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Abstract 

 Animal models are often used to test the efficacy and safety of clinical 

applications employing focused ultrasound that range in various stages of research, 

development and commercialization. The animals are usually subjected to conditions that 

cause pain, distress and euthanasia. Access to cadaveric models is not easy and affordable 

for all research institutions, whereas conservation and changes of their physical properties 

over time can be a delimiting factor for translational research.  The above set the 

motivation for this project, which its primary objective is to design and develop 

appropriate tissue mimicking phantoms using a simplistic and cost effective 

methodology. These phantoms are expected to contribute in reducing the need for animal 

testing and allow researchers to get hands experience with tools that will promote and 

accelerate testing in focused ultrasound thermal protocols. The main requirements for 

these phantoms are to be geometrically accurate, compatible with magnetic resonance 

imaging (MRI) and to be composed of materials that approximate the acoustic and 

thermal properties of the replicated tissues.  

 Throughout the duration of the project three ultrasonic composite phantoms (head, 

femur bone-muscle and breast-rib) were developed. The acoustic properties of candidate 

materials were assessed using pulse-echo immersion and through transmission 

techniques. The thermal properties were estimated by observing the rate of heat diffusion 

following a sonication in the soft tissue parts with MR thermometry. Acrylonitrile 

butadiene styrene (ABS) was used to replicate bone tissue, where its acoustic attenuation 

coefficient was found to be 16.01 ± 6.18 dB/cm at 1 MHz and the speed of sound at 2048 

± 79 m/s. Soft tissue parts consisted out of agar-based gels doped with varying 

concentrations of additives that controlled the relative contribution of acoustic absorption 

(evaporated milk) and scatter (silica dioxide) to total attenuation independently. Brain 

tissue phantom (2 % w/v agar - 1.2 % w/v SiO2 - 25 % v/v evaporated milk) matched an 

attenuation coefficient of 0.59 ± 0.05 dB/cm-MHz whereas muscle and breast mimicking 

phantom (2 % w/v agar - 2 % w/v SiO2 - 40 % v/v evaporated milk) were estimated of 

inducing  an attenuation coefficient of the order of 0.99 ±0.08 dB/cm-MHz. The speed of 

sound for the brain and muscle/breast recipe were estimated at 1485 ± 12 m/s and 1529 ± 

13 m/s respectively. The thermal conductivity of the brain phantom was estimated to be 

0.52 ± 0.06 W/mº-C and 0.57 ± 0.10 W/mº-C for the muscle/breast phantom. The acoustic 

and thermal properties of candidate materials were within range of the replicated tissues 

extracted from literature, except the speed of sound in ABS compared which was lower 

compared to bone (~3000 m/s).  

 Three dimensional models of bone parts (skull, femur, rib) were reconstructed in 

Standard Tessellation Language (STL) format by segmenting bony tissue of interest from 

adult human computed tomography (CT) images. The STL bone models were 3D printed 

in ABS using a fused deposition modelling (FDM) machine. The final composite 

phantoms were fabricated by molding the agar based soft tissue phantoms inside/around 

the ABS bone phantoms. The functionality of all three composite phantoms was assessed 

with focused ultrasound sonications applied by a 1 MHz single element transducer while 

temperature was monitored with 1.5 Tesla MRI scanner. A spoiled gradient recalled 

(SPGR) pulse sequence was used to produce phase images that were analyzed using a 

custom coded software developed in Matlab that employed proton-resonance frequency 

shift (PRFS) thermometry.  

 

Keywords: Focused ultrasound, MRI, phantoms, PRFS thermometry, skull, brain, breast, 

rib, bone.  
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1 Introduction 

1.1 Motivation behind the project 

 Currently there is a large and growing number of clinical applications employing 

high intensity focused ultrasound (HIFU) that ranges in various stages of research, 

development and commercialization. Nearly in all stages of research and development, 

animal models are used to mimic the clinical setting of the tested applications. The 

animals are usually subjected to conditions that cause pain, distress or euthanasia.  This 

ethical dilemma sets the motivation for this project, which its primary objective is to 

design and develop appropriate phantoms that will contribute in reducing animal testing 

in the area of focused ultrasound.  

 The preliminary results from various studies assessing the efficacy and safety of 

the modality clearly show that HIFU can be a disruptive technology for treating patients 

that would normally require an invasive approach or the use of treatments that are 

accompanied with high risks of toxicity. Consequently it is very important to accelerate 

research in the field in order to overcome the remaining obstacles that retain HIFU from 

becoming a standard treatment option. Therefore it is very important that the cost of 

fabricating these phantoms is low enough to allow researchers worldwide with limited 

resources to get hands on such tools.  

1.2 History and Background of Ultrasound 

Ultrasound technology was initially used in sonars during World War II and as a non-

destructive testing tool for detecting material corrosion. It was only in the late 60’s when 

the first commercial systems capable of producing 2D grayscale real time images of 

ultrasound echoes where used in diagnostic radiology. Nowadays diagnostic ultrasound 

imaging is an indispensable modality for any radiology department. It offers a quick and 

safe way of visualizing internal body structures in the search of disease or excluding 

pathology. The basic principle of diagnostic systems is to send ultrasound waves through 

the body of a patient and an image is formed by recording the intensity and travel time of 

echoes reflected at tissue interfaces. Ultrasound medical imaging technology has 

progressed significantly and modern systems can process ultrasound echoes accordingly 

to fuse anatomical images with quantitative maps of blood flow, tissue displacement, 

tissue stiffness, etc. Increased computing and processing power has also made 3D and 4D 
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ultrasound imaging possible. It is therefore not surprising that ultrasound imaging is the 

primary choice in diagnosing cardiovascular disease and obstetrics.  

 The use of ultrasound in medicine is not limited in diagnosis but it is also met in 

therapeutic applications. High Intensity Focused Ultrasound (HIFU) uses acoustic energy 

to non-invasively heat and destroy pathological tissues. Extracorporeal shock wave 

lithotripsy is an effective way of non-invasively fragmenting gallbladder or liver stones. 

Ultrasound is also used as a hyperthermic modality in physiotherapy sessions for 

accelerating bone healing and reducing inflammation caused by rheumatism, tendinitis or 

joint injuries.  

 

1.3 Definition of High Intensity Focused Ultrasound (HIFU) 

 HIFU also referred as Focused Ultrasound Surgery (FUS), is an application that 

focuses a high intensity acoustic beam over a small region.  Focusing leads to beam 

intensity amplification at a particular distance away from the HIFU transducer known as 

the focal length which occurs as a result of constructive interference. It is used for a 

number of clinical applications that are currently in different stages of research, 

development and commercialization [1]. For the majority of applications, HIFU can be 

delivered non-invasively making it a very attractive alternative to conventional therapies. 

1.4 HIFU induced thermotherapy 

 HIFU can be justifiably categorized as a thermal treatment method. The focused 

ultrasonic beam raises locally the temperature of the targeted region by acoustic 

absorption and under certain conditions this can be sufficient enough to cause cellular 

necrosis, while adjacent tissue is sustained at sub lethal heat levels.  It is worth mentioning 

that cellular death in HIFU is not only a result of thermal injury. Cellular apoptosis has 

been observed in in vivo experiments [2] even at sub-lethal thermal doses as a result of 

HIFU induced mechanical effects like cavitation, micro-streaming, and radiation force.  

Open surgery, radiotherapy and chemotherapy were the gold standard until recently for 

treating solid tumours and metastatic disease.  HIFU tries to offer a new solution to 

modern medicine that reduces the risk to patient’s health associated with the conventional 

treatment modalities mentioned above [2]. HIFU is a completely non-invasive procedure, 

free of incisions and blood transfusions. The risk from pre and postoperative 

complications like infections, internal organ injury and severe haemorrhage is limited. 
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There is usually no need for a general anaesthesia in HIFU applications. The patient is 

usually fully conscious or can be lightly sedated or under light general anaesthesia and is 

subjected to minimum discomfort and pain. Another advantage is that there is no limit in 

the number of HIFU treatment sessions that a patient can receive in case of a malignant 

disease recurrence, unlike radiotherapy and chemotherapy. These advantages can 

potentially contribute overall to a reduction in recovery time and hospital stay along with 

an improvement in quality of life for the treated patients. 

 HIFU is prone to some limitations like all other treatment modalities [3]. All 

ultrasound specific artifacts that appear in diagnostic imaging system pose limitations to 

safety and efficiency in FUS systems. Targets that lie deeply in relation to bones like liver 

lesions are difficult to treat because of the heavy scattering and attenuation effects. Gas 

filled tissues like bowels and lungs reflect the beam backwards and the reflected high 

acoustic energy is absorbed by tissues located between the target and the transducer. 

Rarefaction artifacts are also known to divert the beam and deposit heat in tissue adjacent 

to the target. Fibrotic and fatty tissues attenuate and absorb the acoustic energy differently 

from soft tissue leading to unpredictable distributions of cell death. Focal sizes in HIFU 

are in the millimetre range and therefore treatment of large targets is time consuming. 

HIFU is not the only thermal treatment available. Some of the major alternative 

thermotherapies are listed below [4]: 

 Radiofrequency ablation (RFA) is the most common local thermal treatment [5], 

[6]. A needle like electrode is seeded inside the region of interest and an RF alternating 

current is passed through a closed loop circuit (RF generator- RF electrode – patient 

grounding pads). The current agitates ions that lie in surrounding tissue which is ablated 

by the induced frictional heat. 

 Microwave ablation is a technique where microwave antennae are positioned 

usually percutaneously under image guidance near the region of interest [7], [8]. 

Microwave radiation produced is absorbed from water content in tissue which sets the 

water molecules in oscillatory motion. Heat produced by frictional losses is sufficient to 

lead to coagulative necrosis. 

 Laser ablation is achieved by positioning a cannula interstitially and guide through 

it laser fibres. Laser radiation is emitted in tissue specific wavelengths to optimize optical 

absorption. The absorption of the laser energy translates to heat which conducts to the 

surrounding tissue [9], [10]. 
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 Cryoablation is a therapeutic modality that involves the percutaneous insertion of 

a needle-like applicator (cryoprobe) to the target site under imaging guidance (CT or 

ultrasound (US))[11], [12]. The cryoprobe is a hollow tube that allows the circulation of 

liquid nitrogen or argon gas cryogens. The tip of the cryoprobe creates extremely cold 

temperatures and destroys the surrounding tissue through multiple freeze-thaw cycles. 

1.5 Physics of ultrasound. 

 Ultrasound belongs to the family of sound waves that corresponds to the transfer 

of energy via the propagation of a pressure wave in a medium. The prefix term Ultra 

indicates the fact that these pressure waves vibrate at frequencies higher than the audible 

human range (> 20 kHz). Waves produced by piston like ultrasound transducers cycle 

periodically in a sequence of compressions and rarefactions. The distance travelled by an 

ultrasound pressure wave in one cycle is known as the wavelength (λ) and it is interrelated 

with the velocity (v) of the wave and the frequency (f): 

 Unlike electromagnetic waves that can travel in vacuum, sound waves require an 

elastic medium to propagate its mechanical disturbance. Elastic mediums refer to any 

material that will not be permanently deform from its original structural state when 

disturbed and they can generally be liquids or solids. Another major difference with 

electromagnetic waves is that the medium’s particles oscillate parallel to the direction of 

propagation of the wave (longitudinal wave). The source of the mechanical disturbance 

in the medium sets the molecules of the medium in to vibration and the pressure wave 

travels through. The exerted pressure creates periodic compressions and rarefactions of 

the medium’s density which travel at the speed of the wave. 

1.6 Definition of ultrasound transducers. 

 In general terms a transducer is any device that can convert one form of energy to 

another. Ultrasound transducers convert electrical energy to mechanical energy and vice 

versa. Ultrasound transducers are made out of piezoelectric crystals. 

1.6.1  Piezoelectric effect. 

 Piezoelectricity refers to the property possessed by some crystalline materials. 

These crystals polarize and develop a potential difference across their faces when they 

are under a mechanical stress. The amplitude of the induced voltage is proportional to the 

 

 
𝒗 = 𝒇 ×  𝝀 (1.1) 
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force/pressure exerted. The phenomenon works reversely since the application of a 

radiofrequency voltage across the faces of the crystal induces a periodic displacement of 

the faces at the same frequency. The piezoelectric effect is sustained below a temperature 

that is characteristic to each type of crystal and it is better known as the Curie point. 

1.6.2 Piezoelectric materials used in medical ultrasound systems. 

 Ultrasound probes in diagnostic and therapeutic applications use solely 

piezoelectric materials. Usually the materials used for clinical purposes are man-made 

ferroelectrics like barium titanate, lead metaniobate, and lead zirconate titanate (PZT). 

These artificially made materials can be manufactured to be superior from naturally 

occurring crystals since they can possess a much higher electromechanical coupling 

coefficient. The electromechanical coefficient correlates to the efficiency of a crystal in 

converting electrical energy to mechanical and vice versa.  The basic properties of 

selected piezoelectric crystals are showed in Table 1-1. 

 

Table 1-1:  Properties of Piezoelectric Materials used in Medical Ultrasound [13]. 

Materials 
Electromechanical 

Coupling Coefficient (Kc) 

Curie Point 

(ºC) 

Quartz 0.11 550 

Rochelle salt 0.78 45 

Barium titanate 0.30 120 

PZT-4 0.70 328 

PZT-5 0.70 365 

 

Modern ultrasound technologies employ composite piezoelectric materials that have a 

lower acoustic impedance from monolithic equivalents. The acoustic coupling of 

composite crystals with biological tissue is improved. Additionally, unwanted lateral 

propagation modes are suppressed by the inhomogeneous microstructure of the composite 

material. 

1.7  Instrumentation of an ultrasound transducer. 

 The active element of an ultrasound transducer is made out of piezoelectric 

materials described in the previous section. The vibrations are induced by electrodes 

connected at its front and back surfaces.  Maximum conversion from electrical to acoustic 
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energy is achieved when the active element is driven at its resonance frequency. The 

resonance frequency of the crystal depends on its thickness.  When the thickness is equal 

to half wavelength (λ/2) of its resonance frequency, compression waves moving towards 

the crystal’s centre are in phase with the next cycle of expansion-contraction and interfere 

constructively. This principle stands for thicknesses equal to odd multiples of λ/2 but one 

has to consider that the extra thickness will attenuate the wave further. The back surface 

is covered with a backing material that is highly attenuative. By choosing a backing 

material with acoustic impedance closely matched to the active element’s impedance, the 

emitted sound from the back surface is absorbed and no reflections propagate in the 

forward direction. A thin wear plate (matching layer) covers the front place of the crystal 

and its purpose is to acoustically match the active element with the medium.  The 

selection of its thickness is crucial to bring in to phase the wave generated by the active 

element in the forward direction with the wave internally reflected at the faces of the 

matching layer. The two waves are back in phase when they exit, if the thickness of the 

matching layer is set to λ/4. A diagram of an ultrasonic transducer with its main 

components is shown in Figure 1.1. 

.  

Figure 1.1:  Components diagram of an ultrasonic transducer. 

 

The active element is driven by an RF digital pulse generator. The generator allows for 

manual selection of frequency, waveform and voltage and can operate in continuous or 

pulsed wave mode. The output signal is fed to an amplifier for power amplification before 

reaching the active element. The amplified signal reaches the crystal through a matching 

λ/4 
λ/2 
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reaches the crystal through a matching circuit that matches the electrical impedance of 

the transducer to the amplifier. Signal conversion and transmission is optimized by 

observing the forward and reflected power. The output power of the transducer can be 

calculated by calibrating the net electric power versus acoustic power. 

1.7.1 Focused Ultrasound Transducers. 

 Hyperthermia systems that use the thermal effects of ultrasound, employ focused 

transducers. Focusing the beam, amplifies the intensity at the focus compared to regions 

that fall outside the focal zone, making it possible to reach ablative temperatures. The 

effect of focusing is possible by manufacturing piezoelectric crystals with spherical 

geometry or through an assembly of a crystal coupled with an acoustic lens [14]. Focusing 

is also feasible through arrays of small transducers, which their phase and amplitude can 

be controlled simultaneously and independently [2]. Focusing is not the only function of 

phased arrays since they can steer the beam anywhere in front of the array and virtually 

at any depth. Phased arrays are the method of choice for the majority of clinical 

applications because of the obvious offered versatility along with the possibility of 

distortion correction of waves propagating through bone.  

 Each element of the phased array transducer is connected through an impedance 

matching circuit to a channel of the power generator/amplifier for controlling 

independently the phase and amplitude of the driving signal. The complexity of putting 

together the required hardware increases the cost and size of the phased array. In large 

phased array systems, the inter-element distance is a limiting factor that governs steering 

capabilities and the formation of grating lobes that deposit acoustic energy in unwanted 

directions [15]. 

1.8 Speed of ultrasound 

 The speed at which the disturbance propagates through any medium is strongly 

dependent on the medium’s physical properties. Typical propagation speeds of ultrasound 

in biological tissue are shown in Table 1-2. 

 

Table 1-2 Typical propagation speeds in biological tissue [16], [17]. 

Tissue Temp 

 (C) 

Speed of ultrasound 

(m/s) 

 Human Soft Tissues 

Brain 22 - 40 1460 - 1580 
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Skeletal Muscle 24 - 37, in vivo 1500 - 1610 

Breast (pre-menopausal) in vivo 1450 - 1570 

Breast (post-menopausal) in vivo 1430 - 1520 

Liver 37, in vivo 1522 - 1607 

Spleen 37, in vivo 1567 

Kidney 37 1560 

Human Bone Tissues 

Skull bone, whole 37 2590 - 2960 

Skeletal long bones, whole in vivo 3190 - 3406 

Cortical bone  23 1630 - 4040 

Trabecular bone - 1688 - 2084 

 

Gaseous media are made of molecules sparsely distributed and loosely bound that need 

to travel a long distance before they influence their neighbouring molecule in the direction 

of propagation. In reverse analogy, solids are densely populated with a constrained 

molecular structure that favours a very fast propagation.  In biological tissues ultrasound 

propagates in a wide range of velocities. The two extremes consist of the lungs rich in 

atmospheric air where sound travels slowly and bones where propagation is relatively 

fast. In soft tissues, ultrasound propagates in intermediate speeds which are relatively 

constant. Velocity changes at tissue interfaces do not affect the frequency of the acoustic 

wave, but alter its wavelength according to Equation (1.1). Additionally reflection, 

refraction and transmission, which are all properties of ultrasound, are characteristic of 

the propagation’s velocity.  

1.9 Reflection of ultrasound at interfaces 

 Propagation of ultrasound involves transmitting through interfaces of different 

tissues. The amount of the incident acoustic energy that manages to pass the interface is 

highly dependent on the media properties. More specifically the matching of the acoustic 

impedances of the adjacent media governs the amount acoustic energy reflected. 

 Acoustic impedance (Z) refers to the intrinsic property of any material or tissue in 

opposing the disturbance from a longitudinal wave propagation. Typical impedance 

values expressed in Rayl units for different biological tissues and materials are 

demonstrated in Table 1-3. 

 

Table 1-3: Acoustic impedances for different Biological Tissues [18], [19]. 

Biological Tissue Acoustic Impedance (MRayl) 

Water 1.48 
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Brain 1.60 

Breast 1.64 

Fat 1.38 

Liver 1.69 

Blood 1.66 

Kidney 1.65 

Skeletal Muscle 1.68 - 1.69 

Bone 5.32 

 

The degree of this material–specific opposition to wave propagation is proportional to the 

medium density (ρ) and the speed of sound (v).  

 

 
𝒁 =  𝝆 × 𝒗 (1.2) 

The fraction of reflected energy (R) at an interface between two materials with 

mismatched impedances is given by the following expression, where Z1 and Z2 refer to 

the impedances of each material. 

 𝑹 =  (
𝒁𝟐 − 𝒁𝟏

𝒁𝟐 + 𝒁𝟏
)

𝟐

 (1.3) 

It is straightforward to deduce that at interfaces with great impedance mismatch like 

air/tissue or tissue/bone the beam will be strongly reflected and very little if at all will be 

transmitted. Strong reflections produced from returning echoes to the transducer will 

define the tissue interface clearly in a diagnostic examination but the overall effect can 

be deleterious for imaging tissue that resides deeper. Similarly in therapeutic applications, 

propagation through acoustic windows that induce strong reflections should be avoided, 

since no energy will be deposited at treatment site. The direction of the reflected wave is 

predictable if the incident wave strikes on a smooth interface (specular reflection). The 

reflection is unidirectional and the angle of reflection equals the angle of incidence. This 

is very important in diagnostic ultrasound where transducers act as receivers. A wide 

angle of incidence will direct the reflected echo to an equally wide angle of reflection and 

therefore very little energy will be detected. In the case of non-specular reflections, where 

the interface is uneven and/or consists of reflective structures which are smaller in size 

from the ultrasound’s wavelength, then the reflected wave scatters randomly in many 

different directions. 
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1.10 Attenuation in biological tissues 

 The term attenuation refers to sum of all loss mechanisms that reduce the intensity 

of the acoustic beam while propagating through tissue. The total attenuation is 

characterized by an exponential drop of the pressure wave’s amplitude with distance 

travelled. Attenuative mechanisms that control the degree of penetration of the beam are 

presented in the following sections. Attenuation coefficients for different biological 

tissues measured at different frequencies are shown in Table 1-4. 

 

Table 1-4: Acoustic attenuation coefficient for different Biological Tissues [16], [17]. 

Tissue Freq 

 (MHz) 

Temp 

 (C) 

Attenuation 

coefficient 

 (dB/cm) 

 Human Soft Tissues 

Brain 1 25 0.6 

Brain 5 25 4.5 

Brain (white matter) 2.2 37 1.05 

Brain (grey matter) 2.2 37 0.625 

Skeletal Muscle (thigh) 4.3 in vivo 4.71 

Breast  1.7 in vivo 0.5 - 1.1 

Breast  7 23,37 9.5 - 12.6 

Liver *(rat) 100 22 130 

Spleen 2, 10 37 1, 11.5 

Kidney*(pig) 2, 10 37 2, 8.5 

Human Bone Tissues 

Skull bone, whole 1, 3 37 22, 78 

Skull bone, outer table 1 37 14.5 

Skull bone, inner table 1 37 18.7 

Skull bone, diploe 1, 3 37 26 - 43, 100 - 140 

Skeletal long bones 1 - 12.5 

Vertebra 1 - 1.5 - 38.2 

Cortical bone* (cow, femur)  1 - 6.9 

Cortical bone* (pig, femur) 1 32 8.4 

Trabecular bone 0.5 - 1.9 - 15.7 

 

1.10.1 Acoustic absorption in biological tissues 

 Absorption is recognized by studies results as the dominant process of acoustic 

energy loss [20].  Classical absorption phenomena are induced by the pressure wave in 

biological tissue. Tissues are far from ideal elastic media and due to their characteristic 

viscosity they oppose to any deformation causing lag between pressure and density 

redistribution. Viscous forces between moving particles convert part of the wave energy 
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to heat. Energy is also absorbed by a spectrum of relaxation mechanisms at the 

macromolecular scale of tissue proteins [21]. Tissue absorption coefficient (α) is 

dependent on frequency and tissue type. These observations are formulated in the 

following empirical expression, where α0 is the absorption coefficient per MHz, f is the 

frequency in MHz and n is the characteristic number of tissue type. 

 

 
𝜶 = 𝜶𝟎 (𝒇𝒏) (1.4) 

Studies proved little difference of the absorption coefficient amongst different 

mammalian species whereas the difference was significant for different tissue types of 

the same species. The constitution of tissues in protein content and lipids seems to 

increase absorption [20]. 

1.10.2 Acoustic scattering in biological tissues 

 As mentioned in Section 1.4, ultrasound waves reflect at interfaces with an 

acoustic impedance mismatch. Biological tissues are “doped” with inhomogeneities that 

have different physical properties like density and elasticity from the surrounding tissue. 

If the inhomogeneity’s size is comparable or smaller from the wavelength of the sound 

wave, this leads to a generation of a secondary scattered wave in different directions. 

Scattering centres found in soft tissues show a small contribution to overall attenuation 

through scattering since their density and elasticity are close to the rest of the tissue. At 

low frequencies, this contribution does not exceed 10-15 % of the total attenuation [22] . 

 Unlike soft tissue, the effect of scattering becomes more important while 

propagating through the cancellous bone part of skeletal tissue. Cancellous bone consists 

of trabeculae which are complex structures of mineralized tissue with bone marrow with 

very different acoustic properties [23]. The solid matrix of the interconnected trabecular 

elements have a mean thickness of 50-150 μm which is much smaller than the wavelength 

of ultrasound in bone and generate secondary scattered waves.  

1.11  Ultrasound bioeffects 

 The interaction of ultrasound with biological tissue can lead to a variety of effects 

that differ in the mechanisms involved and the conditions for initiation. These are usually 

separated in the following thermal and mechanical effects. 
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1.11.1 Thermal bioeffects 

 Propagation of ultrasound through tissue always results in some degree of acoustic 

energy absorption which leads to heat generation.  Thermocoagulation can only occur if 

temperature is elevated for an adequate amount of time. Induced heat disrupts the weak 

hydrogen bonds of proteins by supplying kinetic energy to molecules that vibrate 

violently. The threshold of the thermal dose capable of coagulation is tissue specific. 

Temperature elevation in a tissue depends on the absorption, the acoustic field’s intensity, 

conductivity and the local perfusion rate. Thermal dose is quantified in terms of thermal 

isoeffective dose of  43ºC exposure minutes (CEM - cumulative effective minutes) [24].   

The isoeffective thermal dose in CEM’s can be calculated for any temperature T using 

the following expression. The constant R is derived from in vivo and in vitro studies for 

a variety of mammalian tissue types using the Arrhenius relationship [7–9]. 

The above expression is valid if the average temperature T is constant for the duration t 

of the thermal treatment.  For complex heating profiles where temperature continuously 

changes over time as it is the case in HIFU treatments, then the thermal dose for the entire 

heating is given by: 

 
𝑪𝑬𝑴𝟒𝟑℃,𝑻𝒐𝒕𝒂𝒍 =  ∑  𝒕𝑹(𝟒𝟑−𝑻) (1.6) 

Arrhenius plots describe the cellular survival rate at different temperatures.  Although the 

selection of the 43⁰C reference temperature is arbitrary, it is almost equal to the “break 

point” temperature for human cells which is around 43.5 ºC [28] . Above the “break point” 

temperature, a shallower slope is observed suggesting that the thermo-tolerance of cells 

is decreased and the rate of cell killing doubles for every degree increase in temperature.  

The response to hyperthermia treatment of different cell lines of humans and rodents is 

shown in Figure 1.2.  

 The break point temperature for humans (43.5 ºC) is slightly higher than rodents 

(43ºC) suggesting a different thermo-tolerance between difference species. Although the 

break point is fairly constant for cell lines of the same species, it is obvious from the data 

above that there is a differentiation in survival rate of different cell lines of the same 

species for the same temperature. 

 

 
𝑪𝑬𝑴𝟒𝟑℃,𝑻 =   𝒕𝑹(𝟒𝟑−𝑻) (1.5) 
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Figure 1.2:  Arrhenius plots for different cell lines of humans and rodents [11]. 

 

1.11.2 Mechanical bioeffects 

The effects of ultrasound interaction with biological tissue are not limited to thermal. A 

variety of mechanical (non-thermal) effects induced by ultrasound have been recognized 

by researchers and have been studied thoroughly. Some of them are exploited in some 

revolutionary medical applications whilst others raise patient safety risks. 

Cavitation – The term cavitation refers to the phenomenon where the acoustic field 

interacts with cavities filled with gas in a medium. The prerequisite of creating such 

bubbles in tissue is that the tissue is a host of microscopic gaseous nuclei and the intensity 

of the acoustic field is large enough to diffuse dissolved gas from the tissue during every 

compression-rarefaction cycle. Gas bubbles can also be formed as a result of tissue 

boiling during HIFU treatments.  Calculations from early studies have shown that 

microsecond pulses of ultrasound with peak intensities as low as 10–30 W/cm2 can 

generate transient cavitation in water [29]. This threshold is well below typical intensities 

used in focused ultrasound applications. 

 At low acoustic field intensities, gas bubbles in tissue will oscillate with relatively 

small amplitude in reference with a stable radius. The expansion and contraction of the 

gas bubbles is out of phase with the compression-rarefaction cycle of the wave. When the 

pressure field is in the compression phase the bubbles contract in size and during 

rarefaction they expand. Through a process called rectified diffusion, bubbles can enlarge 
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until they reach their resonance size after a considerable number of cycles. This type of 

cavitation is better known as stable or non-inertial cavitation. Bubbles in stable cavitation 

scatter the acoustic wave in all directions (assuming that during the oscillations the bubble 

retains its spherical shape) and can induce an effect of fluid rapid movement known as 

micro streaming. If the event is near a tissue boundary, it can produce high shear forces 

that can disrupt cell membranes.  This effect is used in HIFU applications for increasing 

transport of drugs or genes through impermeable cell membranes [13-14]. 

 Inertial cavitation occurs at higher field intensities where bubbles experience a 

rapid growth in size after very few cycles and gain inertia. When the compression cycle 

arrives, the supersized bubbles cannot absorb any more energy and collapse violently.  

The implosion results in a shock wave of equivalent acoustic pressure of several 

thousands of atmospheres and high temperatures of thousands of degrees. The 

accompanied bioeffects of inertial cavitation include the formation of water free radicals 

which are chemically active and tissue integrity destruction [32]. Additionally in in vitro 

ablation studies, bubbles formed due to boiling of the tissue undergoing inertial 

cavitation,  were found to contribute to thermal effects [33]. 

1.12 HIFU Safety Considerations 

 Patient safety during the delivery of HIFU applications depends on fine 

controlling of the aforementioned thermal and mechanical mechanisms.  

 Accidental thermal damage of critical structures (e.g. nerves) found near the focal 

region is a frequent safety concern that can be avoided by selecting an appropriate beam’s 

pathway. Unwanted thermal damage from excessive heating is by all means possible even 

in regions far from the focus and most importantly in tissues adjacent to interfaces.  

Depending on the acoustic impedance mismatch (air/tissue, bone/tissue, etc.) at these 

interfaces, strong reflections can interfere constructively with the incident acoustic field 

and form a standing wave in the post focal region. Hot “spots” formed at the nodes of the 

standing wave are more evident in low frequency sonications used in transcranial 

applications that are not adequately attenuated in the intervening tissue.  Additionally 

bones absorb acoustic energy at larger rate compared to soft tissues and their temperature 

can increase significantly even at mild acoustic pressures outside the focal region. The 

heat can conduct to adjacent soft tissues and induce secondary thermal injuries to critical 

structures. A typical example of the above adverse event is the transfer of heat from the 

conducting skull bone to brain surface or skin which can be avoided by applying external 
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cooling or by increasing the surface of the extracorporeal transducer. Tissue burns, pain 

during the procedure and visceral perforation are typical symptoms originating from 

thermal lesions. 

 Non-thermal or mechanical mechanisms related with cavitation events are always 

present since peak-rarefactional pressure fields used in HIFU can exceed the threshold 

for cavitation activation.  Cavitational activity of gas bodies that pre-exist in the lung or 

intestines can induce local tissue injury, including cell death, rupture and hemorrhage of 

blood vessels. These effects are results of non-inertial cavitation where during the 

collapse of the vibrating gas bubbles present in tissues a shock wave is produced. The 

formation of a shock wave is accompanied with a local increase of temperature by several 

thousand kelvins and a pressure of several hundred atmospheres.  

1.13 Current status of Focused Ultrasound applications. 

According to the State of the Field report published in 2017 by the Focused Ultrasound 

Foundation [34],  the current state of research and regulatory approval per application is 

shown in Figure 1.3. Data was collected by the Foundation from HIFU vendors and 

research sites worldwide demonstrates a very wide range of applications that vary from a 

conceptual to FDA approved stages.  

 

Figure 1.3: State of research and regulatory appoval categorized by indication. 
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The following sections run an overview of MRgFUS (Magnetic Resonance guided 

Focused Ultrasound Surgery) applications related to the developed composite tissue 

mimicking phantoms. 

1.13.1 Brain MRgFUS applications. 

 The ‘holy grail’ for researchers and manufacturers in MRgFUS field is of course 

the application and optimization of the technology in treating brain disorders [35]. The 

potential of performing noninvasive transcranial surgery to treat disorders of the central 

nervous system has many advantages and numerous attractive applications. Noninvasive 

thermocoagulation of brain tumors using focused ultrasound offers an alternative option 

to traditional surgery, radiotherapy and chemotherapy. Early attempts involved 

transcranial in vivo animal studies prepared with craniotomy that tested the feasibility of 

detecting temperature elevations with MRI at sub ablative temperatures [36].  

 With the introduction of phased array systems, animal brain models in ex vivo 

human skulls were monitored with MR thermometry and focal lesions were correlated 

with histology [37]. Skull induced phase aberrations were compensated using a time 

reversal mirror technique, which involved field amplitude corrections calculated by using 

implantable hydrophones through excised human skull [15] and sheep skulls [38]. 

Transcranial MRgFUS through intact skulls of primates demonstrated temperature 

distribution in critical structures like skin, skull and brain surface while thermally ablating 

brain tissue [39]–[41]. 

 Recently, in a phase I clinical trial patients with recurrent glioblastoma were 

treated with transcranial MRgFUS and the ultrasound focus was confirmed with MR 

temperature imaging [42]. Thermal coagulation of the tumor was not reached due to 

power limitation at the time of study, but extrapolation of the available data proved that 

ablation was possible with some device modifications while avoiding overheating the 

brain surface. Several studies have demonstrated that MRgFUS can be the future of 

functional neurosurgery. Essential tremor [43], [44] and Parkinson’s patients [45], [46] 

have been treated safely and effectively with MRgFUS thalamotomy. The improvement 

in some of the patients was immediate and tremor symptoms were suppressed even after 

the first year follow up. Following the completion of a randomized, double-blind, multi-

center clinical study designed for evaluating the safety and efficacy of MRgFUS 

thalamotomy by Elias et al.[47], FDA approved in 2016 the Exablate Neuro system for 
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the non-invasive treatment of essential tremor (ET) in patients who have not responded 

to medication. Patients with chronic neuropathic pain have also been treated and 

benefitted with considerable pain relief  [48]. Cadaveric models have been used to explore 

the feasibility of treating trigeminal neuropathic pain along with an in vitro gel phantom 

encased in a human skull fitted with multiple thermocouples to examine the temperature 

changes in skull base while targeting the trigeminal nerve region [49]. 

 MRgFUS has also been tested in the temporal disruption of the blood brain barrier 

(BBB) in animal models [50]–[52]. In vivo small animal and non-human primates studies 

showed that the disruption was possible in a range of frequencies allowing deep brain 

penetration and focus formation with minor adverse effects to cerebral tissue (minor 

extravasation) and without functional deficits [52], [53]. FUS has been applied in an 

attempt to treat efficiently Alzheimer’s neurodegenerative disease in mouse models [54], 

[55] by temporarily disrupting the BBB and allowing large molecules of diagnostic and 

therapeutic agents to extravasate in the brain parenchyma. The introduction of ultrasound 

microbubbles agent during low intensity sonication proved in histological assessments to 

reduce the number of subjects experiencing petechiae compared to subjects treated at 

higher peak negative pressure fields [54]. The opening of the barrier was monitored with 

MRI and was confirmed in vivo with gadolinium-based, contrast enhanced MR 

sequences. 

 Sonothrombolysis is another application of therapeutic ultrasound that receives 

interest. In vitro studies of human blood clots treated with pulsed FUS in combination 

with a thrombolytic agent known as recombinant tissue plasminogen activator (rtPA) 

proved to enhance thrombolysis rate compared to rtPA treatment alone [56]. Similarly in 

another in vitro study, enhanced lytic treatment efficacy for both tPA and liposome- 

loaded tPA with the parallel application of a 120 kHz unfocused ultrasound has been 

demonstrated [57]. The possibility of destructing transcranially an in vitro human clot 

using a hemispheric phased array FUS transducer in the absence of a thrombolytic agent, 

has been demonstrated [58]. In an in vivo rabbit aorta [59] and rabbit ear marginal vein 

[60] model studies, clots were treated with pulsed ultrasound with the synergy of rtPA 

whereas in other similar in vivo studies safe temperature limits and efficacy of treatment 

protocols was investigated [61], [62]. Currently clinical trials using sonothrombolysis are 

underway such as the CLOTBUST (Combined Lysis of Thrombus in Brain ischemia 

using transcranial Ultrasound and Systemic Recombinant Tissue-Type Plasminogen 

Activator rt-PA) [63], the interventional management of treating stroke patients (IMS) 
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[64] and the transcranial low-frequency ultrasound- mediated thrombolysis in brain 

ischemia (TRUMBI) [65]. The TRUMBI trial that uses non-focused, low-frequency (300 

kHz) ultrasound showed an increased hemorrhage risk as compared to tPA alone. A recent 

simulation study [66] demonstrated that the low frequency used in this trial possibly 

resulted to unwanted standing waves with pressure that exceeds the threshold of inertial 

cavitation. This not only could possibly lead to increased hemorrhage risk, but also to 

elevated temperatures in the brain. Finally a randomized, placebo-controlled study with 

continuous transcranial 2 MHz Doppler ultrasound and perflutren-lipid microspheres was 

performed [67]. Table 1-5 summarizes the most important transcranial MRgFUS brain 

ablation studies. 

