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Abstract: We show non-linear stability and instability results in spherical symmetry for
the interior of a charged black hole—approaching a sub-extremal Reissner–Nordström
background fast enough—in presence of a massive and charged scalar field, motivated
by the strong cosmic censorship conjecture in that setting:

1. Stability We prove that spherically symmetric characteristic initial data to the
Einstein–Maxwell–Klein–Gordon equations approaching a Reissner–Nordström
background with a sufficiently decaying polynomial decay rate on the event hori-
zon gives rise to a space–time possessing a Cauchy horizon in a neighbourhood of
time-like infinity. Moreover, if the decay is even stronger, we prove that the space–
time metric admits a continuous extension to the Cauchy horizon. This generalizes
the celebrated stability result of Dafermos for Einstein–Maxwell-real-scalar-field in
spherical symmetry.

2. InstabilityWe prove that for the class of space–times considered in the stability part,
whose scalar field in addition obeys a polynomial averaged-L2 (consistent) lower
bound on the event horizon, the scalar field obeys an integrated lower bound transver-
sally to the Cauchy horizon. As a consequence we prove that the non-degenerate
energy is infinite on any null surface crossing the Cauchy horizon and the curvature
of a geodesic vector field blows up at the Cauchy horizon near time-like infinity. This
generalizes an instability result due to Luk and Oh for Einstein–Maxwell-real-scalar-
field in spherical symmetry.

This instability of the black hole interior can also be viewed as a step towards the
resolution of the C2 strong cosmic censorship conjecture for one-ended asymptotically
flat initial data.
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1. Introduction

In this paper, we study the stability and instability of the Reissner–Nordström Cauchy
horizon for the Einstein–Maxwell–Klein–Gordon equations in spherical symmetry:

Ricμν(g) − 1

2
R(g)gμν = T

EM
μν + T

KG
μν , (1.1)

T
EM
μν = 2

(
gαβFανFβμ − 1

4
FαβFαβgμν

)
, (1.2)

T
KG
μν = 2

(
�(DμφDνφ) − 1

2
(gαβDαφDβφ + m2|φ|2)gμν

)
, (1.3)

∇μFμν = q0
2
i(φDνφ − φDνφ), F = d A, (1.4)

gμνDμDνφ = m2φ, (1.5)
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where the constants m2 and q0 are respectively called the mass and the charge1 of the
scalar field φ.

This problem is motivated by Penrose’s strong cosmic censorship conjecture (c.f.
Sect. 1.1.1), which claims that general relativity is a deterministic theory. The general
strategy to address this question is to exhibit a singularity at the boundary of the maximal
domain of predictability, which can be done with instability estimates.

We prove that assuming an upper and lower bound on the scalar field φ on the event
horizon of the black hole, the Cauchy horizon exhibits both stability and instability
features, namely:

1. Stability the perturbed black hole still admits a Cauchy horizon—near time-like
infinity—like the original unperturbed Reissner–Nordström black hole, and in some
cases we can even extend the metric continuously beyond this Cauchy horizon.

2. Instability the curvature along the Cauchy horizon blows up, which represents an
obstruction2 to a C2 extension, at least near time-like infinity. As a by-product, we
see that the metric is not C1 for the constructed continuous extension.3

Similar results are known in the special casem2 = q0 = 0 see [7] and [18]. However,
in our case the expected decay of the scalar field on the event horizon is much slower,
which makes the stability part more difficult. The previous instability result depends
strongly on the special structure of the equation in the absence of mass and charge of
the scalar field.4 When q0 �= 0 but m2 = 0, a previous work of Kommemi [15] shows a
stability result but his assumed decay on the event horizon is only expected to hold for
a sub-range of the charge q0 that depends on the black hole parameters. In [18], the key
argument for the instability is to use an almost conservation law that exists only in the
absence of mass and charge. This is the underlying reason why [15] does not contain
any instability result.

This work can also be viewed as a first step towards the understanding of the spheri-
cally symmetric charged black holes with one-ended initial data. This is because when
the scalar field is uncharged, the total charge of the space–time arises completely from
the topology. On the contrary, the model that we consider allows for a dynamical total
charge, which makes R3 type initial data possible.

The introduction is outlined as follows: in Sect. 1.1 we present the strong cosmic
censorship conjecture andmention earlier works, then in Sect. 1.2 we explain the reasons
to study a charged and massive scalar field and give the results of the present paper.
We then sketch the methods of proof in the last Sect. 1.3. Finally in Sect. 1.4 we outline
the rest of the paper.

1 This charge q0 is also the constant that couples the electromagnetic and the scalar field tensors.
2 Although an appropriate global setting—as opposed to the perturbative one that this paper is concerned

with—is necessary to formulate the C2 inextendibility properly.
3 Although it does not give a general geometric impossibility to extend in C1 the metric across the Cauchy

horizon.
4 More precisely, in the work of Dafermos [7], it relies on a special mononoticity property occuring only

in that model.
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1.1. Context of the problem and earlier works.

1.1.1. Strong cosmic censorship conjecture. The study of self-gravitating isolated bod-
ies relies crucially on the vacuum Einstein equation:

Ricμν(g) − 1

2
R(g)gμν = 0. (1.6)

The simplest non-trivial solution, discovered by Schwarzschild is a spherically sym-
metric family of black holes, indexed by their mass. These black holes exhibit a very
strong singularity, as observers that fall into them experience infinite tidal deforma-
tions.

Amore sophisticated family of solutions indexed bymass and angularmomentumand
which describes rotating black holes has been discovered byKerr in 1963. Unfortunately,
Kerr’s black holes have the very undesirable feature that they break determinism: the
maximal globally hyperbolic development of their initial data is future extendible as a
smooth solution to the Einstein Eq. (1.6) in many non-unique ways. In some sense, it
represents a failure of global uniqueness of solutions.

One way to restore determinism which has been suggested by numerous heuristic
and numerical works is that Kerr black holes feature of non-unique extendibility is non-
generic, in other words whenever their initial data is slightly perturbed then the maximal
globally hyperbolic development is actually future inextendible as a suitably regular
Lorentzian manifold.

The nature of this singularity was controversial though: it was widely debated in the
physics community whether perturbations of Kerr black holes exhibit a Schwarzschild
black hole like singularity and observers experience infinite tidal deformationswhen they
get close to it. One convenient way—although not exactly equivalent—to formulate this
question geometrically is to study C0 inextendibility.

The inextendibility question has been formulated by Penrose in the following con-
jecture:

Conjecture 1.1 (Strong Cosmic Censorship, Penrose). Maximal globally hyperbolic
developments of asymptotically flat initial data are generically future inextendible as
a suitably regular Lorentzian manifold.

In the case of C0 inextendibility, suitably regular is to be understood as continuous.

Remark 1. Without the word “generically”, the conjecture is false since Kerr black holes
would provide counter examples, in the sense that they have aCauchy horizon overwhich
the metric can be smoothly extended in a non-unique way. Strong cosmic censorship
claims that these counter examples are non-generic.

Due to the complexity of the Kerr geometry, early works on this problem studied
instead Reissner–Nordström charged black holes. Although there are not solutions to
the vacuum Einstein Eq. (1.6), they solve the Einstein–Maxwell equations:

Ricμν(g) − 1

2
R(g)gμν = T

EM
μν , (1.7)

T
EM
μν = 2

(
gαβFανFβμ − 1

4
FαβFαβgμν

)
, (1.8)

∇μFμν = 0, dF = 0. (1.9)
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Reissner–Nordström black holes have the same global geometry as Kerr’s but have the
simplifying feature that they are spherically symmetric.

In their pioneering numerical work [27], Penrose and Simpson studied linear test
fields on Reissner–Nordström black holes and discovered an instability of the Cauchy
horizon.

Later Hiscock in [13], Poisson and Israel in [22,23] exhibited—in a spherically
symmetric but non-linear setting—a so-called weak null singularity with an expected
curvature blow-up i.e aC2 explosion of themetric, but finite tidal deformations allowing
for a C0 extension.

They studied the Einstein-null-dust equations which model non self-interacting mat-
ter transported on null geodesics5:

Ricμν(g) − 1

2
R(g)gμν = Tμν, (1.10)

Tμν = f 2∂μu∂νu + h2∂μv∂νv, (1.11)

gμν∂μu∂νu = 0 (1.12)

gμν∂μv∂νv = 0 (1.13)

gμν∂μu∂ν f + (�gu) f = 0 (1.14)

gμν∂μv∂νh + (�gv)h = 0 (1.15)

In his seminal work [6,7], Dafermos studied mathematically the non-linear stability
of Reissner–Nordström black holes in spherical symmetry for the Einstein–Maxwell-
scalar-field equations:

Ricμν(g) − 1

2
R(g)gμν = T

EM
μν + T

SF
μν , (1.16)

T
EM
μν = 2

(
gαβFανFβμ − 1

4
FαβFαβgμν

)
, (1.17)

T
SF
μν = 2

(
∂μφ∂νφ − 1

2
(gαβ∂αφ∂βφ)gμν

)
, (1.18)

∇μFμν = 0, dF = 0, (1.19)

gμν∇μ∇νφ = 0. (1.20)

Dafermos studied the interior of the black hole and proved conditionally the existence
of a Cauchy horizon near time-like infinity with a C0 extension for the metric, but
C1 inextendibility of the C0 extension which manifests itself by the blow-up of the
(Hawking) mass, which partially confirmed the insights from the work of Poisson-Israel.

Later Dafermos and Rodnianski in [9] proved a stability result on the black hole exte-
rior (c.f. Sect. 1.23) which combined with [7] ruled out the C0 inextendibility scenario:

Theorem 1.2 (Dafermos [7], Dafermos–Rodnianski [9]). For the Einstein–Maxwell-
scalar-field Eqs. (1.16), (1.17), (1.18), (1.19) and (1.20) in spherical symmetry, the C0

strong cosmic censorship is false.

5 This model can be thought of as a high frequency limit, away from {r = 0} of the Einstein-scalar-field
model.
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The question was finally settled in the work of Luk and Oh [18,19]: they confirmed
the weak null singularity scenario, due to a curvature instability:

Theorem 1.3. (Luk–Oh [18,19]) For the Einstein–Maxwell-scalar-field Eqs. (1.16),
(1.17), (1.18), (1.19) and (1.20) in spherical symmetry, the C2 strong cosmic censorship
conjecture is true.

1.1.2. Earlier works relating to singularities at the Cauchy horizon. As sketched in the
previous section, singularities are tightly related to the extendibility question. For the
stability of the Cauchy horizon, recent progress have been made in different directions
c.f. [11,12] for the linear stability, [20,21] for the linear instability and [15] for the
non-linear problem.

In this section, we review in more details stability and instability results in the black
hole interior established in previous works leading to the proof of the C2 strong cosmic
censorship conjecture. These results should be compared to the main theorems of this
paper, stated in Sect. 3.

In [7], Dafermos proves a C0 stability and a C1 instability result of the Reissner–
Nordstrom solution for an unchargedmassless scalar field perturbation suitably decaying
along the event horizon.

The instability essentially relies on a blow-up of themodifiedmass� over theCauchy
horizon,as a consequence of a lower bound on the scalar field. Hence the metric is not
C1 extendible6 in spherical symmetry.

Theorem 1.4 (C0stability, C1instability, Dafermos [7]). Let (M, g, φ, F) be a solution
of the Einstein–Maxwell-scalar-field equations in spherical symmetry such that for some
s > 1

2 , we have on the event horizon parametrized by the coordinate v as defined by
gauge (3.1) of Theorem 3.2:

|φ||H+(0, v) + |∂vφ||H+(0, v) � v−s,

then:

1. Existence of a Cauchy horizon in a neighbourhood of time-like infinity, the space–
time has the Penrose diagram of Fig. 1.

2. Continuous extension if moreover s > 1 then the metric g and the scalar field
φ extend as continuous functions along the Cauchy horizon CH+. Moreover, the
extended metric can be chosen to be spherically symmetric.

3. Mass inflation and C1 inextendibility coming back to general case s > 1
2 ,if we

assume the following point-wise lower bound7 on the scalar field for some ε > 0:

v−3s+ε � |∂vφ||H+ � v−s,

then, the modified mass blows up as one approaches the Cauchy horizon:
�(u, v) →v→+∞ +∞ hence it is impossible to extend the metric g to a spherically
symmetric C1 metric across the Cauchy horizon CH+. In particular the constructed
C0 extension is not C1.

6 It can also be proven that the mass blow-up implies also the blow-up of the Kretschmann scalar (c.f. [15])
which establishes C2 inextendibility.

7 This lower bound—although supported by numerical evidences—has never been exhibited for any par-
ticular solution.
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Fig. 1. Penrose diagram for the characteristic initial value problem appearing in [7]

In contrast, the C2 strong cosmic censorship conjecture paper dealing with the black
hole interior [18] relies on an averaged polynomial decay, as opposed to point-wise and
proves a curvature instability:

Theorem 1.5 (C2instability Luk–Oh [18]).
Under the same hypothesis as Theorem 1.4, we also assume that s > 2 and the

following lower bound holds for some 2s − 1 ≤ p < 4s − 2 and some C > 0:

Cv−p ≤
∫ +∞

v

|∂vφ|2|H+(0, v′)dv′ (1.21)

The solution admits a continuous extension M̄ across the Cauchy horizon.
Then a component of the curvature blows-up identically along that Cauchy horizon.
As a consequence, (M, g, φ, F) is C2 future-inextendible.
Moreover φ /∈ W 1,2

loc (M̄) and the metric is not in C1 for the constructed continuous
extension M̄.

1.2. A first version of the main results. In this paper we prove that the expected asymp-
totic decay of the scalar field on the event horizon—known as generalised Price’s law—8

implies some stability and instability features for a more realistic and richer generaliza-
tion of the charged space–time model of Dafermos in spherical symmetry.

Instead of studying this problem starting from Cauchy data, we will only consider
characteristic initial data on the event horizonwith the “expected” behaviour. This should
be thought of as an analogue of the previous black hole interior studies [7] and [18].

1.2.1. Motivation to study amassive and chargedfield and the results of the present paper.
The goal of this paper is to generalize the known results for the Einstein–Maxwell-scalar-
field equations near a Reissner–Nordström background to the case of a massive and

8 Namely an polynomial decay for an initially compactly supported scalar field on the event horizon of the
black hole.
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charged scalar field model called Einstein–Maxwell–Klein–Gordon. Since the charge
and the mass are a priori two different issues, we give motivation for each of them.

1. A charged scalar field. The model of Dafermos is a good toy model which gave very
good insight on the Kerr case but it suffers from a major disadvantage: the topology
of the initial data—i.e the initial time slice which is a Riemannian manifold—is
constrained to be that of S2 × R i.e two-ended initial data like for the Reissner–
Nordström case. This does not seem so relevant to study isolated collapsing matter:
we would like to consider one-ended initial data, diffeomorphic to R

3, but it is not
possible in that model where the radius cannot go to 0 on a fixed time slice.
This fact is due to the topological character of the total charge of the space–time.

This is better understood by the formula:

F = Q

2r2
Ω2du ∧ dv,

where (u, v) are null coordinates built from the radius r and the time t , Q is the
total charge of the space–time, Ω2 is the metric coefficient in (u, v) coordinates (c.f.
Sect. 2.2) and F is the electromagnetic field 2-form.
Heuristically we see that, if Q ≡ e is fixed with e �= 0, r is not allowed to tend

to 0 without a blow-up of F (if the metric does not degenerate). For more details on
these issues, c.f. [15].
It turns out that if we impose that the scalar field is uncharged then the charge of the

space–time Q is necessary fixed to be some e ∈ R, as it will be seen in Eqs. (2.20)
and (2.21) of Sect. 2.4.
As a conclusion, considering more natural R3 initial data imposes to study a gen-

eralisation of Dafermos’ model namely the Einstein–Maxwell-Charged-scalar-field
equations.

2. A massive scalar field Another variant is to allow for the scalar field to carry a mass,
independently of the presence or absence of charge: it now propagates according to
the Klein–Gordon equation:

gμν∇μ∇νφ = m2φ. (1.22)

One reason to study the Klein–Gordon equation is to understand the effect of a
different kind of matter on the results of mathematical general relativity and the
strong cosmic censorship in particular.
Klein–Gordon equation is also fruitful to study boson stars. These uncharged

objects—already present in the simple framework of spherical symmetry—in addi-
tion to being interesting for theoretical physics, give an example of a non-black-hole
new “final state” of gravitational collapse.
More importantly, they are soliton-like (even though the metric is static), in

particular they are non-perturbative solutions which do not converge towards a
Schwarzchild or Kerr background! They even exhibit a new behaviour as the scalar
field is time-periodic in contrast to vacuum where periodicity is impossible (all peri-
odic vacuum space–time are actually stationary, c.f. [1]). If we let aside the fact that
the scalar field is not stationary, boson stars are counter-examples to the generalized
no-hair conjectures which broadly suggest that the set of stationary and asymp-
totically flat solutions to the Einstein equations coupled with any reasonable matter
should reduce to a finite dimensional family indexed by physical parameters mea-
sured at infinity, like Kerr’s black hole (indexed by mass and angular momentum) or
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Reissner–Nordström’s (indexed bymass and electric charge). Formore developments
on boson stars, c.f. [2].
Outside of spherical symmetry,9 a recent work of Chodosh–Shlapentokh–Rothman

[4] constructs a continuous 1-parameter family of periodic space–times between a
Kerr black hole and a boson star. Interestingly they exhibit solutions with exponen-
tially growing modes, which is impossible in vacuum as proved (in the linear case)
in [8]! In contrast, LeFloch and Ma prove in [17] that the Minkowski space–time is
stable for the Einstein–Klein–Gordon equations.
As a conclusion, the Klein–Gordon model enriches the dynamics of gravitational

collapse and generates behaviours that are not present for a simple wave propagation.
Despite these rich dynamics, the perturbative regime sometimes behaves like the
massless case as in [17] or the present paper, and sometimes behaves rather differently
as in the work [4].
In this paper, we are going to consider both problems simultaneously by studying

a charged and massive field propagating according to the Klein–Gordon Eq. (1.22).
The full problem is written in Sect. 2.1.

3. Mathematical differences with Dafermos’ model After dealing with physical aspects,
we want to emphasize the technical differences between our new model and the
uncharged massless one.
A first remark is that the monotonicity of the modified mass as defined in (2.10)

and that of the scalar field which is strongly relied on in the instability argument of
[7] are no longer available.
More importantly, the expected asymptotics [Price’s law (1.23)] of the field on the

event horizon are different: in particular, the oscillations due to the charge should
give only an averaged10 polynomial decay—as opposed to point-wise decay—and in
many cases, the decay is expected to be always much weaker than for the uncharged
and massless case. In particular it should be often non-integrable.
Moreover, the charge is no longer a topological constraint but a dynamical quantity

which obeys an evolutionary P.D.E and that should be controlled like the scalar field or
the metric, which is what renders one-ended asymptotically flat initial data possible.

1.2.2. Price’s law conjecture. We now state the expected asymptotics for the scalar
field on the event horizon. This was first heuristically discovered by Price in [24] for
the Schwarzschild solution, and proven rigorously by Dafermos and Rodnianski in [9]
on Schwarzschild and Reissner–Nordström perturbations for an uncharged andmassless
field. The statement that the tail of the scalar field decays polynomially—for allmodels—
is now called generalized Price’s law.

