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Abstract. We show for high-symmetry disk, square, or equilateral triangular thin microstrip
antennas of any composition respectively obeying C∞v, C4v, and C3v point group symmetries,
that the transverse magnetic electromagnetic cavity mode wave functions are restricted in
form to those that are one-dimensional representations of those point groups. Plots of the
common nodal points of the ten lowest-energy non-radiating two-dimensional representations
of each of these three symmetries are presented. For comparison with symmetry-broken disk
intrinsic Josephson junction microstrip antennas constructed from the highly anisotropic layered
superconductor Bi2Sr2CaCu2O8+δ (BSCCO), we present plots of the ten lowest frequency
orthonormal wave functions and of their emission power angular distributions. These results are
compared with previous results for square and equilateral triangular thin microstrip antennas.

1. Introduction
Until very recently, there has been a region in the electromagnetic (EM) spectrum from about
0.1 to 10 THz over which compact coherent sources have been difficult to produce, due mainly
to output power P values below 1 mW, the approximate value desired for many applications.
This has been especially true in the more limited region 0.3 to 2.0 THz known as the “terahertz
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gap” [1, 2]. For emission frequencies f > 2.0 THz, quantum cascade lasers are operational at
the desired power values without cryogenic cooling [3, 4, 5]. Schottky diode frequency mixers,
backward-wave oscillators, and frequency multiplier chains are operable for f ≤ 1.2 THz [6, 7],
and intracavity difference frequency generators operate over the f range of 2.6-4.2 THz [8].
Resonant tunneling diodes (RTDs) have been able to operate with sufficient power for f < 1.4
THz at room temperature [9, 10], but recently were shown to emit up to 2.0 THz, albeit at P
values around 1 µW [11, 12].

A completely different type of source operating in the sub-THz to THz range is due to the
ac Josephson effect [13, 14]. The extremely anisotropic, layered, high-transition temperature Tc
superconductor Bi2Sr2CaCu2O8+δ (BSCCO) consists of regularly alternating superconducting
and insulating layers [15, 16, 17], each of which acts as an intrinsic Josephson junction (IJJ).
The best samples of BSCCO are grown by a modified traveling-solvent floating zone technique
[18, 19]. When a dc voltage V is applied across the stack of N active IJJs, it gives rise to an
ac current and the emission of a photon at the frequency f = fJ = 2eV/(Nh) due to the ac
Josephson effect, where e and h are the electronic charge and Planck’s constant, respectively
[13]. In addition, a BSCCO mesa structure fabricated from the top of a single crystal behaves
as an electromagnetic (EM) cavity, the modes of which depend upon the geometric shape of the
mesa [20]. By varying the bias V , the output f changes until it locks onto a standing wave mode
of that EM cavity, resulting in coherent emission from the stack of IJJs at f = fc(m,n), where
fc(m,n) is the frequency of the EM cavity mode indexed by the two integers (m,n) for the
particular cavity geometry, enhancing the output power at that f value [20]-[37]. Two reviews
of this phenomenon were recently published [38, 39].

However, the introduction of a dc current I into the mesa has also led to severe Joule
heating problems, resulting in the formation of inhomogeneous hot spots over which the local
temperature T (r) > Tc [40]-[56]. This Joule heating also caused the restrictions V < 1.5 V,
f < 1.0 THz, and P < 30µW from a single mesa [57]-[62], although a three-mesa array was
reported to have a combined emission P of 0.6 mW [60].

Direct competition with the latest RTD devices [11, 12] has arisen from the construction
of “stand-alone mesa sandwich structures”. These are fabricated from a BSCCO mesa by
cleavage from its BSCCO substrate, depositing Au films on both its top and bottom, and
then sandwiching it between two insulating plates [63]-[66]. These sandwich structures allow
for much more efficient Joule heat removal in the IJJ emitter devices, allowing bias V values
up to 7 V and f values up to 2.4 THz, with strong emissions at particular frequencies above
1 THz [63]-[69]. Strong enhancement of the output power at particular (probably EM cavity)
frequencies was also seen in a non-sandwiched rectangular stand-alone mesa and from arrays
[59, 60]. Emission from mesas with slightly different heat removal designs while immersed in
liquid nitrogen has also been observed [70, 71]. Hence, a more accurate name for a present
device is “thermally-managed IJJ microstrip antenna (MSA)”.