 

Table 1-5 : Summary table of important transcranial MRgFUS brain ablation studies. 

Study type No.  Purpose Results and Adverse 

events 
Animal study (rabbit thigh and 
brain tissue) and soft tissue 

phantom with intervening ex 

vivo human skull [37]. 

4 To test a prototype MRI-compatible 
focused ultrasound phased array (500-

elements operated at 0.7-.8 MHz) 

system for transcranial brain tissue 
ablation 

Results: Sharp temperature 
elevations were produced. High-

power sonications (600 –1080 W) 

produced peak temperatures up to 
55°C and focal lesions were 

consistent with thermal tissue 

damage. Lesion size increased with 
increasing peak temperature. 

 

Adverse events: Skin burns 
 

Animal study (rhesus monkeys) 

with intact skull [68]. 

3 To determine the amount of skull heating 

in an animal model with a head shape 
similar to that of a human. 

Results:   Skin and skull surface 

was protected by applying surface 
cooling. MRI thermometry was 

shown to be useful in detecting the 

tissue temperature distribution next 
to the bone, and it should be used to 

monitor the brain surface 

temperature. Acoustic intensity (20 
s sonications) were adequate for 

ablating human brain provided that 

surface cooling is used. 
 

Adverse events: Brain surface 

heating 
 

Clinical study for treating 

transcranially glioblastoma 
patients [69]. 

3 To assess the feasibility of transcranial 

magnetic resonance imaging-guided 
focused ultrasound surgery in 

glioblastoma patients. 

Results:  Thermal coagulation of the 

target was not achieved due to 
device power limitation. 

Extrapolation of the results 

suggested that ablation will be 

possible without overheating the 

skull. 

 
Adverse events: Sonication-related 

pain in one patient from heating of 

the dura, suggested that the 
targetable regions of the brain may 

be limited to deep, central locations 

in the brain. 
 

Randomized controlled clinical 

trial for patients with moderate-

to-severe tremor that hat had 
not responded to at least two 

trials of medical therapy [47] . 

76(3:1) MRI-guided focused ultrasound unilateral 

thalamotomy applied transcranially for the 

treatment of medication-refractory 
essential tremor. 

Results: Hand-tremor scores 

improved more after focused 

ultrasound thalamotomy (from 18.1 
points at baseline to 9.6 at 3 

months) than after the sham 
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procedure (from 16.0 to 15.8 
points); the between-group 

difference in the mean change was 

8.3 points (95% confidence interval 
[CI], 5.9 to 10.7; P<0.001).  

 

Adverse events: In the thalamotomy 
group reported gait disturbance in 

36% of patients and paresthesias or 

numbness in 38%; these adverse 
events persisted at 12 months in 9% 

and 14% of patients, respectively. 

Intra-procedural sensations 
described as pain in the form of 

‘heat’ or ‘pressure’ were resolved 

within seconds after the delivery of 
acoustic energy. 

 

Uncontrolled clinical trial of 
patients chronic therapy-

resistant neuropathic pain [48]. 

12 To apply the new transcranial magnetic 
resonance imaging-guided focused 

ultrasound (tcMRgFUS) technology to 

perform noninvasive central lateral 

thalamotomies (CLTs) as a treatment for 

chronic neuropathic pain. 

Results: tcMRgFUS represents a 
noninvasive, precise, and radiation-

free neurosurgical technique for the 

treatment of neuropathic pain. The 

procedure avoids mechanical brain 

tissue shift and eliminates the risk 

of infection. The possibility of 
applying sonication thermal spots 

free from trajectory restrictions 

should allow one to optimize target 
coverage. The real-time continuous 

MR imaging and MR thermometry 

monitoring of targeting accuracy 
and thermal effects are major 

factors in optimizing precision, 

safety, and efficacy in an outpatient 
context. 

 

Adverse events: Bleeding in the 
target with ischemia in the motor 

thalamus that occurred in one 

patient possibly attributed to 
cavitation effects or excessive 

heating. Study recommended 

maintaining sonication temperatures 
below 60 ºC. 

 

1.13.2 Bone MRgFUS applications. 

 Bone metastases are a frequent complication observed in patients suffering from 

advanced stages of cancer [70], [71]. More than 60 % of advanced breast and prostate 

cancers, which are the most common malignancies in adults, metastasize in skeletal sites 

[72], [73]. Metastases in bones from other types of primary solid tumors like lung, 

kidneys, thyroid, bladder and melanoma also occur, but at a lower prevalence.  

Pain is the most common and distressing symptom associated with bone metastases [74]. 

About 83 % of patients with bone metastases complain of pain at some point with wide 

variation in pattern and severity [75]. Therefore a lot of effort has been made in 

developing strategies to manage pain of patients with bone metastases and improve life 

quality.   

 For cases where there is a multifocal spread of the disease in the skeleton, pain 

palliation is controlled, but not limited to, by systemic therapies like hemi body irradiation 
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[76], [77], administration of bone-seeking radiopharmaceuticals [78]–[80], analgesic 

drugs and  bisphosphonates [81], [82]. The gold standard though for controlling localized 

metastatic bone pain is external beam radiotherapy (EBRT).  The mechanism underlying 

the analgesic effect of radiation in bone pain is not completely understood, but recent 

animal studies suggested that palliation is a result of reduced cancer burden and reduced 

osteolysis [83]. The increasing number of patients with painful bone metastases that are 

insufficiently palliated by radiation therapy alone, indicate the need for additional 

palliative localized treatments to maintain quality of life for the patients [84], [85]. 

 Thermal ablation techniques have been extensively used as alternatives to 

radiotherapy for the curative and palliative treatment of primary or secondary bone 

tumors. The most commonly used techniques are radiofrequency ablation [86], 

microwave ablation [87] and laser ablation [88]. These techniques induce thermal 

coagulation necrosis by delivering high temperatures above 50 ºC to the target. A 

hypothermia technique known as cryoablation is also used by inducing cryogenic 

temperatures to the targeted tissue lower than -40 ºC [89].  A common characteristic of 

these techniques is that all require an invasive approach for implanting their delivery 

probes near the targeted tissue. The emerging application of FUS for the treatment and 

palliation of bone tumors, recently receives a lot of research interest [90]. Combined with 

MRI, FUS offers a completely non-invasive, and safe treatment option with excellent 

monitoring of the procedure. The low thermal conductivity in the periosteum and bone 

cortex confines the thermal damage in proximity to the treated site protecting the 

surrounding tissue. Additionally, the high ultrasonic absorption in bones reduces the 

energy levels required to induce the same thermal effect compared to soft tissues.  

 The major therapeutic goal of FUS applications in palliating pain from bone 

metastases is the denervation of the periosteum which contains pain-reporting nerve 

fibers through thermal coagulation necrosis [90]. The study by Catane et al. [91], was the 

first attempt to assess the safety and initial efficacy of MRI guided FUS (MRgFUS) for 

the palliation of pain caused by bone metastases. The treated targets involved lesions in 

the humerus, iliac bone, femur bone, ischium bone, sacrum and sacro-iliac joints. Pain 

relief was noted in the majority of patients from first assessment and prolonged 

improvement in pain score and reduction of analgesics dosage was reported throughout 

the follow up period. No severe adverse events were reported with exemption a slight 

increase of pain for few patients in the immediate post-procedural period that disappeared 

before first follow up. More clinical work in the same area were reported by Gianfelice 
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et al. [92], Napoli et al. [93], Liberman et al. [94],  Hurwitz et al. [95] and Huisman et al. 

[96]. In a recent report by Joo et al. [97], the safety and effectiveness of the ExAblate 

Conformal Bone system for treating painful bone metastases was tested. Compared to the 

original MRgFUS systems where the transducer is fixed in the MR table, this new design 

has its transducer strapped on the patient with external connections. The obvious 

advantage of such configuration is that it enables easy and comfortable access to multiple 

anatomical locations. The patient position is more comfortable because lying on a painful 

body site is avoided, thereby decreasing discomfort experienced during treatment. Table 

1-6 summarizes the most important MRgFUS bone ablation studies. 

Table 1-6: Summary table of important MRgFUS bone ablation studies. 

Study type No.  Purpose Results and Adverse 

events 
MR-guided focused ultrasound 
surgery for the palliation of 

pain in patients with bone 

metastases--preliminary 
clinical experience [91]. 

13 To evaluate the safety and initial 
efficacy of MRgFUS for the palliation 

of pain caused by bone metastases, in 

patients for whom other treatments are 
either not effective or not feasible. 

Results: Patients reported prolonged 
improvement in pain score and/or 

reduced analgesic dosage. 

 
Adverse events: No device-related 

severe adverse events were 

recorded. One patient was unable to 
tolerate the sonication-related pain 

and the treatment was stopped. 

 

A multicenter study using 

MRgFUS for palliation of bone 

metastases pain [94]. 

31 To evaluate the safety and efficacy of 

MRgFUS palliative treatment of bone 

metastases was conducted in patients 
suffering from painful metastatic bone 

lesions for which other treatments were 

either ineffective or not feasible. 

Results: The results suggest that 

MRgFUS has the ability to provide 

an accurate, effective, and safe 
noninvasive palliative treatment for 

patients with bone metastases. 

 
Adverse events: None 

 

Multicenter phase III controlled 

clinical trial of treating patients 
with painful bone metastases 

with MRgFUS [98]. 

147(3:1) This study assessed the safety and 

efficacy of magnetic resonance-guided 
focused ultrasound surgery (MRgFUS), 

a noninvasive method of thermal tissue 

ablation for palliation of pain due to 
bone metastases. 

Results: MRgFUS is a safe and 

effective, noninvasive treatment for 
alleviating pain resulting from bone 

metastases in patients that have 

failed standard treatments. 
 

Adverse events: The most common 

treatment-related adverse event 
(AE) was sonication pain, which 

occurred in 32.1% of MRgFUS 
patients. Two patients had 

pathological fractures, one patient 

had third-degree skin burn, and one 
patient suffered from neuropathy. 

Observational cohort study for 

feasibility of volumetric MRI-

guided high intensity focused 
ultrasound (MR-HIFU) for 

painful bone metastases [96]. 

11 The first experience with volumetric 

MR-HIFU for palliative treatment of 

painful bone metastases and evaluate the 
technique on three levels: technical 

feasibility, safety, and initial 

effectiveness. 

Results: At 3 days after volumetric 

MR-HIFU ablation, pain scores 

decreased significantly and 
response was observed in a 6/11 

(55%) patients. At 1-month follow-

up, which was available for nine 
patients, pain scores decreased 

significantly compared to baseline 

and 6/9 patients obtained pain 
response (overall response rate 

67%). 

 
Adverse events: No treatment-

related major adverse events were 

observed 
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1.13.3 Breast MRgFUS applications 

 In 2012 about 1.7 million new cases of breast-cancer were diagnosed worldwide 

according to the World Cancer Research Fund international [99]. Breast cancer is the 

most common malignant disease in women [100]. Radical mastectomy is considered the 

gold standard therapy [101], [102]. Another key option for breast cancer management is 

the breast conserving therapy (BCT) which is a less invasive therapy that potentially 

improves cosmesis [103]. The option of BCT is offered in combination with adjuvant 

treatment modalities such as radiotherapy, chemotherapy, and hormonal therapy [103]. 

BCT although invasive can be applied in patients with concomitant diseases, or elderly 

patients who are excluded from traditional surgery. 

 By contrast, focused ultrasound surgery (FUS) has the potential to precisely 

deliver coagulation to a specific location in soft tissue with an accuracy of 1 mm through 

the intact skin [104]. FUS can produce temperature elevations of 50 °C to 80 °C at the 

focus with a 10 s sonication. The delivery of this heating instantaneously induces cellular 

death in normal and tumor tissue  [105].  Contrast enhanced MRI is usually the method 

of choice in breast cancer screening since it can reveal lesions that are undetected by 

conventional mammograms and sonograms [106], [107]. Moreover, MRI can 

noninvasively measure the ultrasound-induced temperature [108], [109]. In recent years, 

the technical feasibility of conducting FUS therapy guided by MRI has been demonstrated 

and improved in terms of accurate and fast temperature control in ex vivo tissue and 

animal studies in vivo [108]. This first experience of MRgFUS for human treatment of 

benign breast tumors was reported by Hynynen et al. in 2001 [110]. In this study it was 

reported that breast fibroadenomas in nine patients were treated with FUS. Eight out of 

the 11 lesions treated with FUS demonstrated complete or partial ablation. In 2001 Huber 

et al. [111] treated a 56-year-old patient with breast cancer using FUS. Post procedural 

pathologic examination indicated that FUS induced lethal and sub lethal tumor ablation 

without damage to the surrounding healthy tissue. In a randomized clinical trial by Wu et 

al [112], 48 women with biopsy confirmed breast cancer were randomly separated to two 

groups. The first control group (n=25) received modified radical mastectomy whilst the 

second group (n=23) was first treated with extracorporeal ultrasound guided HIFU 

ablation followed by modified radical mastectomy. The study concluded for the first time 

that US-guided HIFU is an effective, safe, and feasible treatment modality for localised 
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breast cancer with well-demarcated margins. The authors recognised that supplementary 

investigation is needed before considering extracorporeal FUS as a standard treatment 

option for breast cancer.  

 After these initial studies, Gianfelice et al. reported the treatment of 12 patients 

with invasive breast cancer using MRgFUS prior to surgery [113]. Histopathology of 

resected tumor in 9 patients showed that a mean of 88 % cancer tissue was necrosed. 

Residual tumor was observed in all cases at the periphery of the tumor mass, indicating 

the need for safety margins greater than 5 mm. In agreement with these findings, Zippel 

et al. [114] conducted the first phase of a human trial using MRgFUS ablation for breast 

cancer, using the Insightec’s ExAblate 2000 system. Ten patients were treated one week 

prior to lumpectomy. They reported complete necrosis in only two patients (20%), and 

concluded that there were still several issues that needed to be resolved before MRgFUS 

can become a gold standard treatment for breast cancer. Furusawa et al. [115] conducted 

human trials with MRgFUS in 30 patients with breast cancer. All patients followed radical 

mastectomy after FUS treatment. On pathologic examination the mean percentage of 

tumor necrosis was 97 % of tumor volume. In another study Kovatcheva et al. [116] 

conducted clinical trials on 42 women with 51 fibroadenomas using ultrasound-guided 

unilateral or bilateral FUS. Ultrasound-guided FUS was well tolerated by the patients and 

the preliminary results showed that it could be an effective noninvasive alternative to 

surgery for breast fibroadenomas. Table 1-7 summarizes the most important MRgFUS   

breast ablation studies. 

Table 1-7: Summary table of important MRgFUS breast ablation studies. 

Study type No.  Purpose Results and Adverse 

events 
Clinical feasibility study 

treating patients of pathological 

breast tissue with MRgFUS 
[110]. 

9 To test the feasibility of noninvasive 

magnetic resonance (MR) imaging-

guided focused ultrasound surgery 
(FUS) of benign fibroadenomas in the 

breast 

Results: Temperature elevations 

ranging between 12.8 ºC - 49.9 

degrees ºC from the planned 
sonications were measured with 

MR thermometry. 8 of the 11 

lesions treated demonstrated 
complete or partial lack of contrast 

material uptake on post therapy T1-

weighted images. Three lesions 

showed no marked decrease of 

contrast material uptake. This lack 

of effective treatment was most 
likely due to a lower acoustic power 

and/or patient movement that 

caused misregistration. 
 

Averse events: No adverse effects 

were detected, except for one case 
of transient edema in the pectoralis 

muscle 2 days after therapy. 

 

A randomized controlled 
clinical trial of US guided high-

intensity focused ultrasound 

48 (1:1) To explore the possibility of using HIFU 
for the treatment of patients with 

Results: Pathologic findings 
revealed that HIFU-treated tumor 

cells underwent complete 



 

24 

 

ablation for the treatment of 
patients with localized breast 

cancer [112]. 

localized breast cancer in a controlled 
clinical trial. 

coagulative necrosis, and tumor 
vascular vessels were severely 

damaged. Immunohistochemical 

indicated that the treated tumor cells 
lost the abilities of proliferation, 

invasion, and metastasis. 

 
Adverse events: No adverse events 

were detected, except for one case 

of transient edema in the pectoralis 
muscle 2 days after therapy. 

 

A preliminary phase I study for 
the use of MR guided focused 

ultrasound in breast cancer 

patients [114]. 

10 To examine the possibility of ablating 
breast carcinoma using MRIgFUS in 

place of lumpectomy. 

Results: Two patients had a 
complete pathological response. 

The remaining 8 patients had 

varying amounts of residual tumor; 
2 had microscopic foci of residual 

carcinoma, 3 had 10% residual 

tumor, and 3 had 10-30% of 
residual tumor. 

 

Adverse events: Procedure related 

pain required additional analgesia 

and sedation. One patient suffered 

from a second degree skin burn 
over the treated area. This adverse 

even suggested a better cooling is 

required whilst the procedure 
should be limited to peripheral 

lesions of at least 1 cm from skin 

and yet not in proximity to chest 
wall. 

 

A multicenter ultrasound-
guided high-intensity focused 

ultrasound treatment of breast 

fibroadenomas [116]. 

42 To assess the clinical outcome and 
safety of ultrasound (US)-guided high-

intensity focused ultrasound (HIFU) in 

patients with breast fibroadenomas 
(FA). 

Results: The FA mean baseline 
volume was 3.89 ml (0.34–19.66 

ml). At 2-month follow-up, the 

mean volume reduction was 
33.2% ± 19.1% and achieved 

significance at 6-month 

(59.2% ± 18.2%) and 12-month 
(72.5% ± 16.7%) follow-up. 

 

Adverse events: Related side effects 
as superficial skin burn with blister-

like aspect in three patients and 

hyperpigmentation over the treated 
area in one patient were transient 

and resolved spontaneously. In one 

patient, asymptomatic subcutaneous 
induration persisted at the end of 

the study. 

 

 

1.14 Potential usefulness of the designed phantoms. 

 The usefulness of developing application specific mimicking phantoms in a quest 

of researching and overcoming patient safety or procedure efficacy limitations recognized 

from the results of a literature overview in the previous section are presented below.    

 The head mimicking phantom can be used to investigate the efficacy of different 

HIFU devices. Literature review indicated that due to power limitations, ablative 

temperatures in deep seated tumours cannot be reached. Precise targeting in transcranial 

applications depends on the algorithm used to correct phase aberrations induced by the 
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human skull. The designed mimicking head phantom can be used to assess the effect of 

targeting accuracy, focal temperature and spatial distribution and using the 

aforementioned as quality criteria to optimize the algorithms. The effectiveness of cooling 

systems in decreasing brain surface temperature and the induced hot spots resulting from 

the development of standing waves near skull base can also be a matter of investigation 

using the head phantom. 

 Although palliative HIFU treatments for painful bone metastases is already an 

FDA approved procedure there is still room for improvement. Due to the great variety of 

bone shapes and accesses to targets, a customizable bone mimicking phantom will be 

valuable for assessing a priori the efficacy and safety of the treatment. The safety and 

efficacy of thermal protocols that employ novel approaches like volumetric sonications 

for increased treatment envelope can also be tested. A suitable bone phantom can be used 

to assess the functionality of newly developed HIFU transducers that provide flexibility 

in the delivery of the treatment to patients that cannot tolerate particular positioning. 

 A breast rib phantom can be used to test improved cooling systems in a search of 

reducing skin burns as observed in clinical studies. These studies were limited to targeted 

breast tissue which was far enough from tissue/air or tissue/chest wall interfaces. This 

was done to avoid excessive heating from intense ultrasound reflections and high acoustic 

absorption of ribs indicating the need to improve the technology to include patients with 

lesions that don’t qualify for these criteria. The designed phantom can be used to test the 

safety and efficacy of new HIFU treatment devices that overcome the aforementioned 

limitations. 

1.15 Aim and Objectives 

The safety and efficacy of various applications that use HIFU as a thermal ablation 

treatment modality, have been extensively assessed through numerous animal studies. 

The results of these studies identified important safety and efficacy related issues and 

suggested that some applications are not ready for treating humans in their current status. 

The need for testing new or improved hardware and software HIFU related features, raises 

the question whether this can be done by using solely phantoms instead of animals. The 

use of suitable phantoms is expected to: a) reduce the number of animal studies, b) 

conduct experiments under controlled conditions and c) reduce the cost, implications and 

complexity associated with animal studies. Overall the use of suitable phantoms for 

testing HIFU thermal protocols will accelerate the development of several HIFU 
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applications and provide clinicians with a new treatment alternative that demonstrates 

important advantages over conventional (open surgery, chemotherapy, radiotherapy, 

other thermally ablative techniques, etc.).  

 

The aim described above is expected to be accomplished by fulfilling the following 

research objectives: 

 

 A literature review will be held to identify procedure related obstacles that halt 

some HIFU applications from becoming a standard treatment option. This 

information will be taken into consideration during phantom designing. The 

phantoms should allow researchers to exploit these defects for different treatment 

protocols.  

 A second literature review will attempt to summarize the current state-of-the-art 

in HIFU phantoms. The knowledge gained from this review will be used as the 

base of designing improved or novel phantoms. 

 Important tissue intrinsic acoustic and thermal properties that govern its 

interaction with ultrasound will be identified. Following a literature review the 

range of values of these tissue specific properties will be extracted.  

 The corresponding properties of candidate phantom materials for replicating soft 

and bone tissue will be assessed through appropriate techniques. This will be done 

in order to check their matching with the values extracted from literature for 

human tissues. Adequate matching is vital for reproducing realistically the 

interaction of ultrasound in phantom materials and translating the results for 

human subjects. 

 A set of three composite phantoms will be fabricated, each representing a different 

anatomy that consists of soft and bone tissue. Each composite phantom will 

correspond to a different application of HIFU ablation. 

 The functionality of the fabricated phantoms for assessing safety and treatment 

efficacy issues will be demonstrated. This will involve exposing each phantom to 

a focused ultrasound field while monitoring the spatial distribution of thermal 

energy in quasi real time. This will be achieved by acquiring appropriate MRI 

images that encode temperature increment to signal phase change using the proton 

resonance frequency shift technique. 
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1.16 Thesis structure 

 This section presents a brief outline of the introductory Chapter 1 and the 

remaining Chapters that follow. 

 Chapter 1 introduces the reader to the main physical concepts of ultrasound that 

includes a short description of its wave-like characteristics. A description of ultrasound 

production process by transducers that exploit the piezoelectric effect,  the different types 

of transducers available and the main features of the instrumentation involved is 

presented. The following sections cover the use of high intensity ultrasound in medicine, 

the interaction types of ultrasound with biological tissue and the induced thermal and 

mechanical bioeffects. The chapter closes with an overview of HIFU applications (brain, 

bone and breast) related to developed phantoms. 

 In Chapter 2 the current state-of-the-art of HIFU phantoms found from literature 

is reported.  The phantoms are subcategorized in groups depending on the gelling agents 

used to replicate soft tissue. Details of the additives used to control the properties of the 

gels is given. Bone phantoms and composite phantoms that combine biological tissue 

with artificial materials to replicate soft and bone tissue are also presented. 

 Candidate materials for replicating soft and bone tissue are presented in Chapter 

3. Moreover agar gels doped with silica dioxide/evaporated milk and ABS polymer were 

tested as mimicking materials of soft and bone tissue respectively. The method for 

characterizing their acoustic properties (attenuation coefficient and speed of sound) using 

pulse immersion techniques is described. A method for deducing the thermal conductivity 

and diffusivity coefficients of the soft tissue mimicking agar gels using numerical 

modelling of MR thermometry data is also presented. 

 In Chapter 4 the composite phantoms fabrication process is described. 

Geometrically accurate replicas of the bone parts are printed in ABS using fusion 

deposition modelling (FDM) technology. The digital 3D bone models were reconstructed 

by segmenting bone tissue from adult human CT images. The formation of three 

composite phantoms is demonstrated (skull-brain, bone-muscle, rib-breast) by molding 

agar gels either inside or around the bone ABS replicas. 

 Chapter 5 introduces the reader to MR thermometry, which is the most popular 

method for monitoring quantitative temperature elevations induced by HIFU sonications 

under MRI guidance. The theory of Proton Resonance Frequency Shift (PRFS), which is 

the primary choice of MR Thermometry techniques due to its wide temperature range 

linearity and independence from tissue type, is explained thoroughly. The next section 
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presents the development and workflow of a custom coded graphic user interface in 

MATLAB that takes MRI images as inputs and produces temperature maps using the 

PRFS technique. Finally the results of relaxometry conducted to characterize the T1 and 

T2 relaxation times of the developed soft tissue mimicking agar gel phantoms are 

reported. 

 Chapter 6 describes a series of functionality tests for each of the developed 

composite phantoms. Each phantom was sonicated with a 1 MHz single element 

spherically focused HIFU transducer with appropriate experimental setups under MRI 

guidance. By observing the temporal evolution and spatial distribution of temperature 

using the aforementioned GUI, the usefulness of the phantoms for testing these thermal 

protocols was proven. More specifically it was possible to observe the heating profile for 

different exposure parameters, the development of “unwanted” hot spots especially at 

tissue/bone interfaces, the effect of beam “starvation” and defocusing from intervening 

bone in transmit-through applications, etc. 

 Chapter 7 describes the work done to assess the compatibility of an MR-

compatible robotic system used to drive the HIFU transducer during the aforementioned 

functionality tests inside the bore of the MRI scanner. The system’s compatibility was 

assessed on the basis of signal to noise ratio drop and visual observation for induced 

image artifacts. 

 The final Chapter 8 summarizes the key findings of the thesis and emphasizes the 

contribution of the work done to current knowledge in the field. The limitations of the 

developed tissue mimicking composite phantoms are commented. Suggestions for 

overcoming these limitations or improving these phantoms are made in the form of future 

work proposals. 
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2 State-of-the art of FUS phantoms 

2.1 Phantom models in Biomedical Research 

 A phantom usually refers to any artificially made object used for testing. In 

biomedical research, phantoms can be manufactured to replicate realistically the subjects 

or conditions of different applications, they can accommodate different tools suitable for 

parametric measurements or can be used in absolute and reference dosimetry studies. The 

development of such phantoms reduces the necessity of using animal models. 

 The use of animals in research has always been the subject of debate between the 

scientific community and animal welfare organizations. The ethical dilemma that much 

of the discussion revolves around is whether the benefits for human kind from research 

counterbalance the exploitation of animal rights. Animal use for research in developed 

countries is controlled by national committees that use targeted regulations to assess 

submitted research proposals. The proposals are usually reviewed based on the value and 

the originality of the potential outcomes and seek for justification of the inability to use 

alternatives.  The principles of testing alternatives better known as the Three R’s (3Rs), 

first described by Russell and  Burch in 1959 [117], are included in national legislation 

worldwide that govern the use of animals in science. According to the National Centre 

for the Replacement, Refinement and Reduction of Animals in Research UK, these 

principles are defined as [118] : 

“Replacement:  Methods that avoid or replace the use of animals defined as 

'protected’ under the Animals (Scientific Procedures) Act 1986, amended 2012 

(ASPA) in an experiment where they would have otherwise been used. Protected animals 

are all living vertebrates (except humans), including some immature forms, and 

cephalopods (e.g. octopus, squid, cuttlefish). Replacement includes the use of: 

1) Human volunteers, tissues and cells. 

2) Mathematical and computer models. 

3) Established animal cell lines, or cells and tissues taken from animals killed solely for 

this purpose (i.e. not having been subject to a regulated procedure) 

4) Immature forms of vertebrates, or invertebrates, such as Drosophila and nematode 

worms. 

http://en.wikipedia.org/wiki/William_Russell,_1st_Baron_Russell_of_Thornhaugh
http://en.wikipedia.org/w/index.php?title=R._L._Burch&action=edit&redlink=1
https://www.gov.uk/research-and-testing-using-animals
https://www.gov.uk/research-and-testing-using-animals
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Protected forms are embryonic and fetal forms of mammals, birds and reptiles during the 

last third of their gestation or incubation period, fish and amphibians once they can feed 

independently, and cephalopods at the point they hatch. Embryonic and fetal forms are 

protected from an earlier stage of development if they are going to live beyond the stage 

described above and the procedure is likely to cause them pain, suffering, distress or 

lasting harm after they have developed to that stage. 

Reduction: Methods that minimize the number of animals used per experiment or study, 

either by enabling researchers to obtain comparable levels of information from fewer 

animals, or to obtain more information from the same number of animals, thereby 

avoiding further animal use. Examples include improved experimental design and 

statistical analysis, sharing data and resources (e.g. animals and equipment) between 

research groups and organizations, and the use of technologies, such as imaging, to enable 

longitudinal studies in the same animals. 

Refinement: Methods that minimize the pain, suffering, distress or lasting harm that may 

be experienced by the animals. Refinement applies to all aspects of animal use, from the 

housing and husbandry used to the scientific procedures performed on them. Examples 

of refinement include, using appropriate anaesthetics and analgesics, avoiding stress by 

training animals to cooperate with procedures such as blood sampling, and providing 

animals with appropriate housing that allows the expression of species-specific behaviors, 

such as nesting opportunities for mice.” 

2.2  Transcranial FUS phantom models   

 The potential of treating brain disorders including the revolutionary application of 

blood brain barrier (BBB) disruption using a noninvasive technology like FUS, promises 

to revolutionize current treatment approaches. The access of FUS in deep seeded brain 

targets without harming healthy tissue is intriguing for many research groups around the 

globe. The variety of models expands from purely cadaveric models, ex vivo skulls with 

tissue mimicking phantom gels and tissue mimicking phantom skulls with ex vivo tissue. 

Purely cadaveric models 

 Strong aberrations both in phase and in amplitude were corrected by energy 

adapting focusing on a clinical brain FUS system composed of 512 ultrasonic elements 

in a cadaver head model [119]. Adaptive focusing was optimized using acoustic radiation 

force imaging (ARFI) which encoded tissue displacement. Tissue displacement at focus 



 

31 

 

is considered of being linearly dependent to acoustic intensity at focus. This displacement 

power linearity assumption was confirmed in the same study in an in vitro lamb brain 

model. Displacement measurements were directly inverted to correct for the skull induced 

aberrations. The results showed that acoustic intensity at focus was 2.2 times higher than 

the uncorrected beam and 1.5 higher from the beam treated with adaptive focusing 

corrections produced by simulated time-reversed computed tomography data of the skull.   

 The accuracy of FUS targeting the trigeminal nerve in four unpreserved cadaver 

heads under MRI guidance was presented by Monteith et al. [49]. This was a feasibility 

study for testing MR guided FUS as a possible therapeutic method of treating neuropathic 

pain of trigeminal neuralgia.  Significant focal heating in the absence of unwanted skull 

base and surrounding structures heating was made possible by the inclusion of no-pass 

regions through the petrous bone. The work of Chauvet et al. [120] tested the accuracy of 

MR guided FUS in a cadaver head in targeting part of the thalamic nucleus ventralis 

intermedius, which is a brain structure related with essential tremor. Using a 1 MHz FUS 

phased array a millimetric targeting accuracy was possible and temperature elevation at 

the target was detected using the proton resonance frequency shift thermometry. The 

authors commented the limitation of the model due to its lack of vascularization that 

controls thermoregulation. 

2.2.1 Ex vivo skull with tissue mimicking phantom models 

 Eames et al. [121] suggested a model consisting of an ex vivo human skull 

combined with a tissue mimicking hydrogel to replicate brain tissue. The gel was melted 

in a microwave and oven and was molded inside the skull. This model was used to 

investigate the effect of scalp hair in the focal temperature elevation during transcranial 

treatments. The head phantom was covered with human hair wig. Sonications at 220 kHz 

showed no measurable change in focal temperature elevation whereas for a higher 

frequency sonication at 710 kHz a 17 % drop was observed. In a recent publication by 

Eames et al.  [122], it was reported that their previous head model was upgraded by adding 

a layer of skin mimicking material. The skin layer was made from the same tissue 

mimicking hydrogel that the brain was created from. The authors made comparative 

studies between the latest model, the head model in the absence of the skin layer and a 

cadaver. The cadaveric phantom model, gel-filled skull model, and full head phantom 

model had heating efficiencies of 5.3, 4.0, and 3.9 °C/(kW/s), respectively, compared to 

a sample clinical heating efficiency of 2.6 °C/(kW/s). 
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2.2.2 Skull mimicking phantom with ex vivo tissue 

 Damianou et al [123] designed in a computer aided design (CAD) software a skull 

phantom made out of Acrylonitrile Butadiene Styrene (ABS) thermoplastic polymer 

which was printed in a rapid prototyping machine. The ABS material’s attenuation 

coefficient was measured using the transmission-reception method and was found close 

to human skull. The thickness of the phantom was chosen appropriately so as to achieve 

the same attenuation effect as in the case of a human skull. The feasibility of focusing 

ultrasound through skull was tested under MRI guidance in a gel phantom and an ex vivo 

freshly excised tissue using a single element transducer operating at 0.5 MHz or 1 MHz. 

Temperature elevation detected with a fast spoiled gradient recalled (FSPGR) pulse 

sequence was confirmed with the 0.5 MHz beam. 

2.3  Bone mimicking phantoms 

 Clarke et al [124] used liquid epoxy resin in conjunction with a hardener to 

simulate cortical bone. The measured acoustic properties of the developed material were 

3.7 dB/cm at 1 MHz for the attenuation coefficient and 3168 m/s velocity. Ultrasound 

velocity in the bone mimicking material was within range but the attenuation coefficient 

was significantly lower from published value of 8.36 dB/cm at 1 MHz by Tavakoli et 

al[125].In the same study of Clarke et al an attempt to simulate trabecular bone was made 

by mixing in the liquid epoxy resin gelatine cubic granules (1 mm each side) before 

pouring in to moulds and left to harden. The mixture’s acoustic properties were tested for 

different degrees of porosity by varying the concentration of gelatines granules to the total 

volume. The trabecular phantom material demonstrated ultrasonic characteristics similar 

to those of trabecular bone with high dependence in the degree of porosity. The authors 

reported acoustic speeds in the range of 1844 m/s to 3118 m/s and attenuation between 7 

to 17 dB/cm at 0.5 MHz. In a similar study by Tatarinov et al [126] trabecular bone was 

mimicked by mixing 1 mm3 soft rubber  granules in an epoxy resin matrix to control 

porosity. The authors also added particles of natural bone which was first burned and 

grinded to control the mineral content of the phantom.  In a more recent study of 

Tatarinov et al [127] cortical bone was modelled using tubular specimens  of different 

polymers and polymer composites like ebonite, acrylic plastic, fiberglass and carbon fiber 

plastic. The polymers increased in stiffness with measured longitudinal velocity ranging 

from 2200 m/s in ebonite to 4400 m/s in carbon fiber plastic that covered that velocity 

range of poorly mineralize to hypermineralized compact bone. A multi-layered model of 
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compact bone was also presented to simulate increasing porosity between endosteum and 

periosteum. Pores in the layers were manufactured by randomly mixing rubber particles 

of bulk velocity equal to 1500 m/s in a homogeneous solid epoxy matrix with bulk 

velocity of about 2700 m/s. Hodgskinson et al [128] reported the use of Perspex plates as 

a cortical bone mimicking material with reported speed of sound  of 2657 m/s, attenuation 

coefficient of 5.3 dB/cm-MHz and density of 1180 kg/m3
.. 

2.4 Soft tissue mimicking gel phantoms for ultrasound applications 

Though there is a broad range of tissue mimicking phantoms available for ultrasound 

imaging, there are few material substitutes made specific for FUS, particularly which 

possess tissue-like properties. Although FUS corresponds to ultrasound propagation 

through a medium, appropriate phantoms should be appropriate for withstanding high 

temperature and pressure regimes involved in FUS. The following sections review the 

main tissue mimicking US gels. 

2.4.1 Gelatin gels 

Several low cost gelatin gel based recipes have been introduced for mimicking accurately 

soft tissue for imaging purposes. These recipes mainly differ between them in the 

selection of the additive materials used for controlling acoustic scattering and speed. The 

Madsen group [129] used gelatin gel with graphite powder and alcohol to control the 

attenuation coefficient and speed of sound respectively. Their measurements reported an 

easily controllable attenuation coefficient range of 0.12 to 1.5 dB/cm-MHz and speeds 

between 1520 and 1650 m/s at room temperature. Cook et al. [130] demonstrated a gelatin 

based gel for photo acoustic imaging doped with silica particles, dye and 

Intralipid® solution additives that controlled the acoustic speed and attenuation and the 

optical absorption and scattering. Measurements correlated the concentration of these 

additives to aforementioned properties. In another study psyllium fibers were introduced 

as a scattering material in a gelatin based gel that resembled the echogenicity of thyroid 

and testicular texture [131]. No information of the acoustic properties of this gel recipe 

was provided. Amongst the reported disadvantages of gelatin gels, the one that makes 

them unsuitable for using in FUS applications is their low melting point (35 ºC). 

Additionally unless treated with preservatives they are susceptible to microbial and 

bacterial invasion and difficult to achieve a uniform distribution of the chosen scattering 

material. 
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2.4.2 Agar gels 

 Agar based gels are the most popular soft tissue substitutes found in literature. 

