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Apathy and impulsivity are common and often coexistent

consequences of frontotemporal lobar degeneration (FTLD).

They increase patient morbidity and carer distress, but remain

under-estimated and poorly treated. Recent trans-diagnostic

approaches that span the spectrum of clinical presentations of

FTLD and parkinsonism, indicate that apathy and impulsivity

can be fractionated into multiple neuroanatomical and

pharmacological systems. These include ventral/dorsal

frontostriatal circuits for reward-sensitivity, response-

inhibition, and decision-making; moderated by noradrenaline,

dopamine, and serotonin. Improved assessment tools, formal

models of cognition and behavior, combined with brain imaging

and psychopharmacology, are creating new therapeutic

targets and establishing principles for stratification in future

clinical trials.
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Introduction
Apathy and impulsivity are two problems that coexist

in frontotemporal lobar degeneration (FTLD) syn-

dromes, including the behavioral variant of frontotem-

poral dementia (bvFTD), primary progressive aphasia,

progressive supranuclear palsy (PSP), and corticobasal

syndrome [1,2,3�,4]. Epidemiological data indicate that

apathy and impulsivity are common in FTLD syndromes

[5], and cause significant patient morbidity and carer

distress. Despite progress in understanding apathy and
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impulsivity in other diseases [6], there is a limited

evidence base for clinical management in FTLD

syndromes.

Apathy and impulsivity have been conceived as belong-

ing to opposite ends of a behavioral spectrum of dopa-

mine-dependent abnormal motivation [7]. Although rel-

evant to some aspects of apathy and impulsivity in certain

neuropsychiatric disorders, this approach cannot explain

their frequent co-occurrence in FTLD, or the fact that

FTLD patients with more apathy also manifest more

impulsivity (Figure 1) [8�]. As a concrete illustration of

their co-existence, we commonly observe apathetic

patients (e.g. sitting in a chair for hours) whose first action

in the day is an uncontrolled and impulsive movement

that put them at risk of falling and reporting injuries. This

‘alliance’ of apathy and impulsivity is also acknowledged

in the clinical diagnostic criteria for bvFTD [4] and

PSP [3�].

We propose that apathy and impulsivity are behavioral

constructs with multiple components, and that these

components are positively correlated due to common-

alities in neuroanatomical and pharmacological conse-

quences of pathology, leading to dysregulation of deci-

sion-making, response-inhibition, and motivation.

Alternatively, apathy and impulsivity may originate

from separate brain structures and pharmacological

mechanisms which are difficult to fractionate empirically

due to the widespread nature of the FTLD-related

pathological changes. However, the co-existence of apa-

thy and impulsivity in other, non-degenerative, condi-

tions (e.g. drug addiction) suggests that this latter hypoth-

esis is less likely [9,10].

In parallel with correlative investigations of the neuroan-

atomical substrates of apathy and impulsivity, we present

a computational approach embedded in the decision

theory to describe and characterize the co-existence of

apathy and impulsivity in FTLD syndromes in terms of

latent neurocognitive mechanisms [11,12].

Finally, we highlight the role played by neurotransmitters

other than dopamine, in part because apathy and impul-

sivity in FTLD are clinically unresponsive to standard

dopaminergic therapies and in part because of emerging

evidence of serotonergic and noradrenergic contributions

to both apathy and impulsivity [13–16].
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Figure 1
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Correlation between the self-rated Apathy Evaluation Scale (minimum

score 18) and Barratt Impulsiveness Scale (minimum score 30) in

73 patients with frontotemporal lobar degeneration syndromes (PSP

25, CBS 17, PPA 17, bvFTD 14; Pearson’s Correlation r = 0.495,

P < 0.001). PSP, progressive supranuclear palsy; CBS, corticobasal

syndrome; PPA, primary progressive aphasia; bvFTD, behavioral

variant of frontotemporal dementia.
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(a) Examples of trajectories of the ‘drift-diffusion’ model. The two

boundaries (a & 0) represent the Go and No-Go decisions. The drift-

rate (velocity) represents the rate of accumulation of evidence. The

diffusion process begins at a starting point between the two

boundaries (z*a) until the accumulated evidence reaches one of the

two boundaries. The predicted movement latency is the sum of the

duration of the diffusion process and the non-decision time (Ter). (b)

Progressive supranuclear palsy (PSP) leads to exaggerated response

bias toward the Go decision boundary, reduced non-decision time

(Ter) and slow accumulation rate. This combination renders PSP

patients both impulsive and slow, in a parsimonious and biologically

plausible decision-model. The pictures in panel (a) and (b) have been

adapted from Ref. [17]. PD, Parkinson’s disease.
Neurocognitive mechanisms of apathy and
impulsivity
The examination of behavioral profiles (latencies, accu-

racy, choice preferences) in terms of an accumulation-to-

threshold decision model [17]; or effort allocation models

[18] are key examples of model-based approaches to

study apathy and impulsivity. Such models can parame-

terize effort, fatigue, reward expectations and behavioral

biases, and other latent variables related to apathy and

impulsivity [19,20,21�,22]. Differences in the accumula-

tion of ‘evidence’ for effort, or the variation in decision

thresholds according to reward, can be mapped to differ-

ences in brain structure and function [23].