This conjecture is still an open problem for the charged and massive model of the
present paper and requires a stability study of the black hole exterior. The statement is,
however, supported by numerical and heuristics studies of the black hole exterior, c.f.
[3,14] and [16].

Conjecture 1.6 (Price’s law decay). Let (M, g, φ, F) be a spherically symmetric solu-
tion of the Einstein–Maxwell–Klein–Gordon system which is a perturbation of a
Reissner–Nordström background of mass M and charge e satisfying 0 < |e| < M,

9 Getting rid of the spherical symmetry assumption allows for a new very important physical phenomenon
to arise, namely superradiance. This instability feature results in the presence of exponentially growing modes
as discussed in [4] and [26].
10 Which does not make a difference to prove the C0 stability because we only need an upper bound but

does for the C1 instability where point-wise estimates are no longer enough.
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with a massive charged field φ ∈ C∞
c (�) of charge q0—as appearing in Eqs. (2.20) and

(2.21)—and of mass m2—as appearing in the Klein–Gordon Eq. (1.22)—where � is an
asymptotically flat complete Riemannian manifold initial data slice.

Then on the event horizon of the black holeH+ parametrized by the coordinate v as
defined by gauge (3.1) of Theorem 3.2, we have:

φ|H+(v) �1 f (v)v−s(e,q0,m2), (1.23)

where �1 denotes the numerical equivalence relation of functions and their first deriva-
tives when v → +∞, f is a periodic function and s is defined by:

s(e, q0,m
2) =

{ 5
6 for m2 �= 0, q0 �= 0,

1 + �(

√
1 − 4e2q20 ) for m2 = 0, q0 �= 0,

3 for m2 = q0 = 0.

(1.24)

Remark 2. Notice that s(e, q0,m2) > 1
2 always but that the integral decay s > 1 holds11

only form2 = 0, |e| < 1
2|q0| . Since integrability is the crucial point in theC

0 extendibility
proof, it explains why we required the field to be massless and not too charged to claim
the C0 extendibility.

Dafermos and Rodnianski in [9] first proved rigorously and in the non-linear setting
an upper bound for Price’s law in the uncharged and massless case m2 = q0 = 0.

Later, Luk and Oh proved in [19] the sharpness of this upper bound, still in the
non-linear setting, as a consequence of a L2 averaged12 lower bound.

1.2.3. Statement of the main results. In this section we explain roughly the achievement
of the present paper. The stability result is very analogous to Dafermos’ in [7] and
the instability result is a local near time-like infinity version of Luk and Oh’s interior
instability of [18].

More precisely, we establish the following result:

Theorem 1.7. We assume Price’s law decay of Conjecture 1.6 on the event horizon
for a solution of the Einstein–Maxwell–Klein–Gordon system of Sect. 2.1 in spherical
symmetry.

Then near time-like infinity, the solution remains regular13 up to its Cauchy horizon,14

along which a C2 invariant quantity15 blows up.
Furthermore, defining e ∈ R to be the asymptotic charge of the space–time measured

on the event horizon16—for m2 = 0 and for 4q20e
2 < 1—the metric is C0 extendible.

11 Note that the decay of the massless charged scalar field depends on the dimension-less quantity q0e only.
12 Note that for the case q0 = 0 it is expected that the function f is constant i.e the oscillations should not

arise when the scalar field is uncharged. Nonetheless, no point-wise lower bound has ever been established,
even for a particular solution.
13 More precisely, the Penrose diagram—locally near timelike infinity—of the resulting black hole solution

is the same as Reissner–Nordström’s as illustrated by Fig. 1.
14 On the other hand in general the metric may not extend even continuously to that Cauchy horizon.
15 Namely Ric(V, V )where V is a radial null geodesic vector field that is transverse to the Cauchy horizon.
16 It corresponds to the parameter e of the sub-extremal Reissner–Nordström background (M, e) towards

which our space–time converges on the event horizon.
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The proof relies on a non-linear stability and instability study of the Reissner–
Nordström black hole interior. The C0 extendibility was first proven by Dafermos in
[7] in the uncharged and massless setting but it is really a direct adaptation of the meth-
ods of [18] that gives C0 extendibility in the massless and charged (for 4q20e

2 < 1 only)
scalar field setting.

Remark 3. One actually needs a much weaker assumption than Conjecture 1.6: only a
point-wise upper bound on the scalar field and its derivative is needed and an averaged
L2 lower bound on the derivative (c.f. Sect. 3 for a precise statement).

Remark 4. It is remarkable that the instability part relies only on an (averaged) lower
bound on the scalar field but that no lower bound is required for the charge of the
space–time.

Remark 5. We do not prove C0 extendibility in the case 4q20e
2 ≥ 1, which remains an

open problem.

Remark 6. Even though we show that a C2 invariant blows up, we do not show that
given characteristic initial data on both event horizon satisfying our assumptions, the
maximal globally hyperbolic development is (future) C2 inextendible. This is because
our result only applies in a neighbourhood of time-like infinity, in contrast17 with [18,
19]. Nevertheless, it is likely that if one assumes that the data are everywhere close to
Reissner–Nordström then one can use themethods of [18] to concludeC2 inextendibility.
We will however not pursue this.

1.3. Ideas of proof and methods employed. In this last introductory section, we describe
the techniques that we use to prove our main results as stated in Sect. 3 later. Some
methods are adapted and modified from the work [18] for the stability part and [21] for
the instability part.

1.3.1. Methods for the stability part. In them2 = q0 = 0 case, stability was first proven
by the seminal work of Dafermos [7] in the case s > 1

2 . His work considers geometric
quantities (r, φ,�) where � is the modified mass defined in (2.10), r is the area-radius
and φ is the scalar field. However, these quantities do not decay—in particular� blows-
up. Remarkably, this was overcome using the very special structure of the equation. This
structure is not exhibited when the mass or charge of the scalar field are present.

In contrast, the approach of Luk and Oh in [18] controls a non geometric coordinate
dependent quantity Ω2 namely the metric coefficient (c.f. Sect. 2.2 for a definition).
They actually compare (Ω2, r, φ) to their counterpart (Ω2

RN, rRN, 0) on the Reissner–
Nordström background to which the space–time converges.

This has the advantage that the difference of these quantities and their degenerate
derivatives are bounded and in fact decay towards infinity, allowing for a C0 stability
statement.

They establish this decay using the non-linear wave structure in a null foliation
(u, v)—as illustrated by Fig. 2—of the equation. They integrate the difference along the
wave characteristics with the help of a bootstrap method after splitting the space–time
into smaller regions.

17 In [18] a special monotonicity property is exploited to propagate the curvature blow-up along the whole
Cauchy horizon. Such a property is absent when q0 �= 0 or m2 �= 0.
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Fig. 2. Penrose diagram illustrating the division between a red-shift R and a blue-shift region B

The result of Luk and Oh is therefore more quantitative but on the other hand it relies
crucially on the hypothesis s > 1 giving an initial integrable decay of Ω2 − Ω2

RN,
r − rRN and φ.

This is why—although the method can be easily adapted in the presence of a charged
and massive field—the proof fails18 for s ≤ 1 which is unfortunately the expectation in
many interesting cases as claimed by Price’s law of Conjecture 1.6.

In our proof, we will again control the non-geometric coordinate dependent metric
coefficientsΩ2 but since the decay is so weak we cannot consider directly the difference
with the background value.

Instead, we consider new natural combinations of these quantities—adapted to the
geometry—which obey better estimates, notably those involving the degenerate deriva-
tives ∂u and ∂v .

In all previous work,19 the proof proceeds in splitting the space–time into a red-shift
region near the event horizon which is very stable and a blue-shift region near the
Cauchy horizon where many quantities can blow-up. This is illustrated by Fig. 2.

In our case, we follow a similar philosophy although we need to further divide the
space–time into more regions in view of the slow decay of the scalar field c.f. Fig. 3.

In the red-shift region, decay is proven using that |−4∂ur
Ω2 −1| and |−4∂v r

Ω2 −1| decay
polynomially,20 thanks to the Raychaudhuri equations, which allows us to replace ∂v r
and ∂ur by Ω2 ��� e2K+·(u+v) which enjoys an exponential structure. This avoids to lose
one power when we integrate a polynomial decay on a large region c.f. Lemma 4.1.

In the blue-shift region, we essentially use the polynomial decay of ∂v r , ∂ur and
the exponential decay of Ω2 to propagate the estimates.

18 Essentially because Ω2 − Ω2
RN, r − rRN and φ are no longer integrable.

19 Notably in Dafermos’ proof, the gauge derivatives of the scalar field ∂uφ
∂ur

and ∂vφ
∂vr

decay in the red-shift
region and grow in the blue-shift region.
20 Note that on Reissner–Nordström, these quantities are zero.
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Fig. 3. Penrose diagram of the space–time M = R ∪ N ∪ EB ∪ LB

Another important point is that we are able to find two decaying quantities21 which
capture the red and blue shift effect: ∂u log (Ω2)− 2K and ∂v log (Ω2)− 2K—where
K is a geometric quantity defined by (2.12)—and we control the sign of K : positive in
the red-shift region, negative22 in the blue-shift region.

In particular the good control of ∂v log(Ω2) − 2K can be fruitfully integrated to
control the smallness of Ω2 according to the different regions but requires a bit of
care close to the Cauchy horizon where ∂v log(Ω2) − 2K is no longer integrable in
general.

To sum up, unlike the strategy of [18] which purely deals with differences whose
decay is propagated like a wave, we mainly use propagative arguments for the scalar
field only and rely on the geometry of the space–time andon theRaychaudhuri Eqs. (2.17)
and (2.18) to prove our estimates.

1.3.2. Methods for the instability part. The first instability result is due to Dafermos
in [7]. Like its stability counterpart, it relies crucially on the special structure of the
equation and notably a very specific monotonicity property that does not hold in the
presence of a massive or charged scalar field.

The work [18] also proves an instability statement. Nevertheless both the presence
of the mass or of the charge also destroy the main argument. Indeed the argument makes
use of an almost conservation law for the scalar field stress-energy tensor TSF . With a
non-zero mass, a new term appears [c.f. (1.3)] which has the wrong sign and cannot be
easily controlled. If the field is charged, this time the two conservation laws—previously
independent—coming from T

SF and TEM are now coupled and therefore Luk and Oh’s
method does not apply.

Instead, we borrow ideas from a paper of Luk and Sbierski [21] in which the authors
prove the linear instability of Kerr’s interior. They simplify their methods and adapt
them to the Reissner–Nordström case23 in an introductory section. The point is essen-

21 These two quantities are zero on a Reissner–Nordström background so we can expect them to be small
in the perturbative setting.
22 Except maybe close to the Cauchy horizon where K may blow-up like the Hawking mass.
23 For a scalar field that is not necessarily spherically symmetric, unlike in the present paper.
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tially to prove the blow-up of ∂Vφ on a constant u hypersurface close to the Cauchy
horizon, where (u, V ) is a regular coordinate system near the Cauchy horizon thanks to
a polynomial lower bound on

∫ +∞
v |∂vφ|2(u, v′)dv′.

For this they use an integrated L2 stability estimate coupled with a vector field
method24—namely an energy estimate—using the Killing vector field ∂t = ∂v − ∂u—
which boils down to the conservation of the energy. Theymanage to control the integral
of ∂vφ on the event horizon by its values on an intermediate curve γσ (which marks the
limit between their red-shift and their blue-shift region) on which Ω2 decays polyno-
mially like v−σ for a very large power σ > 0.

After they control this value by the integral of ∂vφ on a constant u hypersurface close
to the Cauchy horizon using again a vector field method with the vector field ∂v . They
conclude using the positivity of the energy which allows for the ∂v terms to control the
∂t = ∂v − ∂u ones on γσ .

Their approach relies on the linearity of the problem and in particular the use of a
Killing vector field of the Reissner–Nordström background, which does not exist any
more in the non-linear setting that we consider.

Another important difference is the existence—in the uncharged field case—of two
independent (approximate) conservation laws, namely one for the scalar field T

SF—
which the authors of [21] use—and one for the electromagnetic field T

EM—which
they ignore. In our case the charged field interacts with the charge of the black hole
coupling the Klein–Gordon and theMaxwell equation. This gives a single (approximate)
conservation law involving T = T

KG + T
EM .

Moreover, the use of a vector field method in a blue-shift region for a charged and
massive scalar field generates terms which do not decay, in particular those related to
the charge25 of the black hole Q and which have the inadequate sign.

Fortunately in the red-shift region the charge terms have a good sign and the
estimates of our stability part are strong enough to prove decay of the scalar field
terms having the wrong sign.

Moreover, despite Killing vector fields do not exist in general, the Kodama vector
field T—which is the non linear analog of ∂t—induces a conservation law, which renders
possible the use of a vector field method in the red-shift region.

There is however a difficulty: the coefficients of theKodama vector field, unlike ∂t , are
expected to blow-up near the Cauchy horizon in general so the limiting curve γ ′ between
the red-shift and the blue-shift region—unlike in [21]—must be close enough to the
Cauchy horizon so that we enjoy a sufficient decay of Ω2 in the future to propagate the
decay of the wave equations but must also be close enough to the event horizon so that
the Kodama vector field does not blow-up! Compared to [21] where the limiting curve
was chosen to be as far as possible in the future, this is a completely different strategy.

This challenge is addressed using fine stability estimates, notably the quantities
−4∂ur

Ω2 and −4∂vr
Ω2 which are precisely the coefficients of T and that are controlled in the

vicinity of γ ′.
In the blue-shift region, since vector field methods are now hard to use, we simply

propagate point-wise ∂vφ using the wave equation and the sufficient decay of Ω2 in
the future of γ ′. We strongly rely on the stability estimates proven in the first part.

Lastly, once this lower bound is proven, we use exactly and without modifications the
techniques employed in [18] to prove the blow-up of a C2 geometric invariant quantity

24 For an introduction to the vector field method and interesting applications c.f. [10].
25 Which is expected to tend to a constant e so that we cannot hope for decay, unlike for φ which is zero on

the underlying Reissner–Nordström background.
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for any s > 1
2 and the H1 blow up of the scalar field if s > 1, leading to the C1

inextendibility of the C0 extension constructed in the stability part.

1.4. Outline of the paper. We conclude this introduction by presenting the rest of the
article.

Section 2 is devoted to preliminaries: we notably define the main notations, introduce
the equations and express them in the form that we use later. A brief review of the
Reissner–Nordström background is also presented.

In Sect. 3, we phrase the main results of the paper precisely, namely the stability and
the instability theorems. They are preceded by a reminder on the characteristic initial
value problem and the coordinate dependency.

In Sect. 4, the proof of the stability theorem is carried on. The proof of one minor
proposition is deferred to “Appendix B” and a simple local existence lemma is proven
in “Appendix C”

In Sect. 5, the proof of the instability theorem is carried on.
Finally, in the “Appendix A”, we use our stability framework to “localise” in coor-

dinates the part of the apparent horizon that is close to time-like infinity.

2. Geometric Framework and Equations

2.1. The equations in geometric form. We look for solutions to the Einstein–Maxwell
equations coupled with a charged and massive scalar field φ of constant mass26 m2 ≥ 0
and constant charge q0 �= 0 propagating according to the Klein–Gordon equation in
curved space–time27:

A solution is described by a quadruplet (M, g, φ, F)—where (M, g) is a Lorentzian
manifold of dimension 3 + 1, φ is a complex-valued28 function on M and F is a real-
valued 2-form on M—which satisfies the following equations:

Ricμν(g) − 1

2
R(g)gμν = T

EM
μν + T

KG
μν , (2.1)

T
EM
μν = 2

(
gαβFανFβμ − 1

4
FαβFαβgμν

)
, (2.2)

T
KG
μν = 2

(
�(DμφDνφ) − 1

2
(gαβDαφDβφ + m2|φ|2)gμν

)
, (2.3)

∇μFμν = q0
2
i(φDνφ − φDνφ), F = d A, (2.4)

gμνDμDνφ = m2φ, (2.5)

where D := ∇ + iq0A is the gauge derivative, ∇ is the Levi-Civita connection of g and
A is the potential one-form.29 T

EM
μν and T

KG
μν are the electromagnetic and the Klein–

Gordon stress-energy tensor respectively.

26 m2 ≥ 0 ensures that the dominant energy condition is satisfied. It does not play a role for the proof of the
stability estimates but is crucial for the instability part.
27 One important difference compared to real scalar field models is that the Maxwell and the wave equations

are now coupled because the field is charged.
28 The second important difference with the uncharged case is that it is not no longer possible to take a real

scalar field: φ must be complex-valued.
29 F = d A is to be interpreted as “ there exists real-valued a one-form A such that F = d A ”. This

determines A up to a closed form only. It means that there is a gauge freedom, c.f. Sect. 2.2.
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Equation (2.1) is the Einstein equation, (2.4) is the Maxwell equation and (2.5) is the
Klein–Gordon equation. Note that they are all coupled one to another.

2.2. Metric in null coordinates, mass, charge and main notations. Let (M, g, φ, F) be
a spherically symmetric solution of the Einstein–Maxwell–Klein–Gordon equations. By
this we mean that SO(3) acts on (M, g) by isometry with spacelike orbits and for all
R0 ∈ SO(3), the pull-back of F and φ by R0 coincides with itself.

We defineQ = M/SO(3), the quotient 2-dimensionalmanifold induced by the action
of SO(3).

Π : M → Q is the canonical projection taking a point of M into its spherical orbit.
The metric on M is then given by g = gQ + r2dσS2 where gQ is the push-forward

of g by Π and dσS2 the standard metric on the sphere.
gQ as a general Lorentzian metric over a 2-dimensional manifold, can be written in

null coordinates (u, v) as a conformally flat metric:

gQ := −Ω2

2
(du ⊗ dv + dv ⊗ du).

We define the area-radius function r over Q by r(p) =
√

Area(Π−1(p))
4π .

We can then define κ and ι as:

κ = −Ω2

4∂ur
∈ R ∪ {±∞}, (2.6)

ι = −Ω2

4∂vr
∈ R ∪ {±∞}. (2.7)

Remark 7. Notice that κ is invariant under u-coordinate change: if du′ = f (u)du, then
in the new coordinate system (u′, v), κ(u′, v) = κ(u, v). Similarly, ι is invariant under
v-coordinate change.30

We can also define the Hawking mass and mass ratio as geometric quantities, at least
in spherical symmetry:

ρ := r

2
(1 − gQ(∇r,∇r)),

μ := 2ρ

r
.

In what follows, we will abuse notation and denote by F the 2-form over Q that is the
push-forward by Π of the electromagnetic 2-form originally on M , and same for φ.

It turns out that spherical symmetry allows us to set:

F = Q

2r2
Ω2du ∧ dv,

where Q is a scalar function that we call the electric charge.

Remark 8. It should be noted that in the Einstein–Maxwell-scalar-field of [7] and [18],
Q ≡ e was forced to be a constant because it was coupled with vacuum Maxwell’s
equation div F = 0.

30 Note however that rescaling v also rescales κ and rescaling u rescales ι.
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F = d A also allows us to chose a spherically symmetric potential A written as:

A = Audu + Avdv.

The equations of Sect. 2.1 are invariant under the following gauge transformation:

φ → e−iq0 f φ,

A → A + d f.

where f is a smooth real-valued function.
Therefore we can choose the following gauge for some constant v0 and for all (u, v):

Av(u, v) ≡ 0, (2.8)

Au(u, v0) = 0. (2.9)

Remark 9. Notice that this gauge depends only on the null foliation and therefore is
invariant if u or v is re-parametrized.