They are cheap and easy to produce, durable in high temperatures, nontoxic and 

disposable. However they lack long term stability and repeatability of acoustic properties 

measurement over time. Under ideal storage conditions, agar gels can remain stable up to 

two and a half years [132]. Burlew et al. [133] suggested agar gels as a replacement for 

gelatin gels which suffered for temperature dependent structural instability. The 

developed recipe resulted in a speed of sound that ranged between 1498 and 1600 m/s, 

density between 1016 and 1100 kg/m3 and an attenuation coefficient between 0.04 and 

1.40 dB/cm-MHz. A modified agar based tissue mimicking phantom gel available in 

liquid or solid form was presented by Madsen et al. [132]. The authors used a low 

scattering material like evaporated milk to control the attenuation coefficient though pure 

absorption. The produced phantoms were capable of exhibiting attenuation coefficient 

slopes spanning the range 0.1-0.7 dB/cm-MHz. The advantage of this phantom is that the 

absence of scatterers allows the backscatter coefficient to be varied over a considerable 

range. Zell et al. [134] presented measurements of the acoustic properties and density for 

a 2 % weight to volume agar gel. For a 5 MHz frequency acoustic wave, it was found that 

the speed of sound was 1500 m/s, the acoustic impedance was 1.57 MRayl and the 

acoustic attenuation 0.4 dB/cm. Its mass density was found as expected very near to 

water’s at 1040 kg/m3. Tissue-mimicking agar gels were also employed in a study for 

mapping inertial cavitation activity in a HIFU sonication [135]. A study by Partanen et 

al. [136] investigated the feasibility of using an agar-silica phantom for quality assurance 

purposes of MR guided FUS. Silica particles served as scatterers and their concentration 

controlled the overall attenuation coefficient of the final product. The study concluded 

that an agar-silica gel with mass concentrations 2 % and 3 % respectively, mimicked a 

soft tissue with an attenuation coefficient 0.58±0.06 dB/cm-MHz, ultrasound speed 

1490±10 m/s, mass density 1.03±0.01 g/cm3 and acoustic impedance 1.54±0.01 MRayl. 

2.4.3 Polyurethane gels 

 Kondo et al. [137] reported the fabrication of polyurethanes as an alternative to 

tissue substitutes. The molecular design of these gels is rather complex and very difficult 

to standardize. The authors produced a phantom with acoustic properties with an 

attenuation coefficient in the lower range (0.13 dB/cm-MHz), speed of sound of 1468 m/s 

and a mass density of 1130 kg/m3. 
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2.4.4 Polyacrylamide gels  

 The use of polyacrylamide hydrogels has been a popular choice amongst 

researchers in HIFU. The gel itself is optically transparent and its acoustic properties can 

be matched closely to soft tissue, making it suitable for monitoring the therapeutic effects 

of HIFU in simulation studies. Different studies have used slightly different recipes for 

creating these gels. Lafon and colleagues [138] were the first to develop such a phantom 

by crosslinking copolymerization of acrylamide and N,N′-methylene bisacrylamide (bis) 

in an aqueous solution. Gel samples embedded with different concentrations of bovine 

serum albumin (BSA) were made. BSA is a concentrated protein serum derived from 

cows. The purpose of adding BSA was to increase the acoustic absorption of the gel, as a 

result of the energy loss during protein denaturation. The authors examined the acoustic 

and optical properties of the phantom, which were characterized as a function of BSA 

concentration and temperature. The measured attenuation coefficient was found to vary 

linearly over the 1 to 5 MHz frequency range, with the coefficients of 0.009, 0.013, 0.017 

and 0.021 Np/cm-MHz measured for BSA concentrations of 3, 5, 7 and 9 %, respectively. 

The attenuation increased linearly with the increase in the BSA concentration. The 

attenuation coefficient of the phantom was approximately 8 times lower (for 9 % BSA 

concentration) than that for the soft tissues. The difference in attenuation coefficient was 

observed as a reduction in lesion volume compared in lesions created for the same HIFU 

dose in a sample of turkey breast. The speed of sound was found to be dependent on 

temperature, reaching a maximum at 1590 m/s near 60 °C. The phantom was destined to 

be used for HIFU therapies under ultrasound guidance. The authors reported that the 

optically opaque lesion created in the gel, coincided with the hyperechoic region observed 

in B-mode ultrasound imaging.  The hyperechoic region is recognized as a result of 

scattering induced by bubble formation at the focus [139]. 

 A cheaper version of Lafon’s recipe was reported in another study [140]. In this 

study the BSA was replaced with egg white which is also known of being a rich source 

of protein. The variation of the acoustic properties of the gel were tested for different egg 

white concentrations (0-40 %).   It was found that the mass density of the gel remained 

the same for the whole range (1.0 g/cm3) near to water. The sound speed of the gel varied 

from 1537 to 1544 m/s. High speeds were correlated with large egg concentrations. More 

importantly, it was found that there was strong linear correlation of attenuation coefficient 

with egg white concentrations. Even for the highest concentration tested (40 %), the gel 

possessed a lower attenuation coefficient than soft tissue (0.28 dB/cm-MHz). The use of 
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the egg white embedded polyacrylamide gel was demonstrated in an in vivo animal model 

where the fabricated gel was implanted inside a rabbit’s stomach to simulate a gastric 

submucosal tumor. The model was exposed to a 2.2 MHz HIFU beam with electric power 

of 100 W for 10 s. The authors demonstrated formation of a lesion in the gel, whilst the 

gastric mucosa surrounding the gel stayed unaffected. Another study used a 

polyacrylamide gel with egg white to test the effect of embedding nylon fibers to the 

phantom in order to increase heat deposition under HIFU [141].    

 In another study a modified recipe of the standard polyacrylamide gel with 

embedded BSA was proposed [142].  In order to improve the matching of the attenuation 

coefficient of the gel with that of soft tissue, glass beads with diameters of 40-80 μm were 

added. The glass beads served two purposes. They increased the attenuation coefficient 

of the gel by adding scattering effects, which were missing in previous recipes. The final 

product was an optically transparent gel with an acoustic impedance of 1.67 MRayl, a 

speed of sound of 1576 m/s, an attenuation coefficient of 0.52 dB/cm-MHz. The acoustic 

and thermal properties of the gel were very close to liver tissue. The formed lesion volume 

was larger using the new recipe compared to the standard polyacrylamide-BSA gel. This 

was attributed to the increased attenuation coefficient from the glass beads that enhanced 

heat deposition in the gel. 

 Commercially available polyacrylamide gel phantoms manufactured by Onda 

Corp (Sunnyvale, California, USA) are widely used for characterizing transducer 

geometry, frequency and power profiles. The synthetic gel is transparent and when its 

temperature exceeds 70 ºC, white three dimensional lesions are formed, making it easy to 

assess lesion growth, position and shape over time.  They are suitable tools for performing 

quality control tests on HIFU equipment and treatment protocol testing. The manufacturer 

states that these gels have similar acoustic and thermal properties to soft tissue. The 

products have a density of 1060 kg/m3, phase velocity of 1600 m/s, an attenuation 

coefficient of 0.6 dB/cm-MHz, specific heat of 3850 J/kg-K and thermal conductivity 

coefficient of 0.55 W/m-K [143]. Their properties are close to soft tissue and therefore 

they can be considered as a tissue mimicking material. 

2.4.5 N-isopropylacrylamide (NIPAM) gels  

 NIPAM gels have been designed to become opaque above a threshold temperature 

which can be controlled by altering the concentration of acrylic acid (AAc) [144]. By 

testing different concentrations of AAc, NIPAM based gels were fabricated and matched 
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the acoustic and thermal properties of different swine tissues. NIPAM gels are superior 

to polyacrylamide BSA or egg white based phantoms since they are reusable. Unlike these 

phantoms where thermal protein denaturation induces irreversibly opaque lesions, in 

NIPAM gels these lesions gradually disappear and the phantom gel can be reused. 

2.4.6 Polyvinyl Alcohol (PVA) gels 

 A polyvinyl alcohol cryogel (PVA)  tissue mimicking phantom gel was presented 

by Surry et al. [145] suitable for MR and US  imaging. The gel was solidified through a 

freeze-thaw cycle process and was characterized for the speed of sound which was found 

in the range of 1520 to 1540 m/s. The gel’s attenuation coefficients were in the range of 

0.075-0.28 dB/cm-MHz. T1 and T2 relaxation values were estimated between 718-1034 

ms and 108-175 ms respectively. The authors used this gel to develop a brain and breast 

phantom that were used in synergy with ultrasound or MR for segmentation and biopsy. 

Reinertsen et al. [146] designed a multi-layer  phantom made out of PVA gel to 

characterize and correct for brain shift during image guided surgery. Each gel was treated 

with different number of freeze-thaw cycles to control its mechanical and imaging 

characteristics. Brain vessels were simulated using plastic tubes filled with water and 

doped with glass micro-bubbles in order to enhance signal in Doppler ultrasound imaging.  

2.5 Summary 

 The following Table 2-1 summarizes the existing phantoms extracted from 

literature presented in previous sections and denotes their advantages and disadvantages. 

 

Table 2-1: Pros and Cons of existing phantoms extracted from a literature review. 

Phantom type 
Replicated 

tissue 
Pros Cons 

Liquid epoxy resin treated 

with hardener 

Bone - Matched tissue 

ultrasound velocity 

- Low attenuation 

coefficient compared 

to bone. 

- Lack of trabecular 

bone layer. 

- Requires molding. 

Liquid epoxy resin doped 

with gelatin cubic granules 

(1mm) and particles of 

natural bone. 

Trabecular bone - Matched tissue 

ultrasound velocity 

and attenuation 

coefficient. 

- Requires molding. 

 

- Simulated trabeculae 

are too large (1 mm3). 

- Biological tissue. 

Tubular polymer 

composites like ebonite, 

acrylic plastic, fiberglass 

and carbon fiber plastic. 

Cortical bone - Multi-layered model 

simulating increasing 

porosity. 

- Polymers covered a 

velocity range of 

poorly mineralize to 

hypermineralized 

compact bone. 

- Expensive to produce. 

- Complicated 

manufacturing 

procedure. 

- No attenuation 

coefficient data. 

- Requires molding. 
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Perspex plates Cortical bone - Matched tissue 

ultrasound velocity 

and attenuation 

coefficient. 

- Expensive to produce. 

- Complicated 

manufacturing 

procedure. 

- Produced in plates 

therefore no realistic 

anatomical geometry. 

- Fragile. 

Gelatin gels doped with 

graphite and alcohol. 

Soft tissues - Cheap to produce. 

- Easy to produce. 

- Easily controllable 

acoustic properties. 

- Low melting point. 

- Attenuation induced 

primarily with scatter 

agent. 

Gelatin gels doped with 

silica particles and 

Intralipid solution. 

Soft tissues. - Easy to produce. 

- Easily controllable 

acoustic properties. 

- Low melting point. 

- Expensive Intralipid 

solution. 

Gelatin gels doped with 

psyllium fibers. 

Soft tissues. - Cheap to produce. 

- Easy to produce. 

- Resembled the 

echogenicity of 

thyroid and testicular 

texture under US 

imaging. 

 

- Low melting point. 

- Attenuation induced 

primarily with scatter 

agent. 

- No information of the 

acoustic properties of 

this gel recipe was 

provided. 

Agar gels doped with 

graphite. 

Soft tissues - Cheap to produce. 

- Easy to produce. 

- Matched tissue 

ultrasound velocity 

and attenuation 

coefficient. 

- High melting point. 

- Attenuation induced 

primarily with scatter 

agent. 

- Fragile. 

- Visually opaque. 

Agar gels doped with 

evaporated milk. 

Soft tissues - Cheap to produce. 

- Easy to produce. 

- Matched tissue 

ultrasound velocity 

and attenuation 

coefficient. 

- High melting point. 

- Attenuation induced 

primarily with 

absorption agent. 

- Fragile. 

- Visually opaque. 

 

Agar gels doped with silica. Soft tissues. - Cheap to produce. 

- Easy to produce. 

- Matched tissue 

ultrasound velocity 

and attenuation 

coefficient. 

- High melting point. 

- Attenuation induced 

primarily with scatter 

agent. 

- Fragile. 

- Visually opaque. 

 

Polyurethane gels Soft tissues - Acceptable ultrasound 

velocity. 

- Complex molecular 

design and difficult to 

standardize. 

- Low attenuation 

coefficient. 

Polyacrylamide gels doped 

with BSA. 

Soft tissues. - Visually transparent 

matrix with visible 

heated lesions. 

- Linear dependence of 

attenuation coefficient 

with BSA 

concentration. 

-  

- Low attenuation 

coefficient. 

- Expensive to produce. 

- Complex to produce. 

- Possible toxicity 

during preparation. 

- Attenuation induced 

primarily with 

absorption agent. 

Polyacrylamide gels doped 

with egg white. 

Soft tissues. - Visually transparent 

matrix with visible 

heated lesions. 

- Linear dependence of 

attenuation coefficient 

with egg white 

concentration. 

- Low attenuation 

coefficient. 

- Possible toxicity 

during preparation. 

- Complex to produce. 

- Attenuation induced 

primarily with 

absorption agent. 
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Polyacrylamide gels doped 

with egg white, nylon, 

stainless steel and copper 

fibers. 

Soft tissues. - Visually transparent 

matrix with visible 

heated lesions. 

- Volumes of lesions 

formed in phantoms 

similar to control 

lesions. 

- Attenuation induced 

from both scatter and 

absorption agents. 

- Absence of acoustic 

properties 

quantitative data. 

- Complex to produce. 

- Possible toxicity 

during preparation. 

- Use of metallic 

materials can induce 

image artifacts in 

MRI. 

Polyacrylamide gels doped 

with BSA white and glass 

beads. 

Soft tissues. - Visually transparent 

matrix with visible 

heated lesions. 

- Attenuation induced 

from both scatter and 

absorption agents. 

- Matched tissue 

acoustic properties. 

- Expensive to produce. 

- Complex to produce. 

- Possible toxicity 

during preparation. 

Polyacrylamide gel 

phantoms by Onda Corp 

Soft tissues - Matched tissue 

acoustic and thermal 

properties. 

- Expensive to 

purchase. 

- Sold in rectangular 

containers. 

- No information for 

additives. 

N-isopropylacrylamide 

(NIPAM) gels 

Soft tissues - Matched tissue 

acoustic properties. 

- Reusable. 

- Complex to produce. 

- Possible toxicity 

during preparation. 

Polyvinyl Alcohol (PVA) 

cryogel 

Soft tissues - Matched tissue 

ultrasound velocity. 

- Possibility of treated 

with different number 

of freeze-thaw cycles 

to control its 

mechanical and 

imaging 

characteristics. 

- Low attenuation 

coefficient. 

- Long and complex 

preparation through 

multiple freeze-thaw 

cycles. 

 

 Following literature review, it was concluded that soft tissue phantoms are   

predominantly mimicked by a variety of different gels. The gels differ between them in 

the gelling agent used and the preparation method. Gelatin and agar are natural products 

extracted for animal collagen and seaweed polysaccharides respectively, they are not 

toxic and their preparation does not require either special skills or equipment. 

Polyurethane, polyacrylamide and polyvinyl based gels are synthetic polymers that 

present various degrees of toxicity and the preparation can be complex varying from 

freeze-thaw cycles to crosslinking of multiple polymers. In order to match the attenuation 

characteristics of the replicated tissue, gels were doped with different types of scatterers 

in the form of nylon fibers, glass beads, silica particles etc. Other phantom makers chose 

to control the attenuation characteristics their gels with additives high in protein content 

like BSA, evaporated milk, egg white, etc., which induce primarily acoustic absorption. 

No evidence in literature was found for a soft tissue mimicking gel that combined both 

scatter and absorption additives except in the report of Choi et al [142], where glass beads 
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were combined with BSA in a polyacrylamide gel in order to increase the rather low 

attenuation coefficient and induce scattering effects.  

 There were very few examples of bone replicating phantoms with their majority 

being hardened liquid epoxy resin or different polymers and polymer composites like 

ebonite, acrylic plastic, fiberglass and carbon fiber plastic. Attempts of simulating 

trabecular bone structure were made by doping epoxy resins with rubber granules. The 

majority of these phantoms were manufactured in plate samples and no standardized 

methodology of fabricating bone structures with realistic geometry was presented. 

 This review revealed the need of developing composite tissue mimicking 

phantoms with realistic geometry and independently controlled attenuation 

characteristics. There was complete absence of composite phantoms made out of non-

biological material.  Composite phantoms of replicating both soft and bone tissue are 

necessary to assess the possible interactions of ultrasound with tissue residing inside and 

outside the acoustic field. Unwanted thermal spots rising from increased absorption and 

reflection at interfaces, field intensity amplification from standing waves and the 

absorption of scattered waves using the proposed phantoms can be examined thoroughly. 

The phantoms preparation method should be easy without any expertise needed. The cost 

of the materials used should be affordable and any technology used for their fabrication 

should be widely available. The remaining of the thesis will present a methodology of 

developing phantoms for three major focused ultrasound applications that will allow 

researchers to explore the extent of thermal effects. 
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3  Selection and testing of phantom materials 

3.1 Introduction 

 The following chapters describe the fabrication and characterization of three 

phantoms suitable for testing thermal exposures using HIFU guided by MRI. All 

phantoms were composed by two homogenous materials, one for replicating soft tissue 

and the second one for bone tissue. The selection process of the candidate materials used 

was considered prior to fabrication. The requirements tested for assessing the materials 

suitability are presented in the following sections. 

3.2 Agar gels for mimicking soft tissue phantoms 

 Agar is a gelling agent extracted from red algae which consists of a complex 

mixture of polysaccharides. Gels can be formed by dissolving agar in boiling water that 

set once cooled down. During the jellification process, agar demonstrates a hysteresis 

phenomenon where the melting temperature (>85 ºC) is considerably higher from the 

temperature range that solidification takes place (32-45 ⁰C). The final product is a 

homogeneous opaque gel that can be easily molded to form well-shaped volumes with 

clear margins.  

 Agar based gels are a frequent selection for constructing soft tissue mimicking gel 

phantoms in ultrasound applications since they are non-toxic, low cost, easy to make and 

do not require special equipment to be prepared [134], [147], [148]. The high melting 

temperature of agar gels makes them ideal for testing HIFU applications since they can 

maintain their structural integrity for a considerably wide range of ablative temperatures 

(60 ⁰C< θ<85 ⁰C).  The concentration of agar in water expressed in weight (grams of 

agar) per volume of water percentage (w/v %) affects the gel’s stiffness and consequently 

controls its elasticity. By varying the concentration of agar, the stiffness of the gel can be 

modified to match the replicated tissue’s bulk mechanical characteristics.  

3.3 Silica dioxide (SiO2) for controlling acoustic scattering in an agar 

matrix 

 The process of scattering is a significant energy loss mechanism produced in the 

vicinity of biological tissue inhomogeneities. Although scattering does not contribute 

directly to the conversion of acoustic energy to heat, it increases the overall attenuation 

and thus needs to be considered when designing a realistic tissue mimicking phantom. 
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Silica dioxide or silica is commonly added in tissue mimicking phantom gels to enhance 

attenuation through acoustic scattering [130], [136]. 

 Silica is a crystalline compound found abundant in sand. It is insoluble in water 

with a high mass density ( 2.6 g/cm3) while its melting temperature exceeds 1600 ⁰C.  

Due to the large acoustic impedance mismatching at interfaces of dense silica particles 

embedded in a tissue mimicking gel, ultrasound is reflected. Since silica dioxide crystals 

in powdered form are usually amorphous and with dimensions comparable or smaller to 

the acoustic wave’s wavelength, the wave is reflected in all directions through the process 

of Rayleigh scattering.  The degree of scattering is correlated with the population of 

scatterers per unit volume and their size. Scatterers can enhance secondary absorption by 

increasing the effective path length of the wave but for simplicity it will be assumed that 

attenuation in gels doped with silica is purely a result of scattering. 

3.4 Evaporated milk for controlling acoustic absorption in an agar 

matrix 

 The effectiveness of HIFU induced hyperthermia and ablation applications 

depend on the thermal dose deposited at the targeted tissue throughout the treatment 

period. This loss mechanism is characterized by the associated tissue’s absorption 

coefficient. Evaporated milk induces low scattering and has been used in various studies 

as an additive in gel phantoms to primarily control attenuation independently from 

scattering [132], [149], [150]. Acoustic energy is converted to heat via viscous frictions 

inside the phantom. When the temperature is raised above a threshold, heat energy is 

sufficient to disrupt irreversibly hydrogen bonds that retain milk proteins in a folded state. 

This irreversible effect is known as thermal protein denaturation and it is the primary 

mechanism of biological tissue necrosis under HIFU ablation. The addition of evaporated 

milk was tested on the hypothesis that acoustic absorption and thus attenuation is 

correlated to the concentration of milk in the final gel, expressed in a volume to volume 

percentage (v/v %). 

3.5 Acrylonitrile Butadiene Styrene (ABS) for replicating bone tissue 

 Attenuation and loss of the acoustic wave’s phase coherence distort the quality of 

the focusing pattern in transcranial applications. Researchers have developed various 

adaptive focusing techniques to overcome these skull induced amplitude and phase 

aberrations. These techniques involve solving back projected acoustic linear wave 

equations and calculating the required amplitude and time shifts for every element of the 
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array that converges the beam at focus. In order to solve these differential equations, the 

skull thickness, density and the speed of sound in the skull for each acoustic pathway 

needs to be calculated. Unintended heating from bone/tissue interfaces in the near or far 

field pose major safety and treatment efficacy problems in some HIFU applications that 

need to be addressed in phantom studies. 

 For bone modelling it was decided to test ABS as a possible candidate material. 

ABS is a thermoplastic polymer commonly used as a raw material in Fused Deposition 

Modelling (FDM). FDM is just one of the many available techniques for prototyping 3D 

models. During printing operation, raw ABS is heated by a filament to reach melting 

temperature and then it is forced through a fine nozzle to build 3D models. While fusing 

layer upon layer, the final product is built to a geometrically accurate representation of 

the model, which is important for inducing analogous acoustic field distortions to human 

bones. 

 ABS products are durable, heat resistant and chemically inert under normal 

conditions and therefore reusable. This is also another advantage since ABS will be used 

as a bone phantom for a range of different conditions without having to worry for changes 

to its physical properties. Being a plastic is also not expected to produce any severe 

artifacts while monitoring focused ultrasound exposures with MRI. 

3.6 Estimation of materials acoustic properties using immersion 

techniques 

 In order to assess the suitability of the materials used to construct the phantoms,   

a methodology for assessing their acoustic properties is needed. The most relevant 

acoustic properties for phantoms designed for HIFU is the attenuation coefficient and the 

propagation speed. The first property controls the degree of acoustic energy to heat 

conversion and therefore a close matching with the attenuation coefficient of the 

replicated tissue is desirable. Acoustic speed and mass density set the reflection 

coefficient at interfaces and consequently the actual fraction of incident acoustic energy 

propagating through the phantom depends on it.  Pulse-echo and transmission methods 

are broadly used for characterizing the attenuation coefficient and acoustic speed of 

ultrasound. They involve submerging the specimen under examination in a tank filled 

with degassed water. All measurements are performed with immersion unfocused 

ultrasonic transducers. These methods differ in experimental configuration, the 

assumptions taken, the type of signals measured and their advantages. 



  

 44 

3.6.1 Methods for estimating acoustic attenuation coefficient 

Transmission through method for measuring acoustic attenuation coefficient 

This technique compares the transmitted signals through material specimens of different 

thicknesses [151]. It uses two immersion planar transducers, one for transmitting and one 

for receiving the signal (Figure 3.1). 

 

Figure 3.1: Variable thickness technique for measuring attenuation coefficient of the 

tested material [9]. 

 

The two transducers operate at the same central frequency and gain to ensure an identical 

response. The specimen is positioned between the two transducers and preferably beyond 

the far field of the transmitting transducer, where constructive interference of waves 

produced at the face of the transducer create a uniform front that decays smoothly with 

distance.  

 The advantage of the variable thickness method is that there is no need to calculate 

the reflection or transmission coefficients of the material. First a thinner specimen with 

thickness d1 is positioned between the two transducers. The peak-to-peak voltage at the 

receiver side is measured (Vd1) on an oscilloscope. The thicker specimen with thickness 

d2 is positioned at exactly the same distance from the transmitter. For strictly correct 

measurements the receiver in the second measurement must be moved by a d2-d1 distance 
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in order to keep the length of the immersion liquid constant between the two 

measurements. If water is used as the immersion liquid and the thickness difference 

between the two specimens is small, we can neglect this correction since water does not 

attenuate the beam significantly. The peak-to-peak voltage of the thicker specimen is also 

measured (Vd2). The voltage measured at the receiver is directly proportional to the 

pressure exerted by the acoustic wave. It is then safe to deduce that the square of the 

voltage measured is proportional to the sound wave’s intensity. If we follow some 

mathematical analysis to calculate the sound intensity at the receiver’s end for both 

thicknesses we end up with Equation (3.1) for calculating the characteristic attenuation 

coefficient (α) of the material in units of  dB/cm. 

The expression above contains no reflection or transmission coefficient. The coefficients 

cancel each other out when we calculate the ratio of intensities as a function of the 

measured voltages for the two different thicknesses. 

Pulse echo method for measuring acoustic attenuation coefficient 

The method introduced by Youssef and Gobran [152], follows a different approach from 

the variable thickness technique. The main difference is that measurements are performed 

using reflected echoes at a single transducer (T) working in transmit and receive mode 

(Figure 3.2). 

 

Figure 3.2:  Single transducer pulse echo method [10]. 

 
𝛼 =  
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 The authors described equations of the acoustic intensity arriving at the transducer 

face for two different scenarios. First the transducer (T) is immersed in a tank of fixed 

dimensions and on the opposite side of the tank a perfect reflector is placed. The reflector 

can be any flat and smooth material with a high acoustic impedance like aluminum or 

plastic. The transducer measures the signal intensity (Iw) arriving in the absence of a 

specimen in the path of the beam. The intensity of the signal depends only on the 

attenuation coefficient of the immersion liquid and the distance travelled.  

 In the second scenario, a specimen of thickness L is positioned in the pathway of 

the beam. The transducer records echoes rising from reflections produced by every 

interface met along the wave’s pathway. The echo returning from the front face of the 

specimen and travelling a distance 2x1 is denoted as intensity I3 , while the signal with 

intensity I12 travels the full pathway of distance 2( x1+L+x2). A system of equations 

describing the reflected echoes intensities at every interface (I1 to I12) is solved and by 

using multiple substitutions we end up in a simple system of two equations containing 

two unknown variables. 

 Iw and I3 are directly measured from the transducer whereas the term r2 is equal to 

the reflection coefficient of the liquid/specimen interface. The term α1 stands for the 

attenuation coefficient of the immersion liquid. If degassed water is used as the immersion 

liquid it can be safely assumed that the attenuation of ultrasound is negligible and 

therefore the exponent approximates unity, which leads to a very simple expression 

described by: 

 

The second equation of the system after all substitutions is given by Equation 3.3, where 

α2 refers to the attenuation coefficient of the specimen.  

 

Once again I12 and Iw are deduced from the transducer’s voltage signals whereas r2 is 

calculated from Equation (3.2). The attenuation coefficient α2 is calculated using 

Equation (3.3).  The single transducer method is valid if the reflection and transmission 

 
𝐼𝑤

𝐼3
= (

1

𝑟2
) 𝑒[−4𝑎1(𝑥2+𝐿)]    =  (

1

𝑟2
) , 𝑓𝑜𝑟 𝑎1 ≈ 0 

(3.2) 

 

 𝐼12

𝐼𝑤
=  (1 − 𝑟2)4 𝑒[−4(𝑎2−𝑎1)𝐿] =  (1 − 𝑟2)4 𝑒(−4𝑎2𝐿) , 𝑓𝑜𝑟 𝑎1 ≈ 0 (3.3) 
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coefficients at both faces of the specimen are equal. For a homogeneous material at 

constant temperature, this seems to be a logical assumption. 

3.6.2 Estimation of attenuation coefficient variation for agar gels doped with 

different concentrations of SiO2 using transmission through technique. 

Materials and Methods 

Agar gels (granulated form, microbiology grade-Merck Millipore, Darmstadt, Germany) 

of a 2 % w/v of water concentration were used in order to produce gels of intermediate 

stiffness and flexible enough to withstand manual handling and high intensity ultrasound 

compressional forces without cracking. This selection is within the range of 

concentrations (2 %-2.7 %) of agar based HIFU soft tissue mimicking phantoms found in 

bibliography [153]–[155]. Agar gel specimens were doped with silica dioxide powder of 

different concentrations (0 %, 1 %, 2 %, 3 % w/v). The silica particles size ranged between 

0.5-10 μm (Silica Dioxide, Sigma-Aldrich, St. Louis, Missouri , United States). 

 The first step in preparing the gels was to calculate and weigh the quantities 

needed for each of the tested four recipes. The volume of each batch was 100 ml and 

therefore the weights were extracted based on the concentrations previously described. 

Agar and silica powders were weighed using a 0.1 g precision electronic scale. To 

minimize attenuation from gas bubbles trapped inside the gels, 150 ml of distilled and 

degassed water was used. Distilled water is free from impurities that can affect the 

attenuation measurements. The water volume was degassed inside a vacuum chamber. 

Degassing time lasted for as long as we could see bubbles emerging on the surface 

(approximately 20-25 minutes). 

 Agar and silica powders were poured inside a glass beaker containing 100 ml of 

degassed water. The mixture was first stirred using a magnetic stirrer to ensure adequate 

mixing and dissolving of powder granules before boiling. Excessive boiling leads to 

evaporation and desired concentrations can be altered. Following 20 minutes of stirring 

on high revolutions the mixture was then boiled to exceed 85 ⁰C, which is the melting 

temperature of agar. The amount of water evaporated during boiling was replenished to 

reach the initial 100 ml volume and maintain the initial agar and silica concentrations. 

The heater was turned off and the mixture was left to cool down to room temperature. 

Stirring was kept at all times during cooling period, but at lower revolutions, up until the 

mixture started jellifying (35-40 °C) and becoming viscous. This was vital to ensure that 

silica particles distributed evenly within the gel’s matrix. 

https://en.wikipedia.org/wiki/St._Louis,_Missouri
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 The variable thickness technique was followed because it does not require 

determination of the reflection coefficient.  For each silica dioxide concentration two 

different thicknesses were prepared (16 mm and 26 mm). The samples were poured in 

plastic 3D printed plastic containers and were left to solidify overnight (Figure 3.3A – 

Figure 3.3B).  Custom made plastic holders were designed and manufactured to 

accommodate the specimen containers of different thicknesses (16 and 26 mm) in 

between the immersion transmitter and receiver (Figure 3.3C). 

 

 

The holder had two cylindrical cavities that could fit tightly the two 10 mm circular 3.5 

MHz transducers (Etalon, ESN-410-SCBI) facing each other while the specimen was 

positioned in between and with side openings perpendicular to the acoustic beam’s 

A 

B 

C 

1st transducer 

2nd transducer 

Agar-silica specimen 

Figure 3.3: A) Agar-silica gel sample moulded inside the 16 mm sample container, B) 

Agar-silica gel sample moulded inside the 26 mm sample container, C) Custom made 

holder for agar gel transmission through measurements. 
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pathway emitted by the transmitting transducer. The transmitter (T/R) and receiver (R) 

were connected via coaxial cables to a Panametrics pulser/receiver (Panametrics 500PR, 

Olympus Corp, Tokyo, Japan). 

 A high pass filter selectable via a rear panel switch was used to change excitation 

pulse recovery time and reject low frequency noise. The pulser/receiver was set to operate 

in transmission through mode. The signal of the receiving transducer was fed to a 20 MHz 

oscilloscope (Hameg HM203-7, HAMEG Instruments GmbH, Mainhausen, Germany) to 

observe voltage over time. The transmitter and receiver gain were kept constant whilst 

the pulse repetition frequency was adjusted (5 kHz) to keep a single cycle of the periodic 

signal for the set time per division (20 μs). The attenuation coefficient in dB/cm was 

calculated using Equation 3.1 for every set of gels. The coefficient for different silica 

concentrations was normalized to more useful units of dB/cm-MHz by dividing with the 

transducer’s frequency (3.5 MHz). This approach assumed a linear dependence of 

attenuation of with frequency of the prescribed heterogeneous phantom. A similar 

approach was used in a study by Nam et al.  [156], where attenuation data induced by 

glass bead scatterers of similar size (10-100 μm) in tissue mimicking phantoms fitted 

almost linearly in the frequency range between 2.5-10 MHz. Figure 3.4 demonstrates the 

experimental setup used for the transmission through attenuation measurements.  

 

Figure 3.4: Experimental setup for the transmission through measurements of a specimen 

of thickness (d) in between the transmitter (T) and receiver (R) all immersed in a tank 

filled with degassed water. 
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Results 

Voltages induced by acoustic waves transmitting through the specimens and reaching the 

receiver were monitored for each sample’s thickness (16 mm and 26 mm). The 

measurements were repeated for each silica concentration (0 %, 1 %, 2 % and 3 %).The 

results are summarized in Figure 3.5 as a plot of attenuation coefficient in units of dB/cm-

MHz as a function of silica concentration demonstrating a linear dependence. 

 

Figure 3.5: Agar-silica gel attenuation coefficient variation for different concentrations 

of silica dioxide.  

3.6.3 Estimation of attenuation coefficient variation for agar gels doped with 

different concentrations of evaporated milk using transmission 

through technique.  

Materials and Methods  

A recipe described by Madsen et al. was used [132], where evaporated milk was added to 

agar gels to produce a solid gel of very low scatter tissue mimicking material. Evaporated 

milk is a dehydrated version of fresh milk, where approximately 50 % of water is 

removed. In the absence of silica dioxide from the gel any drop in the intensity of the 

acoustic field could be attributed primarily to acoustic absorption by the evaporated milk. 

Four sets of agar-milk gel samples of different milk concentrations (10%, 20 %, 40 % and 

50 % v/v) in a 2 % w/v agar based gel were prepared. The evaporated milk used was a 

product by Friesland Campina, Marousi, Greece (NOUNOU condensed milk). According 

to the manufacturer’s nutritional datasheet, 100 ml of milk included 4.2 g of fats and 3.5 

g of proteins. 
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 For each sample, agar powder was mixed with the appropriate volume of distilled 

and degassed water. Similarly like in silica experiments, agar–water mixture was boiled 

with a heater until agar melted. For each concentration sample, the correct volume of 

evaporated milk was boiled up to 55 °C in a separate container. Temperature was 

monitored in both containers using an electronic thermometer (Electrotherm Model TH-

99A, Cooper Instrument Corp., Middlefield, Connecticut, USA). When the temperature 

of the agar-water mixture reached 55 °C, the warm evaporated milk was added and was 

well mixed using a magnetic stir bar. We avoided to add milk while the agar-water 

mixture was hot since proteins denature irreversibly above 55 °C. The agar-milk gel was 

poured and left to solidify overnight in the custom made plastic sample containers (16 

mm and 26 mm). The sample containers were used to determine the attenuation 

coefficient from each agar-milk concentration sample. Once again we used the varying 

thickness technique and monitored the voltage drop in the signal of a 3.5 MHz ultrasound 

transducer- receiver while using the transmission through method. 

Results 

The results for each agar-evaporated milk sample concentration are summarized in Figure 

3.6. A linear correlation of milk concentration to attenuation coefficient was observed, 

which was evident of acoustic absorption mechanism enhancement. The attenuation 

induced by acoustic absorption of different concentrations of evaporated milk embedded 

in a 2 % w/v agar gel was assessed.  Attenuation increased linearly with the concentration 

of milk in the gel primarily due to absorption mechanism.  

 

Figure 3.6: Agar-evaporated milk gel attenuation coefficient variation for different 

concentrations of evaporated milk. 
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The results are in agreement with the results presented by Madsen et al. [132], which 

demonstrated a broadband attenuation coefficient of 0.5 dB/cm-MHz for agar gels doped 

with a 50 % v/v  concentration of evaporated milk for frequencies up to 8 MHz.  

3.6.4 Estimation of attenuation coefficient of ABS samples using 

transmission through technique. 

Materials and Methods 

ABS was tested as the candidate material for replicating bone tissue. Two square plates 

of ABS specimens of different thicknesses, 2.5 mm and 5 mm respectively, were 

produced (4×4 cm) using a rapid prototyping machine (Stratasys, Fortus FDM 400mc, 

Eden Prairie, Minnesota, USA). The produced specimens are shown in Figure 3.7. A solid 

interior printing style was used to fill up the model completely with raw material without 

any air gaps. Details of the printing process will be described in the following chapters. 

 

Figure 3.7:  ABS specimens of 2.5 and 5 mm thickness. 

 

The printed ABS specimens were significantly thinner compared to the agar gel samples 

tested. Attenuation from the plastic was expected to be large and therefore in order to 

measure adequately a signal, specimens’ thicknesses were kept small. The ABS plates 

were secured tightly in the rails of a custom made holder approximately midway between 

the transmitter and receiver (Figure 3.8). The rails hold the ABS plates in an upright 

position for intersecting the field’s propagation direction at right angles. The setup used 

was identical to the one used while testing the attenuation of agar gels doped with various 

additives. The emitted amplitude and the receiver’s gain were set to maximum to amplify 

the very small acoustic signal transmitted through the plastic samples. 

2.5 mm 
5 mm 
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Figure 3.8: Custom made holder for ABS attenuation measurements. 

 

Results  

The ABS attenuation coefficient was calculated using the expression described by 

Equation 2. A linear dependence of attenuation with frequency was assumed. The 

attenuation coefficient was estimated to be equal to 16.01 ± 6.18 dB/cm-MHz. 

