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We consider the self-induced motions of three-dimensional oblate spheroids of density
ρs with varying aspect ratios AR = b/c 6 1, where b and c are the spheroids’ centre-
pole radius and centre-equator radius respectively. Vertical motion is imposed on the
spheroids such that ys(t) = A sin(2πft) in a fluid of density ρ and kinematic viscosity ν.
As in strictly two-dimensional flows, above a critical value ReC of the flapping Reynolds
number ReA = 2Afc/ν the spheroid ultimately propels itself horizontally as a result of
fluid-body interactions. For ReA sufficiently above ReC , the spheroid rapidly settles into a
terminal state of constant, unidirectional velocity, consistent with the prediction of Deng
et al. (2016) that, at sufficiently high ReA, such oscillating spheroids manifest m = 1
asymmetric flow, with characteristic vortical structures conducive to providing unidirec-
tional thrust if the spheroid is free to move horizontally. The speed U of propagation
increases linearly with the flapping frequency, resulting in a constant Strouhal number
St(AR) = 2Af/U , characterising the locomotive performance of the oblate spheroid,
somewhat larger than the equivalent St for two-dimensional spheroids, demonstrating
that the three-dimensional flow is less efficient at driving locomotion. St decreases with
increasing aspect ratio for both two-dimensional and three-dimensional flows, although
the relative disparity (and hence relative inefficiency of three-dimensional motion) de-
creases. For flows with ReA & ReC , we observe two distinct types of inherently three-
dimensional motion for different aspect ratios. The first, associated with a disk of aspect
ratio AR = 0.1 at ReA = 45, consists of a ‘stair-step’ trajectory. This trajectory can be
understood through consideration of relatively high azimuthal wavenumber instabilities
of interacting vortex rings, characterised by in-phase vortical structures above and below
an oscillating spheroid, recently calculated using Floquet analysis by Deng et al. (2016).
Such ‘in-phase’ instabilities arise in a relatively narrow band of ReA & ReC , which band
shifts to higher Reynolds number as the aspect ratio increases. (Indeed, for horizontally
fixed spheroids with aspect ratio AR = 0.2, Floquet analysis actually predicts stability
at ReA = 45.) For such a spheroid (AR = 0.2, ReA = 45, with sufficiently small mass
ratio ms/mf = ρsVs/(ρVs) where Vs is the volume of the spheroid) which is free to move
horizontally the second type of three-dimensional motion is observed, initially taking the
form of a ‘snaking’ trajectory with, long quasi-periodic sweeping oscillations before lock-
ing into an approximately elliptical ‘orbit’, apparently manifesting a three-dimensional
generalization of the QPH quasi-periodic symmetry breaking discussed for sufficiently
high aspect ratio two-dimensional elliptical foils in Deng & Caulfield (2016).

† Email address for correspondence: c.p.caulfield@bpi.cam.ac.uk
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1. Introduction

Flapping wings or fins are commonly used by flying or swimming animals for loco-
motion through a fluid (Childress 1981; Alexander 1993). This strategy has also been
implemented to design underwater vehicles using flapping propellers for propulsion (Fish
et al. 2003; Techet et al. 2004). To understand such thrust generation mechanisms, there
have been many experimental and numerical studies of the flow dynamics of flapping
foils (Triantafyllou et al. 1993, 2004; Lewin & Haj-Hariri 2003). For example, recently,
Klotsa et al. (2015) put forward a conceptual design for a ‘two-sphere swimmer’. They
studied the propulsion of a neutrally buoyant swimmer consisting of a pair of spheres
attached by a spring, immersed in a vibrating fluid. They reported that the vibration of
the fluid induces relative motion of the spheres which, for sufficiently large amplitudes,
can lead to motion of the centre of mass of the two spheres.

This type of self-propelled ‘robot’ has actually become an important technological and
medical challenge that brings together elements of physics, chemistry, biology, engineer-
ing, and fluid mechanics (Dreyfus et al. 2005; Bar-Cohen 2006; Williams et al. 2014).
Most of the artificial microscopic ‘robots’, as well as many of their naturally occur-
ring counterparts, for example insects and aquatic invertebrates, operate at intermediate
Reynolds numbers (1-100) (Childress & Dudley 2004), where nonlinearity is expected
to be important, yet the flow is not expected to undergo the transition to turbulence.
However, from the perspective of fluid mechanics, how time-reversal symmetry is broken
by nonlinearities as the Reynolds number increases is still not clearly established, partic-
ularly for (realistic) three-dimensional flows. Therefore, we believe that a further study
on self-propulsion is meaningful to understand physical mechanisms potentially relevant
to both animal and artificial ‘robot’ locomotion.

Vandenberghe et al. (2004) proposed a self-propelled model flow, considering a two-
dimensional plate of length 2c which was free to move horizontally as a result of a
prescribed oscillatory vertical motion y(t) = A sin(2πft). They showed that the flow
symmetry about the midpoint of the vertically oscillating plate breaks at some criti-
cal amplitude, leading to the plate ‘flying’ forwards. Above a critical value ReC of the
flapping Reynolds number ReA, they observed an approximately linear increase in the
forward speed U with flapping frequency, implying a constant value of the Strouhal
number St ' 0.26 as ReA increases, where ReA and St are defined as

ReA =
2Afc

ν
; St =

2fA

U
, (1.1)

where ν is the kinematic viscosity of the fluid. This result is consistent (though perhaps
coincidental) with our understanding of the flapping locomotion of animals, as Triantafyl-
lou et al. (1993) noted that the range 0.25 < St < 0.35 may be considered to be optimal
for thrust production. Using numerical simulations, Alben & Shelley (2005) showed how
simple imposed oscillations of two-dimensional ellipses of varying aspect ratio can lead
to forward locomotion. They identified that there are two different identifiable stages as
the oscillating body undergoes the transition to forward motion. First, they showed that
the fluid flow loses symmetry through a linear instability. Second, nonlinear fluid-solid
interactions between the body and previously shed vortices (associated with previous
oscillation cycles) eventually ‘push’ the body into forward locomotion. Alben & Shelley
(2005) found that the critical value for the onset of such locomotion ReC is independent
of density ratio ρs/ρ, where ρs is the density of the solid body, implying that the primary
instability is that of the fluid flow alone and not of the coupled body-fluid system.

