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Abstract

André LUZARDO

The Rescorla-Wagner Drift-Diffusion Model

Computational models of classical conditioning have made significant contribu-
tions to the theoretic understanding of associative learning, yet they still struggle
when the temporal aspects of conditioning are taken into account. Interval timing
models have contributed a rich variety of time representations and provided accur-
ate predictions for the timing of responses, but they usually have little to say about
associative learning. In this thesis we present a unified model of conditioning and
timing that is based on the influential Rescorla-Wagner conditioning model and the
more recently developed Timing Drift-Diffusion model. We test the model by simu-
lating 11 experimental phenomena and show that it can provide an adequate account
for 9, and a partial account for the other 2. We argue that the model can account for
more phenomena in the chosen set than these other similar in scope models: CSC-
TD, MS-TD, Learning to Time and Modular Theory. A comparison and analysis of
the mechanisms in these models is provided, with a focus on the types of time rep-
resentation and associative learning rule used.
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Chapter 1

Introduction

Classical conditioning theories aim to understand how associations between stimuli
are learned. Ever since Pavlov, 1927 the process of association formation has been
understood to depend crucially on the temporal relations between stimuli (Savast-
ano and Miller, 1998; Balsam, Fairhurst and Gallistel, 2006; Kirkpatrick, 2013). Yet,
classical conditioning theories have so far struggled to work when time is taken into
account as an attribute of the stimulus representation. The study of time as a men-
tal representation is the object of a separate area of study known as interval timing.
Interval timing theories have produced a rich variety of time representations (Gib-
bon, Church and Meck, 1984; Killeen and Fetterman, 1988; Machado, 1997; Staddon
and Higa, 1999; Matell and Meck, 2004), and therefore are a natural place to look for
ways to integrate time into classical conditioning. In this thesis I first analyse previ-
ous efforts in this direction before introducing a new hybrid classical conditioning
and timing model.

The process of association formation is understood to be of fundamental survival
value for both human and non-human animals. Prediction, which forms the core of
classical conditioning, allows the organism to adapt to significant events in its sur-
roundings. A prototypical experiment in classical conditioning, a type of associative
learning, involves a neutral stimulus and an unconditioned stimulus (US) which is
capable of eliciting an unconditioned response (UR). After repeated pairings of both
stimuli in a specified order and temporal distance, the neutral stimulus comes to
elicit a response similar to the UR. This response is called the conditioned response
(CR) and the neutral stimulus is said to have become a conditioned stimulus (CS).
Classical conditioning theories typically conceptualize this process as the formation
of a link (association) between the internal representations of CS and US. Their basic
building blocks are (Pearce and Bouton, 2001; Brandon, Vogel and Wagner, 2002):
(a) the representations of stimuli, and (b) a learning rule to update the association
weights between these representations. Although most theories do not attempt to
find neurophysiological correlates, these constructs are nonetheless commonly as-
sumed to be instantiated by (a) neural activity in the form of spike rates, and (b)
synaptic plasticity (Moore, 2002; Klopf, 1988; Gallistel and Matzel, 2013). These have
found some support in the neuroscientific literature, particularly studies of the role
of dopamine in reward prediction (Schultz, Dayan and Montague, 1997; Dayan and
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Niv, 2008; Niv, 2009; Eshel, 2016). However it is important to note that there is still
no widely accepted complete neural mechanism for classical conditioning and that
most theories stay at the computational level of explanation.

Stimulus representations are generally thought of as neural activation that is eli-
cited by the stimulus, which may linger for a short time as a ‘trace’ after stimulus
offset. Representations are commonly one of two types: molar or componential.
Molar (or elemental) trace theories treat the stimulus as a single conceptualized unit
whose activity is usually assumed to peak quite early following stimulus onset, and
then gradually decrease (Hull, 1943; Wagner, 1981; Sutton and Barto, 1981; Schmajuk
and Moore, 1988; McLaren and Mackintosh, 2000; Harris and Livesey, 2010). In con-
trast, componential trace theories break down the CS representation into smaller
units, each capable of being associated with the US, with some units more active
early during the CS and others late, but all leaving a trace after activation (Desmond
and Moore, 1988; Grossberg and Schmajuk, 1989; Vogel, Brandon and Wagner, 2003;
Ludvig, Sutton and Kehoe, 2008).

Learning rules may be classified according to different criteria. An important
period in the recent history of the field gave rise to one of these criteria. Prior to
1970’s conditioning used to be rooted in the stimulus-response tradition, which at-
tributed crucial importance to the temporal pairing, or contiguity, of stimuli for the
development of associations. The linear operator learning rule (Hull, 1943) is one
of the products of that period. In the late 1960’s and early 1970’s important experi-
mental discoveries using compound stimuli, that is, a stimulus formed by combining
other individual stimuli, showed the contiguity view to be incomplete (Kamin, 1968;
Rescorla, 1988; Gallistel and Gibbon, 2001). These compound experiments indicated
that the formation of associations also depended on the reinforcement history of the
individual elements forming the compound stimulus. This led to the development
of new learning rules (Rescorla and Wagner, 1972; Mackintosh, 1975a; Pearce and
Hall, 1980) capable of combining individual reinforcement histories in compounds,
which the linear operator rule cannot. The first, and arguably still the most influen-
tial, of these learning rules is the Rescorla-Wagner (RW, Rescorla and Wagner, 1972).
It has become famous for being the first model able to provide an account for the
blocking effect (Kamin, 1968), where a novel CS does not become associated with
the US if it is reinforced only in compound with a previously conditioned CS.

The CR is usually not a single event. Organisms time their responses so that they
emerge gradually during the duration of the CS and reach maximum frequency or
intensity around the time of reinforcement. Interval timing theories have attempted
to provide an account for this timing of the CR. One of the fundamental properties
of timing behaviour is that it is approximately timescale invariant, i.e. the whole
response distribution scales with the interval being timed (Gibbon, 1977; Allman
et al., 2014).One of the consequences of timescale invariance is that the coefficient
of variation, that is the standard deviation divided by the mean, of the dependent
measure of timing is approximately constant. A number of timing models have put



Chapter 1. Introduction 3

forth explanations for timescale invariance and other timing properties (how time
is encoded, how it is stored in memory and how it gets translated into behaviour)
by recourse to an internal pacemaker. The most influential pacemaker-based timing
theory to date is Scalar Expectancy Theory (SET, Gibbon, Church and Meck, 1984;
Gibbon and Church, 1984). The pacemaker is supposed to mark the passage of time
by emitting pulses. These pulses can be gated to an accumulator via a switch which
closes at the start of a relevant interval and opens when the interval is finished. The
accumulator count is kept in working memory. At the end of the interval the current
count is transferred to a long-term reference memory. Behaviour is guided by the
action of a comparator which actively compares the count in working memory to
the one retrieved from reference memory.

In spite of the considerable overlap, interval timing and classical conditioning
are not easily integrated. Most conditioning theories are trial-based, that is they con-
sider the trial as the unit of time. A trial is generally taken to be the state where a CS
is present (or CSs in compound) and which may or may not contain a US (or USs).
The most influential model in this category is the Rescorla-Wagner (RW, Rescorla
and Wagner, 1972). In order to account for different stimulus durations, trial-based
theories like RW must resort to some sort of time discretization, usually by sub-
dividing the trial into ‘mini-trials’. Each mini-trial is treated as a trial in its own
right, which are then used to update associative links. This gives rise to the problem
of deciding on a particular discretization. Also, given that humans experience time
passing as a continuous flow, it is unlikely that animals discretize their conditioning
experience in such a way. A more realistic approach to timing is taken by real-time
theories. These theories attempt to formalize the concept of a continuous flow of
time.

The Temporal Difference model (TD, Sutton and Barto, 1990; Sutton and Barto,
1998) was one of the earliest and still most influential real-time classical conditioning
model. It may be thought of as a real-time version of RW. When used with stimu-
lus representations such as the Complete Serial Compound (CSC, Moore, Choi and
Brunzell, 1998), Microstimuli (MS, Ludvig, Sutton and Kehoe, 2008; Ludvig, Sut-
ton and Kehoe, 2012) and the Simultaneous and Serial Configural-cue Compound
(SSCC, Mondragón et al., 2014) it is capable of reproducing some timing phenomena
like the gradual increase in anticipatory responding that occurs before a signalled re-
inforcer, and the lower response rates observed during longer CSs. However, only
MS-TD has a time representation capable of approximating the most fundamental
property of timing, timescale invariance. Another issue with the stimulus repres-
entations for TD is that their approach to timing resembles the strategy used by
trial-based models, i.e. they all split the stimulus into a number of smaller units or
states, the number of which being directly proportional to the duration of the stimu-
lus. Given that conditioning is observed in a timescale that ranges from milliseconds
to hours (Kehoe and Macrae, 2002, p. 189) this can lead to a very high number of
units being required. The stimulus as a whole no doubt is a complex entity, and the
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brain may be employing a large number of neurons to represent it, but to dedicate
so many resources only for timing might not be the most energy-efficient strategy.
Also, TD and its stimulus representations do not usually account for a change in
timing that is not tied to reinforcement. Animals time the occurrence of different
events, such as onset and offset of stimuli (see for example Meck and Church, 1984),
but TD usually only allows for the timing of rewards.

On the other hand, timing models have made even fewer attempts at integrat-
ing aspects of classical conditioning. A notable exception is the Learning to Time
(LeT, Machado, 1997; Machado, Malheiro and Erlhagen, 2009) model. It represents
the passage of time by transitioning between internal states according to a stochastic
pacemaker, an idea borrowed from an earlier timing model called the Behavioural
Theory of Time (Killeen and Fetterman, 1988). Learning takes place by associating
reinforcement presentation with the current internal state according to the linear
operator, a standard classical conditioning rule. LeT offers an account of the basic
dynamics of association formation, but it cannot explain cue-competition phenom-
ena like blocking. In a blocking procedure, a CS is first paired with a US until a CR
is acquired. The same CS is then presented together with a novel CS and both are
paired with the US for a few trials. If the novel CS is now presented alone it elicits
little or no responding, and so it is said to be blocked by the first CS. LeT’s learning
rule, the linear operator, has largely been supplanted by RW in classical condition-
ing modelling because it cannot explain cue-competition phenomena. Like TD, LeT
also employs a representation that requires as many units as time-steps, making it a
resource-intense model.

Modular Theory (MoT, Guilhardi, Yi and Church, 2007; Kirkpatrick, 2002) is a
timing model which because of its explicit goal of integrating timing and learning
may be called a hybrid theory. MoT has introduced novelties that allow it to account
for some aspects of the dynamics of classical conditioning that LeT cannot. Its archi-
tecture is different than the connectionist one (states or units connected by modifi-
able links) assumed by RW, TD and LeT. Instead, it uses a more cognitive architec-
ture, with separate information processing stages that deal with perception, memory
and decision. It postulates two separate memories: a pattern memory which stores
CS durations, and a strength memory which stores the associative strength between
each pattern memory and the US. This separation allows MoT to deal with more
complex situations involving the dynamics of learning during acquisition and ex-
tinction. However, MoT also relies on the linear operator to update its strength
memory, which, like LeT, prevents it from accounting for cue-competition phenom-
ena.

Although the models mentioned above, namely TD, LeT and MoT, have accom-
plished a great deal in terms of bringing together timing and conditioning, they each
have their different strengths and weaknesses as I have touched above. In this thesis
I introduce a model that tries to address some of these weaknesses while preserving
the strengths. More specifically, the model has the following strengths. It represents
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time in real-time. Like MoT and unlike LeT and TD, its time representation does not
require an arbitrary large number of units or states. Similarly to TD but unlike LeT
and MoT, it uses a learning rule that preserves the main features of RW which allow
it to account for compound phenomena. It can time the onset and offset of all stim-
uli, not only of rewards, and store a memory for each. It includes two update rules:
one for timing that is updated by time-markers (such as stimulus onset/offset), and
another for associations that is updated by the US. Hence, simple stimulus exposure
causes the model to learn and store its duration. This capability is not present in
models that depend only on an associative learning rule to also learn about time,
such as TD and LeT.

This new model is essentially a way to connect one of the most influential clas-
sical conditioning theories, the Rescorla-Wagner model (Rescorla and Wagner, 1972),
with a recently developed timing theory called Timing Drift-Diffusion Model (TDDM,
Rivest and Bengio, 2011; Simen et al., 2011). The TDDM is based on the drift-
diffusion model, widely used in decision making theory, and it provides an adaptive
time representation that has commonalities with pacemaker-based models like SET
and LeT (Simen et al., 2013). These models postulate the existence of a pacemaker
that emits pulses at a regular rate, which are then counted to mark the passage of
time. To preserve timescale invariance they either postulate a specific type of noise
in the memory saved for intervals and a ratio-based decision process (SET) or adapt
the rate of pulses (LeT). The TDDM takes the latter route but sets a fixed threshold
on pulse counting. To emphasize the unification of these two theories I call our pro-
posal the Rescorla-Wagner Drift-Diffusion Model (RWDDM).

I evaluate RWDDM based on how well it can simulate the behaviour of anim-
als in a number of experimental procedures. Many classical conditioning phenom-
ena have been identified which collectively represent a significant challenge for any
single model to explain. A recent list (Alonso and Schmajuk, 2012) has compiled 12
categories, which include acquisition, extinction, conditioned inhibition, stimulus
competition, preexposure effects, temporal properties, among others. Of particular
interest to a theory of timing and conditioning are phenomena that involve elements
of both timing and conditioning. As I detail later, I have searched the literature for
documented effects that can challenge the main mechanisms embodied in RWDDM.

I proceed by first reviewing the literature related to learning and timing theories.
I then introduce the new model and compare its formalism with four models that
have similar scope, namely CSC-TD, MS-TD, MoT and LeT. In the results section I
present the phenomena I will simulate, followed by the results of our simulations,
and compare them to the current explanations given by LeT, MoT and TD.
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1.1 Outputs

1.1.1 Conference Presentations

• Presentation at the XXVI (2014) International Congress of the Spanish Society
for Comparative Psychology (Braga, Portugal).

• Presentation at the XXVII (2015) International Congress of the Spanish Society
for Comparative Psychology (Seville, Spain).

• Presentation at the 2016 Associative Learning Symposium (Gregynog Hall,
Wales).

1.1.2 Publications

• Luzardo, A., Alonso, E., & Mondragón, E. (2017). A Rescorla-Wagner Drift-
Diffusion Model of Conditioning and Timing. PLOS Computational Biology,
vol: 13 (11) pp: e1005796.

• Luzardo, A., Rivest, F., Alonso, E., & Ludvig, E. A. (2017). A drift–diffusion
model of interval timing in the peak procedure. Journal of Mathematical Psy-
chology, 77, 111–123.

1.1.3 Code

The Matlab code to generate the results of RWDDM published in this thesis can be
found at https://github.com/ndrluzardo/PhDThesis.
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Chapter 2

Literature Review

2.1 Learning Theories

The ability to learn relationships between different stimuli and events is an import-
ant adaptive mechanism. In order to survive and reproduce an organism must be
able to search for food and mates in an environment that is constantly changing al-
beit with certain regularities. An organism that is able to learn from these regularities
will maximise its chances of survival and reproduction.

Traditionally, two distinct types of associative learning have been recognized:
classical (or Pavlovian) and operant (or instrumental) conditioning. In classical con-
ditioning an association is believed to be formed between a stimulus (S) and a re-
sponse (R), or between a stimulus and another stimulus. In operant conditioning
an association is believed to be formed between R and an outcome (O). However
the current tendency in the study of learning is to regard the associative structure
underlying both S-R, S-S and R-O as fundamentally similar (Gallistel and Gibbon,
2000; Hall, 2002). A strict distinction therefore will not be made between these two
procedures here.

This section will review the main learning models, with a focus on their formal-
isms. These are all connectionist models in the sense that they consist of nodes (or
units) which represent the CS and US, and associative links (connections) between
these nodes (see figure 2.1 for a generic scheme). As Brandon, Vogel and Wagner,
2002 remarked,

in such theories, the major theoretical options are centred around three
questions. How shall the CSs and USs be represented? How shall the
links between stimulus representations be construed to change during
conditioning? How do the measures of conditioned responding depend
on the current values of the stimulus representations and their associat-
ive links? (p. 233)

I will address each of these questions first as they will help contextualise the
analysis of learning models that follows.
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FIGURE 2.1: Schematic representation of classical conditioning theor-
ies. When a CSi is present it activates its respective neuron-like unit
Xi. Each CS unit is connected to the main response unit Y by modifi-
able links Vi. The US unit z is also connected to Y but by an unmodi-

fiable link λ. Adapted from Vogel, Castro and Saavedra, 2004.

2.1.1 Stimulus Representation

Stimulus representation is the problem of finding how the brain codes external phys-
ical stimuli. This has a long history, going back to the beginning of experimental psy-
chology with early behavioural theorists like Pavlov and Hull. Hull, 1943 adopted
the stimulus-trace hypothesis of Pavlov, the idea that an external stimulus generates
an internal representation that grows in strength at first, decays slowly until the
physical stimulus is gone and then persists for a while as a rapidly decaying trace.
Figure 2.2 shows a theoretical example. By and large, similar versions and variations
of this simple concept have been adopted by every major learning theory to this day.

FIGURE 2.2: An idealized stimulus representation as it would be pro-
duced if a physical stimulus with constant intensity was presented

from 1 to 4 seconds.
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A theoretical question arises: what is the fundamental unit of stimulus repres-
entation? Is every CS and US to be independently represented or should they share
common elements? Learning theories that take the first approach are known as ele-
mental and the latter as configural. Configural models are broader in scope than ele-
mental ones, as they are able to handle stimulus generalisation and discrimination
effects.

2.1.2 Learning Rules

How are the changes in learning actually instantiated? The vast majority of models
are based on a theoretical construct called associative strength represented by the letter
V. V is conceptualized as a modifiable link between the CS and US representations
(or, as in figure 2.1, between the CS and an adaptive unit which is also connected to
the US).

Historically, temporal contiguity was considered to be a necessary and sufficient
cause of learning. It was thought that V, to use modern terminology, increased only
when CS and US occurred together. This view was shown to be too simplistic. Based
on the work of Rescorla, 1967, Balsam, Drew and Gallistel, 2010 and Balsam and Gal-
listel, 2009 have argued that temporal contiguity is neither necessary nor sufficient
and give two examples. Experiments with conditioned inhibition, where the US is
presented only in the absence of the CS (see for example Rescorla, 1969), can turn
the CS into an inhibitor and hence demonstrate that temporal contiguity is not ne-
cessary. Experiments with blocking (Kamin, 1968), where a CS fails to acquire a
CR when it is paired both with a US and with another CS that has already been
conditioned, shows that simple temporal contiguity is not sufficient. What these au-
thors (Rescorla, 1967; Balsam and Gallistel, 2009; Balsam, Drew and Gallistel, 2010;
Gallistel, Craig and Shahan, 2014) argue is that contingency (correlation), and not
contiguity, is the critical basis of learning. As it will be demonstrated later, one of the
most successful learning rules, the Rescorla-Wagner rule, was devised as an attempt
to capture contingency.

2.1.3 Response Rules

The ongoing difficulty and uncertainty in identifying neural substrates has meant
that the most reliable way to assess learning continues to be through behaviour.
However, this approach necessarily introduces confounds. Motivation or other factors
can interfere with behaviour, thus distorting the expression of learning. Because of
this theorists commonly make a distinction between learning and performance.

Learning models generally incorporate a rule that translates associative strength
V (a measure of learning) into response Y (a measure of performance). This rule may
take the form of a simple multiplication, for example

Y = X ·V (2.1)



10 Chapter 2. Literature Review

where X stands for the CS representation. Variations are of course possible such as
the inclusion of a threshold on the value of V below which learning is assumed to
be too low to be translated into performance.

2.1.4 Trial-based Models

Trial-based learning models consider the trial as the fundamental unit of time. What
constitutes a trial for these models will sometimes vary but it is usually defined as
the period between CS onset and US onset.

One of the first, and still most influential, trial-based theories is the Rescorla-
Wagner Model (RW, Rescorla and Wagner, 1972). It consists of an error-correction
rule that adjusts the level of associative strength V between the internal representa-
tions of the CS and US:

∆Vi = αiβ j

(
zjλj −∑

i
XiVi

)
Xi. (2.2)

with

Xi or zj =

1 if CSi or USj is present

0 if CSi or USj is absent.

Constants αi and β j are parameters related with the CSi and USj respectively, which
together determine the learning rate.

RW’s main achievement is in the assumption that all CSs currently present com-
pete for a limited associative strength set by the US. This is what allows RW to ex-
plain some cue-competition phenomena such as the blocking effect (Kamin, 1968).
In blocking, a CS1 is first conditioned alone and then it is presented in compound
with a CS2. Despite receiving reinforcement during the compound phase, when the
CS2 is presented alone it does not elicit a response. RW can readily explain this with
its competition for association assumption. V1, the associative strength of CS1, is at
asymptotic level (V1 = 1) at the start of the compound phase, i.e. it has acquired all
the available associative strength carried by the US, and hence V2 does not change:

∆V2 = α2β(1− X1V1 − X2V2)

= α2β(1− 1− 0)

= 0.

This competition mechanism also explains summation. Here two CSs are first
paired separately with the same US until acquisition is complete (it is assumed that
V1 = V2 = 1 at the end of training). In the next phase they are presented as a
compound CS1+2 and also paired with the US. Initially the compound is able to elicit
a stronger CR than either CS did when presented alone, but then soon settles to a
lower level. Crucially, when tests are made with the CSs presented separately, CR
levels are significantly lower than before the compound phase (Kehoe and Macrae,
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2002, p. 207). Equation (2.2) predicts this will happen, since in the beginning of
second phase:

∆V1 = ∆V2 = αβ(1− X1V1 − X2V2),

= αβ(1− 1− 1),

= −αβ,

and hence both V1 and V2 will decrease until they equal each 0.5, half of the US’s
associative strength. Using a similar reasoning it is easy to see that RW also predicts
superconditioning, an increased CR strength that occurs when a CS is paired with a
US and another inhibitory CS (Williams and McDevitt, 2002).

Another one of RW’s successes over its predecessors is that it can explain correla-
tional experiments. Conditioning strength is positively correlated to the probability
of the US in the presence of CS and negatively correlated to the probability of US
in the absence of CS (Rescorla, 1968). Here CS2 stands for situational cues (the con-
text) which is alone present during the intertrial interval and in compound with CS1

during the trial. The asymptotic associative strength of CS1, CS2 and the compound
CS1+2 are (Rescorla and Wagner, 1972):

V1 = V1+2 −V2, (2.3)

V2 =
π2βp

π2βp − (1− π2)βa
, (2.4)

V1+2 =
π1+2βp

π1+2βp − (1− π1+2)βa
, (2.5)

where π2 and π1+2 are the probabilities of reinforcement during CS2 and CS1+2 re-
spectively, and βa and βp are the US parameters in the absence and presence of re-
inforcement respectively. If for example π2 = π1+2 we have V2 = V1+2 (by (2.4) and
(2.5)) and therefore by (2.3)

V1 = 0,

in other words, when the probability of US is the same both in the presence and
absence of the CS, this CS does not acquire any associative strength, a prediction
that is matched by experimental results (Rescorla, 1968).

Conditioned inhibition is also readily explained. Here the US is only present in
the absence of the CS, hence π2 = 1 and π1+2 = 0. By (2.4) and (2.5), V2 = 1 and
V1+2 = 0, hence by (2.3) V1 = −1, i.e. the CS acquires negative strength. This is
verified to be true experimentally by introducing a subsequent phase where the CS
is now paired with US. In this phase the CS acquires a CR much more slowly than
another CS that had not been inhibited (Rescorla, 1969).
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RW has some known limitations. Its main problem is with extinction of condi-
tioned inhibitors. A prediction of the theory says that when an inhibitory CS is re-
peatedly presented alone its associative strength should increase towards zero and
hence lose its inhibitory characteristics. This is because an inhibitory CS has negat-
ive V and so (0− V) will be positive, increasing V towards zero. This prediction
however fails to hold experimentally (Zimmer-Hart and Rescorla, 1974). A com-
mon solution is to consider conditioned excitation and inhibition as two distinct
processes, each with their own associative strength: VE and VI . VE is updated only
when (zjλj − ∑ XiVi) > 0 and VI only when (zjλj − ∑ XiVi) > 0 (see for example
equation 11 in Brandon, Vogel and Wagner, 2003). Finally, a single-unit RW model,
as depicted in figure 2.1, cannot explain negative patterning. In this conditioning
phenomena, two different CSs signal reward but a compound formed by both of
them does not. Animals learn to discriminate appropriately, but a single-unit RW
fails to reproduce this behaviour. The answer is to add a second, hidden, unit whose
outputs will serve as the input to an output unit (see figure 2.8). I will have more to
say about negative patterning and its importance to learning when I cover Artificial
Neural Networks in section 2.1.6.

Looking at the problem from a different angle, Mackintosh, 1975a proposed an
attention-based theory of learning. It is constructed from an established assumption
in theories of selective attention, namely that an organism will pay more or less
attention to a stimulus to the extent that this stimulus is a better or worse predictor
of changes in reinforcement than the other stimuli available. Attention therefore is
assumed here to be not just an intrinsic property of the CS but to also change with
experience. This should be contrasted with the assumption in RW that α, a learning
rate that is related to the attentional properties of the CS, is constant. Mackintosh’s
model operates by adjusting α so as to increase it when the CS becomes a better
predictor of the US, and decrease otherwise. Formally, ∆αi > 0 if

|zλ− XiVi| <
∣∣zλ−∑ XjVj

∣∣ (2.6)

and ∆αi < 0 if

|zλ− XiVi| ≥
∣∣zλ−∑ XjVj

∣∣ (2.7)

where ∑ XjVj is the sum of associative strength of all CSs present in the trial except
CSi. The change in α is made proportional to the discrepancy S between |zλ− XiVi|
and |zλ−∑ XjVj|,

∆αi = S · αi. (2.8)

The change in associative strength is given by

∆Vi = αi(λ−Vi). (2.9)
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It can be seen that Mackintosh’s model departs from RW in two ways: it turns an at-
tention parameter from a constant into a variable, and it makes this parameter, and
not RW’s CS competition for associative strength, capture CS contingency. Mack-
intosh’s model provides an alternative explanation to blocking and overshadowing
(where two equally salient CSs compete for associative strength). Whilst RW ex-
plains these phenomena by invoking CS competition for a limited amount of associ-
ative strength, Mackintosh’s theory uses a principle of learned irrelevance. In both
cases, one of the CSs becomes a redundant signal of US, either because it doesn’t
predict anything new (blocking) or because it is less salient and hence conditions
more slowly (overshadowing).

