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Manufacturing companies often lack visibility of the procurement interdependencies between the suppliers within their supply
network. However, knowledge of these interdependencies is useful to plan for potential operational disruptions. In this paper,
we develop the Supply Network Link Predictor (SNLP) method to infer supplier interdependencies using the manufacturer’s
incomplete knowledge of the network. SNLP uses topological data to extract relational features from the known network to train
a classifier for predicting potential links. Using a test case from the automotive industry, four features are extracted: (i) number of
existing supplier links, (ii) overlaps between supplier product portfolios, (iii) product outsourcing associations, and (iv) likelihood
of buyers purchasing from two suppliers together. Näıve Bayes and Logistic Regression are then employed to predict whether these
features can help predict interdependencies between two suppliers. Our results show that these features can indeed be used to
predict interdependencies in the network and that predictive accuracy is maximised by (i) and (iii). The findings give rise to the
exciting possibility of using data analytics for improving supply chain visibility. We then proceed to discuss to what extent such
approaches can be adopted and their limitations, highlighting next steps for future work in this area.

1. Introduction

Supply networks emerge as manufacturing firms become
dependent on procuring subcomponents or services from
other firms in order to produce their own products. Out-
sourcing aspects of production to suppliers allows manu-
facturers to specialise and scale-up by setting up dedicated
production lines. However, the practice exposes companies
to risk of disruptions on material flow along the emergent
network of dependencies. As supply networks grow in their
size and complexity, it becomes increasingly difficult for
companies to keep track of who is in their network and
thus what risks they are exposed to. Manufacturers are
typically aware of only their first tier suppliers, gradually
losing visibility over their extended network.

Knowing the extended network is important so that
appropriate risk mitigation plans can be prepared in advance,
to ensure that production continues smoothly should a
disruption happen. For example, in the aerospace sector,
65%–80% of the final cost of aerospace production is dedi-
cated to suppliers, while majority of delays and quality issues
can also be traced back to supply chain issues [1].

Although several solutions have been proposed for the
identification of interdependencies (hereafter links) between
suppliers, most of these require the willingness and ability
of suppliers to share information. Among these, the most
commonly practiced method for a manufacturer is the ques-
tioning of first tier suppliers on their procurement partners.
Powerful manufacturers could enforce a contractual auditing
process, which includes supplier interviews, performance
monitoring, and collection of data during visits. Somemanu-
facturers ask their suppliers to select their own suppliers from
an approved supplier list. However, it is well documented
that suppliers do not have sufficient incentives to share
information about their own suppliers, as this could lead to
the buyer negotiating directly with their suppliers to reduce
margins.

Manufacturers increasingly subscribe to third party com-
panies that independently gather supplier information by sur-
veying suppliers.These companies present economies of scale
advantage; as many manufacturers share common suppliers,
they can reuse data and cross map industrial ecosystems
as more companies sign up to the service. However, this
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approach presents similar challenges as suppliers might not
want to share private data. Third party databases also present
an asymmetry of information challenge, as manufacturers
have no way of verifying the information provided by sup-
pliers.

Another strategy for supply network visibility is to deploy
traceability technology such as RFID tagging.These methods
increase visibility over specific stages of the production
process; however, they require adoption by the rest of the
supply chain, a process over which the manufacturer would
not have control.

As supply network visibility gains urgency, there is a need
for complimentary methods that do not rely on suppliers’
willingness or ability to share information.

In this paper, we present an alternative approach that
combines information from the topology of the existing
network with relational information that is obtained from
the topology, in order to automatically infer links between
suppliers. The link inference is then made by using classi-
fication algorithms from the field of machine learning. The
approach has been tested with three empirical samples from
the global automotive network: namely, the supply networks
of Saab, Volvo, and Jaguar Land Rover. Our results show that
the combination of topology and relationship extraction can
indeed be used to predict interdependencies in the case study
networks, giving rise to the exciting possibility of using data
analytics for improving supply chain visibility.

Our contribution thus includes a method for detecting
invisible dependencies in supply networks that does not rely
on suppliers to share information and three case studies from
the automotive industry that illustrate how the approach can
be adopted.

This paper is organized as follows. In Section 2, we discuss
related work and contributions. In Section 3, we will discuss
how supply chain visibility can be characterised as a link
prediction problem and we develop a method that combines
supplier attributes with topological information. Section 4
presents and discusses experimental results. Section 5 con-
cludes the paper by summarizing findings and limitations and
identifying future avenues of research.