Subsequently, the dynamics of a two-dimensional flapping body in a viscous fluid has
been extensively investigated (Vandenberghe et al. 2006; Lu & Liao 2006; Zhang et al.
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2009). Although many new phenomena have been identified, most previous research has
been based on the hypothesis that it is appropriate to consider purely two-dimensional
flow. For example, we have recently shown (see Deng & Caulfield (2016)) that the onset
of symmetry breaking around elliptical foils of varying aspect ratios which are free to
move horizontally has many points of similarity with the onset of symmetry breaking
around fixed cylinders (Tatsuno & Bearman 1990; Elston et al. 2001). In particular, we
showed that the character of the symmetry breaking which occurs depends on the values
of two natural nondimensional parameters: the nondimensional amplitude or Keulegan-
Carpenter number KC and the nondimensional frequency or Stokes number β defined,
conventionally using the diameter 2c of the foil, as

KC =
2πA

2c
; β =

f(2c)2

ν
; ReA =

βKC

2π
. (1.2)

For sufficiently small values of β, the onset of asymmetry around both fixed and free-
to-fly foils is ‘synchronous’, in that the observed horizontal force is completely dominated
by a frequency double that of the primary oscillation. Conversely, for larger values of β
and also larger aspect ratios, the asymmetry around both fixed and flying foils is ‘quasi-
periodic’, in that the horizontal force exhibits two distinct frequencies, leading typically to
a long period beating in the horizontal motion of the foil. We labelled this particular type
of symmetry breaking as ‘QPH ’ symmetry breaking. However, for flying two-dimensional
foils with small or ‘low’ aspect ratios (AR = 0.1), we observed that the quasi-periodic
asymmetry (which we labelled as ‘QPL’ symmetry breaking) exhibited by fixed foils was
actually suppressed, with the symmetry-breaking for flying foils being synchronous in
character. We also observed that the loss of symmetry around relatively higher aspect
ratio foils at relatively high β was encouraged by the foil being free to move horizontally,
in that it occurred at smaller ReA than for fixed foils.

In this paper, our central focus is to investigate whether intuition gained from purely
two-dimensional studies is relevant to the flapping-induced locomotion of more realistic
three-dimensional bodies. Of particular motivation is the (perhaps unsurprising) obser-
vation that three-dimensional oscillating bodies are prone to symmetry-breaking insta-
bilities. Focussing on oblate spheroids with aspect ratio AR = 0.1 and using Floquet
stability analyses, in Deng et al. (2016) we demonstrated that there exists a rich vari-
ety of relatively high azimuthal wavenumber instabilities for an intermediate range of
KC, β pairs between stable symmetric flow and (at sufficiently high KC) asymmetric
flow with m = 1 structure. These instabilities can be classified into two branches, ‘I’
and ‘O’, with vortical structures either in or out of phase above and below the oscil-
lating spheroid. Branch ‘I’ occurs for smaller KC (and typically at lower wavenumber
m) for given β, and thus branch ‘I’ is the first symmetry-breaking instability to occur
as the amplitude of the oscillation increases. Finite amplitude manifestations of these
instabilities have been observed experimentally (Deng et al. 2017) once again only for
the relatively small aspect ratio AR = 0.1, and so it is naturally of interest to investigate
whether these instabilities, particularly for such smaller aspect ratio spheroids, play any
role in any symmetry-breaking leading (at finite amplitude) to locomotion. In such an
investigation it is always important to remember two aspects of the evidence from our
two-dimensional studies. First, these studies suggest that linear stability properties are
strongly dependent on aspect ratio, and so extrapolating results from one aspect ratio to
another should be treated with caution. Secondly, these studies also suggest that, close
to the onset of symmetry-breaking, the behaviour of horizontally-fixed and freely-moving
bodies can be different. In particular, both stability thresholds derived from studies of
horizontally-fixed bodies and the existence of quasi-periodic finite amplitude oscillatory
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states may well not carry over quantitatively to bodies which are free to move horizon-
tally. As we discuss in more detail below, these two aspects appear to remain significant
in three-dimensional flows.

For simplicity, and also to connect with our recent investigations both of symmetry-
breaking around two-dimensional elliptical foils and of high-wavenumber instability around
(horizontally fixed) oblate spheroids, we model the flapping body as just such an oblate
spheroid, with varying aspect ratio, subject to a specified sinusoidal vertical oscillation
and in general free to move horizontally in response to the fluid forces acting upon it.
We restrict attention to a fixed, sufficiently large value of scaled frequency or Stokes
number (β = 500 as defined in (1.2)) for two related reasons. First, this parameter
value allows us to investigate whether the onset of asymmetry remains quasi-periodic in
character for three-dimensional bodies with higher aspect ratios (i.e. AR > 0.1), with
quasi-periodicity conversely continuing to be suppressed for bodies with sufficiently small
aspect ratios (AR = 0.1) as observed in two dimensions in Deng & Caulfield (2016). Sec-
ond, we can also assess whether the branch ‘I’ or branch ‘O’ high azimuthal wavenumber
instabilities play any role in the transition to locomotion. For this choice of β, there is a
nontrivial range of scaled amplitudes KC where branch ‘I’ and branch ‘O’ instabilities
occur for horizontally fixed three-dimensional oblate spheroids before the flow eventually
manifests a simpler m = 1 asymmetry, with an associated flow structure similar to the
flow characteristic of locomotion for flapping freely-moving bodies.

Specifically, our aims are to reveal two fundamental aspects of the three-dimensional
flow dynamics and compare and contrast them with the equivalent two-dimensional be-
haviour. First, we show that there still exists an attracting dynamical state in this three-
dimensional flow, such that the body maintains a stable unidirectional locomotion at suf-
ficiently high ReA, and we identify the central physical processes associated with this flow
state, in particular that it is somewhat less efficient than the equivalent two-dimensional
flow, and show that this relative inefficiency becomes less significant as aspect ratio in-
creases. Second, we show that sufficiently close to yet above the critical value ReC of ReA
for locomotion, the induced, inherently three-dimensional vortical motions can lead to
complex trajectories for the body. For AR = 0.1 in a flow with ReA = 45, the trajectory
can be related directly to a modulated version of the dominant branch ‘I’ m = 4 linear
instability, strongly suggesting that the suppression of quasi-periodicity and the domi-
nance at onset of synchronous asymmetry observed in two-dimensional flows also occurs
for three-dimensional small-aspect-ratio bodies. Conversely, for AR = 0.2, the flow with
ReA = 45 induced by a horizontally-fixed spheroid is not prone to the highly organised
branch ‘I’ instabilities, illustrating that the stability properties are indeed strongly de-
pendent on the aspect ratio of the oscillating body, but rather undergoes the transition
to asymmetry via a three-dimensional generalisation of the QPH -type quasi-periodicity
also previously observed in two dimensions. To address these aims, the rest of the pa-
per is organised as follows. In section 2, we briefly review our numerical methods both
for direct simulation and Floquet stability analysis, and describe the specific parameters
for our simulations. In section 3, we present our results, particularly placing them into
the context of our previous two-dimensional and Floquet instability studies, described in
Deng et al. (2016) and Deng et al. (2017). We then draw our conclusions in section 4.
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2. Numerical methods