Following Mackintosh, Pearce and Hall, 1980 proposed a model that is also based
on the idea that experience can produce changes in CS effectiveness. They point out
RW’s failure in explaining two variations in the classical blocking experiment. In
the first, blocking was attenuated when in the compound phase the CSs were paired
with a milder US than in the CS alone phase (Dickinson, Hall and Mackintosh, 1976).
In the second, blocking was not observed after only one trial was given with the com-
pound (Mackintosh, 1975b). These phenomena, the authors argue, support Mackin-
tosh’s theory that learning involves a change in CS effectiveness. But as the authors
also point out, Mackintosh’s model, like RW, does not effectively deal with latent
inhibition, the retardation in learning that occurs when a CS is first presented alone
before conditioning. The solution proposed by Pearce and Hall (PH) is to aban-
don the idea that conditioning depends on CS competition for limited associative
strength set by US (which can also be stated, as the authors do, as a change in US
effectiveness) adopted by both RW and Mackintosh, and to rely solely on Mackin-
tosh’s idea of changes in CS effectiveness. Unlike Mackintosh, which assumed that
a CS is more effective if its a good predictor of its consequences, PH assumes the
opposite: a CS is more effective to the extent that it is not an accurate predictor of its
consequences. This is formalized as follows:

αn
i =

∣∣∣zλn−1 −∑ XiVn−1
i

∣∣∣ , (2.10)

or in words, the CS associability parameter (or learning rate as in RW) in the present
trial n is a consequence of how well the CS predicted reinforcement in the last trial
n − 1. The authors acknowledge that such a one-trial change may be too fast and
suggest that a moving average could be used instead, but the principle is the same.
Change in associative strength is given by

∆Vi = Si · αi · λ (2.11)

where Si is a constant that depends on CS salience. Consider as an example how
the model explains latent inhibition. It is assumed that the starting value of α for
any CS is non-zero. When the CS is presented without reinforcement, λ = 0 and
so α goes to zero in the very first trial by equation (2.10). When reinforcement is
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introduced it will therefore take longer for this CS to acquire associative strength
than a CS that has not been pre-exposed. A few limitations have been identified
since the model has first been proposed. Hall, 2008 notes that the results obtained
in Mackintosh, 1975b blocking experiment have not been replicated, and that more
research showed some blocking does occur even in the very first trial. This lends
support to RW’s interpretation.

The models described so far are called elemental, i.e. they treat each stimulus
representation as an independent element. From this assumption it follows that if
two CSs, say A and B, were conditioned separately (A+, B+ where ‘+’ means the
US is present) and then presented together as the AB compound, their associative
strengths should simply add up. This assumption was challenged by the negat-
ive patterning experiment. In this preparation, the subject is asked to discriminate
between conditions A+, B+ and a compound AB− where ‘−’ means the US is not
present. Studies show that the subject is able to make such a discrimination, albeit
not quickly, demonstrating that CSs interact in a more sophisticated fashion than the
simple summation of RW.

An alternative way is to conceive of a compound as a configuration. Pearce, 1987
developed a theory where configuration and generalization play a central role. In
this theory A, B, and AB are all taken as configurations, each represented by a
distinct neuron-like unit, with AB sharing half of its elements with each A and B.
Pearce’s theory makes a further assumption, that the salience of all configurations
is equal. This model solves negative patterning because AB is now an independent
unit which enters into association with the US.

Wagner and Brandon, 2001 have proposed an equivalent componential version
of Pearce, 1987 model and called it inhibited elements. They have also advanced
their own componential stimulus representation called replaced elements (Brandon,
Vogel and Wagner, 2000). See figure 2.3 for diagrams of these two stimulus repres-
entation theories. These theories will not be evaluated further here since they do not
add much to the question of time in learning central to this thesis, except to say that
they propose to address issues that the simple adding of stimulus in RW does not
contemplate.

As we have seen, trial-based models represented the first attempt to understand
conditioning phenomena. They are still widely used because of their relative sim-
plicity and usefulness in explaining ‘static’ conditioning phenomena, that is, where
time is not a variable. Their relative simplicity allows for easier abstraction of gen-
eral learning principles. However, when the duration of stimuli is of experimental
concern, or when one wishes to reproduce behaviour in real-time, another class of
models is needed. I turn to them next.
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(A) Inhibited elements

(B) Replaced elements

FIGURE 2.3: Two theories of stimulus representation. Dashed lines
are only active when A and B are presented as a compound. Arrow-
heads represent excitatory connections whilst dotted ends are inhibit-
ory. Note that the only structural difference between the two models
is that in the replaced elements units Ab and Ba are also connected to

the US. Adapted from Williams, 2014.
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2.1.5 Real-time Models

Because trial-based models compress the whole duration of a trial to one single time
point they cannot account for real-time changes in behaviour, the core of many tim-
ing phenomena.

Real-time models attempt to describe behaviour as it unfolds. They will be de-
scribed here either in differential or difference equations.

TD

Arguably, the most influential real-time learning model to date is the Temporal Dif-
ference (TD; Sutton and Barto, 1990; Sutton and Barto, 1998). TD builds on the idea
of expectation of US as a time derivative computation, first introduced by the same
authors in an earlier model known as S-B (Sutton and Barto, 1981). S-B will be dis-
cussed first as it provides an introduction to TD.

Sutton and Barto, 1981 made an attempt to update adaptive neural networks
with the principles discovered in animal learning theory. These two areas had been
developing in parallel and with little contact. Sutton and Barto theorized that some
internal processing analogous to cellular activity inside a neuron must take place in-
side an adaptive unit (Y in figure 2.1). This activity is described as a trace generated
by the weighted average Ȳ of ongoing activity Y,

Ȳ(t + 1) = βȲ(t) + (1− β)Y(t). (2.12)

If a US is present Y(t) = 1 + ∑i XiVi, if US is absent Y(t) = ∑i XiVi. CSi is represen-
ted by another trace, called eligibility trace:

X̄i(t + 1) = αX̄i(t) + Xi(t), (2.13)

where α is a trace decay constant. It is assumed that Xi = 1 when CSi is present and
0 otherwise. Change in associative strength is computed by

∆Vi(t + 1) = c[Y(t)− Ȳ(t)]X̄i(t), (2.14)

where c is a learning rate.
The model produces results that are very similar to RW, to the extent that Sutton

and Barto, 1981 consider it a ‘temporally refined extension of the Rescorla-Wagner
model’. They demonstrate by simulations that S-B can reproduce roughly the in-
terstimulus effect, a conditioning-timing phenomena where the magnitude of the
conditioned response decreases with increasing interstimulus (CS onset-US onset)
interval (ISI). They also show that S-B can correctly assign associative strength to a
CS1 that starts earlier and then overlaps with a CS2 which becomes redundant in this
situation. Because its learning rule is based on the term [Y(t)− Ȳ(t)], learning can
occur by the activity of CSs only, allowing the model to also explain second order
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conditioning, where a CS1 previously conditioned with a US can make a CS2 also
acquire some associative strength when it is paired with CS1. Barto and Sutton, 1982
demonstrated that S-B can produce conditioned inhibition.

Sutton and Barto, 1990 identified problems with S-B’s account of the ISI effect
and proposed a solution. Under more realistic simulations S-B predicted that a CS
would become strongly inhibitory if simultaneously presented with US (ISI=0). This
contradicts the data which shows that in this condition the CS actually becomes
excitatory. Another problem was that S-B predicted equal conditioning strength for
almost all ISIs in delay conditioning, whilst the ISI effect predicts a decay in strength
with ISI. The solution they proposed was the Temporal Difference (TD) model.

TD introduces the idea of discounted future rewards into the time derivative
S-B model. TD assumes that future rewards λ are less valuable and so should be
discounted in proportion to their distance from the present moment. It then creates
a prediction V̄ of the sum of these discounted rewards,

V̄(t) = λ(t + 1) + γλ(t + 2) + γ2λ(t + 3) + ... (2.15)

where γ is a discount factor. The authors then derive a replacement for S-B’s rein-
forcement term [Y(t)− Ȳ(t)] as follows. First they note that:

V̄(t) = λ(t + 1) + γλ(t + 2) + γ2λ(t + 3) + ...

= λ(t + 1) + γ(λ(t + 2) + γ2λ(t + 3) + ...)

= λ(t + 1) + γV̄(t + 1).

The time derivative of prediction therefore is

λ(t + 1) + γV̄(t + 1)− V̄(t). (2.16)

Substituting this for [Y(t)− Ȳ(t)] into (2.14) yields the TD learning rule:

∆Vi(t + 1) = c[λ(t + 1) + γV̄(t + 1)− V̄(t)]X̄i(t). (2.17)

Figure 2.4 shows a diagram of TD.
Sutton and Barto, 1990 showed that TD can fix the problems in S-B and provide

a better account of ISI effect in both delay and trace conditioning. They also demon-
strate how it can exhibit blocking and second-order conditioning. It can also repro-
duce the resistance to extinction of a conditioned inhibitor if the following condition
is made:

V̄ =

∑i XiVi if ∑i XiVi > 0

0 otherwise.
(2.18)
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FIGURE 2.4: TD learning model with a complete serial compound
(CSC) stimulus representation. In this representation both the onset
and offset of the CS are instantiated by different x units. The sub-
scripts ijk represent the CS(i), the onset or offset (j) and the order of

activation (k). Adapted from Vogel, Castro and Saavedra, 2004.

TD has found many applications in the field of artificial intelligence and adapt-
ive control (Sutton and Barto, 1998) and constitutes the basis of modern deep learn-
ing algorithms (Mnih et al., 2015). It has received a particular boost in popularity
in the field of neuroscience. Schultz, Dayan and Montague, 1997 have shown that
dopaminergic neurons fire in anticipation of a reward in a manner resembling TD
predictions.

Ludvig, Sutton and Kehoe, 2008 proposed a stimulus representation to be used
with TD with the aim of refining its timing predictions. Even though CSC-TD could
explain some timing phenomena, it was not able to explain timescale invariance.
This timing phenomena refers to the finding that the timing of the CR tends to scale
with stimulus duration. Microstimuli (MS), as the representation is called, formal-
ises the CS as a series of Gaussians

f (y, µ, σ) =
1√
2π

exp
(
− (y− µ)2

2σ2

)
, (2.19)

where y is an exponentially decaying trace set at 1 at CS onset. The ith microstimulus
is given by:

Xi(t) = f (y(t), i/m, σ)y(t), (2.20)

where m is the total number of microstimuli. The right panel in figure 2.5 shows the
structure of microstimuli.

Ludvig, Sutton and Kehoe, 2012 compared microstimuli against two other pre-
vious CS representations used with TD. The first, known as presence, assumes only
one representation, or only one neuron-like unit X, of the CS (see left panel in figure
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FIGURE 2.5: The choices of stimulus representation in TD. Left panel:
presence. Middle panel: complete serial compound. Right panel:

microstimuli.

2.5). It is arguably the most basic representation but it is able to explain the ISI effect
on conditioning (Sutton and Barto, 1990). But since it represents absolute temporal
generalization, it cannot account for the intertrial temporal dynamics. The other
TD stimulus representation is the Complete Serial Compound (CSC) first proposed by
Moore, Choi and Brunzell, 1998. In CSC the CS is composed of a series of neuron-like
units, one for each time-step (see middle panel in figure 2.5). Such a representation
is not very realistic in terms of neurophysiology as it postulates the existence of an
arbitrarily large number of neuron-like units, but it is a clear improvement on the
presence representation as shown by Sutton and Barto, 1990. Ludvig, Sutton and
Kehoe, 2012 demonstrated that microstimuli fared the same or better than the other
representations on the ISI effect, CR timing, CR scalar invariance, blocking, block-
ing with a change in ISI and overshadowing. The authors point out that TD with
MS cannot account for certain phenomena such as discrimination, preexposure and
recovery.

SOPs

Wagner, 1981 developed a model intended to describe standard operating proced-
ures (SOP) in memory. In this model (see figure 2.6) CS and US are conceptualized
as a set of individual units or elements. Elements transition between three states. CS
onset excites elements into state A1 with probability p1. Elements in A1 state gradu-
ally decay into state A2 with probability pd1. Elements in state A2 gradually decay
into an inactive state I with probability pd2. From state I an element can either stay
inactive, if CS is no longer present, or transition back to state A1 with probability p1,
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if the CS is still present. The change in the proportion of elements in states A1, A2
and I are given by:

∆pA1 = p1(pI)− pd1(pA1) (2.21)

∆pA2 = pd1(pA1)− pd2(pA2) (2.22)

∆pI = pd2(pA2) (2.23)

where pA1, pA2 and pI are the proportion of elements in states A1, A2 and I respect-
ively. These equations produce a stimulus representation for A1 activation similar
to the one in figure 2.2.

FIGURE 2.6: SOP model network. Arrows represent excitatory con-
nections and circles inhibitory. Adapted from Brandon, Vogel and

Wagner (2002, p. 237).

The stimulus representation in SOP allows the model to reproduce habituation
effects. Brandon, Vogel and Wagner, 2003 simulated repeated presentations of the
US, demonstrating that the model produces weaker URs with massed US training,
an effect well-known empirically.

SOP’s learning rules are:

∆V+
i = L+ ∑

i
pA1,CSi × pA1,USj for excitatory learning, (2.24)

∆V−i = L−∑
i

pA1,CSi × pA2,USj for inhibitory learning, (2.25)

∆Vi = ∆V+
i − ∆V−i , (2.26)

where L+, L− are constants. The modifiable associative strength V is the net result
of inhibitory V− and excitatory V+ strengths.

Conditioning is assumed to change the dynamics of elements in the US node
by establishing a link between the inactive I state and A2. Hence, after learning is
established, CS presence will cause elements in the US node to transition from the
inactive state into state A2. This activity is mediated by the modifiable weight p2
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given by

p2US/ ∑ CS =
i

∑ VCSiUS(r1pA1CSi + r2pA2CSi)

where r1, r2 are constants and p2 is restricted to the interval (0,1).
Responses R in the model are generated by:

R = f (w1 pA1,US + w2 pA2,US), (2.27)

where w1, w2 are constants. The precise function f is left to be defined by data fits.
Brandon, Vogel and Wagner, 2003 showed that SOP can produce changes in as-

sociative strength compatible with acquisition, extinction and cue competition, in
a similar manner as Rescorla-Wagner. They also argue SOP is the only model to
predict inhibition with backwards conditioning.

In its original formulation SOP does not adequately predict timing phenomena.
Brandon, Vogel and Wagner, 2003 attributes this failure to SOP’s unitary stimulus
representation. Their simulations showed that SOP predicts optimal conditioning
with simultaneous CS and US presentation, whilst the data show a minimum ISI
is required for optimal conditioning. It does not predict the correct CR timing; its
associative strength peaks too early into the trial at the end of training.

Two other variations of SOP have been proposed. The first, called AESOP for
affective extension of SOP (Brandon, Vogel and Wagner, 2003), postulates two sep-
arate units for the US representation, one emotive and the other sensory-perceptual.
The emotive unit gives rise to a conditioned emotive response (CER), a diffuse re-
sponse that is believed to regulate the CR. The sensory-perceptual unit supports the
CR. Apart from this novel US representation, AESOP maintains the assumptions of
SOP.

The main advantage of AESOP over SOP is in dealing with CERs. Indeed, the
motivation behind its development was to explain the phenomenon called ‘diver-
gence of response measures’. It refers to the observation that different measures
of conditioned response may yield contrary, or uncorrelated, results. For example,
backward eyelid conditioning produces inhibitory learning when eyeblinks are the
measure of conditioning but produces excitatory learning when suppresion of drink-
ing is measured. Such phenomena can be accounted by the two distinct US nodes in
AESOP. By using different decay constants for these units, AESOP can also correctly
account for the ability of CERs to develop at longer ISIs than CRs.

The second SOP variation, called Componential-SOP (C-SOP, Brandon, Vogel
and Wagner, 2003), was developed with the specific aim of overcoming SOP’s timing
limitations. In particular, it was inspired by data on occasion setting and CR timing.

Occasion setting occurs during a conditioning procedure where a CS, usually
called a feature, precedes another CS, called a target, which is then reinforced or
not. If the target CS is only reinforced when preceded by the feature CS (and not
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reinforced when presented alone) the procedure is called a feature positive discrim-
ination. Conversely, if the target CS is not reinforced when preceded by the feature
CS the procedure is called a feature negative discrimination. If feature and target do
not overlap, i.e. are presented serially, then the feature CS is said to act as an ‘occa-
sion setter’ for the target CS. The occasion setter is seen as conveying information
about the impending target. Of particular interest here is temporal information. A
feature CS may indicate that the target CS will come after a certain time interval,
what is called a feature-target interval (FTI).

Holland, 1998 performed a series of experiments with FTIs ranging from 5 to
50 seconds. Their results were in line with data obtained in the peak procedure (a
common experiment in the timing literature) in that the response curves obtained
with different FTIs superimposed when appropriately scaled. Of particular interest
are compound features experiments. In a particularly interesting mix of cue com-
petition and timing, Holland, 1998 presented a 10/30 second feature compound and
then either the 10 or 30 target CS. The response curves looked very similar to each
other (Figure 2 in Holland, 1998), with two apparent peaks, the first higher than the
second and both shifted to the right of the target intervals. This points to a kind of
time subtraction in the compound feature cue. One way to interpret this result is
that the internal clock was slowed down by the compound cue.

As mentioned above, C-SOP is an attempt at providing an explanation for the
type of timing phenomena seen in occasion setting and CR timing. SOP represented
the CS as a set of elements that can be in one of three states, and its learning rules
(equations (2.24) and (2.25))are applied to the whole sets. C-SOP applies these rules
directly to the elements. These are assumed to have value 1 when active and 0 when
inactive. C-SOP also introduces the assumption that some elements are temporally
correlated, showing consistency from trial to trial. Hence, in C-SOP the CS elements
belong to one of two classes, one temporally correlated and another randomly dis-
tributed.

Brandon, Vogel and Wagner, 2003 argue that C-SOP treats the question of CR
timing as one analogous to an AX+, BX− discrimination. Elements that are active
during US presentation become excitatory, the ones active only in the absence of the
US become inhibitory and the ones active at both times become moderately excit-
atory. The CS trace is built by adding them at each time step. It is also assumed
that each element can carry a limited amount of inhibitory or excitatory associative
strength, so that l− ≤ vi ≤ l+. Finally, a constrained version of the RW learning
rules is used:

∆Vi =

αβ+(λ−∑ vi)(l+ − vi) if (λ−∑ vi) > 0,

αβ−(λ−∑ vi)(vi − l−) if (λ−∑ vi) < 0,
(2.28)

where |l| < λ.
With these modifications Brandon, Vogel and Wagner, 2003 and Vogel, Brandon
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and Wagner, 2003 showed that the model can reproduce the ISI effect, CR timing
and timescale invariance of CR timing.

Harris

Harris and Livesey, 2010 presented a model that relies heavily on a neural com-
putation known as divisive normalization. This is accomplished by dividing the
responses of an individual neuron by the summed activity of a pool of neurons.
Normalization is considered an ubiquitous neural computation that may underlie
the modulatory effects of visual attention, the encoding of value and the integration
of multisensory information (Carandini and Heeger, 2012).

Because the normalization equation is so central to the model, it will be useful to
explain it in detail first. The basic idea is that the normalized response of a neuron
Rj is given by (Carandini and Heeger, 2012):

Rj =
Dn

j

σn + ∑k Dn
k

(2.29)

where Dj is the neuron’s input, σ a constant and Dk the input from the normalization
pool which is considered not normalized. Informally, this equation means that in
a background of strong activation it will take a stronger input to reach the same
normalized response that a weaker input would produce in a background of weak
activity.

Figure 2.7 shows a diagram of the model. A CS is thought to activate elements
E. Each element is sparsely connected to other elements (Harris and Livesey, 2010,
made each E connected with half of the rest of elements in the network). Each E ac-
tivates one inhibitory unit I and weakly activates another nearby I unit. Unit I then
normalizes E activity (via inhibition) according to the background E activity. The CS
also activates an attention network A which inhibit units I. A second normalization
occurs between A units via their own inhibitory connections. Associative strength
V is carried by the connections between E units.

Formally, the model describes the changes in activity strength of units E, I and
A. A distinction is made between two types of unit responses: a potential response
Rpot and an actual response R. Their relationship is described by:

dR
dt

= σ(Rpot − R), (2.30)

with σ a constant. Accordingly, activation of unit E is given by:

dEx

dt
= δ(Epot − Ex) (2.31)
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FIGURE 2.7: The attention-modulated associative network. Arrows
indicate excitatory connections and dots inhibitory. Adapted from

Harris and Livesey, 2010.

where

Epot =
Input(Ex)p

Input(Ex)p + Ip
x + D

, (2.32)

Input(Ex) =

Sx + ∑n
i=1 ViEi if (Sx + ∑n

i=1 ViEi) > 0

0 otherwise
(2.33)

where p, D are constants and Sx external input (CS).
Activation of unit I is given by

dIx

dt
= δ(Ipot − Ix), (2.34)

where

Ipot =
Input(Ix)p

Input(Ix)p + (ka Ax)p + D
, (2.35)

Input(Ix) =
n

∑
i=1

zi,xEi. (2.36)

Here zi,x is the weight between Ei and Ix. This is taken to reflect the degree of simil-
arity between the receptive fields of Ei and Ex. zx,x is set to 1, whilst every other zi,x

is less than 1.
Activation of unit A is given by

dAx

dt
= δ(Apot − Ax), (2.37)
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where

Apot =
Sp

x

Sp
x + A

′p
x + D

, (2.38)

A′x = w

[(
n

∑
i=1

Ai

)
− Ax

]
, (2.39)

with w a constant.
Finally, associative strength is calculated in a manner that resembles S-B model,

but the authors make one modification. Their rule intends to formalize the idea that
associative change of the recipient element is proportional to the difference between
the change in excitation and the change in inhibition. It also incorporates the idea of
a change in salience or associability α common to the trial-based attention models.
First, a function that determines the co-activation of elements Ex and Ey is calculated
by:

∆x,y = αx

(
βE

dEy

dt
− β I

dIy

dt

)
, (2.40)

where

βE =

0.02 if dEy
dt > 0,

0 otherwise,
(2.41)

β I =

0.1 if dIy
dt > 0,

0 otherwise.
(2.42)

Then to make the change in associative strength a gradual process the authors use a
rule that changes the acceleration of V:

d2Vx,y

dt2 = kν

(
∆x,y −

dVx,y

dt

)
, (2.43)

with kν a constant. Also, the change in associability is given by:

dαx

dt
= kα(Ex − αx), (2.44)

where kα is a constant.
The authors ran simulations using 20 elements for each CS including US and

context. The model was created with the intention of explaining stimulus discrim-
ination effects so a number of simulations were run to test this. The model was able
to reproduce negative patterning and biconditional discrimination. Because of nor-
malization, when a CS is presented in compound with another, they both activate
many elements with overlapping receptive fields. The normalised response is there-
fore not a summation of associative strength as Rescorla-Wagner would predict, and
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so the model can cope well with non-linear cue competition phenomena. The au-
thors also demonstrate that the model can produce latent inhibition because of its
attentional network and its rule for associability modification. Crucially, the latent
inhibition produced by the model is not due to US absence, as models like Mackin-
tosh, 1975a would require, but simply because of a decrement in CS processing, in a
manner similar to the model by McLaren and Mackintosh, 2000.

It is worth noting at this point that this model’s formalism has more biological
realism than it is usually seen in learning models. Its timing properties, however,
remain untested.

Schmajuk

Schmajuk and colleagues have proposed several connectionist models, one of which
(Buhusi and Schmajuk, 1999) is of particular interest here due to its timing features.
It is a blend of two previous models: the Schmajuk-DiCarlo (S-D, Schmajuk and
DiCarlo, 1992) and the Spectral Timing (STM, Grossberg and Schmajuk, 1989) mod-
els. STM is primarily a timing model and will be covered in more detail in the next
chapter. It suffices to state here that its main timing engine is a cascade of traces
set off by the CS, each trace with its own timing characteristics. S-D is a classical
conditioning connectionist model, with a hidden-unit layer that allows it to account
for certain stimulus configuration phenomena such as negative patterning that two-
layer networks cannot explain.

The model builds on the idea that CSs compete not only for associative strength,
the assumption behind Rescorla-Wagner, but also for US timing. Figure 2.8 shows
the main components of the model. Each CSi sets off k traces τik, including the con-
text CX. These traces are formed by activities xik and yik given by1:

∆xik =
k1

k
(1− xik)(CS(i) + k2 f1(i))− k3xik, (2.45)

∆yik = k4(1− yik)− k5 f2(xik)yik, (2.46)

where CS(i) is 0 or 1 depending on CS absence or presence respectively, ki are con-
stants controlling decay or growth, and fi are sigmoid functions. These two activities
are combined by the following rule:

τik = yik f2(xik). (2.47)

Equation (2.47) produces gaussian-looking traces, with higher peaks and smaller
widths near CS onset. These traces are very similar in shape to the ones postulated
by the Microstimuli model (see right panel in figure 2.5).

1The following is an abridged description where some of the equations that do not form the core of
the model, and hence are not crucial for the understanding of its main mechanisms, have been omitted.
That explains why there are jumps in the numbering of the constants. For the complete set of equations
see Appendix A in Buhusi and Schmajuk, 1999.
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FIGURE 2.8: The S-D model. Its network architecture includes a ‘hid-
den’ unit H. This hidden unit is what allows the S-D model to explain

negative patterning.

These traces are fed into the second network layer seen in figure 2.8, which in
turn is connected to the hidden-unit Hj and directly to the output layer by modifiable
links VHikj and Vik respectively (except context CX which is only connected to the
hidden unit). The learning rule for Vik is

∆Vik = k11τik(US− BUS)(1− |Vik|) (2.48)

where BUS is the aggregate US prediction produced by the second and hidden layers

BUS = ∑
i

∑
k

τikVik + ∑
j

τjVNj. (2.49)

Note the term (1− |Vik|) in equation (2.48). This term prevents Vik, the direct associ-
ative link between CS and output layer, from changing when Vik = ±1. It also mod-
ulates the learning rate so as to make it faster when Vik is further from its asymptotic
value. The learning rule for the hidden-unit link VHikj is

∆VHikj = k13τikτj(US− BUS)VNj. (2.50)

The output of the hidden unit is the trace τj computed as follows:

τj = k8 f4

(
∑

i
∑

k
τikVHikj

)
. (2.51)

Finally, the hidden-unit link VNj with the output unit is updated by

∆VNj = k12τj(US− BUS)(1− |VNj|), (2.52)

and model responses are produced by CR = k10BUS.
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As mentioned earlier, this model assumes competition between traces τ for the
timing of US. Traces that peak closer in time to reinforcement receive more strength
and come to dictate response topography. It is this feature that allows the model
to reproduce the basic ISI effect. Another important feature is the two independent
CS connections, one directly to the US representation and another indirectly via the
hidden unit. According to Buhusi and Schmajuk, 1999 this independence allows the
CS to act both as a simple CS (via direct link) and as an occasion setter (via hidden
unit). It is this last property that allows the model to explain stimulus configuration
phenomena.

Adding to the list of successful conditioning paradigms simulated in Schmajuk
and DiCarlo, 1992 with its successor S-D model, which include acquisition of delay
and trace conditioning, extinction, blocking, overshadowing, generalisation, and
negative and positive patterning, Buhusi and Schmajuk, 1999 showed that this model
can reproduce temporal and associative properties of blocking and serial feature
positive discrimination.

McLaren

McLaren and Mackintosh, 2000 and McLaren and Mackintosh, 2002 set out to show
that an elemental model is also capable of explaining generalization and discrim-
ination, a class of phenomena frequently thought to require a configural stimulus
representation. The inclusion of a weight decay in its associative links allows the
model to also explain some timing properties.

Their starting point is a distributed network model of information processing
and memory (McClelland and Rumelhart, 1985). This type of model consists of
highly interconnected units, activated both by external stimuli or internal stimuli
originating from other units. A CS is therefore here represented as a pattern of ac-
tivation distributed over the network. As with other connectionist models, learning
occurs through a change in connection weights. This change is guided by the delta
rule:

∆i = ei − ii,

where e and i are external and internal activations respectively. Learning therefore is
interpreted here as the network trying to match (or equalize) external activity with
internal activity. When these are equal, learning is complete.

McLaren and Mackintosh, 2000 make two main modifications on McClelland
and Rumelhart, 1985. First, they include a positive feedback mechanism in the delta
rule, which has a modulatory effect on the salience of external stimuli. Second, they
introduce the idea of weight decay; weights change with experience but also decay
with time. This modification allows the model to reproduce ITI effects.