This gauge will be used in the rest of the paper, for v0 to be specified in the statement
of Theorem 3.2.

For amore justified and complete discussion of theEinstein–Maxwell–Klein–Gordon
setting, c.f. [15].

Now we introduce the modified mass � that takes the charge Q into account:

� := ρ +
Q2

2r
= μr

2
+
Q2

2r
. (2.10)

An elementary computation relates coordinate-dependent quantities to geometric31

ones:

1 − μ = −4∂ur∂vr

Ω2 = −Ω2

4ικ
= 1 − 2�

r
+
Q2

r2
. (2.11)

We then define the geometric quantity32 2K :

2K = 2

r2
(� − Q2

r
). (2.12)

We will also denote, for fixed constants M and e:

2KM,e(r) = 2

r2
(M − e2

r
).

Finally we introduce the following notation, first used by Christodoulou:

λ = ∂vr,

ν = ∂ur.

31 Notice that 1 − μ and K do not depend on the coordinate choice (u, v).
32 On Reissner–Nordström, 2K = ∂u log |1 − μ| = ∂v log |1 − μ|.
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2.3. The Reissner–Nordström solution. In this section we present the sub-extremal
Reissner–Nordström solution. Because the space–time that we consider converges at
late time towards a member of the Reissner–Nordström family and that we aim at prov-
ing stability estimates, it is important to recall their main qualitative features to see which
are conserved in the presence of a perturbation.

2.3.1. The Reissner–Nordström interior metric. The Reissner–Nordström black hole is
a 2-parameter family of spherically symmetric and static space–times indexed by the
charge and themass (e, M), which satisfy the Einstein–Maxwell equations i.e the system
of Sect. 2.1 with φ ≡ 0 with R∗

+ × S
2 initial data.

We are interested in sub-extremal Reissner–Nordström black holes, which is
expressed by the condition 0 < |e| < M .

Define then for such (e, M):

r+(M, e) = M +
√
M2 − e2 > 0,

r−(M, e) = M −
√
M2 − e2 > 0.

The metric in the interior of the black hole can be written in coordinates as:

gRN = Ω2
RN

4
dt2 − 4Ω−2

RNdr
2 + r2[dθ2 + sin(θ)2dψ2], (2.13)

Ω2
RN(r) := −4(1 − 2M

r
+
e2

r2
), (2.14)

Where (r, t, θ, ψ) ∈ (r−, r+) × R × [0, π) × [0, 2π ].

2.3.2. (u, v) coordinate system on Reissner–Nordström background. We have seen in
Sect. 2.2 how to build any null coordinate (u, v). Now that the metric is explicit, we
would like to find such a (u, v) system that is related to the variables (r, t) appearing in
Eq. (2.13).

Define

r∗ = r +
1

2K+
log(r+ − r) +

1

2K−
log(r − r−),

where 2K+(M, e) and 2K−(M, e), respectively called the surface gravity33 of the event
horizon and the surface gravity of the Cauchy horizon, are defined by34:

K+(M, e) = 1

r2+
(M − e2

r+
) = r+ − r−

2r2+
> 0,

K−(M, e) = 1

r2−
(M − e2

r−
) = r− − r+

2r2−
< 0.

Remark 10. Note that if � = M and Q = e then K (r+) = K+(M, e) > 0 and K (r−) =
K−(M, e) < 0, where K is defined in Eq. (2.12).

33 For an physical explanation of the terminology, c.f. [16].
34 Note that K− < 0 like in [20] but unlike in [18].
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We then set (u, v) ∈ R × R as:

v = 1

2
(r∗ + t), u = 1

2
(r∗ − t),

and claim that Eq. (2.13) can then be rewritten as:

gRN = −Ω2
RN

2
(du ⊗ dv + dv ⊗ du) + r2[dθ2 + sin(θ)2dψ2].

2.3.3. Behaviour of Ω2
RN. We define35 the event horizonH+ = {u ≡ −∞, v ∈ R}, and

the Cauchy horizon CH+ = {v ≡ +∞, u ∈ R}
Ω2

RN cancels on bothH+ and CH+. A computation shows that:

Ω2
RN ∼r→r+ Ce,Me2K+r∗ = Ce,Me2K+·(u+v),

and similarly that:

Ω2
RN ∼r→r− C ′

e,Me2K−r∗ = C ′
e,Me2K−·(u+v),

for some Ce,M > 0, C ′
e,M > 0.

Remark 11. Notice thatΩ2
RN exhibits an exponential behaviour in (u +v), exponentially

increasing from 0 near the event horizon and exponentially decreasing to 0 near the
Cauchy horizon.

Notice also that for r bounded away from r+ and r−,Ω2
RN is upper and lower bounded.

2.3.4. Kruskal coordinates (U, V ) and Eddington–Finkelstein coordinates (U, v),
(u, V ). From the previous section, one could fear that the metric could be singular
across the horizons H+ and CH+. Actually it is not: like for the Scharwzchild’s event
horizon horizon, it suffices to define Kruskal-like coordinates (U, V ) from the (u, v)

coordinates as:

U := 1

2K+
e2K+u,

and

V := 1 − 1

2|K−|e
2K−v.

Note thatU and V now range in (U, V ) ∈ [0,+∞)× (−∞, 1] and thatH+ = {U ≡ 0};
CH+ = {V ≡ 1}.

We thenwrite themetric in the Eddington–Finkelstein-typemixed (U, v) coordinates
as:

gRN := −Ω2
RN,H

2
(dU ⊗ dv + dv ⊗ dU ) + r2[dθ2 + sin(θ)2dψ2].

35 We could have defined in more generality the event horizon to be the past boundary of the black hole
region and the Cauchy horizon the future boundary of the maximal globally hyperbolic development. Strictly
speaking the Cauchy horizon is not part of the space–time but can be attached as a double null boundary and
we then consider the space–time as a manifold with corners.
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We find that (U, v) is a regular coordinate system near the event horizon H+:

Ω2
RN,H (U, v) = − 1

2K+U
(1 − 2M

r
+
e2

r2
) →U→0 Ce,Me2K+v.

In (u, V ) coordinates we write now write the metric as:

gRN := −Ω2
RN,CH

2
(du ⊗ dV + dV ⊗ du) + r2[dθ2 + sin(θ)2dψ2].

We then see that (u, V ) is a regular36 coordinate system near the Cauchy horizon
CH+:

Ω2
RN,CH(u, V ) = 1

2K−(1 − V )
(1 − 2M

r
+
e2

r2
) →V→1 C

′
e,Me−2K−u .

2.3.5. Constant quantities on Reissner–Nordström. Since we consider the stability of
a Reissner–Nordström background under perturbation, it is useful to identify which
quantities are zero on this fixed background: these are the ones that we can hope decay
for in the non-linear perturbative setting with the Klein–Gordon field.

Reissner–Nordstörm has four main qualitative features which distinguishes it from
general dynamical solutions:

1. Both the charge and the modified mass are fixed:

� ≡ M,

Q ≡ e.

Hence 1 − μ = 1 − 2M
r + e2

r2
.

2. The metric is symmetric37 in u and v and in particular:

∂ur = ∂vr,

∂u log(Ω
2
RN) = ∂v log(Ω

2
RN) = 2

r2
(M − e2

r
) = 2KM,e(r).

3. The horizons are constant r null hypersurfaces:

H+ = {u ≡ −∞, v ∈ R} = {r ≡ r+},
CH+ = {v ≡ +∞, u ∈ R} = {r ≡ r−}.

Hence ∂vr|H+ ≡ 0 and ∂ur|CH+ ≡ 0 which is consistent with the following relation:

∂ur = ∂vr = 1 − 2M

r
+
e2

r2
.

36 Moreover, as mentioned in Remark 1 the metric is actually smoothly extendible beyond CH+, which
would pose a problem for the strong cosmic censorship conjecture but does not because Reissner–Nordström
is expected to be non generic.
37 Which is essentially equivalent to the fact that ∂t is a Killing vector field or thatΩ2

RN(r) is a sole function
of r .
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4. The event horizonH+ coincides with the apparent horizonA := {∂vr = 0} so all the
2-spheres inside the black hole are trapped.
This does not hold for general dynamical space–times whereA is strictly in the future
ofH+.
However, in the perturbative regime, we can expect that A is not too far38 fromH+,
c.f. “Appendix A”.

In the end, we can sum up all the relations by:

∂ur = ∂vr = 1 − 2M

r
+
e2

r2
= −Ω2

RN

4
≤ 0,

which also means that:

κRN = ιRN ≡ 1.

2.4. The Einstein–Maxwell–Klein–Gordon equations in null coordinates. Finally, we
express the Einstein–Maxwell–Klein–Gordon system in spherical symmetry in any
(u, v) coordinates as in Sect. 2.2 and under the gauge choice for the potential (2.8),
(2.9).

We start by the wave part of the Einstein equation:

∂u∂vr = −Ω2

4r
− ∂ur∂vr

r
+

Ω2

4r3
Q2 +

m2r

4
Ω2|φ|2 = −Ω2

4
.2K +

m2r

4
Ω2|φ|2, (2.15)

∂u∂v log(Ω
2) = −2�(Duφ∂vφ̄) +

Ω2

2r2
+
2∂ur∂vr

r2
− Ω2

r4
Q2, (2.16)

the Raychaudhuri equations:

∂u(
∂ur

Ω2 ) = −r

Ω2 |Duφ|2, (2.17)

∂v(
∂vr

Ω2 ) = −r

Ω2 |∂vφ|2, (2.18)

the Klein–Gordon wave equation:

∂u∂vφ = −∂uφ∂vr

r
− ∂ur∂vφ

r
+
q0iΩ2

4r2
Qφ − m2Ω2

4
φ − iq0Au

φ∂vr

r
− iq0Au∂vφ,

(2.19)
and the propagative part of Maxwell’s equation:

∂uQ = −q0r
2�(φDuφ). (2.20)

∂vQ = q0r
2�(φ∂vφ). (2.21)

Also the existence of an electro-magnetic potential A implies that:

∂vAu = −QΩ2

2r2
. (2.22)

Now we can reformulate the former equations to put them in a form that is more
convenient to use.
38 Actually we can prove that 0 ≤ ∂vr|H+ � v−2s if |∂vφ| � v−s .
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It is interesting to use (2.15), (2.17), (2.18), (2.20), (2.21) to derive an equation for
the modified mass:

∂u� = r2

2ι
|Duφ|2 + m2

2
r∂ur |φ|2 − q0Qr�(φ̄Duφ) (2.23)

∂v� = r2

2κ
|∂vφ|2 + m2

2
r∂vr |φ|2 + q0Qr�(φ̄∂vφ). (2.24)

Moreover, the following reformulation of (2.15) will be useful:

∂v log(|∂ur |) = κ(2K − rm2|φ|2). (2.25)

Remark 12. Note that the left-hand-side, like κ is invariant under u-coordinate changes.

We also reformulate (2.16) as:

∂u∂v log(Ω
2) = κ∂u(2K ) − 2�(Duφ∂vφ̄) − 2κ

r2

(
∂u� − ∂uQ2

r

)

= ι∂v(2K ) − 2�(Duφ∂vφ̄) − 2ι

r2
(∂v� − ∂vQ2

r
). (2.26)

We can also rewrite (2.19) to control |∂vφ| more easily:

e
−iq0

∫ u
u0

Au∂u(e
iq0

∫ u
u0

Au∂vφ) = −∂vr Duφ

r
− ∂ur∂vφ

r
+
q0iΩ2

4r2
Qφ − m2Ω2

4
φ,

(2.27)

or to control |Duφ| more easily:

∂v(Duφ) = −∂ur∂vφ

r
− ∂vr Duφ

r
− m2Ω2

4
φ. (2.28)

Finally we can also write the Raychaudhuri equations as:

∂u(κ
−1) = 4r

Ω2 |Duφ|2, (2.29)

∂v(ι
−1) = 4r

Ω2 |∂vφ|2. (2.30)

3. Precise Statement of the Main Results

3.1. Preliminaries on characteristic initial valueproblemandcoordinate choice. Before
stating the theorem,wewant to demystify a little the framework used to define the gauges
and the coordinate dependent objects. The context is the same as for [7] and [18], the
only difference is the presence of the (dynamical) charge of the space–time Q.

We want to phrase the characteristic initial value problem for the Einstein–Maxwell–
Klein–Gordon system of Sect. 2.1. The reader familiar with the framework can skip this
section.

We first consider two connected and oriented smooth, 1-dimensional manifolds Cin
and Cout—each with a boundary point (c.f. Fig. 1).

We can identify the surfaces at their boundary point to get Cin ∪{p} Cout, on which
we now want to build a (U, v) null regular coordinate system. For this, we have four
choices to make:
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1. Choosing an increasing39 parametrization U of Cin.
2. Choosing an increasing parametrization v of Cout.
3. Choosing the U -coordinate U0 ∈ R ∪ {±∞} of the intersection point p.
4. Choosing the v-coordinate v0 ∈ R ∪ {±∞} of the intersection point p.

In this coordinate system, Cin and Cout can be written as:

Cin = {(U, v0),U ∈ [U0,Umax)},
Cout = {(U0, v), v ∈ [v0, vmax)},

with Umax ∈ R ∪ {±∞}, vmax ∈ R ∪ {±∞}.
As our initial data we shall consider (r,Ω2

H, φ, A) as follows:
(r, φ) are C1 scalar40 functions and A a C1 1-form on Cin ∪{p} Cout.
r and φ induce—in the (U, v) coordinate system—some functions on [v0, vmax) ×

{U0} ∪ {v0} × [U0,Umax) that we still call r and φ by notation abuse.
A induces a function Av on [v0, vmax)×{u0} by A|Cout = Avdv and another function

AU on {v0} × [U0,Umax) by A|Cin = AUdU .
The remaining part of the data will be a C1 function Ω2

H : [v0, vmax) × {u0} ∪
{v0} × [U0,Umax) → R

∗
+. We will use this later to build a metric of the form g =

−Ω2
H
2 (dU ⊗ dv + dv ⊗ dU ) + r2[dθ2 + sin(θ)2dψ2].
The prescription of Ω2

H as above will be coordinate dependent.
This coordinate dependent framework allows us to define theRaychaudhuri equations

on the initial surfaces, seen as constraints for the characteristic initial value problem.
However, they are still valid under any re-parametrization of U or v:

Definition 1 (Raychaudhuri equations). We say that the data (r,Ω2
H, φ, A) satisfy the

Raychaudhuri equations if on {v0} × [U0,Umax):

∂U (
∂Ur

Ω2
H

) = −r

Ω2
H

|DUφ|2.

And on [v0, vmax) × {U0}:

∂v(
∂vr

Ω2
H

) = −r

Ω2
H

|Dvφ|2,

where D depends on A by D = ∂ + iq0A as an operator on scalar functions.

We now want to talk of “the solution”—up to gauge transforms—of the Einstein–
Maxwell–Klein–Gordon equations. To do so, we solve the partial differential equation
system of Sect. 2.4 “abstractly” for some data (r,Ω2, φ, A). Since it is standard that the
Raychaudhuri equations—once satisfied on the initial surfaces—are propagated, we see
the solution actually satisfies the Einstein–Maxwell–Klein–Gordon equations in their
geometric form of Sect. 2.1.

Theorem 3.1 (Characteristic initial value problem). Let Cin, Cout be as before.
We assume moreover that the data (r,Ω2

H, φ, A) are as before and satisfy the Ray-
chaudhuri equations. Moreover we suppose that r > 0.

39 By increasing, we mean parallel to the orientation of the 1-dimensional surface.
40 It should be emphasized that r and φ—like the metric g will be later—are geometric quantities, namely

they do not depend on the coordinate choice. However Ω2
H does depend on the coordinate choice.
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Then there exists a uniqueC1maximal globally hyperbolic development (M, g, φ, F),
spherically symmetric solutionofEinstein–Maxwell–Klein–Gordonequations of Sect. 2.1
such that

1. Cout and Cin embed intoQ = M/SO(3) as null boundaries with respect to the metric
g.

2. D+(Cin ∪{p} Cout) ∩ Q = J+({p}) ∩ Q where D+ denotes the future domain of
dependence and J+ the causal future.

3. (M, g, φ, F) satisfy:

g = −Ω2
H

2
(dU ⊗ dv + dv ⊗ dU ) + r2[dθ2 + sin(θ)2dψ2], F = d A.

And (r,Ω2
H, φ, A) restrict on the initial surfaces to the value prescribed by the initial

data (r,Ω2
H, φ, A)|Cin∪{p}Cout .

4. The equations in null coordinates of Sect. 2.4 are satisfied.

For a more thorough discussion of the uniqueness problem in that framework, c.f.
[5].

3.2. The stability theorem. We can now formulate the main stability theorem. The main
point is the presence of a Cauchy horizon, reflected by the form of the Penrose diagram,
instead of space–like Schwarzschild-type singularity.

Theorem 3.2 (Non-linear stability theorem).
Let Cin, Cout and (r, φ,Ω2

H, A) satisfy the assumptions of Theorem 3.1.
Moreover, we will make the following geometric assumptions:

Assumption 1 Cout is affine complete.41

Assumption 2 r > 0 is a strictly decreasing function on Cin with respect to any increas-
ing parametrization.

From now on we will denote H+ := Cout and call H+ the event horizon.
For some constant v0 > 0, we parametrize H+ := Cout = {U ≡ 0, v ≥ v0} with a

coordinate v defined42 by

κ|H+ = (
−Ω2

H(0, v)

4∂Ur(0, v)
)|H+ ≡ 1, (3.1)

and for some Umax > 0, we parametrize Cin = {v ≡ v0, 0 ≤ U ≤ Umax, } with a
coordinate U defined by

(∂Ur)|Cin(U, v0) ≡ −1. (3.2)

We also make the following no-anti-trapped surfaces43 assumption:

Assumption 3 ∂Ur(0, v)|H+ < 0

41 We define affine completeness by the relation
∫ vmax
v0

Ω2
H(U0, v)dv = +∞. This is a coordinate-

independent statement.
42 It is then easy to see that (2.15) and Assumption 4 together with the affine completeness prove that

vmax = +∞.
43 Notice that this assumption together with (2.17) proves that ∂Ur < 0 everywhere on the space–time.



Stability and Instability of the Sub-extremal Reissner–Nordström Black Hole Interior

We assume the following decay on the field in (U, v) coordinates : there exists C > 0
and s > 1

2 such that

Assumption 4

|φ(0, v)||H+ + |∂vφ(0, v)||H+ ≤ Cv−s,

Assumption 5 44

|DUφ|(U, v0) ≤ C.

We also ask the following convergences towards infinity on the event horizon:

Assumption 6

r|H+(0, v) → r∞

as v → +∞, where r∞ > 0 is a constant.

Assumption 7

0 < Q+ < r∞,

where Q+ := lim supv→+∞ |Q||H+

We consider the unique C1 maximal globally hyperbolic development (M, g, φ, F)

of Theorem 3.1,
Then, after restriction to a small enough connected subset p ∈ C′

in ⊂ Cin, i.e C′
in =

{v ≡ v0, 0 ≤ U ≤ Us, } for 0 < Us small enough, D+(C′
in∪{p}Cout)∩Q has the Penrose

diagram of Fig. 1.
Moreover, if s > 1, (M, g, φ, F) admits a continuous extension to the Cauchy hori-

zon.
More precisely, we can attach a future null boundary CH+ := {v ≡ +∞, 0 ≤ U ≤

Us} to the space–time (M,g) such that (g, φ, F) each admits a continuous extension to
the new space–time M̄ := M ∪ CH+ seen as a manifold with boundaries.