2.1. Flow parameters

We consider an oblate spheroid of uniform density ρs and volume Vs, which is formed by
rotation about the minor vertical y−axis of an ellipse with semi-major radius c and semi-
minor radius b. We define the aspect ratio or oblateness as AR=b/c 6 1, and consider the
motion of spheroids with AR = 0.1, 0.2, 0.3 and 0.4. We impose a fixed vertical motion of
ys = A sin(2πft) on the spheroid, which is in general free to move in the horizontal plane
in a fluid of density ρ and kinematic viscosity ν. Therefore, there are two appropriate
Reynolds numbers for this flow, the flapping Reynolds number ReA as defined in (1.1),
and the locomotion Reynolds number ReU , defined as

ReU =
2Uc

ν
, U = |u|, (2.1)

where u is the asymptotic steady horizontal velocity vector for the flapping body. We
vary ReA ∈ [27, 99], and ReU emerges as a property of the ensuing motion. As already
noted, we fix the scaled frequency or Stokes number β = 500, from (1.2), so variation
of ReA is equivalent to variation in the scaled amplitude or Keulegan-Carpenter number
KC. Also, the Strouhal number St as defined in (1.1) can then be identified as St =
2ReA/ReU , consistently with previous definitions used in the characterisation of the wake
dynamics of a flapping foil (Taylor et al. 2003; Triantafyllou et al. 1993). For comparison,
we also conduct a range of two-dimensional simulations of flapping elliptical foils with
AR ∈ [0.1, 0.7] and ReA ∈ [9, 135].

2.2. Direct numerical simulation

We use the open source code OpenFOAM (Jasak 1996). The time-dependent Navier-
Stokes equations are solved using the finite volume method, assuming incompressibility,
and with no turbulence closure. The mass and momentum equations are solved on a
moving grid domain using the Arbitrary Lagrangian Eulerian (ALE) formulation (see
(Ferziger & Peric 2002)). The integral form of the governing (conservation) equations
defined in an arbitrary moving volume V bounded by a closed surface S is

d

dt

∫
V

ρUdV +

∮
S

ds · ρ(U−Ub)U =

∮
S

ds · (−pI + ρν∇U), (2.2)

where U is the fluid velocity, Ub is the boundary velocity of a finite volume, ρ is the
fluid density, and p is the pressure. As the volume V is no longer fixed in space, its
motion is captured by the motion of its bounding surface S at the boundary velocity Ub.
For the details of the discretisation and implementation of boundary conditions, as well
as the transformation of the underlying partial differential equations into corresponding
systems of algebraic equations, see Ferziger & Peric (2002).

The space discretizations are second-order upwind for the convection terms and cen-
tral differences for the Laplacian terms, respectively. The time discretization is first-order
implicit Euler. The pressure-velocity coupling in incompressible flow simulations is ob-
tained using the PISO scheme (Ferziger & Peric 2002). Numerical accuracy is set to
double-precision and the initial conditions are chosen to be uniform. We set the bound-
ary condition on the spheroid to be moving-wall, with no flux normal to the wall. At the
outer boundary of the computational domain (a sphere with a radius of 40c) we set the
normal components of the velocity gradients to be zero, and the pressure to be zero.

We have found that at least 2000 time steps are required to ensure that the unsteadi-
ness caused by the oscillation is well-resolved. To determine the required level of spatial



6 Jian Deng and C. P. Caulfield

resolution, we simulate a purely oscillating circular two dimension foil at three differ-
ent mesh resolutions: a coarse mesh (31250 cells); a medium mesh (50236 cells); and a
fine mesh (86936 cells). We find that both the medium mesh and fine mesh resolution
provide satisfactory accuracy in space, and so we generate a three-dimensional mesh
through simple rotation about the vertical axis of the medium mesh with axisymmetric
horizontal resolution, leading to a three-dimensional mesh with about 1.5 million cells.
As noted below, when appropriate we also check the robustness of our new (and perhaps
surprising) results to numerical resolution by repeating simulations on an appreciably
finer mesh with approximately 3.5 million cells. As already noted, the vertical motion
of the spheroid is specified, while its horizontal motion is determined by the horizontal
fluid force using Newton’s second law:

ms
d2(xb, zb)

dt2
= (Fx, Fz), (2.3)

where (xb = (xb, zb)) is the horizontal location vector of the spheroid in the (x, z) plane,
FB = (Fx, Fz) is the horizontal fluid force vector acting on the spheroid, ms is the mass
of the spheroid given by ms = ρsVs, with ρs the density of the spheroid and V the
body volume. The fluid mass with equivalent volume is denoted as mf = ρVs. In most
simulations, if not specifically noted, we keep the mass ratio at ms/mf = 10. We solve
(2.3) using a fourth-order Runge-Kutta time-stepping scheme.

In the current study, all lengths are non-dimensionalized with 2c, all densities are
non-dimensionalized with ρ, and all times are non-dimensionalized with the viscous time
scale (2c)2/ν. In the following discussion, all forces are scaled by 104ρν2/2, velocities are
scaled by 102ν/(2c), and the displacements are scaled by 2c.

2.3. Floquet stability analysis

As discussed in more detail in Deng et al. (2016), the linear stability of a (horizontally
fixed) oscillating spheroid can be studied using Floquet analysis, since the underlying
flow has a natural periodicity. In brief, we decompose the flow field around the oscillating
spheroid into an axisymmetric base flow and a small amplitude perturbation, (u, p) =
(U, P ) + (u′, p′), which perturbation satisfies

∂u′

∂t
= −U ·∇u′ − u′ ·∇U−∇p′ + ν∇2u′; ∇ · u′ = 0. (2.4)

We use a spectral-element method to calculate both the axisymmetric base flow and
the instabilities (Karniadakis & Sherwin 2013). Any perturbation at time t = T can be
decomposed as the sum of azimuthal modes with wavenumber m:

u′(r, θ, z, t) =

+∞∑
m=0

u(m)(r, z, t)eimθ, (2.5)

We then define a (T−periodic) operator A, which evolves a perturbation from t = 0 to
t = T = 2π/f0 by integrating (2.4) forward in time, and so:

u′(T ) = A(T )u′(0). (2.6)

The Floquet modes and their multipliers, labelled µ, can be obtained by calculating
the eigenvectors and eigenvalues of A, through applying an Arnoldi method to a Krylov
subspace constructed by iteratively integrating (2.4). For the flows considered here, these
eigenvalues are all real, and the dominant (largest) one, denoted as µmax, corresponds to
the least stable mode. If µmax > 1, this mode is unstable and will exhibit perturbation
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Figure 1. (a) Trajectories projected to the horizontal plane for unidirectional locomotion for a
range of spheroids with different aspect ratio and ReA, as denoted by the line type. The locations
of the spheroid with AR = 0.1 and ReA = 81 at the various times shown in figure 2 are marked
with symbols in the magnified inset to highlight the first 15 cycles. Variation of the locomotion
Reynolds number ReU with flapping Reynolds number ReA for: (b) flapping oblate spheroids;
and (c) two-dimensional flapping foils. Various aspect ratios are marked with different symbols
and line types, while the three cases highlighted in figures 2-8 are circled in (b). For comparison,
the previous range of dependencies identified by Taylor et al. (2003) (i.e. 0.25 < St < 0.35 are
marked with two dashed lines in (c).

energy growth, with growth rate given by the equivalent Floquet exponent σmax defined
implicitly by µmax = exp(σmaxT ).