2. Literature Review

A supply network involves manufacturers buying products
from one another to produce their own products. Consider a
supply network as a graph 𝐺{𝑁, 𝐿}, where suppliers are rep-
resented by a nodeset 𝑁, and procurement relation between
suppliers is represented by a linkset 𝐿. Links are directed,
depicting the direction of material flow from one supplier
to another. The direction of the link determines whether
a supplier is acting as a buyer or a seller in a particular
relationship instance.

Given such a directed graph, all the possible links in the
graph are of size 𝑁(𝑁 − 1)/2. Link prediction is defined as
the estimation of the likelihood that two nodes interact with
each other, based on the observed network structure [2]. In
other words, we need to distinguish between links that exist
and links that do not exist. The problem could be viewed as

a binary classification problem, where links are classified into
positive (existing links) and negative (nonexisting) links.

Machine learning algorithms were developed to study
large datasets in order to identify patterns and make pre-
dictions. The learning algorithm labels each possible edge of
the network as “exists” or “does not exist” in the network,
according to the feature vector associated with the link. A
training set of known samples is used to teach the algorithm,
which is then applied to new samples to predict unknown
instances. Several algorithms exist to solve classification
problems (please refer to [3] for a review).

Although link prediction problems seem to be a natural
fit to the application of machine learning, these have thus
far been inadequate for various reasons [4]. First reason is
that the number of features available for each link instance
has been limited to topological features. Furthermore, when
machine learning on link prediction is deployed with flat
data representations, relational features are ignored, which
could contain a wealth of additional data. Using only topo-
logical features is also problematic becausemost classification
algorithms assume that the data sample is independent and
identically distributed,whereas in a network they are not; net-
works by their nature consist of heterogeneous distribution
of topological features. Second, using topology only could
give imprecise results irrespective of the features associated
with nodes. Third, the computational cost of calculating the
features of all possible instances for training an algorithm is
high.

Researchers have thus devised alternative methods for
predicting links in networks, based on node characteristics
as well as topological network information, giving rise to the
field of graph mining. In graph mining, one assumes that
the information is represented through relations; therefore,
knowledge emerges from the interaction of nodes through
links. While the goal of machine learning based classification
is to distinguish between classes with the highest possible
precision and recall, the goal of graph mining is not only
accuracy of prediction but also the understanding of the
behaviour of connectivity and using that knowledge for
predictive analytics.

Most work in the graph mining field has largely been
motivated by the need for analyzing entity relationships in
social networks, and other digitised large datasets such as
product recommender systems. Three main categories of
approaches prevail (Lü andZhou, 2011): similarity based algo-
rithms, maximum likelihood algorithms, and probabilistic
models.

Similarity based algorithms work by computing a simi-
larity score between each pair of nodes in a network based on
their relations.Then, by comparing the similarity scores of all
links, one obtains the likelihood with which a link between a
given pair of nodes exists. Similarity scores can be based on
node characteristics or topological relationship patterns.

Some of the most well-known algorithms in this category
are common neighbours (CN), Jaccard coefficient [5], Katz
[6], and Leicht-Holme-Newman Index (LHNI) [7], path-
based similarity algorithm [8], and the more recent Bayesian
estimation algorithm proposed by [9]. For example, CN
simply calculates the similarity between nodes by counting
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the number of their common neighbours. The likelihood
that two nodes are connected increases with the number of
common neighbours they have. The LHNI quantifies simi-
larity by assuming that nodes are similar if their immediate
neighbours are similar.

A fundamental assumption of these algorithms is that the
more similar the two nodes are, the more likely they are to
share a link.While this assumption has strong foundations in
social science, it is hard to justify in a supply network where
companies with similar characteristics would often be those
that compete with one another, rather than engaging in a
buyer supplier relationship.

Maximum likelihood algorithms start by assuming a
predefined topology that the network is most likely to have,
including the existence of a hierarchy, large hubs, or a set
of communities. After this assumption, a model is built to
calculate the likelihood of potential links that are not found
in the original graph. Within this category, Clauset et al.
[10] proposed the hierarchical random graph model, which
builds a dendrogram representing a hierarchical abstraction
of the network under study. A set of connection probabilities
is inferred from a “consensus dendrogram” that would most
accurately represent the hierarchical network, which is then
used to predict likelihood of links preserving the hierarchical
structure. These algorithms offer important lessons on how
fundamental properties that drive a given network structure
impact the likelihood with which new nodes that enter the
network will be connected to existing nodes in the network.

However, empirical data on supply network topologies is
sparse in the literature. Four previous studies exist: Thadaka-
malla et al. [11] and Hearnshaw and Wilson [12] have built
models on scale-free structures, and Brintrup et al. [13, 14]
mapped the global automotive network and theAirbus supply
network using empirical data.The global automotive network
displayed an exponential degree distribution; whereas the
Airbus network had too small a sample size to determine
significant patterns in scale. The scarcity of empirical exam-
ples and their conflicting results prevent us from opting for
methods that depend on a priori assumptions on topology.