Figure 2.9 shows the basic model architecture. Nodes are all interconnected, with
weight wij representing the weight from unit i to j. Inputs are either internal or
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external. The sum of internal inputs arriving at unit i from unit j is given by:

ii = ∑ wjiΩj. (2.53)

Activation in node i is symbolized by Ωj and changes according to:

dΩi

dt
=

E(ei + ii)(1−Ωi)− DΩi for Ω ≥ 0

E(ei + ii)(1 + Ωi)− DΩi otherwise
(2.54)

where D and E are decay and excitation constants respectively. The delta rule is
modified to include the modulation term r∆, r a constant, as follows:

∆i = (ei + r∆i)− ii. (2.55)

The modulation constant r is taken to be 0 when ∆i ≤ 0. Finally, the weights are
adapted according to the following system:

dwij

dt
= S∆iΩj − Kmij, (2.56)

dmij

dt
= S∆iΩj − Lmij, (2.57)

with constants L > K. Equation (2.57) is a negative feedback that implements weight
decay.

FIGURE 2.9: A three-node network used by the McLaren model. The
nodes are fully interconnected by the links wi,j, and also receive ex-

ternal inputs ei.

McLaren and Mackintosh, 2000 applied the model to latent inhibition and per-
ceptual learning, and McLaren and Mackintosh, 2002 to generalization and discrim-
ination. The ITI effect was not tested directly but as a factor influencing latent in-
hibition. The model predicts that spaced (longer ITI) CS preexposure has a stronger
effect in latent inhibition than massed (shorter ITI) preexposure, and the authors
find evidence in the literature for just such an effect. The authors also acknowledge
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a resemblance to SOP in this account of latent inhibition. Nonetheless, the model is
an interesting effort in the direction of unifying distributed theories of memory and
learning.

In this section we have seen the main real-time models of conditioning. Of all
models analysed here, TD is the one that found the largest applicability outside ex-
perimental psychology. Within experimental psychology, Schmajuk’s model is by
far the most complete, but also one of the most complex which perhaps explains
why it has not been widely adopted. As regards timing, none of the models here
achieves the degree of sophistication found in dedicated timing theories, which will
be reviewed later. For now, it suffices to note that the models above cannot offer a
good account of timescale invariance, which precludes their use as hybrid timing-
learning theories.

Next, I will review how learning and timing have been studied in the field of
computer science.

2.1.6 Artificial Neural Networks

The theory of adaptive neural networks in computer science has been developed
largely in parallel from the theories of learning in classical conditioning. Yet they
show considerable overlap, with each serving as source of inspiration for the other
at some point or another in time. Both theories are said to be ‘loosely’ inspired
by real neurons and their connections. The analogy should however not be taken
very far, as real neurons are much more complex than artificial neural nets, and
some of the properties of neural nets (such as the weight update procedure called
backpropagation) are not thought to be present in real neural networks.

The Perceptron

The first algorithm describing a neural network that could learn with the help of a
teacher (supervised learning) was the perceptron (Rosenblatt, 1958). The perceptron
is an idealized ‘neuron’ that is still used to perform simple binary classification. It re-
ceives excitatory or inhibitory inputs either from sensory units or other perceptrons,
adds them up and outputs a value.

As with all connectionist theories, the information is stored in the connections
between the perceptrons. These connections have adaptive weights which can change
according to experience. In figure 2.10 the inputs to the perceptron are denoted by
x1, x2, ..., xn and their weights2 by V1, V2, ..., Vn. The set of inputs x1, x2, ..., xn is fixed

2It is customary in the neural network literature to denote connection weights by w. However, I
will use V here to emphasize the link with computational models of classical conditioning.
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FIGURE 2.10: The perceptron. Each feature xi of the input is directly
connected to a summing unit via modifiable links Vi. A bias unit
of arbitrary value b which can be adjusted manually to improve the
prediction is also connected to the summing unit. Note the similarity

to the diagram of figure 2.1.

for each input pattern or example, and may be regarded as the dimensions or fea-
tures of the input. The computation performed by the perceptron is the linear com-
bination or net sum of its inputs,

net =
n

∑
i=1

Vixi + b,

where b is a bias term which is fixed and is used to increase or decrease the net
value. Classification is accomplished by passing the net output through an activation
function,

o = ϕ(net).

There are different activation functions, and two common examples are the Heav-
iside or step function and the sigmoid. For simple binary classification the Heaviside
is a natural choice:

ϕ(net) =

1 if net ≥ 0

0 if net < 0

One disadvantage of the Heaviside activation function is that it is not continuous,
hence not differentiable. The backpropagation algorithm used to train modern neural
networks requires a differentiable activation function, as it will be seen later. How-
ever, for training the perceptron this is not an issue, as it will become apparent in
what follows.

We desire to find a set of weights V1, ..., Vn such that the perceptron can classify
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correctly the largest possible number of input patterns of the form x1, ..., xn. The first
algorithm for performing this adaptation was put forward by Widrow and Hoff,
1960. Let the kth input pattern be the vector x(k) = x1, ..., xn, its desired classification
d(k), and its respective neuron output o(k). A simple measure of error is given by

e(k) =
1
2
[d(k)− o(k)]2 . (2.58)

The above expression is the error for a single instance of classification. In general,
we would like to minimize the mean squared error

E

[
m

∑
k

e(k)

]
= E

{
1
2

m

∑
k
[d(k)− o(k)]2

}
(2.59)

over a large number m of input patterns. Since we are minimizing the mean squared
error, the rule for doing so is also known as the Least Means Squares (LMS). The
minimum of the error function in (2.59) can be found by using gradient descent. This
method works by finding the gradient of the error as a function of the weights Vi

for an initial set of weights, then taking a small step in the opposite direction of
the gradient, which will lead to a new set of weights from which the procedure is
repeated until the new set of weights equals the previous set. Widrow and Hoff, 1960
realized that minimization of (2.59) is equivalent to consecutive minimizations of the
single classification error (2.58). Also, in the case of the perceptron minimization of
the error using the output of the activation function is equivalent to minimization
using the net output, before it is passed through the activation function. Therefore,
we need to find the gradient of

E(V) =
1
2
[d(k)− net(k)]2 =

1
2

[
d(k)−

n

∑
i=0

Vixi

]2

. (2.60)

Note that the bias term b has been incorporated as another weight V0 that has a
constant input x0 = 1. The gradient of the error is

∇E(V) =

(
∂E
∂V1

, ...,
∂E
∂Vn

)
, (2.61)

and the ith partial derivative is

∂E
∂Vi

= −
[
d(k)− xT(k)V(k)

]
xi. (2.62)

Next, we update the weights by taking a small step α in the direction opposite the
gradient

Vi(new) = Vi(old) + α
[
d(k)− xT(k)V(k)

]
xi. (2.63)

This completes the LMS algorithm for a perceptron unit.
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Note that equation (2.63) may be equivalently written as

∆Vi = α

(
λ−

n

∑
i=0

Vixi

)
xi (2.64)

which is the Rescorla-Wagner learning rule (2.2) introduced earlier in section 2.1.4.
Hence, the RW rule is equivalent to the LMS. As Widrow and Hoff, 1960 noted, the
LMS/RW can only find the appropriate weights if the input patterns being classified
are linearly separable. This means that the two classes must be able to be separated
by a hyperplane, i.e. a plane that is one dimension less than the input pattern di-
mension. The classic example of a linearly inseparable classification problem is the
XOR or exclusive OR function. Minsky and Papert, 1988 analysed this and a number
of other limitations of the perceptron. They pointed out that if an extra perceptron
layer was added, the resulting network would be able to overcome these limitations.
Figure 2.11 shows a network of perceptrons with a hidden layer. The hidden layer
would act by recoding the input in a way that it becomes linearly separable, allowing
the output to be classified correctly.

FIGURE 2.11: A fully-connected hidden layer perceptron network.

The limitations of the perceptron also constrained its use in modelling classical
conditioning phenomena. The XOR problem that is unsolvable by the perceptron is
readily solved by animals in a conditioning procedure called negative patterning. In
this procedure, two different stimuli, a tone and a light for example, signal reward,
whilst their compound does not. Animals can learn to respond to the tone and the
light and not to the compound. Due to its equivalence to the LMS, the RW rule
cannot model negative patterning.

The hidden layer solution proposed by Minsky and Papert, 1988 had the dis-
advantage of lacking a straightforward procedure like the LMS for adapting the
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weights. Unlike the perceptron case, where the unit’s output was immediately com-
pared with the desired class, the output of the hidden layer is not apparent. A solu-
tion was finally found by Rumelhart, Hinton and Williams, 1986 with a procedure
called backpropagation, to which I now turn.

Backpropagation

Backpropagation is a generalization of the LMS algorithm. Assume a network of
the kind illustrated in figure 2.11, but with any number of hidden layers. This net-
work is sometimes called a multilayer perceptron or MLP. Unlike the LMS, here the
use of a nonlinear activation function is required as ‘hidden units with linear activ-
ation functions provide no advantage’ Rumelhart, Hinton and Williams, 1986. The
network in figure 2.11 is also called a feedforward network, because the input pattern
information propagates forward through the layers, generating the output that is
compared with the desired output in the error function. The name backpropagation
alludes to the information flow in the opposite direction, from the error function to
the hidden layers, which allows the computation of the gradient. Once the gradient
is computed, the weight correction can be performed following gradient descent, the
same procedure as LMS.

Similar to the previous section, I assume the input to be an n-dimensional vector
x(k) = (x1(k), x2(k), ..., xn(k)). Unlike in the perceptron, the desired output is also
a vector of the same dimension d(k) = (d1(k), d2(k), ..., dn(k)). Each dimension cor-
responds to one neuron in the input layer, and one neuron in the output layer. The
error or cost function for the kth pattern input generated by the jth output neuron is

Ej(V) =
1
2
[
dj(k)− oj(k)

]2 . (2.65)

The total error of the network is obtained by summing over the n errors generated
by each output neuron

E(V) =
n

∑
j=1
Ej(V) =

1
2

n

∑
j=1

[
dj(k)− oj(k)

]2 . (2.66)

The output of the jth neuron is

oj = ϕ(netj) = ϕ

(
n

∑
i=1

Vi,j(k)xi(k)

)
, (2.67)

where ϕ is an activation function.
Backpropagation works first on the weights connecting the output layer, then on

the weights connecting the previous layer, and so on. Following the LMS, we correct
the weight Vi,j by taking a small step in the direction opposite the partial derivative
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∂E
∂Vi,j

. To find this partial derivative we use the chain rule:

∂E
∂Vi,j

=
∂E
∂Ej

∂Ej

∂oj

∂oj

∂netj

∂netj

∂Vi,j
. (2.68)

Note that the partial derivative ∂Ej
∂oj

on the right hand side of equation (2.68) is straight
forward when the neuron j is in the output layer. There is only one output oj(k) and
one desired output dj(k), so all we need to do is take the derivative of equation (2.65).
However, if neuron j is in a hidden layer the desired output is not so clear.

Consider first the case when neuron j is in the output layer. The partial derivat-
ives are:

∂E
∂Ej

= 1,

∂Ej

∂oj
= −(dj(k)− oj(k)),

∂oj

∂netj
= ϕ′(netj),

∂netj

∂Vi,j
= xi(k).

Putting all together we get

∂E
∂Vi,j

= −(dj(k)− oj(k))ϕ′(netj)xi(k), (2.69)

where the dash sign indicates a differentiation with respect to the argument of the
function. Also note that because neuron j is in the output layer, xi(k) represents
one of the inputs coming from the layer immediately to the left, not the initial input
pattern. Applying the gradient descent correction, the weight update is

Vi,j(k + 1) = Vi,j(k) + α(dj(k)− oj(k)).ϕ′(netj)xi(k) (2.70)

Consider the case when neuron j is in a hidden layer. As mentioned before, the
problem here is finding the partial derivative ∂Ej

∂oj
in equation (2.65). The solution is

to regard Ej as a function of the outputs of all neurons, say L = {l, m, ..., w}, that
receive input from neuron j,

Ej(ol , om, ..., ow) = El + Em + ... + Ew. (2.71)

The equation above establishes the recursion involved in backpropagation; the error
of a hidden neuron can be calculated based on the total error produced by the layer
immediately to the right.
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The partial derivative of this function is

∂Ej

∂oj
=

∂Ej(ol , om, ..., ow)

∂oj

=
∂Ej

∂ol

∂ol

∂netl

∂netl

∂oj
+ ... +

∂Ej

∂ow

∂ow

∂netw

∂netw

∂oj

= 1ϕ′(netl)Vj,l + ... + 1ϕ′(netw)Vj,w

= ∑
l∈L

ϕ′(netl)Vj,l . (2.72)

It is customary to define

δj = −
∂Ej

∂netj
(2.73)

as the local gradient for a neuron j (see Haykin, 2009, p. 131). We can then write
equation (2.72) more succinctly as

∂Ej

∂oj
= −∑

l∈L
δlVj,l , (2.74)

where δl are the local gradients for the neurons in the layer to the right of neuron j.
Putting it all together we have

∂E
∂Vi,j

= −∑
l∈L

δlVj,lxi. (2.75)

And the weight update is given by taking a small step in the direction opposite the
gradient:

Vi,j(k + 1) = Vi,j(k) + α

(
∑
l∈L

δlVj,l

)
xi. (2.76)

In summary, the complete update rule for weight Vi,j is

Vi,j(k + 1) = Vi,j(k) +

αδjxi(k) if j is in the output layer

α
(
∑l∈L δlVj,l

)
xi(k) if j is in a hidden layer

(2.77)

The XOR problem in classical conditioning

As previously mentioned. the conditioning analogue of the XOR function is neg-
ative patterning. Schmajuk and DiCarlo, 1992 was the first to propose a condition-
ing model capable of reproducing negative patterning. This is the S-D (Schmajuk-
DiCarlo) model introduced in section 2.1.5. We can now see that S-D is multilayer
neural network with a single hidden layer. The difference from the conventional
machine learning MLPs is that in S-D the input layer also makes direct connections
with the output layer. The hidden unit is also known as a configural unit, and it is
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still a widely used solution for modelling negative patterning and other configural
cue phenomena (Mondragón et al., 2014).

Long Short-Term Memory Networks

Certain data patterns are defined only by their temporal information, such as the
rhythmic beats of a drummer. Standard neural nets are not equipped to recognize
such temporal patterns. In the case of conditioning models, when timing is taken
into account it is usually through a hardcoded representation such as a tapped delay
line. Such a representation assumes that time is discretized into successive states,
each state acting as an independent representation that can come into association
with the US. The temporal representation is therefore hardcoded and not learned.
This has also the disadvantage of requiring a high number of states, as many as
the time resolution and interval requires. For example, if the interval being timed
is 10 minutes and we require millisecond resolution we will need 600000 states per
stimulus.

A better solution would be to learn directly from the data the adequate temporal
dependencies. The only machine learning framework capable of learning long-term
dependencies analogous to the ones faced by an animal in a timing experiment is
the Long Short-Term Memory (Hochreiter and Schmidhuber, 1997, LSTM). LSTMs
are a type of Recurrent Neural Network widely used in speech recognition, machine
translation, and image-to-caption generation.

An LSTM consists of a cell which receives an input, process it through multiple
memory blocks and outputs a value. Each memory block is equipped with three
gates that control the flow of information (see figure 2.12); they are the input gate, the
forget gate and the output gate. By modulating the information flow through these
gates, the cell is capable of maintaining or ending recurrent activation. The challenge
faced by LSTMs is deciding which parts of the information it has already seen are
relevant to predict what is coming next, hence to maintain activation, and what parts
are irrelevant, hence to end it. The further in the past the relevant information is
located, the bigger the challenge for an LSTM.

Here we will briefly describe one version of a LSTM that was used in a simula-
tion of classical conditioning phenomena (Rivest, Kalaska and Bengio, 2014). In this
simulation the inputs to the memory block were presence or absence of CS and US,
xCS and xUS, and a bias term b. The memory block also has a recurrent input, y1,
given by its time delayed output. Let the inputs be represented by a vector

xt = (b, xCS,t, xUS,t, y1,t−1).

The three gates, input, forget and output, also received the same input vector xt, but
also received the output of the recurrent memory cell c1. The output of each gate is
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FIGURE 2.12: LSTM. The memory block is the basic unit of processing
in an LSTM. Its inputs are the bias b, the CS and US values and the one
time-step delayed output y. These are weighted and passed through a
sigmoid function, before being multiplied by the output of the Input
gate. The recurrent memory cell c1 adds this signal to the product of
its own time delayed signal and the forget gate signal. The c1 output
is passed through another sigmoid function and multiplied by the
signal coming from the output gate, and the result is the memory
block output y. The gates the same inputs as the memory block, and
also the output of c1 which is delayed in the case of input and forget

gates but not for the output gate.

given by

yin,1,t = asig(win,1,t[xt, c1,t−1]),

yfgt,1,t = asig(win,1,t[xt, c1,t−1]),

yout,1,t = asig(win,1,t[xt, c1,t]),

where asig() is a sigmoid function with range [0,1], wg,1,t is the weight vector for
gate g (input, forget and output) and [] is the concatenation operator. The memory
cell c1 acts as a recurrent unit with an activation output given by

c1,t = yin,1,tsig(w1,txt) + yfgt,1,tc1,t−1,

where sig() is a sigmoid function with range [-1,1], w1,t is the input weight vector of
memory block 1. The output of the memory block 1 is given by

y1,t = yout,1,tsig(c1,t).

A whole LSTM cell may have many memory blocks like the one in figure 2.12, so
their outputs are weighted by the LSTM weight wUS,t and passed through another
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sigmoid function, yielding the LSTM output:

yUS,t = asig(wUS,t[b, xCS,t, xUS,t, y1,t]).

All LSTM weights are updated according to the backpropagation rule

wt+1 = wt − α∇we2
US,t,

where the error function is

e2
US,t = (yUS,t − xUS,t+1)

2. (2.78)

As an example consider time-series prediction. Here the LSTM must learn to
predict when the next event will happen. The events are separated by an interval
that consists of a fixed interval plus another variable interval. This is analogous to a
delay conditioning task where the animal learns that the start of a stimulus signals
that a reward is coming after a variable interval. The LSTM does not have any pre-
existing time representation, so it must build one from scratch. This simple task is
extremely challenging to existing LSTMs: it can take millions of trials for an LSTM
to learn to predict events separated by only 50 time-steps, and even then the LSTM
might not learn the task at all (Gers, Schraudolph and Schmidhuber, 2002). Animals,
in contrast, can learn to associate events separated by intervals of minutes or even
hours in tens or at most hundreds of trials.

Rivest, Kalaska and Bengio, 2014 coupled a LSTM with the TD model in order
to see if this LSTM-TD could reproduce conditioning behaviour. The LSTM was re-
sponsible for learning to predict the stimuli at the next time step ∆t, whilst the TD
model learned to estimate the sum of future rewards. Here the only inputs to the
LSTM were the CS and US presence or absence (1 or 0). The LSTM outputted a
sigmoidal value between 0 and 1 as the prediction for the US at the next time step.
The temporal resolution used (time-step) was 100 ms, and the interstimulus interval
was 1 second. The LSTM-TD model was able to learn a temporal representation in
the form of a ramping activity that started at CS onset and ended at US onset. It
was able to reproduce delay, trace and embedded or extended conditioning (where
the CS continues past the US presentation). Furthermore, in trace conditioning the
LSTM learned to time the US from CS offset, and not CS onset, matching with ex-
perimental data (Buhusi and Meck, 2000).

Learning a temporal representation from scratch is still very challenging for a
LSTM. The LSTM-TD model by Rivest, Kalaska and Bengio, 2014 was only tested
on delay trace and embedded conditioning with a very short interstimulus interval,
and took much longer to train than animals. Also, the weights of a LSTM are trained
using as cost function the squared error e2 between the prediction and the output at
each time step. This cost function assigns the same error magnitude to a prediction
that is off by one time-step as one that is off by n time-steps. A more adequate cost
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function would assign an error value that is proportional to the size of the timing
error. Finding such a cost function is not trivial, as criteria such as differentiability
and real-time computability, also need to be met.

In this section we saw the equivalence between RW and the perceptron, and how
perceptron can be connected together as a network to create a powerful learning ar-
chitecture. We have also seen that the timing performance of the best architecture,
LSTM, is still quite far behind animal performance. Computer science may thus
benefit considerably from the body of theories developed for the study of psycholo-
gical timing. We turn to that study next.

2.2 Timing Theories

The way animals experience the passage of time has implications to almost every
cognitive capacity. Although timing was recognized by Pavlov as an important com-
ponent of learning in classical conditioning, dedicated timing models did not start to
appear until the 1970’s. Influenced by psychophysics, these models focused on pre-
cise measurements of behaviour obtained after learning is consolidated at steady
state. They also used a paradigm known as information processing, a computer-
inspired metaphor with origins in cognitive science. It goes beyond the stimulus-
response or the stimulus-outcome-response paradigms in postulating mental pro-
cesses analogous to the workings of a computer.

The theoretical questions that timing models try to address concern how time is
encoded (linearly, logarithmically), how it is stored in memory and how it gets trans-
lated into behaviour. The notion of a pacemaker is central to most theories, although
some models do not use it. The models that use a pacemaker tend to treat it as a
stochastic process and make assumptions on the probability distribution underlying
it.

Because timing models tended to focus on steady-state behaviour, learning pro-
cesses are usually ignored. A few efforts have been made to include the type of
learning involved in classical and operant conditioning but these have only covered
some of the most basic learning phenomena.

2.2.1 Scalar Expectancy Theory

The first, and still most influential, timing theory began with a formal description of
a basic property of the timing of responses in operant avoidance procedures. Gib-
bon, 1971 proposed that the steady-state (or asymptotic) behaviour seen in these
procedures is driven by an estimate of the time of the next shock. Crucially, this
estimate is claimed by Gibbon to be a scale transform of a stochastic process, hence
the scalar property.

Gibbon’s scalar property can be formally stated as follows. Let X be the random
variable representing the expected time to the next US with cdf FX(x) and pdf fX(x).
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Let Y = aX, where a is a constant greater than zero. The cdf of Y, i.e. the cdf of the
scale transform of X, can be stated in terms of the cdf of X:

FY(y) = P(Y ≤ y) = P(aX ≤ y) = P
(

X ≤ y
a

)
= FX

(y
a

)
,

hence FY(y) = FX(x) since y = ax. The pdf of Y can also be stated in terms of the
pdf of X:

fY(y) =
dFY(y)

dy
=

dFX(x)
dy

= fX(x)
dx
dy

=
fX(x)

a
.

Accordingly, we can find the mean and variance of Y in terms of X:

E(Y) =
∫ ∞

−∞
ax fX(x)dx = aE(X),

Var(Y) = E(Y2)− [E(Y)]2 = E(a2X2)− [aE(X)]2

= a2E(X2)− a2[E(X)]2 = a2Var(X).

Hence, according to the scalar property the mean and standard deviation of estim-
ates of time are all scale transforms of the mean and standard deviation of one single
stochastic process. This also implies that the coefficient of variation (CV) of the time
estimate is constant. This property is independent of the actual distribution of X,
the CS duration. Note also that in this account subjective time is linearly related to
physical time.

Gibbon, 1977 evaluated scalar timing in a variety of operant procedures beyond
shock avoidance. The scalar property is shown to hold in all cases, and its predic-
tions shown to be more accurate than Poisson timing. This latter theory predicts
that estimates of time are made based on a Poisson process, and hence the mean and
variance of time estimates should be proportional to the time interval, in contrast to
scalar timing which predicts proportionality of mean and standard deviation.

Among the procedures evaluated in Gibbon, 1977 the most relevant in the con-
text of this thesis is fixed-interval (FI) reinforcement. Gibbon’s FI model assumes that
subjects make two time estimates, a ‘global’ estimate at the beginning of the trial and
another ‘local’ running estimate. The global is the time estimate x to reinforcement
and the local is a real-time estimate x− t of the time remaining to reinforcement. An
expectancy of reward is then formed by multiplying the inverse of the time estimate
(reinforcement rate) by a constant H that depends on US properties like excitatory
strength or value.

Formally, expectancy is represented as a function of time h(t), global and local
expectancies are respectively

h(0) =
H
x

,

h(t) =
H

x− t
.
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Timed responding is assumed to be controlled by a comparison between these two
expectancies. The comparison is suggested to take the form of a ratio r(t),

r(t) =
h(t)
h(0)

=
x

x− t
=

1
1− t/x

. (2.79)

Responding starts when this ratio crosses a threshold, say r(t) > b. Note that in
this account H, the reinforcement value, does not influence response timing. Using
data from an FI procedure where the time when subjects switch from a low rate of
responding to a high rate (called the break-point) was analysed (Schneider, 1969)
Gibbon showed that both mean and standard deviation of break-point increase lin-
early with FI.

An information processing model of timing in FI was proposed in Gibbon, Church
and Meck, 1984 which has remained unaltered to this day (see figure 2.13). A pace-
maker marks the passage of time by emitting pulses. These pulses can be gated to an
accumulator via a switch which closes at the start of a relevant interval and opens
when the interval is finished. The accumulator count is kept in working memory.
At the end of the interval the current count is transferred to a long-term reference
memory. Behaviour is guided by the action of a comparator which actively compares
the count in working memory to the one retrieved from reference memory.

FIGURE 2.13: An information processing flowchart of Scalar Expect-
ancy Theory. Counts from the pacemaker are accumulated in the
working memory. A comparator compares the current count with a
previously stored target count in reference memory. When the current
count reaches the target count it triggers a response (‘yes’). Adapted

from Allman et al., 2014.

Pacemaker. In the original version (Gibbon, Church and Meck, 1984) assumed a
scalar pacemaker, i.e. the time between pulses was considered fixed during the trial
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but the pulse rate was thought to vary from trial to trial following a normal distribu-
tion. But another possibility, one that has more neurological realism is the Poisson
pacemaker, which was analysed in Gibbon, 1991 and Gibbon, 1992. Under this hy-
pothesis the pacemaker emits pulses with rate λ, assumed to be high in comparison
to the interval being timed. It follows from the Poisson assumption that the time
between pulses x is described by an exponential distribution with pdf f (x) = λe−λx

and mean E(x) = 1/λ.
Mode switch. The switch is assumed to take some time t1 to close and t2 to open.

The mean time τ during which pulses are counted is then taken to be τ = T − T0

where T0 = T1 − T2, i.e. the mean of the latency differences (lowercase symbols
denote random variables and uppercase their expected values).

Accumulator. When the switch is closed the number of pulses N in the accumu-
lator grows according to N = λτ.

Working memory. This is taken to hold the current count in the accumulator
N = λτ.

Reference memory. At the end of the FI the count in working memory is N∗ =
λτ∗. An important assumption is that noise in reading and writing in the reference
memory is multiplicative, hence the count stored here is multiplied by a constant k∗,
making it k∗N∗.