3. Results

3.1. Unidirectional locomotion

For a two-dimensional flapping elliptical foil which is not moving horizontally initially, at
sufficiently large flapping Reynolds number ReA, as defined in (1.1), unidirectional loco-
motion emerges as an attracting state. (Alben & Shelley 2005). We find that a flapping
oblate spheroid is also ultimately attracted to unidirectional horizontal locomotion, but
due to three-dimensionality, the transition is (unsurprisingly) appreciably more complex.
In figure 1(a), we present typical trajectories for various cases ultimately attracted to
unidirectional locomotion away from the initial location of the foil. Some cases exhibit
turning manoeuvres before settling down to their final direction of propagation. Due to
inevitable numerical perturbations, we believe that there is no deterministic pattern to
the selection of the eventual direction of propagation, although it is clear that unidirec-
tional motion is both a strongly attracting and stable state for these particular choices
of aspect ratio and ReA.

In figure 1(b), we plot the variation of locomotion Reynolds number ReU with the
flapping Reynolds number ReA for flapping oblate spheroids with various aspect ratios.
For comparison, in figure 1(c), we plot the variation of ReU with ReA for two-dimensional
flapping foils with various aspect ratios. For the two-dimensional flapping foils with AR =
0.1, 0.2 and 0.3, St = 0.25, 0.26 and 0.32 respectively, which fall in the range 0.25 < St <
0.35, reported by Taylor et al. (2003) to be optimal for flying and swimming organisms
performing thrust motion. It is important to appreciate that this consistency may be a
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Figure 2. Vortex topologies around the flapping oblate spheroid at ReA = 81 and AR = 0.1,
visualized using Q = 2, as defined in (3.1). Images demonstrate the initial flow dynamics leading
to unidirectional locomotion. The disk is coloured with the surface pressure distribution. A movie
is also available as supplementary material.

coincidence, as the specific characteristics of the flows around these idealised bodies and
around organisms are undoubtedly different. Nevertheless, it is undoubtedly of interest
to investigate whether these particular values of St are subject to a fundamental physical
bound of some kind associated with the streamlined shape of such low aspect ratio bodies.
Indeed, for larger aspect ratios, locomotion through flapping motion is greatly reduced,
with St = 0.52, 0.7 and 0.81 for AR = 0.4, 0.5 and 0.7 respectively.

For the flapping oblate spheroids, St = 0.32 and 0.40 for AR = 0.1 and 0.4 respec-
tively, implying a performance degradation as AR increases, although this effect is less
significant than in the strictly two-dimensional flows. Therefore, the locomotion of three-
dimensional spheroids is less efficient than the equivalent two-dimensional foils with the
same aspect ratio, in that St is larger, and hence the ultimate locomotion speed U is
smaller for a given amplitude of oscillation A. This relative inefficiency is approximately
30% for bodies with AR = 0.1, and this relative inefficiency decreases with increasing
aspect ratio, dropping to approximately 10% for bodies with AR = 0.4. The fact that the
efficiency of an oblate spheroid is less sensitive to the aspect ratio than two-dimensional
elliptical foils is perhaps unsurprising, as the flow around an oblate spheroid is not so
strongly affected by increases in aspect ratio. Specifically, the oscillating oblate spheroid
still sheds toroidal vortex rings during the oscillation, and the instability and nonlinear
interaction (intimately related to three-dimensional vortex stretching) of these rings leads
to a largely similar locomotion of the spheroid over a range of aspect ratios. Conversely,
the coupling (leading to locomotion) of the vortices shed from two-dimensional elliptical
foils is more strongly affected by increases in aspect ratio.

We have not focussed on identifying precisely the critical values ReC(AR) of ReA at
which the spheroid starts to move horizontally, Nevertheless, it appears that these critical
values fall in the range ReC ' 45−65, and increase with aspect ratio, which is consistent
with the previously considered two-dimensional flow(Alben & Shelley 2005), although
three-dimensionality in the flow delays the onset of locomotion to larger flapping ampli-
tudes, and hence larger ReA (since β is fixed). To understand the underlying physical
mechanisms leading to unidirectional propagation, we visualise the evolution of vorticity
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Figure 3. The time variation of: the integrated pressure force on the surface of the spheroid
(blue filled squares); the integrated viscous force on the surface of the spheroid (red open circles);
in the: (a,c) x−direction; and (b,d) z−direction averaged over the imposed vertical oscillation
period T , for a locomotive flapping oblate spheroid at ReA = 81 with AR = 0.1. The inset in
(a) shows the time variation of the magnitude of the horizontal velocity (triangles) compared
with a straight solid line on log-linear axes, demonstrating early time quasi-exponential growth
consistent with a linear instability, while the dashed lines in (a) and (b) show the x−component
and the z−component of the velocity respectively.

for an oblate spheroid with AR = 0.1 at ReA = 81 in figure 2, well above the critical
value for locomotion (a supplementary material movie is also available). Its horizontal
trajectory is plotted in figure 1(a), with the magnified inset showing its initial trajectory
in detail, and it is also marked with a circle symbol in figure 1(b)). As is now conven-
tional, (Jeong & Hussain 1995), the shed vortices are visualised using an appropriate
positive value of the second invariant Q of the velocity gradient tensor, i.e.

Q =
1

2

[
|Ω|2 − |S|2

]
> 0, (3.1)

where S = 1
2 [∇v + (∇v)T ] is the rate of strain tensor, and Ω = 1

2 [∇v − (∇v)T ] is the
vorticity tensor. The positive value of Q means that the Euclidean norm of the vorticity
tensor dominates that of the rate of strain.

The flow loses axisymmetry at t = 4T , as two closely aligned vertical vortex structures
connect two vortex rings shed at different cycles. At this stage, the horizontal velocity
of the oblate spheroid grows quasi-exponentially in time as shown in the inset of figure
3, consistent with the development of a linear instability. ‘Older’ vortex rings, i.e. those
shed during previous vertical oscillation cycles, propagate away from the spheroid and
grow as they entrain quiescent surrounding fluid (Maxworthy 1972). Later, further, in-
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herently nonlinear interactions between these shed vortices and the spheroid ‘push’ it
into locomotion. As shown at t = 5T in figure 2, the vortex rings tilt away from the
spheroid due to perturbation growth. These tilted rings then induce imbalanced forces
on the spheroid, causing it to accelerate towards a fully unidirectionally locomotive state,
as shown at t = 10T in figure 2. At this asymptotic stage, the wake is dominated by
two sets of vortex rings, shed at the previous oscillation cycle and well-known to be a
propulsive wake (Dong et al. 2006).