Remark 13. Because of (2.11), (3.1) is exactly equivalent45 to:

∂vr|H+ = 1 − 2�

r
+
Q2

r2
= 1 − μ. (3.3)

Remark 14. The present paper introduces the first stability result dealing with all the
possible values of m2 and q0. However the continuous extension statement when s > 1
was already established in the work [7] and [18] although stated in the chargeless case
q0 = 0 only. Some continuous extension results for the charged case have also been
proved in [15]. Notice (c.f. Sect. 1.2.2) that the case s > 1 should be relevant in our
context only if the scalar field is massless and not too charged46 compared to the black
hole.

44 Notice that in the gauge (2.9), this is equivalent to saying |∂Uφ|(U, v0) ≤ C.
45 Notice that the gauge 3.1 is the same as [7] but slightly different from [18], although it actually only

differs from a multiplicative function of v bounded above and below.
46 Namely m2 = 0 and |q0e| < 1

2 with the notation of Sect. 1.2.2.
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Remark 15. Notice also that the assumptions are (almost) the same as those of [18],
except for the strength of the decay rate, which was integrable unlike in the present
paper.

In the rest of the paper, we will write A � B if there exists a constant C̃ =
C̃(C, Q+, q0,m2, r∞, s, v0) such that A ≤ C̃ B.

If we need to specify this constant, we shall call it consistently C̃ when there are no
ambiguities.

We denote also A ∼ B if A � B and B � A.

3.3. The instability theorem. We can now phrase our instability theorem that relies very
much on the non-linear stability claimed in the preceding section.

Theorem 3.3 (Non-linear instability theorem). Let Cin, Cout and (r,Ω2
H, φ, A) satisfying

all the assumptions of Theorem 3.2 and in particular Assumption 4 with s > 1
2 .

We assume, using the same gauges as for Theorem 3.2, that the field in addition
satisfies the following L2 averaged polynomial lower-bound on the event horizon Cout =
H+:

Assumption 8.

v−p �
∫ +∞

v

|∂vφ|2|H+(0, v′)dv′, (3.4)

for 2s − 1 ≤ p < min{2s, 6s − 3}.
Then for any u ∈ R negative enough, and for all v large enough (depending on u),

∫ +∞

v

|∂vφ|2(u, v′)dv′ � v−p. (3.5)

In particular the following component of the curvature blows-up on the Cauchy
horizon:

lim sup
v→+∞

Ric(Ω−2∂v,Ω
−2∂v)(u, v) = +∞.

Moreover for s > 1, φ /∈ W 1,2
loc and the metric is not C1 for the continuous extension

constructed in Theorem 3.2.

Remark 16. This theorem is the very first instability result outside the uncharged and
massless case. As explained in Sect. 1.3.2, the methods of previous instability works do
not apply here.

Remark 17. In view of the result of [18], one can very reasonably hope that this curvature
blow up leads to a C2 inextendibility of the metric in an appropriate global setting.47

The reason for this is that Ric(Ω−2∂v,Ω
−2∂v) is a geometric quantity since Ω−2∂v is

a geodesic vector field. The only remaining argument is to extend the blow-up far from
time-like infinity namely to get a global statement as opposed to perturbative.

47 At least for two-ended black holes.
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4. Proof of the Stability Theorem 3.2

Werecall thatwewrite A � B if there exists a constant48 C̃ = C̃(C, Q+, q0,m2, r∞, s, v0)
such that A ≤ C̃ B.

If we need to specify this constant, we shall call it consistently C̃ when they are no
ambiguities.

We denote also A ∼ B if A � B and B � A.
When we write “with respect to the parameters”, we actually mean “with respect to

C, Q+, q0,m2, r∞ and s”.

We shall use repetitively the following technique: ifwe are in a regionwhere |u| ≤ Dv

where D is a constant, thenwe can take |us | large enough (equivalentlyUs small enough)
so that for any u ≤ us and any function of v, ε(u, ·) = o(1) where v → +∞ and any
positive number η then |ε(u, v)| ≤ η for all |u| ≤ Dv. When we do so, we write “for
|us | large enough” or equivalently in (U, v) coordinates “for Us small enough”.

4.1. Strategy of the proof. The main idea of the proof is to split the space–time into
smaller regions where the red-shift and blue-shift effect manifest themselves as already
done in [7] and [18] and to integrate along the characteristic for the wave equations.

The main novelty is to deal with a non-integrable field decaying onH+ like v−s with
s > 1

2 only. The reason why stability estimates still proceed is that the Raychaudhuri
equation on H+ involve the square of the field of the order v−2s which is integrable.

We will use five different regions:

1. The event horizonH+ := {U = 0, v ≥ v0}where we use crucially the Raychaudhuri
equation and exhibit the right Reissner–Nordström space–time to which our dynam-
ical space–time is expected to converge at infinity. We find that Ω2 behaves likes
e2K+·(u+v+h(v)) = 2K+Ue2K+·(v+h(v)) where h(v) = o(v).

2. The red-shift region R = {u + v + h(v) ≤ −Δ}: this is a large region where Ω2 is
small enough and |Duφ| � Ω2v−s . This strong stability feature is the key to prove
the estimates. Another important feature is thatΩ2 can almost be written as a product
f (u) · g(v) which simplifies most of the calculations. This comes from the fact that
Ω2

H(U, v) is almost Ω2
H(0, v), up to a arbitrary small constant e−C̃Δ.

3. The no-shift region N := {−Δ ≤ u + v + h(v) ≤ ΔN }: the function of this small
region is to allow r to vary from its event horizon limit value r+ to its Cauchy horizon
limit value r−, up to arbitrarily small constants. The smallness of the region allows
us to conserve the estimates of its past regionR while initiating the blue-shift effect
in its future.

4. The early blue-shift transition region49 EB := {ΔN ≤ u + v + h(v) ≤ −Δ′ +
2s

2|K−| log(v)}: this small region is the first where the blue-shift happens and as a

consequence the metric coefficients Ω2(u, v) start to be small enough to facilitate
the decay of propagating waves but do not decay too much so that we can still treat
the problem as almost linear: in particular50 κ−1 and ι−1 stay bounded.

48 This is equivalent to saying that C̃ will depend only on q0,m2, v0, the initial data and on (e, M) as defined
in Sect. 4.3.1.
49 The idea to have a curve at a logarithmic distance from the no-shift region comes back—in a different

form—to the early papers of Dafermos [6,7].
50 Recall that κ and ι were defined in (2.6) and (2.7).
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5. The late blue-shift regionLB := {−Δ′ + 2s
2|K−| log(v) ≤ u +v +h(v)}: this very large

region exhibits the strongest blue-shift: the metric coefficients Ω2(u, v) start from
inverse polynomial decay but decrease exponentially in v near the Cauchy horizon.
We use this smallness to prove decay for the propagation problem. However, we do
not prove enough decay to get a continuous extension of the space–time in the case
s ≤ 1.

The core of the proof is to control ∂v log(Ω2) and ∂u log(Ω2) and use Lemma 4.1:
In H+ and R, as a consequence of the red-shift effect, they are lower bounded by a

strictly positive constant, which allows us to consider Ω2 as an increasing exponential
in u and as an increasing exponential in v, avoiding the loss of one power when we
integrate a polynomial decay.

In N , ∂v log(Ω2) and ∂u log(Ω2) change sign and can be close to 0, but it does not
matter for the decay of the scalar field because the region is small enough.51

In EB andLB, as a consequence of the blue-shift effect, they are upper bounded52 by
a strictly negative constant, which allows us to consider Ω2 as a decreasing exponential
in u and as a decreasing exponential in v, which also avoids the loss of power when we
integrate a polynomial decay.

4.2. A calculus lemma. We begin this proof section by a calculus lemma, which broadly
says that integrating a polynomial decay—as expected for φ—with aΩ2 orΩ−2 weight
avoids to lose one power as we would otherwise.

Lemma 4.1. Let q ≥ 0, a = a(e, M, q0,m2, s) > 0 and γ1 be a one-dimensional curve
on which |u| ≈ v with u1(v) being the only u such that (u, v) ∈ γ1 and v1(u) being the
only v such that (u, v) ∈ γ1.

Then for any positive C1 function Ω2, the following hold true:

1. Red-shift bounds in |u|: assume that for all u′ ∈ [u1(v), u], ∂u log(Ω2)(u′, v) > a.
Then: ∫ u

u1(v)

Ω2(u′, v)|u′|−qdu′ � Ω2(u, v)|u|−q ,

∫ u

u1(v)

Ω−2(u′, v)|u′|−qdu′ � Ω−2(u1(v), v)v−q .

2. Red-shift bounds in v: assume that for all v′ ∈ [v1(u), v], ∂v log(Ω2)(u′, v) > a.
Then: ∫ v

v1(u)

Ω2(u, v′)v′−qdv′ � Ω2(u, v)v−q .

∫ v

v1(u)

Ω−2(u, v′)v′−qdv′ � Ω−2(u, v1(u))|u|−q .

3. Blue-shift bounds in |u|: assume that for all u′ ∈ [u1(v), u], ∂u log(Ω2)(u′, v) < −a.
Then: ∫ u

u1(v)

Ω2(u′, v)|u′|−qdu′ � Ω2(u1(v), v)v−q .

51 More precisely the u difference is bounded.
52 Strictly speaking, we do not prove however that ∂u log(Ω2) is upper bounded in LB if s ≤ 1.



Stability and Instability of the Sub-extremal Reissner–Nordström Black Hole Interior

∫ u

u1(v)

Ω−2(u′, v)|u′|−qdu′ � Ω−2(u, v)|u|−q .

4. Blue-shift bounds in v: assume that for all v′ ∈ [v1(u), v], ∂v log(Ω2)(u′, v) < −a.
Then: ∫ v

v1(u)

Ω2(u, v′)v′−qdv′ � Ω2(u, v1(u))|u|−q ,

∫ v

v1(u)

Ω−2(u, v′)v′−qdv′ � Ω−2(u, v)v−q .

Proof. We will only prove one case when ∂u log(Ω2) > a, the others being similar. For
u ≥ u1(v):

∫ u

u1(v)

Ω−2(u′, v)|u′|−qdu′ ≤ 1

a

∫ u

u1(v)

Ω−2(u′, v)∂u log(Ω
2)(u′, v)|u′|−qdu′

= −1

a

∫ u

u1(v)

∂u(Ω
−2)(u′, v)|u′|−qdu′.

Then we integrate by parts to write:
∫ u

u1(v)

Ω−2(u′, v)|u′|−qdu′ ≤ q

a

∫ u

u1(v)

Ω−2(u′, v)|u′|−q−1du′

+
1

a
Ω−2(u1(v), v)|u1(v)|−q − 1

a
Ω−2(u, v)|u|−q .

Then clearly
∫ u
u1(v)

Ω−2(u′, v)|u′|−q−1du′ = o(
∫ u
u1(v)

Ω−2(u′, v)|u′|−qdu′) so the
dominant term is the second, and a depends on the parameters only, giving:

∫ u

u1(v)

Ω−2(u′, v)|u′|−qdu′ � Ω−2(u1(v), v)|u1(v)|−q .

��

4.3. The event horizon .

4.3.1. Convergence at infinity towards a Reissner–Nordström background.

Proposition 4.2. There exists constants 0 < |e| < M such that on the event horizon
H+ = {U = 0, v ≥ v0}

|�(0, v) − M | � v1−2s, (4.1)

|Q(0, v) − e| � v1−2s . (4.2)

And moreover r∞ = r+(M, e) where r∞ is as in hypothesis 6 and

K (0, v) → K+(M, e) > 0,

as v → +∞.
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Proof. First we use (2.21) together with the decay of Assumption 4 and the boundedness
of r to get the existence of e ∈ R such that (4.2) holds. In particular Q is bounded.
Moreover, due to Assumption 7, e �= 0.

For the mass, notice that by integration by parts and the decay of Assumption 4:

|
∫ +∞

v

r∂vr |φ|2dv′| = | −
∫ +∞

v

r2�(φ̄∂vφ)dv′ − r2

2
|φ|2(0, v)| � v1−2s .

Therefore—the other terms being easier in (2.24)—byusing gauge (3.1) andAssump-
tion 4, together with the boundedness of r , we prove that there exists M ∈ R such that
(4.1) holds.

Gauge (3.1) then gives the following convergence when v tends to +∞ on H+:

∂vr = 1 − μ = 1 − 2�

r
+
Q2

r2
→ 1 − 2M

r∞
+

e2

r2∞
:= l.

Since r admits a limit at infinity, l = 0 so r∞ is a strictly positive root of the polynomial
x2 − 2Mx + e2 hence:

r∞ = M ±
√
M2 − e2,

|e| ≤ |M |,
0 < M.

We then use Assumption 7 to rule out the case r∞ = M −√
M2 − e2 since r−(M, e) ≤

|e| for all 0 < |e| ≤ M
Assumption 7 also gives the sub-extremality condition |e| < M .
The last claim follows from the definition of K and the fact that for all 0 < |e| < |M |,

M − e
r+(M,e) > 0. ��

Now that M and e are known, we shall denote K+ instead of K+(M, e) and K−
instead of K−(M, e).

We know the Reissner–Nordström background—indexed by (M, e)- towards which
our space–time converges at infinity and we can define the null coordinates u and V
in the spirit of Sect. 2.3—given that the (U, v) coordinates are already defined by the
statement of Theorem 3.2:

Definition 2. Recalling that (U, v) ∈ [0,Us] × [v0,+∞], we define u ∈ [−∞, us] by
the relation:

U := 1

2K+
e2K+u,

and V ∈ [V0, 1] by:
V := 1 − 1

2|K−|e
2K−v.

We write the metric53 on Q in these different coordinates systems as:

gQ = −Ω2

2
(du ⊗ dv + dv ⊗ du) = −Ω2

H

2
(dU ⊗ dv + dv ⊗ dU )

= −Ω2
CH

2
(du ⊗ dV + dV ⊗ du).

53 C.f Sect. 2.2 for a definition.
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Notice that:

2K+UΩ2
H(U, v) = Ω2(u, v) = 2|K−|(1 − V )Ω2

CH (u, V ).

We will also define νH := ∂Ur . Notice that νH < 0 everywhere on the space–time. This
is because it is strictly negative onH+—due to the no anti-trapped surface assumption—
therefore so is νH

Ω2
H
and this quantity is decreasing in U due to (2.17).

Now that the parameters (M, e) are determined, we translate the notation �: A � B
means that there exists a constant C̃ = C̃(C, e, q0,m2, M, s, v0) such that A ≤ C̃ B.

4.3.2. Reduction to the case where K is lower bounded on the event horizon. In order
to use the red-shift effect in all its strength near the event horizon, we have to prove that
K is close enough to its limit value—the surface gravity K+—and in particular is lower
bounded by a strictly positive constant on the event horizon.

To do so, we need to be far away in the future, i.e to consider large v.
We are going to prove that for v′

0 = v′
0(C, e, M, q0,m2, s) large enough—with the

assumptions of Theorem 3.2—bounds of the following form are still true:

|DUφ(U, v′
0)| � D(v′

0),

|∂Ur(U, v′
0)| � 1.

In the second step, we restart our problem, replacing v0 by v′
0 in the hypothesis of

Theorem 3.2—in particular Cin is redefined to be Cin = {v ≡ v′
0, 0 ≤ U ≤ Us} and

(2.9), (3.2) are true on v ≡ v′
0 instead.

This is can be done introducing a new coordinate system (U ′, v)with ∂U ′r(U ′, v′
0) =

−1. This can only multiply the bound for DU ′φ(U ′, v′
0) by a constant. Notice that

|DU ′φ(U, v′
0)| is not modified by any gauge transform on A. After this section, we will

abuse notation and still call (U, v) this new coordinate system (U ′, v).
We now take v′

0 = v′
0(C, e, M, q0,m2, s) to be large enough so that 2K − 2K+ +

rm2|φ|2 is arbitrarily close to 0.
To be able to do it, we must use54 the Einstein–Maxwell–Klein–Gordon equations on

the space–time rectangle [0,Us] × [v0, v′
0] which is the object of the following lemma:

Lemma 4.3. Under the same hypothesis than before and for v′
0 > v0, if Us is sufficiently

small there exists a constant D > 0 depending on C, e, M, q0,m2, s, v0 and v′
0 such

that
|∂Ur(U, v′

0)|−1 + |DUφ(U, v′
0)| ≤ D. (4.3)

Therefore, for any η > 0 independent55 of any parameter, there exists a v′
0 > 0 such

that

|DUφ(U, v′
0)| � C,

and for all v ≥ v′
0:

|2K (0, v) − 2K+| ≤ ηK+,

rm2|φ|2(0, v) ≤ ηK+.

The proof, which is not difficult, is deferred to Appendix C.
In what follows, we will not refer to v′

0 any longer, and when we will write v0 in the
rest of the paper, we actually mean v′

0.

54 This essentially boils down to an easy local existence theorem.
55 We insist that η must be a numerical constant that do not depend on any of the C, e, M, q0,m

2, v0 or
v′
0.
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4.3.3. Main bounds on the event horizon.

Proposition 4.4. The following bounds hold on the event horizon:

0 ≤ λ = 1 − μ � v−2s, (4.4)

0 ≤ r+ − r(0, v) � v1−2s, (4.5)

|∂v log(Ω
2
H)(0, v) − 2K (0, v)| � v−2s, (4.6)

|∂U log(Ω2
H)|(0, v) � Ω2

H(0, v), (4.7)

|∂Uφ|(0, v) � Ω2
H(0, v)v−s (4.8)

|AU |(0, v) � Ω2
H(0, v). (4.9)

Moreover there exists a fixed function h(v) such that:

Ω2
H(0, v) = −4νH(0, v) = e2K+(v+h(v)), (4.10)

with
|∂vh(v)| � v1−2s . (4.11)

Proof. We use (2.25) and gauge (3.1) to write:

∂v log(Ω
2
H) = ∂v log(−νH) = 2K − rm2|φ|2. (4.12)

Equation (4.6) then follows directly from Assumption 4.
We first prove that

λ

Ω2
H

(v = +∞) = 0.

Let 0 < δ0 < 1 suitably small enough to be chosen later, independently of all the
parameters.

Then, by Sect. 4.3.2 we are allowed to assume that:

|2K − rm2|φ|2 − 2K+| ≤ 2δ0K+.

Then, we integrate (4.12) on [v0, v] to get:
e2K+(1−δ0)v � Ω2

H(0, v) � e2K+(1+δ0)v.

Using (2.18) written as ∂v(
λ

Ω2
H
) = −r

Ω2
H
|∂vφ|2, we get that

|∂v(
λ

Ω2
H

)| � e−2K+(1−δ0)vv−2s,

which is integrable. Therefore λ

Ω2
H
admits a limit l ∈ R when v → +∞. Integrating56

on [v,+∞], we get after multiplication by Ω2
H(0, v) :

|λ − lΩ2
H| � e4K+δ0vv−2s .

56 Recall that
∫ +∞
v e−2K+(1−δ0)v

′
v′−2sdv′ � e−2K+(1−δ0)vv−2s . Similarly,

∫ v
v0

e4K+δ0v
′
v′−2sdv′ �

e4K+δ0vv−2s .