This powerful modeling approach is beginning to eluci-

date the etiology of behavioral changes in FTLD and

Parkinsonian syndromes, such as the similarly deleterious

effect of PSP and Parkinson’s disease (PD) on response

inhibition (Figure 2a). A ‘drift-diffusion’ model describes

the binary-choice between action and inhibition in a Go/

No-Go paradigm, with neuronal ‘accumulators’ integrat-

ing the momentary evidence over-time [20,21�,22]. When

this evidence reaches a threshold, the agent is committed

to response, or inhibition of a response. Despite their

profound akinesia, PSP patients, relative to PD patients

and controls, have a markedly increased bias toward

making a Go response. However, they are severely

impaired at accumulating the necessary additional evi-

dence to commit to a response [17]. Through the compu-

tational model of patient behavior, one can see how PSP

patients are simultaneously prone to impulsivity (i.e. bias
www.sciencedirect.com 
toward a responding, plus noise) and apathy (severe

difficulty to reach threshold) (Figure 2b) [17]. In contrast

to model parameters, the mean reaction-times and errors

did not reveal the cognitive deficits that distinguished

PSP patients from PD patients and controls [17]. Latent

cognitive variables for effort and reward are similarly

derived from saccadic responses [24�], and although only

applied thus far to PD, this approach has potential

advantages to study FTLD, where akinesia or rigidity

may interfere with responding over and above the cogni-

tive disorders underlying apathy and impulsivity.

Apathy
The composite nature of goal-directed behavior sup-

ported the theoretical decomposition of apathy into emo-

tional/motivational, cognitive, and behavioral (‘auto-

activation’) subtypes. The first variant relates to blunted

affect, while the cognitive apathy closely resembles the

typical executive deficits observed in FTLD syndromes.
Current Opinion in Behavioral Sciences 2018, 22:14–20
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Figure 3
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Voxel-based-morphometry analyses revealed distinct white-matter or

grey-matter correlates for patient-related, carer-related and task-

related principal components (after [8�]). Patient self-ratings correlated

with white-matter atrophy in cortico-spinal circuits while carer ratings

correlated with diffuse grey-matter deficits in frontostriatal and

frontotemporal regions. Response-inhibition impairments on behavioral

paradigms assessing impulsivity (i.e. stop signal task) correlated with

focal cortical atrophy in prefrontal cortex regions involved in cognitive

control. The color bar represents t-statistics.
However, the relationship between apathy and cognition

remains unclear; apathy has been linked to rapid cogni-

tive/functional decline [25], while others have reported

no correlation between apathy and cognition [26]. The

‘auto-activation’ variant reflects a reduced ability to self-

generate motor patterns without external prompting.

This distinction is clinically heuristic but a clear oper-

ationalization of such subtypes is needed to link clinical

observations to modern cognitive neuroscience ontolo-

gies and their neuroanatomical substrates.

Although direct evidence linking brain structural deficits

to different modalities of apathy in FTLD syndromes

remains limited, the motivational apathy has been

hypothesized to arise from deficits from orbital/ventro-

medial prefrontal cortex (PFC)/ventral striatum circuits;

the cognitive apathy from dorsolateral-PFC/caudate net-

works; and the ‘auto-activation’ apathy from premotor/

motor circuits including the supplementary motor area

(SMA) and pre-SMA [27]. Dysfunction of the latter circuit

in FTLD syndromes can cause the failure to self-gener-

ate motor patterns, over and above blunted affect or

cognitive dysfunction, in keeping with evidence for this

circuit in voluntary action selection in health [20,28] and

poor signal-to-noise in motor plans arising from the

medial frontal cortex [29]. This ‘auto-activation’ deficit

can also be formulated as a failure to reach a necessary

activation threshold, by leakage, decay or refractoriness in

the frontoparietal neuronal ensembles that represent

actions [17].