The time-varying forces associated with this evolution leading to the asymptotic loco-
motion of the oblate spheroid are shown in figure 3. We plot separately the time evolution
of the x−component (in figures 3(a) and (c)) and the z−component (in figures 3(b) and
(d)) of the pressure force (i.e. the integral of the pressure over the surface of the oblate
spheroid) with blue filled squares, and the time evolution of the viscous force (i.e. the
integral of the viscous shear stress over the surface of the spheroid) with red open circles,
averaged over the imposed vertical oscillation period T . We also plot (with dashed lines)
the associated x−component (in figure 3(a)) and the z−component (in figure 3(b)) of
the induced velocity of the oblate spheroid.

It is not possible to decompose the forces acting on the spheroid into a pure propulsive
force and a pure drag force. However, as is apparent in figure 3, when the spheroid
exhibits unidirectional motion, the pressure forces act predominantly in the direction of
motion, while the viscous forces predominantly act in the opposite direction, opposing
the motion. Therefore, we think it is appropriate to consider the pressure force as a
proxy for the propulsive force, and the viscous force as a proxy for the drag force. It is
important to appreciate that this proxy is not precise, particularly right at the start of
the locomotion, as can be seen in figure 3, when both the viscous forces and the pressure
forces act in the same direction.

We believe that this is due to the (slight) loss of up-down symmetry right at the initi-
ation of locomotion. Although consideration of this particular stage of the flow evolution
is beyond the scope of this study, we have checked that this brief initial period (when
the viscous force contributes positively to propulsion) is robust with respect to variations
in numerical resolution. We have repeated this numerical calculation with substantially
enhanced mesh with over 3.5 million elements. We have particularly refined the mesh
around the disk, with the height of the first cell layer being halved (and hence the num-
ber of cells on the disk surface being increased accordingly) with the time step also being
halved so that the Courant-Friedrichs-Lewy requirement is still satisfied. The behaviour
remains very similar, with the ultimate speed of propagation differing by less than 0.5%
between the two simulations. The structure of the time-evolution of the viscous force is
the same in both simulations, with a negative dip (acting in the direction of motion)
at the onset of propagation rapidly changing to an asymptotic (positive) drag for both
components.

However, there is some resolution-dependent variation in the timing and magnitude
of this dip. For the simulation shown in figure 3, the minimum x−component of the
viscous force is -0.056 at t/T = 12, and the minimum z−component of the viscous force
is -0.045 at t/T = 6, while for the simulation with enhanced resolution, the minimum
x−component of the viscous force is -0.060 at t/T = 9, and the minimum z−component of
the viscous force is -0.130 at t/T = 9. Nevertheless, we do not believe that these variations
significantly alter the interpretation of this phenomenon as a physically meaningful early-
time property of this flow.

All the components of the forces on the spheroid unsurprisingly oscillate markedly
and synchronously, i.e. with twice the frequency, conforming to similar structure on both
the upstroke and downstroke of the spheroid’s oscillation. Ultimately, when averaged



Locomotion of a flapping oblate spheroid 11

m

|µ
|

1 2 3 4 5 6 7 8 9 100.9

1.0

1.1

1.2

1.3

1.4

1.5
AR=0.1,  Re

A
=45

AR=0.2,  Re
A
=45

(b)

Re
A

m
m

ax

40 50 60 70 80 90 1000
1
2
3
4
5
6
7
8
9

AR=0.1
AR=0.2

(a)

Figure 4. (a) Variation of the most unstable azimuthal wavenumber mmax with ReA for os-
cillating spheroids with β = 500 and AR = 0.1 (red circles) and AR = 0.2 (green triangles).
Instability onsets at ReA ' 40 for AR = 0.1, and at ReA ' 62 for AR = 0.2. The discontinuous
jumps in wavenumber with increasing ReA are associated with transitions from branch ‘I’ to
branch ‘O’ to asymptotic m = 1 instability (see Deng et al. (2016) and Deng et al. (2017) for
further details). Inset are three-dimensional structures of the vorticity distributions, (visualized
using Q = 50 as defined in (3.1)) for: ReA = 81, showing the dominant m = 1 asymmetric
structure; and ReA = 45, showing the m = 4 most unstable (branch ‘I’) mode from direct
numerical simulations of horizontally fixed oscillating spheroids with AR = 0.1. b) Variation of
Floquet multiplier amplitude |µ| with azimuthal wavenumber m for the flow around oscillating
spheroids with β = 500, ReA = 45 and AR = 0.1 (red circles) and AR = 0.2 (green triangles).

over a period, the forces are essentially in balance, leading to a constant locomotion
velocity, with the pressure force driving and the viscous force resisting the motion as
expected, consistent with the two-dimensional observations of Alben & Shelley (2005).
Furthermore, as shown on figure 1(a), there is a burst of z−component forces as the
spheroid changes direction around t/T0 = 10.

As is apparent from figure 2, and also in the accompanying supplementary material
movie, unidirectional propulsion is associated with a characteristic vortex structure, with
angled vortex dipoles effectively connecting the spheroid to both vortex rings which are
periodically shed above and below the spheroid as it oscillates, an arrangement which
is characteristic of a propulsive wake (Dong et al. 2006). This coupled vortex-structure
may also be interpreted as the finite amplitude manifestation of the m = 1 asymmetric
linear instability of horizontally fixed oscillating spheroids identified in Deng et al. (2016)
by Floquet stability analysis (cf. figure 2 of that paper). The initially quasi-exponential
growth of the perturbation also naturally suggests that the transition to flying is asso-
ciated with a linear instability, and there is clear structural similarity between the finite
amplitude vorticity distribution around the flying ellipsoid and the eigenmode structure
of the m = 1 linear instability of the fixed spheroid, as shown inset in figure 4(a).

3.2. Irregular locomotion at AR = 0.1, ReA = 45: ‘Stair-step’

As already noted, for flapping Reynolds numbers ReA & ReC , the oblate spheroid
exhibits complex locomotive states, analogously to the behaviour of two-dimensional
flapping foils. As noted by Alben & Shelley (2005); Lu & Liao (2006), in flows with
ReA ' ReC , the foil may move backwards and forwards with a period several times of
the basic oscillation period, for reasons which are not as yet fully explained. For the
spheroids which we are considering here, we observe two types of irregularly locomotive
states for ReA = 45 for aspect ratios AR = 0.1 and AR = 0.2. This value of ReA appears
to be close to the critical value ReC for locomotion, and significantly for both these as-
pect ratios there appears to be an intermediate range of ReA with non-zero ReU (and
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Figure 5. The dynamics of the irregularly locomotive oblate spheroid at ReA = 45 for AR = 0.1.
(a) The centre-of-mass trajectory projected to the horizontal (x, z) plane. Note that: the loco-
motion starts from the origin; the total elapsed time shown is 50T ; and the axes have different
limits. The time variation of the: (b) x−components; and (c) z−components of horizontal pres-
sure (blue filled squares), viscous forces (red open circles) and horizontal velocity (dashed lines)
averaged over the imposed vertical oscillation period T . The vertical dashed lines in (c) corre-
spond to the three times marked on (a).