3.6.5 Estimation of acoustic speed using pulse echo technique. 

The pulse-echo immersion technique was used for estimating the acoustic speed in the 

candidate materials. The method involved one transducer (Etalon, ESN-410-SCBI). The 

transducer was operating at a central frequency of 3.5 MHz. Specimens of each recipe 

with a  2.6 cm thickness were prepared and molded in custom made containers as shown 

in Figure 3.3B. A pulser/receiver (Panametrics 500PR, Olympus Corp., Tokyo, Japan) 

supplied the electrical pulses to the transducer while set to the T/R (transmit/receive) 

mode. The specimen was positioned in the far field of the transducer and echo reflections 

from each interface were observed on an oscilloscope (Hameg HM203-7, HAMEG 

Instruments GmbH, Mainhausen, Germany).  The transducer-specimen setup was 

immersed in a tank filled with degassed water as shown in Figure 3.9. 

 Acoustic speed in the specimen was estimated by determining the time difference 

Δt between the echoes returning from the interfaces of the specimen. An echo E1 which 

corresponded to the reflection from the first interface (water/specimen) and an echo E2  

from the second specimen/water interface were observed (Figure 3.9). 

Transmitter 

position 
Transmitter holder 

Receiver holder 

2.5 mm rail 

5 mm rail 
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Figure 3.9:  Experimental setup of pulse echo immersion technique for measuring the 

acoustic speed in the tested specimens. 

 

A typical signal with the characteristic echo peaks was displayed on the oscilloscope as 

shown in Figure 3.10, where the 2nd and 3rd peak correspond to E1 and E2 respectively.  

The time required (t1) for E1 to bounce on the first interface while travelling for a distance 

equal to 2d1 in water is given by Equation 5, where vwater represents the propagation speed 

of sound in water.  

 

Figure 3.10: Typical signal produced by reflections at specimen’s interfaces during pulse 

echo immersion technique for estimating acoustic speed. 

Ε1 Ε2 

Δt 
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Following the path of E2 an expression that describes the time t2 required for the echo to 

propagate through a distance of 2d1 in water and 2d2 in the specimen and return back to 

the transducer (Equation 3.5). The expression takes in to consideration that vwater and 

vspecimen are different.  

 
𝑡2 =

2𝑑1

𝑣𝑤𝑎𝑡𝑒𝑟
 +  

2𝑑2

𝑣𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
 (3.5) 

 

The time difference ∆t between the two echoes can be found by deducting t1 from t2 and 

end up with an expression which depends only on d2 and vspecimen (Equation 3.6). 

Solving for vspecimen we end up with an expression that only Δt needs to be measured (d2 

is assumed to be known). 

 𝑣𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 =
2𝑑2

∆𝑡
 (3.7) 

 

 Acoustic speed was calculated using the aforementioned pulse echo method for 

two agar gel recipes that combined both silica dioxide and evaporated milk. The two 

recipes included different concentration of additives and they were selected based on the 

attenuation characteristics of the soft tissues replicated. The brain phantom recipe was 

made out of 2 % w/w agar, 1.2 % w/w SiO2, 25 % v/v evaporated milk whereas the second 

recipe mimicking muscle tissue consisted out of 2 % w/w agar, 2 % w/w SiO2, 40 % v/v 

evaporated milk. Details about the selection of the exact concentrations will be given in 

the following chapters where fabrication of phantoms will be fully described. Specimens 

of both gel recipes were prepared and molded inside the 2.6 cm containers used for the 

attenuation measurements. A thicker sample was selected to increase the time difference 

between E1 and E2 to improve the accuracy in the acoustic speed’s estimation. 

 Initially an attempt to estimate the acoustic speed in ABS specimens was made 

using the pulse echo technique but soon realized that it was not possible. The main 

problem with ABS was that only echoes from the front wall of the specimen were detected 

(E1) by the transceiver and none from the back wall (E2). The main reason for not 

 𝑡1 =
2𝑑1

𝑣𝑤𝑎𝑡𝑒𝑟
 (3.4) 

 

 
∆𝑡 = 𝑡2 − 𝑡1  =

2𝑑2

𝑣𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
 (3.6) 
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detecting the reflection echo was due to disturbance of the propagating wave from the 

inner layers of the specimen. During fused deposition modelling, ABS is deposited in a 

raster pattern and consecutive raster layers are oriented at 45º to each other to minimize 

void space.  Transmission through method was used to determine ABS acoustic velocity 

by observing the change in the time of flight of the transmission signal (S) detected by 

the receiver (Figure 3.11). 

 In the absence of a specimen the time required (t1) for the sound wave (S) 

travelling from the transmitter (T) to the receiver (R) positioned at distance (d1) is given 

by equation 3.8, where vwater corresponds to ultrasound speed in water. 

 

If a specimen of ABS of thickness d2 is immersed in between the two transducers, the 

time of flight of the transmission signal (t2) is described by equation 3.9, where vspecimen 

corresponds to ultrasound speed in the specimen. 

 

 

 

Figure 3.11: Experimental setup of transmission through immersion technique for 

measuring the acoustic speed in ABS specimens. 

 

 

 
𝑡1  =

𝑑1

𝑣𝑤𝑎𝑡𝑒𝑟
  (3.8) 
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By substituting equation 3.8 to equation 3.9 a simple expression for calculating vspecimen, 

is derived. 

  

 A specimen of intermediate thickness (d2 = 1 cm) was used to balance between 

heavy attenuation of the transmitted signal by ABS ( -56dB at 3.5 MHz) and adequate 

change in the time of flight. The acoustic speed in water was taken as 1480 m/s, whereas 

Δt was found by measuring the relative change in the time of flight of transmission signal 

with (t2) and without the specimen in place (t1). 

Results 

For the brain mimicking gel recipe (2 % w/w agar, 1.2 % w/w SiO2, 25 % v/v evaporated 

milk ), acoustic speed was estimated at 1485 ± 12 m/s. For the muscle mimicking gel 

(2 % w/w agar, 2 % w/w SiO2, 4 0% v/v evaporated milk) acoustic speed increased to 

1529 ± 13 m/s. Acoustic speed in an ABS sample was calculated at 2048 ± 79 m/s. 

 

3.7 Mass density measurements using the water volume displacement 

method. 

 The aforementioned soft tissue phantom recipes were tested to quantify their mass 

density. Samples of 100 ml volume for each gel recipe were prepared. The gels were 

sliced in approximately equal volumes, with dimensions small enough to fit inside a 

volumetric tube. Each piece was first weighed with a high precision (±0.01 g) electronic 

scale (Tanita 1479V digital mini scale, Preston, Washington, USA) and then its volume 

was deduced by measuring water displacement in a volumetric tube (±1 ml). The greatest 

source of error in these measurements was the precision of the volumetric tube, therefore 

the specimens used were as large as possible to minimize the fractional error in volume 

measurements. Six specimens were taken from the same batch and the average mass 

density in g/cm3
 was calculated. 

 𝑡2  =
𝑑1−𝑑2

𝑣𝑤𝑎𝑡𝑒𝑟
 +  

𝑑2

𝑣𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
 = 

𝑑1

𝑣𝑤𝑎𝑡𝑒𝑟
 −  

𝑑2

𝑣𝑤𝑎𝑡𝑒𝑟
 +  

𝑑2

𝑣𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
 (3.9) 

 𝑣𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛  =  
𝑑2

(𝑡2 − 𝑡1) + 
𝑑2

𝑣𝑤𝑎𝑡𝑒𝑟
 
 =  

𝑑2

𝛥𝑡 + 
𝑑2

𝑣𝑤𝑎𝑡𝑒𝑟
 
   (3.10) 
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 The density of the brain mimicking phantom recipe (2 % w/w agar, 1.2 % w/w 

SiO2, 25 % v/v evaporated milk) was found to be 1.05±0.01 g/cm3 and similarly for the 

muscle recipe (2 % w/w agar, 2 % w/w SiO2, 40 % v/v evaporated milk), mass density 

was estimated to be  1.07±0.01 g/cm3
. ABS density was taken from the manufacturer’s 

datasheet [157] which was reported at 1.04 g/cm3
. 

3.8 Estimation of soft tissue phantoms thermal properties 

 The goal of this study was to develop tissue mimicking phantoms destined for 

testing thermal protocols under HIFU. Therefore in order to make comparisons and 

extract conclusions that are either directly or indirectly transferrable to in vitro, in vivo or 

numerical simulation studies, the thermal properties of the candidate materials must be 

characterized. 

3.8.1 Estimation of soft tissue phantoms thermal properties using a 

noninvasive MR thermometry technique. 

Materials and Methods 

Thermal conductivity is an intrinsic thermal property of materials that describes the 

ability of the material to conduct heat away from hotter to colder areas until thermal 

equilibrium is established. Numerically it is expressed as the rate of transferred heat 

between two conducting surfaces of the material per unit surface area (W/m2) divided by 

their temperature gradient (K/m1
 or ºC/m). The units of thermal conductivity are W/m-K 

or W/m-ºC. 

 The traditional methods for measuring thermal conductivity of a material can be 

categorized in steady state and transient methods. In steady state methods measurements 

are performed while the temperature of the material under examination does not change 

over time, whereas in transient techniques measurements are done while heating the 

material. Both methods require specialized equipment like heat sources and sensors of 

various geometries. The aforementioned methods are partially invasive since they require 

embedding temperature sensors inside the material under examination, thus affecting its 

structural integrity. Instead a completely noninvasive approach first presented by Cheng 

et al. [158] was used, where thermal conductivity estimation is possible by combining  

magnetic resonance temperature imaging (MRTI) and HIFU. 

 The method uses HIFU to induce moderate heating to tissue whilst monitoring 

temperature with MRTI. Following the end of sonication, thermal clearance can be 
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characterized by a 2D space and time analysis of the Bioheat Equation (BHT) described 

by Pennes et al. [159]: 

 

 

, where T is the tissue’s temperature, kt is the thermal conductivity of tissue, t is time, ρt 

corresponds to tissue density, ct and cb are the specific heats of tissue and blood (water 

equivalent), wb is the blood perfusion rate, Ta is the arterial blood temperature and Q is 

the total power deposition. The BHT equation assumes that thermal clearance in tissues 

is governed by two mechanisms: conduction and perfusion. The non-directional term of 

perfusion represents the cumulative effect of a dense capillary network which in the 

absence of a large vessel acts as spatially uniform heat sink. 

 Cline et al. [160] showed that the focusing patterns from a spherically focused 

transducer can be approximated with elliptical Gaussian functions with radial (ro) and 

axial (zo) radii and provide an exact analytic solution of  the BHT equation. For a time 

impulse source of heat provided by focused ultrasound, the exact solution of BHT at focus 

(z=0)  and in a plane perpendicular to sound propagation simplifies to the following 2D 

Gaussian function for T(r,t) along the focal plane: 

, where D corresponds to the diffusivity and τR to the heat diffusion time constant along 

the radial direction. In heat transfer analysis the diffusivity coefficient (D) is the ratio of 

thermal conductivity (kt) divided by the tissue’s density (ρt) multiplied by its specific 

heat capacity (ct) at constant pressure (equation 3.13). 

 𝐷 =
𝑘𝑡

𝜌𝑡𝑐𝑡
 

(3.13) 

 

The final form of Equation 12 represents a Gaussian shaped temperature profile with a 

time dependent radius R(t) which expands with time. The expansion rate of R2(t) can 

calculated by differentiation in Equation 3.14. 

 

Using the final form of equation 3.14 the unknown tissue conductivity coefficient kt can 

be derived by monitoring the expansion of squared radius R2(t) of the Gaussian 

temperature profiles over time during cooling period as demonstrated in  Figure 3.12A. 

 
𝜌𝑡𝑐𝑡

𝜕𝑇

𝜕𝑡
 =  𝑘𝑡∇2𝑇 − 𝑤𝑏𝑐𝑏(𝑇 − 𝑇𝑎)  +  𝑄 (3.11) 

𝑇(𝑟, 𝑡) = 𝐴(𝑡) 𝑒
(−

𝑟2

4𝐷(𝑡+𝜏𝑅)
)

 =  𝐴(𝑡) 𝑒
(−

𝑟2

𝑅2(𝑡)
)
 

 

(3.12) 

 𝜕𝑅2(𝑡)

𝜕𝑡
 =  

𝜕

𝜕𝑡
(4𝐷(𝑡 + 𝜏𝑅))  =  4𝐷 =  

4𝑘𝑡

𝜌𝑡𝑐𝑡
 (3.14) 
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As expected from equation 3.14 a plot of R2(t) against time (t) would yield a straight line 

with a gradient proportional to the conductivity coefficient kt  as showed in Figure 3.12B. 

 The method described above was used to quantify the thermal properties of the 

two soft tissue phantom recipes (brain and muscle). A spherically focused ultrasound 

transducer (Sonic Concepts, Inc., Bothell, Washington, USA) driven by a 750 W 

amplifier (JJ&A Instruments, Duvall, WA, USA) was used to sonicate the gel phantoms 

and raise the temperature at the focus. The transducer consisted of a single element 

piezoelectric crystal of 4 cm diameter and with a focal length of 95 mm.  

 

 

Figure 3.12: A) Temperature measured at a focal plane for different times (t) post 

sonication across the focus. The distribution of temperature across the focus was fitted to 

a Gaussian profile centred at maximum temperature for each point in time. R(t) 

represents the Gaussian radius which is equal to half width at half maximum of the 

Gaussian profile. B) Linear dependence of squared Gaussian radius R2(t) at different post 

sonication times (t). The gradient of the linear fit is proportional to the tissue specific 

thermal conductivity (kt) [158]. 

 

Each of the phantom gels was molded inside a rectangular container with an open top to 

allow propagation of ultrasound. The transducer and gels were positioned inside a plastic 

tank filled with degassed water.  The transducer was fixed using a holder on top of the 

gel phantom. The distance between the transducer and the gel’s top surface was shorter 

than the focal length (< 95 mm) so that the focus is created in the center of the phantom. 

The experimental setup prior to moving inside the MRI bore’s isocentre is demonstrated 

in Figure 3.13. MR temperature imaging was used to monitor temperature elevation and 

drop during the exposure. A flexible surface imaging coil (GPFLEX coil by General 

Electric, Milwaukee, USA) was positioned under the water tank. Since the surface coil 

had a limited sensitivity range (approximately 20 cm) by using this configuration the 

region of interest inside the gel phantom was brought as close as possible. 

B A 
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 The setup was positioned at the isocentre of a 1.5 Tesla MRI scanner (General 

Electric Signa Excite, Milwaukee, USA). Temperature changes were calculated using the 

proton resonance frequency shift method.  The acquisition protocol used for thermometry 

is presented in 2D SPGR sequence (repetition time (TR): 38.5ms, echo time (TE): 20 ms, 

receiver bandwidth (rBW): 15 kHz, matrix: 128 x 128 pixels, slice thickness: 5 mm, 

number of excitations (NEX): 1, displayed field of view (DFOV): 25 x 25 cm2). The 

thermometry slice was prescribed in a plane perpendicular to sound propagation and at 

the level of the focus. Following analysis a single thermal map was produced every 12 s. 

Details about magnetic resonance thermometry will be given in later chapters. Typical 

thermal maps in 2D and 3D are demonstrated in Figure 3.14. 

 

Figure 3.14:  A) Representation of thermal map of the soft tissue mimicking gel in 2D, 

B) The thermal map is illustrated in 3D with temperature being the third dimension. 
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degassed water 

Soft tissue phantom 
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Figure 3.13: Setup for conducting measurements of soft tissue mimicking phantoms 

thermal properties using MR thermometry techniques. 
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 The two phantoms were heated using the same sonication protocol (Acoustic 

Power: 25 W, 60 s of sonication duration). Acoustic power conversion efficiency was 

calculated using previously acquired radiation force calibration data for this particular 

transducer. The efficiency was calculated approximately at 50 % conversion of electric 

to acoustic power. The phantoms were targeted in their center in order to maintain 

uniform temperature gradients in all directions. The targeted depth was not exactly the 

same but this was not important since according to Cheng et al. [158],  conductivity only 

affected the rate of the radial expansion and not the amplitude of the Gaussian profile. 

Five temperature profiles post sonication (12, 24, 36, 48 and 60 s) were collected since 

late Gaussian peaks were masked by noise. For each profile the coefficients of the best 

fitted Gaussian function were found by using the least squares regression criterion 

between raw and modelled data. The standard deviation or sigma (σ) of each fitted 

Gaussian was used to calculate the full width at half maximum (FWHM) of the Gaussian 

temperature profile. The FWHM of a Gaussian function and the associated Gaussian 

radius R can be calculated by: 

 

The mean Gaussian radius for each point in time was calculated by averaging the radii of 

two orthogonal temperature profiles which were 15 pixels long (approximately 15 mm) 

and centered over the maximum temperature pixel as shown in (Figure 3.15). 

 

 

Figure 3.15: The two orthogonal 15 pixel long profiles (black lines) centred over the 

maximum temperature pixel used to calculate the average Gaussian radius. 

 𝑭𝑾𝑯𝑴 ≈ 𝟐. 𝟑𝟓𝟒𝟖 𝝈 ≈  𝟐𝑹 (3.15) 
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Results 

The average squared Gaussian radius of the temperature profile for the brain and muscle 

tissue mimicking phantom recipes versus the time post sonication are illustrated in Figure 

3.16. The linear dependence for both sets of data between R2(t) and time demonstrated 

that the radial expansion of the temperature profile “decelerates” with time. The two 

tested recipes resulted in slightly different slopes as a result of their difference in thermal 

conductivity. Thermal conductivity was estimated by equating the slopes of the fitted data 

with the right hand side of equation 3.14. Mass density (ρt) for each recipe was calculated 

in section 3.7 using the water displacement technique. The heat capacity of each phantom 

was estimated by using a weighted sum of the heat capacity of the two main ingredients, 

which were water and evaporated milk. This was a reasonable assumption since both 

together consisted for more than 95 % of the gel’s mass. 

 

Figure 3.16: Plot of the temperature profile’s squared Gaussian radius R2(t) versus post 

sonication time (t) for the brain and muscle agar gel phantom. 

 

From literature it was found that the nominal heat capacities for water is 4.19 J/g-ºC and 

for evaporated milk 3.94 J/g-ºC [161]. The weighted heat capacity for the brain phantom 

(75 % v/v water, 25 % v/v evaporated milk) was calculated at 4.13 J/g-ºC and for the 

muscle phantom (60% v/v water, 40% v/v evaporated milk) 4.09 J/g-ºC. 

 By substituting the above in equation 3.13, the thermal conductivities of the brain 

and muscle phantom were estimated at 0.52±0.06 W/m-ºC and 0.57±0.10 W/m-ºC 

respectively. Thermal diffusivity (D) which is a thermal property derived by dividing 
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conductivity with density and specific heat capacity, describes how quickly a material 

reacts to a change in temperature. The calculated diffusivity (D) for the brain phantom 

was 0.0012±0.0001 cm2/s and for the muscle phantom 0.0013±0.0001 cm2/s. Errors in 

conductivity and diffusivity coefficients were estimated by considering the error in slope 

of the fitted data. 

 

3.9 Conclusions 

Two calibration curves were calculated by fitting a linear model that characterized 

attenuation variation with the concentration of either silica dioxide or evaporated milk 

embedded in agar gels of 2 % weight to volume concentration. It was assumed that silica 

dioxide primarily induced only Rayleigh scattering due to the small size of particles 

compared to ultrasound’s wavelength. Evaporated milk which was introduced as a very 

low scattering material, was the primary source of acoustic absorption. For the range of 

the concentrations tested, the agar-silica dioxide gels demonstrated a linear scattering 

induced attenuation coefficients of up to 0.85 dB/cm-MHz. Compared with the study of 

Partanen et al. [4], silica produced a higher degree of attenuation for the same 

concentration. Similarly agar-evaporated milk gels transmission through assessment 

resulted in absorption induced attenuation coefficients of up to 0.38 dB/cm-MHz. The 

slopes of the two calibration curves were used to interpolate and calculate the required 

concentration for each of the two additive materials to deliver a prescribed total 

attenuation coefficient while independently controlling the contributions of scattering and 

absorption (Table 3-1).  

 

 

Table 3-1: Attenuation coefficient variation with concentration of scattering and 

absorption enhancing additives to agar gels. 

 

 Based on these calibration curves two soft tissue recipes were prepared. The brain 

recipe (2 % w/w agar, 1.2 % w/w SiO2, 25 % v/v evaporated milk) combined the two 

 Agar 2 %  (w/v)  

+ Silica Dioxide  

0 % - 3 % (w/v) 

Agar 2 %  (w/v)  

+ Evaporated Milk  

10 %-40 % (v/v) 

Attenuation Coefficient 

Primary Scattering 

(dB/cm-MHz) 

(0.28± 0.03) × % M Silica Dioxide - 

Attenuation Coefficient 

Primary Absorption 

(dB/cm-MHz) 

- (0.01±0.00) × % V Evaporated Milk 
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additives previously tested to produce a final product with a total attenuation coefficient 

(0.59 dB/cm-MHz) within the range of bibliographic data [17], [20], [162]. The relative 

contributions of scattering and absorption of 0.34 dB/cm-MHz and 0.25 dB/cm-MHz 

respectively were achieved according to attenuation and absorption measurements in 

mammalian tissues presented by Goss et al. [20] and Sehgal et al. [163]. The muscle 

phantom recipe (2 % w/w agar, 2 % w/w SiO2, 40 % v/v evaporated milk) was designed 

with an attenuation coefficient equal to 0.99 dB/cm-MHz which agreed with values (0.5–

4.1 dB/cm-MHz) found from bibliography [164], [165]. The relatively wide range of 

attenuation coefficients is due to the fact that muscles are highly anisotropic tissues since 

they have a strong directional distribution of fibers.  Experiments exploring the anisotropy 

in acoustic speed, attenuation and backscattering in rodents skeletal muscles with fibers 

orientated at  90º and 45º relative to the incident beam were conclusive [166]. It was 

suggested that the mechanisms which are responsible for anisotropy in these parameters 

were related to orientation of the elastic tissue structure and to muscle fibers acting as 

scatterers. It was assumed that there was no directional dependence of attenuation in the 

muscle phantom recipe since silica particles were orientated randomly inside the gel 

without any directional prevalence.  

 ABS was tested as a bone mimicking candidate material and its attenuation 

coefficient was assessed using the transmission through technique. It was found that ABS 

was very efficient in attenuating acoustic waves (16 dB/cm-MHz). The measured 

attenuation coefficient was within the range of values found in literature. Human bone 

attenuation data reported in bibliography are very broad as a result of the wide range of 

porosity, mineralization, bone architecture, choice of anatomical structure and the 

experimental method followed. The broadband ultrasound attenuation (BUA) coefficient 

of cortical bone, which forms the compact outer shell surrounding cancellous bone, was 

measured at different frequencies and ranged between 3.5-8.5 dB/cm-MHz [167]–[172]. 

In a comprehensive report by Duck et al. [17] skull bone attenuation (all layers) was 

measured at 22 dB/cm at 1 MHz.  Aubry et al. [173] presented a numerical model that 

correlated skull diploe layer porosity with absorption coefficient which ranged from 2-80 

dB/cm at 1.5 MHz for the same skull sample.  

 Measurements of the longitudinal acoustic speed of the two soft tissue recipes 

were also within the range of biological soft tissues (1478 m/s - 1595 m/s) [162]. The 

speed inside the muscle phantom (1529±13 m/s) was significantly higher from the brain’s 

(1485±12 m/s) because of its higher evaporated milk content. These observations agreed 

with a recent study by Farrer et al. [149] where acoustic speed in gelatin gels increased 
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with the concentration of evaporated milk concentration. Acoustic speed inside ABS 

(2048±79 m/s) was in the lower end of a typical range of values found in literature. Culjat 

et al. [162] reported a speed of 1886 m/s in trabecular bone  and of 3476 m/s in cortical 

bone.  

 The measured mass density of the muscle phantom (1.07±0.01 g/cm3) was found 

higher from brain (1.05±0.01 g/cm3). The densities of both soft tissue recipes were in 

good agreement of the values reported individually for brain (1.04 g/cm3) and muscle 

(1.09 g/cm3) tissue [162]. Density of ABS (1.04 g/cm3) was obtained by the 

manufacturer’s datasheet and was considerably lower from typical cortical bone density 

(1.97 g/cm3). Acoustic impedance was calculated by multiplying mass density with 

acoustic speed for each soft tissue recipe and the ABS bone replica. The acoustic 

impedance of ABS (2.13± 0.08 MRayl) was significantly lower from typical cortical bone 

(7.38 MRayl) [162]. This difference should be taken in to account when using the 

proposed phantoms for validating numerical models since the degree of reflected energy 

at the interface will be significantly lower compared to bone. The assessment results for 

the candidate materials acoustic properties are summarized in Table 3-2 and Table 3-3. 

 The thermal properties of the brain and muscle recipes were assessed by 

correlating the change of the temperature profile’s Gaussian radius over time at a plane 

perpendicular to the thermal focus formed by a HIFU impulse sonication. The method 

was described in a publication by Cheng et al. [158].  Thermal conductivity (0.52±0.06 

W/m-ºC for brain and 0.57±0.10 W/m-ºC for muscle) and diffusivity (0.0012±0.0001 

cm2/s for brain and 0.0013±0.0001 cm2/s for muscle) for both phantom recipes were 

found to mimic published values for non-perfused soft tissues. Creeze et al. [174] reported 

a thermal conductivity range of 0.5-0.6 W/m-ºC for non-perfused muscle while in another 

study by Diederich et al.[175], a range of 0.3-0.7 W/m-ºC for unspecified tissue samples 

was given. Thermal of properties of ABS, which was tested as a bone candidate material, 

were not assessed since in the majority of focused ultrasound applications energy is 

delivered to soft tissue. For bone applications apparent temperature is monitored in nearby 

adjacent soft tissue since bone possesses a very short T2 relaxation time and consequently 

the MR signal produced is short lived.  The specific heat of each recipe was calculated 

using a weighted linear combination of the water and milk specific heat.  The estimated 

thermal properties for the two recipes from mimicking brain and muscle tissue are 

summarized in Table 3-4. 

 



  

 67 

Table 3-2: Acoustic properties of soft tissue mimicking materials. 

 

 

Table 3-3: Acoustic properties of bone tissue mimicking material. 

 Bone phantom 

ABS-M30 (Stratasys Ltd) 

Bone tissues of interest [162] 

Attenuation Coefficient Total 

(dB/cm-MHz) 

 

16.01 ± 6.18 22 (skull) 

12.5 (long bones) 

Acoustic speed 

 (m/s) 

2048 ± 79 2590 - 2960 (skull) 

3190 – 3406 (long bones) 

 

Mass Density 

 (g/cm3) 

1.04 [157] 1.61 (skull) 

1.42 (femur bone) 

1.41 – 1.52 (rib) 

 

Acoustic Impedance 

(MRayl) 

2.13 ± 0.08 4.17 (skull) 

4.53 – 4.84 (femur bone) 

 

 

 

Brain 

phantom 

 

Brain tissue 

[17], [20], [162], 

[163] 

Muscle 

phantom 

Muscle 

tissue 

[164], [165] 

Attenuation Coefficient 

Primary Scattering 

(dB/cm-MHz) 

 

0.34 ± 0.04 0.34 0.59 ±0.07 - 

Attenuation Coefficient 

Primary Absorption 

(dB/cm-MHz) 

 

0.25 ± 0.03 0.26  0.40 ±0.04 - 

Attenuation Coefficient 

Total 

(dB/cm-MHz) 

0.59 ± 0.05 0.6 0.99 ±0.08 0.5 - 4.1 

Acoustic speed (m/s) 1485 ± 12 1460 - 1580 1529 ± 13 1550 - 1630 

Mass Density (g/cm3) 1.05 ± 0.01 1.03 - 1.04 1.07 ± 0.01 1.04 - 1.06 

Acoustic Impedance 

(MRayl) 
1.56 ± 0.02 1.50 - 1.64 1.64 ± 0.02 1.65 - 1.74 
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Table 3-4: Thermal properties of soft tissue mimicking gel recipes. 

 

3.10  Summary 

 This chapter described the work done for characterizing important acoustic and 

thermal properties of materials destined to be used for constructing tissue mimicking 

phantoms, suitable for testing focused ultrasound thermal protocols. The acoustic 

attenuation coefficient and speed of sound of candidate materials for replicating bone 

(ABS) and soft tissue (agar-based gels) were investigated using pulse immersion 

techniques.  The agar-based gels were doped with additives to control independently from 

each other, the two main acoustic energy loss mechanisms (scattering and absorption) of 

sound energy propagating through biological tissue. Agar gels were convenient to work 

with since they possess a high melting temperature, non-toxic, easy to prepare and can be 

produced with relatively low cost. ABS is a thermoplastic material used in fused 

deposition modelling for creating geometrically accurate models. Additionally the 

thermal conductivity of the finalized agar-based gel recipes was estimated since it governs 

the rate of heat transfer from the thermal focus to the surroundings. 

 The results of this study demonstrated that the selected materials can be used to 

approximate relevant physical properties of the replicated tissues that control the 

interaction of focused ultrasound. Composite phantoms that include both bony and soft 

tissue mimicking parts of the replicated anatomy are important for testing whether the 

therapeutic goal of a focused ultrasound thermal protocol has be reached, to observe the 

temperature spatial distribution and to investigate safety issues raised by the interaction 

of ultrasound with obstructions like bone. Innovations or improvements in current 

hardware and software need to be tested prior to clinical use and therefore a tissue 

 
Brain phantom 

 

Brain tissue [17] Muscle Phantom 

 

Muscle tissue [17] 

Thermal Conductivity 

(W/mº-C) 

 

0.52±0.06  0.50 - 0.57 

(* in vitro) 

0.57±0.10 0.5 - 0.6 [174] 

(* in vitro) 

Thermal Diffusivity 

(cm2/s) 

 

0.0012±0.0001 0.0014 ± 0.0001 

(* in vitro) 

0.0013±0.0001 0.0015 ± 0.0001 

(* in vitro) 

Specific Heat (J/g-ºC) 4.13 3.6 

(* in vitro) 

4.09 3.43 

(* in vitro) 
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mimicking phantom is a very convenient tool for doing so. Close matching between 

relevant acoustic and thermal properties of the phantoms with the equivalent ones of the 

replicated biological tissue govern the validity of results produced by phantom studies.  
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4 Design and preparation of composite phantoms 

 This chapter describes the design and preparation of composite phantoms made 

out of suitable materials tested in a previous chapter. The phantoms are composed of soft 

and bone tissue mimicking materials. Three phantoms were developed and they were 

chosen to cover a wide range of HIFU hyperthermia and ablation applications guided by 

MRI that are currently approved as either a treatment option or are still under preclinical 

investigation. All three phantoms had customized attenuation properties according to the 

mimicked soft tissue. The bone components of each phantom affected the incident beam 

in a different way depending on the application. Skull bone in transcranial applications 

acts as an obstructing transmission medium in the near field whereas in bone applications 

focus is targeted on the bone directly to use constructively its high absorption coefficient 

and elevate the temperature locally to the diseased bone tissue. In rib-breast applications 

safety issues are raised from increased acoustic absorption and reflection from bone 

surface when it is situated in the far field.  

4.1 Design and fabrication of a composite head phantom for testing 

transcranial MRgFUS thermal protocols 

4.1.1 Human skull anatomy 

 The human skull consists of 28 bones that can be categorized in to two groups, 

the cranial and the facial bones. The cranial bones serve to protect and support the brain 

and the related neurovascular structures whilst facial bones hold the oral and nasal 

cavities, the sinuses and orbits.  The largest cranial bones that surround the brain consist 

of the frontal bone, the left and right parietal bone, the occipital bone and the left and 

right temporal bones. In transcranial HIFU applications, the acoustic beam is transmitted 

through the cranial bones because they usually lack any obstructing bone-air cavities and 

coupling is easier due to the smooth geometry. 

 A typical cross section of a dry frontal cranial bone is shown in Figure 4.1. Inner 

and outer tables of cortical bone enclose a layer of trabecular bone also known as diploë. 

Cortical bone is dense and tough and serves to support whole body structure and protect 

trabecular bone. Trabecular bone which has a very porous structure, is made out by a 

complex network of trabeculae. Trabeculae are thin rod and plate like shaped network of 

bone tissue. Empty space between trabeculae is filled with red bone marrow which is 

responsible for producing blood cell constituents (red and white blood cells, platelets).  
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Figure 4.1: Dried human skull bone cross section [176]. Typical adult human skull 

thickness varies approximately between 5-10 mm depending on age, gender, race and 

anatomical location. 

 

Some sections of red bone marrow are vascularized to supply bone with nutrients, 

transport blood stem cells and remove mature blood cells away from the bone and into 

circulation. Air cavities better known as sinuses are voids found in the forehead and in 

face. Nasal sinuses are known to secrete mucus that moisten air flow whilst others in the 

absence of bone decrease the overall weight of the skull. Frequently at the dome of a 

human skull the two cortical tables can fuse together in the absence of a trabecular bone 

layer. 

 

4.1.2 Computed tomography (CT) of a human skull 

 High resolution CT head scan images of an anonymized adult male patient were 

randomly chosen from a public hospital’s database (Limassol General Hospital, Cyprus). 

The selected set consisted of 219 slices acquired with a CT scanner (Toshiba Aquilion 

16, Toshiba Europe GmbH) in helical mode with the following scanning parameters: 

120 kV, 322 mAs, 24 cm FOV, 16 × 0.5 mm collimation, 0.73 mm effective slice 

thickness and a 512 × 512 matrix. Using slice thinner than 1 mm was essential in order to 

minimize helical artefacts on the final 3D model of the segmented skull bone. The images 

produced by the CT scanner were DICOM (Digital Imaging and Communications in 

Medicine) formatted. DICOM images do not contain only voxel data information, but 

come with an embedded header that contains tags with information related to the patient, 

the examination and study identifiers. CT images represent a map of volume elements 

Inner table (cortical bone) 

Outer table (cortical bone) 

Trabecular bone 

Bone-air cavity 

http://biology.about.com/od/anatomy/ss/bones.htm
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(voxels), where each voxel is assigned a value based on the Hounsfield scale. Hounsfield 

units (HU) of each voxel are obtained from a linear transformation of the measured linear 

attenuation coefficients. The linear attenuation coefficient describes the rate of energy 

loss by a photon beam per centimetre within a medium and depends on the medium’s 

density and of course the beam’s energy. This transformation is based on arbitrary 

definitions of the radiodensity of distilled water and air at standard temperature and 

pressure to 0 HU and -1000 HU respectively.   

4.1.3 Skull bone segmentation  

 The produced CT head scan images were imported in DICOM format into an 

interactive segmentation software (Materialise Mimics 10.0, Leuven, Belgium). This 

software can be used for segmenting images produced by 3D medical modalities like CT 

or MRI. Segmentation refers to a process that divides an image or a set of images into 

regions of similar gray level (radiodensity), color, texture, brightness, and contrast [177]. 

Following the import of CT images, the software displayed the raw axial images and the 

associated multiplanar reconstructions in the coronal and sagittal planes. 

 Skull bone is made out of layers of cortical and cancellous bone which are dense 

tissues and therefore appear on CT images as pixels with high HU (Cortical bone > 1200 

HU, Cancellous bone 300-1200 HU) [178].   A mask was created manually by setting the 

minimum and maximum threshold of radiodensities in HU to be included. Automatic 

selection was also available based on predefined HU ranges for specific anatomies. For 

this individual patient, the selected range was approximately from 360-1800 HU and 

included both cortical and cancellous bone of the skull. The selected mask displayed in 

green color is shown in Figure 4.2. 

 

Figure 4.2: Interactive segmentation of skull while discarding surrounding soft tissue. 

http://radiopaedia.org/articles/attenuation-coefficient
http://www.sciencedirect.com/science/article/pii/S0041624X14003345#gr1
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 Once the mask was selected, a cropping tool was used to decrease the anatomical 

coverage in the head-feet direction. The mask was reduced to the supraorbital region since 

this was the region free of air cavities that can severely obstruct the acoustic beam. It was 

decided to create a craniotomy section on the right side of the skull’s model in order to 

provide an easy way of performing in the future sonications with and without intervening 

plastic skull. The craniotomy section was created by editing the mask in 3D mode and 

applying a circular separation filter with a diameter of 60 mm. This diameter was made 

sufficiently larger from all of the transducers to ensure that the focused field propagated 

through the craniotomy section without any interruption. The craniotomy section was 

saved as a separate mask. The next step was to calculate 3D geometries through surface 

rendering of both masks, using optimal reconstruction settings. These 3D models were 

finalized by exporting them in STL format. The acronym STL stands for Standard 

Tessellation Language format which is a file type widely used by rapid prototyping 

machines. This file type approximates geometries of closed surfaces and solid entities 

through a triangular facet-based representation. Each facet is characterized by the x, y and 

z coordinates for each of its vertices and a unit normal that defines the facet’s pointing 

out direction.  A magnified wireframe view of the skull’s STL is demonstrated in Figure 

4.3, whereas solid views of both 3D reconstructed geometries (skull and craniotomy 

section) are displayed in Figure 4.4A and Figure 4.4B respectively. 

 

 

Figure 4.3: Magnified wireframe view of the skull’s STL. 
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Figure 4.4:  A) Solid view of the skull’s STL with craniotomy, B) Magnified solid view of 

the skull’s craniotomy section. 