The third approach includes probabilistic models, which
optimise a network topology according to datasets, giving
the probability of a new link as conditional to the estimated
parameters (e.g., [15, 16], Getoor et al., 2001). It has been noted
that these approaches could be computationally intensive as
inference is done by creating the complete ground network,
which limits their scalability (Lü and Zhou, 2011).

More recently, hybrid approaches have been deployed
that bring together both attribute data on nodes and struc-
tural information, which is useful to bring domain knowledge
into the prediction effort where neither individual features
nor topological features are dominant factors. Examples of
this approach include Aggarwal et al. [17] and Al-Hassan et
al. [18]’s work on terrorismnetworks. For example, in [17], the
link prediction process involves first a macroprocessing step
to extract clusters and a second microprocessing step to find
new links on those clusters based on node properties. These
methods seem to offer promising accuracy but are inevitably
domain specific and thus need knowledge of the network
under study.

In a similar vein to hybrid approaches, we propose a
combined approach specific to supply networks, which is
described in the next section.

3. Characterising Supply Network
Dependencies: A Link Prediction Problem

Our inquiry is about estimating the likelihood that two
suppliers interact with each other, based on an incomplete
observation of the supply network. For gathering such an
estimation, we propose the Supply Network Link Predictor
(SNLP) method, which is composed of the following:

(1) Data that would form the incomplete observation
(2) The features extracted from the data that can inform

the relevant relational patterns for use in estimating
the likelihood

(3) A method for relating extracted features to the esti-
mation

For (1), our starting point is the minimum amount
of data a manufacturer can have over its supply network.
This data includes the identity of suppliers that are known
to be attached to the network (the nodes); known links
between suppliers (the links); and known products that
each supplier produces (the product distribution over the
network) (Figure 1(a)).

We shall deliberately ignore dynamical data relating to
material flow, as these can change frequently and might not
be uniformly available to the manufacturer across the known
network. Obviously, the buyer might be acting as buyer in
some instances and seller in other instances. Hence, nodes
can have multiple roles. To avoid confusion, the terms buyers
and sellers are used to refer to a particular relationship
instance between two nodes hereon.

Next is identification of features that could be extracted
from the data that would point to the likelihood of a link.
Using the basic network, we decided on three types of
relational patterns that might be extracted: outsourcing asso-
ciations; competitive associations; and buying associations. In
addition, we extract a topological feature, that of degree of
suppliers. These are described next.

(1) Outsourcing Association. In a supply network, products
are transmitted on the links between buyers and sellers. Each
buyer decides on what to produce and what to outsource.
Hence, the buyer uses the outsourced product in order
to produce its own product. For instance, a buyer might
buy fabric to produce car seats. If we know the products
that have such production dependencies and which supplier
produces which products, then we can use this information
to predict potential links between suppliers. To do so we use
the following procedure.

In the original network (e.g., Figures 1(a) and 1(b)), each
supplier produces a number of products and links to a
buyer, which also produces a number of products. Each of
these products might potentially be transmitted on the links;
however, we do not know which. Furthermore, the buyer
might be using the products of its supplier for producing any
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Figure 1: An example supply network (a), and products supplied by each supplier (b) followed by the relational (c, d, e) and topological (f)
features extracted from it.

of its own products and we do not know which. Therefore,
there can be a potential dependency between each product of
the buyer and each product of the seller.

We can thus create a potential outsourcing association
between each product category sold by the supplier and each
product category produced by the buyer. The outsourcing
association 𝑂𝑝𝑖 ,𝑝𝑗 between each product can be represented
in the form of a network 𝑂𝑝{𝑁, 𝐿} (Figure 1(c)) between
each unique product category 𝑝𝑖 ∈ 𝑁, where the set of 𝑁
nodes represent products and the set of 𝐿𝑝 represents an out-
sourcing association between them. Each link representing
a potential outsourcing dependency has a weight 𝑤(𝑂𝑝𝑖 ,𝑝𝑗)
equal to the number of times the associated products occur
in a buyer’s portfolio and a seller’s portfolio in the network.
By adding weights to links one can refine their interpretation.
The greater the weight on a given associative link, the higher
the likelihood of an actual dependency between the nodes.