Figure 6. Vortex topologies around the irregularly locomotive flapping oblate spheroid at
ReA = 45 with AR = 0.1, visualized using Q = 2, as defined in (3.1). Images demonstrate flow
dynamics associated with a direction change during irregular locomotion. The disk is coloured
with the surface pressure distribution. A movie is also available as supplementary material.

thus ‘flying’) which still does not exhibit the asymptotic (close to constant) Strouhal
number dependence.

As is apparent from figure 1(b), increasing aspect ratio appears to reduce the extent in
parameter space of the transition region to the asymptotic Strouhal number dependence,
and thus we conjecture that the small aspect ratio spheroid has a wider irregular region.
It is at least plausible that the higher wavenumber (i.e. with m > 1) instabilities discussed
in Deng et al. (2016) and Deng et al. (2017) occur strongly only when the spheroid is
sufficiently ‘thin’, thus allowing excitation of sufficiently fine scale perturbations, although
this has not been established by detailed analysis.
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The first type of irregularly locomotive state we have identified occurs for ReA = 45
and AR = 0.1. This state takes the form of a ‘stair-step’ locomotion, various aspects
of which are shown in figures 5 and 6, and also in a movie available as supplementary
material. All quantities oscillate synchronously with twice the frequency of the primary
oscillation. The x−component of the velocity remains relatively constant about a non-
trivial value, although there is also apparent a weaker, and slower frequency oscillation
superposed. This ‘slow’ frequency oscillation (with period approximately 10T ) is much
more significant for the z−component of velocity, which drops to zero and then periodi-
cally spikes to much larger (and always positive in this coordinate system) values, briefly
comparable with the x-component, leading to the characteristic ‘stair-step’ trajectory
shown in figure 5(a) (note that the two axes have very different limits).

This behaviour (as well as the asymptotic steady locomotive state shown in figure 2)
can be understood in terms of the spectral structure of the linear instabilities to which
this flow is susceptible. We identify these instabilities using Floquet stability analysis, as
described briefly in section 2.3. In figure 4, we plot (with a solid line) the variation of the
most unstable azimuthal wavenumber m with ReA for a horizontally-fixed spheroid with
AR = 0.1, and Stokes number β = 500. As discussed in more detail in Deng et al. (2016),
there are three distinct branches of instability, which arise as ReA (or equivalently KC
since β is fixed) increases above ReA = 40. The first branch ‘I’ is characterised by m > 1
with in-phase perturbations above and below the oscillating disk, while the second branch
‘O’ is typically at even higherm > 1 with out-of phase perturbations. The switching of the
dominant branch is associated with the discontinuous jump in the dominant wavenumber
for ReA ' 60, apparent in figure 4(a).

It appears that the irregular stair-step locomotive state at ReA = 45 can be interpreted
in terms of the properties of these instabilities identified by Floquet analysis. Such an
interpretation is particularly appealing if quasi-periodicity continues to be suppressed
close to criticality in three-dimensional flow around a spheroid with AR = 0.1 as we
found occurs in two-dimensional flow (see Deng & Caulfield (2016) for more details). As
is shown in figure 4(a), at ReA = 45 the most unstable mode is predicted to be from
branch ‘I’ with m = 4. Crucially this imposes a four-fold symmetry on the most unstable
mode, visualised by the inset vortical structure shown in figure 4(a). The m = 4 mode
is not the only unstable mode however, as is shown in figure 4(b), as at these parameter
values, both the m = 3 and m = 5 modes are predicted to be unstable, albeit with
somewhat smaller growth rates.

Taken in combination, these various properties of the predicted linear instabilities (i.e.
that the most unstable predicted mode has m = 4 fourfold symmetry, and that modes
with nearby wavenumbers also have nontrivial growth rates) suggest an appropriate ar-
gument for the observed stair-step propagation. As is apparent through comparison of
figures 2 and 6, the locomotive stair-step state has some similarities with unidirectional
locomotion, in particular that it is characterised by a propulsive pair of vortices con-
necting the disk to the previously shed vortex rings. We conjecture that these structures
develop from the interaction of neighbouring vortices arising from the m = 4 instabil-
ity through a symmetry-breaking bifurcation, thus preferring one ‘side’ of the ‘square’
(defined by the four-fold symmetry of potentially interacting vortices at the ‘corners’) of
the most unstable eigenmode, leading to propagation in some preferred ‘stair’ direction.
However, the most unstable m = 4 mode is modulated by (the also growing) m = 3 and
m = 5 modes, leading to a temporal variation of the relative strength of the perturba-
tions localised at each of the corners, such that the alignment of the dominant ‘side’ (i.e.
the dominant interacting neighbouring vortices) switches to a neighbouring side lead-
ing to propagation in the ‘step’ direction, at approximately ninety degrees to the ‘stair’
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direction. This switching appears to continue indefinitely, with the timing of the switch-
ing being apparently determined by the interactions between the modes associated with
different wavenumbers, reminiscent of a relatively low frequency ‘beating’ response.

This ‘stair-step’ behaviour appears to be robust to variations in resolution, as similar
behaviour occurs when we use the same (finer) mesh and shorter time-steps for a high
resolution simulation as we used to test the robustness of the viscous force ‘dip’ shown
in figure 3. The trajectory exhibits the same stair-step structure, with similar mean
period between steps for example. Furthermore, this observation that the behaviour
close to transition to locomotion for free-to-fly three-dimensional bodies of small aspect
ratio can be interpreted in terms of the Floquet stability properties of horizontally-fixed
bodies is consistent with the dynamics of two-dimensional foils discussed in Deng &
Caulfield (2016). Specifically, we found that freedom to move horizontally for such foils
both significantly encouraged the onset of asymmetry and also suppressed (completely)
the onset of QPL-type quasi-periodicity. Therefore, it is perhaps unsurprising that we
do not observe quasi-periodicity for such low aspect ratio flying ellipsoids, and also that
the Floquet stability analysis associated with horizontally-fixed bodies is relevant to the
interpretation of the motion of bodies free to move horizontally.

3.3. Floquet stability analysis for unidirectional motion at AR = 0.1, ReA = 81

Indeed, returning to the unidirectional locomotion observed at higher ReA described in
the previous subsection, the observed dynamics in that regime can also be interpreted
in terms of Floquet stability analysis. As discussed in more detail in Deng et al. (2016),
for horizontally-fixed oscillating spheroids, as ReA increases to sufficiently large values,
only the amplitude of the oscillation is significant, and for

ReH ≡
4π2f0A

2

ν
=

(2πReA)2

β
> 467, (3.2)

the flow is found to be susceptible to instabilities dominated by a distinct m = 1 asym-
metry, which since we have fixed β = 500 in this study, corresponds to ReA & 80 (see
figure 4).