Stability and Instability of the Sub-extremal Reissner–Nordström Black Hole Interior

Integrating again and using the boundedness of r , we get after absorbing the r dif-
ference in e4K+δ0vv−2s

|l
∫ v

v0

Ω2
H| � e4K+δ0vv−2s .

Hence, using the lower bound for Ω2
H:

|l|e2K+(1−δ0)v � e4K+δ0vv−2s .

If δ0 < 1
3 , it proves that l = 0. Since ∂v(

λ

Ω2
H
) ≤ 0, we have that

λ ≥ 0.

Using (4.12) and the earlier Sect. 4.3.2, we are allowed to assume that:

∂v log(Ω
2
H) ≥ K+ > 0.

Therefore using a variant of Lemma 4.1 on [v,+∞]:

0 ≤ λ(0, v) = Ω2
H(0, v)

∫ +∞

v

r |∂vφ|2
Ω2

H(0, v′)
dv′ � Ω2

H(0, v)

∫ +∞

v

|v′|−2s

Ω2
H(0, v′)

dv′ � v−2s .

Therefore we proved (4.4) and (4.5). It also gives—using (4.1) and (4.2)-:

|2K (U, v) − 2K+(M, e)| � v1−2s,

and therefore giving (4.11) from (4.6).

Equation (4.9) follows from (2.9) and (2.22) written as ∂vAU = − QΩ2
H(0,v)

2r2
,using

Lemma 4.1 with q = 0.
From then it is easy to use (2.28), the gauge (3.1) and the decay of φ and ∂vφ to

establish (4.8).
Now writing (2.16) as

|∂v∂U log(Ω2
H)| = | − 2�(DUφ∂vφ) +

Ω2
H

2r2
+
2∂Ur∂vr

r2
− Ω2

H

r4
Q2| � Ω2

H(0, v)

gives immediately (4.7) after integration. ��

4.4. The red-shift region. We define for δ > 0 suitably small to be chosen later, the
red-shift region as:

R := {UΩ2
H(0, v) ≤ δ} = {u + v + h(v) ≤ log(2K+δ)

2K+
:= −Δ}.

In this region, we expect that Ω2 will be exponentially growing in u + v while still
remaining very small as it is the case for Reissner–Nordström, which is a manifestation
of the red-shift effect.

However already on the event horizon
Ω2

H(0,v)

e2K+v may be unbounded57 so we decide to
set

e2K+·(u+v+h(v)) = 2K+UΩ2
H(0, v) to be small instead of e2K+·(u+v).

The most emblematic consequence of the red-shift effect—and the main difficulty—
is the bound for the field |Duφ| � Ω2v−s from which we derive the others.

57 This quantity may grow like v2−2s . If s > 1 like in [18], this problem does not exist soR can be defined
using e2K+·(u+v) directly.
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4.4.1. Main bounds on the red-shift region.

Proposition 4.5. We have the following control58 on the field and the potential onR:

|φ| + |∂vφ| � v−s, (4.13)

|∂Uφ| � Ω2
H(0, v)v−s, (4.14)

|AU | � Ω2
H(0, v). (4.15)

We also have:

| log(Ω2(u, v)) − 2K+ · (u + v + h(v))| = | log(Ω
2
H(U, v)

Ω2
H(0, v)

)| � UΩ2
H(0, v),

(4.16)

0 ≤ 1 − κ(U, v) � Ω2(U, v)v−2s, (4.17)

|∂U log(Ω2
H)(U, v)| � Ω2

H(0, v), (4.18)

|∂v log(Ω
2)(U, v) − 2K (U, v)| � v−2s, (4.19)

0 ≤ r+ − r(U, v) � Ω2 + v1−2s, (4.20)

|Q(U, v) − e| � v1−2s, (4.21)

|�(U, v) − M | � v1−2s, (4.22)

|2K (U, v) − 2K+| � Ω2 + v1−2s . (4.23)

Proof. We bootstrap59 the following estimates60 inR:

|φ| + |∂vφ| ≤ 4Cv−s, (4.24)

|DUφ| ≤ DΩ2
H(0, v)v−s, (4.25)

−νH(U, v) ≤ Ω2
H(0, v), (4.26)

1

2
≤ κ ≤ 1, (4.27)

|Q − e| ≤ 4C̄v1−2s . (4.28)

Where C̄ is the constant of estimate (4.2) and D is a large enough constant—
independent of δ—to be chosen later. Recall also that C is defined in the statement
of Theorem 3.2.

We can first write (2.23) using bootstraps (4.24), (4.25), (4.26), (4.27) as:

|∂U� | � (D2|λ| + 1)Ω2
H(0, v)v−2s .

Using (2.15), it is not difficult to prove that |λ| is bounded hence after integrating in
U :

|�(U, v) − �(0, v)| � D2δv−2s . (4.29)

Then it gives (4.22), using the bound on the event horizon with δ small enough with
respect to D notably.

58 Note that (4.13), (4.14) and (4.15) also give |DUφ(U, v)| � UΩ2
H(0, v).

59 For an introduction to bootstrap methods, c.f. chapter 1 of [28].
60 Notice that bootstrap (4.26) and (4.27) combined give Ω2

H(U, v) ≤ 4Ω2
H(0, v).
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Similarly we get:
|Q(U, v) − Q(0, v)| � Dδv−2s, (4.30)

which proves (4.21) and closes bootstrap (4.28) for δ small enough.

We now write (2.22) as:

∂vAU = −2Qκ

r
νH(U, v).

Then bootstraps (4.26), (4.27) and (4.28) give

|∂vAU | � Ω2
H(0, v).

Hence with gauge (2.9) and the bound on the event horizon (4.10), (4.11), we use
Lemma 4.1 with q = 0 to get (4.15) :

|AU | � Ω2
H(0, v).

Now using the last equation we get with bootstrap (4.24) and (4.25) :

|∂Uφ| � DΩ2
H(0, v)v−s .

We can then integrate to get:

|φ(U, v) − φ(0, v)| � Dδv−s . (4.31)

which implies that for δ small enough:

|φ| ≤ 2Cv−s .

Let 0 < a be a constant suitably chosen later. We can rewrite (2.19) together with
(2.15) as:

∂v(e
avr

DUφ

νH
) =

(
a − κ(2K − rm2|φ|2)

)
eavr

DUφ

νH
− eav∂vφ + κeavrm2φ. (4.32)

We first need to prove that K is lower bounded inR. The bootstrap (4.26) gives:

0 ≤ r(0, v) − r(U, v) ≤ δ.

Then, making use of (4.29) and (4.30), we write:

|K (U, v) − K+| ≤ |K (U, v) − K (0, v)| + |K (0, v) − K+|
� (1 + D + D2)δ + |K (0, v) − K+|.

We then recall that the discussion of Sect. 4.3.2 allows us to consider that |K (0, v)−
K+| ≤ ηK+ and also that rm2|φ|2(0, v) < ηK+ for any η not depending on the param-
eters. Hence for δ small enough, we can assume that

2K (U, v) − rm2|φ|2(U, v) > K+.

Choosing say 0 < a < K+
4 gives with bootstrap (4.27) that a − κ(2K − rm2|φ|2) ≤

− K+
4
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We then use the Grönwall Lemma combined with the boundedness of bootstrap
(4.27), the lower boundedness of r , the decay of bootstrap (4.24) and Assumption (5)
with gauge (3.2) for the initial condition to get:

|r DUφ

νH
| � v−s + ea(v0−v) � v−s .

It also closes61 bootstrap (4.25) if D is large enough compared62 to the constant that
arises which depends on C, e, M, q0,m2, s, v0 only and proves:

|DUφ|(U, v) � Ω2
H(0, v)v−s . (4.33)

|∂U� |(U, v) + |∂U Q2|(U, v) � Ω2
H(0, v)v−2s . (4.34)

Using the preceding bounds on φ and AU , we get (4.14):

|∂Uφ| � |νH|v−s .

Now using (4.15), we can write (2.19) as:

|∂U (∂vφ)| � |∂Uφ| + Ω2
H(|φ| + |∂vφ|) � −νH(U, v)v−s .

Hence by (4.26), bootstrap (4.24) is validated for δ small enough.
Recall from Sect. 4.3.2 that we established that everywhere on the space–time:

0 ≤ κ ≤ 1.

Writing (2.17) in (U,v) coordinates, we get—using (4.33)—:

|∂U log(κ)| = r

−νH
|DUφ|2 � |νH|v−2s .

Using bootstrap (4.26) we get the amelioration:

0 ≤ 1 − κ � UΩ2
H(0, v)v−2s . (4.35)

Hence bootstrap (4.27) is validated for δ small enough.
Now we write (2.16) as:

|∂v∂U log(Ω2
H)| � |νH| ≤ Ω2

H(0, v) = e2K+(v+h(v)).

Hence we establish (4.18) using Lemma 4.1 and (4.11) :

|∂U log(Ω2
H)(U, v)| � |∂U log(Ω2

H)|(U, v0) +
∫ v

v0

e2K+(v
′+h(v′))dv′

� 1

K+
e2K+(v+h(v)) � Ω2

H(0, v),

where we used that on Cv0 and due to (2.17), Assumption 5 and gauge (3.2):

|∂U log(Ω2
H)|(U, v0) = r |DUφ|2(U, v0) � 1.

61 We used that r is bounded below by a constant depending of v0 and the parameters for δ small enough.
62 In particular, D is taken large enough independently of δ, hence taking δ small enough compared to D

was licit and boiled down to taking δ small enough compared to the parameters.
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Hence we establish (4.16), that we write with a constant C̃ > 0 as:

e−C̃UΩ2
H(0,v) ≤ Ω2

H(U, v)

Ω2
H(0, v)

≤ eC̃UΩ2
H(0,v),

and in particular:

e−C̃δ ≤ Ω2
H(U, v)

Ω2
H(0, v)

≤ eC̃δ,

which together with (4.35) closes bootstrap (4.26) for δ small enough. It gives63 also
(4.17).

Moreover we have the more precise estimate:

e−C̃δ ≤ −4νH(U, v)

Ω2
H(0, v)

≤ eC̃δ

1 − C̃ ′δv−2s
.

We get the more refined bound (4.20) on r , using (4.5):

0 ≤ r+ − r(U, v) ≤ 1

4
eC̃δUΩ2

H(0, v) + C̃v1−2s � Ω2(U, v) + v1−2s .

As a consequence of (4.20), (4.21) and (4.22) we get (4.23).

Finally we can rewrite (2.26) in (U, v) coordinates and using our estimates we get:

|∂U (∂v log(Ω
2) − 2K )| � |κ − 1||∂U (2K )| + |DUφ||∂vφ| + |∂U� | + |∂U Q|

� Ω2
H(0, v)v−2s .

Hence with (4.6), we prove (4.19). ��

4.4.2. Control of ι in the late red-shift transition region. Notice that in Proposition 4.5,
we have an estimate for 1− κ but nothing for the v-analogue 1− ι. This is because ι−1

blows-up in general near the event horizon where 1 − ι−1(0, v) = +∞.
It is important to get a bound for 1− ι as it will give control of ∂u log(Ω2) − 2K , in

the same manner 1 − κ bounds inR gave control of ∂v log(Ω2) − 2K .
Still we will show that we can control 1 − ι on a subset64 of R defined as

LR := {C0v
−q(s) ≤ UΩ2

H(0, v) ≤ δ},

where q(s) = 1{s≤1} + s1{s>1} and we call this subset the late red-shift transition region.
The name transition simply comes from the fact we aim at bounding ∂u log(Ω2)−2K

instead of ∂u log(Ω2) − 2K+ = ∂u log(Ω2
H) so there is a transition from 2K+ to 2K .

Notice that in this region |u| ∼ v.

63 Notice that δ small enough is to be understood as δ ≤ ε(C, e, M, q0,m
2, s, v0) with ε small enough.

64 C0 is chosen such that C0v
−q(s)
0 < δ.
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Proposition 4.6. In LR := {C0v
−q(s) ≤ UΩ2

H(0, v) ≤ δ}, we have the following
estimates :

|1 − ι−1| � v−p(s), (4.36)

|∂u log(Ω2) − 2K | � v−p(s), (4.37)

where 65 p(s) = (2s − 1)1{s≤1} + s1{s>1}.

Proof. Use (2.15) to write:

∂u(Ω
2 + 4λ) = Ω2(∂u log(Ω

2) − 2K + rm2|φ|2).
We can integrate from the event horizon for u′ ∈ (−∞, u] to get:

|Ω2 + 4λ|(u, v) � |λ|(−∞, v)|H+ +
∫ u

−∞
Ω2(u′, v)|rm2|φ|2 + ∂u log(Ω

2) − 2K |du′.

Notice that (4.18)—thanks to (4.16)—can be alternatively written as

|∂u log(Ω2)(u, v) − 2K+| � UΩ2
H(0, v) ∼ Ω2(u, v).

In particular if δ is chosen to be small enough, ∂u log(Ω2) > K+.
Moreover, (4.13) and (4.23) give:

|Ω2 + 4λ| � |λ||H+ +
∫ u

−∞
Ω2(u′, v)(Ω2(u′, v) + v1−2s)du′

= |λ||H+ +
∫ u

−∞
Ω4(u′, v)du′ + v1−2s

∫ u

−∞
Ω2(u′, v)du′.

We then divide by ∂u log(Ω2) which is lower bounded to use Lemma 4.1 and with
(4.4) we get66

|Ω2 + 4λ|(u, v) � Ω2(u, v)(Ω2(u, v) + v1−2s) + v−2s .

Therefore—dividing by Ω2—on the past boundary of LR defined as γLR :=
{UΩ2

H(0, v) = Cv−q(s)} we get

|1 − ι−1|γLR � v−q(s) + v1−2s + vq(s)−2s � v−p(s).

We then integrate (2.18) from γLR i.e on [vγLR(u), v], using (4.13):

|1 − ι−1|(u, v) ≤ |1 − ι−1|(u, vγLR(u)) +
∫ v

vγLR (u)

Ω−2(u, v′)v′−2sdv′.

Thanks to (4.19) and for |us | large enough, ∂v log(Ω2) > K+ hence using Lemma
4.1:

65 The behaviour is different for s > 1 but still gives integrability when s > 1 and non-integrability if s ≤ 1.
66 Recall that Ω2(u, v) = 2K+UΩ2

H(U, v).
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∫ v

vγLR (u)

Ω−2(u, v′)v′−2sdv′ � Ω−2(u, vγLR(u))vγLR(u)−2s � vq(s)−2s,

where we have used in the last inequality that in this region vγLR(u) ∼ |u| ∼ v.
Hence (4.36) is proved:

|1 − ι−1| � v−p(s) + vq(s)−2s � v−p(s).

Notice that because of (4.13) and the boundedness67 of ι−1 we have:

|∂v� | + |∂vQ
2| � v−2s,

|∂v(2K )| � Ω2 + v−2s .

Hence using (2.26) and the red-shift region main bounds we get:

|∂v(∂u log(Ω
2) − 2K )| � (Ω2 + v−2s)v−p(s) + Ω2v−2s + ιv−2s � v−2s + Ω2v−p(s).

Integrating using that ∂v log(Ω2) > K+ and Lemma 4.1 gives (4.37), after noticing
that:

|∂u log(Ω2)(u, vγLR(u)) − 2K (u, vγLR(u))| � Ω2(u, vγLR(u))

+|2K − 2K+|(u, vγLR(u))

� v−q(s) + v1−2s .

��

4.5. The no-shift region. We now define the no-shift region as:

N :=
N⋃

k=1

Nk ,

where

Nk := {Δk−1 := −Δ + (k − 1)ε ≤ u + v + h(v) ≤ Δk := −Δ + kε} ,

ε > 0 small enough and N ∈ N large enough are to be chosen68 later.
We take the convention that N0 = γ−Δ is the past boundary of N .
This is the region where the transition between the red-shift effect and the blue-shift

effect occurs: 2K goes from positive values for r close to r+ towards negative values for
r close to r−.

Since the derivatives of log(Ω2) are broadly 2K which changes sign hence cancels,
we cannot use the technique arising from Lemma 4.1 as before.

Moreover, we cannot hope for any decay of Ω2 that is small on the past and future
boundary but is only bounded in between.

However, this region is easy because the u + v + h(v) difference is finite so that
essentially, we do not lose the bounds proved in the red-shift region.

67 Since v ∼ |u| in this region we can take |us | to be large enough so that—say—|1 − ι−1| ≤ 0.01.
68 Later, we will first choose ε small compared to C, e, M, q0,m

2 and δ in this section. Once ε is chosen
and small enough, we will choose Nε large enough compared to C, e, M, q0,m and δ in the next section.
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There are two difficulties: the first is to prove decay for the wave equations. We do
it by splitting N into small enough pieces which allows us to close the bootstrapped
bounds.

The second and main difficulty is to prove that the blue-shift indeed appears, i.e that
r is decreasing enough so that it reaches M − e2

r < 0 i.e KM,e(r) < 0, giving also
K < 0.

Note that in N : |u| ∼ v, due to (4.11) which gives h(v) = o(v).
We will denote for 0 ≤ k ≤ N : γk := {u + v + h(v) = Δk}. We also denote uk(v)

the unique u such that (uk(v), v) ∈ γk . We define similarly vk(u).

4.5.1. The main estimates in the no-shift region. This is the first part where we address
the propagation of the bounds established in the past sections.

Since Δ is now fixed definitively, we define the new notation: A � B if there exists
a constant C̄ = C̄(Δ) such that A � C̄ B.

If we need to specify this constant, we shall call it consistently C̄ when there are no
ambiguities.

Proposition 4.7. For small enough ε > 0, we have: the following control on the field
and the potential on N :

|φ| + |∂vφ| � 2Nv−s, (4.38)

|Duφ| � 2N |u|−s ∼ 2Nv−s, (4.39)

|Au | � (N + 1)δ. (4.40)

and we also have69:

| logΩ2(u, v) − log(−4(1 − 2M

r
+
e2

r2
))| � 4Nv1−2s, (4.41)

0 ≤ 1 − κ � 5Nv−2s, (4.42)

|1 − ι| � 5Nv−p(s), (4.43)

|∂u log(Ω2) − 2K | � 5Nv−p(s), (4.44)

|∂v log(Ω
2) − 2K | � 5Nv−2s, (4.45)

|Q(u, v) − e| � 4Nv1−2s . (4.46)

|�(u, v) − M | � 4Nv1−2s . (4.47)

The proof essentially relies on a partition ofN into sub-regions with small u+v+h(v)

difference, in the style of the methods of [7] and [18]. Since the proof does not present
so many original ideas, we put it in Appendix B for the sake of completeness.

4.5.2. Estimates on the future boundary of the no-shift region. We now address the
second difficulty: we need to have K < 0 at some point to initiate the blue-shift effect,
get Ω2 small on the future boundary and therefore r close to r−. To do that, we use a
simple contradiction argument.