The important question of the sample homogeneity was raised by comparing the results of
thin cylindrical (disk) conventional mesa IJJ emitters and thermally-managed IJJ disk MSAs
[49, 55, 57, 65, 72]. In three conventional disk mesas, the strongest emission was observed at
that of the lowest frequency transverse magnetic (1,1) disk EM cavity mode, the wave function
of which has a line node passing through the disk center at a fixed angle ϕ0. But the possible
azimuthal emission anisotropy was not measured [57].

Moreover, in a more recent thermally-managed IJJ disk MSA using sapphire as the insulating
plates, only very weak emission was observed at that TM(1,1) mode frequency [65]. Instead,
the strongest emission was observed at about 1.0 THz, which is intermediate between the
expected emission frequencies from the (0,1) and (2,1) EM cavity disk modes. As argued in the
following, the disk (0,1) wave function exhibits the full rotational invariance of a one-dimensional
representation (1DR) of the C∞v point group appropriate for a perfectly homogeneous disk [73],
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Type Symmetry n n′ E R2 σx σy

A1 x2 + y2 even even 1 +1 +1 +1
A2 xy even odd 1 +1 -1 -1
B1 xy2 odd even 1 -1 +1 -1
B2 x2y odd odd 1 -1 -1 +1

Table 1. 1DR types, symmetries, allowed wave functions ψn,n′(x, y) for odd or even n, n′ ≥ 0
of a rectangular microstrip antenna, and the operations of the C2v point group.

and can therefore lead to an EM cavity resonance, whereas the disk TM(1,1) and TM(2,1) wave
functions are two-dimensional representations (2DRs) of that point group, which would preclude
the build-up of an EM cavity resonance [74, 75]. As noted above, the Au top and bottom layers
also appear to amplify the emission power at the EM cavity mode frequencies [59], making the
study of EM cavity mode emissions important for the development of useful devices.

2. rectangular microstrip antenna wave functions
In contrast to the three high-symmetry cases considered here, we first consider the simpler
rectangular IJJ-MSA of length ℓ and width w, for which the wave (Helmholtz) equation for the
magnetic vector potential ψ ≡ Az is ∇2ψ+(k′)2ψ = 0. For the physical situation of the emission
from the IJJs in BSCCO, the uniform Josephson current is in the z direction, normal to the
xy plane of the rectangular MSA. The transverse magnetic (TM) boundary conditions of the
electromagnetic wave equation lead to the normal derivative of the wave function vanishing on
the boundary. For a rectangular MSA of any material composition with 0 ≤ x ≤ ℓ, 0 ≤ y ≤ w,
the normalized wave functions are easily found to be,

ψn,n′(x, y) = (2/
√
ℓw) cos(nπx/ℓ) cos(n′πy/w), (1)

and k′n,n′ = π
√
(n/ℓ)2 + (n′/w)2, where n, n′ ≥ 0, which clearly satisfy the Neumann TM

boundary conditions
∂ψn,n′ (x,y)

∂x

∣∣∣
x=0,ℓ

=
∂ψn,n′ (x,y)

∂y

∣∣∣
y=0,w

= 0. The frequencies in the vacuum

radiation zone are then given by fn,n′ = c0k
′
n,n′/nr, where c0 is the speed of light in vacuum and

nr is the index of refraction of the MSA material. For BSSCO, nr ∼ 4.2.
The wave functions for a perfect rectangular MSA are representations of the C2v point group,

with even or odd 180◦ rotational R2 symmetry about the centroid at (ℓ/2, w/2) and even or
odd reflections about the horizontal σx and vertical σy mirror planes, as detailed in Table 1.
[73, 76]. The n′ = n = 0 case with f = 0 cannot radiate. In Fig. 1, contour plots of four
simplest examples of rectangular wave functions are presented. All four representations are
one-dimensional representations (1DRs), as the trace of the 1 × 1 identity matrix E is just 1.
In Fig. 1(a), ψ(1, 0)(x, y) is shown. It has a line node along the y axis, so it is odd (-1) about
σy, even (+1) about σx, and odd (-1) under rotations (R2) of 180◦ (2π/2 radians) about the
centroid, so it is representation type B1. Figure 1(b)is a contour plot of ψ0,1(x, y), which is odd
under σx and R2, but even under σy, so it is an example of symmetry type B2. A contour plot
of ψ0,2(xy) is shown in Fig. 1(c). This wave function is even under all three group operations,
so it is an example of symmetry type A1. ψ1,1(x, y) is pictured in Fig. 1(d). It is odd under σx
and σy, and even under R2, so it is an example of symmetry type A2. Since any even or odd n
and even or odd n′ fits into this representation table, all of the rectangular MSAs are 1DRs, and
can couple to the electromagnetic field, building up a resonance, and emitting with high power.