This higher ReA regime essentially corresponds to a loss of coupling horizontally across
the oscillating spheroid, and the nonlinear vortical structure associated with an instability
in this regime at ReA = 81 for a fixed oscillating spheroid is also shown inset in figure
4(a). This structure is very reminiscent of the finite amplitude vortical structures shown
in figure 2 for asymptotic unidirectional motion. Once again, it is useful to remember the
two key pieces of evidence from our two-dimensional studies at this aspect ratio AR = 0.1,
(see Deng & Caulfield (2016) for more details) to interpret the data presented in these
two figures: that being free to move horizontally reduces the critical flapping Reynolds
number at which symmetry-breaking occurs; and also being free to move horizontally
suppresses the occurrence of QPL-type quasi-periodicity (for low aspect ratio bodies)
close to criticality. Therefore, by analogy, in three dimensions we conjecture that the range
of flapping Reynolds numbers susceptible to complex, higher wavenumber instabilities is
reduced when the body is free to move horizontally. This is a possible explanation for why
asymptotic unidirectional motion is observed for ReA = 63 for example, although the
linear Floquet analysis as shown in figure 4(a) (crucially for horizontally-fixed spheroids)
predicts a higher wavenumber (mmax = 7−8) primary instability at this value of flapping
Reynolds number.
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Figure 7. The dynamics of the irregularly locomotive oblate spheroid at ReA = 45 for AR = 0.2,
with ms/mf = 10. (a) The centre-of-mass trajectory projected to the horizontal (x, z) plane.
Note that: the locomotion starts from the origin; the total elapsed time shown is 90T ; and the
axes have different limits. The time variation of the: (b) x−components; and (c) z−components
of horizontal pressure (blue filled squares), viscous forces (red open circles); and horizontal
velocity (dashed lines) averaged over the imposed vertical oscillation period T . The dashed
vertical lines in (b) correspond to the times marked on (a).

Figure 8. Vortex topologies around the irregularly locomotive flapping oblate spheroid at
ReA = 45 with AR = 0.2, visualized using Q = 2, as defined in (3.1). Images demonstrate
flow dynamics associated with a direction change during the relatively early ‘snaking’ irregular
locomotion. The disk is coloured with the surface pressure distribution. A movie is also available
as supplementary material.
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3.4. Irregular locomotion at AR = 0.2, ReA = 45: ‘Snaking’

The second type of irregular locomotion, which we refer to as ‘snaking’, occurs at early
times for ReA = 45 for an oblate spheroid with AR = 0.2. Certain properties of this
‘snaking’ flow are shown in figures 7 and 8. Although the stresses and the velocities
once again oscillate at twice the primary frequency, it is appropriate to describe the
dynamics here as quasi-periodic, as the x−component of velocity exhibits large sawtooth
variation between roughly comparable positive maximum and negative minimum values,
with the z−component exhibiting (in general different) amplitude oscillations of both
signs (though initially with non-zero negative mean in this coordinate system) when the
x−component is close to its maximum amplitude. Such coupled oscillations lead initially
to the long, sweeping quasi-periodic downward ‘snaking’ trajectory shown for early times
in figure 7(a). In figure 8, the direction switching phenomena for the early-time ‘snaking’
locomotion is clearly observed.

Ultimately, as is apparent in figure 7, the ‘snaking’ trajectory locks into a close to
elliptical ‘orbit’ and the spheroid undertakes quasi-periodic motions around this orbit.
As is apparent in the movie available as supplementary material, the vortical structures
around the spheroid are very similar during the ‘snaking’ and ‘orbiting’ phases of the
flow evolution. Furthermore, this ‘snaking’ leading to ‘orbiting’ behaviour is also robust
to variation in resolution, as qualitatively very similar dynamics arise when the flow is
simulated with the finer mesh used to test the early-time ‘dip’ in the viscous force (shown
in figure 3) and the ‘stair-step’ locomotion for smaller aspect ratio ellipsoids shown in
figure 5.

This locomotion behaviour can also be interpreted in the light of our previous observa-
tion (see Deng & Caulfield (2016)) that in two dimensions, the initial symmetry-breaking
for such higher aspect ratio bodies is expected to be quasi-periodic in character, as being
free to move horizontally actually encourages the appearance of the QPH -type asymme-
try, analogously to the behaviour observed here. Indeed, this scenario is further reinforced
by a careful consideration of the results of our Floquet stability analysis for a flow around
a horizontally fixed spheroid with these parameter values. As shown in figure 4(b), for a
fixed spheroid, a flow with this particular value of ReA is actually predicted to be stable,
as the range of Reynolds numbers susceptible to branch ‘I’ and branch ‘O’ instabilities
shifts to higher Reynolds number as the aspect ratio increases.

As already noted above, it is a reasonable hypothesis that the critical value of ReA
for symmetry breaking may be somewhat smaller for spheroids which are free to ‘fly’
compared to spheroids which are fixed horizontally, by analogy with inherently two-
dimensional flows. Nevertheless, as shown in figure 4(a), the critical Reynolds number
for the onset of instability (also with m = 4 at this aspect ratio) is ReA ' 62. Therefore,
it seems unlikely that the flow at the substantially smaller ReA = 45 is still linearly
unstable, even when the spheroid is not fixed horizontally.

There are two further reasons why we do not believe that this irregular locomotion
is related to a modal flow instability. First, the evolution is inherently quasi-periodic in
character, with an apparent competition between several characteristic angles of direction
change and periods of flow evolution. Second, particularly for this irregularly locomotive
state, viscous forces clearly play a non-trivial and complex role. As can be seen in figures
7(b) and (c), when averaged over a cycle of the vertical oscillation, as expected pressure
forces act predominantly in the same direction as the motion, while the viscous forces act
in the opposite direction. However, these correlations are by no means perfect, and it is
apparent that there are time intervals where the viscous forces actually act in the same
direction as the motion. Using the root-mean-square urms of the locomotive velocity
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Figure 9. The centre-of-mass trajectory projected to the horizontal (x, z) plane for an oblate
spheroid with ReA = 45 and AR = 0.2 with mass ratio: (a) ms/mf = 1; and (b) ms/mf = 100.

to define the characteristic velocity scale U in the definition (2.1) for the locomotion
Reynolds number ReU for this relatively slow ‘snaking’ locomotion leads to ReU ' 10.
Since the aspect ratio is AR = 0.2, an appropriate Reynolds number for this motion using
the vertical rather than horizontal dimension of the oblate spheroid ReV = urmsb/ν ∼
O(1), suggesting that Stokes effects may play a major role, in particular leading to
intermittent positive viscous contributions to the locomotion.