After creating the association network between products,
wemust extrapolate this information to associations between
suppliers that produce a set of products. Our assumption
here is that the more cross-associative products two suppliers
produce, the more likely they are to share a link. For example,
if a buyer is producing car seats and a seller is producing
fabric, as well as sponge for car seats, then the two might
be more likely to share a link as there is more dependency
between them. Given the transaction cost of setting up a
link between buyers and sellers and the synergies between
logistic planning for two products impacting the buyer’s
production schedule, the buyer might be inclined to buy a
bundle of goods from the supplier rather than from two
separate suppliers. Of course, there would be a number of
opposing factors, such as the risk of overdependence to a
supplier and economies of scale from specialising in a smaller
portfolio of products that might result in the opposite effect;
however, our purpose is not to test these hypotheses but to

simply use the potential likelihood as an information source
to predict hidden relationships.

To associate between two suppliers, we create a supplier
outsourcing association network 𝑂𝑠{𝑁, 𝐿}, where each node
is a supplier and each link is an outsourcing association
that represents the sum of product associations between
each supplier’s product portfolios. To do so, each supplier
node’s product portfolio is compared with one another, and
the product association weight between each product in
the product association network is added to the supplier
association link. Hence, every pair of suppliers in the network
will have an outsourcing association weight of (𝑂𝑠𝑖 ,𝑠𝑗). If there
is no link between 𝑠𝑖, 𝑠𝑗 in 𝑂

𝑠, then 𝑤(𝑂𝑠𝑖 ,𝑠𝑗) = 0.

(2) Buyer Association (B). The second relational pattern we
extract is buyer association. The goods that buyers purchase
from sellers might have dependencies on each other: for
example, the product of one seller might be compatible with
another seller’s product. In this case, a buyer that needs both
products will need to buy from these two sellers. Over time
this can give rise to a “buyer association” between sellers.
Hence, a firm connecting to a supplier would also be likely
to connect to the other supplier that the supplier has a buyer
association to. This information can be useful in predicting
missing links from the network; an OEMmight know that its
first tier supplier is connected to one tier 2 supplier and can
deduce that tier 1 is connected also to another supplier that is
not visible to it.

We create a buyer association network (Figure 1(d))
to extract association information between sellers. In the
network 𝐵{𝑁, 𝐿}, a node represents a supplier and link
represents a buyer association between them. To create the
network, the original network is parsed, where each supplier
is associated with another supplier if they sell to the same
buyer. The weight on the link is increased each time the two
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suppliers sell to the same buyer. The higher the weight on
the link, the higher the buyer association between these two
suppliers.

Hence, every pair of suppliers in the network will have
a buyer association weight of 𝑤(𝐵𝑠𝑖 ,𝑠𝑗). If there is no link
between 𝑠𝑖, 𝑠𝑗 in 𝐵𝑠𝑖 ,𝑠𝑗 , then 𝑤(𝐵𝑠𝑖 ,𝑠𝑗) = 0.

(3) Competition Association (C). In this association type,
we search for competitive relations between suppliers. Our
working hypothesis is that the more overlapping products
there are in the portfolios of two suppliers, the more likely
they are to be competitors and thus less likely to share
dependency links. In addition, when two firms produce the
same products, they are less likely to become dependent on
each other. However, there are a number of opposing lines
of thought. When suppliers face capacity constraints, they
might work together to increase economies of scale and pool
resources to sell to a buyer together. In addition, two suppliers
might be producing the same product category but slightly
different models within that category. In this case, they might
supply subcomponents to one another and do not compete as
they have segmented theirmarket. Regardless of the direction
of the relationship between competition association and the
existence of a dependency between suppliers, the competition
perspective might prove informative in the prediction of
links. We create a competition association network (Fig-
ure 1(e)) 𝐶{𝑁, 𝐿}, where the nodes represent suppliers and
links represent competition association.

We do so by comparing the product portfolios of each
supplier in the original network. If two suppliers produce the
same product, a link is created between them. The weight on
the link is equal to the number of overlapping products.

Hence, every pair of suppliers in the network will have a
competition association weight of𝑤(𝐶𝑠𝑖 ,𝑠𝑗). If there is no link
between 𝑠𝑖, 𝑠𝑗 in 𝐶𝑠𝑖 ,𝑠𝑗 , then 𝑤(𝐶𝑠𝑖 ,𝑠𝑗) = 0.

(4) Degree (D). Finally, the degree information of suppliers in
the original network is taken into account, where degree D is
the number of links a supplier node has (i.e., incoming and
outgoing links) (Figure 1(f)). Previous studies have shown
that supply networks have hub firms ([13], Kito et al. 2016,
Thadakamalla et al. 2014). These hub firms have a large
number of links compared to other nodes in the network.
Additionally, the likelihood for a supplier to acquire more
links in the network increases with the number of links it
already has. Although the exact scale of this property is
debated with some studies showing an exponential degree
distribution ([13], Kito et al. 2016) and some scale-free prop-
erty [11, 12], the existence of “hub” firms is well established
in the ongoing debate. Hence, we opt to make use of this
topological knowledge by introducing the degree of a node
as a feature that might be useful in predicting the likelihood
of missing links attached to it.