 The STL files were fine corrected using a diameter filter of the open source 

MeshLab software (Istituto di Scienza e Tecnologie dell'Informazione, Consiglio 

Nazionale delle Ricerche (CNR), Italy).  This was necessary to remove fragments of 

calcified vessels that were included in the radiodensity threshold range during 

segmentation. MeshLab’s automatic filters for closing open holes in the surface were also 

employed in order to produce a watertight model. The dimensions of the final skull model 

were 142 × 187 × 105 mm. 

4.1.4 Plastic skull prototyping 

 A rapid prototyping machine (Stratasys, Fortus FDM 400mc) that employs 

additive manufacturing technology was used to build a plastic replica of the segmented 

3D skull model. The building envelope of this 3D printer was 355 × 254 × 254 mm and 

it can be upgraded to 406 × 355 × 406 mm. New layers in the bottom to top direction 

were added by moving the platform in the downward direction. The printer builds the 

parts layer by layer from the bottom up direction by moving the platform in the downward 

direction. The platform’s displacement defines the layer thickness and consequently the 

replication’s though plane resolution. All models of this study were printed using the 

minimum allowable layer thickness for optimum results which was 254 μm. During 

production solid thermoplastic filament was fed from a canister at the base of the printer 

to the extrusion head. The extrusion head which hanged from the top of the printer’s oven 

was driven by computer controlled motors set to follow precisely the extrusion pathway 

in every layer. The thermoplastic material was heated until liquefied and extruded through 

the tip of a nozzle in ultra-fine beads along the extrusion path. The tip type used was 

A B 
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recommended by Stratasys as the optimal size for compromising between building time 

and through plane resolution for the particular part’s size. The 3D printer’s main parts are 

shown in Figure 4.5A-C. 

 

 

 

 For the fabrication of the skull phantom, ivory thermoplastic ABS-M30 was 

selected as the building material since its acoustic properties have been characterized in 

a previous chapter. ABS-M30 is up to 25-70 % stronger than standard ABS and is an ideal 

material for conceptual modelling, functional prototyping, manufacturing tools and end-

use-parts. According to the manufacturer’s datasheet, ABS-M30 has greater tensile, 

impact and flexural strength than standard ABS. Layer bonding is significantly stronger 

than that of standard ABS, for more durable parts. The finalized STL files were loaded in 

the Insight Stratasys software (Stratasys, Version 6.4.1, Version 3927), which was used 

to process STL models into CMB (printer’s native format) files. The CMB extension files 

are the files types used by the Stratasys printers that include all the necessary information 

to build the 3D object. During this procedure the following parameters were set by the 

user: 

1) Modeler configuration - The type of 3D printer, the type of model and support 

materials, the size of the model and support extrusion tips and finally the desired layer 

A 

B 

C 

Printing platform 

Extrusion Head 

Extrusion Tip 

Figure 4.5: A) Stratasys Fortus FDM 400mc, B) 3D Printer’s oven with platform, C) 

Extrusion head. 
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thickness were selected. The support material was a secondary material used in additive 

manufacturing technology and its purpose was to support the overhanging area of the 

object from base to top. The support style was set to sparse to save material by leaving 

air gaps. 

2) STL model orientation - The STL model can be orientated manually in any possible 

direction. Instead an automatically optimized orientation was chosen that satisfied the 

least amount of support material criterion. 

3) STL model slicing - The software calculated the slices of the orientated STL model in 

the horizontal plane based on the layer thickness set by the user in the modeler’s 

configuration section. 

4) Creating toolpath fill for model and support curves - The software calculated the 

pathway of the extrusion tip for each of the model and support material. This operation 

created the toolpaths for each layer by dividing it into regions. Each region was filled 

with toolpaths from the perimeter inwards. The first toolpath traced the perimeter of the 

region. Subsequent toolpaths followed the contour of the perimeter, until the distance 

from the perimeter was greater than or equal to the contour depth. The rest of the region 

was filled with rasters. Raster lines were 90º off between successive layers (-45º to +45º) 

in order to reduce gaps and produce a solid object. The whole processing ran 

automatically and it was completed approximately within 4 minutes on a computer 

equipped with an Intel Core i7 processor and 4 GB DDR3 RAM. Following the 

processing, the building job was manually reviewed for every slice. The processed job 

displayed the contour of the building material, the toolpath rasters and the support 

material. A snapshot of the finalized processed job is shown in Figure 4.6.   

 

Figure 4.6: Processed and ready for prototyping skull STL file. 
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5) Creating a toolpath file (CMB) - The calculated toolpaths and settings for each 

material (model and support) were written in machine specific language files.  

6) Downloading toolpath files to modeler for part building - The CMB job file was 

finally loaded in the FDM 400mc control center to set the position of the designed object 

over the available building envelope area as shown in Figure 4.7. 

 

Figure 4.7: FDM 400mc control centre after loading the model’s CMB file. 

 

 A thin plastic film was placed on the printer’s platform that prevented the hot 

materials from sticking on it and secured the oven’s door. The printing was initialized 

after the printer ran calibrations for the tips positioning system. The building time lasted 

about 24 hours. Once the printing job was finished, the larger parts of support material 

were removed manually from the printed plastic skull. The remaining parts were removed 

by immersing the model in a bath of warm water (70 ºC) that contained an acidic powder 

supplied by Stratasys (Waterworks). The ratio of water needed was 42 L of water per one 

bottle (950 g) of the soluble concentrate. The models were left to soak in the water bath 

for about 8 hours after which were removed and rinsed with clean tap water. 

 The craniotomy section was retrofitted with bronze pins to allow easy attachment 

to the plastic skull model. The pins were not expected to introduce severe MR artifacts 

while scanning the skull model, since bronze was not a ferromagnetic material. Stepping 

artifacts produced by helical CT scanning were observed on the plastic model. The 

artifacts were smoothed out by gently rubbing the plastic model with a cloth soaked with 

liquid acetone which temporarily softened ABS. A hole was drilled on the skull’s top to 

screw the skull against a platform to prevent it from moving around during experiments. 
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The final ABS skull model with the associated craniotomy section are shown in Figure 

4.8. 

 

Figure 4.8: Finalised plastic skull model produced with FDM technology. 

 

4.1.5 Composite Head Phantom 

 A composite head phantom was fabricated by molding agar gel inside the 3D 

printed plastic skull. The acoustic and thermal properties of the brain mimicking agar-

based gel recipe (2 % w/w agar, 1.2 % w/w SiO2, 25 % v/v evaporated milk) have been 

characterized in previous chapters.  The desired total gel volume was estimated at 800 

ml. The gel was prepared by dissolving 16 g of granulated agar in 660 ml of degassed and 

distilled water and was boiled to above 85 ºC. Throughout the whole process the mixture 

was continuously stirred using a magnetic Teflon stirrer. Extra 10% of water volume (60 

ml) was added to mixture to compensate for evaporation during boiling. Once agar was 

dissolved 9.6 g of silica dioxide was added to enhance attenuation through scattering. The 

mixture was left to cool down to approximately 55 ºC before adding 200 ml of degassed 

evaporated milk mildly warmed to the same temperature. Evaporated milk is a low scatter 

material that enhanced attenuation through acoustic absorption. Stirring was kept for 1-2 

min after adding milk up until the mixture homogenized. The inner surface of the plastic 

skull was covered with a Mylar film before pouring the liquid agar-silica-evaporated milk 

mixture.  This was done to prevent the gel for sticking to the walls of the plastic skull and 

trapping air. The gel was poured to fill the skull phantom and was stored overnight in a 

refrigerator to solidify. The final composite head phantom is shown in Figure 4.9 
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Figure 4.9:  Finalised composite head phantom. 

 

4.2 Design and fabrication of a composite femur bone - muscle 

phantom for testing MRgFUS thermal protocols. 

4.2.1 Femur Bone anatomy 

 The femur is the longest and strongest bone of the human skeleton and it is located 

in the thigh. The femur extends from a spherical process known as the head of femur in 

the proximal epiphysis and extends to the knee joint with the tibia of the lower leg in the 

distal epiphysis. The femur is considered as a weight bearing bone since its main function 

is to support the body’s whole weight during everyday activities. The epiphysis of femur 

bone is made out of cortical and trabecular bone. The trabecular bone in the epiphysis is 

filled with red bone marrow which is responsible of producing blood components though 

a process known as hematopoiesis. At the diaphysis level cortical bone surrounds the 

medullar cavity where yellow marrow (fat) is stored. The bone at its proximal and distal 

edges is covered with articular cartilage which is a connective tissue that provides a 

smooth, lubricated surface for articulation and to facilitate the transmission of loads with 

a low frictional coefficient. Periosteum and endosteum are membranes of connective 

tissue that exist in the exterior and interior surface of the bone. Their main function is to 

accommodate the bone stem cells, the ones that are going to further develop into 

osteoblasts and osteoclasts, which play a very important role during regeneration or 

resorption of bone tissue. The main anatomical features of a human femur bone are 

demonstrated in Figure 4.10. 
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Figure 4.10:  Anatomical features of a human femur bone [179]. 

4.2.2 CT of a human femur bone 

 High resolution images from a CT lower limbs scan of an anonymized adult 

patient were randomly chosen from a hospital’s database. The selected set consisted of 

1120 slices was acquired with a CT scanner (Toshiba Aquilion 16, Toshiba Europe 

GmbH) in helical mode with the following scanning parameters: 120 kV, automatic mA 

modulation (minimum 100 mA- maximum 450 mA) for a 12.50 standard deviation image 

quality setting, 0.5 seconds of rotation time, 38 cm of DFOV and 16×1 mm collimation. 

The reconstructed slice thickness was 1 mm with a 0.8 mm of inter-slice spacing. Back 

projected CT data were mapped in a 512 × 512 pixel matrix and with a bone reconstruction 

kernel for improved visualization. 

4.2.3  Femur bone segmentation 

 The methodology and tools used for segmenting the femur bone were exactly the 

same as the one used for the skull bone.  A mask of bone tissue was interactively created 

by manually selecting an appropriate density range (370-3070 Hounsfield units). The 

mask was cropped to include only the femur bone. Using a dynamic growth region 

segmentation tool, a second mask encapsulating the red bone marrow was first created 

and then subtracted from the initial femur bone mask. The reason of doing so was to create 

a void to be filled with Tissue Mimicking Material (TMM) in order to observe any 

temperature elevations in the medullary cavity under MR thermometry. The resulting 

model consisted of a hollow bone that included only the surrounding compact bone. The 

head and base of the femur bone were also cropped electronically to allow pouring the 
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tissue mimicking gel inside the bone model. Views of the original STL femur bone model 

and of the finalized cropped masks are shown in Figure 4.11. 

 

 

Figure 4.11: A) View of the original femur bone STL model, B) Superior to inferior view 

of the finalised cropped femur bone STL model, and C) Inferior to superior view of the 

finalised cropped femur bone STL model. 

4.2.4 Plastic femur bone prototyping 

 The finalised STL model was printed using the Stratasys Fortus FDM 400mc. 

ABS-M30 was used as the build material. The prototyping settings were identical to the 

ones used for the plastic skull production. The maximum dimensions of the produced 

plastic bone model were 42 × 38 × 192 mm.  

4.2.5 Composite Femur-Muscle Phantom 

 The printed ABS femur bone model was embedded in an agar based gel used to 

mimic the attenuation of the surrounding skeletal muscles and provide an adequate 

acoustic window from the focused ultrasound transducer to the model of bone/muscle 

tissue interface. The fabricated muscle mimicking agar gel (2 % w/v agar, 2 % w/v silica 

dioxide, 40 % v/v evaporated milk) approximately matched an attenuation coefficient of 

1 dB/cm-MHz, which was typical for propagation normal to skeletal muscle fibers [164]. 

The muscle replica was of cylindrical shape with 15 cm diameter. The medullar cavity of 

the bone phantom was also filled with gel of the same recipe. Although bone marrow has 

a high concentration of fats and different acoustic properties from muscle tissue this was 

not taken into account since the main purpose was to observe qualitatively heat diffusion 

in the region.  Figure 4.12 shows the final form of the composite femur-muscle phantom. 

A 
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Figure 4.12: ABS femur bone embedded inside a cylindrical skeletal muscle mimicking 

agar gel. 

 

4.3 Design and fabrication of a composite rib - breast phantom for 

testing MRgFUS thermal protocols. 

4.3.1 Breast anatomy 

 Breast is considered as an organ of the female reproductive system since it 

includes a milk producing gland. The gland is made out of 15-20 lobes which are 

comparted between them by adipose tissue (fat). Each lobe is divided in smaller 

compartments known as lobules each consisting of grape like alveoli which are 

responsible for secreting milk. Lobules are interconnected by tiny ducts which 

progressively increase in size to larger ducts to propel milk to the nipple. The gland is 

surrounded in its majority by adipose tissue which is usually the governing tissue that 

controls the breast’s size. Connective tissue and ligaments also exist around the mammary 

gland and their function is to support the breast and maintain its shape. 

 The breast sits over the pectoral muscles which are found posteriorly to the breast 

tissue. The main function of the pectoralis group of muscles is to control the movement 

of the arm and additionally by contracting to create void space for the ribcage to expand 

during deep inhalation. The ribcage is adjacent posteriorly to the pectoralis muscles and 

serves as a protective cage of internal thoracic organs. It consists of two bilateral sets of 

twelve bones (ribs) which articulate from the vertebral column and terminate anteriorly 

as cartilage. The cartilage endings known as costal cartilage of the first seven connect 

with the sternum directly, the next three with the lower border of the seventh rib costal 

cartilage and the remaining two are floating. The cross section of human rib is similar to 
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the femur bone with concentric layers of red bone marrow, trabecular and cortical bone. 

Typical coronal and lateral cross sections of the breast-ribcage anatomical features are 

shown in Figure 4.13.  

 

4.3.2 CT of a human rib cage 

 The rib cage model was reconstructed using a set of high resolution CT chest 

images of an anonymized female patient of medium frame size. The images set was 

acquired with a Toshiba 16-slice CT scanner (Toshiba Aquilion 16, Toshiba Europe 

GmbH) in helical mode with the following scanning parameters: 120 kV anode voltage, 

300 mA tube current, 0.9375 pitch, 0.5 s of rotation time, 15 mm table feed per rotation, 

400 mm of DFOV, 16×1 mm collimation with 1mm/1mm reconstructed slice thickness 

and inter-slice interval. Filtered backprojected CT data were mapped in a 512 × 512 pixel 

matrix and a reconstruction kernel for optimum bone visualization was used.  

4.3.3 Rib cage segmentation 

 Rib cage segmentation was completed by repeating the procedure followed for 

the skull and femur bone phantom. The mask was cropped to include the right anterior 

first rib down to the sixth. These were the ribs found behind the breast and the pectoralis 

muscle of the observed patient. The model was edited in an open source 3D mesh 

processing software (MeshLab, ISTI - CNR research center, University of Pisa , 2005). 

Using MeshLab all unnecessary fragments were removed using a minimum diameter 

Figure 4.13: Anatomical features of breast tissue. 

https://en.wikipedia.org/wiki/Geometry_processing
https://en.wikipedia.org/wiki/Geometry_processing
https://en.wikipedia.org/wiki/ISTI
https://en.wikipedia.org/wiki/Consiglio_Nazionale_delle_Ricerche
https://en.wikipedia.org/wiki/University_of_Pisa
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filter. Craters and spikes were also removed using a smoothing filter. The maximum 

dimensions of the segmented rib cage model were 145×117×199 mm. The cropped final 

STL rib cage model is showed in Figure 4.14. 

 

 

Figure 4.14: STL partial model of the right anterior rib cage produced by segmentation 

of patient’s CT images. 

 

4.3.4 Plastic rib cage prototyping  

 The STL model was 3D printed in grey ABS-M30 using the FDM-400mc 

(Stratasys) prototyping machine. Grey ABS-M30 had identical acoustic and thermal 

properties with ivory ABS-M30 used previously.  

4.3.5 Composite breast-rib phantom 

 Breast consists mainly of adipose, glandular (lobules), connective and muscle 

tissue. The majority of breast cancer tumors are carcinomas, a type of cancer that starts 

in the cells (epithelial cells) that line organs and tissues like the breast. In fact, breast 

cancer is often a type of carcinoma called adenocarcinoma, which is carcinoma that starts 

in glandular tissue. Other types of cancers can occur in the breast, too, such as sarcomas, 

which start in the cells of muscle, fat, or connective tissue. Studies suggest that the mean 

ultrasonic speed of sound and attenuation coefficient in breasts are age related [180]. This 

fact is attributed to anatomic and physiologic changes associated with reproductivity and 

menopause. Katz-Hanani et al. [180] reported that the mean speed of sound decreases 

from 1504 ± 35 m/s at <30 y to 1452 ± 9 m/s at >60 y (p < 0.01), and the attenuation 

1st anterior right rib 
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coefficient decreases from 1.27 ± 0.32 to 0.96 ± 0.13 dB/cm-MHz (p < 0.03), 

respectively.  

 Breast tissue was mimicked with a simplistic approach. A homogeneous breast 

phantom was designed with an attenuation coefficient close to 1 dB/cm-MHz. The final 

gel product consisted of 2 % w/v agar, 2 % w/v silica dioxide and 40 % v/v evaporated 

milk. Evaporated milk contained about 7.5 % milk fat therefore the overall fat content to 

the whole volume of the breast mimicking phantom was about 3 %. This fat content was 

relatively low compared to a typical breast with a 50 % adipose (fat) tissue. A low fat 

concentration was preferred in MR thermometry studies since fat is not sensitive to proton 

resonance frequency (PRF) changes during heating. The gel was prepared and was left to 

settle inside a breast-like mold. The rib cage was sank inside the gel during molding to 

establish an acoustic window that will allow us to test the effect of bone’s interaction with 

ultrasound during exposures. The finalized composite rib-breast phantom is shown in 

Figure 4.15. 

 

Figure 4.15: Composite breast-rib phantom. 

 

4.4 Summary 

 This chapter described the design and fabrication of three composite phantoms 

(head, femur/muscle and rib/breast), each composed of a bone and a soft tissue bone part. 

The particular phantoms represented anatomies, where the application of focused 

ultrasound thermal therapy gathers great research interest. Bone replicas for each 

phantom (skull, femur and rib) were produced by 3D printing in thermoplastic ABS 

models of the segmented bony tissue from patients CT images. Soft tissue parts (brain, 

muscle and breast) were made out of agar-based gels doped with attenuation enhancing 
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agents. The gels were molded either inside or around the bone parts depending on the 

represented anatomy, to establish adequate acoustic coupling before testing their 

functionality with focused ultrasound under MRI guidance. 
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5 MR Thermometry for monitoring FUS applications 

5.1 Introduction 

  Thermal therapy options that can be used for the treatment of malignant and 

benign focal diseases are gaining popularity amongst the medical community. The 

therapeutic goal in malignant and benign tumour ablative thermal therapies is to deliver 

an adequate amount of heat to induce cellular necrosis in the delineated target which 

usually includes a margin of 0.5-1 cm of the surrounding healthy tissue. In order to 

establish efficacy of the treatment and safety for the patient throughout the whole 

procedure, these thermal therapies are guided by imaging modalities. US and MRI are the 

main modalities employed to guide HIFU nowadays. MRI guided HIFU is preferred in 

the USA and Europe for guiding prostate and uterine fibroid procedures whereas in China 

ultrasound guided systems are used for treating liver carcinomas and other solid tumours 

[181]. None of them is perfect by itself and both demonstrate advantages and 

disadvantages.  

5.2 MR vs US guided FUS 

 The success of procedural guidance during HIFU treatments depends on the 

ability of the imaging system in accurately targeting and positioning the focus and 

correlating tissue damage threshold with a measurable physical quantity or direct 

observation (e.g. temperature, bubble activity, tissue changes in their stiffness and 

attenuation). Another important aspect of an optimized HIFU guiding modality is the 

ability to simultaneously monitor the targeted volume with its boundaries and critical 

structures that sit in either pre-focal or post-focal regions in order to avoid any treatment 

related adverse events. 

 In order to fulfil the prerequisites described above, a HIFU guiding system must 

be capable of producing images of adequate spatial and temporal resolution.  Spatial 

resolution controls targeting accuracy and the sensitivity of monitoring in tissue changes 

throughout the treatment, whereas temporal resolution controls how frequently tissue 

damage is assessed. Additionally in HIFU applications where the targeted or intervening 

tissue moves, guiding systems of high temporal resolution are needed to provide feedback 

to the treatment system which can use the incoming information to apply real time 

corrections. 
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 Current state-of-the art US and MRI systems have comparable spatial and 

temporal resolution capabilities. Spatial resolution in US systems depends on the 

transducer’s operating frequency (Axial: 0.5-3 mm, Lateral: 1-3 mm) while its temporal 

resolution is correlated with the frame rate (25 ms -100 ms). In MRI the size of acquisition 

matrix and therefore the degree of spatial resolution depends on acquisition time with the 

in plane resolution typically ranging from 0.5 to 4 mm. Images of high spatial resolution 

come at cost of decreased temporal resolution ranging between 30-120 ms. A finer matrix 

requires a larger number of phase encoding steps which increases acquisition time. 

Accelerated MR techniques that use gradient echo planar imaging (GRE-EPI) or 

segmented-EPI sequences can produce temperature maps fast enough to control treatment 

outcome by filling the whole or part of k-space in one TR duration [182], [183]. Partially 

parallel imaging techniques have been successfully used in phantom studies to improve 

the temporal resolution required for temperature imaging in HIFU without compromising 

spatial resolution, slice coverage or phase sensitivity [184]. 

 Amongst the disadvantages of ultrasound guidance is its inability to penetrate 

bone and gas that raises important safety issues when critical tissue structures under 

monitoring reside in an acoustic shadow area. On the other hand in US guided systems 

the diagnostic ultrasound transducer is usually positioned concentrically relatively to the 

spherical transducer and produces a beam’s eye view. This enables the user to recognise 

acoustic shadowing along the pathway of the therapeutic beam which could potentially 

induce unwanted hot spots during HIFU sonication unless corrected. MRI is immune to 

bone and gas and can provide high quality images in adjacent areas. The FOV used in 

MRI are large which is desirable while monitoring pre-focal and post focal areas whereas 

in ultrasound the FOV is limited by operating frequency, penetration, power and 

transducer geometry. Ultrasound guided systems are compact, affordable and they do not 

raise image quality and safety concerns in the vicinity of metallic implants or objects 

compared to MR guided systems. Conventional scanning used in MRI for pre procedural 

treatment planning can be time consuming while relatively ultrasound imaging is fast. 

 The biggest difference between these two types of guidance systems that makes 

MR guided systems the primary choice when budgeting is not an issue, is its ability to 

monitor quantitatively the degree of tissue damage. MR thermometry techniques 

correlates pixel values of image produced by special sequences in quasi-real time with 

local temperature with adequate accuracy and sensitivity. By observing the produced 

thermal maps, the operator monitors the distribution of thermal dose delivered [185]. The 

threshold of cellular necrosis is tissue specific and by estimating the thermal dose 
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delivered, the efficacy of the treatment at the targeted volume can be assessed. 

Additionally temperature raise in critical structures is also continuously monitored and 

irreversible adverse effects from exceeding the threshold of thermal dose can be avoided. 

US thermometry is not yet available in clinical systems, but efforts have been made to 

develop thermal strain imaging which is a technique that correlates changes in the speed 

of sound and tissue thermal expansion with temperature [186], [187]. Currently 

monitoring of real time HIFU thermal ablation in clinical systems using ultrasound relies 

on observing hyper-echoes produced by boiling in the treated tissue which is subjective 

and can potentially lead to overtreating the area. 

5.3 MR guidance for monitoring designed tissue mimicking phantoms 

HIFU thermal protocols 

 The acoustically tissue mimicking phantoms described in previous chapters were 

designed to serve as useful tools in testing thermal HIFU protocols. As mentioned in the 

previous section, MRI is currently the only modality used in clinical systems that provides 

quantitative methods for monitoring in near real time the raise of temperature during 

treatment. Therefore for the remainder of this project the evaluation of the phantoms 

during HIFU sonications was conducted using an MRI scanner. Description of MRI 

Scanner used for guiding focused ultrasound thermal protocols in phantoms 

 For the purposes of this project a 1.5 Tesla (T) actively shielded superconducting 

magnetic resonance imaging system (General Electric Signa Excite HD, Milwaukee, 

Wisconsin, USA) installed at a private hospital (Ygia Polyclinic, Limassol, Cyprus) was 

used. The superconducting coils of the magnet were cooled with liquid helium cryogen. 

The system was equipped with a 60 cm bore and with an Echo Speed Plus set of gradients. 

The maximum amplitude of the gradients was 33 mT.m-1 with a slew rate of 120 mT.m-

1.ms-1
. The data pipeline of the system uses 8 independent channels with 16 quadrature 

inputs. The receiver of each channel samples the MR signal at a high bandwidth with 

maximum frequency of 1 MHz, enabling acquisition of images with high fidelity at high 

productivity. The MRI system is illustrated in Figure 5.1. 

 Parallel imaging was also available for some multi-element coils using the GE’s 

encoding Technique named ASSET (Array Spatial Sensitivity Encoding Technique). This 

technique uses the sensitivity profile of each enabled element produced in a calibration 

scan to unwrap aliased images and restore missing k-space lines. ASSET technique 

accelerates the acquisition of compatible sequences with ASSET compatible coils, which 
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allows the user to balance appropriately between image quality and time management 

depending on the application. 

 

Figure 5.1:  Photograph of the 1.5 T GE Signa Excite HD MRI system used for guiding 

HIFU thermal exposures of the designed tissue mimicking phantoms. 

 

 The General Purpose Flexible coil (GPFLEX), which is a single channel-single 

element receive only surface coil that wraps around the anatomy of interest, was mainly 

used for imaging and conducting MR thermometry of the phantoms. It is usually used in 

clinical applications for imaging irregular-shaped regions like the hip, shoulder, brachial 

plexus, large knees that cannot fit inside the dedicated knee coil, ankle, thigh, elbow, etc.  

 HIFU transducers used for sonicating the developed phantoms were moved inside 

the bore of the magnet using an MR compatible robot, which occupied most of the 

available free space.  The GPFLEX coil seemed ideal for imaging in confined space and 

without orientation limitations. Additionally being a single element coil made it easier to 

reconstruct phase sensitive images used for MR thermometry compared to multi-elements 

coils that require tedious reconstruction of the raw data. 

5.3.1 Soft Tissue Phantoms relaxometry 

 MRI offers excellent soft tissue contrast which is ideal for monitoring accurately 

lesion formation and tissue morphological changes under HIFU hyperthermia. Tissue 

contrasts in MRI depend simultaneously on intrinsic properties of tissue like T1 and T2 

relaxation times and proton density (PD). By varying specific acquisition parameters the 
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contrast weighting of PD, T1, and T2 can be exaggerated or suppressed to enhance tissue 

differentiation and pathological changes in the image. 

 It is common practice in MR guided HIFU procedures to acquire T2-weighted 

images prior to therapy and use them for treatment planning. T1-weighted gadolinium 

enhanced images are also acquired at the end of the treatment to assess tissue necrosis 

and check the coincidence of the non-perfused volume (NPV) with the thermal map.  

Despite the fact that the designed soft tissue phantoms were homogeneous and were not 

expected to present any MR signal heterogeneity, their T1 and T2 relaxation times were 

characterized and compared with the replicated tissues for reference purposes. 

 

5.3.1.1 T1 relaxometry   

Materials and Methods 

For measuring the T1 spin-lattice relaxation time, a conventional spin echo Inversion 

Recovery (IR) sequences was used [188]. An IR sequence starts at a time t=0 with the 

application of a 180° radiofrequency (RF) slice selective pulse. This excitation forces the 

fully relaxed longitudinal magnetization vector Mz (t), where Mz (0) equals the net 

magnetization Mo, to invert towards the opposite direction. Immediately after the 

application of the inverting pulse, the longitudinal magnetization vector points in the 

opposite direction (Mz (0
+) = -Mo). Once the RF pulse is switched off the longitudinal 

magnetization relaxes back to establish thermal equilibrium at a rate R1 = 1/T1.  At a time 

t = TI, where TI represents the inversion time, a second 90° excitation RF pulse is applied 

and flips any net longitudinal magnetization that managed to relax in the meantime to the 

transverse plane. The signal is rephased by a second 180° pulse and sampled after some 

time TE in order to form the MRI images. The sequence is repeated at time TR after the 

initial 180° until all phase encoding steps are completed. For a conventional IR sequence 

the longitudinal magnetization Mz can be expressed as a function of inversion time TI 

with the following equation: 

 
𝑴𝒛(𝑻𝑰) = 𝑴𝒐(𝟏 − 𝟐𝒆

−
𝑻𝑰
𝑻𝟏  ) (5.1) 

   

In order to detect a signal in MRI, the longitudinal magnetization must be flipped in the 

transverse xy-plane. Therefore the magnitude of the longitudinal magnetization controls 

the magnitude of the detected signal. By solving the equation above we can see that Mz 

(TI) becomes zero when TI = Τ1/ln2 and therefore no magnetization is flipped with the 

90° pulse to the transverse plane. This prediction was used to estimate the T1 time of the 

soft tissue phantoms developed in previous chapters. 
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 In order to quantify the associated T1 relaxation time of the brain mimicking 

phantom, the gel was first immersed in a water tank to increase the coil’s loading and 

acquire images with acceptable signal to noise ratio. For measuring the spin–lattice 

relaxation time (T1) the phantom was imaged using the (cervical-thoracic-lumbar) CTL 

spine coil using an Inversion Recovery Spin Echo (IR-SE) pulse sequence [188] with the 

following acquisition parameters: TR = 5000 ms, TE = 20 ms, slice thickness = 5 mm, 

NEX = 4, matrix = 320 × 160 and a variable TI = 66, 316, 616, 750 ms. The mean pixel 

value of an image slice passing through the mid-section of the brain phantom for each of 

the different inversion times was calculated. The calculation was done by using a region 

of interest statistics tool which was available on the scanner. The mean pixel value is 

directly proportional to the magnetization signal in the transverse plane.  When the 

inversion time reached the limiting value of T1/ln2 as explained before, this signal 

consequently became zero. The spin lattice relaxation time was estimated by applying a 

3rd order polynomial fit to the data and were interpolated to find the nulling inversion 

time. The same methodology was used to estimate T1 for the muscle tissue mimicking 

phantom recipe. 

 

5.3.1.2 T2 relaxometry  

Materials and Methods  

The T2 or spin-spin relaxation time was estimated by taking a series of Fast Spin Echo 

(FSE) T2 weighted sequences for different effective TE: 18, 36, 63, 81 and 99 ms [188].  

In a FSE T2 weighted sequence a 90º RF excitation pulse flips the fully relaxed 

longitudinal magnetization Mz to the transverse plane. The loss of phase coherence of the 

spins results in a gradual decay of the signal in xy plane. By acquiring the decaying signal 

at different echo times TE per TR the rate of spin-spin relaxation can be estimated. In 

order to estimate the brain recipe’s T2, the phantom was scanned using the same setup 

and equipment as in the T1 relaxometry session. The scanning parameters used were: 

TR = 2500 ms, slice thickness = 3 mm, matrix = 256×256, FOV = 16 cm, Number of 

NEX = 1 and Echo Train Length (ETL) = 8. For a sufficiently long TR that allowed a full 

longitudinal magnetization relaxation between successive 90º excitations, the signal of a 

T2 weighted image can be approximated by equation 5.2, where Mxy stands for the 

transverse magnetization signal at a time TE following the excitation. 

 

 
 𝑴𝒙𝒚 (𝑻𝑬) = 𝑴𝒐𝒆−

𝑻𝑬
𝑻𝟐

 
 (5.2) 
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Mean pixel values from the T2 weighted images of the phantom at the different echo times 

were plotted. T2 relaxation time was deduced by applying an exponential fit to the data. 

The same methodology was used for estimating T2 characteristic time for the muscle and 

breast mimicking phantom recipe. 

5.3.2 Phantom relaxometry results 

 The data acquired for the estimation of T1 relaxation time of the brain, muscle and 

breast recipe are shown in Figure 5.2 and Figure 5.3 respectively. The TI for which the 

mean pixel value became zero was interpolated. This value was substituted in the limiting 

condition where TI is equal to T1/ln2 in equation 5.1 and the associated T1 times for each 

of the two phantom recipes were estimated. The results of the estimated spin lattice 

relaxation times T1 are shown in Table 5-1. 

 

Figure 5.2: Inversion Recovery fitted data for estimating the spin-lattice (T1) relaxation 

time of the brain gel phantom. 

 

Figure 5.3: Inversion Recovery fitted data for estimating the spin-lattice (T1) relaxation 

time of the muscle gel phantom. 
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 The data for estimating the spin-spin (T2) relaxation time of the two phantom 

recipes were plotted in Figure 5.4 and Figure 5.5 respectively. An exponential trend line 

was used to fit the data acquired. An exponential trend line was used to fit the data 

acquired. The measured mean pixel value in a region of interest covering at least 50 % of 

the phantom was recorded for each TE. Since the MR signal was directly proportional to 

the transverse magnetization Mxy, the same can be assumed for the MPV.  According to 

equation 5.2 and T2 was calculated by finding the reciprocal of the fit’s exponent. All 

relaxometry results are summarized in Table 5-1. 

 

Figure 5.4: Fast Spin Echo sequence data fitted for estimating the spin-spin (T2) 

relaxation time of the brain phantom. 

  

Figure 5.5: Fast Spin Echo sequence data fitted for estimating the spin-spin (T2) 

relaxation time of the muscle phantom. 

TE (ms) 

TE (ms) 
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Table 5-1: Summary of T1 and T2 estimations for the proposed soft tissue phantom recipes 

Phantom recipe T1 (ms) T2 (ms) 

Brain phantom 910 97 

Muscle phantom 785 66 

 

Conclusions 

The results agreed with the range of relaxation times  found in white (T1:560-756 ms, 

T2:67-87 ms)  and gray (T1:1105-1200 ms, T2:77-92ms)  matter at 1.5 Tesla relaxometry 

studies [189]–[193].  The estimated T1 was in the mid-range of bibliographic data whereas 

T2 was on the higher end.  In vivo relaxometry studies [194], [195] of skeletal muscle 

demonstrated a significantly higher range  of T1 times (1008 -1180 ms) and slightly lower 

T2 times ranging between 35 and 44 ms. Breast tissue relaxometry results are usually 

reported separately for adipose and glandular tissue due to the large difference in their 

relaxation times. Relevant studies [196], [197] reported a T1 range of 367-423 ms for 

adipose tissue and 1445-1680 ms for glandular tissue. Similarly T2 in breast adipose tissue 

ranged between 53-154 ms and 54-71 ms for glandular tissue. The breast phantom 

developed was homogeneous and both of its characteristic times were found in range of 

the reported values for the main types of tissue present in a breast. The relaxation times 

of the two recipes seemed to be affected by the introduction of different milk 

concentrations that controlled water, fat and protein content per unit volume. The 

differences in T1 and T2 times can be attributed to their dependence in the molecular 

tumbling rate. Fat and protein molecules are larger in size compared to water molecules 

and tumble in a slow rate therefore exhibiting shorter relaxation times. Nevertheless the 

priority of this project was not to match the MR properties of the tissue mimicking 

phantoms and therefore deviations from tissue characteristic relaxation times was not a 

matter of great concern. As part of future work these recipes can be doped with agents 

that control T1 and T2 independently.  

5.4 MR Imaging of Skull-Brain Composite Phantom. 

 The skull-brain composite phantom was chosen to check the appearance of the 

developed phantoms in conventional MRI T1 and T2 weighted images. The phantom was 

immersed inside a water tank and was scanned using the 1.5T GE Signa Excite MRI 

scanner (GE, Milwaukee, USA) with conventional FSE T1 and T2 sequences. The 

acquisition parameters for the FSE T1 sequence were TR: 600 ms, TE: 20 ms, flip 

angle:90º, matrix:256×256, bandwidth:15 kHz, Echo Train Length:4 and for the FSE T2 
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were TR:2400 ms, TE:80 ms, flip angle:90⁰, matrix:256×256, bandwidth:15 kHz, Echo 

Train Length:12. The CTL spine coil (GE, Milwaukee, USA) was used since it produced 

the maximum signal to noise ratio from the rest of the coils. The T1 and T2 weighted of 

the composite skull-brain phantom images are shown in Figure 5.6. 

 These images provided sufficient proof that the phantom contained only MR 

compatible materials. As expected no severe artifacts were induced in the vicinity of the 

phantom. Some susceptibility artefacts were observed on the T1w image near the plastic 

skull/water interface. The plastic skull part appeared dark in both sequences due to the 

absence of water content. In the T1w image there was little contrast between the phantom 

and the surrounding water probably due the selection of a rather short TR compared to 

the phantom’s T1, whereas in the T2w image the contrast increased. Water appeared 

brighter from the brain phantom because of its long T2 relaxation time compared to the 

short T2 of the phantom that resulted in a fast MR signal decay. The contrast of the brain 

phantom with water in the T1w image looked quite similar compared to the contrast of 

the real brain with the cerebrospinal fluid (CSF) gathered in the ventricles. Similarly in 

the T2w image the CSF appeared much brighter compared to the darker brain tissue, as it 

was the case in the phantom image. Of course the composite skull-brain phantom lacked 

morphological structures visible in a real brain image resulting from the range of 

relaxation times apparent due to the coexistence of gray and white matter and other 

structures. Unlike the phantom’s case skull bone produces MR signal with the frontal 

sinuses being void. These cavities were flooded with surrounding water in the case of the 

phantom and followed water’s signal intensity behavior. Last the phantom did not 

replicate skin and muscle tissue surrounding the skull. 