Major viscous effects may also be the dominant cause of the changes of direction,
associated with complex vortex ring shedding processes. Similarly to the unidirectional
flows at higher ReA, the main mechanism for forward propulsion is associated with close
to vertical vortex dipoles on either side of the spheroid. At this lower value of ReA
however, these vertical vortices inevitably diffuse and ‘fatten’ more quickly, and remain
more closely connected to the vortex rings in the immediate vicinity of the spheroid. This
is particularly apparent in the images for t = 18T and t = 20T in figure 8, at instants
either side of the turn at t = 19T , as marked on figure 7(a). This instant is associated
with a peak in the magnitude of viscous forces (see figures 7(b) and (c)) as these close
to vertical vortices disrupt asymmetrically the shedding of the next vortex ring, thus
apparently triggering a marked change in the direction of propagation.

This clearly strongly nonlinear dynamical behaviour further suggests that this irregular
‘snaking’ locomotion state should be thought of as being inherently quasi-periodic, and
a natural three-dimensional generalization of the QPH -type asymmetry previously re-
ported for two-dimensional foils particularly as the coupling between these shed vortices
eventually locks the spheroid into an elliptical orbital motion which does not appear to
lead to sustained (unidirectional) locomotion. This nonlinear, yet still spatially bounded,
ultimate response strongly suggests that the dynamical behaviour should not be inter-
preted as being driven by a (linear) flow instability, though detailed investigation of the
(apparent) basin of attraction of this snaking to orbiting state is beyond the scope of
this study.
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3.5. Mass ratio effects on ‘snaking’ at AR = 0.2, ReA = 45

Throughout the rest of this study, we have considered oscillating spheroids with a mass
ratio ms/mf = 10. It is important to appreciate that this ratio can play an important role
in the dynamics of a flapping oblate spheroid, although the onset Reynolds numbers are
independent of this ratio, as discussed by Alben & Shelley (2005). For completeness, we
present in figure 9 the centre-of-mass trajectories for oscillating spheroids with ReA = 45
and AR = 0.2 (i.e. the same parameters as the spheroid with properties shown in figure
7) with two different mass ratios: ms/mf = 1; and ms/mf = 100.

The low mass ratio (ms/mf = 1) spheroid, as shown in figure 9(a), exhibits even
more irregular motion than the spheroid with ms/mf = 10, although the low mass ratio
spheroid still exhibits a qualitatively similar ‘snaking’ trajectory which is just entering
an ultimate ’orbit’. On the other hand, the high mass ratio (ms/mf = 100) spheroid, as
shown in figure 9(b), eventually settles into a unidirectional locomotive state. Neverthe-
less, there is still an initial period of irregular motion, which also has a slight ‘judder’
with the same period as the vertical oscillation, reminiscent of the trajectory for the
spheroid with ms/mf = 10 shown in figure 7. Such suppression of irregular motion by
increasing mass ratio is interesting, though perhaps not entirely surprising. We do not
investigate this issue further here, as it is not central to the aims of this particular study.

4. Conclusions

We have considered numerically the locomotion of vertically oscillating or flapping
oblate spheroids for a range of flapping Reynolds numbers ReA and aspect ratios. We
can draw three main conclusions. First, at sufficiently large flapping Reynolds numbers
ReA as defined in (1.1), unidirectional locomotion emerges as an attracting state for a
vertically-oscillating spheroid which is free to move horizontally. Second, that locomotion
is somewhat less efficient (in the sense of having higher Strouhal number St as defined
in (1.1)) than in the previously considered strictly two-dimensional flow and it onsets at
appreciably higher amplitudes of oscillation (or equivalently at higher critical values of
ReA). We also find that the efficiency actually decreases with increasing aspect ratio, but
in a way such that the relative inefficiency compared to two-dimensional motion becomes
less significant. And third, before the emergence of such unidirectional locomotion, (i.e.
for ReA only slightly larger than its critical value ReC) irregular locomotion can be
observed, which can be usefully interpreted in terms of the Floquet stability properties
of horizontally-fixed oscillating spheroids. In particular, there is at least some evidence
that when ReA & ReC for low aspect ratio spheroids, the ‘in phase’ branch ‘I’ of high
azimuthal wavenumbers predicted in Deng et al. (2016) and experimentally observed in
Deng et al. (2017) can trigger a ‘stair-step’ locomotion, while for higher aspect ratio
spheroids, an essentially quasi-periodic ‘snaking’ locomotion can occur at early times,
which then leads to an ultimate bounded elliptical ‘orbit’. We conjecture that this quasi-
periodic behaviour is a three-dimensional generalization of the ‘QPH ’-type quasi-periodic
symmetry breaking previously identified in inherently two-dimensional flows in Deng &
Caulfield (2016). We find that this quasi-periodic behaviour is not explainable in terms
of a linear instability identified using Floquet stability analysis of a horizontally-fixed
spheroid, and also that it is suppressed by increasing the mass ratio of the spheroid
compared to the fluid.

Unsurprisingly perhaps, there is a much richer range of locomotion possible for such in-
herently three-dimensional spheroids than for equivalent two-dimensional foils, not least
because the induced vortex-ring flows can exhibit such complex dynamics. Indeed, al-



Locomotion of a flapping oblate spheroid 19

though vertical flapping can still lead to unidirectional horizontal locomotion for small
aspect ratio three-dimensional oblate spheroids, and there are undoubtedly some phe-
nomena which are analogous to those observed in two dimensions, application of insights
gained from strictly two-dimensional modelling to more realistic three-dimensional flows
should be tested carefully. Of particular interest is to investigate in detail the proper-
ties of the inherently nonlinear quasi-periodic ‘snaking’ to ‘orbiting’ state identified for
sufficiently large aspect ratio oscillating ellipsoids. Clearly, the vortices shed during the
various periods couple in some way to lead to a bound, yet non-stationary state, with a
particularly complex interaction occuring between the close to vertical ‘steering’ vortex
pairs and the subsequently shed vortex rings (as is visible in figure 8 and the associated
movie available as supplementary material). Furthermore, for the spheroids considered
here, viscous stresses clearly play a central role, (not least right at the beginning of the on-
set of locomotion when the ‘dip’ in viscous forces as shown in figure 3 actually contributes
constructively to forward propulsion initially) and while the flows do appear to exhibit
nontrivial instabilities, the shed vortex rings themselves do not break down vigorously,
but rather decay viscously as the spheroid oscillates and propagates horizontally.

It is clearly of interest to extend the considered parameter range to investigate the
behaviour at higher Reynolds number where the wake of the spheroid becomes turbulent.
Obvious objectives would be to identify the range over which the observed efficiency of
locomotion survives, as well as to explore the stability of the oscillating spheroids if
they in turn are allowed to pitch and roll in response to the induced fluid motion, i.e. to
determine whether or not they are unstable to infinitesimal rotations about their principal
axes of inertia. The feedback between the induced vortical motions in the ‘wake’ and the
oscillatory motion of a fully freely moving spheroid has the undoubted potential to lead
to an even richer range of dynamically interesting motions, possibly connected to the
well-known complex motions of freely falling bodies such as coins in water or leaves in
the air (see Ern et al. (2012) for a recent review).
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