Comparator. There is more than one option of comparator to use, but they all
involve the comparison between the current count n and the count retrieved from
reference memory at the start of the trial n∗. Gibbon, 1991 uses the following:

n∗ − n
n∗

< 1− b

where 0 < b < 1 is a threshold.
Using this model Gibbon, 1992 showed that the accumulator induces a Poisson

random walk, and so the time of the peak of responding τ in the peak procedure
should follow a gamma distribution. This by itself does not conform to the scalar
property as the mean peak time is E(τ) = n∗/λ and its variance Var(τ) = n∗/λ2,
with coefficient of variation γ,

γτ =

√
n∗/λ2

n∗/λ
=

1√
n∗

,

which decreases with increasing FIs and not constant. However, if a sample n∗ is
chosen from the reference memory at each trial, this sample will vary according to
a Poisson distribution and this needs to be taken into account. This is equivalent to
a Poisson random walk with a Poisson distributed threshold. In this case τ is given
by a compound gamma distribution, which again does not conform to the scalar
property as its mean and variance are respectively (see Gibbon, 1992) E(τ) = N∗/λ

and Var(τ) = 2N∗/λ2. But so far the assumption of multiplicative noise in reference
memory has not been used. When that is taken into account, a biased sample is
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then assumed to be retrieved from memory at each trial, bk∗n∗, which the current
count n must meet and where b is the threshold and k∗ the noise constant. Hence the
mean count in reference memory is µ∗ = bk∗λτ∗. Gibbon, 1992 assumes that s = bk∗

is a random variable summarizing the contributions of bias in the threshold and
encoding/decoding noise, with mean and variance E(s) = BK∗ and Var(s) = γ2

s ,
where γ is the coefficient of varation. Therefore, the compound gamma distribution
of τ has mean and variance

E(τ) = BK∗τ∗, (2.80)

Var(τ) = 2(BK∗/λ)τ∗ + (γsτ
∗)2, (2.81)

and CV

γτ =

√
2BK∗
λτ∗ + γ2

s

BK∗
. (2.82)

Equation 2.82 predicts a CV that is not completely independent of FI time, but
that can behave almost as a straight line in the FI range usually analysed.

SET strengths are its information processing architecture, where precise predic-
tions can be made and tested for each separate module. Criticisms have been made
on the assumptions required to make the Poisson pacemaker conform to the scalar
property (see for example Staddon and Higa, 1999). But as shown above the Pois-
son hypothesis is not strictly necessary (although it does have neurophysiological
realism) and SET’s information processing architecture provides a framework for
further model development.

2.2.2 Behavioral Theory of Timing

Another model that relies on a counter/accumulator and pacemaker is the Behavi-
oral Theory of Timing (BeT, Killeen and Fetterman, 1988). As the name implies, BeT
is mainly a behavioristic theory, and as such does not make assumptions about in-
ternal states or processing units (with the exception of the internal pacemaker). It
is based on the observation that during timing experiments animals appear to en-
gage on behaviors that transition from one to the other in a serial fashion (e.g. eat
then drink then run around the cage, etc). As this sequence is repeated from trial to
trial, reinforcement will occur more often during one particular behavior and there-
fore strengthen its associative link with the response (see figure 2.14). The transition
from one behavior to another is probabilistic and can be modeled by a Poisson pro-
cess

p(N(t) = n) =
(t/τ)ne−t/τ

n!
,

where p(N(t) = n) is the probability of being in the n-th state at time t with τ the
average time between states. Note that the Poisson rate parameter is λ = 1/τ.
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FIGURE 2.14: The basic structure of BeT and LeT. The presence of
an external stimulus initiates activity over a series of internal states
(top). Each internal state is connected to a response unit (bottom) via
modifiable associative links. Adapted from Machado, Malheiro and

Erlhagen, 2009.

One important difference between SET and BeT is that, while in SET the pace-
maker rate remains constant for all time intervals, in BeT the rate is variable, chan-
ging in a manner that is inversely proportional to the time interval. Or, put in an-
other way, the pacemaker rate is proportional to the reinforcement rate. This variable
rate is what allows BeT to rely on a Poisson distribution whilst avoiding its incon-
venient inability to reproduce the scalar property. To see why, consider again the
peak procedure. BeT supposes that the break-point, the time subjects switch from
a low to a high rate of responding, is reached after some number of pulses from
the pacemaker. This means that the break-point is distributed as a gamma density
with mean µ = n/λ and variance σ2 = n/λ2, or using the fact that λ = 1/τ we have
µ = nτ and σ2 = nτ2. Because of BeT’s assumption of proportionality between Pois-
son rate and reinforcement rate, say τ = kT where T is the time of reinforcement,
the model produces a constant CV (1/

√
n).

Although BeT’s main idea of a Poisson pacemaker with rate proportional to re-
inforcement rate continues to be cited as plausible, the model has not been studied
much further. However, it served as a building block for another influential timing
model: Learning to Time.

2.2.3 Learning to Time

Machado, 1997 proposed a formalization for BeT that is called Learning to Time
(LeT). It goes beyond BeT in proposing associative rules to connect the behavioral
states to the stimulus and responses. In its latest formulation (Machado, Malheiro
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and Erlhagen, 2009), LeT departs from BeT by adopting a Gaussian instead of a
Poison pacemaker. Its main assumptions are the following:

1. Behavioral states are activated serially at a rate λ per second. The rate λ is a
normal random variable, sampled at the beginning of every trial, with mean µ

and standard deviation σ.

2. Each state n is connected to the response by an associative link. At the end of
a trial, the strength W of these links are updated as follows:

(a) For the active state at reinforcement, n∗, the update rule is

∆W(n∗) = β(1−W(n∗)), (2.83)

where β is a constant.

(b) For inactive states, n < n∗, the update rule is

∆W(n) = − α

n∗
W(n), (2.84)

where α is a constant.

(c) For states that did not become active during the trial, n > n∗, the rule is

∆W(n) = 0. (2.85)

3. Responses are emitted at a constant rate if the current active state has associat-
ive strength W(n) greater than threshold θ.

LeT is able to account for timescale invariance and other properties of timing.
Together with BeT, these two models are of particular importance since, through
their modifiable associative links, they make a connection with learning theories
such as RW.

2.2.4 Timing Drift-Diffusion Model

The Timing Drift Diffusion Model (TDDM, Rivest and Bengio, 2011; Simen et al.,
2011) builds on the strengths of BeT and LeT, by having a variable pacemaker rate
that is inversely proportional to time interval, and the Drift-Diffusion Model. The
latter was originally devised as a theory of memory retrieval (Ratcliff, 1978) and has
since then risen to become the standard model in decision making (Voss, Nagler and
Lerche, 2013). TDDM makes the following assumptions:

1. A pacemaker Φ in the shape of a drift-diffusion process, incremented at each
time step by

∆Φ = A · ∆t + m ·
√

A · ∆t · N (0, 1), (2.86)

where A is the pacemaker rate and m is a constant.
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2. Upon reinforcement, the rate A is adjusted to make A = 1/T where T is the
time of reinforcement. The adaptation rules are:

(a) If Φ < 1 at the time of reinforcement then the update rule for A is

∆A = A · 1−Φ
Φ

. (2.87)

(b) If Φ reaches 1 before the time of reinforcement, then ∆A (but not A itself)
is updated at every time-step from Φ = 1 to the time of reinforcement
according to

∆A = ∆A− (A + ∆A)2∆t. (2.88)

(c) After reinforcement, A is updated by taking a percentage of the total
change ∆A

Anew = Aold + α∆A. (2.89)

TDDM is able to derive timescale invariance directly from a drift-diffusion pro-
cess crossing a threshold. Just as LeT, it is capable of learning reinforcement rates.
TDDM’s main strenghts lie in its neurological plausibility, firm recognition in other
areas of psychological research (due to its DDM architecture) and the relative simpli-
city with which it can explain timescale invariance. Although its link with learning
theory is not as immediate as in LeT, TDDM may aid learning models by suggesting
a new type of stimulus representation based on its drift-diffusion process.

2.2.5 Multiple Time Scales

The Multiple Time-Scales (MTS) model (Staddon and Higa, 1999) is different than
the previous models in that it is not based on the idea of a pacemaker. Instead, it
uses a decaying memory trace as its "clock". This memory trace starts at reinforce-
ment and decays continuously until the next reinforcement, when it receives another
bump in activation. As reinforcements continue to be delivered at fixed intervals, the
memory trace stabilizes into a periodic curve. Thus, time can be "read" directly from
this decaying trace.

Formally, MTS can be described as a cascade of integrators Vi,

Vi(t) = aiVi(t− 1) + bXi(t) (2.90)

where 0 < ai < 1 and b > 0 are constants that determine the rate of decay and
stimulus weight respectively. The Vi integrators are connected serially in such a way
that the output of one is the input of the next in the cascade. At reward, the input to
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the first integrator V1 is X1(t) = 1 and the input for the ith integrator is

Xi(t) =

Xi−1(t)−Vi−1(t) if Xi(t) > 0

0 otherwise.
(2.91)

The memory trace ν(t) is formed by summing the activity of all integrators at each
time-step:

ν(t) = ∑
i=1

Vi(t). (2.92)

In order to generate timed behaviour, a response rule is added which effectively
triggers responding whenever the trace ν falls below threshold θ defined on every
trial n by:

θ(n) = ν(n− 1) + ξX + ηε(n) (2.93)

where ν(n − 1) is the value of the trace at the time of previous reinforcement, X
is reinforcement magnitude, ε(n) is uniformly distributed noise, and ξ and η are
constants.

MTS is particularly suited to explain timing behaviour observed in cyclic sched-
ules of reinforcement (Luzardo, Ludvig and Rivest, 2013). It explains timescale in-
variance due to its periodic memory trace and dynamic noisy threshold. With re-
gards to learning theory, and as is the case with TDDM, its value may lie in the
stimulus representation it suggests: a decaying memory trace made up of the sum
of activation of individual integrating units.

2.2.6 Spectral Timing Model

The Spectral Timing Model (STM, Grossberg and Schmajuk, 1989) is a neural net-
work type of model. It postulates a neural circuit similar to the one in Figure 2.15.
When a CS is presented, it activates neurons x1, x2, ..., xn which in turn release neuro-
transmitters y1, y2, ..., yn. Learning occurs in the zi synapses due to the co-occurrence
of the US, which then activates a CR.

Formally, the activation of xi units is given by

ẋi = αi [−Axi + (1− Bxi)CS] (2.94)

where CS is a step function and αi, A and B are constants. Neurotransmitter activity
is given by

ẏi = C(1− yi)− D f (xi)yi (2.95)

with C, D being constants and f (xi) a sigmoid function of activation xi. Note that the
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FIGURE 2.15: An example of the neural circuit in Spectral Timing
Model. Each separate CS activates a neuronal unit xi. Each of these
units release neurotransmitter yi which will act on an intermedi-
ary neuronal layer. This intermediary layer is connected to the out-
put node via modifiable synapses zi. Adapted from Grossberg and

Schmajuk, 1989.

term f (xi)yi in equation (2.95) is the same as equation (2.47). It produces gaussian-
looking traces, with higher peaks and smaller widths near CS onset. These timing
traces are very similar in shape to the ones postulated by the Microstimuli model
(see right panel in figure 2.5).

The equation governing learning is

żi = E f (xi)yi [−zi + US] (2.96)

where US is a step function and E a constant. Responses are generated by the sum
of the product of all activations in the network:

R = ∑
i

f (xi)yizi − F (2.97)

where F is a threshold and R is corrected to 0 if R < 0. Timing arises from the
product of the stimulus activation f (xi) with the neurotransmitter activity yi, which
generates a net stimulus signal gi(t) = f (xi(t))yi(t). This net activation resembles
the Microstimuli activation on the right panel of figure 2.5.

STM generates response curves that fit response frequency curves in FI experi-
ments, showing that it can reproduce timescale invariance. It can also handle mul-
tiple timing peaks, end effects related to US magnitude and CS intensity. Grossberg
and Schmajuk, 1989 also integrate STM into a larger neural network called Gated
Dipole Opponent Process (which is a model for associative learning) demonstrating
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that STM may be linked with learning theory.

2.3 Existing Hybrid Models

A few attempts have been made at combining learning and timing elements into one
single hybrid model. However, it can be difficult to establish the criteria for classify-
ing a model as hybrid. How many conditioning and timing phenomena would this
model need to explain? With this caveat in mind, two models will be covered here
that have been regarded in the literature as hybrids.

2.3.1 Packet Theory

Packet theory (Kirkpatrick, 2002; Kirkpatrick and Church, 2003) is built on two dis-
tinct mechanisms, one dedicated to encode time in memory in a way that is similar
to SET, and the other dedicated to controlling the shape of behaviour. The timing
mechanism is subdivided into three modules:

Perception. This module marks the passage of time by defining the expected time
interval et as the duration of the previous interval d minus the current interval
t:

et = d− t. (2.98)

Memory. Each new expectation is combined with the previous by means of a weighted
sum rule:

∆Et = α(et − Et), (2.99)

and Et is stored in memory.

Decision. Behaviour is controlled by a decision module which defines the probab-
ility of occurrence of a response packet by

pt = nE∗t , (2.100)

where E∗t is a normalised transform expectation and n is a constant.

The mechanism for controlling packet emission is based on empirically gathered
statistics on response bouts, namely the distribution of responses per bout and the
distribution of the interval between each response. Real-time behaviour in the model
is produced by these statistics together with the probability of packet occurrence pt.

Kirkpatrick, 2002 tested the model on three different schedules of reinforcement
and on timing effects. Packet theory provided good fits to real-time behaviour in
fixed, random and tandem (fixed plus random) intervals. The results were also good
with timing effects, with the model fitting data on ISI, ITI and I/T effects.
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Packet theory can accomplish much with relatively little. It uses mainly three free
parameters. However, this comes with considerable limitations. First, responding
on the model relies on empirical distributions obtained from data. This may be a
problem if the model is applied to conditioning protocols that do not produce the
same distributions of responses. A second limitation is that there is no mechanism
to stop responding once the expected interval is finished. This presents a significant
problem when explaining behaviour in the peak procedure, an important timing
task. But the most severe limitation is the lack of mechanisms to deal with basic
learning phenomena such as acquisition, extinction and blocking. Without these
Packet theory is primarily a timing model, albeit with a wider application.

2.3.2 Modular Theory

In order to overcome its initial learning limitations, Packet theory was developed
into Modular Theory (Guilhardi, Yi and Church, 2007). In this new, more complex, for-
mulation, a new mechanism was included to control the strength of memories based
on reinforcement, increasing its strength if reinforcement is present and decreasing
it if not. With this addition, the model can handle acquisition and extinction.

Figure 2.16 is a flow diagram version of Modular theory. The three main modules
are the same as Packet theory: perception, memory and decision. Here however
memory is subdivided in two:

Pattern memory. This controls the expectation of time to reinforcement and is the
same exponential moving average described by equation (2.99). This update is
applied only if a reinforcement is delivered.

Strength Memory. This module controls the strength of memory w, and is updated
by the following rule:

∆wt =

βe(0− wt) if US is absent,

βr(1− wt) if US is present,
(2.101)

with β a constant that can determine different rates of update for acquisition
(βr) and extinction (βe). Equation (3.19) is applied in real-time.

Guilhardi, Yi and Church, 2007 obtained good fits with acquisition, extinction
and reacquisition in fixed intervals, demonstrating the potential of Modular theory
as a learning model. Closed-form model equations were also derived, which can
facilitate theoretical analysis.

Modular theory successfully overcame the learning limitations of its predecessor,
however, it still does not incorporate one of the main achievements of Rescorla-
Wagner theory, namely that temporal contiguity between the CS and US is not enough
for learning to occur. Blocking shows that memory strength does not simply increase
or decrease with reinforcement; it only does so if there is a discrepancy in the expect-
ation to reinforcement. But given its modular nature, the present theory may easily
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FIGURE 2.16: Flow diagram of Modular Theory. Reproduced from
Guilhardi, Yi and Church, 2007.

be reformulated to accommodate a RW-type rule whilst still preserving its percep-
tion, pattern memory and decision modules.

In this section I have provided a review of the main timing models, including
some hybrid models that can also reproduce a few conditioning phenomena. It may
be seen from the exposition above that timing models are mainly concerned with
the scalar property or timescale invariance. Very few possess any associative mech-
anism. Even the hybrid models, only two, are very limited in terms of their asso-
ciative learning mechanisms. Both Packet Theory and Modular Theory cannot, for
example, account for cue-competition phenomena, because they lack a learning rule
like RW, which can deal with compound stimuli. A singe computational model that
could explain both timescale invariance and cue-competition would thus be a step
forward. It is important to note that some conditioning models, notably Schmajuk’s
(2.1.5) and TD-MS (2.1.5) intend to do just that. However, they only manage to ap-
proximate timescale invariance, and the full extent of their timing abilities has not
been sufficiently explored. In the next section, I will introduce a new model that can
achieve perfect timescale invariance and can explain cue-competition phenomena.
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Chapter 3

Model

3.1 The Rescorla-Wagner Drift-Diffusion Model

I follow most classical conditioning theories in conceptualizing the conditioning pro-
cess as the formation of an association between the internal representations of CS
and US. Arguably, one of the most influential rules describing the evolution of this
association through training is the Rescorla-Wagner (Rescorla and Wagner, 1972)
rule. As mentioned previously, other models exist which have a similar scope to RW,
both trial based (Mackintosh, 1975a; Pearce and Hall, 1980) and real-time (Buhusi
and Schmajuk, 1999; McLaren and Mackintosh, 2000; McLaren and Mackintosh,
2002). However, my goal was to take advantage of TDDM’s time representation,
so I sought a theoretical associative framework that could incorporate such a repres-
entation. Since trial-based conditioning theories lack any time representation, they
are a natural place to start. Out of those theories the RW is perhaps the simplest
whilst also retaining the greatest possible explanatory power. Its basic formalism
consists of the following rule for updating associative strength:

∆Vi(n) = αβ

(
λ−

l

∑
j=1

Vj(n)xj(n)

)
xi(n) (3.1)

where Vi(n) denotes associative strength for CSi at trial n, λ the asymptote of learn-
ing which is set by the US representation, xi(n) which marks the presence (xi = 1)
or absence (xi = 0) of the i-th CS representation at trial n, 0 < α < 1 a learning rate
set by the CS and 0 < β < 1 a learning rate set by the US. The summation term in
the equation (3.1) sums over all CSs present in the trial. The top panel of figure 3.1
shows a diagram of a basic perceptron for classical conditioning which serves as the
architectural framework for both RW and RWDDM. The RW rule is used to update
the links V1, ..., Vl that connect the CS input nodes CS1,...,CSl . The summation term
in the RW rule is represented in the diagram as a summation unit or junction Σ, that
sums the inputs it receives from the CSs j = 1, ..., l present in the trial. This sum
allows RW to combine (additively) the reinforcement history of each individual CS
present in a compound trial. In the neural network literature, equation (3.1) is also
referred to as the Widrow-Hoff rule (Widrow and Hoff, 1960) and the Least-Means-
Square (LMS; Sutton, 1992). The relationship to the LMS rule is easier to see if we let
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y(n) = ∑l
j=1 Vj(n)xj(n) be the output of a learning unit that aims to predict a target

λ given inputs xi by adapting the weights Vi. In classical conditioning, λ represents
the maximum learning driven by a given outcome (the US), xi is the CS and Vi the
associative strength. If we let δ(n) = λ− y(n) be the error between output and US,
equation (3.1) can be obtained with the method of gradient descent by minimizing
the squared error δ2(n) with respect to the weight Vi.

FIGURE 3.1: Connectionist diagram of RWDDM. Each CS unit is con-
nected to a summing junction (labelled Σ) via a modifiable link V.
The output of the summing junction is the CR. The US is represented
as a teaching signal with a fixed weight H. Each CS unit has its own
timer Ψ and representation x. The bottom panel shows a zoomed-in
view of the timer Ψl and CS representation xl associated with CSl .

The timer slope Al is tuned to a 5-second CS duration.

In spite of the relative success in explaining a wide range of conditioning phe-
nomena (for a list of successes, and failures, see Miller, Barnet and Grahame, 1995),
the Rescorla-Wagner rule lacks a mechanism to account for the microstructure of
real-time responding during conditioning procedures. In terms of the order of CS-
US presentation conditioning procedures may be either forward (CS followed by
US) or backward (US followed by CS). Two common types of forward conditioning
are delay and trace. In delay conditioning the US always occurs a fixed time after
CS onset. In trace conditioning the US occurs at a fixed duration after CS offset.
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After sufficient training with delay or trace conditioning, responding begins some
time after CS onset, increases rapidly in frequency until it reaches a maximum level
where it stays until US onset (Gormezano, Kehoe and Marshall, 1983). The RW rule
alone does not account for CR level as a function of time. This role is usually fulfilled
by the choice of CS representation. I base my choice on a timing model called Timing
Drift-Diffusion Model (TDDM, Simen et al., 2011; Rivest and Bengio, 2011; Luzardo,
Ludvig and Rivest, 2013; Balcı and Simen, 2016). I chose the TDDM because it pos-
sesses a number of interesting features. It is part of a family of pacemaker based
models like SET and LeT (Simen et al., 2013) which are arguably two of the most
successful timing theories to date. The TDDM is a modified version of the drift-
diffusion models that have been extremely successful at modelling reaction time in
decision making tasks (Ratcliff, 1978; Voss, Nagler and Lerche, 2013). Evidence of
climbing neural activity related to timing that resembles the TDDM has been ex-
tensively reported (Komura et al., 2001; Leon and Shadlen, 2003; Brody et al., 2003;
Wittmann, 2013; Jazayeri and Shadlen, 2015). The TDDM consists of a drift-diffusion
process with an adaptive drift or rate. The drift-diffusion process is defined by a con-
tinuous random walk called Wiener diffusion process. The two main components
of Wiener diffusion are the drift and the normally distributed noise. The Wiener
diffusion process may be visualized by imagining a two-dimensional grid with time
in the horizontal axis and displacement on the vertical axis. If we imagine a purely
linear and non-random walk that starts at the origin and moves up at a constant rate
then the resulting walk would be a straight line and the drift would be equal to the
slope of the line. With normally distributed noise, the walk becomes a random walk
and it looks like a jagged curve, since at each time step there is now only a probabil-
ity that the displacement will be up or down. For the purposes of timing, the slope is
always positive and the random walk can be interpreted as a noisy accumulator (or
timer) Ψ(t), which starts at the beginning of a salient stimulus and stops (and resets)
at the end. In a conditioning experiment the CS is usually the most salient stimulus
in the uneventful context of the conditioning chamber, so it is well placed to serve as
a time marker. When timing starts, accumulator increments are performed at each
time-step according to

∆Ψi(t) = Ai(n) · ∆t + m ·
√

Ai(n) · ∆t · N (0, 1), (3.2)

where Ai(n) is the rate (slope) of accumulation for CSi in trial n, m is a noise factor,
∆t is the time-step size and N (0, 1) denotes a sampling from the standard nor-
mal distribution. An interval is timed by the rise in the accumulator to a certain
fixed threshold, say Ψi(t) = θ. The TDDM adjusts to new intervals by keeping the
threshold fixed but adapting the rate of accumulation Ai(n). The bottom left panel
of figure 3.1 shows a typical trajectory (or realization) of a CS’s TDDM timer after
one 5-second trial.
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In its original formulation (Rivest and Bengio, 2011; Simen et al., 2011) the ac-
cumulation process was not allowed to continue beyond the threshold value θ, a
constraint that gave rise to two distinct rules for rate adaptation, one for when the
US arrived earlier than expected and another for when it arrived later. The con-
straint fixing a maximum level of accumulation was driven by the neurophysiolo-
gical assumption that a linear neural accumulator is not likely to continue to per-
form effectively beyond a certain level. The neural implementation so far proposed
for TDDM’s linear accumulator (Simen et al., 2011) is based on a feedback control
mechanism that is tuned to balance excitation and inhibition in a neuron popula-
tion. Tuning of this kind requires great computational precision, which may not be
easily kept for very long in a biological system. Neurophysiology notwithstanding,
we will drop that requirement here for simplicity and use instead only one update
rule. We demonstrate how this single update rule can be derived by the method of
gradient descent. The model learns a new interval by adapting its slope Ai so that
the accumulator Ψi reaches the threshold value θ at the target time t∗, which may be
the time of reinforcement for example. The target slope will therefore be θ/t∗. The
error δ(n) between the target slope and the current slope is δ(n) = θ/t∗ − Ai(n). By
minimizing the squared error δ2(n) using gradient descent we can derive the slope
update rule. The squared error as a function of Ai forms a curve. Moving in the
direction opposite the slope of this curve and taking a step of size αt/2 we form the
equation:

Ai(n + 1) = Ai(n)−
αt

2
dδ2(n)
dAi(n)

. (3.3)

Solving the derivative yields

Ai(n + 1) = Ai(n)−
αt

2
2δ(n)(−1)

= Ai(n) + αt (θ/t∗ − Ai(n)) . (3.4)

Since the organism only has access to the psychological time given by its internal
timing mechanism, and not the physical time t, we assume that an internal estimate
for t is formed by dividing the current pacemaker count by the current slope, t =

Ψi(t)/Ai(n). Substituting this estimate into equation (3.4) we get:

Ai(n + 1) = Ai(n) + αt

(
θAi(n)
Ψi(t∗)

− Ai(n)
)

= Ai(n) + αt Ai(n)
(

θ

Ψi(t∗)
− 1
)

= Ai(n) + αt Ai(n)
(θ −Ψi(t∗))

Ψi(t∗)
. (3.5)
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Hence, the update rule for slope Ai to be applied at target time t∗ (the end of the trial
or of the interval being timed) is

∆Ai(n) = αt Ai(n)
(θ −Ψi(t∗))

Ψi(t∗)
. (3.6)

Equation (3.6) is the slope update rule we use. Note that n above is indexing the
number of occurrences of a specific interval that the timer is timing. These intervals
may be the duration between CS onset and US onset (the usual ‘trial’ in delay con-
ditioning for example), but they may be any other salient time interval such as CS
or intertrial duration. Figure 3.2 shows timer slope adaptation during three timing
scenarios: timing a novel stimulus (row 1), timing a long-short change in stimulus
duration (row 3), and timing a short-long change in stimulus duration (row 5).

In the top row of figure 3.2 and throughout the paper we assume that the initial
value of slope A for a novel stimulus is so low as to overestimate the stimulus dura-
tion. This overestimation will only last for a few trials, the number of which can be
made arbitrarily small by choosing a high adaptation rate αt. Alternatively, it would
be possible to use a very high initial value for A so as to underestimate the stimulus
duration. However this alternative does not seem neurophysiologically plausible as
the brain would need to keep a pool of neurons firing very rapidly as its ‘standby’
timer.

In TDDM, timescale invariance arises from the nature of the noise in the accumu-
lator. After repeated training, say in delay conditioning with a CS of fixed duration,
equation (3.6) will converge to a value of Ai which will make the accumulator reach
the threshold value θ at the time of stimulus offset, but only on average. In some tri-
als the accumulator will reach the threshold sooner, in which case the organism will
underestimate the stimulus duration. In other trials the accumulator will reach the
threshold later, causing overestimation. The variability of this time estimate relative
to the mean is given by the coefficient of variation (CV). It has been well established
experimentally that the CV of time estimates in humans and other animals is ap-
proximately constant over a wide timescale (Gibbon, 1977; Gallistel and Gibbon,
2000; Allman et al., 2014). The CV of TDDM’s time estimate is (see equation 3 in
Luzardo et al., 2017)

CV =
m√

θ
, (3.7)

which depends only on the choice of threshold θ and noise factor m. As these are
constant, the CV of TDDM’s time estimate is also constant. Note that because the
timer adapts its slope gradually, if the duration of a CS is changed, CV measure-
ments will only match the one given by equation (3.7) after the slope has finished
adapting. The number of trials to adaptation will vary depending on the adaptation
rate αt.



58 Chapter 3. Model

FIGURE 3.2: RWDDM timer and CS representation during three 12-
trial timing scenarios. Top two rows: timing a novel 6 second stim-
ulus. Timer starts with a low baseline slope (A = 0.001) on trial 1
and gradually adapts over training to reach approximately the re-
quired slope. Middle two rows: stimulus duration change from 6
to 3 seconds. Bottom two rows: stimulus duration change from 6 to

12 seconds. Parameters: αt = 0.215, θ = 1, σ = 0.25, m = 0.15.