69 Being a bit more careful, we can prove an improved version of (4.46) and (4.47) without the 4N factor.
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Proposition 4.8. There exists a constant K∗ > 0, independent of N and ε such that, for
u ≤ us:

Ω2|γN � e−K∗Nε, (4.48)

|r|γN − r−| � e−K∗Nε, (4.49)

|2K|γN − 2K−| � e−K∗Nε . (4.50)

Proof. We will start by the following lemma, proved by contradiction :

Lemma 4.9. For all δ∗ > 0, there exists 0 < Δ∗ large enough so that r < r−(e, M)+δ∗
on γΔ∗ ∩ {u ≤ us}.
Proof. By contradiction, take a δ∗ > 0 such that for all 0 < Δ∗, there exists u ≤ us
such that on γΔ∗ ,

r(u, vΔ∗(u)) ≥ r− + δ∗
Then because λ, ν < 0, for all u0(vΔ∗(u)) ≤ u′ ≤ u we have:

r− + δ∗ ≤ r(u′, vΔ∗(u)) ≤ r+ − δ. (4.51)

Using (4.41) and (4.42), we see that for |us | large enough, there exists a constant
C̄ > 0 depending on Δ only such that for all u0(vΔ∗(u)) ≤ u′ ≤ u

−ν(u′, vΔ∗(u)) � C̄

δ∗
.

Then we can integrate in u′ from γ0 to γΔ∗ :

r(u0(vΔ∗(u)), vΔ∗(u)) − r(u, vΔ∗(u)) ≥ C̄

δ∗
(u − u0(vΔ∗(u))) = C̄

δ∗
Δ∗.

Hence, using (4.51):

r+ − δ ≥ r− + δ∗ +
C̄

δ∗
Δ∗.

So at fixed δ∗, we can takeΔ∗ large enough so that the inequality is absurd. Therefore
the lemma is proved. ��

Now, since r−(e, M) < e2
M , we choose a δ∗ such that 0 < δ∗ < e2

M − r−(e, M) and
pick a Δ∗ such that r < r− + δ∗ on γΔ∗ .

Then, because ν, λ < 0, r < r− + δ∗ as well in the future of γΔ∗ .
Therefore there exists70 K∗ > 0 depending on (e, M) only, such that on Δ∗ ≤

u + v + h(v) ≤ ΔN :

K (u, v) < −K∗,

-where we used again (4.46), (4.47) with |us | large enough.
So from (4.45), we see that (4.48) is true:

Ω2|γN � Ω2|γΔ∗ e
K∗Δ∗e−K∗(−Δ+Nε) � e−K∗Nε .

70 Notice that if r < e2
M then KM,e(r) < 0.
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Then recalling from (2.11) that

1

r2

(
r − (� +

√
� 2 − Q2)

) (
r − (� −

√
� 2 − Q2)

)
= 1 − μ = −4λν

Ω2 = −Ω2

4ικ
,

we prove that, thanks to (4.42), (4.43) and (4.46), (4.47):

|r|γΔ′ − (� −
√

� 2 − Q2)| � e−K∗Nε

|r|γΔ′ − (� +
√

� 2 − Q2)| � e−K∗Nε

|r|γΔ′ − r+| − C̃v1−2s
.

Then, since the monotonicity of r ensures that r is uniformly bounded away from r+
on γΔ′ and using (4.46) and (4.47) again on the left-hand-side, we get (4.49) and (4.50)
for |us | large enough. ��

4.6. The early blue-shift transition region. We define the early blue-shift transition
region:

EB := {ΔN ≤ u + v + h(v) ≤ −Δ′ + 2s

2|K−| log(v)} ,

where |us | is large enough so that v0 + h(v0) − 2s
2|K−| log(v0) < |us | − Δ′ and Δ′ is a

large71 constant to be chosen later.
We will denote72 γ := {u + v + h(v) = −Δ′ + 2s

2|K−| log(v)}, the future boundary of
EB.

Similarly to the region of Sect. 4.4.2, the goal in EB is to obtain bounds for
∂v log(Ω2)−2K− and ∂u log(Ω2)−2K− on the future boundary instead of ∂v log(Ω2)−
2K and ∂u log(Ω2)− 2K . For this to be true, we need to prove that the blue-shift in this
region is strong enough, in particular we need |r − r−| � |u|1−2s ∼ v1−2s close enough
to the future boundary.73

This region exhibits enough blue-shift so that there is a good decay of the interesting
quantities, but not toomuch so that κ−1 and ι−1 are still under control.Moreover, the size
of the region is small enough—of the order of log(v)- so that we do not lose too much
the control proved in the previous sections—but the decay of the metric coefficients has
started and will be strong enough in the future to make the wave propagation decay
easier to prove.

Note that in EB again: |u| ∼ v.
We define the new notation: A � B if there exists a constant Ĉ = Ĉ(N , ε) such that

A � Ĉ B. We denote A ≈ B if A � B and B � A.
If we need to specify this constant, we will call it consistently Ĉ when there are no

ambiguities.

Proposition 4.10. For Nε large enough, we have the following control on the field on
EB:
71 Compared to N , ε, Δ and the initial data.
72 A similar curve has been first introduced by Dafermos in [7].
73 Actually this bound is already attained in the future of the curve u + v + h(v) = 2s−1

2|K−| log(v) and in fact,

one cannot get better in general. Note that this last curve is very close to γ ′ exhibited in the instability section.
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|φ| � v−s log(v), (4.52)

|∂vφ| � v−s, (4.53)

|Duφ| � |u|−s ≈ v−s . (4.54)

and we also have:

| logΩ2(u, v) − 2K− · (u + v + h(v))| � Δe−2K+Δ ∼ δ| log(δ)|, (4.55)

0 ≤ 1 − κ ≤ 1

3
, (4.56)

|1 − ι| ≤ 1

3
, (4.57)

|∂u log(Ω2) − 2K | � v−p(s) log(v)3, (4.58)

|∂v log(Ω
2) − 2K | � v−2s log(v)3, (4.59)

|Q(u, v) − e| � v1−2s, (4.60)

|�(u, v) − M | � v1−2s . (4.61)

Moreover, on the future boundary γ we have:

|λ(uγ (v), v)| � e2|K−|Δ′
v−2s, (4.62)

|ν(u, vγ (u))| � e2|K−|Δ′ |u|−2s, (4.63)

|r(uγ (v), v) − r−(M, e)| � e2|K−|Δ′
v1−2s, (4.64)

|∂v log(Ω
2
CH )(uγ (v), v)| � v1−2s, (4.65)

Ω2(uγ (v), v) � e2|K−|Δ′
v−2s . (4.66)

Proof. First we take74 v0 ≥ 2 so that 1 � | log(v)| = log(v).
We make the following bootstrap assumptions:

|∂vφ| ≤ 4CΔ2
Nv−s, (4.67)

|Duφ| ≤ 4CΔ2
Nv−s, (4.68)

|1 − κ| ≤ 1

2
, (4.69)

|1 − ι| ≤ 1

2
, (4.70)

∂u log(Ω
2) ≤ K− < 0, (4.71)

∂v log(Ω
2) ≤ K− < 0. (4.72)

For a constant CΔ such that |∂vφ| ≤ CΔ2Nv−s and |Duφ| ≤ CΔ2Nv−s are true
initially on the past boundary γN := {u + v + h(v) = ΔN }, using the estimates of N .

An immediate consequence of bootstrap (4.71), (4.72) and the boundedness of Ω2

in N (c.f. “Appendix B”) is the existence of a constant Ω2
max(M, e) > 0 such that

Ω2 ≤ Ω2
max(M, e).

74 This can be assumed by Sect. 4.3.2 but is really not a restriction, we simply write | log(2 + |v|)| instead
of log(v).
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We now want to prove a decay on Ωηφ for η arbitrarily small.
Let η > 0. We write:

∂v(Ω
2ηφ) = η · ∂v log(Ω

2) · Ω2ηφ + Ω2η∂vφ.

Then, because of bootstraps (4.67), (4.72) we have

∂v(Ω
4η|φ|2) = 2η · ∂v log(Ω

2) · Ω4η|φ|2 + 2Ω4η�(∂vφφ̄) ≤ 8CΔ2
Nv−sΩ4η|φ|,

which implies:

∂v(Ω
2η|φ|) ≤ 4CΔ2

Nv−sΩ2ηv−s .

Then it is enough to integrate using (4.72) and Lemma 4.1, the bound on the previous
region and the fact that |Ω2η(u, vγ (u))φ(u, vγ (u))| � |u|−s to get :

Ω2η|φ| � Cη|u|−s ∼ Cηv
−s . (4.73)

Using (2.28) together with bootstraps (4.67), (4.68), (4.69), (4.70) and (4.73) we
show that for all 0 < η < 1:

|∂v(Duφ)| � (1 + Cη)CΔ2
NΩ2−2ηv−s .

We can take η = 1
2 .

Integrating using (4.72) with Lemma 4.1 and |u| ∼ v gives:

|Duφ| ≤ CΔ2
Nv−s + C̄2NΩ|γN (u, vN (u))v−s ≤ CΔ2

Nv−s + C̃C̄2Ne− K∗
2 Nεv−s .

Therefore, we can choose Nε large enough compared to Δ and parameters so that
C̃C̄2Ne−K0Nε ≤ CΔ2N which closes bootstrap (4.68).
Bootstrap (4.67) is validated similarly, using (4.71), (2.27) and the boundedness of

Q.
Notice that bootstrap (4.68) and (4.71) used together with Lemma 4.1 give:

∫ u

uN (v)

|Duφ|2
Ω2 (u′, v)du′ � 4N

v−2s

Ω2(u, v)
.

We integrate (2.17) on [uN (v), u] and multiply by Ω2 to get, using the bounds from
the past:

|4ν + Ω2|(u, v) � v−2s . (4.74)

Similarly with (2.18):

|4λ + Ω2|(u, v) � v−2s + Ω2v−p(s) � v−p(s). (4.75)

Integrating bootstrap (4.67) over [vγ (u), v] whose size is at most C̃ log(v), we get
(4.52):

|φ| � CΔ,Nv−s log(v).

From this, we get:
|∂uQ| + |∂vQ| � C2

Δ,Nv−2s · log(v) (4.76)
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And we can integrate to get (4.60). The main contribution comes from the past since
v−2s log(v) = o(v1−2s) so for |us | large enough:

|Q − e| � 4Nv1−2s .

Using this together with bootstrap (4.69), (4.70) and Eqs. (2.23), (2.24) we get:

|∂u� | + |∂v� | � C2
Δ,Nv−2s log(v)2. (4.77)

We also integrate to get (4.61):

|� − M | � 4Nv1−2s .

Notice that under our bootstrap assumptions we have—using (4.76) and (4.77)-:

|(κ − 1)∂u(2K )| � |4ν + Ω2| + C2
Δ,Nv−2s log(v)2.

Now integrating (2.26) in u and remembering that |u−uN (v)|+|v−vN (u)| � log(v),
we get (4.59) as

|∂v log(Ω
2) − 2K | � C2

Δ,Nv−2s log(v)3.

Where we used (4.74). Similarly, using (4.75) we prove (4.58):

|∂u log(Ω2) − 2K | � C2
Δ,Nv−p(s) log(v)3.

Notice that with (4.60), (4.61) and bootstrap (4.69), (4.70) used with (2.11) we have,
for |us | large enough75 and using the precedent section:

|2K− − 2K | � Ω2 + CΔ4
Nv1−2s � Ω2|γN � e−K∗Nε .

Hence if Nε is large enough and |us | is large enough, bootstrap (4.71) and (4.72) are
validated.

Notice that since log(v)v1−2s = o(1), we still have:

v − vN (u) = u + v + h(v) − ΔN + o(1).

From what precedes, we know that:

|∂v log(Ω
2
CH )| = |∂v log(Ω

2) − 2K−| � Ω2 + C2
Δ,N (v−2s log(v)3 + v1−2s). (4.78)

Hence we can integrate from vN (u) to v, using the upper bound (4.72) with Lemma
4.1 and the bounds from the past:

| log(Ω2) − 2K− · (u + v + h(v))| � (log(Ω2(u, vN (u))) − 2K−ΔN ) + Ω2(u, vN (u))

+C2
Δ,N (v−2s log(v)3 + v1−2s) · log(v).

With what precedes, we see that

Ω2(u, vN (u)) + C2
Δ,N (v−2s log(v)3 + v1−2s) log(v) � e−K∗Nε .

Hence to get (4.55), we choose Nε large enough compared to δ and the initial data.

75 |us | is taken large enough to annihilate the dependence in N and Δ of C2
Δ,N v1−2s .
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Now we have proved that

Ω2 ≈ e2K−·(u+v+h(v)).

It proves (4.66). Using (4.78), we get (4.65).
Notice that it also proves (4.62), (4.63) using (4.74) and (4.75).
Then, dividing (4.74) by Ω2 we get:

|κ−1 − 1| � e2|K−|·(u+v+h(v))v−2s � e−2|K−|Δ′
.

Hence forΔ′ large enough compared to N , ε,Δ and the initial data, we close bootstrap
(4.69) and prove (4.56) with

|κ−1 − 1| ≤ 1

4
.

Similarly using (4.75), we get:

|ι−1 − 1| � e2|K−|·(u+v+h(v))v−2s + v−p(s),

which closes (4.70) and proves (4.57), for |us | large enough.
Finally (4.56), (4.57) and (4.66) give—using (2.11)—that

|
(
r(uγ (v), v) − (� +

√
� 2 − Q2

) (
r(uγ (v), v) − (� −

√
� 2 − Q2)

)
|

≤ C̃e−2|K−|Δ′
v−2s .

Then using (4.60) and (4.61) with the same type of argument as in Sect. 4.5.2—
notably that r is far away from r+(M, e) = M +

√
M2 − e2—, we get (4.64):

|r(uγ (v), v) − r−(M, e)| � e2|K−|Δ′
v1−2s .

��

4.7. The late blue-shift region. We then define the late blue-shift region:

LB := {−Δ′ + 2s

2|K−| log(v) ≤ u + v + h(v)} .

This large region is where the essential of the blue-shift occurs: Ω2 goes from a
polynomial decay in v on the past boundary to an exponential decay in v.

In this region, κ−1 and ι−1 are expected to blow-up76 exponentially near the Cauchy
horizon if the initial bound on the field is sharp so we cannot trade λ and ν—which decay
no better than what (4.62) and (4.63) suggest—for Ω2 which decays exponentially.

However, there is enough decay of Ω2, ν and λ on the past boundary γ so that we
can prove decay for the scalar field with (2.19) using a bootstrap method.

In LB, we will not prove decay for φ and Duφ—due to |u| � v only—and we do
not know if −∂u log(Ω2) is lower bounded like before if s ≤ 1.

Nevertheless, we can still prove that−∂v log(Ω2) is lower bounded which will allow
us to prove most of the estimates.

76 Indeed, we prove in the instability part that ι−1 blows up identically on the Cauchy horizon, for u ≤ us .
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We now recapitulate the constants choice: we have chosen Δ large enough
depending on C, e, M, q0,m2, v0 in 4.4, then ε small enough depending on Δ and
C, e, M, q0,m2, v0 in 4.5, then Nε large enoughdependingonΔ andC, e, M, q0,m2, v0
in 4.6 and finally Δ′ large enough depending on N , ε, Δ and C, e, M, q0,m2, v0 also in
4.6.

This been said, we can consider that all the constants mentioned above depend on
C, e, M, q0,m2, v0 so we are going to write again A � B if there exists a D̃ depending
on these constants such that A ≤ D̃B.

Proposition 4.11. We have the following estimates in LB:
For all η > 0, there exists Cη > 0:

Ω2η|φ| � Cηv
−s, (4.79)

Ω2η|Q − e| � Cηv
1−2s . (4.80)

And

|∂vφ| � v−s, (4.81)

|∂v log(Ω
2
CH )| � |u|1−sv−s1{s>1} + v1−2s1{s<1} + 1{s=1} log(v)v−1, (4.82)

0 < −λ � v−2s, (4.83)

0 < −ν � |u|−2s . (4.84)

Moreover if s > 1 we have:

|Duφ| � |u|−s, (4.85)

|∂u log(Ω2
CH ) − 2K−| � |u|1−2s, (4.86)

|∂vQ| � |u|1−sv−s, (4.87)

|∂uQ| � |u|1−2s . (4.88)

Proof. We make the following bootstrap assumptions:

|r∂vφ| ≤ 2Čv−s, (4.89)

|λ| ≤ 2Ďv−2s, (4.90)

∂v log(Ω
2) ≤ K−, (4.91)

for Č > 0 chosen so that on the past boundary γ we have: |r∂vφ| ≤ Čv−s and Ď is a
large enough constant to be chosen later such that |λ| ≤ Ďv−2s on γ .

Notice that because of (2.18), ι decreases in v so by the previous bound on γ we can
write:

Ω2 ≤ −6λ ≤ 12Ďv−2s . (4.92)

For the proof, we introduce a curve γV := {u + v + h(v) = v
2 } whose future domain

V = {u + v + h(v) ≥ v
2 } is called the vicinity of the Cauchy horizon.

We start to integrate (4.91) to get, using the bounds on the previous region and
choosing |us | large enough so that log(Ω2) ≤ 0:

log(Ω2)(u, v) ≤ log(Ω2)(u, vγ (u)) + K− · (v − vγ (u)) ≤ K− · (v − vγ (u)),
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and since vγ (u) ≤ − 3
2u for us negative enough, we get:

Ω2 ≤ eK−·(v− 3
2 |u|).

Notice that on V , |u| ≤ v
2 + h(v) hence v − 3|u|

2 ≥ v
4 + o(v) so in V for |us | large

enough77 since K− < 0:

Ω2 � e(
K−
5 )·v. (4.93)

The following lemma will prove (4.79) and (4.80):

Lemma 4.12. Assuming the bootstraps stated above, we have the following estimates
in LB: for all η > 0, there exists Cη > 0 such that:

Ω2η|φ| � Cηv
−s, (4.94)

Ω2η|Q − e| � Cηv
1−2s . (4.95)

Proof. Let η > 0. We write:

∂v(Ω
2ηφ) = η · ∂v log(Ω

2) · Ω2ηφ + Ω2η∂vφ.

Then, because of bootstraps (4.89), (4.91) we have

∂v(Ω
4η|φ|2) = 2η · ∂v log(Ω

2) · Ω4η|φ|2 + 2Ω4η�(∂vφφ̄) ≤ 4Č

r
v−sΩ4η|φ|,

which implies:

∂v(Ω
2η|φ|) ≤ 2Č

r
Ω2ηv−s .

Then it is enough to integrate using (4.91) and Lemma 4.1, the bound on the previous
region and the fact that

|Ω2η(u, vγ (u))φ(u, vγ (u))| � |u|−s

to get :

Ω2η|φ| � Cη|u|−s .

Now in the past of γV , |u| ∼ v so (4.94) is true.
In V , we can integrate (4.89) to get |φ| � |u|1−s1{s>1} + v1−s1{s<1} + log(v)1{s=1}

but the exponential decay of Ω2 in v from (4.93) is stronger than this potential growth
for |us | large enough, so that (4.94) is true also.

We use the same technique to get (4.95), using (4.94), bootstrap (4.89) and
(2.21). ��
77 Of course this bound is far from sharp: actually for all ε0 > 0, there exists a region sufficiently close to

the Cauchy horizon so that Ω2 � e(2K−+ε0)v . We will not need such a sharp bound.
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Now we can use (2.15) and what precedes to write:

|∂v(rν)| � Ω2 + CηΩ
2−2ηv1−2s .

Integrating, choosing η small enough and using (4.91) with Lemma 4.1 and the
bounds on the former region we prove (4.84):

|ν| � |u|−2s .

Then we can use (2.28), (4.84) and (4.89) to get:

|∂v(r Duφ)| � |u|−2sv−s + CηΩ
2−2ηv−s .