Hence, the features that are identified to inform relevant
relational patterns for estimating the likelihood of two nodes
interacting include 𝑤(𝑂𝑠𝑖 ,𝑠𝑗), 𝑤(𝐵𝑠𝑖 ,𝑠𝑗), 𝑤(𝐶𝑠𝑖 ,𝑠𝑗), and 𝐷𝑆𝑖 . The
dependent variable is 𝐿 𝑠𝑖 ,𝑠𝑗 .

The final step is the definition of a method for relating
extracted features to the estimation. We opt for the use of
classification algorithms from the field of machine learning.

The classifier algorithm assigns each possible additional
edge of the network either to the positive class, that is,
“exists,” or to the negative class, that is, “does not exist” in the
network, according to the feature variables associated with
this link. The feature variables associated with a link 𝐿 𝑠𝑖 ,𝑠𝑗 are
found by taking the two supplier nodes that the link connects
to and extracting𝑤(𝑂𝑠𝑖 ,𝑠𝑗),𝑤(𝐵𝑠𝑖 ,𝑠𝑗),𝑤(𝐶𝑠𝑖 ,𝑠𝑗),𝐷𝑆𝑖 as described
previously.

The feature variables and dependent variable form the 𝐿
dataset, which is divided into a training set 𝐿 train and a test set
𝐿 test. To train the classifier, 70% of the links are put in 𝐿 train
and the remaining 30% in 𝐿 test. We then try to predict links
in this 30% by using only the feature variables associated with
the nodes. Each predicted link that is foundwithin the test set
is considered as a correct prediction, and each predicted link
not found in 𝐿 test is considered a mistake.

It is important to note that link prediction problems,
when characterised as a binary classification problem, result
in class imbalance. This means that the negative class, that is,
links that do not exist in the network, is much larger than the
positive class, that is, links that do exist. In a supply network of
200 nodes and 500 relations, the positive class would be 500;
whereas the negative classwould be𝑁(𝑁−1)/2−500 = 19,400.
Class imbalance is a complicating factor, because it results in
a tendency towards false positive classification error, as there
aremanymore instances of the negative class.The implication
is that predicting the small class (existence of a link) is more
difficult than the large class (nonexisting links) because the
biggest source of training data for the algorithm is on the large
class. However, it is the small class that is the main target of
the predictive process.

Similar to previous researchers, to mitigate this issue,
we bias 𝐿 train by including a random selection of equal
numbers of the positive and negative class [19–22]. This is
also called oversampling, because we add more entities from
the small class to balance out the training process. This helps
the classifier learn how to differentiate effects of the feature
variables on the dependent variablemore accurately.Thus, we
generate 𝐿∗train by oversampling from 𝐿 train.

In the past, machine learning for link prediction had
limited success when data on each instance was limited to
topological features [4]. However, in our case, we combine
domain specific relational patterns in addition to one topo-
logical feature, that of degree. In addition, using relational
data means that we develop the understanding of what fea-
tures are useful in connecting suppliers together, rather than
black-box approaches that extract features automatically.

4. Experimental Results

4.1. Automotive Dataset. To illustrate SNLP, we use data
from a private automotive industry database (Marklines
Automotive Information Platform). The database collects
data populated through surveys sent to automotive supplier
firms and is primarily used by buyers to search for suppliers
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Figure 2: Top 20 buyer associations in the JLR Network.

Table 1: Number of training instances in three empirical supply
networks.

JLR Saab Volvo
Number of nodes 1070 1021 1828
Link 2491 2558 5272
No link 1064871 1038790 3334240
Link : no-link ratio 1 : 427 1 : 406 1 : 632
Average links per node 2.33 2.51 2.88

and suppliers to advertise their capabilities. The data are
agglomerative in that once a supplier has identified itself as
a supplier to a certain firm, it will remain so, unless either
the customer firm or the supplier firm requests a removal
of the relationship from the database. Therefore, the data
are cross-sectional and might show relationships that are not
continuous, although most data were gathered after 2007.

Three supply networks were created by querying focal
manufacturer firms Jaguar Land Rover (JLR), Saab, and
Volvo. This resulted in the identification of first tier suppliers
of the manufacturer. The suppliers were then iteratively
queried which resulted in the suppliers of suppliers. The
iterative querying continued until no further supply layers
were found in the network.

The number of nodes, links, and nonlinks is given in
Table 1.