We substitute the presence representation used in the original RW model by a
Gaussian radial basis function. Its input is provided by the TDDM accumulator:

xi(Ψi) = exp
(
− (Ψi(t)− θ)2

2σ2

)
. (3.8)
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This representation may be interpreted as the receptive field of time-sensitive neur-
ons that read the signal coming from the accumulator neurons. Their receptive fields
are tuned to the accumulator threshold value θ. The bottom right panel in figure 3.1
shows the representation for CSl generated from the input provided by the timer on
the left. Note how xl reaches its maximum value at the same time that Ψl crosses the
threshold at 1. Figure 3.2 shows x(Ψ) adapting in the three different timing scen-
arios explained previously. As can be seen, xi is a dynamic representation of CSi that
adapts to the temporal information conveyed by the stimulus. Other representation
shapes could be used, like a sigmoid for example, but a Gaussian is mathematically
simple and has been used before by at least one other timing model (MS-TD, Ludvig,
Sutton and Kehoe, 2008).

We follow Gibbon, 1977 and Gibbon and Balsam, 1981 in assuming that time sets
the asymptote of learning, λ, in equation (3.1). They were led to this hypothesis
by investigating CR timing in fixed interval conditioning schedules, a type of delay
conditioning. After enough training in this procedure, subjects begin responding
some time after CS onset, with a slow rate at first which then increases rapidly until
it reaches asymptotic level some time before reinforcement delivery. Gibbon, 1977
proposed that subjects make an estimate of time to reinforcement which is used to
generate an expectancy of reinforcement. The expectancy for a particular CSi with
duration t∗, hi, was hypothesised to be hi = H/t∗, where H was a motivational
parameter which was assumed to depend on the reinforcing properties of the US.
The reinforcing value of the US is thus spread evenly over the CS length. It was
assumed that this expectancy would be updated as time elapsed during the CS, such
that hi(t) = H/(t∗ − t). Hence, expectancy would increase hyperbolically until the
estimated time to reinforcement t = t∗. Responding would reach asymptotic level
when the expectancy crossed a threshold value hi(t) = b (see section 2.2.1 of this
thesis for a fuller account).

Here we will not use Gibbon’s concept of expectancy update. A similar role is
fulfilled by the TDDM accumulator in our formalization. But we hold on to his ar-
gument that the reinforcing value of the US is spread over the CS length. Within the
Rescorla-Wagner modelling framework, Gibbon’s expectancy value may be inter-
preted as setting the asymptotic level of learning in equation (3.1), namely λ = H/t∗.
Under this interpretation, λ may be said to implement hyperbolic delay discounting
of rewards. Similarly to the argument used above in the derivation of the slope
update rule, we use the psychological time estimate from TDDM in place of the
physical time t∗, such that t∗ = Ψi(t∗)/Ai(n). The value we use is then λ = HAi(n)

Ψi(t∗)
.

Another possibility would be simply λ = HAi(n). Both alternatives yield the same
asymptotic value, but HAi(n) converges gradually (with the rate set by αt) whilst
HAi(n)
Ψi(t∗)

immediately. Our version of equation (3.1) for updating associative strength
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then becomes:

∆Vi(n) = αV

(
HAi(n)
Ψi(t∗)

−
l

∑
j=1

Vj(n)xj(Ψj)

)
xi(Ψi). (3.9)

In the trial-based RW model, equation (3.1) is applied at the end of a ‘trial’, which
is usually taken to be the event starting at CS onset and ending at US delivery. We
follow the same practice here and apply equation (3.9) at the end of a trial, i.e. at US
delivery. Note that because xi(Ψi) is a dynamic CS representation, its activation (or
strength) level at the end of the trial will vary from trial to trial, as can be seen in
figure 3.2. Equation (3.9) is applied using the activation level of xi(Ψi) current at the
end of the trial.

We assume that real-time responses to a CSi are emitted according to the product
of its associative strength Vi(n) and representation xi(Ψi), that is, it is the output of
the summing junction in figure 3.1:

CRi(t) = Vi(n)xi(Ψi). (3.10)

Equations (3.2), (3.6), (3.8), (3.9), (3.10) fully define the basic model. Its six free
parameters are: 0 < m < 1 (accumulator noise), 0 < αt < 1 (learning rate for
accumulator slope), 0 < θ < 1 (accumulator threshold), 0 < σ (gaussian width),
0 < αV < 1 (learning rate for associative strength), H > 1 (US reinforcing value).

3.2 Relationship with Other Models

Among the theories capable of providing an account of both timing and condition-
ing, arguably four stand out for their scope or influence. They are CSC-TD, MS-TD,
LeT and MoT.

TD has been developed primarily as a learning model, without the explicit in-
tention of addressing timing. It may be visualized as a real-time rendition of the RW
rule. Its basic learning algorithm is given by1:

Vt(xt) = ∑
i

wt(i)xt(i), (3.11)

δt = λt − (Vt(xt−1)− γVt(xt)), (3.12)

wt+1 = wt + αδtet (3.13)

where Vt is the US prediction at time t, formed by a linear combination of the weights
w(i) and the CS representation values x(i). This update algorithm is performed at
each time step, and not only at the end of a trial like RW and RWDDM. Another
important difference is that equation (3.12) computes a difference between the cur-
rent US value and the temporal difference between predictions. Hence, δt > 0 if

1See also section 2.1.5 for a description of CSC and MS-TD.
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the US is higher than this temporal difference in prediction, and δt < 0 if the US is
lower. The constant 0 < γ < 1 is termed a discount factor. Equation (3.13) updates
the weights for the next time step. The vector et stores eligibility traces, which are
functions describing the activation and decay of representations xt. The three most
common eligibility traces used are: accumulating traces, bounded accumulating and
replacing traces. These three types accumulate activation in the presence of the CS
and discharge slowly in its absence, the first accumulates with no upper bound, the
second only until the upper bound and the third is always at the upper bound whilst
the CS is present (Sutton and Barto, 1998, pp. 162-192).

The richness of TD’s timing account relies on the choice of CS representation
x. The Complete Serial Compound representation (CSC, Moore, Choi and Brunzell,
1998) postulates one CS element x(i) per time unit of CS duration. Each element is
only switched on at its activation time unit, and then decays afterwards following
its choice of eligibility trace e(i) (usually an exponential decay function). This com-
ponential representation, which increases in size linearly with CS duration, should
be contrasted with RWDDM’s molar representation (equation (3.8)) which requires
only one element. CSC may be called a time-static representation, whilst RWDDM is
a time-adaptive representation, with a rule to change its structure based on a change
in time (equations (3.6) and (3.8)). CSC-TD also lacks any mechanism to explain
timescale invariance of the response curve, which is present in RWDDM. A modific-
ation of CSC has recently been developed, the Simultaneous and Serial Configural-
Cue Compound (SSCC, Mondragón et al., 2014). SSCC-TD formalizes the idea that
when multiple stimuli are presented together in time, a configural cue–a novel stim-
ulus that is unique to the current set of present stimuli–is formed. SSCC follows on
the CSC representation, but, unlike any other TD model, it allows for the represent-
ation of compounds and configurations of stimuli. Because SSCC-TD is a real-time
model, it also allows for the simulation of CR timing during compounds and con-
figurations. However, its approach to timing is still the same as CSC, i.e. it breaks
down the stimuli into a series of elemental units which are activated in series. There-
fore, with respect to timing only we will consider SSCC to belong to the family of
CSC representations.

The Microstimuli representation (Ludvig, Sutton and Kehoe, 2008; Ludvig, Sut-
ton and Kehoe, 2012) introduced a more realistic description of time. Unlike CSC, it
uses a fixed number of elements x(i) per stimulus. The ith microstimulus is given
by:

xt(i) =
1√
2π

exp
(
− (yt − i/m)2

2σ2

)
· yt (3.14)

where m is the total number of microstimuli, y is an exponentially decaying time
trace set at 1 at CS onset. It will be noted that a microstimulus is a Gaussian curve
modulated by the decaying trace yt. The set of microstimuli generated by the CS
will then give rise to partially overlapping Gaussians, with decreasing heights and
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increasing widths across time. The fact that only a fixed number of microstimuli are
required per CS is an improvement to the potentially large numbers of elements in
CSC. The MS representation tries to capture the idea that as time elapses, the stim-
ulus leaves a more diffuse and faint impression. However, even though it is more
realistic than CSC, it still lacks a mechanism to produce exact timescale invariance.

Learning to Time2 is primarily a theory of interval timing which can also account
for some aspects of conditioning. Here we will deal with its most recent version in
Machado, Malheiro and Erlhagen, 2009, which differs somewhat from the earlier
version in Machado, 1997. Its CS representation resembles CSC in postulating a
long series of elements (or states) that span the whole stimulus duration. Unlike
CSC, it transitions from state to state at a rate that varies from trial to trial, and that
is normally distributed. Hence, time during a trial is represented as a noiseless linear
increase from states n = 1, 2, 3, ... (one per time-step) at a fixed rate. This linear time
representation resembles the linear accumulator in RWDDM, except that the latter
has noise built into the linear accumulator, whilst LeT assumes noise only at the
intertrial level. Each state n is associated with the US via an associative link. At the
end of a trial, the strength w of these links are updated as follows:

• For the active state at reinforcement, n∗, the update rule is

∆w(n∗) = β(1− w(n∗)), (3.15)

where β is a constant.

• For inactive states, n < n∗, the update rule is

∆w(n) = − α

n∗
w(n), (3.16)

where α is a constant.

• For states that did not become active during the trial, n > n∗, the rule is

∆w(n) = 0. (3.17)

Note that unlike RWDDM’s associative update rule, equations (3.15) to (3.17) do not
include a summation term. This places a severe limitation on the ability of LeT to
deal with compound conditioned stimuli. LeT’s strength lies on its being able to
explain timescale invariance of the response curve. Machado, Malheiro and Erlha-
gen, 2009 showed that it is possible to derive timescale invariance using only the
assumption of intertrial normality of state transition rate. Finally, LeT assumes that
responses are emitted at a constant rate if the current active state has associative
strength w(n) greater than a threshold θ. The fact that responding depends on the
associative strength of the current state, and that this strength only changes with US

2See also section 2.2.3 for a description of LeT.
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associations, prevents LeT from accounting for changes in timing that are not related
to US occurrence. For example, there is evidence that animals learn the timing of a
preexposed CS (Bonardi, Brilot and Jennings, 2016) and are sensitive to changes in
timing during extinction (Guilhardi and Church, 2006), two situations that do not
involve the occurrence of a US.

Modular Theory3 is another primarily timing theory that can also deal with some
aspects of conditioning. It treats the onset of a stimulus as signalling a time expect-
ation to reinforcement. Its time representation T is, like LeT, an accumulator that
increases linearly with time t, T = ct, where c is a constant. When reinforcement is
delivered the current reading from the accumulator is stored in what is called pattern
memory. Pattern memory is updated at each trial n according to

m(n) = m(n− 1) + α(T∗ −m(n− 1)) (3.18)

where α is a learning rate and T∗ is reinforcement time. Equation (3.18) may be
contrasted to (3.6) from RWDDM. The main difference is that pattern memory in
MoT stores a moving exponential average of intervals, whilst the slope in RWDDM
stores a moving exponential harmonic average of intervals. However, both models
are similar in that they can potentially time the occurrence of any event, not only
rewards. MoT’s pattern memory and RWDDM’s slope can be made, for example, to
adapt to mark the end of stimuli that are not necessarily paired with a reward.

A stochastic threshold b is used to mark response initiation. The threshold dis-
tribution is set so as to yield timescale invariance of the response curve. Its mean,
B, is a fixed proportion of the value in pattern memory, B = km(n), where k is the
proportionality constant, and its standard deviation is γB, where γ is the coefficient
of variation of B. Hence, the coefficient of variation of the threshold, i.e. of response
initiation, is constant for all intervals, which is the timescale invariance of the re-
sponse curve. RWDDM derives timescale invariance of response curve from noise
in the accumulator (equation (3.2), not from the threshold.

This account of time from MoT is an instantiation of Scalar Expectancy Theory,
arguably one of the most successful timing models to date. Being a purely timing
theory, SET does not address associative learning directly, so it does not have a rule
for changes in association between stimuli. MoT bridges this gap by adding a rule
to update what is termed strength memory, w(n). Strength memory holds the asso-
ciative strength between stimulus and reinforcement. The rule consists of a linear
operator:

∆w(n) =

βe(0− w(n− 1)) if US is absent,

βr(1− w(n− 1)) if US is present,
(3.19)

with β a constant that can determine different rates of update for acquisition (βr)

3See also section 2.3.2 for a description of MoT.
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and extinction (βe). Equation (3.19) may be compared with (3.9). Note that, un-
like RWDDM, equation (3.19) does not contain the summation term from RW based
rules.

MoT also includes a rule for response rate that is more realistic than RWDDM’s
given by (3.10). It is partly derived from an empirical analysis of real-time respond-
ing in animals. We refer the interested reader to Guilhardi, Yi and Church, 2007 for
a fuller description. We will only mention here that MoT generates a two-state re-
sponse pattern, low and high. The transition between states is determined by the
crossing of threshold B, and the high state is proportional to strength memory w(n).

Other theories exist which are similar in scope to CSC-TD, MS-TD, LeT and MoT.
Two notable examples are the Componential version of the Sometimes Opponent
Process model (C-SOP, Brandon, Vogel and Wagner, 2003) and the Adaptive Res-
onance Theory - Spectral Timing Model (ART-STM Grossberg and Schmajuk, 1989).
C-SOP builds a CS representation based on two sets of elements, or components, one
that includes elements activated as a function of time and another whose elements
are randomly activated. Associative strength for each element is updated using the
standard trial-based RW rule. Simulations in Brandon, Vogel and Wagner, 2003 have
demonstrated that C-SOP can produce some degree of timescale invariance. ART-
STM is a neural net with an input layer and one hidden layer, which allows it to
explain nonlinear conditioning phenomena (such as negative pattern) that a single-
layer RW neural net cannot. It employs a CS representation that is very similar to the
microstimuli used in MS-TD, so it also shows a degree of timescale invariance. Other
theories could be mentioned (for two influential examples see Buhusi and Schmajuk,
1999; McLaren and Mackintosh, 2000; McLaren and Mackintosh, 2002) but we will
limit the analysis to CSC-TD, MS-TD, LeT and MoT for two reasons: a) these four
models collectively embody most of the conditioning and timing mechanisms used
in modelling these areas, and b) our goal here is not to provide a comprehensive
review, but rather focus on the mechanisms that are shared by our proposed model
and the others.

Table 3.1 summarizes the main mechanisms/features of the models described
above. In terms of the type of time representation, it may be observed that the mod-
els fall roughly into two categories: (a) those that employ a chain of units or states
activated sequentially (CSC-TD, MS-TD, LeT), and (b) those that employ an accumu-
lator (MoT and RWDDM). Those in category (b) may be considered more economical
both computationally and biologically, as they don’t require a number of units that
increase with time. In terms of what the representations can time, two categories
may be discerned: (a) those that time only rewards (CSC-TD, MS-TD and LeT), and
(b) those that can time any stimuli (MoT and RWDDM). Models in category (b) have
more flexibility to create a temporal map involving all stimuli present, including
those not signalling reward. In terms of timescale invariance, the models are basic-
ally divided between those that can account for it (MS-TD, LeT, MoT and RWDDM)
and the one that cannot (CSC-TD). Finally, in terms of the type of associative learning
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TABLE 3.1: Summary of the main features of the models.

model type of time rep-
resentation

what it can
time

timescale in-
variant

associative
learning rule

CSC-TD units/states, one
per time step

only rewards no TD/RW, cue
competition

MS-TD units/states,
fewer than one
per time step

only rewards approximately TD/RW, cue
competition

LeT units/states, one
per time step

only rewards yes linear operator,
no cue competi-
tion

MoT linear accumu-
lator

any stimuli,
not only
rewards

yes linear operator,
no cue competi-
tion

RWDDM noisy linear ac-
cumulator

any stimuli,
not only
rewards

yes RW, cue compet-
ition

rule used, models are divided between those that use a RW-type rule (CSC-TD, MS-
TD, RWDDM) and those that use the linear operator (LeT and MoT). The ones that
use RW are wider in scope, being able to account for cue-competition phenomena,
which form the core of classical conditioning.

The main innovation of RWDDM over its predecessors is the combination of a
noisy linear accumulator for timing with the RW rule for associative learning. As
table 3.1 shows, linear accumulator theories are the only ones in our sample of the
models that can fully account for timescale invariance. But because they rely on the
linear operator rule, they cannot account for cue-competition and other compound
stimuli phenomena in conditioning. Therefore RWDDM extends the application of
the linear accumulator to compound stimuli, covering a wider range of conditioning
phenomena.

In summary, the model I propose is, to the best of my knowledge, the only one
that unites the flexibility, computational economy and timescale invariance of the
linear accumulator as a time representation, to the RW associative learning rule,
which accounts for many more conditioning phenomena than the linear operator. In
the next section I evaluate the models against a number of phenomena in condition-
ing and timing.
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Results

The long history of experimental work in classical conditioning has allowed the dis-
covery of a rich variety of phenomena–a recent review (Alonso and Schmajuk, 2012)
has catalogued approximately 87. This forces theorists to be selective when deciding
which phenomena to simulate when presenting a new model. I searched the liter-
ature for phenomena that could test each feature of the model. Table 4.1 lists the
main RWDDM features, together with the corresponding phenomena found in the
literature that can test each.

Table 4.2 contains the design for each simulation performed with the model. The
model parameters used in all simulations were kept almost constant but in some
cases a few adjustments were found necessary to obtain a better agreement between
model and data. I report their values in each simulation below. The time-step was
the same for all simulations: ∆t = 10 msec. Simulations were performed using
MATLAB version R2016b. The code to generate the figures in each result section is
available on Github.

4.1 Faster reacquisition

A conditioned response emerges gradually over the course of several trials where
the CS signals the arrival of a US. If a measure of CR strength (such as rate or mag-
nitude) is plotted against the number of trials, the shape and rate of this acquisition
curve will depend largely on the CR and organism, but it usually follows a negat-
ively accelerated curve (Pavlov, 1927; Kehoe and Macrae, 2002). Pavlov, 1927 be-
lieved timing of the CR would emerge only later in acquisition, through a process
he described as inhibition of delay whereby the initial part of the CS would become
inhibitory. Recent and more detailed analyses suggest that an estimate for the time
to reinforcement is acquired very early in training, possibly even after one or two
trials, although the expression of such estimation may not be observable until later
in training (Holland, 2000; Ohyama and Mauk, 2001; Balsam, Drew and Yang, 2002;
Drew et al., 2005).

If the CS no longer signals reinforcement, CR strength gradually decreases over
the course of these extinction trials, until it finally disappears. If the CS is made
to signal the US again, the CR returns, a process that is called reacquisition. It is a
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TABLE 4.1: Model features and the experimental findings they can
explain.

RWDDM feature phenomenon for which it can account

independent update rules for time and as-
sociative strength

faster reacquisition, time change in
extinction, latent inhibition and tim-
ing

RW rule for associative strength blocking with different durations,
time specificity of conditioned inhib-
ition, inhibition in trace conditioning

intertrial variability in time estimation compound peak procedure
asymptote of associative strength set by
time

ISI effect, mixed FI

a memory that learns the rate of reinforce-
ment

VI and FI, temporal averaging

consistent finding that reacquisition is faster than acquisition (Ricker and Bouton,
1996; Guilhardi, Yi and Church, 2007; Kehoe and Macrae, 2002, p. 185).

Learning is loosely defined as an enduring change in behaviour as a result of
experience. Acquisition of a CR is the most basic demonstration that classical condi-
tioning is a form of learning. As such, all classical conditioning models provide an
account of it.

Simulations

Figure 4.1 (top left panel) shows a plot of RWDDM’s associative strength as given by
equation (3.9), in a simulation of acquisition and extinction. Acquisition consisted of
80 presentations of a 5-sec CS followed by reinforcement, after which there were 100
extinction trials where H was set to zero. The simulations match with experimental
data from acquisition and extinction (bottom left panel of figure 4.1). The simulated
acquisition curve asymptotes around the theoretical value given by setting ∆V(n) =
0 in equation (3.9) and solving for V, yielding

V∞ =
HA∞

x(Ψt∗)Ψ(t∗)
, (4.1)

which in this particular case is V∞ ≈ 1, since H = 5, A∞ ≈ 1/5, Ψt∗ = Ψ(t∗) ≈
1, x(Ψt∗) ≈ 1, where t∗ is the time of reinforcement. Because Ψ(t∗) is a random
variable, x(Ψt∗) and V∞ are also random variables and their values are reported as
approximations to their expected values (but not the actual expected values).

Figure 4.1 (top middle panel) shows the adaptation of timer slope A given by
equation (3.6). This equation precludes the initial value of A from being zero, so I
set it to the very low value of A(1) = 10−6. I also set the threshold θ = 1, which
by equation (3.6) means that Ai(n) encodes the exponential moving average of the
rate of reinforcement signalled by CSi. Or, equivalently, 1/Ai(n) encodes the mov-
ing harmonic average of the intervals since last reinforcement during CSi. In this
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FIGURE 4.1: Acquisition and reacquisition. Top left: simulated asso-
ciative strength V in acquisition and extinction. Top middle: adapt-
ation of RWDDM slope A. CR extinction began at trial 80 but has no
effect on the RWDDM slope. Top right panel: simulated V curves in
acquisition and reacquisition. Bottom left panel: response strength
data from an experiment in acquisition and extinction, redrawn from
figure 1 in Ricker and Bouton, 1996. Bottom right panel: data from an
experiment in acquisition and reacquisition, redrawn from the top
panel of figure 3 in Ricker and Bouton, 1996. Model parameters:
m = 0.15, θ = 1, σ = 0.3, αt = 0.1, αV = 0.1, H = 4 in acquisition and

H = 0 in extinction.

simulation, since there is only one US which is delivered always at the same time at
CS offset (5000 msec), A converges to A∞ = 1/5000. Note that the value of A does
not decline after extinction begins at trial 80. It continues to be updated since the
stimulus is still present, even if its presence no longer signals reinforcement.

The top right panel of figure 4.1 shows the acquisition and reacquisition curves
using RWDDM. Reacquisition produced by the model is evidently faster than the
simulated acquisition, but not as fast as the reacquisition seen in the data on the
bottom left of figure 4.1.

Discussion

In RWDDM acquisition and extinction of associative strength follow from the same
mechanism as RW. The only difference is the noisy stimulus representation x(Ψt∗),
which induces noise into the acquisition curve. Changes in associative strength and
timing are treated independently. In particular, the memory for time encoded by the
slope A is not affected by extinction. This leads to a faster reacquisition following ex-
tinction. This is because RWDDM’s time-adaptive CS representation x(Ψt∗) reaches



70 Chapter 4. Results

its maximum activation value right from the beginning of reacquisition, since the
timer slope A is already tuned to the current CS duration (see equation (3.8)).

Modular theory (Guilhardi, Yi and Church, 2007) is another model that treats
timing and associative strength separately. It postulates two memories, one for the
pattern of reinforcement and another for the strength of the association between CS
and US. The pattern memory stores an exponential moving average of the intervals
to reinforcement which, like RWDDM, does not change with extinction. However,
its strength memory w(n) is updated according to the linear operator rule,

w(n + 1) = w(n) + β(λ− w(n)) (4.2)

which, unlike RWDDM, does not include a term for a time-adaptive CS representa-
tion. Thus, the way MoT accounts for rapid reacquisition is by using different learn-
ing rates β for acquisition and reacquisition. The same strategy may be employed
with the TD and LeT models.

In summary, RWDDM explains reacquisition as the persistence of a memory for
time, whilst TD, LeT and MoT explain it as a permanent change in the learning rate
for associative strength.

4.2 Time change in extinction

When a previously conditioned stimulus is no longer followed by reinforcement, the
conditioned response gradually decreases. An important theoretical question for hy-
brid timing/conditioning models concerns what happens to the timing of responses
in extinction. Using the peak procedure Ohyama et al., 1999 found that although the
maximum (peak) response rate decreased in extinction, peak time and sensitivity
(measured by the coefficient of variation) remained virtually unchanged. Drew et
al., 2004 investigated the behaviour on extinction by changing CS duration between
acquisition and extinction. Groups where the CS changed to a shorter or longer dur-
ation were compared to another where the duration did not change. They found that
CS duration had little effect on the rate of extinction, with all groups taking about
the same number of trials to achieve CR extinction. However, when the CS used
in extinction was considerably longer (4 times) than the one acquired, extinction
was facilitated. Guilhardi and Church, 2006 performed a similar experiment (exper-
iment 2) and observed that when stimulus duration is changed from acquisition to
extinction, the pattern of responding during extinction gradually shifts to the new
duration over extinction trials. Following the same procedure, Drew, Walsh and Bal-
sam, 2017 also used partial reinforcement to slow down the rate of acquisition, and
thus observe if response patterns really do shift gradually to the new duration. They
confirmed that when CS duration was increased from acquisition to extinction, the
within-trial response peak shifted gradually to the right over the course of extinc-
tion. When the CS was shortened, the results were not conclusive. Also, when CS
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duration was changed from training to extinction, the speed of extinction increased,
but this appeared to be explained at least in part by the shifting of response patterns.

In summary: a) peak timing and CV are not altered in extinction when using
a peak procedure, b) changing the CS duration from training to extinction causes
the within-trial response peak to shift to the new duration, and c) changing the CS
duration in extinction can speed up extinction, but this may be due to the shifting of
the response peak and not to changes in associative strength. These results pose a
challenge to the models analysed here. Out of CSC-TD, MS-TD, LeT and MoT, only
MoT has a mechanism that would allow it to account for time change in extinction.

Simulations

RWDDM provides an account for these findings as follows. In the case of the peak
procedure, the occurrence of the longer peak trials may be considered too infrequent
to cause a shift to the longer time. In this case, equation (3.6) is not applied in peak
trials so RWDDM predicts that both slope A and CV will remain unaltered in extinc-
tion. In the case of a permanent change in CS duration from acquisition to extinction,
the slope update rule is applied and the response peak will shift gradually to the new
duration.

I have simulated RWDDM in two extinction conditions, one where the CS presen-
ted in extinction was longer than the one acquired (20 sec to 40 sec, short-long) and
another where the extinction CS was shorter than the acquired CS (20 sec to 10 sec,
long-short). Figure 4.2 summarizes the main results.

The panels on the left column show response strength during a trial in conditions
short-long (top) and long-short (bottom). In the early stages of extinction (early) the
response curves peak around the time of US arrival in acquisition (20 sec). This is
more evident in the condition short-long (top left) because in the other condition
(bottom left) the trial ends 10 seconds before the peak at 20 seconds occurs. Had the
stimulus remained on for a full 20 seconds, the response curve in the early stages of
long-short would have continued to increase until the 20 second mark. In middle
and late extinction the response peak slowly shifts to the new duration in both con-
ditions, and their heights decrease. Compare the simulated curves in the left column
of figure 4.2 to the actual experimental data in the right column. The panels on the
middle row of figure 4.2 show the adaptation of time estimate 1/A in conditions
short-long (top) and long-short (bottom). They demonstrate that RWDDM adapts
exactly to time change in extinction.