Integrating, choosing η small enough and using (4.91) with Lemma 4.1 to absorb of
the CηΩ

2−2ηv−s term in |u|−s , we get:

|Duφ| � |u|−s + |u|−2sb(u, v), (4.96)

with b(u, v) := v1−s1{s<1} + |u|1−s1{s>1} + log(v)1{s=1}.
We can then use (2.27) and bootstrap (4.90) to get:

|∂u(eiq0
∫ u
u0

Aur∂vφ)| � Ďv−2s |u|−s + Ďv−2s |u|−2sb(u, v) + CηΩ
2−2ηv−s .

Integrating on [uγ (v), u] and taking the absolute value we get:

|r∂vφ| ≤ Čv−s + C̃(Ďv−sb(u, v) + Ď|u|1−2sv−sb(u, v) + v
1− 2s

1−η )v−s,

where we used that Ω2−2η � v
− 2s

1−η because of (4.92) and |u − uγ (v)| � v.

Noticing that v−sb(u, v) = o(1) when v → +∞, uniformly in u and v
1− 2s

1−η = o(1)
for η small enough, we can close bootstrap (4.89) for |us | large enough.78

Now in the past of γV , we can prove, using v ∼ |u|, the bounds proved before, (2.16)
and arguments similar to those of Sect. 4.6 that:

|∂u log(Ω2) − 2K−| � v1−2s .

Hence ∂uΩ
2 ≤ 0 for |us | large enough so—denoting Cγ the constant appearing in

estimate (4.66)—we have:

Ω2(u, v) ≤ Ω2(uγ (v), v) ≤ Cγ v−2s .

Moreover the exponential decay of (4.93) makes Ω2(u, v) ≤ Cγ v−2s also true for
|us | large enough in V .

Now we integrate (2.18), using (4.91) and the bound (4.57) to get:

4|λ| ≤ 3

2
Ω2 + C̃v−2s .

So for 4Ď > 3
2Cγ + C̃ , bootstrap (4.90) is validated.

78 Notice that Ď is absorbed by the decay and does not play any role.
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Now using the preceding bounds, we get79:

|∂u∂v log(Ω
2
CH )| � |u|−sv−s + |u|−2sv−sb(u, v) + v−2s + Ω2−2ηv1−2s .

We can integrate and—using similar methods than before—for η small enough we
get (4.81), which also closes bootstrap (4.91) for |us | large enough:

|∂v log(Ω
2
CH )| � b(u, v)v−s .

Where we used that v1−2s = O(v−sb(u, v)). To prove (4.85), (4.86), (4.87), (4.88),
it is enough to use the equations, (4.96) and the fact that b(u, v) = |u|1−s when s > 1,
similarly to what was done in the past regions. ��

Then we finish the proof of Theorem 3.2: from (4.83) and (4.84), it is clear the r
admits a continuous limit rCH (u) when v tends to +∞ and that rCH (u) → r−(M, e)
when |u| tend to +∞.

This is because we can integrate from γ as:

rCH (u) = r(u, vγ (u)) +
∫ +∞

vγ (u)

λ(u, v′)dv′ = r(u, vγ (u)) + O(|u|1−2s).

Where we used (4.83) and vγ (u) ∼ |u|. Then (4.64) proves the claim.
Moreover, we see that80 |νCH+(u)| � |u|−2s is integrable, therefore rCH (u) is lower

bounded for |us | large enough. Hence the space–time admits the claimed Penrose dia-
gram for |us | large enough.

Moreover if s > 1, v1−2s and v−s are integrable in v so we can use the estimates of
the last proposition and the argument from Proposition 8.14 of [18] to get a continuous
extension of the space–time.

5. Proof of the Instability Theorem 3.3

5.1. Recalling the stability estimates. Before starting the proof ofTheorem3.3,we recall
the stability estimates—established in the proof of Theorem 3.2—that are necessary to
prove the instability argument. Notice that they are valid in this framework because all
the hypothesis of Theorem 3.2 are present in the hypothesis of Theorem 3.3.

First we recall the different regions:

1. The event horizon H+ = {u ≡ −∞, v ≥ v0}
2. The red-shift region R = {u + v + h(v) ≤ −Δ}.
3. The no-shift region N := {−Δ ≤ u + v + h(v) ≤ ΔN }
4. The early blue-shift transition region EB := {ΔN ≤ u + v + h(v) ≤ −Δ′ +

2s
2|K−| log(v)}

5. The late blue-shift region LB := {−Δ′ + 2s
2|K−| log(v) ≤ u + v + h(v)} composed of

the past of γV := {u + v + h(v) = v
2 } and its future called V = {u + v + h(v) ≥ v

2 }.
Then we gather the different bounds from Sect. 4 that we will use in this section:

1. on H+, we know that:
λ ≥ 0. (5.1)

79 Recall that ∂v log(Ω2
CH ) = ∂v log(Ω2) − 2K−.

80 The fact the ν admits a continuous limit when v tends to +∞ follows easily from the estimates.
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2. We have the following estimates: in R,

|Duφ|(u, v) � Ω2(u, v)v−s . (5.2)

3. In N ∪ EB:
|Duφ|(u, v) � v−s, (5.3)

0 < ι−1 ∼ 1, (5.4)

0 < κ−1 ∼ 1. (5.5)

4. InR ∪ N ∪ EB:
|� − M | + |Q − e| � v1−2s . (5.6)

5. In EB:
Ω2 ∼ e2K−·(u+v+h(v)), (5.7)

|r − r+| � 1. (5.8)

6. In EB ∪ LB:
∂v log(Ω

2) < K− < 0, (5.9)

|Duφ|(u, v) � |u|−s + |u|−2sb(u, v), (5.10)

|∂v log(Ω
2
CH )|(u, v) � v−sb(u, v), (5.11)

with b(u, v) := 1{s>1}|u|1−s + v1−s1{s<1} + log(v)1{s=1}.
For all ε0 > 0, there exists a constant Cε0 > 0 such that:

Ω2ε0 |φ| � Cε0v
−s, (5.12)

Ω2ε0 |Q − e| � Cε0v
1−2s, (5.13)

|λ| � Ω2 + v−2s . (5.14)

7. In EB ∪ LB − V:
∂u log(Ω

2) < K− < 0. (5.15)

8. In LB:
Ω2 � v−2s, (5.16)

|λ| � v−2s . (5.17)

1. In V:
Ω2 � e

K−
5 v. (5.18)
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5.2. Reduction to the proof of (3.5). In this section, we want to highlight that the poly-
nomial lower bound (3.5) for the derivative of φ transversally to the Cauchy horizon is
enough to establish all the other claims of Theorem 3.3

The blow-up of the curvature follows directly from 3.5 as first highlighted in the
pioneering work81 [18]: indeed we can consider

Ric(Ω−2∂v,Ω
−2∂v) = Ω−4|∂vφ|2.

Equation (3.5) then gives that:

lim sup
v→+∞

Ric(Ω−2∂v,Ω
−2∂v)(u, v) = +∞,

using for instance the exponential lower bound for Ω−4 given by (5.18) in V .
If s > 1, we consider the continuous extension M̄ and the future boundary null

CH+ := {V ≡ 1, 0 ≤ U ≤ U0} mentioned in the statement of Theorem 3.2.
Notice that (5.11) proves in that case that ∂v log(Ω2

CH )(u, ·) is integrable in v hence
(u, V ) is a regular coordinate system across the extension: in particular Ω2

CH > 0 on
CH+.

If U is a neighbourhood in M̄ with compact closure—in particular with a finite range
of u—of a point p ∈ CH+, and φ is a spherically symmetric function, its W 1,2

U norm
can be expressed in (u, V ) and (u, v) coordinates—as developed in [20]—as:

‖φ‖2W 1,2(U)
=

∫
U

(
|∂Vφ|2 + |∂uφ|2 + |φ|2

)
dudV

∼
∫
U

(
Ω−2|∂vφ|2 + Ω2(|∂uφ|2 + |φ|2)

)
dudv. (5.19)

Since U is a neighbourhood of p, consider the smaller neighbourhood U ′ := U ∩ V .
Then, using the fact from (5.9) that ∂vΩ

2 ≤ 0:

‖φ‖2W 1,2(U)
�

∫
U ′

Ω−2|∂vφ|2du′dv′.

We can then use (5.18)—valid in U ′—with (3.5) to get

‖φ‖W 1,2(U) = +∞,

i.e

φ /∈ W 1,2
loc .

Now we want to prove that the continuous extension to CH+ of Theorem 3.2 is not
C1.

We integrate (2.18) on [vγV (u), v]. Using that ι−1 ≥ 0 we get:

ι−1(u, v) ≥ ι−1(u, vγV (u)) +
∫ v

vγV (u)

4r

Ω2 |∂vφ|2(u, v′)dv′ �
∫ v

vγV (u)

|∂vφ|2(u′, v′)
Ω2 dv′.

81 Note that [18] proves more: in a appropriate global setting, they manage to prove the C2 inextendibility
of the metric.
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Fig. 4. Penrose diagram of the space–time M = R ∪ N ∪ EB ∪ LB with the inclusion of γ ′

Which means using the same argument as a few lines above that for all u ≤ us and
when v → +∞:

ι−1(u, v) = −4λ

Ω2 → +∞.

And since ι−1 is unchanged for the coordinate system (u, V ) that is regular near the
Cauchy horizon, i.e the system allowing for the continuous extension, it proves that the
metric is not82 C1 in the continuous extension of Theorem 3.2 for s > 1.

5.3. Strategy to prove (3.5). This time we split the space–time into two sub-regions
only, namely the past and the future of the curve γ ′ := {r − r− = v1−2s+η} for a
well-chosen 0 < η < 2s − 1 small enough. This curve is similar to γ introduced in
Sect. 4.6—although it has a different power-, we will see that is comparable near infinity
to {u + v + h(v) = ΔN + 2s−1−η

2|K−| log(v)}.
For the sake of comparison, as we will see γ ′ lies entirely in the early blue-shift

transition region EB for |us | large enough c.f. Fig. 4. The key use of this property is that
κ−1 and ι−1 are still bounded in EB.

Since only the averaged—opposed to pointwise—lower bound of hypothesis 8 is
available, we use a vector field method in the past of γ ′ with the Kodama vector field
T := κ−1∂v − ι−1∂u which is the geometric analog of the Killing vector field ∂t on
Reisser-Nordström. However notice that unlike ∂t on Reisser-Nordström, T is not a
Killing vector field in general i.e Π(T ) �= 0.

The study of T is particularly relevant for two reasons: first there is no bulk term
when we contract the deformation tensor Π

(T )
μν := ∇(μTν) of T with the stress-energy

tensor T = TEM + TKG : Π
(T )
μν T

μν = 0.
Despite Π(T ) �= 0, this is remarkable that we still get an exact conservation law,83

that we want to integrate.

82 More precisely, |∂V r | blows up identically on CH+ because Ω2
CH > 0 and ι−1 blows up.

83 This can be interpreted as the conservation of the Hawking mass.
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Second, the good control of κ−1 and ι−1 allows us to capture |∂vφ| appropriately. In
particular on the event horizon H+, we see

∫
H+ |∂vφ|2 in gauge (3.1) which is exactly

the term for which we have a lower bound that we want to propagate. The other terms,
notably crossed terms, either enjoy a stronger decay or have a favourable sign.

In the future of γ ′, we simply use the propagation Eq. (2.27) and integrate along the
u characteristic taking advantage on the upper bound84 Ω2 � v−2s on γ ′, using similar
techniques to that of Sect. 4.7. The key point is that the energy flux on γ ′ is controlled
by the integral of |∂vφ|2 on γ ′. This is due to the fact that κ−1 and ι−1 are bounded on
γ ′ and also that γ ′ is rather symmetric in u and v apart from the term v1−2s+η which
decays sufficiently.85 This symmetry avoids to consider terms of the form κ−1 − ι−1

which are bounded but do not a priori decay.

5.4. Up to the blue-shift region: the past of γ ′. We will use the same notations as in the
stability part.

Moreover, for v ≥ v0, we introduce γ ′
v := {(u′, v′) ∈ γ ′, v′ ≥ v} and denote uγ ′(v)

the unique u such that (u, v) ∈ γ ′ and H+
v := H+ ∩ {v′ ≥ v}. n′ denotes the future

directed unit normal of γ ′.
vol is the standard volume form induced by the metric, and is written in (u, v)

coordinates as

vol = Ω2r2 sin(θ)dudvdθdψ,

where (θ, ψ) are the standard coordinates on S
2.

We also define the Kodama vector field T := κ−1∂v − ι−1∂u .

Proposition 5.1. Under the hypothesis of Theorem 3.3 and for v large enough, we have:

∫
γ ′
v

T(T, n′)vol(n′, ·) � v−p. (5.20)

Proof. We state the following lemma, which is proven using elementary calculus only:

Lemma 5.2.

Tuu = 2|Duφ|2, (5.21)

Tvv = 2|∂vφ|2, (5.22)

Tuv = Ω2

2
(m2|φ|2 + Q2

r4
), (5.23)

Π(T )
uu = −2r |Duφ|2, (5.24)

Π(T )
vv = 2r |∂vφ|2, (5.25)

Π(T )
uv = Π

(T )
θθ = Π

(T )
ψψ = 0. (5.26)

As a consequence, we see that Π(T )
μν T

μν = 0.

84 This is actually where the remainder term O(v3−6s+4η) of Lemma 5.6 comes from.
85 This is actually where the remainder term O(v−2s ) of Lemma 5.5 comes from.
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Using the precedent lemma and applying the divergence theorem86 to the region
delimited by H+

v , γ
′
v and {v′ = v, u ≤ uγ ′(v)} we get:

∫
γ ′
v

T(T, n′)vol(n′, ·) �
∫
H+

v

|∂vφ|2 + 4λQ2 + 4λ|φ|2

+
∫

v′=v,u≤uγ ′ (v)

−ι−1|Duφ|2 − 4νQ2 − 4ν|φ|2. (5.27)

Now notice that λ|H+ ≥ 0 as proved in 4.3.3, and ν ≤ 0 so all the terms in the right
hand side are non-negative, except −ι−1|Duφ|2. For this one, we write:

∫ uγ ′ (v)

−∞
ι−1(u′, v)|Duφ|2(u′, v)du′ =

∫ uR(v)

−∞
ι−1(u′, v)|Duφ|2(u′, v)du′

+
∫ uγ ′ (v)

uR(v)

ι−1(u′, v)|Duφ|2(u′, v)du′,

where uR(v) is the unique u such that u +v +h(v) = −Δ i.e (u, v) belongs to the future
boundary of R.

The first term can be bounded using (5.2):

|
∫ uR(v)

−∞
ι−1(u′, v)|Duφ|2(u′, v)du′| ≤ v−2s |

∫ uR(v)

−∞
4λΩ2du′| � v−2s .

The second term using (5.3), (5.4) and |uγ ′(v) − uR(v)| � log(v):

|
∫ uγ ′ (v)

uR(v)

ι−1(u′, v)|Duφ|2(u′, v)du′| � v−2s log(v).

To sum up since p < 2s, it proves that
∫ uγ ′ (v)

−∞ ι−1(u′, v)|Duφ|2(u′, v)du′ = o(v−p)

hence, as claimed

∫
γ ′
v

T(T, n′)vol(n′, ·) � v−p.

��
Before moving to the next section, we will need to localise γ ′ with respect to the

regions of the stability part to be able to use the stability estimates. This is done by the
following lemma:

Lemma 5.3. For |us | large enoughandη > 0 small enough,γ ′ := {r−r− = v1−2s+η} ⊂
EB.

Moreover we have:

Ω2(uγ ′(v), v) ∼ v1−2s+η. (5.28)

86 This is the classical use of the vector field method: the key point being that T(φ, F) is divergence-free
because (φ, F) is a solution to the Maxwell–Klein–Gordon equations.
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Proof. Using (2.11), we can write:

(r − r−)(r − r+) = r2Ω2

4ικ
− 2r(� − M) + Q2 − e2.

As a consequence of this equation and (5.4), (5.5), (5.6), (5.7) and (5.8)—all valid in
EB—we get that |r − r−| � v1−2s on γ2s−1 := {u + v + h(v) = 2s−1

2|K−| log(v)} so, since
ν ≤ 0, γ ′ lies in the past of γ2s−1 for |us | large enough.

Using the same equation as above, we prove easily, still using (5.6) that on γN =
{u + v + h(v) = ΔN } and for |us | large enough,

r − r− � 1.

Hence, because ν ≤ 0, it is clear that γ ′ lies in the future of γN , providing 2s−1−η > 0.
We conclude by noticing that the intersection of the future of γN and the past of γ2s−1

is included in EB for |us | large enough.
The last claim (5.28) follows from using the above equality in the other way around:

there exists C̃ > 0 such that:

Ω2 = C̃ |r − r−| + O(v1−2s),

where we used the remarks mentioned earlier in the proof. ��

5.5. Towards the Cauchy horizon: the future of γ ′. We nowwant to propagate our lower
bounds to the future of γ ′. To circumvent the lack of decay of Q and � near the Cauchy
horizon, we do not use a vector field method any more but a more classical integration
along the constant v characteristic, as it was done in the stability part.

Given the bound of Proposition 5.1, and since p < min{2s, 6s−3}, it will be enough
to prove the following

Proposition 5.4. The following lower bound for ∂vφ near the Cauchy horizon is true:
∫

γ ′
v

T(T, n′)vol(n′, ·) �
∫ +∞

v

|∂vφ|2(u0, v′)dv′ + O(v−2s) + O(v3−6s+4η). (5.29)

Proof. The proof will be decomposed into two steps: the first one is expressed by the
following lemma: we identify T(T, n′) in terms of the scalar field using the decay of Ω2

and the control of κ−1:

Lemma 5.5. The following estimate is true:
∫

γ ′
v

T(T, n′)vol(n′, ·) �
∫

γ ′
v

|∂vφ|2(uγ ′(v′), v′)dv′ + O(v−2s). (5.30)

Proof. We now write γ ′ = f −1{0} where f (u, v) := r(u, v) − r− − v1−2s+η.
Using guv = −2Ω−2, we can write for 0 < η < 2s − 1:

d f # = (
ι−1

2
− 2Ω−2(2s − 1 − η)v−2s+η)∂u +

κ−1

2
∂v.
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Using the definition of T , we can derive:

T(T, d f #) = κ−2

2
Tvv − ι−2

2
Tuu − 2(2s − 1 − η)κ−1v−2s+η

Ω2 Tuv

+
2(2s − 1 − η)ι−1v−2s+η

Ω2 Tuu .

Now notice that the second and third term are negative if 2s − 1− η > 0, which can
be arranged for η sufficiently small.

For the fourth, notice that on γ ′:

ι−1v−2s+η

Ω2 Tuu = ι−1v−2s+η

Ω2 |Duφ|2 = O(v−2s−1),

where we used (5.3), (5.28) and the fact that ι−1 is bounded on γ ′ by (5.4).
This gives, recalling that Tvv = 2|∂vφ|2 and that κ−2 is bounded on γ ′ by (5.5):

T(T, d f #) � |∂vφ|2 + O(v−2s−1).

Now, an elementary computation gives that there exists a bounded function w such
that:

1√−g(d f #, d f #)
vol(n′, ·) = w(u, v)dvdσS2 .