 

Figure 5.6: A) T1 weighted image and B) T2 weighted images of the head phantom 

immersed in a water tank. 

A B 
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For comparison purposes, typical T1 and T2 weighted images of an adult human head are 

shown in Figure 5.7. 

 

Figure 5.7: Typical A) FSE T1 weighted image and B) FSE T2 weighted images of an 

adult’s head in a 1.5 T MRI scanner [198]. 

5.5 Proton Resonance Frequency shift (PRFS) MR Thermometry. 

 This technique is characterized by an excellent linearity for a wide range of 

temperatures (-15 ⁰C to 100 ⁰C) [199] and a near independence with tissue type and its 

thermal history [200]. PRFS has the best sensitivity response to temperature changes of 

less than 1 ⁰C and using accelerated MRI acquisition techniques it is feasible to achieve 

a temporal resolution below 1 second combined with a spatial resolution of about 2 mm 

[201].  

 PRFS thermometry can be applied through spectroscopic or phase imaging. The 

first involves the acquisition of a considerably large voxel and calculating the water 

resonance peak shift with a change in temperature from an internal reference. The internal 

reference of the acquired frequency spectrum is provided by the lipids resonance peak 

(fat) which is known of being insensitive to temperature [202]. Unfortunately 

spectroscopy sequences are slow and lack spatial resolution making them unsuitable for 

a real time accurate thermometry tool in MRI [185]. 

 On the other hand phase imaging calculates the phase change of the MR signal 

which is related to the temperature dependent PRFS. The phase imaging method can 

produce superior temporal and spatial thermal maps that satisfy the prerequisite of 

accurate real time temperature monitoring [200]. The biggest disadvantage of this method 

is its vulnerability in motion that can cause pixel misregistration and produce erroneous  

A B 
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temperature results [203]. Like in almost all other MR thermometry methods, 

implementation of fat suppression techniques is required to suppress the temperature 

insensitive MR signal from fat-rich organs.  

 For the purposes of this project PRFS thermometry was chosen to assess the 

application of HIFU thermal protocols in the developed phantoms due to the 

aforementioned advantages over the other techniques. The sensitivity of PRFS to motion 

artifacts was not an issue since the phantoms were immobile and the use of low fat content 

materials minimized the possibility of false thermometry results.  

5.5.1 Theory behind PRFS MR Thermometry. 

 The signal in clinical MRI is originates from resonating hydrogen protons of water 

molecules that constitute over 70 % of a human’s body weight. The hydrogen nucleus of 

a water molecule in free-state is shielded by the molecule’s mobile electrons. The degree 

of electronic screening around the hydrogen nucleus (proton), depends on its 

configuration and temperature. In biological tissue, water molecules are hydrogen bonded 

and form a liquid. Hydrogen bonds reduce electronic screening due to electrostatic 

attraction of the electropositive proton to its neighboring water molecule’s 

electronegative oxygen. In the vicinity of an externally applied magnetic field Bo, the 

apparent field experienced by the molecule’s hydrogen nucleus Bo′ is smaller than Bo. 

When temperature increases, water molecules spend less time in a hydrogen bonded state 

since this type of bonds are weak and require small amounts of energy to deflect or even 

break. The induced electronic screening increase and the apparent field’s decrease are 

observed as a temperature dependent decrease of the Larmor precession frequency. 

 The apparent magnetic field (Bo′) felt by these protons is related to the externally 

applied field (Bo) with following expression, where σ(T) refers to the temperature 

dependent electronic screening constant which is measure in ppm (parts per million). 

As a result the shifted proton resonance frequency (fp,T) is a function of temperature (T) 

and it can be calculated by the following Larmor Equation, where γ stands for the shielded 

proton gyromagnetic ratio (42.58 MHz /T or 267.513×106 rad/s-T).  

 

 𝑩𝒐
′ = [𝟏 −  𝝈(𝑻)] × 𝑩𝒐 (5.3) 

   

 𝒇𝒑,𝑻 =  𝜸 × 𝑩𝒐
′ =  𝜸 × [𝟏 − 𝝈(𝑻)] × 𝑩𝒐 (5.4) 



  

 99 

 From equation 5.4 it can be concluded that an increase of temperature tends to 

decrease the Larmour precession frequency.Temperature change from an initial reference 

temperature level (To) to a new level (T1) can be deduced by calculating the accumulated 

phase difference that results from the change in the precession frequency [204].  The 

change in temperature from baseline (ΔΤTo, T1) is given in  equation 5.5, where ΔfTo,T1 is 

the shift in frequency in Hz and α is the proportionality constant. This constant is tissue 

independent and has been estimated to be  -0.0098±0.0005 ppm/ºC  [205]. 

 

 
∆𝑻𝑻𝒐,𝑻𝟏

=  
∆𝒇𝑻𝒐 ,𝑻𝟏

𝜸 × 𝜶 × 𝑩𝒐
 (5.5) 

   

Using a gradient echo MR sequence, the equivalent phase shift in radians (∆𝛷𝑇𝑜 ,𝑇1
) 

accumulated for a time equal to TE can be calculated by modifying equation 5.5 to the 

following expression. 

 
∆𝑻𝑻𝒐,𝑻𝟏

=  
∆𝜱𝑻𝒐 ,𝑻𝟏

𝟐𝝅×𝜸×𝜶×𝑩𝒐 ×𝑻𝑬
  (5.6) 

  

Spin echo MR sequences are not used in phase imaging since the 180º pulse refocuses the 

temperature induced phase. 

 

5.6 Development of an MR Thermometry analysis software based on 

PRFS method. 

5.6.1 Overview of the Temperature Mapping Software. 

 A graphic user interface (GUI) was developed in Matlab R2014A (Mathworks, 

Natick , Massachusetts, USA) for calculating 2-dimensional temperature elevation maps 

direclty from MRI phase images using the PRFS method. Matlab is a popular 

programming language optimized for solving engineering and scientific problems with 

libraries and functions dedicated for image processing and analysis. The TempMap1 GUI 

was designed to subtract a phase image acquired at baseline temperature (Mask Image) 

from a phase image at the same location immediately thoughout the HIFU thermal 

treatment (Ablation Image).  
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5.6.2 Data collection using a phase sensitive imaging coil. 

Images for thermometry analysis were acquired using the GPFLEX coil, which is  a phase 

sensitive coil that supports quadrature detection. In quadrature detection the received 

circularly polarised MR signal is collected by the receivng coil in two orthogonal 

directions. In routine imaging this is done to increase the signal to noise ratio by a factor 

of  √2 since the same signal for each point in k-space is sampled twice. The two 90° phase 

shifted signals can be convieniently assigned to the real and imaginary part of each 

complex data point in k-space which can be manipulated appropriately to recover the 

magnitude and relative phase of the detected MR signal. Signals from real and imaginary 

channels shown in Figure 5.8 are projections of the bulk magnetization’s vector in two 

arbitrary orthogonal axes. 

 

Figure 5.8: Representation of the 90º phase shifted complex data. 

 

The signals from the Real (Re) and Imaginary (Im) channels are mathematically 

correlated with the magnitude (Mag) of the detected signal and its phase angle (Φ) as 

described in the following expressions.  

 

 𝑴𝒂𝒈 =  √𝑹𝒆𝟐 + 𝑰𝒎𝟐 (5.7) 

 
𝛷 =  𝑡𝑎𝑛−1 (

𝐼𝑚

𝑅𝑒
) 

(5.8) 

 

The expressions above were used to construct complex data for the required reference 

and ablation images in order to implement PRFS Thermometry.  
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5.6.3 Complex data reconstruction for PRFS Thermometry. 

 Reconstruction of image type other than magnitude was not available in normal 

operating mode of the GE Signa Excite 1.5 Tesla MRI system. Therefore, before 

acquiring any images the scan was initiated in research mode and reconstruction of 

magnitude, real and imaginary images was enabled by setting appropriately the ‘rhrcctrl’ 

variable. The ‘rhrcctrl’ belongs to a huge list of system specific variables which control 

scanner behaviour and are usually not accessible under normal operating conditions. This 

variable reflects a 4-bit word where the ordering of bits moving from high to low 

correspond to enabling or disabling reconstruction of imaginary, real, phase and 

magnitude images. Depending on which types of reconstructed images the user wishes to 

produce, the ‘rhrcctrl’ variable can take values between 0 and 15. The ‘rhrcctrl’ variable 

was set to 13 which corresponded to reconstructing all types of images except phase. 

Although the system was capable of reconstructing phase images that are necessary for 

PRFS thermometry, individual phase images were calculated from the corresponding real 

and imaginary images using equation 5.8. This was done since the MRI scanner applies 

a correction for gradient non-linearity at the end of every acquisition (‘Gradwarp’ by GE 

Healthcare) that involves multiple interpolations which can set the phase data to deviate 

from their real values. The three data files produced for each instance are exported in a 

unique series folder and are sorted as Magnitude, Real and Imaginary. 

 

5.6.4 Description of the TempMap1 GUI. 

 The interface of the GUI consisted of a set of pushbuttons, each executing some 

sort of function and an images panel for displaying the resulting images. The software 

takes DICOM (Digital Imaging and Communications in Medicine) files as inputs. 

DICOM is a protocol for handling data produced by imaging modalities. A DICOM file 

consists of a header that contains attributes related to patient and the scan including a 

dedicated attribute to pixel data. Unfortunatelly although MATLAB reads the image data 

of DICOM files (dicomread function) and the header’s tags (dicominfo function), it does 

not support a DICOM server functionality. This means that the user cannot import images 

directly from the MRI scanner and an external application is needed to query, retrieve and 

store the DICOM files used by the GUI. The TempMap1 GUI user interface is shown in 

Figure 5.9. 
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Figure 5.9: TempMap1 GUI user interface 

 

5.6.4.1 Single pair analysis 

In single pair analysis mode the user creates the complex data for one pair of reference 

and ablation images. At the end of the sequence a single temperature evolution map is 

produced. Each of pushbuttons MAG1, RE1 and IM1 opens a dialog box where the user 

is asked to browse and import the reconstructed magnitude, real and imaginary images 

produced by the MRI which are necessary for calculating the reference complex image. 

Similarly pushbuttons MAG2, RE2 and IM2 are used to calculate the ablation complex 

image. Importing of the aforementioned data must be done in the order described above 

(left to right in the control panel) otherwise the GUI produces a warning message.  WP1 

and WP2 buttons are used to create a matrix of equal size to the preloaded data, where 

each voxel value is equal to tan-1(IM1/RE1) and tan-1(IM2/RE2).Each voxel value 

represents the phase angle (Φ) of the MR signal and MATLAB calculates it using the 

atan2 function. This function returns phase angles defined in [-π, π] interval and therefore 

any calculated phase angle outside this range is wrapped around. Pushbuttons IC1 and 

IC2 reconstruct the final images of the pair using the complex number polar form for each 

voxel (Z) with coordinates (i, j) as shown in equation 5.9, since it was easier to manipulate 

calculations in the code.  

 𝒁(𝒊, 𝒋)  =  𝑴𝒂𝒈(𝒊, 𝒋) × 𝒆𝒊𝜱(𝒊,𝒋) 

 

(5.9) 
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The next step of the single pair analysis is the calculation of the complex difference phase 

angle matrix ΔΦ (i, j) which is done by pushbutton CD. First the complex difference 

matrix ZCD (i, j) is reconstructed by calculating for every element (i, j) of the matrix the 

product of the complex reference image Zref (i, j) with the complex conjugate of the 

ablation image Zabl (i, j) as shown in the following expressions. 

 

 The complex difference phase angle ΔΦ (i, j) is calculated using MATLAB’s 

angle function which returns the angle in radians of the complex difference matrix ZCD 

(i, j). This angle represents the phase angle difference of the bulk magnetisation vectors 

between the reference and ablation images out of which the Temperature Evolution map 

ΔT (i, j)  is calculated using the PRFS equation 5.5 . The complex difference phase ΔΦ (i, 

j) matrix is then processed by an unwrapping algorithm before pressing the TempMap 

pushbutton which is the last of the sequence. Details for the unwrapping algorithm are 

given in the following sections. 

 TempMap1 produces the final colour coded temperature evolution map using the 

PRFS equation. Calculation requires an input in the editable field where the user defines 

the tissue temperature sensitivity coefficient α in ppm/ºC. The rest of the parameters 

required for PRFS thermometry are automatically extracted from the DICOM header 

using the dicominfo function at the beginning of the sequence. Single pair analysis is 

designed for offline analysis where the input data are exported to the localhost at the end 

of the MRI acquisition. 

 

5.6.4.2 Multiple pair Thermometry analysis  

The Multiple pair analysis mode processes a series of ablation images and can serve as a 

quasi-real time temperature monitoring tool. The first step is exactly the same as in the 

single pair mode where the user must select the three DICOM files (MAG1, RE1 and 

IM1), calculate the wrapped phase matrix (WP1) and complex image (IC1) reference 

image. The series of ablation data are streamed to the GUI by a third party application 

developed in C# by other members of our group because Matlab lacks DICOM server 

functionality. In fact the application saves in a text file defined inside the GUI’s code, the 

localhost or remote host address of the ablation images folder (MAG2, RE2 and IM2). 

 

𝒁𝑪𝑫 (𝒊, 𝒋) =  𝒁𝒓𝒆𝒇(𝒊, 𝒋) ×  𝒄𝒐𝒏𝒋[𝒁𝒂𝒃𝒍(𝒊, 𝒋)] 

 

𝒁𝑪𝑫 (𝒊, 𝒋) =  𝑴𝒂𝒈𝒓𝒆𝒇(𝒊, 𝒋) × 𝑴𝒂𝒈𝒂𝒃𝒍(𝒊, 𝒋) ×  𝒆𝒊(𝜱𝒓𝒆𝒇(𝒊,𝒋)−𝜱𝒂𝒃𝒍(𝒊,𝒋)) 

(5.10) 

 

(5.11) 
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The GUI automatically browses to the declared address and runs the sequence. The user 

defines prior to initiation of the analysis (Quick TempMap pushbutton) a configurable 

waiting time period in seconds. This is the time that the GUI runs over a loop and checks 

for changes in the ablation images folder address. Every triplet of new images produced 

are saved in a new folder and the GUI detects this by comparing the previous and current 

folder address string. Once a new triplet of images is detected the sequence runs again 

until the waiting time period expires. The output of this mode is a multi-frame colour 

coded figure that contains all the temperature maps produced.  

 

5.6.4.3 Phase Unwrapping algorithm   

 Phase unwrapping is one of the most common and difficult problems to tackle in 

medical and optical imaging. Without correction wrapped phase images appear as 

alternating bright and dark bands. Matlab offers an unwrap function which corrects the 

radian phase angles of a wrapped phase image using a modified two-dimensional version 

of Itoh’s method [206], [207]. It does that by adding multiples of ±2π up until phase 

differences between consecutive voxels of the matrix are greater than or equal to π 

radians.  The sequence is applied for every row of the voxel matrix and then the same 

process is repeated for every column. Unfortunately this method is very sensitive to noise 

present in the image which can be misconceived by the algorithm as wrapped phase 

outside the permissible phase range. Therefore elevated noise levels lead to error 

propagation across rows and columns which are catastrophic for making quantitative 

phase measurements.  

 The TempMap1 GUI uses a robust and computationally efficient unwrapping 

algorithm proposed by Herraez et al [208]. Instead of using a continuous unwrapping path 

like in Itoh’s method, this algorithm uses a quality guided non-continuous unwrapping 

path which is based on the voxels edges reliability. Each pixel is assigned to a reliability 

index (R) which is the reciprocal of the resultant second difference (RSD). The RSD of 

each pixel is a function of the individual second differences across the 4 available 

directions (horizontal, vertical, 1st diagonal, 2nd diagonal). An example of a pixel 

reliability index calculation is demonstrated in Appendix B. The algorithm then calculates 

the edge reliability index all over the pixel matrix. The edge reliability index is equal to 

the sum of the two pixels reliability adjoined at the edge. The algorithm unwraps each 

couple of pixel in a preferential order, starting with maximum edge reliability to 

minimum. Pixel clusters with minimum phase discontinuities (high signal-to-noise ratio 

(SNR)) are unwrapped first and error propagations from random noise are limited.       
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5.6.4.4 Compensation of phase offset artifacts in MR Thermometry. 

 Intermittent artifacts were observed while monitoring with MR Thermometry the 

application of HIFU sonications in the developed composite and soft tissue phantoms. 

More specifically a background phase offset compared to the reference image was 

apparent in some of the ablation images and as a result the quantitative ability of PRFS 

thermometry was obstructed.The phase offset was apparent on some images even in the 

absence of HIFU sonication or the transducer. Therefore it was soon concluded that the 

source of the problem was related to the imaging system and/or timing of the sequence. 

Although it was not investigated thoroughly, there was speculation that the source of the 

aforementioned artifacts emerged from the induction of Eddy currents. Eddy currents 

develop in MRI systems during the application of the pulsed magnetic field gradients 

used from excitation and MR signal spatial encoding. These currents are known of 

resulting in undesired secondary field gradients and magnetic field shifts that distort the 

MR signal [209].  Time dependent homogeneous field shift arising from a spatial offset 

between the gradient isocentre and the centre point of the eddy-current-carrying structures 

and the magnet’s bore tube have been reported [210].  

 In order to overcome this transient problem, a correction was applied for every 

couple of reference and ablation images. Precession frequency shift of hydrogen in lipids 

is not temperature sensitive due to the absence of hydrogen bonds. External references in 

the form of small plastic tubes filled with sunflower oil were wrapped around the 

phantoms and were used to compensate for the spatial and temporal phase shifts. An 

illustration of the oil references used to correct PRFS Thermometry in an agar-based gel 

is shown in Figure 5.10.  

 

Figure 5.10:  Magnitude image of a tissue mimicking agar based gel wrapped around 

with six sunflower oil external references for compensating system induced phase shifts 

during PRFS thermometry. 
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 The phase shift compensation workflow is embedded inside the TempMap1 GUI 

code. Immediately after the user selects the magnitude reference image (MAG1), the code 

successively creates six (6) Regions of Interest (ROIs). The user drags and drops each of 

the circular ROIs to be contained within each of the available oil references. The GUI 

code records the mean pixel values of each of the user defined ROIs in the final 

unwrapped complex difference phase image. Ideally the complex difference phase should 

be zero everywhere expect the area which has been heated by HIFU.  Phase difference 

measured inside the oil references is immune to temperature fluctuations and is only 

affected by systemic spatial-temporal perturbations of phase. The external oil references 

phase difference values were used to fit with Matlab a linear polynomial surface through 

least squares regression in order to extrapolate the phase shifts developed inside the 

phantom. A linear polynomial fitting was chosen since there were no higher orders of 

phase difference fluctuations observed but rather a phase offset of constant magnitude 

that covered the whole 2D matrix of pixels. The fitted compensation matrix is described 

by the following expression were α0, α1, α2 are the polynomial coefficients and i, j 

correspond to the Cartesian coordinates of the extrapolated pixels. 

 

 

An example of a typical 2D compensation matrix applied is shown in Figure 5.11.  

 

Figure 5.11: Example of a 2D compensation matrix calculated by fitting external oil 

references phase data to a linear polynomial surface using a least absolute residuals 

(LAR) fitting method. 

  

 𝑴(𝒊, 𝒋)  =  𝒂𝟎+𝒂𝟏 ×  𝒊 + 𝒂𝟐 × 𝒋 (5.12) 
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The blue dots in Figure 5.11 represent the mean phase difference measured in each of the 

oil references ROIs. The 2D surface is fitted using equation 5.12 using the least absolutes 

residual criterion (LAR). Once the compensation matrix is calculated, it is then used to 

deduct pixel by pixel the pseudophase offset that potentially masks temperature induced 

phase shifts. When the placement of oil references was not possible a 2D correction 

matrix was created by positioning the ROIs in phantom areas that were as far as possible 

from the heated region and free of any image artefacts. 

 

5.6.5 SPGR Pulse Sequence for MR Thermometry. 

 Temporal resolution of the order of a few seconds is required when monitoring 

HIFU thermal protocols with MR Thermometry. HIFU hyperthermia applications are 

delivered within minutes while ablative HIFU applications involve steep temperature 

gradients delivered within 30-60 seconds sonications with the temperature profile 

constantly changing rapidly across the volume of tissue surrounding the acoustic focus. 

The temporal resolution of any conventional pulse sequence depends on TR, the number 

of encoding steps in phase direction (Np) and NEX. The minimum TR is limited by the 

duration of the RF pulses, the gradient system limitations and TE.  

 An SPGR pulse sequence readily available from the MRI scanner was selected for 

conducting MR Thermometry. It belongs to the GRE family of sequences which are more 

appropriate compared to spin echo when fast imaging is required. SPGR differs from 

conventional gradient echo pulse sequences in the sense that any residual transverse 

magnetization is “spoiled” at the end of every cycle and before the next excitation RF 

pulse. Spoiling is necessary when TR<T2 to disrupt transverse coherences that can affect 

the phase of the transverse magnetization in successive cycles.  

The selection of the acquisition parameters and the reasoning behind it are described 

below: 

 

1) TR: 38.5 ms 

This was the minimum repetition time allowed by the system for the minimum allowable 

matrix size of 128 × 128. In order to fill the whole of k-space for a single image the 

scanner requires 4928 ms (128 × 38.5 ms). A temporal resolution of approximately 5s 

was considered acceptable for monitoring the application of HIFU thermal protocols of 

30-60 seconds duration. 

 



  

 108 

2) TE: 20 ms 

This selection was based on a compromise between high signal-to-noise ratio (short 

transverse magnetization decay for phantoms with T2  66ms) and temperature-to-noise 

ratio in temperature maps (larger accumulation of phase for longer TE).  

 

3) Flip angle (α): 30º 

A low flip angle was used in order to allow a significant amount of longitudinal 

magnetization to recover for this short TR. Although the Ernst angle which is the angle 

for maximum longitudinal magnetization for every TR and T1 combination is lower than 

30º, a wider flip angle was used in order to increase the T1 contrast on the magnitude 

images between the hot lesion and the background of the phantom.  

 

4) Matrix Size: 128 × 128  

The smallest possible pixel matrix allowed by the scanner was used to minimize the 

number of phase encoding steps and the overall scan time. On top of the requirement for 

an acceptable temporal resolution, this matrix size corresponded to an in-plane spatial 

resolution that varied between 1.5 – 2.3 mm per pixel for the sizes of FOV used. Such 

spatial resolution was considered adequate for monitoring the acoustic focus produced by 

the HIFU transducer (Sonic Concepts, Inc., Bothell, WA, USA) inside the phantoms 

which according to the manufacturer the -6 dB ellipsoidal iso-pressure contour spans over 

a width of 3.48 mm and 58.25 mm length [211].  

 

5) Slice Thickness: 5 mm 

A 5 mm slice thickness was large enough to contain the short axis of the focus (3.48 mm). 

A thicker slice would increase the signal-to-noise ratio but in expense of partial volume 

effects that would lead to underestimation of temperature shift. A thinner slice would 

decrease the signal-to-noise ratio and require steeper gradient fields. As mentioned 

previously the application of fast switching gradient fields is a potential source of Eddy 

currents. 

 

6) FOV: 20-30 cm 

Depending on the dimension of the phantom imaged and the direction of the acquired 

imaging slice, the FOV varied within the range of 20-30 cm. In some cases the FOV was 

adjusted appropriate to eliminate wrap-around artifacts. Although this phenomenon may 

occur in the frequency-encode direction, it is generally more severe along the phase-
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encode axis. The easiest remedy to overcome this signal misregistration problem is to 

increase the FOV in the appropriate direction to include all the region that produces MR 

signal detectable by the RF imaging coil. 

 

7) NEX: 1 

The minimum number of excitations was used to keep the total scan time to minimum. 

 

8) rBW: 15 kHz 

An intermediated rBW was chosen to balance between signal-to-noise ratio which is 

proportional to reciprocal of the rBW square root and with minimum allowable TE that 

affects the total scan time. 

 

5.6.6 Temperature error estimation in MR thermometry. 

The temperature error (ΔΤ) in each voxel of the thermometry maps is associated with the 

signal-to-noise ratio (SNR) of the magnitude image and can be estimated using the 

following equation [212], [213]. All other variables included in the expression have the 

usual meaning.  

 𝜟𝜯[℃] =
𝟒𝟎𝟎

𝑺𝑵𝑹. 𝑩𝒐[𝑻]. 𝑻𝑬[𝒎𝒔]
 (5.13) 

 

SNR was calculated using the National Electrical Manufacturers Association (NEMA) 

standard [214]. Signal was set to be equal to the mean pixel intensity of the phantom’s 

magnitude image prior to sonication, for a square region of interest containing 100 pixels. 

The standard deviation (σ) of pixel intensities was calculated by taking the mean of zero 

NMR signal region pixel intensities (in air) surrounding the phantom. Noise in MRI 

magnitude images follows a Rician distribution since pixel intensities are assigned to only 

positive values therefore underestimating true noise levels. The NEMA standard 

recommends using the following equation for determining true noise (N). 

 

 𝑵 =  
𝝈

𝟎. 𝟔𝟔
 (5.14) 

 

The Matlab code for TempMap1 GUI is illustrated in Appendix C. 
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5.7 Summary 

 The spin-lattice (T1) and spin-spin (T2) relaxation times of the developed agar-

based gel recipes were characterizing using relaxometry techniques. The estimated 

relaxation times were close to the replicated tissues times and therefore they are expected 

to induce similar temperature induced contrasts in conventional T1 and T2 weighted 

images. The chapter also described the development of a stand-alone TempMap1 GUI 

that calculated thermal maps using the PRFS technique. The TempMap1 GUI was created 

to assess the functionality of the developed composite phantoms using focused ultrasound 

thermal protocols in configurations that simulate clinical applications. 
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6 Functionality tests of the developed composite tissue 

mimicking phantoms using MR guided focused ultrasound. 

 This chapter describes a set of functionality tests ran to test the performance of 

the developed phantoms. These tests involve important quality control metrics of the soft 

tissue mimicking phantoms and assessment of the composite phantoms with setups that 

emulate clinical HIFU applications guided by MRI.  

6.1 MR compatible transducer for HIFU sonications. 

 A single element piezoelectric MR compatible spherically focused ultrasound 

transducer by Sonic Concepts (H-196, Sonic Concepts, Bothell, Washington, USA) 

shown in Figure 6.1, was used to apply high intensity sonications in continuous mode. 

According to the manufacturer’s datasheet [211], the transducer operates at the 

fundamental frequency fo (1.1 MHz) or its 3rd harmonic 3fo (3.41 MHz). The radius of 

curvature (ROC) of the spherically focused transducer was 100 mm with an active 

element transducer diameter (D) equal to 40 mm. At 1.1 MHz and maximum electric 

power (400 W) the peak pressure at focus in water reaches 8.34 MPa corresponding to a 

spatial peak intensity at focus Isp equal to 2321 W/cm2. The dimensions of the cigar 

shaped focus defined by the -6dB beam contour (L×W) are 58.25 mm and 3.48 mm 

respectively. 

 

Figure 6.1: Spherically focused MR compatible HIFU transducer 

6.2 Thermal repeatability test. 

Materials and Methods 

The thermal repeatability of the two tissue mimicking phantom recipes (brain and muscle) 

was assessed using PRFS thermometry. The agar based phantoms were molded inside a 

rectangular plastic box.  Each phantom was positioned for a top to bottom sonication 

inside a water tank filled with degassed water. The phantoms were sonicated using the 
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single element MR compatible HIFU transducer operating at 1.1 MHz.  The HIFU 

transducer was driven by the RFG-750 amplifier (JJ&A Instruments). The amplifier and 

transducer were connected via a matching network to minimize the reflected power.  

 This test used five sonications (acoustic power of 25W and duration of 60 s) 

targeting the four corners and the center of the rectangular phantom in order to avoid 

residual heating from neighboring sonications. The transducer was attached on plastic 

rails that allowed manual adjustment of its position in the horizontal plane and its distance 

from the phantom’s top surface. Targeting of focus was approximately 3.8 cm deep for 

the brain phantom and 1.9 cm for the muscle phantom. Temperature assessment was 

conducted using a 2D SPGR pulse sequence (TR: 38.5 ms, TE: 20 ms, rBW: 15 kHz, 

matrix size: 128 × 128, slice thickness: 5 mm, NEX: 1, DFOV: 25 x 25 cm2). MR 

Thermometry was used to record temperature evolution over time in 12 s intervals. 

Although the temporal resolution of the sequence was 5 s, the scanner increased that to 

12 s by introducing a delay between series to adjust transmitter–receiver gain and the 

center frequency of the RF pulse. The average coefficient of variation (CVavg) was 

calculated by averaging the individual coefficients of variation for each point in time for 

all five locations.  Figure 6.2 demonstrates the experimental setup for the brain mimicking 

phantom recipe. 

 

Figure 6.2: Axial magnitude image demonstrating the experimental setup for measuring 

the thermal repeatability of the brain tissue mimicking phantom. 
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Agar phantom 

MR Thermometry slice 
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Results  

Plots of the temperature evolution with time in the brain and muscle phantoms are shown 

in Figure 6.3 and Figure 6.4. The average peak temperature rise developed in the muscle 

phantom (67.0 ºC) was significantly higher from the brain phantom since it was 

positioned shallower compared to the brain phantom (32.8 ºC), which introduced lower 

attenuation. Both waveforms demonstrated a rapid drop of temperature after 60 seconds 

when the HIFU beam was disabled. The rate by which temperature initially dropped was 

higher for the muscle phantom since heat transfer to the colder surrounding is faster at 

steeper temperature gradients.  

 

Figure 6.3: Temperature rise over time in brain phantom (3.8 cm deep) for an acoustical 

power of 25 W and 60 s sonication in 5 different locations. 

 

Figure 6.4: Temperature rise over time in muscle phantom (1.9 cm deep) for an acoustical 

power of 25 W and 60 s sonication in 5 different locations. 
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Conclusions  

The thermal repeatability test showed that both phantom recipes performed with similar 

response. The CVavg of temperature measurements in the brain phantom was 2.6 % and 

for 2.7 % for the muscle phantom. This result can be interpreted as a low spatial variability 

of the phantoms acoustic properties, which is an important prerequisite since the 

assessment of FUS thermal protocols depends on observing the distribution of 

temperature across the imaging plane. The CVavg  accumulates the error in temperature 

measurements, which is a function of the image’s SNR and the inherent spatial 

inhomogeneity of the acoustic properties which can be attributed to the nature of the 

fabrication method (inadequate mixing of ingredients, presence of air bubbles, etc). 

6.3 Qualitative evaluation of focused ultrasound induced heating 

dependence using a phantom of variable depth  

Materials and Methods  

A brain mimicking phantom was molded in a step like shape to create three different 

propagation depths (Figure 6.5A and Figure 6.5B).  

 

Figure 6.5:  A) Top view of the depth agar phantom demonstrating the three regions and 

external oil references surrounding the phantom, B) Sagittal T2w FRFSE image (TR: 

2000 ms, TE :61.9 ms, ETL: 16) illustrating a lateral view of the phantom. 
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The purpose of this study was to demonstrate qualitatively the correlation of target depth 

inside the phantom (shallow, medium and deep). Small tubes filled with sunflower oil 

were strapped around the phantom as external references to provide phase offset 

correction to the produced temperature maps. The phantom was immersed inside a tank 

filled with degassed water in a top to bottom sonication configuration. The sonication 

protocols used are summarized in Table 6-1. 

 

Table 6-1: Sonication protocols used for evaluating depth phantom 

 

Thermometry was conducted using the following 2D SPGR pulse sequence (TR: 38.5 ms, 

TE: 20 ms, rBW: 15 kHz, Matrix: 128 × 128, slice thickness: 10 mm, NEX: 1, DFOV: 25 

× 25 cm2), with the slices prescribed in the coronal and axial plane. The coronal slices 

were designed to coincide with the expected acoustic focus (96 mm from the transducer’s 

front face) in a plane perpendicular to the propagation direction of the acoustic beam. The 

axial thermometry slices were designed in a parallel plane using the same pulse sequence 

but with a 5 mm slice thickness. This was done to minimize partial volume effects that 

would mask the small dimensions of the focus in that plane. Thermometry images were 

analyzed using the TempMap1 GUI. 

 

Results 

Temperature at focus increased with decreasing phantom depth. Deeper phantoms 

introduced more material along the beam’s pathway and consequently higher degrees of 

attenuation (See Figure 6.6a-e). The maximum temperature rise reached in the deep 

phantom was 11.9 ºC in the coronal plane and 9.1 ºC in the axial plane for the same 

sonication settings (25 W acoustical power-60 s). Temperature rise in the coronal plane 

(20.1 ºC) of the medium phantom was approximately equal to the one measured in the 

axial plane (20.8 ºC) whereas temperatures in the shallow phantom were significantly 

different between the two orientations (37.2 ºC in coronal and 21.9 ºC in axial 

orientations). Coronal thermometry slices (perpendicular to acoustic field) produced more 

Phantom depth (cm) Acoustic Power (W) Duration (s) Orientation 

3.6  25 60 Coronal 

3.6 25 60 Axial 

2.6 25 60 Coronal 

2.6 25 60 Axial 

1.6 25 60 Coronal 

1.6 25 60 Axial 
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reliable temperature measurements from axial slices. Axial slices must be aligned 

perfectly with the central long axis of the beam in order to contain only voxels with 

protons that lie inside the focal region. Considering that the 5 mm slice thickness was 

larger than the -6 dB focal width (3.48 mm), any misalignment underestimates 

temperature measurements as a result of partial volume averaging. Far field heating was 

evident in axial images due to absorption at the bottom of the plastic container that 

conducted heat to adjacent phantom.  

 

Figure 6.6: Coronal and axial thermometry maps at maximum temperature for the (a, b) 

shallow phantom, (c, d) medium phantom and (e, f) deep phantom.  

 

The full time series of thermometry maps for both coronal and axial plane for the three 

different phantom depths is shown in Figures 1-6 in Appendix C. 

 

Conclusions 

The agar phantom attenuated the acoustic beam effectively. The degree of attenuation 

was depth dependent, which is consistent with the exponential decay of acoustic wave 

intensity along the direction of propagation. Far field heating was observed for all depths 

and it was indicative of reflection at the interface. Maximum temperature readings in the 

coronal and axial plane were different due to partial volume averaging. Additionally by 

visually inspecting the thermometry maps, the location of maximum temperature in the 

axial plane was systematically observed at a distance shorter than the focal length. This 

was attributed to nonlinear propagation that induced a shift to the thermal focus.  

6.4 Composite head phantom monitoring during HIFU thermal 

sonications using invasive temperature measurements. 
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Materials and Methods  

This experiment was the first conducted amongst others to demonstrate the functionality 

of the developed composite phantoms by exposing them to continuous wave HIFU 

sonications. At the time when the phantom head phantom was developed MR 

Thermometry was not available and therefore temperature measurements were taken 

invasively by embedding a thermocouple wire (Omega Engineering, Inc., Norwalk 

Connecticut, USA) inside the gel phantom. The 3D printed ABS skull was firmly fixed 

on a plastic base. The size of the base was designed to fit firmly inside the water tank. 

The tip of the thermocouple was set in an anterior-posterior axis and perpendicular to the 

acoustic beam’s pathway. The position of the thermocouple wire inside the skull before 

molding the brain mimicking gel is shown in Figure 6.7.  

 
 Figure 6.7: (A) Top view of the 3D-printed skull cavity, (B) Beam’s eye view through the 

60 mm circular craniotomy section showing the tip of the thermocouple wire. 

 

 This orientation was such to allow an easier beam targeting of the thermocouple’s 

tip.  The height of the thermocouple’s position was also adjusted to place its tip in the 

center of the craniotomy. The distance of the thermocouple tip from the plastic skull’s 

craniotomy section was approximately 3.5 cm. The craniotomy section was retrofitted 

with bronze pins to be easily detachable in order to perform sonications with and without 

intervening plastic skull.  The skull was filled with brain mimicking gel according to the 
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brain mimicking phantom recipe presented previously (agar 2 % w/v, silica dioxide 1.2 % 

w/v, evaporated milk 25 % v/v). The total volume of the gel (800 ml) was poured inside 

the skull. Care was taken to avoid pouring the gel directly on the thermocouple and 

displacing it. The gel was moulded inside the skull and was left to reach room temperature 

and solidify. The composite head phantom with its base were immersed in a tank filled 

with degassed water. The temperature of the phantom was left to equalize with the 

temperature of the surrounding water (16 ºC). Temperature was monitored for a low 

sonication frequency that is typically used in transcranial HIFU deep brain treatment 

ablations [215]–[217]. A single element spherical transducer of 0.6 MHz central 

frequency (Piezotechnologies, S/N: 602015, diameter (D): 50 mm and focal length (R): 

100 mm) was used. The transducer was attached on a custom made plastic holder that 

allowed manual adjustment of its position in all three orthogonal axes.  The transducer 

front face was placed to point towards the craniotomy’s opening center. The transducer 

was driven by an Agilent 33220A (Keysight Technologies, California, USA) waveform 

generator and the signal was amplified with a Kalmus LA100H 100 W Broadband RF 

power amplifier (Advanced Test Equipment Corp., San Diego, California, USA).  The 

transducer was connected to the amplifier via an impedance matching circuit. The 

matching circuit minimized the reflected power. The setup configuration is shown in 

Figure 6.8. 