To investigate if the rate of acquisition changes with CS duration, I have plotted
the extinction curves for each CS duration in the left panel of figure 4.3. Decreasing
CS duration from acquisition to extinction slightly facilitates extinction, but increas-
ing CS duration markedly delays extinction. However, these are only the V values,
a theoretical construct that accounts for the associative strength of the stimulus as
a whole. Actual behaviour measurements of extinction are based on how much re-
sponse frequency changes from trial to trial. But response frequency also changes
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FIGURE 4.2: Time change in extinction. Left column: simulated re-
sponse strength averaged over trials in extinction short-long (top)
and long-short (bottom). Middle column: time estimate adaptation
of the model during extinction short-long (top) and long-short (bot-
tom). Right column: experimental data from an experiment where
the CS duration changed from 12-sec in acquisition to either 24-sec
(top) or 6-sec (bottom) in extinction. Data plots redrawn from figure
10 in Drew, Walsh and Balsam, 2017. Model parameters: m = 0.25,

θ = 1, σ = 0.35, αt = 0.08, αV = 0.09, H = 30.

within the trial. As pointed out by Drew, Walsh and Balsam, 2017, the value ob-
tained for the rate of extinction may be affected by which portion of the CS was
measured. To analyse this, Drew, Walsh and Balsam, 2017 measured response fre-
quency only during the first 6-sec (half the duration of the CS in acquisition) of each
CS duration in extinction. I have followed the same procedure and the results can
be seen on the middle panel of figure 4.3. They show a marked delay on extinction
when the CS duration was shortened, but not when it was lengthened. Compare
these curves with the actual data analysed by Drew, Walsh and Balsam, 2017 and
displayed in the rightmost panel of figure 4.3. The simulations conflict in part with
the same analysis in Drew, Walsh and Balsam, 2017, which showed no delay on
extinction, only facilitation in the case of extending CS duration.

Discussion

RWDDM predicts that a change in CS duration from acquisition to extinction will
always cause a rescaling of the response curves in extinction. This is largely in agree-
ment with the data. However, RWDDM seems to predict a degree of delay on ex-
tinction, whilst the data seems to point to a facilitation of extinction when the CS
changes duration. When only the first half of the CS response curves are analysed,
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FIGURE 4.3: Extinction curves. Left panel: model V values for each
CS duration in extinction. Middle panel: simulated CR values calcu-
lated only for the first 10 seconds of the CS. Each data point is calcu-
lated by summing the output of equation (3.10) over the first 10 sec of
each trial, then averaging these trial values two by two, and dividing
by 100 to rescale. Right panel: actual CR data for the first 6 sec of
the CS in extinction, redrawn from figure 8 (C) in Drew, Walsh and

Balsam, 2017

the data suggests that extending CS duration in extinction can speed up extinction,
whilst RWDDM predicts that shortening CS duration will delay extinction.

RWDDM’s prediction for a delay in extinction following a change in CS dura-
tion is due to the shifting of the response curve. At the beginning of extinction, a
trial ends either before the CS representation has reached its peak (CS shortening)
or after its peak (CS lengthening). This makes equation (3.9) update with a small
value for x(Ψ), resulting in a smaller update than with the higher x(Ψ) value of the
unchanged CS.

As mentioned above, time change in extinction is a difficult phenomenon for the
current models to explain. CSC-TD does not have a mechanism to change the peak
of responding when a US is not present. Neither does MS-TD or LeT. These models
assume that extinction can only weaken existing links between CS and US represent-
ations. Because in these models timing usually depends on the sequential activation
of these links, changing the CS duration in extinction would not alter the timing but
only the magnitude of responding. RWDDM explains time change in extinction be-
cause its rule for time adaptation is independent of a change in associative strength.
Thus, when the duration changes in extinction, RWDDM’s accumulator slope tracks
this change, whilst associative strength decays as a function of US absence. Regard-
ing the extinction facilitation caused by a change in CS duration, none of the models
analysed here currently have a mechanism to explain this either.

It would be possible to allow the average rate of state transition in LeT to vary as
a function of CS duration, which would cause timing to adapt to the new time in ex-
tinction. However, in its latest formulation (Machado, Malheiro and Erlhagen, 2009)
LeT relies on a fixed average rate of state transition to explain timescale invariance.
Thus, if the rate is made to change as a function of CS duration, this would break
timescale invariance.

As for MS-TD, one interesting modification that would likely allow it to explain



74 Chapter 4. Results

time change in extinction is to make the microstimuli themselves time-adaptive.
Like RWDDM’s time-adaptive CS representation, the microstimuli could be made
to ‘stretch’ or ‘compress’ when stimulus duration shortens or lengthens.

Modular Theory is likely to account for time change in extinction, since its pat-
tern memory for time could be made to update even in extinction. That would shift
the response pattern to the new time whilst strength memory, which depends only
on US presentation, would decay.

4.3 Latent inhibition and timing

When a subject is exposed to repeated and non-reinforced presentations of a stim-
ulus it has never encountered before, this procedure is called preexposure. If re-
inforcement is subsequently paired with the preexposed CS, the initial rate of CR
acquisition is usually lower compared to acquisition to a nonpreexposed stimulus,
a phenomenon called latent inhibition (Lubow and Moore, 1959). The asymptotic
level of conditioning, however, is not normally affected by preexposure (Lubow,
1989). Latent inhibition is an important representative of a class of phenomena in-
volving latent effects. Collectively, these phenomena demonstrate that something
is learned about the stimulus even when it does not signal reinforcement. There-
fore, latent inhibition cannot be accounted by the Rescorla-Wagner model, since the
theory only applies when there are changes in associative strength.

A question relevant for real-time conditioning models is what happens to timing
when a preexposed stimulus is conditioned. To answer this question, Bonardi, Brilot
and Jennings, 2016 used CSs of variable and fixed durations (the variable duration
CS had the same mean as the duration of the fixed CS) to vary the temporal condi-
tions between preexposure and conditioning phases. Latent inhibition was observed
even when the temporal information from the two phases was different. Crucially,
timing, as measured by the response gradient within a trial, appeared to improve in
the preexposed CS even when the temporal information was different between the
two phases.

As alluded to above, latent inhibition cannot be accounted by the associative
learning update rule used in RWDDM, the Rescorla-Wagner. However, I show here
that RWDDM is compatible with the Pearce-Hall rule (Pearce and Hall, 1980; Pearce,
Kaye and Hall, 1982), one of the most widely used models for explaining latent in-
hibition and other latent learning effects. I demonstrate that this modification main-
tains the basic framework of the RWDDM, and that it can account for latent inhib-
ition and improved timing with preexposure. None of the other models analysed
here can account for latent inhibition without modifications. Improved timing with
preexposure could be accounted by Modular Theory, but not by the the current ver-
sion of the other models.
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Simulations

The Pearce-Hall model is basically a rule for adapting the learning rate αV based on
the error δ between the predicted US outcome and the actual US outcome. It was
originally formulated by Pearce and Hall, 1980 and updated by Pearce, Kaye and
Hall, 1982. I have maintained equation (3.9) for associative strength, but changed αV

on every trial n according to

αV(n + 1) = αV(n) + γ(|δ| − αV(n)), (4.3)

δ =

(
HA(n)
Ψ(t∗)

−V(n)x(Ψ)

)
(4.4)

where 0 < γ < 1 is a parameter that sets the rate of learning rate adaptation. Equa-
tion (4.3) is basically the Pearce-Hall rule, except that instead of using 1 as the asymp-
tote of learning I use HA(n)

Ψ(t∗) .
I simulated latent inhibition with a 5-sec CS. Preexposure consisted of 80 trials of

the CS without reinforcement (H = 0). The preexposed CS was then reinforced for
250 trials. Figure 4.4 (top left panel) compares the acquisition curves for the preex-
posed CS and a control CS in the reinforced trials. The preexposed CS acquisition
curve increases at a lower rate than the control CS, the latent inhibition effect (see
data from a corresponding experiment at the bottom left panel of figure 4.4).

FIGURE 4.4: Latent Inhibition. Top row: simulated associative
strength in latent inhibition (left), simulated CR averaged over the
first 30 trials of conditioning phase (middle), and simulated CR av-
eraged over the last 30 trials of conditioning phase (right). Bottom
row: acquisition curves from an actual experiment in latent inhibi-
tion (left), and response rate data during the CS (right). Data plots
redrawn from figures 1 and 2 respectively in Bonardi, Brilot and
Jennings, 2016. Model parameters: αt = 0.1, αV = 0.08, µ = 1,

σ = [0.6− 0.35], m = 0.2, H = 4, αPH = 0.4, γ = 0.03.
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Improved timing with preexposure follows directly from the fact that RWDDM
adapts its accumulator slope A to the CS duration during preexposure. However,
our choice of a Gaussian for stimulus representation does not allow for this change
to become visible. Bonardi, Brilot and Jennings, 2016 demonstrated improved tim-
ing by showing that the slope of the response curve from the preexposed CS was
higher in the first few trials of acquisition than the one from the control CS (see bot-
tom right panel of figure 4.4). In general, animal response curves tend to be quite flat
during the beginning of acquisition. There is evidence that the response curves ap-
pear to change from negatively accelerated to a sigmoidal shape over the course of
training (see figure 1 in Meck and Church, 1984, for an example). This means that in
the early stages of acquisition, within-trial response frequency increases very early
in the trial and then stays at a constant level until the end. As training progresses, the
increase in frequency moves slowly to the right, giving rise to the sigmoidal shape
that peaks just before the end of the trial. In these cases a higher slope of the response
curve would indicate improved timing. But in our model the curves are sigmoidal
from start of acquisition, so they will always peak at the end of the trial, even if the
timer slope has not adapted to the interval yet, as is the case with a novel stimu-
lus. Therefore, during the acquisition phase of latent inhibition, RWDDM predicts
that only the peaks of the response curves will gradually increase over the trials.
Because of the learning decrement caused by preexposure, the peak of the control
CS will increase faster than the preexposed CS, as the top middle panel of figure 4.4
demonstrates. The response curve of the control CS will have a higher slope than
the preexposed CS, even though the preexposed CS’s timer rate has been adapted to
its duration. Hence, the improved timing found in the data is explained by adapt-
ation of RWDDM’s timer slope, but RWDDM’s CS representation cannot make this
visible.

I have tried adding an adaptable σ in equation (3.8) so as to decrease the width
of the gaussian curve gradually over trials. I chose a simple linear operator rule to
adapt the Gaussian width:

σ(n + 1) = σ(n) + ασ(0.35− σ(n)), (4.5)

and set σ(1) = 0.6 and ασ = 0.025.
Figure 4.4 (top middle panel) shows response strength of control and preexposed

CSs averaged over the first 30 trials of the conditioning phase. The preexposed CS
already shows a clear sigmoidal shape, whilst the control is slightly wider and linear.
But the effect is too small to be able to account for the one seen in the data from
Bonardi, Brilot and Jennings, 2016. Towards the end of the conditioning phase the
two curves converge (figure 4.4, top right panel).
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Discussion

The simulations show that the model can account for latent inhibition adequately if
the Pearce-Hall rule is used (in which case the model would be more appropriately
named PHDDM). The PH rule adapts the learning rate αV based on the level of asso-
ciative learning between stimulus and reward. When the subject encounters a novel
stimulus, it is assumed that αV has some non-zero starting value αnovel

V , which allows
learning in equation (3.9) to take place. If this novel stimulus does not signal reward,
as is the case in the preexposure phase of latent inhibition, σ = 0 and equation (4.3)
will simply decay the value of the learning rate across trials until it reaches zero.
If at this point the stimulus begins to be followed by reward, σ > 0 and equation
(4.3) will begin to raise the value of the learning rate, which in turn will allow equa-
tion (3.9) to begin increasing the value of V. Since the increase in the value of the
learning rate is gradual, determined by the rate γ, there will be a number of trials
in the beginning of the conditioning phase where αV < αnovel

V , which leads to the
initial impairment in the learning curve when compared to the learning curve of a
non-preexposed CS, as seen in the top left panel of figure 4.4.

The separate rule for time adaptation allows the model to account for improved
timing after preexposure, but the model cannot make this effect visible even if we
allow for Gaussian width adaptation. In view of this it seems more likely that a
two-state CS representation may be a better solution. As mentioned above, figure
1 in Meck and Church, 1984 suggests that during the initial stages of training a CS
representation may be modelled by the following leaky integrator

xi(t + 1) = xi(t) +
1
τ
(Ii − xi(t)) (4.6)

where Ii is the indicator function marking the presence of CSi, and τ a time constant.
In the latter stages of training, when timing is expressed, the organism switches
to the Gaussian representation given by equation (3.8). When the switch between
representations is made and how abruptly remains to be investigated.

Latent inhibition cannot be accounted by any of the other models analysed here
without modifications. Also, models that rely on the US for time adaptation, like
CSC-TD, MS-TD and LeT, cannot account for improved timing by preexposure. Mod-
ular Theory is the only one that can time any stimulus like RWDDM, so it could
account for the improved timing. But it would also need a modification like (4.3) to
adapt its learning rate to account for latent inhibition.

4.4 Blocking with different durations

Arguably, the most important compound conditioning phenomenon is blocking. It
is part of a class of cue competition and compound phenomena discovered in the
late 1960s which challenged the view that conditioning was driven by the pairing,
or contiguity, of CS-US. These results suggested that conditioning with compound
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stimuli was influenced by the reinforcement histories of the elements forming the
compound (Rescorla, 1988; Gallistel and Gibbon, 2001). This led to the develop-
ment of a new generation of models that could account for those findings (Rescorla
and Wagner, 1972; Mackintosh, 1975a; Pearce and Hall, 1980). The rule I use, the
Rescorla-Wagner, provides an explanation for blocking that is based on the summa-
tion term in equation (3.1).

In a blocking procedure a CS is first paired with a US in phase 1 of training.
During phase 2 a novel CS is presented in compound with phase 1 CS and paired
with the US for just a few trials. Subsequently, when tested alone the novel CS eli-
cits less responding than if it had been trained in compound with another novel
stimulus (Kamin, 1968). The previously reinforced CS is said to block the novel CS.
The temporal information encoded by each CS has an effect on the amount of block-
ing observed. Schreurs and Westbrook, 1982 varied the ISI in the pre-training and
compound phases, and observed less blocking when the durations were different
in both phases than when they were the same. Barnet, Grahame and Miller, 1993
performed a similar experiment but with forward and simultaneous conditioning
varying between phases, and also found that blocking was stronger when blocked
and blocking CSs had the same temporal history. Jennings and Kirkpatrick, 2006
used compounds where the elements had different durations. They observed that
a long blocking CS could block a co-terminating short Cs, but a short blocking CS
failed to block a co-terminating long CS (see rows 1 and 3 in figure 4.5). Amundson
and Miller, 2008 performed four blocking experiments using trace conditioning. In
two of them the blocking CS trace duration changed between phases, and blocking
was not observed. In the other two experiments the trace duration was held fixed
between phases, and the blocking and blocked CSs were presented serially and not
in a compound (see rows 2 and 4 of figure 4.5). Blocking was observed when the
blocking CS followed the blocked CS, but not in the reverse condition.

The studies reviewed above appear to show that changing the ISI of the blocking
CS between phases may attenuate blocking. Another finding is the apparent asym-
metry of blocking when the ISI of the blocking CS is kept constant between phases.
Rows 1 and 2 of figure 4.5 suggest that a long blocking ISI can block a short blocked
ISI. Rows 3 and 4 suggest that a short blocking ISI does not block a long blocked ISI.

As mentioned above, RWDDM can account for blocking because it uses the RW
rule. The summation term in equation (3.1) formalizes the widely held view that a
given US can only confer a limited amount of associative strength which CSs must
compete for. Different theories exist that take other approaches to blocking (see for
example Mackintosh, 1975a; Harris, 2006; Stout and Miller, 2007) but among the
ones analysed here (for their ability to handle timing also) only CSC-TD and MS-TD
are equipped to deal with it. I show next that RWDDM can account for the blocking
of a short CS by a long CS, and that by making the reasonable assumption of second-
order conditioning it can also account for the lack of blocking of a long CS by a short
CS. CSC-TD and MS-TD are also capable of providing an account of both blocking
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FIGURE 4.5: Experimental designs from two blocking experiments.
CS X was blocked (B) in rows 1 and 2, and not blocked (NB) in rows

3 and 4. Blue bar indicates US presence.

conditions.

Simulations

Because RWDDM is based on the RW rule, it produces virtually the same results as
the latter when the CSs have the same duration. Our interest here is to test whether
it can reproduce the finding that a long CS can block a shorter CS but a shorter CS
does not block a longer one. I performed a simulation following the design in rows
1 and 3 of figure 4.5. In the first phase a CSA (blocking CS) of duration either 10 or
15 seconds was followed by reinforcement until its associative strength V reached
asymptote. In phase 2 CSA was joined with a CSX (blocked CS), of either 15 or
10 seconds, in a coterminating compound and followed by US. The top left panel
of figure 4.6 shows the acquisition of associative strength for CSX and its control
during phase 2 for the condition CSA-15sec and CSX-10sec. A considerable amount
of blocking is observed, matching with the data (bottom left panel).

The top right panel of figure 4.6 shows the results for condition CSA-10sec and
CSX-15sec. In this condition the model diverges considerably from the data (bottom
right panel) and predicts that CSX should actually become inhibitory.

Discussion

The blocking and inhibition seen in figure 4.6 is a result of a discrepancy in the
asymptote of learning between the CSs. After phase 1, CSA has associative strength
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FIGURE 4.6: Blocking with different durations. Left column: simula-
tion (top) with a 15 sec blocking CS and 10 sec blocked CS, and an-
imal data (bottom) from an experiment with the same design. Right
column: simulation (top) with a 10 sec blocking CS and 15 sec blocked
CS, and animal data (bottom) from an experiment with the same
design. Data panels redrawn from the top right panel in figure 5
in Jennings and Kirkpatrick, 2006. Model parameters: αt = 0.2,

αV = 0.1, µ = 1, σ = 0.35, m = 0.2, H = 10.

VA ≈ HAA. During phase 2, CSX’s associative strength changes according to:

∆VX ≈ α(HAX − (VA + VX))

= α(HAX − (HAA + VX))

= α(H(AX − AA)−VX)

and since (AX − AA) < 0, VX becomes negative.
However, it could be argued that the short CSA becomes a secondary reinforcer

which is signalled by the onset of the long CSX. In this case, the onset of CSX would
serve as the time marker for the onset of CSA, and not for the onset of US. Hence,
during the first 5 seconds of CSX responding would be under the control of this 5-
sec stimulus representation which would not overlap, thus not compete, with CSA’s
later representation. It would follow from this account that no blocking would be



4.4. Blocking with different durations 81

observed, and that responding during test phase with CSX would peak at the 5-
sec mark. This is a testable prediction that, if shown to be the case, could validate
RWDDM’s account.

Also note that the time-dependent associative strength asymptote assumed by
RWDDM implies that learning during a compound where the elements are of differ-
ent durations is not stable. In particular, if CSA and CSX are the two elements of the
compound phase of blocking, their associative strengths are updated by RWDDM
as

∆VA = αV(HAA − (VA + VB))

∆VB = αV(HAB − (VA + VB)),

which in the steady state form an inconsistent system of linear equations,

VA + VB = HAA

VA + VB = HAB.

Since the compound phase of blocking only lasts for a few trials, RWDDM could
produce the blocking seen on the left panel of figure 4.6. But if training with the
compound was carried out for longer, the V values would grow without bound.
However, there is evidence that in compounds formed by elements with asynchron-
ous onsets, like in the compound phase of the blocking experiments here, the shorter
stimulus comes to control CR timing and there is no summation of associative strengths
(Fairhurst, Gallistel and Gibbon, 2003). Hence, it appears that with compounded
asynchronous CSs, the shorter CS, more proximal relative to the US, comes to dom-
inate and a summation rule like RW would not be applicable beyond the first few
trials of training.

A model that is well placed to explain these results is CSC-TD. A long blocking
CS will completely overlap a short blocked CS, blocking all units in the blocked CS.
But in the case of a short blocking CS, there will be free units in the beginning of
the blocked CS which will acquire associative strength, attenuating blocking. Given
its similarity, MS-TD would likely produce comparable results. MoT and Let would
not be able to account for any type of blocking given their current choice of rule
for associative strength. Unlike RWDDM and the TD models, they both rely on the
linear operator rule, which antedates the transition to the rules that sum associative
strengths in the compounds as mentioned previously. MoT and LeT would need, at
the very least, to replace the linear operator by the RW or other equivalent rule to be
able to account for blocking and other compound phenomena.
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4.5 Time specificity of conditioned inhibition

Learning occurs not only when a CS signals the occurrence of a US, but also when a
CS signals the omission of a US. It is commonly assumed that the excitation caused
by the former is counteracted by an inhibition produced by the latter. This is again
formalized by the summation term in the RW rule. Conditioned inhibition is thus
one of the phenomena that, together with blocking and other compound phenom-
ena, challenged the contiguity interpretation of classical conditioning.

A conditioned inhibition procedure involves reinforced trials with a CS, say A+,
intermixed with non-reinforced trials with a compound AB-. Conditioned respond-
ing develops during A+ trials but not during AB-. Hence, conditioned inhibition is
a key conditioning phenomenon since it is also a form of discrimination learning.

Conditioned inhibition poses higher technical challenges for a model of learning
and timing as responses cannot be directly observed. To assess conditioned inhibi-
tion two types of measures are used (Denniston and Miller, 2007): summation and
retardation tests. There are different procedures that can generate inhibition, so I
refer here specifically to the inhibition produced by alternating A+ with AB- trials.
CSA is called a training excitor, and CSB an inhibitor. In summation tests, this in-
hibitor is then presented together with a different excitor, and the inhibitor is said
to pass the test if there is a decrement in responding compared to the excitor alone.
In retardation tests, the inhibitor by itself is now paired with the US, and it is said
to pass the test if acquisition is slower than with a neutral stimulus. Denniston and
Miller, 2007 reviewed a series of studies that varied the durations of the training
excitor and that between the inhibitor and the training excitor. The studies showed
that conditioned inhibition is observed when the temporal relations between train-
ing and testing are preserved, and not otherwise.

However, the studies reviewed by Denniston and Miller, 2007 used as measure
of conditioned inhibition the time to resume drinking (licking suppression) when
presented with the inhibitor. Williams, Johns and Brindas, 2008 investigated in-
hibition caused by reinforcement omission in excitatory conditioning, a more dir-
ect measure than licking suppression. In their experiments the inhibitor stimulus
signalled the omission of one of two USs (at 10 or 30 seconds) that had been associ-
ated with the excitor stimulus. Using summation tests they found that the inhibitor
would suppress responding only at the specific time of predicted US omission. Re-
tardation tests confirmed that the time of US omission is encoded by the inhibitor.

I show here that RWDDM can account for inhibition and its time specificity. CSC-
TD and MS-TD are also equipped to deal with these results. MoT and LeT do not
currently have the necessary mechanisms to explain inhibition.

Simulations

I demonstrate time specificity of inhibition with simulations of Williams, Johns and
Brindas, 2008 experiment. Excitors E1 and E2 signalled reinforcement after 10 and 30
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seconds respectively, and inhibitors I1 and I2 signalled US omission after 10 and 30
seconds respectively. During phase 1, E1 and E2 were always reinforced, whilst the
compounds E1I1 and E2I2 were never reinforced (see table 4.2). In phase 2 a transfer
excitor E3 was trained on a mixed FI schedule, where in half the trials E3 lasted 10
seconds and in the other half 30 seconds. Phase 3 consisted of nonreinforced peak
trials that lasted 90 seconds, a third with E3 compounded with I1, a third with E3I2,
and a third with E3 alone. Figure 4.7 summarizes the results. Responding during
E3 alone shows the two peaks characteristic of mixed FIs. As figure 4.7 shows, the
compound excitor and inhibitor inhibits responding only at the time encoded by the
inhibitor.

FIGURE 4.7: Conditioned inhibition. Left column: simulation (top)
and data (bottom) from conditioned inhibition with a long inhibitor.
Right column: simulation (top) and data (bottom) from conditioned
inhibition with a short inhibitor. Data plots redrawn from figure 4
Williams, Johns and Brindas, 2008. Model parameters: αt = 0.09,

αV = 0.06, µ = 1, σ = 0.35, m = 0.16, H = 30.

Discussion

The account provided of inhibition by RWDDM relies on the traditional summation
term inherited from the RW rule. Time specificity comes from the inhibitor CS timer
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being treated just like any other CS timer, except that instead of timing the arrival of
the US it times the arrival of US omission.

RWDDM predicts that the representation of an inhibitor CS has the same shape
as of an excitor CS. This implies that inhibition is the exact opposite of excitation.
This is a testable prediction which the empirical results above provide some valida-
tion.

The TD models provide a similar account of these data. Both CSC and MS TD
have CS representations that allow for time specificity of US omission. Because the
TD relies on the RW summation term, they can account for inhibition. LeT and MoT
can also represent such time specificity, but because they rely on the older linear
operator rule, they do not have a mechanism to account for inhibition.

4.6 Disinhibition of delay and compound peak procedure

The two related phenomena described here are important in that they appear to
challenge the summation effect. A common observation is that a compound of two
previously conditioned CSs usually produces more responding than its individual
components (Rescorla, 1997; Kehoe and Macrae, 2002, p. 204). However, failure
to obtain summation is also common (Rescorla and Coldwell, 1995; Pearce, George
and Aydin, 2002), and the precise conditions when it is observed or not is still a
current topic of debate (see Harris and Livesey, 2010, for a discussion). Here we
consider two cases in which summation was not observed and that RWDDM can
offer a possible explanation.

Aydin and Pearce, 1995 used an autoshaping procedure to condition pigeons to
stimuli of 30 second duration. They observed little or no summation in compound
trials, but a response curve with a consistent shift to the left. This earlier start of re-
sponding was observed even when one of the components was a neutral preexposed
CS. The shift of the response curve to the left was termed disinhibition of delay.

Meck and Church, 1984 performed an analogue experiment using the peak pro-
cedure. They trained rats to associate a light and a sound (both of 50 second dura-
tion) individually to a reinforcement, and then used a peak procedure to investigate
what happens to timing in their compound. Like Aydin and Pearce, 1995 they also
found no summation and a shift to the left in the compound. Furthermore, rats also
stopped responding earlier in the compound peak trials.

Taken together, these results appear to show that in some cases summation is
not observed, and responding in the compound starts earlier than in the component
CSs. One possible explanation for this effect is that the subject fails to recognize
the two individual components of the compound, what is known as generalisation
decrement. If this is the case then it would be a performance effect, and not a learning
phenomenon. I cannot rule this out, but I show that RWDDM’s trial variability in
time estimation provides a plausible mechanism to explain this effect. The only other
models in my analysis set that can account for this are MoT and LeT.



4.6. Disinhibition of delay and compound peak procedure 85

Simulations

RWDDM is capable of accounting for the earlier responding in compounds by noise
in the timer. When a compound formed by CSA and CSB is presented, its two timers
ΨA(t) and ΨB(t) will run in parallel. However, their rates AA and AB will have
slightly different values due to noise. This implies that on every compound trial,
one timer will be running slightly faster than the other. In contrast, on trials where
only one CS is present, the timer will run faster in some trials and slower in others.
Therefore, if on compound trials responding is guided by the faster timer, the aver-
age response curve for compounds will be shifted to the left when compared to the
averaged response curve for a single CS.

Figure 4.8 shows simulations of disinhibition of delay and compound peak pro-
cedure. The figures were constructed by averaging the responses produced by equa-
tion (3.10) over 50 trials. The simulations reproduce in part the anticipation in re-
sponding during the compound that is observed in the data in both experiments
(see top right and bottom left panels of figure 4.8). Meck and Church, 1984 reported
a median peak time of 40±4 seconds for the response curves in compound trials,
and 50±3.5 seconds in the individual trials. I ran 15 simulations as the one shown
at the bottom row of figure 4.8, and analysed the peak times produced by each. I
found an average peak time of 42±3 seconds in the compound trials, and 47±4 in
the individual trials. Both results are within the error bounds in Meck and Church,
1984. Aydin and Pearce, 1995 did not analyse peak times or shift in the response
curves, so I cannot make a quantitative comparison with our simulations.

