 45+

Fig. G.10 Goodness of fit plots for HIV diagnoses, stratified by age-class as indicated in
captions, for data 25 (generated with flat incidence). The different colored lines and crosses
respectively represent all incidence models and the simulated data points.
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Fig. G.11 Goodness of fit plots for AIDS diagnoses, stratified by age-class as indicated in
captions, for data 25 (generated with flat incidence). The different colored lines and crosses
respectively represent all incidence models and the simulated data points.
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Fig. G.12 Goodness of fit plots for CD4 diagnoses, stratified by state as indicated in captions,
for data 25 (generated with flat incidence). The different colored lines and crosses respectively
represent all incidence models and the simulated data points.
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1995 2000 2005 2010

2
0

4
0

6
0

8
0

Year

N
u

m
b

e
r 

o
f 

N
e
w

 D
ia

g
n

o
s
e

s

GP
ptens_bs1
ptens_bs2
ptens_tp
ptens_ts
tp
tp_knotloc
ts

(e) State2, 15-24

1995 2000 2005 2010

5
0

1
0

0
1

5
0

2
0

0
2

5
0

Year

N
u

m
b

e
r 

o
f 

N
e
w

 D
ia

g
n

o
s
e

s

GP
ptens_bs1
ptens_bs2
ptens_tp
ptens_ts
tp
tp_knotloc
ts

(f) State2, 25-34

1995 2000 2005 2010

5
0

1
0

0
1

5
0

2
0

0

Year

N
u

m
b

e
r 

o
f 

N
e
w

 D
ia

g
n

o
s
e

s

GP
ptens_bs1
ptens_bs2
ptens_tp
ptens_ts
tp
tp_knotloc
ts
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(k) State3, 35-44
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(l) State3, 45+
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(m) State4, 15-24

1995 2000 2005 2010

5
0

1
0

0
1

5
0

Year

N
u

m
b

e
r 

o
f 

N
e
w

 D
ia

g
n

o
s
e

s

GP
ptens_bs1
ptens_bs2
ptens_tp
ptens_ts
tp
tp_knotloc
ts

(n) State4, 25-34

1995 2000 2005 2010

5
0

1
0

0
1

5
0

Year

N
u

m
b

e
r 

o
f 

N
e
w

 D
ia

g
n

o
s
e

s

GP
ptens_bs1
ptens_bs2
ptens_tp
ptens_ts
tp
tp_knotloc
ts

(o) State4, 35-44

1995 2000 2005 2010

2
0

4
0

6
0

8
0

1
0

0
1

2
0

Year

N
u

m
b

e
r 

o
f 

N
e
w

 D
ia

g
n

o
s
e

s

GP
ptens_bs1
ptens_bs2
ptens_tp
ptens_ts
tp
tp_knotloc
ts

(p) State4, 45+

Fig. G.13 Goodness of fit for age and state specific CD4 diagnoses (as indicated in legends) for
dataset 25 (generated with flat incidence). The different colored lines and crosses respectively
represent all incidence models and the simulated data points.





Appendix H

Appendix for Chapter 8

H.1 Further details for Section 8.3.3

In this Section goodness of fit plots for the 1978-model and 1995-model, discussed in Section
Section 8.3.3, are depicted. The posterior-predictive distribution, with 95% credible intervals,
is considered. Goodness of fit is very similar for both models, for all data considered.



270 Appendix for Chapter 8

1995 2000 2005 2010 2015

0
2

0
0

4
0

0
6

0
0

8
0

0

Year

N
u

m
b

e
r 

o
f 

D
ia

g
n

o
se

s

Model

rw_1978
rw_1995

(a) HIV

1995 2000 2005 2010 2015
0

5
0

1
0

0
1

5
0

Year

N
u

m
b

e
r 

o
f 

D
ia

g
n

o
se

s

Model

rw_1978
rw_1995

(b) AIDS

1995 2000 2005 2010 2015

1
0

0
2

0
0

3
0

0
4

0
0

Year

N
u

m
b

e
r 

o
f 

D
ia

g
n

o
se

s

Model

rw_1978
rw_1995

(c) CD4, State 1

1995 2000 2005 2010 2015

5
0

1
0

0
1

5
0

2
0

0

Year

N
u

m
b

e
r 

o
f 

D
ia

g
n

o
se

s

Model

rw_1978
rw_1995

(d) CD4, State 2

1995 2000 2005 2010 2015

4
0

6
0

8
0

1
0

0
1

2
0

1
4

0
1

6
0

Year

N
u

m
b

e
r 

o
f 

D
ia

g
n

o
se

s

Model

rw_1978
rw_1995

(e) CD4, State 3

1995 2000 2005 2010 2015

2
0

4
0

6
0

8
0

1
0

0
1

2
0

1
4

0

Year

N
u

m
b

e
r 

o
f 

D
ia

g
n

o
se

s

Model

rw_1978
rw_1995

(f) CD4, State 4

Fig. H.1 Goodness of fit for the age-independent back-calculation model, as indicated by the
sub-captions.
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H.2 Further details for Section 8.3.4

Below the plots of the estimated diagnosis probabilities from undiagnosed states 2 and 3, for
both scenarios, are depicted. Solid lines represent the means of the posterior distribution and
dashed lines represent 95% credible intervals.
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Fig. H.2 Diagnosis probabilities, by state and scenario.
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Below CD4-count data goodness of fit for scenario 2 is plotted, for the four different latent
stages considered, can be found. The posterior-predictive distribution for the data is depicted:
solid lines show posterior means and dashed lines 95% credible intervals.
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Fig. H.3 CD4 diagnoses goodness of fit, by state and scenario.



H.3 Further details for Section 8.4.1 273

H.3 Further details for Section 8.4.1

Below age-specific goodness of fit plots for age-specific back-calculation models are re-
ported, using the ts and ptensbsord1 incidence models. The posterior-predictive distribution
for the data is depicted: solid lines show posterior means and dashed lines 95% credible
intervals.
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Fig. H.4 HIV diagnoses goodness of fit, stratified by age-classes.
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Fig. H.5 AIDS diagnoses goodness of fit, stratified by age-classes.
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(c) State1, 35-44
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(d) State1, 45+
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(f) State2, 25-34
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(g) State2, 35-44
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(h) State2, 45+
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(j) State3, 25-34
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(k) State3, 35-44
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(l) State3, 45+
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Fig. H.6 Goodness of fit for age and state specific CD4 diagnoses. The pink and green lines
represent the ts and ptensbsord1 models and the points the observed data.
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H.4 Further details for Section 8.4.2

Goodness of fit plots for the models considered in Section 8.4.2 are displayed. For goodness
of fit to be comparable, the yearly (rather than quarterly) data posterior-predictive distribution
for the quarterly models are displayed. Solid lines show posterior means and dashed lines
95% credible intervals. The latter have only been reported for the Qt-AdDx2 Only age-
specific goodness of fit plots for AIDS and CD4-count data are shown, as for HIV data all
models produce the same fit.
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Fig. H.7 AIDS diagnoses goodness of fit, stratified by age-class.
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Fig. H.8 CD4 diagnoses goodness of fit, stratified by age-class, states 1 and 2.
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Fig. H.9 CD4 diagnoses goodness of fit, stratified by age-class, states 3 and 4.
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The plots below show that also age-specific incidence estimates from the Qt-AdDx2 model
are robust to the sequential addition of further years of data.
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Fig. H.10 Sensitivity of the estimated time profile of incidence to the sequential addition of
years of data, for Qt-AdDx2 stratified by age-class.
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