4

1234567890

ICMC 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 279 (2017) 012017 doi:10.1088/1757-899X/279/1/012017

 

 

(a) 

(b) 

 

 

(b) 

\includegraphics[width=0.2\textwidth]{rectangle01.eps} 

(c) (d) 

(a) 

(b) 

Figure 1. (colour online) Color-coded contour maps of the four simplest rectangular MSA TM
wave functions and C2v symmetry types: (a): (1,0), B1; (b): (0,1), B2; (c) (0,2), A1; (d) (1,1),
A2. The color code applies to all four figures. The solid black lines are nodes.

odd or σx, σd1,

Type Symmetry ψ
(±)
n,n′(x, y) even n E R2 R4 σy σd2

A1 x2 + y2 ψn,n, ψ
(+)
n,n+2p e +1 +1 +1 +1 +1

A2 xy(x2 − y2) ψ
(−)
n,n+2p o +1 +1 +1 -1 -1

B1 x2 − y2 ψ
(−)
n,n+2p e +1 +1 -1 +1 -1

B2 xy ψn,n, ψ
(+)
n,n+2p o +1 +1 -1 -1 +1

E fixed point nodes ψ
(θ,±)
n,n+2p+1 e,o 2 -1 0 0 0

Table 2. Representation types, symmetries, allowed 1DRs ψn,n(x, y) and ψ
(±)
n,n+2p(x, y) =

[ψn,n+2p(x, y) ± ψn+2p,n(x, y)]/
√
2 for odd or even n ≥ 1, 2DRs ψ

(θ,+)
n,n+2p+1(x, y of the square

microstrip antenna, and operations of the C4v point group. See text.

3. Square microstrip antennas
In contrast to the lower-symmetry rectangular MSA, a perfect square MSA of any material
composition has much higher symmetry[73, 76, 85]. In Table 2, we list the table of the wave
function symmetries under the point group C4v. As noted previously[85], all 1DR wave functions
given by Eq. (1) with ℓ = w have |n − n′| = 2p, where p is an integer. Hence, n and n′ are
either both even or both odd in 1DRs. These 1DRs have the same symmetry under both σx and
σy, and also under both diagonal mirror planes σd1 and σd2, and although they can be even or
odd under rotations R4 of 2π/4 radians (90◦ about the centroid, they are even under R2. These
wave functions can excite cavity resonances, and the predicted radiation patterns for the ten
lowest-frequency 1DR wave function modes were presented previously[85].

In contrast, wave functions ψn,n′(x, y) for the square MSA for which |n−n′| = 2p+1, (or one of
them is even and one of them is odd), are two-dimensional representations (2DRs). The simplest
examples of these 2DR wave functions are the degenerate lowest frequency (n, n′) = (1, 0) and
(0,1), contour plots of which are pictured in Figs. 2(a) and 2(b), respectively. We note that
ψ)1, 0(x, y) is odd under σy, but even under σx and odd under R2. It has no symmetry under
either diagonal mirror plane σd1 or σd2. Similarly, ψ0,1(x, y) is odd under σx and R2, but
even under σy, and has no symmetry under either diagonal mirror. However, the particular

orthonormal mixtures ψ
(±)
0,1 (x, y) = [ψ1,0(x, y) ± ψ0,1(x, y)]/

√
2 are pictured in Figs. 2(c) and

2(d). These two mixtures now have no symmetry under either σx or σy, but are still invariant

under R2. In addition, ψ
(+)
1,0 (x, y) pictured in Fig. 2(c) is odd under σd1 (the diagonal from the

upper left corner to the lower left corner), but even under the other diagonal mirror plane, σd2.