4.2. Link Prediction. Some example associations extracted
from the Jaguar Land Rover automotive network include
Figure 2, which shows the top 20 buyer associated suppliers.
For example, buyers that buy from Magna International
are also likely to buy from Mahle GmbH. Therefore, a
manufacturerwhich has a supplier in its network buying from
Magna International might predict that the supplier is also
likely to buy fromMahle GmbH.

Figure 3 shows the top 20 associated products. For
example, pipes have a high dependency relationship with
seals, and door trims have a high dependency relationship
with fabric/leather. The relationships make sense and point

to a rudimentary structural relationship gathered through
supply relationships in the original network.

Figure 4 shows the top 20 suppliers who share the highest
number of product associations. For example, Autotube
Manufacturing Ltd. sells products that are most likely to
have a dependency to products produced by a number of
companies including Robert Bosch and Continental AG.

Figure 5 shows the top 20 suppliers that have competition
associations between them; these are the suppliers who have
the highest number of overlapping products in their portfolio.
It is interesting that a few of the nodes that are in the top
20 also are in the buyers association network. This means
that buyers are buying from competing suppliers together,
possibly engaging in a multisourcing relationship.

We experimented with two classifiers, namely, Naı̈ve
Bayes (NB) and Logistic Regression (LR). The former
assumes that the effects of feature variables on a given class
are independent of each other. Despite this often inaccurate
assumption, the NB classifier is useful in practice. In partic-
ular, the decoupling of the class conditional feature distri-
butions means that each distribution can be independently
estimated as a one-dimensional distribution. This helps alle-
viate problems stemming from the curse of dimensionality,
such as the need for data sets that scale exponentially with
the number of features. While NB often fails to produce
a good estimate for accurate class probabilities, this may
not be a requirement for many applications where only the
classification is required and not the probability associated
with it. This is true regardless of whether the probability
estimate is inaccurate.

LR measures the relationship between a categorical
dependent variable and independent (feature) variables by
estimating probabilities using a logistic function.The depen-
dent variable ismodeled as a linear combination of the feature
variables. Although in NB the weights for each variable are
determined independently; whereas in LR weights are set
together. In addition to being popular classifiers, we opted for
the use of both NB and LR in order to test the independence
assumption.



Complexity 7

Figure 3: Top 20 product outsourcing associations in the JLR Network, product view.

Figure 4: Top 20 suppliers with highest product outsourcing association in the JLR Network.

4.3. Performance Evaluation. Once the classifier has been
trained with the dataset; performance metrics need to be
applied to determine the performance of the classifier. The
most frequently used metrics to evaluate the performance
of classifiers are based on accuracy. In order to calculate
accuracy we build a confusion matrix, which displays the
correctly and incorrectly predicted instances with predicted
instances in the column and actual instances in the row.
The class recall is the percentage of correct predictions
within each class and the accuracy is the average of correct
predictions over the two classes

In addition, for data sets with class imbalance, the most
frequently used evaluation metric is the Receiver Operating
Characteristic (ROC) curve and the area under the curve

(AUC)measure derived fromROC [23].TheROCcurve plots
the true positive rate (the fraction of true positives out of the
positives) versus the false positive rate (the fraction of false
positives out of the negatives) for a binary classifier as its con-
fidence threshold is varied. ROC curves are calculated by first
ordering the classified examples by confidence. Afterwards,
all the examples are ordered with decreasing confidence to
plot the false positive rate on the 𝑥-axis and the true positive
rate on the 𝑦-axis. The result is a line which is a straight
diagonal if the model is merely guessing and the more and
more a curve moves towards the top left corner, the better the
model gets. The AUC measures the area below the curve in
order to compare the overall predictive performance of two
different curves. A value larger than 0.5 points to the fact that
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Figure 5: Top 20 suppliers with highest competitor association in the JLR Network.
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Figure 6: ROC curves for classifier results in three supply networks.

the algorithm is predicting significantly better than a random
guess. Table 2 shows the confusion matrices and AUC for
all three networks, and the two classifiers, while Figure 6
shows the ROC curves. Both classifiers across all three test
cases show similar accuracy and AUC levels. The AUC in all

cases indicate significantly better than random guess. True
negatives are in general better predicted than true positives;
however, the overall performance is encouraging. The lowest
ratios of true positive occur in theVolvo and SaabNäıve Bayes
case, which show a clear imbalance towards true negatives.
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Table 2: Comparison of predictive accuracy.