 

Figure 6.8: Setup of composite head phantom invasive temperature measurements using 

thermocouple and thermistor thermometers. 

 Prior to the measurement, the transducer’s position was fine adjusted relative to 

the thermocouple by identifying the position of maximum temperature elevated with a 

fast cooling rate, which indicated focal localization. Beam alignment was performed at 

low power to avoid excessive agar heating. Maximum temperature elevation 
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measurements in three characteristic regions of the acoustic field (near field, focus, far 

field) and on brain surface were recorded for an acoustic power of 30 W. Sonications 

lasted up until temperature readings reached a maximum. Measurements at the focus (3.5 

cm) were repeated for intact skull and in the absence of the craniotomy section.  

Results 

Temperature elevations at different locations across the beam’s propagation axis are 

shown in Table 6-2. 

Table 6-2:  Maximum Temperature elevations reached at different locations and skull 

state for acoustical power of 30 W sonications at 0.6 MHz. 

Plastic skull 

state 

Thermometer 

Type 
Position Distance(cm) 

Temperature 

Elevation (⁰C) 

Intact 
Thermistor probe Brain phantom 

surface 
0 38 

Intact Thermistor probe Near field 2 9 

Intact Thermocouple Focus 3.5 2 

Intact Thermistor probe Far field 6 1 

Skull removed Thermocouple Focus 3.5 31 

 

Conclusions  

Exposing the intact skull with moderate acoustic power (30 W) sonications at 0.6 MHz 

(high penetration) resulted in focal temperature increments that did not exceed ambient 

by more than 2 ºC, whereas temperature at brain phantom surface was indicative of 

excessive skull heating (38 ºC). This experiment demonstrated a common problem of 

transcranial HIFU where acoustic energy is not transferred efficiently at focus while skull 

bone is heated. The small active area of the single element HIFU transducer (~20 cm2) 

focused the beam over an even smaller area on the plastic skull surface transferring 

considerably large amounts of power per unit area. The high intensity pressure wave 

propagating though the skull was converted to heat by plastic skull which possessed an 

attenuation coefficient in the range of skull bone tissue (16 dB/cm-MHz). MRgFUS 

vendors use semispherical helmet-like phased arrays to manage skull excessive heating 

by distributing acoustic energy over a larger surface area [218], [219] .  

 Acoustic wavefront dephasing occurred during propagation through the skull of 

high variability in thickness. The dephasing effect was intensified further by the high 
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propagation speed of ultrasound in ABS. The acoustic field’s dephasing limited the 

focusing gain which was observed in small focal temperature elevations. These phase 

aberrations are compensated in clinical systems by applying appropriate phase shift 

corrections calculated by computed tomography data. In the absence of skull phantom, 

temperature was elevated significantly as a result of adequate acoustic energy delivery 

and lack of significant phase aberrations. Increased temperature levels in the near field 

were possibly a result of heat conduction by the plastic skull rather than of absorption by 

the brain mimicking agar based gel phantom. 

 As expected it was not possible to transcranially focus the beam using a single 

element transducer. Excessive skull heating can be reduced by increasing the single 

element’s aperture area but compensation of skull induced phase aberrations requires an 

adaptive focusing approach that is only achievable by phased array of transducers [15], 

[220]. This functionality test demonstrated that the composite skull phantom can be a 

very useful tool for assessing the performance of transcranial HIFU instrumentation and 

the efficiency of adaptive focusing algorithm by looking in to temperature elevations and 

its profile across the treatment volume. 

6.4.1 MRI for testing composite head phantom functionality during HIFU 

thermal sonications. 

Materials and Methods  

The composite head phantom was simultaneously imaged under MRI while exposing it 

to a sonication using the 1.1 MHz (Sonic Concepts) transducer. MR thermometry was not 

available since the signal recorded in the complex data (real and imaginary) was 

erroneous. A possible cause was the large FOV (30 cm) used to cover the whole head 

phantom exceeded the sensitive range of the GPFLEX imaging coil. Instead temperature 

elevations were observed qualitatively using a SPGR pulse sequence. Since SPGR was a 

T1-weighted pulse sequence, it was expected to detect regions with increased temperature 

regions as hypointense since heat induced T1 increments progressively relax smaller 

amounts of longitudinal magnetization. 

 The composite head phantom was positioned on the treatment platform of an MR 

compatible positioning device for treating brain diseases with HIFU [221] as shown in 

Figure 6.9. The phantom was placed laterally on to the platform with the craniotomy 

section facing down. The platform was immersed a few millimeters deep in a tank filled 

with degassed water. This configuration ensured a coupling between the phantom and the   
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transducer also immersed in the water tank and underneath the treatment platform.  The 

front face of the transducer was positioned for a bottom to top sonication. The positioning 

device was capable of moving the transducer in all three orthogonal directions (xyz) for 

precise beam targeting.  

 

Figure 6.9 - Experimental configuration used during sonications of the composite head 

phantom under MR imaging. 

 

 The positioning device consisted only by MR compatible materials such as ABS 

plastic for the main body, brass screws, racks and pinions. Brass is a non-ferromagnetic 

material and does not induce serious safety or image artifacts in the vicinity of the MRI. 

The device employed three MR compatible piezoelectric ultrasonic motors (PUM) 

(Shinsei USR60E3N, Shinsei Corp., Kasuya-Setagaya-ku Tokyo, Japan) for moving the 

transducer independently in the three linear orthogonal directions. The positioning device 

and sonication parameters were controlled via a custom made interface. The latest version 

of the control software was developed in C# and was capable of moving the transducer in 

all 3 directions by controlling the PUM drivers (Shinsei USR60 Series). A computer 

communicated via an interface with a Digital Acquisition (DAQ) devices (National 

Instruments Corp.). The DAQ was responsible for translating digital inputs from the 

interface to the motor drivers which executed the displacement of the robot in the three 
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axes. Additionally the DAQ was returning feedback from linear encoders from each axes 

for its current position. The robot’s motor drivers and encoder wires were passed in the 

MRI room through a waveguide of the Faraday’s cage. The transducer was driven by the 

power generator (JJ&A Instruments), which was equipped with a built-in-frequency 

generator operating in the range of 700 kHz to 5 MHz, an adjustable power level between 

1 and 750 W output and was capable of working both in continuous and pulse mode.  The 

generator was controlled by a series of string commands sent via a standard USB 

interface. The power line of the transducer was filtered by a low pass filter and was fed 

via an impedance matching circuit. The complete control station of the MR compatible 

positioning device, RF power generator and HIFU transducer is illustrated in Figure 6.10. 

 

Figure 6.10:  Control station of positioning device and RF power for driving the HIFU 

transducer under MRI guidance. 

 

 The transducer’s power line was passed inside the MRI room via a BNC connector 

on both sides of the Faraday’s cage penetration panel. Any cables going in and out of the 

MRI room were passed through the penetration panel to prevent interference from 

external RF signals.  The transducer’s power line through the panel’s BNC connection is 

shown in Figure 6.11. The head phantom was sonicated with the craniotomy section 

detached with two different protocols (50 W-60 s and 90 W-90 s) at 1.1 MHz in order to 

observe changes over the T1 weighted image. Using the same configuration, but this time 

with the craniotomy section attached to simulate a non-invasive transcranial approach, 

the phantom was exposed to similar acoustic energy levels (50 W-60 s). Temperature 

increment induced changes were monitored with a T1 weighted SPGR sequence (TR: 38.5 

DAQ devices Computer with interface RF generator 

Motor drivers and encoders 

unit 
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ms, TE: 2.7 ms, slice thickness: 10 mm, ETL: 1, NEX: 1, matrix size: 128 × 128, DFOV: 

30 × 30 cm). TE was set to minimum in order to minimize T2 contrast. Imaging slices 

were prescribed along the central beam axis of the axial and sagittal plane. Images in time 

series for each sonication protocol were acquired every 12 s and covered both heating and 

cooling phase. 

 

Figure 6.11: RF transmission connection through the MRI’s Faraday cage penetration 

panel. 

 

Results  

In the absence of skull, sonications induced a local increase of the temperature dependent 

T1 relaxation time. For the 50 W acoustical power and 60 s sonication, regions of 

increased temperature appeared with hypointense signal in the T1 weighted images 

(Figure 6.12A and Figure 6.12B). 

  

Figure 6.12: T1 weighted image at maximum heat deposition (60 s) in the absence of 

craniotomy section for a 50 W-60 s sonication in the A) sagittal and B) axial plane. 
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The slice in the sagittal plane was perpendicular to the beam axis and the heated region 

appeared as a circular-like hot spot (Figure 6.12A). Figure 6.12B illustrates the axial slice 

set parallel to the beam’s long axis where a cigar-shaped region of hypointense signal was 

observed. Observations in both planes were indicative of the temperature gradients 

developed across the focused field. The temperature increment for the 50 W-60 s and the 

90 W-90 s sonications were compared qualitatively by observing the contrast of the 

formed hot spot to its background in the T1 weighted images (Figure 6.13A and Figure 

6.13B). The window level and width were kept the same for both images to avoid contrast 

saturation. The hot spot in the 90 W-90 s was significantly darker as a result of the higher 

HIFU induced temperature. 

 

Figure 6.13: Sagittal T1 weighted images at peak temperature in the absence of 

craniotomy section for A) 50 W-60 s and B) 90 W-90 s sonication. 

 

The equivalent images of 50 W-60 s sonications with intact skull in the axial and sagittal 

plane showed no observable formation of hot regions (Figure 6.14A and Figure 6.14B). 

 

Figure 6.14: T1 weighted image at maximum heat deposition (60 s) in the presence of 

skull phantom for a 50 W-60 s sonication in the A) sagittal and B) axial plane. 
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 A careful observation of the images revealed a diffuse grey band of hypointense 

signal on brain phantom adjacent to the skull (Figure 6.14B). Temperature increase in 

that area was a result of conduction from the hot skull phantom. These results were in 

agreement with thermocouple measurements (30 W-60 s) where temperature rise at focus 

did not exceed 2 ºC whilst adjacent to the skull phantom a temperature rise of 38 ºC was 

reached. Skull thickness in the craniotomy section ranged from 3 to 12 mm which resulted 

in deleterious phase aberrations and uneven attenuation across the acoustic wavefront that 

could not be corrected using a single element transducer. Hot spots hypointense signal 

diffused during the cooling phase since heat conducted in the colder background. The full 

time series for each sonication protocol tested using the composite head phantom are 

illustrated in Appendix C. 

Conclusions 

Although temperature measurements via MR Thermometry were not available during 

HIFU sonications, results were presented through invasive thermocouple measurements 

and observations in T1 changes. In the absence of the craniotomy section, the brain 

phantom absorbed acoustic energy adequately. According to thermocouple readings the 

focal temperature reached ablative levels within seconds (54 ºC in 60 s). Observations in 

T1 weighted images in a plane perpendicular to the direction of acoustic propagation 

illustrated the formation of a fine circularly shaped region of hypointense signal. The 

contrast of the hypointense spot with its background increased for higher acoustic power 

sonications. In the transcranial configuration, the single element transducer did not focus 

the beam through the skull. The hot skull craniotomy section conducted heat to adjacent 

brain phantom whereas inadequate amounts of heat were delivered at the focus. 

Temperature increment at focus measured with the thermocouple (2 ºC after 60 s of 

sonication) was considered inadequate for ablating brain tissue in a clinical setting. 

6.5 HIFU thermal sonications of composite femur bone-muscle 

phantom under MR Thermometry monitoring. 

Materials and Methods  

This particular functionality test was designed to simulate the existing approach used in 

bone palliative treatments and assess the performance of the developed phantom under 

MR thermometry. The phantom was placed on top of the MR compatible positing 

device’s platform central square opening and immersed by a few millimeters inside a tank 
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filled with degassed water. The device was the same used for the head phantom 

functionality test. The MR compatible spherically HIFU transducer (Sonic Concepts) 

with a 40 mm diameter and 100 mm radius of curvature was also immersed underneath 

the phantom. This configuration was set for a bottom to top sonication (Figure 6.15). 

 

Figure 6.15: Experimental configuration used during sonication sonications of the 

composite femur bone-muscle phantom monitored by MR Thermometry. 

A fast gradient echo pulse sequence (FGRE) localizer was used to fine adjust the 

transducer’s position relative to the phantom (TR: 4.9 ms, TE: 1.4 ms, flip angle: 30º, 

rBW: 62 kHz, Matrix size: 256×128 and DFOV: 44 cm). Using a sagittal localizer the 

transducer was positioned 100 mm below the bone/tissue interface. This was identical to 

the clinical setup for bone metastases palliation treatments where the transducer focuses 

the acoustic beam at the bone/tissue interface. The phantom was treated with several 

sonication protocols shown in Table 6-3. 

Table 6-3: Maximum temperature (Tmax) for all the tested sonication protocols monitored 

by MR Thermometry in the axial plane 

Sonication protocol Monitoring Period (s) 
No. of thermal 

maps 

30 W-30 s (axial) 144 12 

60 W-30 s (axial) 144 12 

90 W-30 s (axial) 144 12 

30 W-60 s (axial) 216 18 

60 W-60 s (axial) 216 18 

60 W-60 (sagittal) 216 18 

Femur bone/muscle 

phantom 

Transducer 
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 Temperature elevation was monitored using PRFS thermometry. A SPGR pulse 

sequence (TR: 32ms, TE: 20 ms, Flip angle: 30º, rBW=15 kHz, slice thickness: 10 mm, 

matrix size: 128×128 and DFOV: 19 cm) was used to acquire complex data needed to 

construct the thermal maps in the axial plane as described in previous chapters. The actual 

temporal resolution of the MR thermometry sequence was 12 s per map. The phantom 

was monitored with a single MR thermometry slice orientated in a plane parallel to the 

beam’s propagation central axis (axial) for sonications of 30 W - 30 s, 30 W - 60 s, 60 W 

- 30 s, 60 W - 60 s and 90 W - 30 s (Figure 6.16). Thermometry was also conducted for a 

60 W - 60 s sonication in a plane perpendicular (sagittal) to the beam’s axis and 5mm 

away from the interface. 

 

Figure 6.16:  FGRE image of the phantom transducer setup cross section demonstrating 

the prescribed sagittal and axial thermometry slices. 

 All sonications lasting 30 s were monitored with MR Thermometry for 144 s (12 

thermal maps) and 60 s sonications for 216 s (18 thermal maps). This was done to record 

phantom thermal performance in the cooling stage. The distance of the transducer to the 

muscle/bone interface was set to 10 cm which was approximately equal to the focal 

length. This way the thermal focus was expected to form on the interface. Since no MR 

signal was expected to be produced by the plastic bone model, temperature increment was 

assessed in regions adjacent to the sonicated bone model layer. This is exactly what is 

done in all in vivo experiments where the MR signal of bones is short lived because of 

their extremely short T2 relaxation time. Thus, the efficacy of treatment was assessed on 
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the basis of an apparent temperature of the muscle phantom adjacent to the treated bone 

phantom. Thermometry data were analyzed using the TempMap1 GUI.  

 

Results  

 A magnitude image of the exact prescribed axial thermometry slice is displayed in Figure 

6.17 for reference purposes.  

 

Figure 6.17: Magnitude image of the axial slice used in PRFS thermometry. 

 

 The maximum temperature rise from background developed in the phantom 

during sonication 30W - 30s was approximately 18.6 ºC (thermal map 3). The maximum 

temperature rise was determined by identifying the pixel with highest reading within 5 

pixels from the interface corresponding to a distance of 7.5 mm. Temperature kept 

increasing even after the ultrasound was switched off since bone phantom absorbed 

acoustic energy efficiently and transferred heat via thermal conduction to the surrounding 

muscle phantom. The maximum temperature rise was 22.9 ºC in thermal map 8. Thermal 

map 8 was recorded approximately 66 s after sonication was switched off and temperature 

increment was attributed to heat conducting from adjacent bone phantom. This rather 

delayed heating effect was attributed to the low thermal diffusivity of the ABS bone 

phantom. The maximum temperature in the last map during the cooling phase (108 s post 

sonication) was 18.4 ºC. The same analysis was followed for all sonication protocols and 

the max temperature rise (Tmax) at the end of each sonication protocol is shown in Table 

6-4. 

Muscle Phantom 

Bone Phantom 
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Table 6-4: Max temperature rise (Tmax) at the end of each sonication protocol 

Sonication protocol Tmax at the end of sonication (ºC) 

30 W - 30 s (axial) 18.6 

60 W - 30 s (axial) 27.3 

90 W - 30 s (axial) 49.7 

30 W - 60 s (axial) 30.8 

60 W - 60 s (axial) 85.6 

60 W - 60 (sagittal) 35.7 

 

Typical thermal maps (Tmax) for axial sonications at 30W - 30s, 60W - 30s and 90W - 30s 

are shown in Figure 6.18 A-C respectively. 

 

Figure 6.18: Typical thermal maps at (Tmax) for A) 30W - 30s, B) 60W - 30s and C) 90W 

- 30s. 

  

 

 

Axial thermal map for 30W-30s 

 

 

Axial thermal map for 60W-30s 

 

 

Axial thermal map for 90W-30s 

 

 

Axial thermal map for 30W-30s 

 

 

Axial thermal map for 60W-30s 

 

 

Axial thermal map for 90W-30s 
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Cooling rate was faster for sonications where higher maximum temperature were reached 

due to higher temperature gradients. The calculated SNR for the bone/muscle phantom 

was 18.5 which corresponded according to equation 5.13 to a pixel temperature error 

equal to 0.7 ºC. Pixel statistics were calculated using ImageJ (National Institutes of 

Health, USA), which is a Java open source image analysis software. The heating profile 

of the hot region formed adjacent to the bone phantom during the sonication period was 

similar to what was seen in patients [91]. Some temperature increment was also observed 

in the agar-based phantom residing in the middle of the bone. This was indicative of heat 

transferring to the gel via conduction from the hot bone phantom. For some of the tested 

sonication protocols ablative temperatures were reached. HIFU induced measured 

temperatures were consistent with HIFU dosage which was directly proportional to the 

product of acoustic power with sonication time. The 60 W- 60 s induced the maximum 

temperature and the 30 W-30 s the minimum. With 30 s sonication, the 90 W was the 

only exposure reaching ablative temperature levels (>60 ºC).  The full time series for each 

axial sonication protocol are illustrated in Appendix C. 

 The sagittal thermometry slice was set approximately 5 mm in front of the 

bone/tissue interface (Figure 6.26), to monitor a 60 W- 60 s sonication in a plane 

perpendicular to the direction of propagation. The acquisition parameters of the SPGR 

pulse sequence used for calculating the sagittal thermal maps were the same with the ones 

used in the axial plane, except slice thickness and DFOV which were 5 mm and 18 cm 

respectively. The maximum temperature elevation was 35.7 ºC with an error equal to 1.2 

ºC. Increased temperature error was a result of signal reduction since voxel volume in the 

sagittal slice was approximately 47 % of voxel volume used in the axial slice. 

Thermometry demonstrated a Gaussian temperature distribution which is typical when 

monitoring the formed focus in a plane perpendicular to the propagation direction 

(sagittal). During cooling period the Gaussian profile spread as heat diffused in the 

surrounding agar phantom. The SNR in the region of the muscle phantom adjacent to the 

treated bone is governing up to date apparent temperature in surrounding muscle is the 

index used for controlling ablation of bone lesions. The estimated SNR levels (18.5 for 

axial slice and 10.9 for sagittal slice) were found to be in the range of clinical studies 

conducted to assess the quality of MR thermometry during palliative HIFU treatment of 

bone metastases [222]. In this study the average SNR of surrounding muscle retrieved 

from 13 treatments ranged from 8.7 to 39. The good quality of temperature monitoring 

using this phantom was reflected by the estimated temperature errors (0.7 ºC-1.2 ºC), 

which were close to accuracy required (1 ºC) for closed-loop control of energy deposition Cooling Phase 
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in commercial MRgFUS systems. Typical thermal maps demonstrating the thermal lesion 

formed at peak temperature and at maximum cooling are demonstrated in Figure 6.19 A 

and Figure 6.19B respectively. 

 

Figure 6.19: Thermal maps at (A) Tmax, (B) at maximum cooling in the sagittal plane for 

a 60 W-60 s sonication using a SPGR pulse sequence.  

 

The full time series for the sagittal sonication protocol is illustrated in Appendix C. 

  

Conclusions 

This work demonstrated the functionality of the developed bone/muscle phantom for 

assessing MRgFUS protocols. The phantom was made out of MRI compatible materials 

and introduced no image artifacts, whist image quality in MR thermometry produced 

readings with similar accuracy obtained in clinical systems. The phantom’s materials 

possessed acoustic properties close to the replicated biological tissues, therefore the 

developed temperature levels were similar to HIFU clinical treatments. Phantom heating 

profiles corresponded as expected to HIFU dosage and ablative temperatures were 

reached for some of the protocols.  

 The proposed design avoided the use of biological tissue in the form of cadavers 

which unless used fresh they require formalin fixation for preservation. In vivo studies 

that use small animal models differ significantly in geometry and size and their results 

cannot be translated reliably to the clinical setting with humans. Therefore this phantom 

is not only a step forward in replacing animal models but can also improve the 

transferability of research findings in human applications. This phantom can be developed 

further in the future and serve as reference phantom of thermal dosimetry in MRgFUS 

exposures and can be used to calibrate such systems or to provide intercomparison 

between similar systems of different vendors. It is literally customizable to individual 

patient’s bone geometry and has the potential of becoming a valuable treatment planning 

or educational tool. The muscle mimicking agar-based phantom was doped with 
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appropriate concentrations of silica dioxide and evaporated milk for controlling acoustic 

scatter and absorption independently. The cumulative effect of these additives was to 

approximate the attenuation coefficient of muscle tissue while simultaneously retaining 

the relative contributions of scatter and absorption.   

6.6 HIFU thermal sonications of Composite breast-rib phantom under 

MR Thermometry monitoring. 

Materials and Methods 

The phantom was placed with the breast phantom pointing downwards for a bottom to 

top HIFU sonication. The phantom was resting on top of the tissue holder of the MR 

robotic positioning device used to drive the HIFU transducer. The phantom weight was 

supported with a thin Mylar film. The breast phantom was partially sunk in the water tank 

which was later filled with degassed water to provide the necessary coupling. Lateral and 

top views of the phantom’s setup are illustrated in Figure 6.20. 

 

Figure 6.20: (A) Lateral and (B) top view of the composite breast-rib phantom resting on 

the treatment platform, with breast phantom partially sunk inside the water tank. 

 

The robotic positioning device used for this set of experiments was different from the one 

used for the bone/muscle phantom. A motorized angular axis was added that allowed the 
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transducer to rotate around the subject. The purpose of this modification was to 

demonstrate the effect of avoiding structures like bone by changing the acoustic beam’s 

angle of incidence. The upgraded positioning device was originally developed for 

isocentric bone HIFU applications [223]. Details of the upgraded design are given in the 

following chapter.  

 The plastic arm with the attached MR compatible 1.1 MHz transducer (Sonic 

Concepts) were immersed inside the water tank. Care was taken to remove any air bubbles 

from the transducer’s and the breast’s surface that could attenuate the beam. The position 

of the transducer relative to the phantom was set centrally underneath the breast phantom 

via the robotic system. The robotic system along with the phantom were positioned and 

centered on the MRI table. The phantom was wrapped around by the GPFLEX imaging 

coil.  A SPGR pulse sequence was used for PRFS thermometry with the following 

acquisition parameters: TR: 38.5 ms, TE: 20 ms, rBW: 15 kHz, matrix size: 128 × 128, 

slice thickness: 10 mm, NEX: 1, DFOV: 25 x 25 cm.  Figure 6.21 shows an axial SPGR 

magnitude image with the transducer positioned in the central axis of propagation. 

 

Figure 6.21: Axial magnitude image of the transducer’s position relative to the breast-

rib phantom. 

 

 The focus of the acoustic field was expected to form approximately 9 mm in front 

of the breast/rib interface at a distance equal to the focal length of the transducer (10 cm). 

Coronal thermometry slices were positioned at a distance equal to the transducer’s focal 

length (10 cm). A second coronal thermometry slice was also prescribed 5 mm from the 

ribs 

breast phantom 

transducer 



  

 134 

rib/breast phantom interface in order to assess the adverse heating from rib phantom 

residing in the far field. Thermometry maps were also calculated in the axial and sagittal 

plane. Figure 6.22 illustrates the various thermometry slice planes used while monitoring 

various sonication protocols. The sonication protocols used are shown in Table 6-5.  

 

Figure 6.22: Illustration of thermometry slices prescribed in different planes for 

assessing sonication protocols in composite rib cage/breast phantom. 

 

Table 6-5: Sonication protocols used during functionality tests of the composite breast-

rib phantom 

No. 
Acoustic 

Power (W) 

Sonication 

Duration (s) 

Propagation 

Direction 
Thermometry plane 

1 45 60 Bottom to top Axial 

2 45 60 Bottom to top Coronal (near ribs) 

3 45 60 Bottom to top Coronal (on focus) 

4 45 60 Lateral Axial 

 

The transducer was activated for the first 5 maps (60 s for 12 s/map temporal resolution). 

All protocols were monitored using PRFS technique and temperature elevations were 

calculated using the TempMap1 GUI. Total temperature monitoring period lasted for 108 

s (9 thermometry maps). 
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Results  

Thermometry maps in the axial plane for a bottom to top sonication and with the rib bone 

positioned in the far field simulated a very common problem that clinicians face when 

applying HIFU (Figure 6.23A). Excessive heating well above 100 ºC was observed in 

some pixels adjacent to rib/breast interface whereas temperature raised in the focal area 

exceeding 90 ºC. These temperature levels were beyond agar’s melting point and possibly 

the artifacts observed (distribution of signal discontinuities in front of the interface) can 

be attributed to this effect. Once the transducer was rotated in the theta axis, a lateral 

sonication using the same power and duration (45 W - 60 s) the maximum temperature 

elevation decreased dramatically down to 32.5 ºC (Figure 6.23B). The presence of an 

acoustically reflective and absorptive material like the bone phantom in the line of 

propagation perturbed the distribution and magnitude of temperatures in the thermometry 

plane.  It was speculated that thermometry in the beam’s long axis was not precise since 

slice thickness (10 mm) was large compared to focal width (3.48 mm) and temperature 

measurements suffered from partial volume averaging. 

 

 

Figure 6.23: Typical axial thermal maps at Tmax for (A) 45 W-60 s sonication for a bottom 

to top approach and with the rib bone phantom residing in the far field and (B) 45W-60s 

sonication for a lateral approach while avoiding the rib bone in the far field. 

 

 Coronal thermal maps were prescribed in a plane perpendicular to the beam’s 

propagating direction were expected to produce more realistic temperatures. Voxels of 

the slice were filled with spins that their PRF has shifted by approximately the same 

degree as a result of temperature increment. Thermal maps acquired 5 mm in front of the 

rib phantom demonstrated a maximum temperature elevation equal to 60.3 ºC (Figure 

6.24A). The estimated error in temperature measurements based on SNR measurements 

was calculated to be 0.7 ºC. The equivalent measurement for the thermal at a distance 

from the transducer equal to its focal length was 63.4 ºC with an estimated temperature 
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error equal to 0.8 ºC (Figure 6.24B). The high temperature developed distally to the focus 

and near the ribs was attributed to the combined effect of the acoustic focus length 

dimension, which according to manufacturer datasheet the focus -6 dB contour was 58.25 

mm and strong reflections at the rib/breast interface. This effect was demonstrated by 

Nell et al  [224], where their experiments using bone phantoms showed that at sufficiently 

high acoustic power, reflection of the HIFU beam from bone introduced temperature 

fluctuations as much as +/-15 %.  

 

Figure 6.24: Typical coronal thermal maps at Tmax for A) 45 W-60 s sonication for a 

bottom to top approach and the thermometry slice prescribed 5 mm in front of the rib 

phantom and (B) 45 W-60 s sonication for a bottom to top approach and the thermometry 

slice prescribed at the focus. 

 

 Cooling in the focal plane took place in a faster rate due to the steep temperature 

gradient with the surroundings reaching 24.4 ºC at 48 s after the transducer was 

deactivated. The decay of maximum temperature during the cooling phase near ribs for 

the same time post sonication was 33.2 ºC indicating a slower cooling rate. A possible 

explanation for the slower heat dissipation rate was that this plane was at the proximity 

of the heat conducting bone phantom. 

 

Conclusions 

The functionality of this phantom was evaluated initially with a protocol applied using a 

bottom to top penetration and later using a lateral approach that avoided rib heating. The 

proposed phantom involved a model with the target (tissue mimicking breast phantom) 

intervening between the transducer and the ribs. It was shown using MRI thermometry, 

that when the ribs were exposed to the focused ultrasound beam (far-field), excessive 

heating was created. When the ribs were avoided, the estimated temperature using the 

same exposure was much lower, indicating that lateral ablation has clear benefits in breast 

ablation. 
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 Planning of thermometry slices played an important role in the accuracy of 

thermometry results. Although one would expect the same maximum temperature shifts 

for the same power and different slice orientations, it was concluded observed that this 

was not strictly true. Slices along the long axis of the beam are prone to positioning and 

partial volume errors. The presence of other materials near the isocentre (positioning 

device motors, transducer) can give rise to a field inhomogeneity associated with phase 

errors. These errors present a directional predominance depending on the spatial 

distribution of such materials in the vicinity of the static magnetic field. Another 

speculation was that in areas of high magnetic susceptibility difference like the rib/breast 

phantom interface, the field was distorted resulting in local phase errors when using 

sequences of the GRE family. 

 The proposed phantom combined into a single phantom both breast tissue 

equivalent (agar/silica/evaporated milk) and bone equivalent (ABS plastic). The main 

acoustic parameter contributing to energy loss during FUS exposure (attenuation) was 

carefully adjusted in the replicated soft tissue phantom to match the values found in 

humans. The cost of manufacturing the proposed phantom was low and therefore it can 

be easily offered to users in order to evaluate the performance of FUS protocols, new 

hardware, new adaptive focusing and beam steering algorithms. Since the proposed 

phantom was designed based on information extracted from human CT images, the 

dimensions involved in the phantom were considered realistic.  

 

6.7 Summary 

 The agar-based soft tissue mimicking phantoms were assessed for their thermal 

repeatability and attenuation capability at different depths. Functionality tests of the 

developed tissue mimicking composite phantoms were performed using MR 

thermometry. This involved observing the spatial distribution of temperature elevations 

induced by a single element focused ultrasound transducer operating at 1 MHz across the 

thermometry slice.  The destructive interaction of the skull phantom with ultrasound 

resulting in the absence of a thermal focus, the high efficiency of the femur bone phantom 

in absorbing acoustic energy and the strong reflections from ribcage residing in the far 

field during breast tissue ablative sonications were demonstrated. These results were 

similar to treatment safety and efficiency related observations made in relevant preclinical 

studies and prove the usefulness of these phantoms in replacing animal models for testing 

focused ultrasound thermal applications.
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7 Functionality and MR compatibility assessment of a robotic 

device designed for HIFU thermal bone treatments. 

7.1 Introduction  

 The purpose of this study was to test the functionality of a new robotic device 

developed and assess its MR compatibility. Using three linear and one angular stage, the 

positioning device navigates the transducer to easily access any target. The advantage of 

using the proposed system over conformal bone systems is that the focus is steered 

mechanically instead of electronically making it less complex, affordable and compact.  

 Transcranial HIFU applications make the use of a phased array mandatory to 

overcome skull induced aberrations. In applications where only transmission through soft 

tissue is involved, treatment using a single element transducer is feasible. The possibility 

of using single-element transducer HIFU systems was supported by results of the 

bone/muscle and rib/breast phantoms. Functionality tests showed sufficient heat at the 

targeted site. The developed device was used in synergy with the rib-breast phantom to 

demonstrate the effect of avoiding the ribs in the far field through lateral sonications. 

7.2 Short description of the system 

 The aforementioned device was a continuation of several other technologies 

designed for various applications by our group. Knowledge and experience was gained 

during the development and design of its predecessors like the brain ablation prototype 

by Mylonas et al [221], the first [225]  and upgraded [226] version of the endorectal 

MRgFUS prostate ablation system by Yiallouras et al and the recent endovaginal 

treatment system by Epaminonda et al [227]. The proposed system was produced with 

four directional degrees of freedom. These included linear motion in three orthogonal 

axes (xyz) and a rotation around the z-axis for acoustic propagations in the xy plane. 

7.2.1 Mechanical parts 

 The main body of the robotic system made out of ABS was prototyped using the 

FDM 400 3D printer (FDM400, Stratasys). The system was equipped with four 

piezoelectric ultrasonic motors (USR60-S3N, Shinsei Kogyo Corp.) for driving the HIFU 

transducer linearly in one of the three orthogonal axes and for angular rotation. The device 

has maximum dimensions (height: 25 cm, length: 38 cm and width: 22.5 cm) and can 

easily be used without space restrictions inside the cylindrical bore of any conventional 
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high-field MRI system. The range of motion of the robotic system was set to x: 8 cm, y: 

8 cm, z: 8 cm and to an azimuthal angle (θ) in xy plane spanning between 0 and 180 

degrees in a clockwise rotation. The total weight of the device was approximately 2 kg. 

Figure 7.1 illustrates the setup of the positioning device for a top to bottom bone 

treatment. 

 

Figure 7.1: Setup of HIFU bone treatment positioning device on the MRI table with 

notations pointing the PUM motors that control motion in the xyz axes and theta (θ) 

rotation.. 

 

7.2.2 Device control interface. 

 The device was controlled via a custom made user-friendly interface developed in 

C#. Motion in the four directions was controlled by the software in user-defined steps or 

in grid sequence patterns. Drivers for controlling the PUM motors and powered by a 24 

V- 2 A DC supply, were controlled via a USB 6251 data acquisition (DAQ) interface card 

(National instruments) that included timing and digital output modules. Control and 

monitoring of secondary functions was also available via the interface. 

7.2.3 Motion encoding and angular axis. 

 Optical encoders (EM1, US Digital Corporation, Vancouver, WA, USA) installed 

on the stationary parts of the device’s body returned back to the interface a digital 

feedback of the device’s displacement. The displacement was encoded by installing 

reflective linear strips on sliding racks which were displaced by each of the xyz PUM 

motors. Rotation of the angular axis was controlled by an optical encoder monitoring a 
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linear strip wrapped around a coupling frame between the PUM motor and the upper 

section of an axle. The lower end of the axle was equipped with threads which were 

coupled with a gear responsible for rotating the transducer’s arm. A CAD of the angular 

axis is shown in Figure 7.2. 

 

Figure 7.2:  CAD drawing of the angular axis complete assembly. 

 

7.2.4 HIFU system used for conducting the functionality tests. 

 The HIFU system consists of a signal generator (Agilent technologies), an RF 

amplifier (AR), and a spherical transducer made from piezoelectric ceramic (Etalon, 

Lebanon, IN, USA). The spherically focused transducer operates at 1 MHz, with a focal 

length of 10 cm and a diameter of 3 cm. 

7.2.5 Functionality test of the newly developed angular axis. 

 The functionality of the robotic device was evaluated by creating discrete and 

overlapping thermal lesions using HIFU in gel phantoms (ONDA Corporation) using the 

newly developed angular axis, that did not exist in any of the previous robotic systems 

developed by our group. The gel by ONDA Corporation under evaluation was placed in 

a degassed water tank. The transducer was attached to the arm of the positioning device 

and was immersed in the water tank to establish adequate acoustic coupling between the 

gel and transducer. During the first set of sonications two thermal lesions were created 2 
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cm deep inside the gel phantom by rotating 20 º the arm holding the transducer. The 

ultrasound intensity used was 1500 W/cm2 (spatial average in situ) for 60 s. The second 

set of sonications produced overlapping thermal lesions using 9 steps of 5 º. The intensity 

used was 1500 W/cm2 (spatial average in situ) for 60 s. Figure 7.3 demonstrates the 

formed thermal lesions for the 20 º and 5 º angular steps. 

 

Figure 7.3: A)Two thermal lesions in the gel phantom created by moving the angular axis 

of the robotic system using a discrete step of 20º and B) Overlapping thermal lesions 

created in the gel phantom by moving the angular axis of the robotic system using 9 steps 

of 5 º. 

 

7.3 MR compatibility assessment of the robotic device. 

 The American Society of Testing and Materials (ASTM) standard F2503-05 

[228], indicates the conditions for which it has been determined that a medical device or 

other item may be safely placed and used in the MR environment. HIFU positioning 

devices are no exemption and they must be tested prior to using them with humans. The 

standard makes the distinction between “MR safe” and “MR conditional” devices. “MR 

safe” corresponds to a device which poses no hazard to the patient when used in the MR 

environment but without guaranteeing of image quality degradation and loss of diagnostic 

information. The “MR conditional” classification is usually assigned to a device that 

poses no known hazards in the MR environment but with specified conditions of use. 

 The MR compatibility of the positioning device in terms of induced image 

artefacts and signal degradation in the vicinity of the piezoelectric motors, transducers 

and encoders was assessed. The robotic HIFU system was tested in a 1.5 T MR system 

A B 
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(General Electric) using the abdominal imaging coil (USA instruments, Cleveland, OH, 

USA). The DQA phantom (NiCl2-H2O, GE-Dielectric Corporation, Menomonee Falls, 

WI, USA) was used to measure the SNR was under various conditions (Motor/encoder 

activation, and transducer activation). A FSPGR pulse sequence was used to assess the 

SNR (TR: 32 ms, TE: 4.4 ms, FOV: 30 cm, matrix size: 128×128, flip angle: 30 º, rBW: 

15 kHz and NEX: 1). Being a fast gradient echo sequence FSPGR was considered 

particularly sensitive in any external interferences that could perturb the homogeneity of 

the static field and the linearity of the encoding gradients. 