Correspondingly, ψ
(−)
1,0 (x, y) pictured in Fig. 2(d) is even under σd1, odd under σd2, odd under
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Figure 2. (colour online) Plots of the square wave functions ψn,n′(x, y) for the (n, n′) values
(a): (1,0); (b): (0,1); (c): (1,0)+(0,1); (d): (1,0)-(0,1); (e): (4,5); and (f): (5,4).

  01

(a) (b)

(d) (e)

(g) (h)

(j) (k)

  01           12

(a) (b) (c)

(d) (e) 
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  12             03

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 

 23

(d) (e)

(g) (h)

(j) (k)

 23             14

(d) (e) (f)

(g) (h) 

(j) (k) 

  14             34

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 

 05

(g) (h)

(j) (k)

 05             25

(g) (h) 

(j) (k) 

  25              16

(g) (h) (i) 

(j) (k) (l) 

  45 

(j) (k)

  45            36 

(j) (k) (l)

  36             69

(j) (k) (l) 

Figure 3. (colour online) Two dimensional representations of the wave functions for a perfect
square MSA in order of increasing nominal frequency with (n, n′) values: (a)(0,1); (b)(1,2); (c)
(0,3); (d) (2,3); (e) (1,4); (f) (3,4); (g) (0,5); (h) (2,5); (i) (1,6); (j) (4,5); (k) (3,6); (l) (6,9).

R2, and has no symmetry under either σx or σy. Moreover, we could form a general mix of these
two-dimensional degenerate wave functions, forming the two-member orthonormal set

ψ
(θ,+)
n,n+2p+1(x, y) = cos θψn,n+2p+1(x, y) + sin θψn+2p+1,n(x, y), (2)

ψ
(θ,−)
n,n+2p+1(x, y) = − sin θψn,n+2p+1(x, y) + cos θψn+2p+1,n(x, y). (3)

The operations of this general pair are given by two-dimensional matrices, and identity matrix
in two dimensions has the trace of 2. Thus, the functions pictured in Figs. 2(a)-2(d) could be
represented by ψ(θ,+)(1, 0) for n = p = 0 and respectively θ = π/2, 0, π/4, and 3π/4. Or, they
could be represented by ψ(θ,−)(1, 0) with θ = 0, 3π/2, 3π/4, and π/4, respectively. Thus, this
is the simplest example of a 2DR wave function. Because θ could be a random function of the
time, in an IJJ MSA, if θ(t) changes on the time scale of a single oscillation of the ac Josephson
current, the form of the wave function would change, and a cavity resonance could not form.
This is the main reason for this study of high-symmetry, thermally-managed IJJ MSAs. But,
one might ask, what is a consistent way to represent these 2DR wave functions? One way that
we have found is to consider the nodal structure that is invariant under changes in the mixing
angle θ. For the (1,0) and (0,1) wave functions pictured in Figs. 2(a)-2(d), for different θ values,
there is only one consistent node: the node at the centroid (ℓ/2, ℓ/2). This nodal structure is
pictured in Fig. 3(a). More generally, the ten lowest frequency nodal structures are shown in
Figs 3(a)-3(j). Figure 3(j) is obtained from the two wave functions picture in Figs. 2(e) and
2(f), respectively. We note each of these nodal sets satisfies the C4v group operations of the
one-dimensional representation of type A1, as the pattern is invariant under σx, σy, σd1, σd2,
and R4. It is further interesting to note that when (n, n′) not only satisfy n′ = n+ 2p+ 1, but
also are both multiples of an odd integer, then the pattern forms a repeated pattern of the lower

number indices. For example, Fig. 3(k) is the pattern for ψ
(θ,±)
3,6 , and it consists of a 3× 3 array

of the same pattern of ψ
(θ,±)
1,2 pictured in Fig. 3(b). Similarly, Fig. 3(l) is the pattern for ψ

(θ,±)
6,9 ,
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+ +

Figure 4. 2DR equilateral triangular mode examples. (a),(b) even and odd (0,1) modes. (c),
(d) even and odd (4,2) modes.

                   

+ + = 0 

Figure 5. Pictorial summation of the (4,2) odd modes rotated by ±120◦ about the central axis.