(a) Confusion Matrices for each case study, AUC and Accuracy

Algorithm Logistic Regression Näıve Bayes
Link No-link Link No link

JLR
Predicted true 501 45878 573 117164
Predicted false 248 273582 176 202296
Class recall 66.89% 85.64% 76.50% 63.32%
AUC 0.81 0.80
Accuracy 0.76 0.70

Saab
Predicted true 590 114585 405 18877
Predicted false 159 197070 344 292778
Class recall 78.77% 63.23% 54.07% 93.94%
AUC 0.81 0.80
Accuracy 0.71 0.74

Volvo
Predicted true 1040 134402 834 42997
Predicted false 547 865865 753 957270
Class recall 65.53% 86.56% 52.55% 95.70%
AUC 0.81 0.79
Accuracy 0.76 0.74

(b) PR-AUC and PR-CAUC

Volvo JLR Saab
Logistic Regression

PR-AUC 0.140 0.085 0.073
PR-CAUC 0.113 0.024 0.012

Näıve Bayes
PR-AUC 0.143 0.033 0.044
PR-CAUC 0.063 0.002 0.0004

(c) PR-AUC and PR-CAUC with increased training sizes

Volvo JLR Saab
𝑛 = 250

PR-AUC 0.1 0.073 0.073
PR-CAUC 0.9 0.019 0.009
𝑛 = 500

PR-AUC 0.14 0.085 0.073
PR-CAUC 0.113 0.024 0.012
𝑛 = 1000

PR-AUC 0.16 0.11 0.11
PR-CAUC 0.12 0.04 0.03

Overall, LR offers better prediction than NB according to
the ROC and AUC measures, possibly due to its underlying
assumption of feature independence.

One should note that although previous works in link
prediction used AUC and accuracy in performance assess-
ment (e.g., [8, 10, 17, 24], Fire et al. 2013), there is some
recent debate on the usefulness of this metric [4, 25]. It
has been recognised that link prediction problems yield
extremely low precisions due to class imbalance, because the

smallest rate of acceptance will amount to a large number of
wrongfully predicted edges leading to a needle in a haystack
type problem. It is argued that in large networks the absence
of a particular link is an irrelevant issue, particularly when
there are millions of possible edges; we are interested in the
existence of links instead. In this respect, Precision Recall
Curves (PR) and the area under the PR curve (PR-AUC)
are deemed to be more meaningful performance measures
than AUC because PR ignores true negatives, which are not
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Figure 7: PR curves for classifier results in three supply networks.

relevant to the problem. The PR curve plots the precision
on 𝑥-axis and recall on the 𝑦-axis and hence does not show
correct classifications for the negative class. Different to ROC,
the PR curve would display random classifier performance as
a straight line on the 𝑥-axis, as precision in imbalanced data
would be close to zero (Yang et al. 2014). Garcia-Gasulla [4]
further proposes the PR-CAUC (constrained AUC) measure,
which focuses on applicability. The PR-CAUC measure is
obtained by calculating the AUC of the subcurve, where
the number of nonexisting links mistakenly accepted by the
classifier is equal to or lower than the total number of links
in the original network. The measure therefore calculates a
portion of the PR-AUC starting from the left of the curve,
stopping when too many mistakes are done.

The reasoning behind PR-CAUC is that link prediction
in real life cases does need to classify most edges correctly
in order to be successful but needs only to correctly inform
about the existence of a significant set of links with high
certainty to become useful. Hence, instead of building two
classes of links (i.e., existing and not existing), the prediction
should aim at approximating links whose “existence is well
founded and, most importantly, understood [4].” We agree
with this point of view, because in a supply network it would
be unlikely that there are a significant number, that is, in
the order of hundreds, of links invisible to the manufacturer.
Hence, the manufacturer would want to predict the existence

of a small but significant set of dependencies with high
confidence rather than all possible links.

Because the sampling process has inherent randomness
in the training process, the training and testing procedure
was repeated 30 times with each algorithm and average
performance measures were taken. In each case, training and
test links were randomly selected. Figure 7 displays the PR
curves next to each ROC curve associated with the three
test cases, whereas Table 2(b) displays the PR-AUC and PR-
CAUC for each test case. The Volvo test case yields the most
promising results; the Logistic Regression classifier provides
about 300 correct links (recall = 0.19) with a 50% precision.
The JLR and Saab test cases yield lower precision, possibly
due to the lower number of links that could be used to train
the classifiers. Similarly, the PR-AUC and PR-CAUC values
in these two test cases are lower than Volvo. Comparison of
PR-CAUC value with those of Garcia-Gasulla ([4], 2016) test
cases on 9 different imbalanced graphs shows that our results
are competitive.