Discussion

RWDDM can offer a good account for the lack of summation and earlier responding
in compound trials in the two cases analysed here. It does so by having trial to trial
variability in time estimation. However, the model shows a slightly higher max-
imum response frequency in compounds than in their components (top and bottom
left of figure 4.8) something not observed in the data. This is not the product of sum-
mation, but of the slightly different asymptotes of learning in the faster and slower
timers in the reinforced trial immediately preceding the peak trial. Our assumption
was that in compound trials the timer running faster, with a higher slope A, would
be the one guiding responding. When timing adaptation has reached asymptotic
levels, the updates on slope A are due to noise in the value of the timer at reinforce-
ment time, Ψ(t∗). The two slopes, AA and AB, will have very similar values. In
the reinforced trial preceding the compound peak trial, whichever timer produces a
value of Ψ(t∗) lower than the threshold will have its slope A adjusted up by the the
slope update rule, likely causing it to overtake the other slope. This slightly higher
slope will then be chosen in the peak trial that follows. But the corresponding V
associated with that timer will have been updated on the previous reinforced trial
based on the lower Ψ(t∗) < θ value. Because that is the denominator in HA/Ψ(t∗),
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FIGURE 4.8: Disinhibition of delay and compound peak procedure.
Top row: simulation (left) and data (right) of disinhibition of delay.
Bottom row: simulation (left and middle) and data (right) of a com-
pound peak procedure. The middle panel is a normalized (proportion
of maximum response strength) version of the left panel. Data plot re-
drawn from figure 13 in Meck and Church, 1984. Model parameters:

m = 0.25, θ = 1, σ = 0.18, αt = 0.75, αV = 0.1, H = 5.

the V value of the chosen timer will be consistently slightly higher on the compound
peak trials.

Other theories that might account for the data in this phenomenon are LeT and
MoT. Both theories postulate intertrial variability in timer rate, the same mechanism
used by RWDDM to explain this data. TD in any of its current versions lacks a
mechanism to explain these data.

4.7 ISI effect

The interval between CS onset and US onset is called Inter Stimulus Interval (ISI).
In general, measures of CR strength such as response frequency and amplitude de-
crease with longer ISIs (Smith, 1968; Gormezano, Kehoe and Marshall, 1983; Kehoe
and Macrae, 2002). Response timing is commonly analysed by using fixed interval
(FI) schedules of reinforcement, which rely on a fixed ISI. It is a well established
result that the peak in the response curve decreases with longer FIs (Catania and
Reynolds, 1968; Gibbon et al., 1997). However, the entire response curve approxim-
ately scales with FI. This is obtained by plotting different FI response curves as the
proportion of maximum response strength versus the proportion to FI, a normal-
ization procedure. The resultant normalized curves roughly superimpose (Rakitin
et al., 1998; Matell and Meck, 2000; Matell and Meck, 2004; Allman et al., 2014). This



4.7. ISI effect 87

is sometimes called scalar timing, and it is one of the manifestations of the more
general property of timescale invariance.

CSC-TD does not have a mechanism to explain either timescale invariance or the
ISI effect. Its more recent development, MS-TD, can approximately reproduce both
timescale invariance and the ISI effect. LeT is also a timescale invariant model, but
does not appear to show the decrease in response peak as a function of FI. MoT, at
least in its earlier version (Kirkpatrick, 2002), can reproduce both the ISI effect and
timescale invariance.

Simulations

To demonstrate how RWDDM can reproduce the ISI effect I have simulated a delay
conditioning procedure using three fixed interval stimuli. Figure 4.9 shows RWDDM
simulations with FIs 5, 10 and 20 seconds. The top left panel shows within-trial re-
sponse rate (given by equation (3.10)) averaged over 50 trials for each FI. The re-
sponse curves show the same pattern as the data (bottom panel) from the ISI effect:
a sigmoidal shape with a maximum that decreases as a function of FI duration. Note
that because the curves are averages of 50 trials, the noise is averaged out.

FIGURE 4.9: ISI effect. Top row: simulated average response rate
during CSs (left), associative strength over trials (middle), and su-
perimposition of response curves (right). Bottom row: average re-
sponse rate data from an FI experiment, redrawn from bottom right
panel of figure 4 in Kirkpatrick and Church, 2000. Model parameters:

m = 0.15, θ = 1, σ = 0.3, αt = 0.2, αV = 0.1, H = 5.

The top middle panel of figure 4.9 shows the associative strength acquisition
curves for each FI. Their asymptotic levels are given by equation (4.1). V∞ is approx-
imately a linear function of A∞, the TDDM slope. The different asymptotic levels of
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associative strength are responsible for the different response peaks in the left panel
of figure 4.9.

RWDDM also reproduces the superposition observed when FI response curves
are normalized by maximum response rate and time to reinforcement (top right
panel of figure 4.9).

Discussion

Gibbon and Balsam, 1981 attributed the ISI effect to the expectancy to reinforce-
ment. A specific reinforcer carries, according to their view, an amount of expectancy
H. This expectancy is spread back in time over the stimulus that signals US oc-
currence. Hence, for a CS of fixed duration T and US with expectancy amount H,
the total expectancy during the CS is hT = H/T. Our RWDDM account follows
the same principles. The time to reinforcement T is computed by the ratio between
the accumulation height at time of reinforcement Ψ(t∗) and the timer slope at the
current trial A(n). This leads to the asymptote of learning in equation 3.9 being
set to HAi(n)/Ψi(t∗). Superimposition of the response curves follows directly in
RWDDM from the nature of noise in the linear accumulator. This noise guarantees
that the time estimate produced by the model is timescale invariant (Simen et al.,
2013).

The ISI effect can also be explained by the TD model with the Presence represent-
ation (Sutton and Barto, 1990) and with the more recently developed Microstimuli
representation (Ludvig, Sutton and Kehoe, 2012). The Presence representation con-
sists of a single element x which has the value 1 when the CS is present, and 0 other-
wise. Its associative strength V is updated by the TD rule at every time step within a
trial. In longer trials (longer FIs) the strength V will decay more, since it is updated
more times in the absence of the US. This will lead to a lower asymptotic value for
V. However, Presence TD cannot account for the superimposition of intratrial re-
sponse curves. The CSC-TD fares even worse, unable to account for either ISI effect
or superimposition (see Ludvig, Sutton and Kehoe, 2012, for a comparison between
MS, CSC and Presence TD). The Microstimuli representation treats the stimulus as
if it were composed of many units activated in sequence. Their activations follow
a Gaussian shape which partially overlap. Later units have lower peaks and are
wider than earlier ones. Because the number of Microstimuli are fixed, in longer FIs
there is less temporal resolution which causes the US prediction to be lower than in
shorter FIs, so it can explain the ISI effect. MS-TD’s account of superimposition is
only partial, although clearly better than CSC and Presence-TD.

LeT in its current version lacks a mechanism to produce decreasing response
peaks with increasing FIs. But it can account very well for superimposition, since
its time representation is timescale invariant. The earlier version of Modular The-
ory, called Packet Theory, has been shown to produce the ISI effect (see top row of
figure 3 in Kirkpatrick, 2002). This prediction comes from longer interval durations
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decreasing the probability of response packet generation in the model. MoT is also
timescale invariant, so it generates superimposition quite easily.

To summarise, the ISI effect is explained either by time setting the asymptote
of learning (RWDDM) or by a time representation that gets more diffuse with time,
lowering the US prediction (MS-TD). Superimposition is explained either by the type
of noise in the linear accumulator (RWDDM, LeT) or by stimulus units which have
an approximately timescale invariant activation profile (MS-TD).

4.8 Mixed FI

Procedures where a stimulus signals reinforcement at more than one location in time
are called mixed FI or two-valued interval schedules. A mixed FI involves only one
CS which could be of short or long duration, and the subject has no way of know-
ing which duration it is currently experiencing until the US is delivered. Catania
and Reynolds, 1968 conditioned pigeons in a mixed FI and reported a pattern of re-
sponding during the long CS that resembles a combination of two distinct FIs (with
two peaks) when the separation between the intervals was in the ratio 8:1 but not
at smaller proportions. Cheng, Westwood and Crystal, 1993 found a similar result
(experiment 2) when the intervals were in 5:1 proportion and Leak and Gibbon, 1995
showed that with intervals in the 8:1 proportion the scalar property (measured by
the CV) holds approximately even for three-valued interval schedules. Whitaker,
Lowe and Wearden, 2003 ran three experiments with Mixed FIs in rats and found
two peaks with the same CV when the proportion between the durations was greater
than 4:1, but not for smaller proportions. They also found that the peak height at the
short duration was higher than at the long duration in most cases. Whitaker, Lowe
and Wearden, 2008 used intervals in the very small proportion 2:1 and still found
two peaks that became more distinct when the short interval was presented more
often than the long.

These results are interesting because they challenge in particular models of tim-
ing. They have served to provide evidence in favour of SET, and against BeT and
the first version of LeT (Leak and Gibbon, 1995). Subsequently, they provided mo-
tivation for the development of the current version of LeT Machado, Malheiro and
Erlhagen, 2009. LeT can now account for the multiple response peaks in Mixed
FIs, and their superimposition, but it cannot produce peaks with decreasing heights.
Modular Theory has the necessary mechanisms to account for all the features of the
data above. The TD models, MS and CSC, could both account for multiple peaks,
but their account of superimposition would vary, with MS being superior than CSC.
I show next that RWDDM can account for all features of the data in Mixed FIs.

Simulations

In this simulation one CS was used which was followed by reinforcement either after
15 or 75 seconds randomly chosen, a proportion of 5:1. My assumption was that in
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Mixed FI experiments subjects form two independent stimulus representations, one
for the short interval xS, and another for the long interval xL, each with its respect-
ive associative strength (VS, VL) and timer (ΨS, ΨL). At CS onset, both timers begin
timing, generating the two representations xS and xL, and at each point in time be-
haviour is guided by the representation with the highest activation value. When a
reinforcement occurs, the CS representation with the highest activation value is the
one to which credit is assigned.

The left panel of figure 4.10 shows the simulated responses averaged over 50 tri-
als of the long 75-second duration. Two peaks, centred roughly at 15 and 75 seconds,
of decreasing heights and increasing widths are clearly seen, matching roughly with
the data (right panel).

FIGURE 4.10: Mixed FI. Left: simulated response strength during
long trials. Right: response strength data from a mixed FI experiment,
redrawn from figure 3 in Leak and Gibbon, 1995. Model parameters:

αt = 0.2, αV = 0.1, µ = 1, σ = 0.425, m = 0.2, H = 30.

Discussion

RWDDM’s mechanism for dealing with mixed FIs is in essence the same as for single
FIs. The only difference is that instead of only one timer (and CS representation)
in Mixed FIs RWDDM uses as many timers (and CS representations) as rewards.
I have not however addressed explicitly how one CS can give rise to two distinct
representations. One possible explanation is that the slope adaptation rule (equation
(3.6)) is only applied when the difference between the two intervals is below a certain
amount. If the difference is above this amount, then the model would create a new
representation. In fact, the data reviewed here suggests that animals may not be able
to distinguish two intervals if they are in proportion below 2:1.

To the best of our knowledge, the only other model from our analysis set that has
tried to address the behaviour in mixed FIs is LeT. Machado, Malheiro and Erlhagen,
2009 have succeeded in obtaining the two peaks with the same CV using LeT. Their
account relies on a single accumulator in the form of a series of states activated at a
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fixed rate. This rate is fixed within a trial, but varies from trial to trial. After repeated
training with a mixed FI, the states around the reinforced times receive on average
more associative strength than the ones away from them. This activation pattern
generates the response peaks seen in the data. However, as the authors note, ‘in
mixed-FI schedules, the response rate [produced by LeT] at the first peak is equal
to or lower than the response rate at the second peak, but never higher,’ which is
the opposite of what the data shows. The authors suggest that a decaying arousal
function might need to be added to the model so as to allow response rate to decay
with interval duration.

Modular Theory is capable of accounting for the behaviour in Mixed FIs since
its pattern memory for time is based on SET, which has been shown to account for
these data (Leak and Gibbon, 1995). MoT’s account is similar to RWDDM’s in that
both rely on a separate accumulator (and memory) for each time of reinforcement.
CSC-TD would likely produce two peaks, since it relies on a perfect discretization
of time into as many units as time-steps. But the curves would not superimpose
when scaled as there is no mechanism to account for timescale invariance. MS-TD
would also account for the two peaks but superimposition would likely not be fully
obtained as its simulations of the ISI effect have only partially reproduced it (see
section 4.7 and Ludvig, Sutton and Kehoe, 2012).

4.9 VI and FI

Schedules of reinforcement specify the conditions of reinforcement delivery. There
are a number of different types of schedules, some are based on the time elapsed
between reinforcements, some on the number of responses emitted between rein-
forcements, but there can be other possibilities. Of particular interest for a timing
and conditioning model are the two most commonly used time-based schedules:
variable and fixed interval. Variable Interval schedules of reinforcement (VI) consist
in the delivery of a US following a CS that varies in duration from trial to trial. The
CS durations are usually derived from an arithmetic or geometric sequence. In con-
trast, Fixed Interval schedules of reinforcement (FI) use a CS of fixed duration in all
trials. Skinner and Ferster, 2015 reported that VIs tend to produce behaviour with a
constant rate throughout the trial, whilst FIs produce scalloped curves with a pause
following each reinforcement and a rapid increase in rate until the next reinforce-
ment.

Catania and Reynolds, 1968 performed a detailed analysis of behaviour under
VIs and found that response rate declined with the average reinforcement rate. Within
a trial response frequency increased with time, following approximately a negatively
accelerated curve. When normalized by maximum response rate and time to rein-
forcement, these curves showed a considerable degree of superimposition.
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Matell, Kim and Hartshorne, 2014 trained rats on a VI in which intervals were
sampled from an uniform distribution U (15, 45), and then tested using a peak pro-
cedure. They compared the VI response peak curve to the peak curve from a con-
trol group trained on an FI 30 (the mean of the VI distribution). Although the
two curves were not significantly different statistically, the VI response peak curve
peaked slightly earlier and was slightly higher than the control group.

Jennings et al., 2013 compared timing performance between VI and FI in three
experiments, but found VI timing only in a VI where the average interval was 30
seconds. The other experiments from the same paper produced results more in
agreement with the earlier work by Skinner and Ferster, 2015 showing a constant
rate of responding during VI trials.

Taken together, these studies appear to show that timing may sometimes be
present during VI schedules. In this case, animals appear to be learning the aver-
age of the interval distribution. Here I demonstrate with simulations that RWDDM
can account for such findings. The only other model in our analysis set that can
account for this result is Modular Theory.

Simulations

In this simulation a random VI was produced by sampling intervals from a discrete
uniform distribution U (15, 45). Non-reinforced peak trials of duration 135 seconds
were interspersed during the VI, with a probability of 0.25. Our assumption here is
that subjects will keep adapting the timer rate A over trials. In this case, equation
(3.6) calculates the exponential moving harmonic average of the CS durations. Since
it is a moving average, the predicted peak time will depend on the actual intervals
used and their presentation order, but the non-moving harmonic average of all inter-
vals is 27.1 seconds. This is earlier than the arithmetic average (30 seconds), which
is in line with the trend observed in the data by Matell, Kim and Hartshorne, 2014.

Figure 4.11 (top left panel) compares the response strength averaged over peak
trials in the VI and in a regular peak procedure with FI 30. The VI peak is higher
and slightly earlier (at roughly 29.68 sec) than the FI peak, matching roughly with
the data (bottom row). When normalized both by peak height and time the curves
show the superimposition (top right panel) also seen in the data.

Discussion

The model predicts a harmonic mean value for the position of the response peak,
which is always less than the arithmetic mean, but because it is a weighted moving
average the actual value may vary. As I saw in the simulations, the VI response curve
peaked at a value (29.68 sec) very near the arithmetic mean of the intervals (30 sec).
This may explain the trend observed in the data by Matell, Kim and Hartshorne,
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FIGURE 4.11: VI and FI. Top row: simulated average response
strength during peak trials (left), and the same data plotted after
both axes are normalized (right). Bottom row: average response
strength data from an experiment in VI and FI, redrawn from figure
1 in Matell, Kim and Hartshorne, 2014. Model parameters: αt = 0.1,

αV = 0.1, µ = 1, σ = 0.3, m = 0.2, H = 40.

2014. However, because that trend was not statistically significant, further experi-
ments would be needed to establish if the response peak during VIs is nearer to the
harmonic or the arithmetic mean.

Taken together, these results are more easily accommodated by theories that can
store an average of CS durations like RWDDM. Modular Theory is such an example,
since it also stores an average of intervals in its pattern memory. Other models such
as LeT and MS or CSC-TD would struggle with this result. The CS representation
in these models break down the CS into a sequence of units activated serially in
time. With a uniform distribution of CS durations associative strength would likely
be spread broadly over the weights that cover the interval, generating a broader
pattern of responses that would not be centred on the mean.
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4.10 Temporal Averaging

Although animals are able to time different durations simultaneously, as seen in
mixed FIs, paradoxically under certain circumstances a type of temporal averaging
can be observed. This is a relatively new and important phenomenon, which chal-
lenges in particular theories of timing to propose a mechanism that can explain such
averaging.

When rats are trained using two distinct stimulus modalities, a visual stimulus
(a light) and an auditory (a tone), each signalling reinforcement at a different time,
responding during compound presentations of both stimuli peaks roughly in the
middle of both durations (Swanton, Gooch and Matell, 2009). This intermediate
response curve to the compound superimposes with the two other single stimu-
lus curves when normalized, suggesting that the animal is timing only one average
duration. The type of average being computed appears to be modulated by the rein-
forcement probabilities associated with each stimulus duration, with the weighted
geometric average fitting the data better than a weighted arithmetic average or a
non-weighted average (Swanton and Matell, 2011; Matell and Henning, 2013; Ma-
tell and Kurti, 2014). Significantly, temporal averaging in rats is only consistently
observed when the auditory stimulus signals the short interval and the visual stim-
ulus signals the long interval (Swanton and Matell, 2011; Delamater and Nicolas,
2015). Even when each stimulus is associated with a different response option (light
reinforced with a left nosepoke, tone with a right) rats still tend to mix the temporal
information during compound trials (De Corte and Matell, 2016).

I do not make a strong claim about RWDDM’s ability to explain this data. Rather,
I show that it has the necessary elements from which an account can begin to be
formulated. MoT also has similar elements from which an account can be built. CSC-
TD, MS-TD and LeT do not appear to be equipped to deal with this phenomenon.

Simulations

In RWDDM the accumulator is the mechanism that marks the passage of time. The
temporal proximity to an event is determined by how close the level of accumula-
tion is to a fixed threshold value. A CS that signals reward later than another CS,
will have a lower rate (Alow) of accumulation than the shorter CS (Ahigh). Because in
RWDDM associative strength is set by time to reward, the two CSs will also have dif-
ferent associative strengths, Vlow and Vhigh respectively. We may assume that under
temporal averaging circumstances the stimuli are of such nature that they cause the
subject to integrate their information. At the start of the compound trials, the am-
biguity presented by the compound stimulus may cause the representations of the
two component stimuli to be only partially retrieved. If the subject fails to represent
the two stimuli separately, the result may be the formation of a single representa-
tion composed by only a fraction of the timing rate A and associative strength V of
each individual stimulus. The fractions are then added into one single rate and one
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single associative strength, and processed as if they were the components of a single
stimulus representation. For the simulation below, I assume that the fractions ad-
ded are exactly half of their individual values: Acompound = Alow/2 + Ahigh/2, and
Vcompound = Vlow/2 + Vhigh/2.

I used a long CS of duration 20 seconds and a short CS of duration 10. I simulated
a peak procedure with each CS and with the compound. A plot of the response
strength averaged over peak trials is shown in the top left panel of figure 4.12. The
three peaks scale when normalized (top right panel).

FIGURE 4.12: Temporal averaging. Top row: simulated response
strength averaged over peak trials in temporal averaging (left), and
the same data normalized by maximum response strength and peak
time (right). Bottom row: peak trial response strength data from an
experiment in temporal averaging, redrawn from figure 1 in Swan-
ton, Gooch and Matell, 2009. Model parameters: αt = 0.2, αV = 0.1,

µ = 1, σ = 0.35, m = 0.2, H = 30.

The peak of the compound is roughly at 13.33 sec, which would be the expected
value for an averaged rate A = (1/10 + 1/20)/2, the harmonic average of the inter-
vals. The height of the compound peak is also at an intermediate level between the
two end peaks. The simulations match roughly with the data (bottom row of figure
4.12)
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Discussion

The assumption I made here, that temporal averaging is the result of only one accu-
mulator being active during the compounds and fed with half the rate for each of the
stimuli, is plausible and can accommodate the main features of the data. However,
given the evidence from mixed FIs it seems animals are capable of keeping multiple
timers running in parallel, without averaging their rates. Also, if averaging of rates
always happened during compounds, then the explanation provided by RWDDM
for the left shift in the response curve in the compound peak procedure would not
hold. I suggest one possible way of interpreting these three phenomena based on a
failure of representation selection caused by the ambiguity of the signal. In mixed
FIs there is one single CS that signals two rewards at very different times. There is
not much ambiguity in how to interpret the signal, so the subject keeps two timers
running in parallel. In the case of compounds formed by individual CSs that signal
reward at the same time, as in the compound peak procedure, there is also not much
ambiguity. There’s very little difference between the time memories evoked by the
CSs, so choosing only one, the faster one, leaves no ambiguity as to which CS is
signalling reward. In the case of compounds formed by individual CSs of different
modalities that signal reward at different times, the ambiguity might be such that
cannot be resolved easily. The information from each CS may then be only partially
retrieved and added into one representation, resulting in temporal averaging.

As mentioned previously, this is not a strong account of the conditions that gen-
erate temporal averaging. But whatever the final word on this may be, RWDDM has
components that allow it to generate averaging and timescale invariance. However,
RWDDM predicts this average to be the harmonic mean, and not the geometric mean
weighted by reinforcement probabilities that has been frequently found (Swanton
and Matell, 2011; Matell and Henning, 2013; Matell and Kurti, 2014). Also, Matell
and Henning, 2013 reported evidence of summation of response rates during the
compound trials. In my simulations here I assumed that equal fractions were taken
of the rates of each CS, resulting in a combined non-weighted harmonic average of
rates, but different fractions (or weights) may be taken. In particular, the data in-
dicates that the weights are set by the reinforcement probabilities of each individual
stimulus. Since this information is stored in the associative strength V, we could
assume the subject integrates the two timer rates as follows:

Acompound =

(
Vlow

Vlow + Vhigh

)
Alow +

(
Vhigh

Vlow + Vhigh

)
Ahigh.

Although this would produce a weighted average, it is still a weighted harmonic av-
erage of the intervals and not a weighted geometric average found in the data, so the
account given by RWDDM would still be partial. As for the summation of response
rates observed in the compound trials, this could be explained by RWDDM if in-
stead of taking a fraction of the V values for each stimulus to form the Vcompound,
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the subject simply summed, or partially summed, both V values.
Another model that is equipped to deal with averaging is Modular Theory. If we

allow for one single accumulator fed by one half of each time memory, then MoT
would predict a peak of responding at the arithmetic mean of the two intervals. A
weighted average could also be obtained following the procedure I sketched above
for RWDDM. However, this would yield a weighted arithmetic mean, and not the
weighted geometric mean obtained in the data. As for timescale invariance, MoT
relies on a noisy timer threshold whose mean is always a fixed proportion of the time
memory, with a standard deviation proportional to this mean. Therefore, timescale
invariance is guaranteed for all time memories, averaged or not.

LeT would not be able to explain temporal averaging without modifications.
It cannot change its average transition rate between states without compromising
timescale invariance. Without changing the transition rate it is difficult to see how
else LeT could account for a different timing in the presence of the compound. CSC-
TD and MS-TD also lack any mechanism that could be used to account for temporal
averaging.

4.11 Trace Conditioning

In a trace conditioning experiment the CS terminates before the occurrence of the US.
Pavlov, 1927 observed that in spite of the gap separating CS and US, conditioning
still occurred. This observation led him to formulate the theoretical construct of a
stimulus trace, a neural activity initiated by the stimulus and that persists for a while
after the stimulus has ended. This stimulus trace would bridge the gap between CS
and US, allowing the two stimuli to become associated.

CR frequency during the CS is usually lower in trace conditioning than in delay
conditioning (Cole, Barnet and Miller, 1995), but CR timing in trace conditioning is
less well understood. Buhusi and Meck, 2000 investigated timing by first training
animals on a trace conditioning procedure where the gap between CS and US was 30
seconds. Little or no CR was observed during the CS, but responding increased from
CS offset and reached a peak at the time the US was delivered. They then tested the
subjects by varying the duration of the CS. When the CS duration was shortened or
lengthened by 15 seconds the CR peak shifted to the left or to the right respectively
by roughly the same 15 seconds. This suggests that animals use the CS offset as a
signal to start timing the US occurrence.

Williams et al., 2016 used trace conditioning to evaluate whether the CS would
actually become inhibitory. They trained two groups of subjects, one group had USs
presented randomly during the intertrial period (but not during the trace gap), and
the other had a US-free intertrial period. Each group was subdivided into three dif-
ferent conditioning procedures: trace, delay and embedded (the US appeared a fixed
time after CS onset but before CS offset). In all groups and conditioning procedures



98 Chapter 4. Results

the CR peaked at the expected time of US. When tested for inhibition, using summa-
tion and retardation tests, the ITI US trace CS was found to be strongly inhibitory in
comparison to the no-ITI US trace CS. Furthermore, the whole CS appeared to have
become inhibitory, and not only its beginning.

The experiment by Williams et al., 2016 presents a challenge to learning models
that rely on a post-CS trace to explain trace conditioning. In TD models for example
this trace is called an eligibility trace (Sutton and Barto, 1998, p. 163). CSC and MS-
TD both predict that, in the case of an excitatory context (ITI USs) only the initial
part of the CS would become inhibitory. This is because the eligibility trace would
cause the later part of the CS, the most proximal to the US, to become excitatory, and
this excitation would propagate back with decreasing strength in such a way that
the early part of the CS would have zero or negative associative strength. The other
models evaluated here, LeT and MoT, because they rely on the linear operator rule
do not have a mechanism to explain inhibition.

RWDDM takes a different approach which does not require the use of an eligib-
ility trace. It treats the gap between CS offset and US onset as a separate stimulus,
with its own timer and associative strength. Under the ITI US condition, the context
would become excitatory and the CS (with its own timer and associative strength)
would become inhibitory for its entire duration. Below I present simulations of the
experiment in Williams et al., 2016 and show that RWDDM can reproduce the inhib-
ition in the CS obtained in the data.

Simulations

I simulated RWDDM with the same 2 × 3 factorial design as in Williams et al., 2016,
namely the two groups (no-ITI USs and ITI USs) and the three conditioning proced-
ures (embedded, delay and trace). For the purposes of timing, I split the trial into
three distinct parts: the ITI, the CS, and in the case of trace conditioning only, the
gap. In terms of stimulus representations, I split the stimuli as: the context, the CS,
and also only for trace conditioning, the gap. Therefore, the following arrangement
of timers and representations were used:

ITI The US at the end of the gap marked the beginning of the ITI and the CS onset
marked the end. The timer ACX,ITI was tuned to either the CS onset (no-ITI
USs) or the next US (ITI USs). VCX was updated at every US occurrence (ITI
USs) or at the end of the ITI (no-ITI USs).

CS At CS onset, two timers were started, one belonging to the CS, ACS, and another
belonging to the context ACX,CS. Both timers were tuned to either the US (em-
bedded and delay) or the CS offset (trace), at which time VCS and VCX were
updated.
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Gap In the case of trace conditioning only, CS offset marked the beginning of timers
ACX,Gap and AGap, both tuned to the US onset. At US onset, VCX and VGap were
updated.