  The SNR of the DQA liquid phantom was calculated for different states (ON, 

OFF) for each of the robotic system’s component that required electricity for activation 

(piezoelectric motor, optical encoder and transducer). The results are presented as a 

percentage of the maximum SNR in  

Figure 7.4. 

 

 

Figure 7.4: SNR calculations of the DQA phantom magnitude image for different 

scenarios: (ALL OUT) all the components removed from the bore, motor/ encoder (M/E 

OFF) added to the system and deactivated, motor/ encoder (M/E ON) added to the system 

and activated, transducer (TRX OFF) added to the system and deactivated, transducer 

(TRX ON) added to the system and activated, (ALL ON) all components added and 

activated. 

 

 The piezoelectric motor and optical encoder of the angular axis were the two most 

proximal components to the imaging plane. The motor/encoder pair was activated and 
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deactivated simultaneously.   As expected the maximum SNR was measured when all the 

components were removed from the bore of the magnet. There was some decrease in the 

SNR in the presence of the motor/encoder pair. Although these components did not 

contain metallic materials possibly the presence of solder contributed in to signal 

degradation by distorting the homogeneity of the static magnetic field. A further decrease 

in SNR was observed when the motor/encoder were activated. The motor was powered 

by a DC current which itself induced a secondary magnetic field around the power 

carrying wire that interacted with the MRI static field. The presence of the transducer also 

caused an SNR drop but smaller compared to the motor/encoder pair. No measureable 

change in the SNR was observed after the transducer was activated. The transducer was 

powered by an AC current which induced an alternating magnetic field. Possibly the 

nature and magnitude of the alternating magnetic field was inadequate to produce any 

measurable SNR drop. When all the component were activated the cumulative effect was 

to decrease the SNR to its minimum. The SNR drop in the worst case scenario was 

approximately 30%. No severe image geometric distortion or signal inhomogeneity was 

observed when all components were present and activated.   

 By comparing the phantom’s magnitude images for the best and worst case 

scenario it was easy to visually observe the drop in the SNR in the vicinity of all activated 

components inside the bore of the magnet (Figure 7.5).  

 

Figure 7.5: Magnitude image of the DQA phantom using the MRI sequence FSPGR when 

the motor/encoder and transducer were deactivated, and B) Corresponding image when 

the motor/encoder and transducer were all activated. 

 

A “zipper” artifact appearing as a dashed line extending perpendicular to the frequency’s 

encoding direction was observed. The artifact was attributed to RF interference signal 

produced by the motors, encoders and transducer. Additionally unshielded transmitting 

wires were possible carriers of the interfering signal, which was picked by the receiver 

chain of the imaging sub-systems.  

RF interference 

artifact 

A B 
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7.4 Summary 

 The work described in this chapter demonstrated the functionality test for the 

updated version of a HIFU positioning device that is capable of performing sonications 

at different angles of incidence in the subject. The formation of the thermal lesions inside 

the ONDA gel indicating the line of propagation of the focused field was an index for the 

beam’s angle of incidence. Angular steps of the device for wide and narrow angle were 

completed successfully. This was a confirmation that this device can avoid obstructing 

structures like bone and air. The mechanically steered system offers a cheaper and less 

complex solution compared to other system that employ a phased array. A mechanically 

steered device that employs a single element transducer can be used for any soft tissue 

applications that do not require adaptive focusing. 

 The conditional testing was completed in a 1.5 T MRI system operating at 

standard operating conditions and the SNR measurements indicated a 30% loss when all 

current carrying components were activated with no severe image quality degradation. 

RF interference can be isolated in the future by shielding and low pass filtering all 

components. 
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8 Discussion and Future Work 

8.1 Discussion 

 The aim of the thesis was to design and develop MR compatible phantoms for 

research in the area of focused ultrasound. The basic prerequisites set at the beginning of 

the project was to use materials that mimic at least the attenuation coefficient and the 

geometry of the replicated tissue and to be MR compatible. The approach was to create a 

set of composite phantoms representing human anatomies that combined soft and bone 

tissue mimicking parts. Upon following relevant literature, it was evident that safety and 

efficacy studies of HIFU applications often report adverse effects when a bone tissue is 

within the acoustic field. Additionally the efficacy of HIFU applications targeting a soft 

tissue lesion are often limited when the acoustic beam transmits through a bone. 

 Bone tissue was mimicked using ABS. ABS seemed to be a possible bone 

mimicking candidate, since it is a popular thermoplastic polymer used in rapid 

prototyping machines for producing true size 3D models. Testing ABS as a bone replica 

was attractive since it combined strength and rigidity with good chemical resistance and 

dimensional stability which were essential for building a long lasting and inert phantom.  

Being a plastic it was expected to have a very low magnetic permeability, thus making it 

ideal for safe use inside the MRI environment while inducing minimum susceptibility 

image artefacts. Using a set of 3.5 MHz planar transducers and samples of ABS, the 

polymer’s acoustic properties were characterized using pulse echo and transmission 

through techniques. The attenuation coefficient of ABS was extrapolated from 3.5 MHz 

at 1 MHz in dB/cm assuming a linear dependence with frequency. The derived coefficient 

of 16.01 ± 6.18 dB/cm at 1 MHz was within the broad range of the reported values found 

in literature for multi-layered bones (diploe) [173], [229], [230]. The result was in 

agreement even for studies that reported BUA of cortical bone[231], [232] separately 

from trabecular bone layers[231], [233], [234], spanned over orders of magnitude due to 

great biological variability. Trabecular bone has a higher BUA due to increasing 

contribution of scatter from trabeculae especially in high frequencies. Attenuation in 

cortical bone is primarily a result of acoustic absorption with values in the lower end of 

the range.  The large error in ABS attenuation measurement was due to significant signal 

drop. The small transmitting signal’s amplitude approached the minimum Volts per 

division setting on the oscilloscope which induced high uncertainty on the reading. The 

speed of sound in the ABS specimen was estimated at 2048 ± 79 m/s which was in the 
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low end of the range of values found in literature [16], [17]. The combination of the 

measured speed of sound in ABS with its low mass density (1.04 g/cm3
) given by the 

manufacturer (Stratasys) produced an acoustic impedance equal to 2.14 MRayls. 

Comparing with values reported for the acoustic impedance of human bones (3.75-7.38 

MRayls) by Goss et al [16], it was deduced that the ABS phantom would reflect 

ultrasound less than most human bones. Using a dedicated software bone models were 

created by segmenting bony tissue from medical CT images. The dimensional accuracy 

of the segmented 3D model was dependent on the user defined mask. The bone mask was 

relatively easy to define manually by observing CT images with appropriate windowing. 

Bone is a dense tissue which appears as hyper intense signal in grayscale images with 

high contrast relative to background tissue.  

 The suitability of agar based gel phantoms was investigated for creating the soft 

tissue phantom parts. The novel approach for building these agar based phantoms was the 

introduction of both absorption and scatter agents. Phantoms presented in literature have 

used different concentrations of either scattering agents or absorption agents to control 

and match the attenuation coefficient of the replicated tissue. This was considered an 

important difference compared with our approach since the main purpose of an 

acoustically tissue mimicking phantom is to reproduce the whole spectrum of acoustic 

interactions as realistically as possible. A phantom doped only with a scattering agent will 

result in significant loss of acoustic energy along the beam’s path between the transducer 

and the focus. Scattering events that redistribute acoustic energy out of the plane of 

propagation will result in a lower heating rate and lower apparent absorption in the focal 

plane compared to real tissue. Similarly a phantom doped only with an absorbing agent 

will convert acoustic energy more efficiently to heat and therefore exaggerate the heating 

rate at focal plane compared to a real tissue with the same total attenuation coefficient.  

 Silica dioxide in powdered form with particle size ranging between 0.5 -10 μm 

was used as a scattering agent whereas absorption was controlled with the addition of 

evaporated milk. The attenuation coefficient of agar based gels (2 % w/v) was assessed 

for different concentrations of either silica or evaporated milk once again using the pulse 

echo immersion technique. Although data in literature reporting the relative contributions 

of scatter and absorption to attenuation for different tissue types are rare, it was made 

possible to extract typical values for brain and muscle tissue. These data were used to 

linearly combine the required agents’ concentrations to achieve the desired relative 

contributions of scatter and absorption to total attenuation coefficient for mimicking the 

brain and muscle tissue. The finalised gel samples for brain (2 % w/v agar, 1.2 % w/v 
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silica dioxide, 25 % evaporated milk) and muscle (2 % w/v agar, 2 % w/v silica dioxide, 

40 % evaporated milk) were characterized for speed of sound, mass density , acoustic 

impedance, thermal conductivity and diffusivity.  

 The choice of the agar as a gelling agent was due to its preservation of structural 

integrity up to 85 ºC, which covers HIFU applications requiring ablative temperature 

levels. Additionally agar is not toxic unlike similar studies that used polyacrylamide 

which is a known neurotoxin that can be passed to human by either oral or even inhalation 

exposure. Preparation of agar gels does not require specialised equipment and duration of 

the whole process does not last more than 2 hours. The low cost of preparation that did 

not exceed €1 per 100 ml was the main reason for not adding preservatives to the gels. 

Fresh gels were made for every experiment and were refrigerated for up to one week after 

which they were disposed. The most important disadvantages of agar gels were the 

opaque texture and brittleness upon exertion of strain or stress. The opaqueness of the 

gels was not a real problem since the phantoms were designed for monitoring HIFU 

thermal exposures with MRI. 

 Three composite phantoms were fabricated following the selection of the 

candidate mimicking materials for bone and soft tissue. First a head phantom which was 

composed from an ABS skull part with an agar based brain mimicking gel moulded inside 

it. The second phantom was a partial ABS model of a femur bone embedded in a 

cylindrically shaped agar based muscle mimicking gel and the third one was a unilateral 

composite ABS ribs-breast phantom. A simplified approach was used for building the 

breast phantom which was mimicked using the muscle recipe. In reality the average breast 

of an adult female consists mainly from layers of adipose tissue (fat), dense fibro-

glandular tissue and pectoral muscle which variability in their acoustic properties. On the 

other hand the acoustic properties of brain and muscle tissue are usually reported in 

literature as a homogeneous media. 

 All phantoms were tested for their functionality under MRI monitoring. 

Conventional MRI monitoring in HIFU thermal treatments involves the implementation 

of MR thermometry techniques in order to non-invasively assess in quasi real time the 

evolution of the temperature distribution across the treatment envelope. The functionality 

of the composite head phantom was assessed in a transcranial treatment configuration 

where an extracorporeal 1.1 MHz single element HIFU transducer targeting a region 

inside the brain phantom. Sonications were conducted with and without intact skull while 

temperature was monitored using an implanted thermistor probe in different positions of 

the focal plane. The results of this study demonstrated inadequate focal heating due to 
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complete defocussing of the beam when the skull phantom intervened with excessive 

temperature increment near brain surface. Similar qualitative results were drawn when 

the head phantom was monitored with a SPGR T1w weighted pulse sequence.  

 A custom made GUI designed in Matlab for employing PRFS thermometry was 

developed, since the MRI system used was not equipped with integrated thermometry 

capabilities. PRFS Thermometry is up to date the only temperature monitoring technique 

employed in commercial systems since the precession frequency shifts linearly for a range 

of temperatures that covers HIFU hyperthermia and ablation applications. Another 

advantage is that the PRFS sensitivity coefficient measured in ppm/ºC is independent of 

tissue type. The GUI retrieved complex image data from the MRI, calculated the phase 

wrapped images and applied on the fly a non-continuous pathway unwrapping algorithm 

based on pixel reliability. The advantage of using this algorithm was that noise in the 

image was unwrapped last and therefore phase unwrapping errors did not propagate 

across the final image. Internal and external references in the form of tubes filled with oil 

and surrounding the phantoms were used to correct for an intermittent phase background 

offset. The unwrapped reference and post treatment images were combined to calculate 

their complex difference image. The final temperature elevation map was calculated by 

applying the PRFS equation pixel by pixel on the complex difference image. The thermal 

repeatability of the soft tissue phantoms was assessed with the TempMap1 GUI by 

calculating the coefficient of variation in temperature readings recorder at different 

locations of the phantom. Temperature readings for the same sonication protocol and 

setup were independent of phantom location. 

The femur bone/muscle phantom functionality was demonstrated by targeting the focus 

on the bone/muscle interface. This configuration replicated palliative sonications 

conducted to ablate the periosteum in patients suffering from bone metastases. The 

apparent temperatures measured by the TempMap1 GUI in the muscle tissue adjacent to 

the bone phantom reached ablative temperature even at moderate acoustic power settings. 

A frequent adverse effect that occurs when a bone resides in the far field was 

demonstrated during the ribs/breast phantom functionality test. The MR compatible 

transducer was set for a bottom to top sonication of patient laying in prone position. The 

rib cage was positioned distally to the focus and high temperatures were developed at the 

interface. Adverse bone heating was avoided using an MR compatible positioning device 

that mechanically steered the transducer for lateral sonication. The temperature level 

developed inside the breast phantom was significantly lower for the same power setting. 

Maximum temperature elevation was confined within the focal region. The positioning 
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device was assessed for its functionality and MR compatibility and showed that it could 

be a possible replacement at a lower cost and complexity compared to the phased array 

transducer systems for applications that no adaptive focusing is required. 

8.2 Future work 

This following section describes a series of improvements or additions to the existing 

work that upon completion are expected to improve the performance of the designed 

phantoms. 

 An important limitation of this study was the complete absence of perfusion in the 

designed tissue mimicking phantoms. Highly perfused tissues might be more resistant to 

thermal ablation than poorly perfused areas owing to the heat-sink effect of their blood 

supply [235]. Early studies indicated that for short pulse lengths (less than or equal to 2 

s) and small focal diameters (approximately 3 mm) produced temperature elevation and 

thermal dose which was nearly perfusion independent [236]. Nevertheless the majority 

of clinical applications would exceed this time threshold and therefore perfusion needs to 

be simulated in a tissue mimicking phantom designed for assessing reliably HIFU thermal 

applications. A possible improvement would be to introduce vessels in the agar-based 

phantoms.  Water sustained at body temperature (36 ºC) pumped by a peristaltic pump to 

simulate blood flow in a wall-less vessel around the targeted lesion to approximate 

isotropic perfusion. This would be particularly useful for the brain phantom which 

represents one of the most highly perfused human organs. 

  Breasts consist of adipose, glandular and muscle tissue that all possess slightly 

different acoustic properties. Fabricating a breast tissue phantom in a multilayer format 

with agar-based gels of different attenuation coefficient according to the replicated tissue 

layer would be more realistic than the homogeneous phantom built during this project. 

 Regions of enhanced contrast can be added to the phantom in order to test the 

spatial accuracy of the HIFU treatment. Gadolinium and agar are T1 and T2 relaxation 

time modifiers and can be used to create targets that differentiate from the background in 

T1 and T2 weighted images respectively. These images can be fused with the thermometry 

maps to quantify the displacement of the thermal focus relative to the target. 

 Many studies in literature use physical phantoms to compare with numerical 

models. The nonlinear parabolic Khokhlov-Zabolotskaya-Kuznetsov equation which 

accounts for nonlinearity, diffraction, and absorption has been applied to calculate the 

pressure field produced by HIFU source in a medium [237]. The Pennes Bioheat Equation 

has also been used in numerical models to predict the temperature distribution across a 
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perfused medium sonicated by a HIFU source [238]. The implementation of these models 

requires declaration of certain boundary conditions and characterization of medium 

specific parameters. The majority of the soft tissue mimicking gels parameters has been 

characterized (absorption coefficient, speed of sound, mass density, thermal conductivity 

and diffusivity and specific heat) in this study except the nonlinearity coefficient (B/A). 

This coefficient determines the rate of acoustic energy loss from the fundamental 

frequency to higher harmonics as a result of nonlinear propagation in high pressure fields. 

The B/A coefficient for both recipes should be measured in order to compensate the 

accumulation of nonlinear effects along the propagation direction. 

 A coating of high acoustic impedance like acrylic resin can applied to the 

surface of ABS bone phantoms to introduce reflections closer to the ones produced in 

human bone interfaces. A coating of submillimetre thickness is not expected to alter 

significantly the attenuation characteristic of the bone phantoms.  
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Appendix B 

 

Example of pixel reliability index calculation 

This example demonstrates the calculation of the reliability index for a central pixel in a 

3 x 3 pixel matrix. Second difference is defined as the difference of the first differences*.  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

Resultant Second Difference of central pixel (RSD) = √𝐻2 + 𝑉2 + 𝐷1
2 + 𝐷2

2 = 12.04 

Reliability Index (R) = 
1

𝑅𝑆𝐷
 =  0.083 

 

*Note: During first differences calculation a simple unwrapping operation is applied were 

±2π jumps are removed.  
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Appendix C 

 

Figure 1: Time series of coronal thermometry maps (1-9) in deep phantom during 25W - 

60 s sonication. 

 

Figure 2: Time series of axial thermometry maps (1-9) in deep phantom during 25W - 60 

s sonication. 
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Figure 3: Time series of coronal thermometry maps (1-9) in medium phantom during 

25W - 60 s sonication. 

 

Figure 4: Time series of axial thermometry maps (1-9) in medium phantom during 25W 

- 60 s sonication. 
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Figure 5: Time series of coronal thermometry maps (1-9) in shallow phantom during 25W 

- 60 s sonication. 

 

Figure 6: Time series of axial thermometry maps (1-9) in shallow  phantom during 25W 

- 60 s sonication. 
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Figure 7: Sagittal T1w images for 50W-60 s sonication in the absence of plastic skull. 

 

 

Figure 8: Axial T1w images for 50 W-60 s sonication in the absence of plastic skull.  

 

 

Figure 9: Sagittal T1w images for 50 W-60 s sonication with intact plastic skull. 
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Figure 10: Axial T1w images for 50 W-60 s sonication with intact plastic skull. 

 

 

Figure 11: Sagittal T1w images for 90 W-60 s sonication in the absence of plastic skull. 
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Figure 12: Thermal maps (1-12) of the bone/muscle phantom in the axial plane for 30 W-

30 s sonication using a SPGR pulse sequence. 

 

Figure 13: Thermal maps (1-12) of the bone/muscle phantom in the axial plane for 60 W-

30 s sonication using a SPGR pulse sequence. 

 

Figure 14: Thermal maps (1-12) of the bone/muscle phantom in the axial plane for 90 

W-30 s sonication using a SPGR pulse sequence. 
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Figure 15: Thermal maps (1-18) of the bone/muscle phantom in the axial plane for 30 W-

60 s sonication using a SPGR pulse sequence. 
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Figure 16: Thermal maps (1-18) of the bone/muscle phantom in the axial plane for 60 W-

60 s sonication using a SPGR pulse sequence. 
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Figure 17: Thermal maps (1-18) of the bone/muscle phantom in the sagittal plane for 

30 W-60 s sonication using a SPGR pulse sequence.  
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Figure 18: Axial thermal maps for a 45 W-60 s of the breast/rib phantom sonication for 

a bottom to top approach and with the rib bone residing in the far acoustic field. 

 

Figure 19: Axial thermal maps for a 90W-60s sonication of the breast/rib phantom  for a 

lateral approach while avoiding the rib bone in the far field 



  

 164 

 

Figure 20: Coronal thermal maps for a 45 W-60 s sonication of the breast/rib phantom 

for a bottom to top approach and the thermometry slice prescribed 5 mm in front of the 

rib phantom. 

 

 

Figure 21: Coronal thermal map for a 45 W-60 s sonication of the breast/rib phantom 

for a bottom to top approach and the thermometry slice prescribed at the focus. 



  

 165 

Appendix D 

TempMap1 GUI Matlab code 

% TEMPMAP1 MATLAB code for TempMap1.fig 

function varargout = TempMap1(varargin) 

% Initialization of GUI 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @TempMap1_OpeningFcn, ... 

                   'gui_OutputFcn',  @TempMap1_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code  

% Executes just before TempMap1 is made visible. 

function TempMap1_OpeningFcn(hObject, eventdata, handles, varargin) 

% Choose default command line output for TempMap1 and set default user defined values for 

alpha and waiting time. 

set(handles.alpha, 'String', -0.01); 

set (handles.WaitingTime, 'String', 60); 

handles.output = hObject; 

% Update handles structure 

guidata(hObject, handles); 

% TempMap1 waits for user response  

% uiwait(handles.figure1); 

% Outputs from this function are returned to the command line. 

function varargout = TempMap1_OutputFcn(hObject, eventdata, handles)  
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% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% Get default command line output from handles structure 

varargout{1} = handles.output; 

 

% Executes on button press in pushbutton1. 

function pushbutton1_Callback(hObject, eventdata, handles) 

% Browse and load magnitude (reference) image DICOM file. 

[filename, pathname] = uigetfile('*.*', 'Select a Magnitude Image'); 

% Check if file is empty and give warning for cancellation. 

if ~isequal(filename,0) 

% Create array MG1 and set equal to matrix of read pixel data. 

    MG1= dicomread (fullfile(pathname,filename)) 

% Create struct with fields MG1info and set equal to DICOM file metadata. 

    MG1info= dicominfo (fullfile(pathname,filename)) 

 % Show magnitude image MG1 in figure (1) with in grayscale in full dynamic range 

    figure(1); 

    imshow (MG1, []); 

% Create handles of 6 elliptical ROI with radii of (10 x 10 pixels) and center at (0, 0).  The use 

drags and drops by double clicking the ROI at each external oil reference. Position and size of 

ROI can be adjusted. 

    h1 = imellipse(gca, [0 0 10 10]); 

    wait(h1); 

    h2 = imellipse(gca, [0 0 10 10]); 

    wait(h2); 

    h3 = imellipse(gca, [0 0 10 10]); 

    wait (h3); 

    h4 = imellipse(gca, [0 0 10 10]); 

    wait (h4); 

    h5 = imellipse(gca, [0 0 10 10]); 

    wait (h5); 

    h6 = imellipse(gca, [0 0 10 10]); 
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    wait (h6); 

    fig=gcf; 

else 

% Error message if user cancels reference magnitude image selection. 

    msgbox ('User cancelled image selection', 'Error','Error');         

end 

%Carry useful handles to other pushbutton within GUI 

handles.MG1 = MG1; 

handles.h1=h1; 

handles.h2=h2; 

handles.h3=h3; 

handles.h4=h4; 

handles.h5=h5; 

handles.h6=h6; 

handles.fig=fig; 

handles.MG1info = MG1info; 

guidata(hObject, handles); 

 

% --- Executes on button press in pushbutton2. 

function pushbutton2_Callback(hObject, eventdata, handles) 

% Browse and load Real (reference) image from DICOM file. 

 [filename, pathname] = uigetfile('*.*', 'Select a Real Image'); 

% Check if file is empty and give warning for cancellation 

if ~isequal(filename,0) 

% Create array RE1 and set equal to matrix of Real image read pixel data. 

    RE1= dicomread (fullfile(pathname,filename)); 

else 

    msgbox ('User cancelled image selection', 'Error','Error');         

end 

%Carry useful handles to other pushbutton within GUI 

handles.RE1 = RE1; 

guidata(hObject, handles); 

% Executes on button press in pushbutton3. 

function pushbutton3_Callback(hObject, eventdata, handles) 
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% Browse and load Imaginary (reference) image from DICOM file. 

 [filename, pathname] = uigetfile('*.*', 'Select an Imaginary Image'); 

% Check if file is empty and give warning for cancellation 

if ~isequal(filename,0) 

    IM1= dicomread (fullfile(pathname,filename)); 

else 

    msgbox ('User cancelled image selection', 'Error','Error');         

end 

%Carry useful handles to other pushbutton within GUI 

handles.IM1 = IM1; 

guidata(hObject, handles); 

 

% If the user selects to follow the Single Pair Analysis then he must run all three pushbuttons 4, 

5 and 6. These pushbuttons are used to browse and load pixel data of the Ablation Image to matrix 

arrays in the code (MG2, RE2, and IM2). Comments for this part of the code are omitted. 

 

% Executes on button press in pushbutton4 

 [filename, pathname] = uigetfile('*.*', 'Select a Magnitude Image'); 

if ~isequal(filename,0) 

    MG2= dicomread (fullfile(pathname,filename)); 

    MG2info = dicominfo (fullfile(pathname,filename)) 

else 

    msgbox ('User cancelled image selection', 'Error','Error');         

end  

handles.MG2 = MG2; 

handles.MG2info = MG2info; 

guidata(hObject, handles); 

 

% --- Executes on button press in pushbutton5. 

function pushbutton5_Callback(hObject, eventdata, handles) 

 [filename, pathname] = uigetfile('*.*', 'Select a Real Image'); 

if ~isequal(filename,0) 

    RE2= dicomread (fullfile(pathname,filename)); 

else 
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    msgbox ('User cancelled image selection', 'Error','Error');         

end     

handles.RE2 = RE2; 

guidata(hObject, handles); 

 

% --- Executes on button press in pushbutton6. 

function pushbutton6_Callback(hObject, eventdata, handles) 

 [filename, pathname] = uigetfile('*.*', 'Select an Imaginary Image'); 

if ~isequal(filename,0) 

    IM2= dicomread (fullfile(pathname,filename)); 

else 

    msgbox ('User cancelled image selection', 'Error','Error');         

end    

handles.IM2 = IM2; 

guidata(hObject, handles); 

 

 

% --- Executes on button press in pushbutton7. 

function pushbutton7_Callback(hObject, eventdata, handles) 

% Retrieves from GUI handles the RE1 and IM1 to calculate reference wrapped phase image 

WP1 

RE1 = double (handles.RE1) 

IM1 = double (handles.IM1) 

%Check if variables are empty 

if isempty(RE1) 

        msgbox ('Select a Real Mask Image!', 'Error','Error');   

elseif isempty(IM1)        

        msgbox ('Select an Imaginary Mask Image!', 'Error','Error');   

else     

 

%Calculate reference wrapped phase image WP1 using the atan2 function from Matlab Library    

WP1=atan2(IM1,RE1); 

end 

%Carry useful handles to other pushbutton within GUI 
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handles.WP1 = WP1; 

guidata(hObject, handles); 

 

% --- Executes on button press in pushbutton8. 

function pushbutton8_Callback(hObject, eventdata, handles) 

% Retrieves from GUI handles the RE2 and IM2 to calculate ablation wrapped phase image WP2 

RE2 = double (handles.RE2); 

IM2 = double (handles.IM2); 

% Check if variables are empty 

if isempty(RE2) 

        msgbox ('Select a Real Mask Image!', 'Error','Error');   

elseif isempty(IM2)        

        msgbox ('Select an Imaginary Mask Image!', 'Error','Error');   

else    

%Calculate ablation wrapped phase image WP2 using the atan2 function from Matlab Library    

        WP2=atan2(IM2,RE2); 

end 

%Carry useful handles to other pushbutton within GUI 

handles.WP2 = WP2; 

guidata(hObject, handles); 

 

% --- Executes on button press in pushbutton9. 

function pushbutton9_Callback(hObject, eventdata, handles) 

%Retrieve handles of external variables 

RE1=handles.RE1; 

IM1=handles.IM1; 

MG1 = double (handles.MG1); 

WP1 = double (handles.WP1); 

 

% Calculate complex reference image IC1 

IC1=MG1.* exp(1i *(WP1)); 

%Carry useful handles to other pushbutton within GUI 

handles.IC1 = IC1; 

guidata(hObject, handles); 
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% --- Executes on button press in pushbutton10. 

function pushbutton10_Callback(hObject, eventdata, handles) 

%Retrieve handles of external variables 

RE2=handles.RE2; 

IM2=handles.IM2; 

MG2 = double (handles.MG2); 

WP2 = double (handles.WP2); 

%Calculate complex ablation image IC2 

IC2=MG2.* exp(1i *(WP2)); 

%Carry useful handles to other pushbutton within GUI 

handles.IC2 = IC2; 

guidata(hObject, handles); 

 

% --- Executes on button press in pushbutton11. 

function pushbutton11_Callback(hObject, eventdata, handles) 

%Retrieve handles of external variables 

RE1=double(handles.RE1); 

IM1=double(handles.IM1); 

MG1=handles.MG1; 

WP1=handles.WP1; 

IC1=handles.IC1; 

RE2=double(handles.RE2); 

IM2=double(handles.IM2); 

MG2=handles.MG2; 

WP2=handles.WP2; 

IC2=handles.IC2; 

fig=handles.fig; 

h1=handles.h1; 

h2=handles.h2; 

h3=handles.h3; 

h4=handles.h4; 

h5=handles.h5; 

h6=handles.h6; 
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%Calculate complex difference CD by multiplying IC1 with complex conjugate of IC2. 

CD = double(IC1) .* conj(double(IC2)); % complex 

%Calculate phase difference angle PDa matrix array from complex difference data CD. 

PDa = angle(CD);  

%Unwrap PDa using Miguel Herrraez unwrapping algorithm 

PDb=Miguel_2D_unwrapper(single(PDa)); 

%Show PDb in axes1 on grayscale with min and max equal to –pi to +pi 

axes(handles.axes1); 

imshow(PDb,[-3.14 3.14]);colormap(jet(264)); colorbar; 

title ('Mask phase(rad)') 

%Create array with mean pixel values of predefined ROI handles for each external oil reference 

roi=[mean(PDb(createMask(h1)));mean(PDb(createMask(h2)));mean(PDb(createMask(h3)));m

ean(PDb(createMask(h4)));mean(PDb(createMask(h5)));mean(PDb(createMask(h6)));]; 

%Get position of each ROI 

a1=getPosition(h1); 

a2=getPosition(h2); 

a3=getPosition(h3); 

a4=getPosition(h4); 

a5=getPosition(h5); 

a6=getPosition(h6); 

%Contsruct X and Y vectors where the xy coordinates of ROI are saved. 

X=[a1(1)+a1(3)/2;a2(1)+a2(3)/2;a3(1)+a3(3)/2;a4(1)+a4(3)/2;a5(1)+a5(3)/2;a6(1)+a6(3)/2]; 

Y=[a1(2)+a1(4)/2;a2(2)+a2(4)/2;a3(2)+a3(4)/2;a4(2)+a4(4)/2;a5(2)+a5(4)/2;a6(2)+a6(4)/2]; 

 

 

% Mean pixel values are used to fit a 1st degree polynomial using least absolute residuals criterion 

f1=fit([X Y],roi,'poly11','Robust','LAR'); 

figure(3); 

plot(f1, [X Y], roi); 

coef=coeffvalues(f1); 

M=zeros(256); 

for i=1:256; 

  for  j=1:256; 

%A 256 by 256 correction matrix with fitted data is created to correct for pseudophase offset  
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M(i,j)=coef(1)+coef(2)*i+coef(3)*j; 

  end 

end 

% Final phase difference matrix array is created by subtracting the phase correction matrix M 

PD=PDb-M; 

% Show WP2 

axes(handles.axes3); 

imshow(WP2,[-3.14 3.14]);colormap(jet(264)); colorbar; 

title ('Ablation phase(rad)') 

%Carry useful handles to other pushbutton within GUI 

handles.CD=CD; 

handles.PD = PD; 

handles.PDb=PDb; 

handles.roi=roi; 

handles.M=M; 

guidata(hObject, handles); 

 

% --- Executes on button press in pushbutton13. 

function pushbutton13_Callback(hObject, eventdata, handles) 

%Retrieve handles of external variables 

alpha = str2num(get(handles.alpha, 'String')); 

CD=handles.CD; 

PD=handles.PD; 

PDb=handles.PDb; 

MG2info=handles.MG2info; 

%PRFS equation for calculating temperature shift     

dT = PD./(gamma*alpha*TE*B0); 

axes(handles.axes4); 

% Show Temperature map 

imagesc(dT,[-3 25]); axis off; colormap(jet(264)); colorbar; 

title('Temperature Change(^{o}C)'); 

datacursormode on; 

 

% --- Executes on button press in pushbutton14. 
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The user selects to follow the Multiple Pair Analysis. The preloaded data of the reference image 

are used. The GUI waits for incoming new files to automatically analyze for  a period equal to 

Waiting Time. 

function pushbutton14_Callback(hObject, eventdata, handles) 

%Import alpha and waiting time (time for checking new images during Quick TempMap) 

%settings from GUI 

alpha = str2num(get(handles.alpha, 'String')); 

WaitingTime= str2num(get(handles.WaitingTime, 'String')); 

% Set counting 

counting=1; 

fig=handles.fig; 

h1=handles.h1; 

h2=handles.h2; 

h3=handles.h3; 

h4=handles.h4; 

h5=handles.h5; 

h6=handles.h6; 

%Retrieve handle of reference complex image 

IC1 = handles.IC1; 

WP1 = handles.WP1; 

% Initialize image folders 

previousfolder = ''; 

%Start Timer 

tic; 

% While loop checking parsed time less than set WaitingTime 

while (toc<=WaitingTime) 

 % Set image current folder. The string of current folder is updated by 3rd party application which 

sends the new address of the an incoming folder of DICOM files. 

 currentfolder=fileread('C:\Users\xbmc\Desktop\currentfolder.txt');  

 %Check if current folder is same with previous folder (new incoming images) 

 test=strcmp(currentfolder,previousfolder); 

 %Dir current folder for later use (image counting) 

DirChecker= dir ([currentfolder, '\*.*']); 

%If new images arrived ,currentfolder not empty and with at least 3 images 



  

 175 

 if (test==0 && isempty(currentfolder)~=1 && 

length(DirChecker(not([DirChecker.isdir])))>=3) 

pathway =  strcat(currentfolder,'\**\*'); 

% DIR to current folder 

 d=rdir(pathway); 

% Sort images chronologically (last modified) and pick last three which correspond to last 

magnitude, real and imaginary.  

dates = [d.datenum]; 

[~, Index] = sort (dates); 

first = d(Index(end-2)); 

MG2=double(dicomread(first.name)); 

MG2info=dicominfo(first.name); 

second = d(Index(end-1)); 

RE2 = double(dicomread(second.name)); 

third = d(Index(end)); 

IM2 = double(dicomread(third.name)); 

WP2=atan2(IM2,RE2);  

% Create ablation complex data image IC2 

IC2=MG2.* exp(1i *(WP2));    

% Calculate complex difference by multiplying with conjugate 

CD = double(IC1) .* conj(double(IC2));  

% Calculate phase angle difference matrix 

PDa = angle(CD); 

%Unwrap phase angle difference matrix using Miguel Herraez unwrapping algorithm. 

PDb= Miguel_2D_unwrapper(single(PDa));   

% Display PDb 

figure(2); 

imshow(PDb,[]); 

% Calculate mean pixel values at each predefined ROI for pseudophase offset correction. 

roi=[mean(PDb(createMask(h1)));mean(PDb(createMask(h2)));mean(PDb(createMask(h3)));m

ean(PDb(createMask(h4)));mean(PDb(createMask(h5)));mean(PDb(createMask(h6)));]; 

 a1=getPosition(h1); 

 a2=getPosition(h2); 

 a3=getPosition(h3); 

 a4=getPosition(h4); 
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 a5=getPosition(h5); 

 a6=getPosition(h6); 

% Create X Y vectors based on ROI x,y coordinates. 

X=[a1(1)+a1(3)/2;a2(1)+a2(3)/2;a3(1)+a3(3)/2;a4(1)+a4(3)/2;a5(1)+a5(3)/2;a6(1)+a6(3)/2]; 

Y=[a1(2)+a1(4)/2;a2(2)+a2(4)/2;a3(2)+a3(4)/2;a4(2)+a4(4)/2;a5(2)+a5(4)/2;a6(2)+a6(4)/2]; 

% 1st degree polynomial fit of ROI mean pixel values with and X, Y vectors to a 2D surface. 

f1=fit([X Y],roi,'poly11'); 

coef=coeffvalues(f1); 

% Create correction matrix using the coefficients of the fit 

M=zeros(256); 

for i=1:256; 

  for  j=1:256; 

   M(i,j)=coef(1)+coef(2)*i+coef(3)*j; 

  end 

end 

% Apply correction to current unwrapped phase image. 

PD=PDb-M; 

% Get alpha value set by user in GUI  

alpha = str2num(get(handles.alpha, 'String')); 

 %Declare parameters for PRFS equation 

 gamma=2.675*10^8; % in rad/s*T 

 alpha= alpha*10^(-6); % in 1/degree_celcius 

B0=1.5; % in T 

TE = MG2info.EchoTime * 10^(-3); % in s 

%Declare PRFS equation 

dT = PD./(gamma*alpha*TE*B0); 

% Use of subtightplot function to display maps in a predefined 3 x 3 multi-frame format. 

figure (3); 

subtightplot(3,3,counting); 

imshow (dT,[0 105]); axis off; colormap(jet(264));colorbar 

title(counting); 

% Changes previousfolder value and  counter value; 

previousfolder=currentfolder; 

counting=counting+1; 
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    else 

    end 

% End of loop of the Multiple pair analysis. The loop returns at the beginning for as long as the 

Waiting Time is not expired. 

end 

 

% --- Executes on button press in pushbutton15. 

function pushbutton15_Callback(hObject, eventdata, handles) 

% Delete all handles and close GUI. 

close all;
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