Nevertheless, there is lack of consistency across studies

examining the neuroanatomical substrate of apathy in

FTLD, due to limited numbers of patients, lenient

statistical thresholds, and the inclusion of single diagnos-

tic entities which reduces the generalization of previous

studies. To overcome these limitations, we recommend

multiple modes of assessment of apathy (e.g. behavioral

tests, questionnaires from multiple sources, wearables

technologies) as well as trans-diagnostic approaches that

emphasize the commonality of the manifestation of apa-

thy across the broad clinical spectrum of FTLD diagno-

ses. This enables a data-driven approach to interrogate

the phenomenology and etiology of apathy and impulsiv-

ity [8�,30]. For example, Lansdall et al. used a principal

components analysis of multiple questionnaires and lab-

oratory tests, combined with structural magnetic reso-

nance imaging [8�,30]. They found a positive correlation

between measures of apathy and impulsivity (Figure 3)

and a dissociation between patient ratings, carer ratings,

and dissociable neural correlates of the different modes of

apathy and impulsivity, depending on the rater (Figure 3)

[8�]. Carers’ observations of apathetic changes in behavior

correlated with diffuse atrophy in frontostriatal and fron-

totemporal regions, while patients’ reports related to

deficits in motor networks, suggesting that patients retain

insight in some aspects of their disability. These findings
Current Opinion in Behavioral Sciences 2018, 22:14–20 
imply that the aspects of FTLD which distress carers and

patients differ: future studies targeting patient-reported

or carer-reported symptoms should choose outcome mea-

sures accordingly.

Impulsivity
Impulsivity is a multi-faceted construct, which reflects

the tendency to act prematurely, with adverse conse-

quences, or with insufficient evidence to make a decision

[31]. Such definitions imply the distinction of impulsivity

into separate neurocognitive systems, with identifiable

neuroanatomical and neurochemical components. For

example, aberrant processing of reward-expectation and

delay-discounting measures (‘risky decision-making’ and

‘waiting impulsivity’), differ from response-inhibition

deficits and cognitive dysregulation (‘stopping’ and

‘reflection’ impulsivity) [31].
www.sciencedirect.com
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Figure 4
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Left panel. At the macroscopic examination, a patient with

progressive supranuclear palsy (PSP) shows, relative to a healthy

control, paler locus coeruleus (red arrows) reflecting reduced

intracellular neuromelanin. Right panel. There is also evidence that

tau pathology (red arrows) is present in the locus coeruleus in PSP.
The neural determinants of impulsivity in FTLD syn-

dromes include: subcortical FTLD-related pathological

changes within striatal, thalamic, and sub-thalamic neu-

rons which affect reward processing and dis-inhibition of

thalamo-cortical loops, with consequent biases toward

contextually inappropriate actions [21�,22,32]; and neo-

cortical pathology, especially in PFC networks, which

impair decision-making and action selection processes

[33�]. Lesions at different points across the functional

gradients of interlocking PFC-striato-thalamo-cortical cir-

cuits affect different modes of impulsivity [31].

For example, degeneration of ‘limbic’ ventral PFC-striatal

circuits leads to risky decision-making and delay intoler-

ance while neurodegeneration in dorsal ‘motor’ and

‘cognitive’ circuits impairs the ability to refrain from or

cancel inappropriate actions. These effects span animal

models of impulsive disorders [34], neuroimaging data from

individuals with impulsive neurodevelopmental disorders

[35] and adult neuropsychiatric patients (e.g. obsessive-

compulsive disorders and PD) [21�,22,36]. The prevalence

of impulsivity in these diverse conditions highlights  the

value of translational and trans-diagnostic  approaches to

elucidate the neural underpinnings of impulsivity [8�,30].
In the study by Lansdall et al. [12], the response-inhibition

deficits observed during laboratory-based behavioral para-

digms (e.g. the stop-signal task of response cancelation)

correlated with focal atrophy in the inferior frontal gyrus

and pre-SMA. These are two critical ‘hubs’ in cognitive and

motor control, and the target of therapeutic strategies which

we consider in the next section [7,13–15].

Neuropharmacology of apathy and impulsivity
The emotional/motivational contributors to apathy have

been linked to the dopaminergic reward system [37], but

the pharmacology of ‘auto-activation’ deficits is unclear. A

link between dopamine, reward, and motivation is well

established in health and PD [38], but the motor and

affective components of incentive motivation are disso-

ciated and the principal determinants of apathy in PD

may be distinct from apathy in FTLD [39]. In clinical

practice, apathy in FTLD syndromes is frequently unre-

sponsive to anti-parkinsonian dopaminergic medications,

although dopamine deficiency is common in FTLD, not

only the overtly parkinsonian disorders like PSP, but also

the bvFTD. For example, half cases of FTD-linked

C9orf72 mutation develop parkinsonism, and this common

mutation is associated with striatal dopamine deficiency.

The extent to which this causes apathy and impulsivity, as

opposed to atrophy on frontostriatal circuits, remains

unclear. It is possible that dopamine deficiency in some

circuits and the relative preservation in other circuits is

accompanied by dopaminergic ‘overdose’, as in PD [40],

contributing to impulsivity in FTLD syndromes.