It is interesting that according to the PR-AUC measure
Näıve Bayes (NB) performs better than Logistic Regression
(LR) by a small margin, but according to the PR-CAUC
measure NB performs better than LR by a large margin. This
difference is evident in both the ROC and the PR curves,
where the recall threshold of CAUC (i.e., the CAUC stops
considering the PR curve), the LR is higher than the NB



Complexity 11

1.2

1

0.8

0.6

0.4

0.2

0

Be
nc

hm
ar

k

Le
av

e B
A

 o
ut

Le
av

e C
A

 o
ut

Le
av

e O
A

 o
ut

Le
av

e d
eg

re
e o

ut

Accuracy
True positive
True negative

Figure 8: Reducing accuracy as features are removed from the
training set (JLR case).

curve. This means that LR performs significantly better for
high confidence predictions (the first few thousands of links),
while NB performs better at trying to recover every single
missing link. These results are consistent with the other two
cases, where LR outperforms NB.

The effect of training dataset size is shown in Table 2(c),
for the LR case across the three automotive networks, where
the samples for true and false cases were increased from
250 to 1000. While the effect is expected as the size of the
dataset results in increased PR-AUC and PR-CAUC, the
increase is only slight. In the absence of more data, we cannot
test whether a more significant increase in training dataset
size would result in much higher performance; however,
this result hints that at least slightly better performance is
expected.

In order to test the impact of different feature variables
on the accuracy of the model, we followed a procedure
where each feature variable was left out and compared to the
benchmark result in which all variables were included in the
predictive process. Figure 8 displays the results of the JLR
case. Other test cases gave similar results.

Overall accuracy decreases most by leaving out 𝐷𝑆𝑖 ,
𝑤(𝑂𝑠𝑖 ,𝑠𝑗), 𝑤(𝐶𝑠𝑖 ,𝑠𝑗), and 𝑤(𝐵𝑠𝑖 ,𝑠𝑗), respectively; meaning that
the predictive accuracy is maximised by degree and out-
sourcing associations. These two features hold the most
information on what constitutes a true negative; because
when they are left out, the classifier struggles to classify links
that do not exist. So although the classifier still manages to
detect links that exist, overall accuracy is diminished. It is
interesting that the topological feature variable is as powerful
as the relational variables.

5. Conclusions

The SNLP approach presented here offers manufacturers an
opportunity to reduce the risks associated with the lack of
visibility of their supply network using only the minimal
amount of data they have available. Results from the experi-
mental testing of SNLP suggest first that the extracted features

can be successful in prediction and that predictive accuracy
is maximised by employing data on dependency relations
between products and the out-degree of suppliers. Thus, we
contribute to extant literature by first providing an alternative,
complimentary approach to the detection of procurement
interdependencies in supply networks that do not rely on
suppliers sharing data.

It should, however, be noted that the method produced
in this study has been applied only to the automotive sector.
While we have shown that the combination of graph mining
and machine learning can be powerful, the specific features
that inform a prediction might not prove applicable to other
industries. For example, we found that several suppliers that
have overlapping product portfolios also are bought together
by manufacturers, pointing to a multisourcing relationship.
Thus, the competition association might not prove informa-
tive in industries where competition is low, such as aerospace.
Furthermore, the outsourcing association might only prove
informative in industries where the end product contains
sufficiently large number of parts that are distributed across
the network.The extent to which this feature would be useful
can also be gauged by the level of vertical integration an
industry typically displays. Practitioners therefore need to
think about features relevant to the industrial sector under
query before applying SNLP.

The study has further limitations, which in turn provide
avenues for future research. First of these are limitations
on data. The dataset we used might include missing links
or links that do not exist anymore. The second limitation
is related to methods. The classification algorithms used
were limited to Logistic Regression and Naı̈ve Bayes. LR
performed significantly better than NB for high confidence
predictions, while NB performed better at trying to recover
every single missing link. We would like to explore these
issues and findings further by testing the approach with
other datasets and prediction algorithms. Similar to other
link prediction problems in large-scale graphs, our approach
suffers from class imbalance; the nonexisting link class is
much higher in number than the existing class, limiting pre-
cision levels. In this respect we found the PR-CAUCmeasure
based on applicability a useful metric to evaluate outcomes.
Using the PR-CAUCmeasure as an objective function for the
training algorithm could be useful in improving algorithm
performance.

An interesting stream of exploration to strengthen preci-
sion could include path-based dependencies. The extracted
outsourcing relations are currently binary in that they point
to dependencies between two products such as coffee gran-
ules and coffee jars or coffee beans and coffee granules.
A better approach could be the extraction of a “pathway”
of dependency, such as coffee beans to coffee granules to
coffee jars, which could inform product structures, poten-
tially leading to more informed predictions. The possibility
of secondary or indirect prediction is also intriguing. For
example, the manufacturer might not have full visibility of
suppliers’ product portfolio or capabilities. The detection of
missing products could lead to better prediction of missing
links. Finally, additional features such as supplier location
could be explored.
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