   01

(a) 

(d) 

(g) 

   01       02

) (b) 

(d) (e) 

(g) (h) 

   02     12

) (b) (c) 

(d) (e) (f) 

(g) (h) 

 13

(d) 

(g) 

13        04

(d) (e) 

(g) (h) 

  04      23  

(d) (e) (f) 

(g) (h) 

  05

(g) 

  05       24

(g) (h) 

Figure 6. (colour online) Two dimensional representations of the wave functions for a perfect
equilateral triangular MSA in order of increasing nominal frequency for the indicated (n,m)
pairs: (a)(0,1); (b) (0,2); (c) (1,2); (d) (1,3); (e) (0,4); (f) (2,3); (g) (0,5); (h) (2,4).

which is a 3× 3 array of the pattern of ψ
(θ,±)
2,3 shown in Fig. 3(d).

4. Equilateral triangular microstrip antennas
For a perfect equilateral triangular MSA of any material composition, the wave functions are
considerably more complicated than for the square[81, 85]. The wave functions for a particular
symmetry plane (such as the horizontal axis that bisects an angle and the opposite side), the
even wave functions that satisfy the Helmholtz equation with the Neumann (vanishing normal
derivatives) boundary conditions are three products of cosine functions of x and y, respectively,
and the odd functions are three products of one cosine function of x and a sine function of y[81].
The wavevectors satisfy k′n,ma = 4π

√
n2 +m2 + nm/(3nr), where a is the length of a side of

the triangle. The 1DR wave functions satisfy |m − n| = 3p, where p is an integer. For p = 0,
the 1DR wave functions are non-degenerate, for for p ̸= 0, they are double degenerate, with
functions that are either even or odd about all three mirror planes normal to the planar surface
and bisecting one of the angles and its opposite side. But they didn’t describe the 2DR wave
functions. Here we show how they can be best described.

The lowest frequency wave functions are the (0,1) modes. Those even and odd about the single
symmetry plane containing the horizontal axis are pictured in Figs. 4(a) and 4(b), respectively.
Similar contour plots of the even and odd (4,2) modes are shown in Figs. 4(c) and 4(d),
respectively. Note that these figures only have the C3v group symmetry operation of a single
mirror plane, and are thus elements of a 2DR. Previously, it was shown that by forming the sum
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of the wave function pictured in Fig. 2(a) with its form rotated by ±120◦ about the centroid,
one obtains the remarkable value 0 for all points inside the triangle. In Fig. 5, we did this for the
odd (4,2) wave function, just as a check on the validity of the C3v group symmetry, proving that
this is a 2DR wave function. More generally, the 2DR wave functions are general orthonormal
sums of the two degenerate forms, such as those pictured in Figs. 4(a,b) and 4(c,d). As for the
consistent method of presenting the characteristic form of such 2DR wave functions, we combine
the nodal structure of these two degenerate forms, locating the set of consistent nodal points.
In Fig. 8, we have done this for the eight lowest frequency 2DR wave functions. The patterns
obtained from the pair pictured in Figs. 4(a,b) is shown in Fig. 6(a). It consists of a single
nodal point at the centroid. The pattern obtained analogously from the (02) even and odd wave
functions is shown in Fig. 6(b). Similarly, those obained from the even and odd (12), (13), (04),
(23), (05), and (24) modes [the latter shown in Figs. 4(c,d)] are shown in Fig. 6(c)-6(h). In
each case, the overall pattern has complete R3 symmetry about the centroid by ±120◦, which is
a requirement for the 1DR wave functions. This remarkable finding of the common nodal point
array has not been noticed previously to our knowledge. Note that the (24) pattern pictured in
Fig. 6(h) is similar to that of the (04) pattern pictured in Fig. 6(3), but four of the points in
the figure have split into a triangular pattern of four points. Note that the (04) and (05) nodal
patterns shown in Figs. 6(e,g) form honeycomb lattice sections commensurate with the triangle.

5. Disk microstrip antennas
For a perfect disk microstrip antenna of radius a, the wave functions ψ ≡ Az have the forms

ψn,m(ρ, ϕ) = Cn,mJn(kn,mρ) cos[n(ϕ− ϕ0)], (4)

where ϕ0 is an arbitrary angle, and the Cn,m are normalization constants. The wave vectors
kn,m are obtained from the Neumann boundary condition J ′

n(kn,ma) = 0, where J ′
n(z) is the

first derivative of the regular Bessel function Jn(z). In Fig. 7, contour maps of the 10 lowest
frequency disk modes are shown,

We note that in Figs. 7(c) and 7(i) corresponding to the TM(01) and TM(02) cavity modes,
the only nodes in the wave functions are circles centered at the origin, so these modes are
rotationally invariant about the axis normal to the disk plane that passes through the disk
center, and are therefore one-dimensional representations (1DRs) of point group C∞v[73]. The
other eight modes all have one or more linear nodes that span the disk and pass through its
center, and are thus not invariant under the above rotations. Hence, they are two-dimensional
representations (2DRs) of point group C∞v, and will only be realized in imperfect devices.