We propose that dysfunction of the noradrenergic system

may play a key role in the pathogenesis of apathy,
www.sciencedirect.com 
especially in FTLD syndromes [16]. There are early

pathological changes in the locus coeruleus (LC) in post
mortem tissue from FTLD patients (Figure 4) [33�]. The

LC is the principal source of noradrenaline in the fore-

brain, which regulates the neuronal signal-to-noise ratio

in the neocortex, gating information processing and mod-

ulating arousal [41]. It is possible that the dopaminergic

and noradrenergic systems influence different compo-

nents of goal-directed behavior (e.g. motivation and

energization) [41,42�], but such a dichotomy is over-

simplistic, and there is counter evidence for strong inter-

actions between the dopaminergic and noradrenergic

neurotransmission [42�].

Impulsivity in FTLD syndromes may reflect dysfunc-

tions in multiple monoaminergic systems, including sero-

tonin, noradrenaline, and dopamine [43]. The reduction

of serotonin in FTLD reported by Bowen and Proctor

through post mortem studies, led Hughes and colleagues

to test whether the serotonin reuptake inhibitor citalo-

pram could restore the functional systems for response

inhibition [44�]. As predicted, bvFTD patients had a

functional deficit in the PFC when required to inhibit

actions, but this deficit was restored by citalopram. Clini-

cal trials are necessary before this approach could be

introduced therapeutically, but the study indicates the

value of a translational approach, across species and across

disorders [13,44�].

Noradrenaline is necessary to effectively cancel ongoing

behaviors when the context changes, in animal models

and healthy humans [45]. There is growing evidence for

the role of noradrenaline deficiency in impulsivity in

FTLD syndromes [14,15,46]. The early and severe

pathology in the LC in FTLD [33�,47] suggests that

restoring noradrenergic neurotransmission might be a
Current Opinion in Behavioral Sciences 2018, 22:14–20
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Figure 5

(a) (b)

‘Emotional’ apathy
‘Risky-choice’ impulsivity

‘Auto-activation’ apathy
‘Stopping’ impulsivity

‘Cognitive’ apathy
‘Reflection’ impulsivity

– Motivation
– Reward discounting

– Adaptive function/Energization
– Action cancellation

– Action restrain

DA

NA

5-HT

Neuroanatomy Neurochemistry

Current Opinion in Behavioral Sciences 

Shared neuroanatomical and neurochemical mechanisms underlying apathy and impulsivity in frontotemporal lobar degeneration syndromes. (a)

Different modes of apathy and impulsivity are mediated by relatively segregated frontostriatal circuits (the frontal and striatal areas sharing the

same coloring show direct anatomical and functional connectivity) [48,49]. (b) The dopaminergic, noradrenergic, and serotoninergic systems are

involved in regulating different aspects of apathy and impulsivity. Abbreviations: dACC, dorsal anterior cingulate cortex; sgACC, subgenual anterior

cingulate cortex; vmPFC, ventromedial prefrontal cortex; mOFC, medial orbitofrontal cortex; VS, ventral striatum; SMA, supplementary motor area;

dmPFC, dorsomedial prefrontal cortex; aPFC, anterior prefrontal cortex; Put, putamen; DLPFC, dorsolateral prefrontal cortex; VLPFC, ventrolateral

prefrontal cortex; lOFC, lateral orbitofrontal cortex; Caud, caudate; VTA, ventral tegmental area; SN, substantia nigra; LC, locus coeruleus; RN,

raphe nuclei. The pictures in panel (a) have been adapted from Ref. [50].
therapeutic target for impulsivity. One candidate is the

noradrenergic reuptake inhibitor atomoxetine, which

restores activity and connectivity in inhibitory control

networks in another disorder with noradrenergic defi-

ciency, PD [14]. Together, these results suggest that

targeting noradrenergic transmission may be a useful

treatment for apathy and impulsivity in FTLD

syndromes.

Concluding remarks
We propose that apathy and impulsivity are not opponent

manifestations of a unidimensional behavioral spectrum,

but instead are multi-dimensional behavioral constructs

resulting from common neuroanatomical and neurochem-

ical deficits (Figure 5). To improve effective therapeutic

strategies in FTLD, we recommend targeting apathy and

impulsivity jointly, ensuring that chosen assessment tools

capture each of their principal dimensions. There is a

pressing need to develop improved assessment tools for

apathy and impulsivity, to empower clinical trials in terms

of stratification and outcome markers. These are
Current Opinion in Behavioral Sciences 2018, 22:14–20 
especially relevant to trans-diagnostic therapies, which

would maximize the impact of effective new treatments

to a larger population of patients and carers alike.
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