The ITI lasted for 340 seconds, and the CS for 120 seconds. In embedded condi-
tioning the US appeared at 110 seconds, and in delay conditioning at 120 seconds. In
trace conditioning the gap lasted for 10 seconds. Figure 4.13 compares the response
strength obtained in the simulations (top panels) to those from the experimental data
(bottom panels).

FIGURE 4.13: Trace, embedded and delay conditioning. Top row:
simulated response strength averaged over 30 trials for the no-ITI
USs (left) and the ITI USs groups. Bottom row: experimental data
redrawn from figure 2 in Williams et al., 2016. Model parameters:

αt = 0.1, αV = 0.07, µ = 1, σ = 0.4, m = 0.15, H = 40.

Although all simulated response curves peak at the time of US onset, the differ-
ence in peak height between CS and gap is considerably larger in RWDDM than in
the data. This is due to the hyperbolic reward discounting in RWDDM (equation
(3.9)). The asymptotic value of associative strength is H/120 for the CS in delay
conditioning, H/110 for the CS in embedded conditioning and H/10 for the gap.
Hence, there is a 12-fold net associative strength difference between the gap and the
delay CS, and a 11-fold difference between gap and embedded CS.
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Figure 4.14 compares the associative strength of the trace conditioning CS in the
no-ITI US and ITI US groups. The CS in the ITI US group became considerably more
inhibitory (15 times more) than the CS in the No-ITI US group.

FIGURE 4.14: Simulated associative strength in trace conditioning.
The values for the CSs are: VCS = −1.23 for the ITI US group, and

VCS = −0.08 for the no-ITI US group.

Discussion

RWDDM produced similar response curves to the data in the embedded, delay and
trace conditioning experiments. It also produced a strong inhibitory CS in the trace
conditioning ITI USs group, and not in the no-ITI USs group, just as was obtained
in the actual experiments. This strong inhibition was due to the context being rein-
forced at an average rate of once every 30 secs during the ITI period. This caused
the context to acquire an associative strength of VCX ≈ H/30, which then competed
with the CS via the summation term inherited from the RW rule yielding a value of
VCS ≈ −H/30. In the case of the no-ITI USs group, the context acquired excitatory
associative strength only at the end of the gap, and even then only in competition
with another stimulus, the ‘gap CS’. It then underwent two decreases in strength,
one at the end of the ITI and another at the end of the CS. This very low value for
VCX made the CS only very slightly inhibitory in the no-ITI Uss group.

Here I have used a timer for each stimulus, but the simulations indicate that
this may have been superfluous. During CS presentation and the gap interval two
timers were run in parallel, but only one was actually needed. It would be more
parsimonious, and more plausible, that in those cases only one timer was responsible
for supplying temporal information to the two stimuli currently present.

Other models cannot easily explain the inhibition observed in the ITI USs trace
conditioning. Williams et al., 2016 simulated MS-TD on the same experiment and
found that it predicted a temporal pattern of increasing associative strength from CS
onset until offset, unlike the data. If however the MS-TD discount factor γ in equa-
tion (3.13) is allowed to vary between the ISI USs and no-ITI USs groups then a better
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match to the data is obtained. The same strategy could in principle be employed by
CSC-TD with similar results. As mentioned previously, LeT and MoT cannot explain
inhibition because of their choice of learning rule.

4.12 Summary of Results and Analysis

Table 4.3 summarizes the results from the simulations. RWDDM was able to repro-
duce the main features of the data in 9 out of the 11 experiments. In the other 2 the
model was able to partially account for the data.

To allow for comparison I have offered qualitative predictions for the other 4
models in table 4.3. It is important to note that for most of the 11 phenomena ana-
lysed here simulations using these models are not available in the literature. Al-
though I have tried my best to provide predictions based on our understanding of
these models, I have not actually simulated them. Therefore it is possible that in
some cases a model may produce results that I did not foresee if the right set of para-
meters is found or some of the assumptions are relaxed. It is also possible that some
simple modifications might allow the models to explain the data. I endeavoured
to point out some such modifications that seem likely to work when discussing the
simulation results above, but I do not make predictions based on them because the
purpose here is only to provide a comparison of the current mechanisms of each
model and therefore encourage future work on model improvement. With that in
mind, Modular Theory has fared best after RWDDM, being able to account for 7 out
of the 11 experiments. MS-TD and CSC-TD shared the second place with 4 out of
11. LeT came in last, able to account for 2 experiments. The last column of table
4.3 identifies the main mechanisms responsible for successfully accounting for each
phenomenon.
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TABLE 4.3: Summary of main simulation results and comparison
with other models. Notes: (1) if learning rate is allowed to vary; (2) if

discount factor is allowed to vary.

phenomenon RWDDM CSC-TD MS-TD LeT MoT explaining mechanism

Faster reac-
quisition

yes yes1 yes1 yes1 yes1 Time-adaptive stimu-
lus representation or
changes in learning
rate.

Time change
in extinction

yes no no no yes Separate rules for time
adaptation and associ-
ative strength.

Latent inhibi-
tion and tim-
ing

part. no no no no PH rule and separate
rules for time adapt-
ation and associative
strength.

Blocking with
diff. dura-
tions

part. yes yes no no RW rule and ability
to time any stimulus
or distributed time rep-
resentation.

Time spec. of
conditioned
inhibition

yes yes yes no no RW rule and concen-
trated memory for time
or distributed time rep-
resentation.

Compound
peak proced-
ure

yes no no yes yes Intertrial variability in
time estimation.

ISI effect and
superimposi-
tion

yes no part. part. yes Asymptote of assoc.
strength set by time
and accumulator noise
or time representation
that gets diffuse with
longer time.

Mixed FI yes part. part. part. yes Ability to generate
multiple time repres-
entations or a single
distributed time rep-
resentation.

VI and FI yes no no no yes Memory that stores av-
erage of intervals.

Temporal av-
eraging

yes no no no yes Memory that stores av-
erage of intervals and
the accumulator.

Trace condi-
tioning

yes yes2 yes2 no no RW rule and TD dis-
count factor.
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Chapter 5

Discussion

5.1 RWDDM Mechanisms

RWDDM was able to reproduce faster reacquisition due to its memory for time being
conserved during extinction. This memory is used to activate the stimulus repres-
entation. Learning is slower in acquisition because RWDDM increases the activation
in the stimulus representation gradually over the trials. The stimulus representation
needs to be ‘built up’ first, and this process depends on learning the timing of the
US. Extinction eliminates associative strength but leaves the time memory, hence the
stimulus representation, intact. Reacquisition proceeds faster because the stimulus
representation does not need to be built up again. Other models explain this by
allowing the associative strength learning rate to be faster in reacquisition.

Time change in extinction was accounted for because of RWDDM’s ability to
time CS duration independently from US associations. Time is learned entirely by
time markers. The TD models and LeT do not make this separation. These models
do not have a mechanism to time stimuli without the US stamping in the changes.

Improved timing in latent inhibition was also accounted by RWDDM’s ability to
learn timing independently of associations. Preexposure allows the model to build
its time representation, which is later expressed by behaviour during the acquisition
phase. The only other model that learns to time independently of associations is
MoT, but it does not have a mechanism to explain the latent inhibition effect. The
latent inhibition effect alone, i.e. the initial decrement in the acquisition curve of
a preexposed stimulus, was made possible in RWDDM by using the P-H rule to
change the learning rate for associative strength. The use of the P-H rule instead of
the RW would certainly have other theoretical implications for the general theory
I am introducing in this paper, but I have used it only in this case. I will make
further comments in the conclusion. Blocking with different durations was easily
accounted in one condition, the short blocked and long blocking CS. The blocking
effect in this condition followed from the summation term in the RW rule. For the
other condition, long blocked and short blocking CS, a straight application of the
model did not yield the results expected. But the experimental results leave open
the possibility that this might be a case of second-order conditioning, where the
summation term in RW does not play a role. In this case, RWDDM is well placed to
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explain the results, since it can time the whole sequence of stimuli. The only other
models capable of explaining these results were the TD models.

The time specificity in conditioned inhibition was very well accounted for by the
combination of the summation term in the RW rule, which allowed for inhibition to
develop, and the independent timing mechanism in RWDDM that allowed it to time
US omission. However, the alternative account provided by the different time rep-
resentation in the TD models was also successful. The other theories failed here for
the same reason as in blocking, they lack a rule like RW that can deal with compound
stimuli effects.

The response curves centred at the mean of intervals in the VI procedure was
well accounted by the ability of RWDDM to learn the average of intervals. This
ability is only present in Modular Theory, making it the only other model able to
account for the results here.

In the case of temporal averaging, RWDDM was able to account for the gen-
eral features of the phenomenon, namely a response curve that peaks at the average
of the intervals signalled by the compound stimulus. However, RWDDM predicts
the peak to be at the harmonic mean, whilst some experimental results suggest it
happens at the geometric mean. RWDDM’s account of temporal averaging was hy-
pothesised as the result of ambiguity in the signal. In trying to resolve whether the
compound should be treated as a single stimulus or as two separate stimuli, the
subject settles on using one accumulator that is fed partial timing information from
both stimuli. Other hypothesis might turn out to be more adequate, but this is one
possibility that fits well with the RWDDM framework. The only other model that
would produce averaging under the same hypothesis is MoT.

The classic ISI effect followed from two mechanisms in RWDDM. The lower re-
sponse curves during longer stimuli were explained by time setting the asymptote of
associative learning by hyperbolic delay discounting. The larger spread of response
curves during longer stimuli and the superimposition of normalised curves follows
from RWDDM’s timescale invariant time representation. The noise in RWDDM’s
accumulator decreases with the interval being timed in such a way that it results
in timescale invariance of the response curves. Modular Theory can also reproduce
all features in the data. This is because it relies on a timescale invariant response
rule function that generates less responding in longer intervals. LeT can account for
superimposition, but it does not have a mechanism to account for the lower curves
in longer stimuli. MS-TD can account for both elements because of the form of its
microstimuli representation.

The double peaks observed in the response curves during mixed FIs is explained
by RWDDM using simultaneous timing. It generates two different representations,
one for each reward. Thus, it can account for mixed FIs by the same principles used
to account for the ISI effect and simple FI schedules. Modular Theory takes the same
approach of simultaneous timing and is also successful. The TD models and LeT can
provide a partial account due to their distributed time representation. But timescale
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invariance of the peaks is not observed in CSC-TD and only approximately in MS-
TD. LeT produces the timescale invariance but not the decrease in peak height with
time.

The left shift of response curves seen in compound peak procedure and disinhib-
ition of delay was well accounted for by RWDDM. It did so because of intertrial vari-
ability in noise estimation. By choosing in every compound trial the time memory
that predicts reward sooner, RWDDM produces the left shift in response. The only
other models that can appeal to the same principle to explain it are LeT and MoT.

Inhibition in trace conditioning with an excitatory context was well accounted
for by RWDDM due to its RW rule and its ability to time any stimulus. The RW
rule accounted for the inhibition, due to competition between the CS and the CX,
the excitatory context. A well timed response during the gap was due to RWDDM’s
timer using the CS offset as a cue to start timing. The TD models can explain the
increased inhibition only if the γ discount factor is allowed to vary between the
excitatory and non-excitatory contexts. This is a plausible mechanism but it adds an
extra degree of freedom to these models, decreasing their parsimony. LeT and MoT
cannot explain any inhibition because they lack the summation term from the RW
rule.

5.2 Comparison with CSC-TD, MS-TD, LeT and MoT

The superiority of RWDDM and MoT in explaining the majority of the phenomena
analysed highlights the importance of some of their shared mechanisms. Both mod-
els have separate rules for updating time and associative strength. This makes them
capable of timing any stimuli, independent of changes in associative strength. Both
models represent psychological time as linearly related to physical time through the
theoretical construct of the accumulator. Their memory for time stores a moving av-
erage of the experienced intervals. They both allow for intertrial variability in time
estimation. Among their differences, only one proved crucial in discriminating the
two models in the experiments analysed here: the lack of a mechanism in MoT to
account for stimulus compounds. RWDDM uses the RW rule, which was developed
to deal with phenomena such as blocking and inhibition, whilst MoT uses the linear
operator, a historically earlier association rule that cannot handle compounds. This
was the single difference that caused the difference between MoT and RWDDM in
number of phenomena explained.

MS-TD came in third place in number of phenomena successfully explained, but
the gap between it and MoT was comparatively high, with MoT being almost twice
more successful than MS-TD. CSC-TD came just half a point below MS-TD. This is
certainly a result of their similarities. The only difference between these two TD
models is in their time representation. However, this different representation al-
lowed MS-TD to explain only one more phenomenon than CSC-TD, the ISI effect.
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Therefore, in the set of experiments analysed here MS-TD did not show a signific-
ant improvement on CSC-TD. This does not mean that MS-TD is not a significant
improvement on CSC-TD overall. Its superior account of timing is significant. But
the set of experiments chosen here are particularly challenging even for a dedicated
timing theory, so they raise the bar even higher. The strength of the TD models was
in accounting for compound phenomena of blocking and inhibition, due to their
RW rule for association. Their weaknesses was that they rely on changes in associ-
ative strength to express changes in timing. This prevented them from explaining
time change in extinction and improved timing in latent inhibition. They both lack a
memory to store the average of intervals, so they could not explain behaviour in VI
schedules. Finally, their lack of trial to trial variability in time estimation prevented
them from accounting for the left-shift in the compound peak procedure.

With respect to the number of successes only, LeT came in last. The results al-
lowed us to identify at least four limitations in LeT’s current formulation. The first is
that it ties its time representation to changes in associative strength. This prevented
it to explain time change in extinction and improved timing in latent inhibition. The
second limitation is that it relies on the linear operator rule for associative strength,
which prevented it from accounting for blocking and time specificity in conditioned
inhibition. Thirdly, its distributed memory for time does not store the average of
the intervals seen. This prevented it from accounting for the behaviour in VI. Lastly,
it doesn’t have a mechanism to explain the decrease in peak height of the response
curves with longer ISIs. However, as a timing model, LeT’s strength is in explaining
timescale invariance. If it can be made to overcome at least the weakness of its as-
sociative learning rule, for example by also adopting the RW to update associative
strength, LeT could be on a par with the TD models.

5.3 Limitations and Future Work

RWDDM faced a few problems in explaining the set of phenomena analysed here.
In latent inhibition the model was able to learn the timing for the preexposed CS,
but our choice of CS representation translates this into a response curve that does
not fully match the data. A better solution might involve a two-state CS represent-
ation, one state for the early stages of training and the other for the latter stages.
RWDDM could not account for the lack of blocking with a long blocked CS and a
short blocking CS. One possible solution that does not require changing the model is
to treat the blocking CS as a secondary reinforcer. A more difficult problem related to
asynchronous co-terminating CSs such as the ones used in the blocking experiment
analysed here, is that in its current formulation RWDDM cannot produce a stable
solution. Because RWDDM assigns a different learning asymptote for each CS in the
compound, it generates an inconsistent system of equations for V. How to fix this
remains an open problem. Finally, in temporal averaging RWDDM predicts a peak
in CR at the harmonic mean of the intervals, not at the geometric mean as has been
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observed in the data. More experiments might help to determine if the harmonic
average should indeed be ruled out as an explanation.

One relevant phenomenon that we did not explore here is the peak procedure. In
particular, Balci et al., 2009 have produced evidence that in the long peak trials anim-
als don’t stop responding immediately after the expected reward time, but instead
take a number of peak trials to learn to stop. The Gaussian function xi(Ψi) used as
the CS representation in RWDDM ensures that CR levels will begin to decrease after
Ψi(t) crosses threshold θ without any learning. To address the findings in Balci et al.,
2009 the RWDDM CS representation could be changed to a sigmoid, saturating after
the timer Ψ(t) crosses a first threshold. A second threshold could then be introduced
to mark the time to stop responding. When the timer crosses this stop threshold the
saturation process in the CS representation would stop and a decay process would
begin. This however would still be an incomplete account, as a mechanism would
be needed to explain the learning of the second threshold. But if such a CS represent-
ation was used, the model would also fit a larger body of data coming from studies
that analyse responding during individual trials of the peak procedure. Schneider,
1969 and subsequently Gibbon and Church, 1990 and others (Cheng and Westwood,
1993; Matell, Bateson and Meck, 2006) have argued that the pattern of responding is
better characterized not by a Gaussian but instead by an approximate square-wave
function, with a low-high-low response frequency pattern. It can be shown that by
introducing a stop threshold to the timer Ψi(t), the TDDM timer (used in RWDDM)
can fit the data on times of start and stop responding (Luzardo et al., 2017). Alternat-
ively, the accumulator Ψi(t) itself could be used as the CS representation, replacing
xi in equations (3.9) and (3.10). In this case, an upper absorbing boundary would
need to be set on the accumulator to prevent response strength increasing consider-
ably in the first few trials following a CS duration increase for example. Also, such
a choice of CS representation would cause within-trial responding to become linear,
rather than the more commonly observed sigmoidal pattern. If a sigmoidal response
curve is to be preserved, a different choice of response function would be required.

Another phenomenon that I did not address but deserves mention is the times-
cale invariance of the acquisition process (Gallistel and Gibbon, 2000). It refers to
the general finding that the number of trials required until an acquisition criterion
is met depends on the ratio of intertrial (or context) and trial durations, the I/T ra-
tio (Gibbon, 1977; Lattal, 1999; Holland, 2000). Gibbon and Balsam, 1981 provided
an account for this that postulates a decision process based on the reward expect-
ancy signalled by the stimulus versus the one signalled by the context. A ratio
between the two expectancies is calculated, and once the ratio exceeds a certain
value, acquisition starts. If the same postulate of a decision ratio of reward ex-
pectancies is made, RWDDM may account for the I/T ratio in a similar manner.
If we assume that animals time the interval between USs (the context or I dur-
ation) with rate AI(n) and also the CS duration as usual with rate AT(n), then
we can form the ratio r(n) = AT(n)/AI(n). As the number of trials n increases,
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the A rates converge to their asymptotic values, and the ratio r will converge to
AT/AI = (1/T)/(1/I) = I/T. This is essentially the same account given by Gibbon
and Balsam, 1981, with the timer rates AT and AI substituting Gibbon and Balsam’s
expectancies H/T and H/C.

At least three testable RWDDM predictions came out from the simulations re-
ported here. The first concerns blocking with different durations. A long blocked
CS will not be blocked by a short co-terminating blocking CS, and two peaks in re-
sponding will be observed during test trials with the blocked CS: one at the time the
short blocking CS would normally start, and another at the end of the blocked CS.
The second prediction is that conditioned inhibition is the exact opposite of excit-
ation. This means that the behaviour produced by inhibition is timed in the same
manner as in excitation. Finally, in temporal averaging the response peak in the
compound stimulus should be at the harmonic average, or weighted harmonic av-
erage. One prediction that did not come out of the simulations but that is worth
mentioning concerns time estimation during very early trials. Our assumption of a
low initial value for the accumulator rate A implies that in the initial trials durations
will be overestimated. A new experiment testing this prediction could help validate,
or invalidate, the model.

RWDDM is, to the best of our knowledge, the first time the RW associative learn-
ing rule is coupled with a accumulator-based timing theory. An important implica-
tion of this effort for associative learning is that it allows for a richer analysis of the
effects of timing in compound stimuli experiments. Here I have analysed blocking
and conditioned inhibition, but there is evidence suggesting time may have import-
ant effects in other cue-competition phenomena such as overshadowing (Kehoe and
James, 1983; Jennings, Bonardi and Kirkpatrick, 2007). Timing effects in compounds
has until now received somewhat little attention, with many published experimental
studies reporting only aggregate response measures. This is perhaps to be expected,
since most associative learning models that can handle compounds do not have any,
or a rich enough, time representation. RWDDM is an attempt at filling this theoret-
ical gap.

Another limitation of associative learning models is that they tend to simply pos-
tulate the timing features of the stimulus representation, without a detailed account
of how these can mechanistically arise and evolve. This is the case with the CS rep-
resentations of CSC-TD, MS-TD and others like C-SOP (Brandon, Vogel and Wag-
ner, 2003). RWDDM’s adaptive timer and time-adaptive CS representation provide
a fuller account of the timing mechanism and its dynamics. Another recent model
that provides this level of detail is the Timing from Inverse Laplace Transform (TILT,
Shankar and Howard, 2012; Howard et al., 2015). It can dynamically develop a
timescale invariant representation of stimulus history using a two-layer neural net-
work. It can also reproduce the important I/T ratio conditioning phenomenon, but
so far it has only been implemented with the linear operator rule for associative
learning, which precludes it from accounting for cue competition phenomena.
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The RWDDM architecture suggests that timing is largely independent of the pro-
cess of association formation and maintenance. Associations however, according
to RWDDM, depend on timing both to set the asymptote of associative strength
and to build the CS representation so that it can enter into association with the US.
Thus, RWDDM implies that interactions between timing and associative learning are
mainly one-directional. This appears to match roughly with experimental findings.
In a review Kirkpatrick, 2013 found that prediction error influenced measures of
time estimation only through changes in reward magnitude and devaluation, whilst
effects in the other direction included the appropriate timing of CRs from start of
conditioning, trial and intertrial durations affecting strength and probability of CR
occurrence, and cues with different temporal information affecting cue competition.

5.4 RWDDM and Machine Learning

Although not the focus of this work, it is interesting to note some implications of
RWDDM for the field of machine learning.

RWDDM’s learning rule is essentially the RW with hyperbolic delay reward dis-
counting. As such, it is an alternative to the TD reinforcement learning model. It is
a real-time model but, unlike TD, it does not require a large number of associative
units to represent time. This represents a significant economy in terms of computa-
tional resources. However, even though RWDDM only requires one associative unit
per stimulus, these units need to be specified in advance, i.e. it still requires a hard-
coded temporal representation. This was particularly evident in our simulations of
trace conditioning. This procedure required a relatively complex representation of
stimuli and timers. The context CX had three distinct timers: one active during the
ITI, another active during the CS and the third active during the gap. But these three
timers formed part of the same context associative unit. How can the model decide
on its own how to temporally ‘split’ the context in such a way?

In section 2.1.6 I reviewed the LSTM, the only machine learning architecture
currently able to learn a temporal representation directly from the data. RWDDM
has some similarities with the LSTM. RWDDM’s timer is analogous to the recurrent
activity of LSTM’s memory cell c. The memory cell’s activity range between [-1,1]
whilst RWDDM’s temporal representation x only between [0,1]. To bring RWDDM’s
activity within the same range one could use the associative strength V multiplicat-
ively, yielding cRWDDM = xV̇. To see how RWDDM could be used as a type of
LSTM, consider a time series prediction task where the goal is to predict the next
event in the series. Each event serves as the input for the ‘RWDDM memory cell’,
whose output is between [0,1], yRWDDM,t, analogous to the LSTM output. The er-
ror between yRWDDM,t and the event we are trying to predict is used to adjust the
weight of RWDDM (the slope of accumulation), in a similar manner as the forget
gate of an LSTM. Furthermore, the weight update rule used by RWDDM (equation
(3.4)) provides a more natural estimate of the timing error than LSTM’s original cost
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function (equation (2.78)). This is because RWDDM’s slope update rule is trying to
minimize the timing error, i.e. the discrepancy in time between its prediction and
the time of the actual event. Its error magnitude is proportional to the size of the
timing error, meaning that the number of trials needed to learn the correct time is
proportional to the size of the error. This is something that the cost function of a
LSTM does not capture. In LSTMs the magnitude of the error is the same whether
the prediction was off by one time step or, for example, 100. This slows down LSTM
learning considerably.

Although the parallels drawn above between RWDDM and LSTM are interesting
to consider in the context of LSTM improvement, they are far from being a recipe to
a new model. In particular, they leave open the role played by the input and output
gates, if any. They are also not sufficient to predict whether this LSTM/RWDDM
hybrid would be able to learn a temporal representation directly from the data. But
they may be used to help bring some of the insights gained from computational
modelling of animal interval timing and conditioning into LSTM research.

It is also interesting to consider what parallels can be drawn between RWDDM
and the current deep learning architectures. As we saw in section 2.1.6, by using
backpropagation it is possible to train a perceptron network composed of multiple
hidden layers. These deep networks have recently become highly successful in
learning data representations. Their powers of representation reside precisely on
their deep architecture, with each layer capable of representing separate features of
the data. This type of architecture does not appear to lend itself easily to the type of
timing data that RWDDM was built to explain. One way to begin to approach this
problem is to build a network with a single hidden unit, similar to the one postulated
by the S-D model of conditioning (see section 2.1.5 and figure 2.8). A hidden-unit
network like S-D can solve negative patterning (and the XOR problem) providing
a way to test the model experimentally. Adjusting the weights of this hidden-unit
RWDDM can be done by backpropagation so this would not be a challenge. The
problem is: how does the hidden unit process the time information coming from the
CSs? If the hidden unit does not interfere with timing, then hidden-unit RWDDM
would certainly account for negative patterning. But if it does, then there a principle
is needed to create the model. But even if a theoretic answer to this problem was
found, there does not seem to be any experimental studies on timing in negative
patterning to confirm or disprove the theory.

However it is at least conceivable that RWDDM timer units could be connected
in series, as a multiple layer perceptron network. For example, an event in the time
series would trigger the start of the input timer unit, which would increase and reach
its threshold value θ. This would trigger the start of the next (hidden) timer unit,
and so on. When the next event in the time series happens, this would generate the
error between the time this event happened and the time predicted by the currently
running timer. The error would be used to adjust the slope of all timers so that the
output of the last timer matches with the data. But it is not clear if this ‘deep timer’
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network would provide a superior prediction than a single timer.
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Chapter 6

Conclusion

In this thesis I introduced a new real-time model for classical conditioning and tim-
ing. The model combines elements from two theories, the Rescorla-Wagner condi-
tioning model and the TDDM interval timing theory.

I have simulated the model on 11 conditioning phenomena selected from the
literature, which collectively represent a particular challenge for any single model
to explain. The model was successful in accounting for 10, and can be made to
account for the rest if simple modifications are made. The mechanisms used by
other models of similar scope were evaluated to see if they could also account for the
data. The model that got closer to this level of success in this set of phenomena was
Modular Theory. This was due to MoT and RWDDM having a significant overlap in
terms of mechanisms. Both models use an accumulator to mark the passage of time.
Both models require only a single associative unit per stimulus that adapts to the
temporal information conveyed by the stimulus. Their main difference is that MoT
still uses the linear operator rule which precludes it from explaining blocking and
other compound phenomena, whilst RWDDM uses the RW rule which can account
for those phenomena. The same limitation is faced by TILT, a recent model that I did
not analyse but that shows promising results and has desirable timing properties.

RWDDM may be improved in several ways. It is quite likely that the asymptote
of learning may not be described by the simple inverse relationship to reinforce-
ment time that I assumed. In some of the experiments modelled here, response peak
seemed to decrease slower with ISI than our inverse relationship predicted. Func-
tions other than Gaussians might be used to represent the CS, which could better fit
the data in the case of latent inhibition for example. These and other theoretical is-
sues may be better elucidated by new experiments involving compound stimuli and
a manipulation of their durations, such as the experiments with blocking, compound
peak procedure and temporal averaging analysed here.

I have also adopted the P-H rule in one experiment, but have not explored its
application in the others. Making the P-H rule an integral part of RWDDM would
add one more parameter but it would also allow RWDDM to account for other pre-
exposure and attentional effects that the rule is designed to account. This is not a
difficult modification, and I have already shown it to be feasible.

RWDDM may be regarded, like TD, as a real-time extension of RW. Unlike TD
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and LeT, it does not require a number of associative units that grows linearly with
time. It adds to RW the powerful timing mechanism of TDDM. But also, by making
a link with a version of DDM, it shows that it may be possible to arrive at a unified
account of timing, conditioning and decision making.
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