We first assume that the disk MSA under study has spatial inhomogeneities that break the
C∞v point group symmetry. This could arise from thermal inhomogeneities, such as as hot spot
that have been observed in earlier devices that were not thermally managed. In such as case,
excitations of any of the cavity modes are possible, and in Fig. 8, we show three-dimensional
(3D) plots of the angular distribution of the emission as predicted for BSCCO[74, 75]. In order
to distinguish the 2DR wave functions from the 1DR wave functions pictorially, one should
imagine that the line nodes bisecting the 2DR wave functions that pass through the origin are
free to rotate about the origin, as if the ϕ0 in Eq. (4) were a random function of the time, which
would hinder the wave function from forming a resonance. Hence, the wave function would
always vanish at the disk centroid, and possibly at other fixed radii, but would average to zero
over a long time. Thus, these line nodes then reduce to a point at the origin (or centroid) of the
disk. In Fig. 9, we have shown the reduced 2DRs that represent the 8 wave functions pictured
in Fig. 7, plus the TM(13) and TM(23) modes not pictured. Note that Fig. 9(a) corresponds
to all TM(n,1) modes with n ≥ 1. For a disk of unit radius, the radii of the black circles are
0.7187 for the TM(12) mode, 0.7658 for the TM(22) mode, 0.4489 and 0.8218 for the TM(13)
mode, and 0.5151 and 0.8443 for the TM(23) mode.
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(d) 

(a) 

(c) 

(b) (c) 

 

(d) 

(f) 

(e) 

(f) 

(h) 

(g) (h) 

(j) 

(i) (j) 

Figure 7. (colour online) Contour plots of the ten lowest frequency TM disk modes. (a) (1,1);
(b) (2,1); (c) (0,1); (d) (3,1); (e) (4,1); (f) (1,2); (g) (5,1); (h) (2,2); (i) (0,2); (j) (6,1). The solid
black lines and circles are nodes.

(a) 

(b) 

(b) 

(c) 

(d) 

(e) 

(d) 

(e) 

(e) 

(f) 

(g) 

(g) (h) 

(i) 

(i) (j) 

Figure 8. (colour online) Angular distribution of the predicted power distribution from the
excitation of each of the ten lowest frequency EM cavity modes of an imperfect disk BSCCO
device. (a)(1,1); (b) (2,1); (c) (0,1); (d) (3,1); (e) (4,1); (f) (1,2); (g) (5,1); (h) (2,2); (i) (0,2);
(j) (6,1).

(n, 1)

(a) 

(c) 

(12)

(b) (c) 

(13)

(b) 

(d) 

(23)

(e) 

Figure 9. (colour online) Pictorial representation of the 2DR disk cavity wave functions
(a)(n,1), n ≥ 1; (b) (1,2); (c) (2,2); (d) (1,3); (e) (2,3). The red circle represents the disk
edge with Neumann boundary conditions, and the black circles and central dots are nodes.
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6. Conclusions
We found a set of nodal points that defines the intersection of the common nodes for the
ten lowest frequency degenerate two-dimensional representations of a perfect disk, square, or
equilateral triangular microstrip antenna of arbitrary composition. The positions of the nodal
points are invariant under the one-dimensional operations of the respective C∞v, C4v and C3v

point groups. We also presented the predicted power distributions for the ten lowest frequency
cavity modes of a disk intrinsic Josephson junction microstrip antenna.

References
[1] Ferguson B and Zhang X C 2002 Nat. Mater. 1 26–33
[2] Tonouchi M 2007 Nature Photon. 1 97-105
[3] Walther C, Fischer M, Scalari G, Terazzi R, Hoyler N, and Faist J 2007 Appl. Phys. Lett. 91 131122
[4] Fathololoumi S, Dupont E, Chan C W I, Wasilewski Z R, Laframboise F R, Ban D, Mátyás A, Jirauschek
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