Noticing that n′ = d f #√
−g(d f #,d f #)

, we integrate T(T, n′)vol(n′, ·) on γ ′
v which gives

the claimed lemma. ��
Now we want to propagate point-wise using (2.27) and then integrate:

Lemma 5.6. The following estimate is true for all u ≤ us:

∫
γ ′
v

|∂vφ|2(uγ ′(v′), v′)dv′ �
∫ +∞

v

|∂vφ|2(u, v′)dv′ + O(v3−6s+4η) + o(v−2s). (5.31)

Proof. We now place ourselves in the future of γ ′
v , a region that lies in EB ∪ LB.

We use (2.27) to get—after adding and subtracting a Ω2e2|φ| term-:

|∂u(eiq0
∫ u
u0

Au(u′,v)du′
r∂vφ)| � |λ||Duφ| + Ω2((m2 + e2)|φ| + |Q2 − e2||φ|).

We now deal with each term separately. To the future of γ ′
v , included in EB∪LB we

use (5.14):

|λ| � Ω2 + v−2s .
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We can also use in the same region the estimate (5.10):

|Duφ| � |u|−s + |u|−2sb(u, v),

with b(u, v) := |u|1−s1{s>1} + v1−s1{s<1} + log(v)1{s=1}.
All put together, we get:

|λ||Duφ|(u, v) � Ω2|u|−s + Ω2|u|−2sb(u, v) + v−2s |u|−s + v−2s |u|−2sb(u, v).

We start by the third and fourth terms:
∫ u

uγ ′ (v)

(
v−2s |u′|−s + v−2s |u′|−2sb(u′, v)

)
du′ � v−2sb(u, v).

The first and second terms are more complicated: at fixed v we have to split between
the part of [uγ ′(v), u] that is in EB: [uγ ′(v), uγ (v)] and the one that is inLB: [uγ (v), u].

For [uγ (v), u], we use (5.16):
∫ u

uγ (v)

(
Ω2(u′, v)|u′|−s + Ω2(u′, v)|u′|−2sb(u′, v)

)
du′

�
∫ u

uγ (v)

(
v−2s |u′|−s + v−2s |u′|−2sb(u′, v)

)
du′ � v−2sb(u, v).

On [uγ ′(v), uγ (v)], we use (5.15) the strictly negative lower bound on ∂u log(Ω2)

with Lemma 4.1 to get that:

∫ uγ (v)

uγ ′ (v)

(
Ω2(u′, v)|u′|−s + Ω2(u′, v)|u′|−2sb(u′, v)

)
du′

� Ω2(uγ ′(v), v)|uγ ′(v)|−s + Ω2(uγ ′(v), v)|uγ ′(v)|−2sb(uγ ′(v), v) � v1−3s+η,

where we used in the last inequality that v1−4s+ηb(uγ ′(v), v) = o(v1−3s+η).

To estimate Ω2((m2 + e2)|φ| + |φ||Q2 − e2|), we use a similar technique, splitting
[uγ ′(v), u] into [uγ ′(v), uγV (v)]∪ [uγV (v), u] where γV is defined in Sect. 4.7 as the past
boundary of V .

Using estimates87 (5.12), (5.13) in EB together with calculus Lemma 4.1 and (5.15),
we prove that—choosing ε0 = η

2s−1−η
-:

∫ uγV (v)

uγ ′(v)

Ω2(u′, v)((m2 + e2)|φ|(u′, v) + |φ|(u′, v)|Q2 − e2|(u′, v))du′ � v1−3s+2η.

Using (5.18) in V and |φ| + |Q − e| � b(u, v) gives a negligible contribution on
[uγV (v), u], because Ω2 is exponentially decreasing, which proves:

∫ u

uγ ′(v)

Ω2(u′, v)(|φ|(u′, v) + |φ|(u′, v)|Q2 − e2|(u′, v))du′ � v1−3s+2η.

87 These bounds are not strictly speaking stated in EB in the stability part but they are an easy consequence
of the estimates.
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Now we can use that v−2sb(u, v) = v−2s |u|1−s1{s>1} + o(v1−3s+2η) if η is small
enough, combine all the estimates and integrate the first equation:

|eiq0
∫ u
u0

Au(u′,v)du′
r∂vφ(u, v) − eiq0

∫ u
γ ′ (v)

u0 Au(u′,v)du′
r∂vφ(uγ ′(v), v)|

� v1−3s+2η + v−2s |u|1−s1{s>1}.

Making the difference, using upper and lower bounds for r and squaring, we get:

|∂vφ(uγ (v), v)|2 � |∂vφ(u, v)|2 + v2−6s+4η + v−4s |u|2−2s1{s>1}.

To conclude, it is enough to integrate the last estimate on [v,+∞] and noticing that
v1−4s |u|2−2s1{s>1} = o(v−2s). ��

The combination of the two lemmas proves the proposition after choosing η small
enough so that p < 6s − 3 − 4η. ��
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A. A Localisation of the Apparent Horizon A

As a straightforward by-product of our framework, we prove that in a non-linear setting,
the apparent horizon88 A := {∂vr = 0} cannot be too far or too close of the event
horizon if the decay of the perturbation is upper and lower bounded.

Proposition A.1. We keep the same hypothesis as for Theorem 3.2. h is defined in
Eq. (4.10).

We assume the following on the event horizon H+:

Assumption 9.

C ′v−p−1 ≤ Ω2
H(0, v)

∫ +∞

v

|∂vφ|2(0, v′)
Ω2

H(0, v′)
dv′, (A.1)

|∂vφ|(0, v′) ≤ Cv−s, (A.2)

for 2s − 1 ≤ p and C,C ′ > 0.

88 Indeed A coincides with {λ = 0} on the whole space–time in our coordinate choice. This is because λ

becomes strictly negative while κ−1 ≈ 1.

http://creativecommons.org/licenses/by/4.0/
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Then there exists constants C+ > 0,C− > 0 such that

A ⊂ {C−v−p−1 ≤ Ω2(u, v) ≤ C+v
−2s} = {−C̃ − (p + 1)

2K+
log(v)

≤ u + v + h(v) ≤ − 2s

2K+
log(v) + C̃}.

Remark 18. Notice that because of the exponential growth of Ω2
H established in

Sect. 4.3.3, Assumption 9 is consistent with the conjectured tail of the f ield as for-
mulated in Price’s law of Conjecture 1.6.

Remark 19. Notice that if φ does not become constant near infinity on the event horizon,
A is strictly to the future ofH+. This is in particular true89 if one assumes a lower bound
on ∂vφ,like (3.4) or (A.1). Coupled with (A.2), it proves that A must asymptotically
approach time-like infinity.

Proof. Using Assumption (9) and (2.18) on the event horizon and recalling (4.4), we
get:

v−p−1 � λ � v−2s .

We can rewrite (2.15) in (U, v) coordinates as:

∂Uλ = −Ω2
H

4
(2K − m2r |φ|2).

Using (4.13), 4.23 and Sect. 4.3.2, there exists δ > 0 small enough so that K+ <

2K − m2r |φ|2 < 3K+ inR.
We can then integrate between the event horizon and the apparent horizon for U ∈

[0,UA] to get:

v−p−1 � 4

3K+
λ(0, v) <

∫ UA

0
Ω2

H(U ′, v)dU ′ <
4

K+
λ(0, v) � v−2s .

Then we can use (4.16) to prove that:

∫ UA

0
Ω2

H(U ′, v)dU ′ ∼ Ω2(UA, v).

Which gives the result. ��

B. Proof of Proposition 4.7 of Sect. 4.5.1

We recall proposition 4.7 for convenience:

89 Notice that an upper bound that assures that φ tends to 0, like that of hypothesis 4, is enough to reduce
the problem to either the trivial case φ ≡ 0 where A= H+ or the case where A asymptotically approaches
time-like infinity.
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Proposition. For small enough ε > 0, we have:

|φ| + |∂vφ| + |Duφ| � 2Nv−s, (B.1)

|Au | � (N + 1)δ, (B.2)

we also have:

| logΩ2(u, v) − log(−4(1 − 2M

r
+
e2

r2
))| � 4Nv1−2s, (B.3)

0 ≤ 1 − κ � 5Nv−2s, (B.4)

|1 − ι| � 5Nv−p(s), (B.5)

|∂u log(Ω2) − 2K | � 5Nv−p(s), (B.6)

|∂v log(Ω
2) − 2K | � 5Nv−2s, (B.7)

|Q(u, v) − e| � 4Nv1−2s, (B.8)

|�(u, v) − M | � 4Nv1−2s . (B.9)

Proof. We want to prove by induction on k the following estimates on Nk := {u + v +
h(v) = −Δ + kε}:

|φ| + |∂vφ| ≤ Dkv
−s, (B.10)

|r Duφ| ≤ Dkv
−s, (B.11)

|Au | � Ak, (B.12)

| logΩ2(u, v)| ≤ Ck, (B.13)

Ω2 ≤ 3

2
Ω2

max(M, e), (B.14)

0 ≤ 1 − κ � Ekv
−2s, (B.15)

|1 − ι| � Ekv
−p(s), (B.16)

|∂u log(Ω2) − 2K | � Ekv
−p(s), (B.17)

|∂v log(Ω
2) − 2K | � Ekv

−2s, (B.18)

|Q(u, v) − e| � D2
kv

1−2s, (B.19)

|�(u, v) − M | � D2
kv

1−2s, (B.20)

with Dk = 2Dk−1, Ek = 5Ek−1, Ck = Ck−1 + Kmaxε, Ak = (k + 1)δ and Kmax
depending on (e, M) only. Ω2

max(M, e) is defined as:

Ω2
max(M, e) := 4(

M2

e2
− 1) = sup

r∈[r−(M,e),r+(M,e)]
4|1 − 2M

r
+
e2

r2
|.

The initialization of the induction comes directly from the bounds of proposition
(4.5), after choosing D0, E0 and A0 consistently. Notice that A0 � δ.

Supposing the bounds are established for Nk−1, we bootstrap the following on Nk :

Ω2 ≤ 2Ω2
max(M, e), (B.21)

|φ| + |∂vφ| ≤ 2Dkv
−s, (B.22)

|1 − κ| ≤ 2Ekv
−2s, (B.23)
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|1 − ι| ≤ 2Ekv
−2s . (B.24)

Notice that because ν < 0 and λ|H+ ≥ 0, we have r ≤ r+ everywhere.
We first use (B.22) to prove (B.19) with (2.21):

|Q(u, v) − e| � D2
kv

1−2s .

Then we can use (B.21) with (B.24) to prove that |λ| is bounded, (B.22), (B.23) to
prove (B.20) with (2.24) for |us | large enough:

|�(u, v) − M | � D2
kv

1−2s .

Notice that since Ω2 = −4ικ(1 − 2�
r + Q2

r2
)—as seen in Eq. (2.11)—we have—

forming the differences � − M and Q2 − e2 and using (B.23), (B.24) for |us | large
enough:

0 ≤ −(1 − 2�

r
+
Q2

r2
) = −(1 − 2M

r
+
e2

r2
) + O(D2

kv
1−2s).

So—since r− cancels (1− 2M
r + e2

r2
)—for all η > 0, there exists |us |(η) large enough

so that r− − η < r . For η > 0 small enough, it can be easily shown that the supremum
on [r− − η, r+] is attained on [r−, r+]:

Ω2
max(M, e) = sup

r∈[r−(M,e)−η,r+(M,e)]
4|1 − 2M

r
+
e2

r2
|.

Since |Ω2| ≤ 4|1 − 2M
r + e2

r2
| + C̃v1−2s , bootstrap (B.21) is validated for |us | large

enough and proves (B.14).
Moreover, with the same technique using (2.11), (B.19), (B.20) and bootstrap (B.23),

(B.24) we can prove (B.3), choosing |us | large enough.
(B.19), (B.20) also prove that:

|2K (u, v) − 2KM,e(r(u, v))| � D2
kv

1−2s . (B.25)

Using the same argument as in the red-shift region and (B.24) we get—for |us | large
enough—:

|∂v(2K )| � Ω2 ≤ 2Ω2
max. (B.26)

We denote vi = vi (u) the unique v such that u + v + h(v) = Δi .
Notice that from (4.11):

|h(vk−1) − h(v)| � v1−2s
k−1 |v − vk−1| ≈ |u|1−2s |v − vk−1| ≈ v1−2s |v − vk−1|.

Hence, because u + v + h(v) − Δk−1 ≤ ε is bounded:

v − vk−1 = u + v + h(v) − Δk−1

1 + O(v1−2s)
= u + v + h(v) − Δk−1 + O(v1−2s) (B.27)

We use (2.22) and (B.21) to get:

|∂vAu | � 1.
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Hence by induction, we get (B.12) with

|Au | ≤ Ak−1 + C̃ε ≤ Ak,

after choosing ε small enough compared to δ.
Then we use (2.28) with (B.21), (B.22), (B.23) to get:

|r Duφ| ≤ Dk−1|u|−s + C̃ Dkεv
−s .

Hence for ε small enough compared to (C, e, M, q0,m), we get (B.11).
Using (2.27) and the same type of argument, we close bootstrap (B.22) and get (B.10)

after integrating ∂vφ on a ε-small region.

We can then use bootstrap (B.21), (B.22) and (B.23) and notice that |∂u� |+|∂uQ2| �
D2
kv

−2s to get from (2.26):

|∂v log(Ω
2) − 2K | � (Ek + D2

k )v
−2s � Ekv

−2s . (B.28)

Then, because of the discussion above, r−(e,M)
2 < r < r+(e, M) therefore there exists

Kmax = Kmax(e, M) > 0 such that |K | < Kmax.
Using (B.28) and the induction hypothesis, we prove (B.13) and get—choosing |us |

large enough—:

Ω−2 � e2Kmaxkε .

Hence from (2.29) and (B.11) we get:

|κ − 1| ≤ Ek−1 + C̄ D2
k e

2Kmaxkεε = Ek−1 + C̄ D2
0e

(log(4)+2Kmaxε)kε.

We proceed in two times: first with choose ε small enough so that log(4)+2Kmaxε ≤
log(5). We get:

|κ − 1| ≤ Ek−1 + C̄ D2
k e

2Kmaxkεε = E05
k−1 + C̄ D2

05
kε.

Than we can choose ε even smaller so that bootstrap (B.23) is validated. (B.15), and
(B.18) are proved simultaneously, using (2.26) for (B.18) similarly to what was done
before.

Symmetrically in v we use the same methods to close bootstrap (B.24) and to prove
(B.16), (B.17).

The induction is then proved and the estimates of the proposition follow directly. ��

C. Proof of Lemma 4.3 of Sect. 4.3.2

We recall Lemma 4.3:

Lemma. Under the same hypothesis than before and for v′
0 > v0, if Us is sufficiently

small there exists a constant D > 0 depending on C, e, M, q0,m2, s, v0 and v′
0 such

that

|DUφ(U, v′
0)| ≤ D. (C.1)

|∂Ur(U, v′
0)|−1 ≤ D. (C.2)
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Therefore, for any η > 0 independent90 of any parameter, there exists a v′
0 > 0 such

that

|DUφ(U, v′
0)| � C,

and for all v ≥ v′
0:

|2K (0, v) − 2K+| ≤ ηK+,

rm2|φ|2(0, v) ≤ ηK+.

Proof. We will make the following bootstrap assumptions:

|νH| ≤ B1 (C.3)

|Q| + |φ| + |∂vφ| ≤ B2 (C.4)

The set of points such that the bootstraps are valid is non empty because of the
hypothesis of Theorem 3.2, for B2 large enough with respect to C , e and v0 and B1 > 1.

Notice that with our hypothesis r(0, v) > 0 and since [v0, v′
0] is a compact, it is clear

that r(0, v) is upper and lower bounded by strictly positive constants that depend on v0
and v′

0.
If we integrate (C.3) for Us small enough compared to B1, we see that the same

conclusion holds true for r(U, v) on the whole rectangle [0,Us] × [v0, v′
0]. We write

0 < rmin < r < rmax.
Then, notice that κ(0, v) ≡ 1 and the positive right hand side of (2.29) give that

0 ≤ κ ≤ 1 everywhere on the space–time namely Ω2
H ≤ −4νH.

Then we write (2.15) as

|∂v(log(−rνH)) ≤ 1

r
(1 +

Q2

r2
) + m2r |φ|2 ≤ 1

rmin
+

B2
2

r3min

+ m2rmaxB
2
2 .

We can then integrate in v and use gauge (3.2) to get:

| log(−νH)| ≤ | log(rmax

rmin
)| + (

1

rmin
+

B2
2

r3min

+ m2rmaxB
2
2 )(v

′
0 − v0).

This closes bootstrap (C.3) for B1 large enough with respect to B2, v0, v′
0 and the

parameters and proves (C.2).
Now we want to bound λ: to do so we write (2.15) as:

|∂U (rλ)| ≤ −νH(1 +
Q2

r2
+ m2r2|φ|2) ≤ B1(1 +

B2
2

r2min

+ m2r2maxB
2
2 ).

Now notice that on the compact [v0, v′
0], |λ|(0, v) ≤ λmax where λmax depends on

v0, v′
0 and the parameters.

Then we can integrate the previous equation and take Us small enough to get every-
where:

|λ|(U, v) ≤ 2λmax.

90 We insist that η must be a numerical constant that do not depend on any of the C, e, M, q0,m
2, v0 or

v′
0.
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Now we write (2.28) as

|∂v(r DUφ)| ≤ −νH(m2|φ| + |∂vφ|) ≤ (m2 + 1)B1B2.

Then we integrate and use Assumption 5 and the bounds on r to get:

|DUφ| ≤ rmax

rmin
C +

(v′
0 − v0)(m2 + 1)B1B2

rmin
. (C.5)

Now we use gauge91 (2.9) to integrate (2.22):

|AU | ≤ 2B1B2

r2min

(v′
0 − v0).

This, with bootstrap (C.4) and (C.5) gives:

|∂Uφ| ≤ rmax

rmin
C +

(v′
0 − v0)B1B2

rmin
[(m2 + 1) +

2q0B2

rmin
].

It now suffices to integrate forUs small enough to close the φ part of bootstrap (C.4).
The Q part of bootstrap (C.4) is validated when we integrate (2.20) using (C.5).
For the ∂vφ part, we write (2.27) as:

|∂U (e
iq0

∫ U
U0

AU r∂vφ)| ≤ |λ||DUφ| + |νH|(rm2|φ| + q0|Q||φ|
r

)

Then, from all the bounds that precedes it is clear that we can integrate on [0,U ] and
close the ∂vφ part of bootstrap (C.4) if we chose Us small enough.

Notice that B2 can be chosen to depend on C , v0 and e only. Hence B1 can be chosen
to depend on v0, v′

0 and the parameters only.
In the end both bootstraps are validated.
Notice that (C.5) gives actually (C.1) now that the bootstraps assumptions are proved.
From the last Sect. 4.3.1, 2K (0, v) − 2K+ → 0 when v → +∞ and from the

hypothesis 4 and the boundedness92 of r we know that rm2|φ|2 → 0 when v → +∞.
Wecanwritemax{|2K (0, v)−2K+|, rm2|φ|2} = K+ε(v) and ε(v) → 0whenv → +∞.

Therefore for all η > 0—independent of all the other constants—there exists v′
0—

depending only on the parameters and v0 such that for all v′ ≥ v′
0, |ε(v′)| ≤ η.

Therefore, combining with (C.1), the lemma is proven. ��
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