
Report from Dagstuhl Seminar 14111

Combinatorics and Algorithmics of Strings
Edited by
Maxime Crochemore1, James Currie2, Gregory Kucherov3, and
Dirk Nowotka4

1 King’s College – London, GB, maxime.crochemore@kcl.ac.uk
2 University of Winnipeg, CA, j.currie@uwinnipeg.ca
3 Université Paris-Est – Marne-la-Vallée, FR, gregory.kucherov@univ-mlv.fr
4 Christian-Albrechts-Universität zu Kiel, DE, dn@zs.uni-kiel.de

Abstract
Strings (aka sequences or words) form the most basic and natural data structure. They occur
whenever information is electronically transmitted (as bit streams), when natural language text
is spoken or written down (as words over, for example, the Latin alphabet), in the process
of heredity transmission in living cells (through DNA sequences) or the protein synthesis (as
sequence of amino acids), and in many more different contexts. Given this universal form of
representing information, the need to process strings is apparent and is actually a core purpose
of computer use. Algorithms to efficiently search through, analyze, (de-)compress, match, encode
and decode strings are therefore of chief interest. Combinatorial problems about strings lie at
the core of such algorithmic questions. Many such combinatorial problems are common in the
string processing efforts in the different fields of application.

The purpose of this seminar is to bring together researchers from different disciplines whose
interests are string processing algorithms and related combinatorial problems on words. The
two main areas of interest for this seminar are Combinatorics on Words and Stringology. This
report documents the program and the outcomes of Dagstuhl Seminar 14111 “Combinatorics and
Algorithmics of Strings”.

Seminar March 9–14, 2014 – http://www.dagstuhl.de/14111
1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-

binatorics
Keywords and phrases combinatorics on words, string algorithms, automata
Digital Object Identifier 10.4230/DagRep.4.3.28
Edited in cooperation with Robert Mercaş

1 Executive Summary

Maxime Crochemore
James Currie
Gregory Kucherov
Dirk Nowotka

License Creative Commons BY 3.0 Unported license
© Maxime Crochemore, James Currie, Gregory Kucherov, and Dirk Nowotka

Processing strings efficiently is of concern in practically every application field. Understanding
the combinatorial properties of sequences is a prerequisite for designing efficient algorithms
on them. The Dagstuhl seminar 14111 has been concerned with exactly that: Combinatorics
and Algorithmics of Strings.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Combinatorics and Algorithmics of Strings, Dagstuhl Reports, Vol. 4, Issue 3, pp. 28–46
Editors: Maxime Crochemore, James Currie, Gregory Kucherov, and Dirk Nowotka

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WinnSpace Repository

https://core.ac.uk/display/151370920?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.dagstuhl.de/14111
http://dx.doi.org/10.4230/DagRep.4.3.28
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Maxime Crochemore, James Currie, Gregory Kucherov, and Dirk Nowotka 29

This Dagstuhl seminar was attended by 41 researchers from 12 countries representing the
two fields, algorithmics and combinatorics, about equally, although it needs to be mentioned
that the overlap of these two communities is rather large. Inviting these close communities
to Dagstuhl gave us the opportunity to start from substantial common ground and to work
on scientific problems right from the beginning. Given that background, tutorials or other
introductory sessions were not considered to be suitable elements for this seminar. Instead,
much time was spent for problem posing and solving sessions. This seminar has clearly been
research oriented.

The first seminar day, Monday, was entirely devoted to posing open problems. Based on
those, the participants were able to form interest groups and engage into research activities
early on. In the next days regular research talks and some more open problems were presented.
However, time slots for research work were also allocated. On the last day of the seminar,
Friday, we were able to already present some solutions to the problems posed in the beginning.
In general, it is not to be expected that research problems are solved within a week (and most
weren’t), but it illustrates the impact of the meeting on catalysing research and collaboration
between the participants.

The following two are great examples of such collaboration. Florin Manea asked about
the complexity of deciding whether or not two words u and w are k-binomial equivalent,
that is, is the number of occurrences of all scattered subwords up to length k equal in u

and w? Contributions by Paweł Gawrychowski (polynomial Monte-Carlo algorithm in the
logarithmic word-size RAM model), Juhani Karhumäki, and Wojciech Rytter (polynomial
time on a unit-cost RAM model), and discussions with Dominik Freydenberger and Manfred
Kufleitner finally led to the conclusion that the problem can be solved in polynomial time in
the logarithmic word-size RAM model. Another problem was posed by Juhani Karhumäki
and Michaël Rao (not present at the seminar) on the avoidability of shuffle squares. They
asked: Does there exist an infinite word over some finite alphabet which avoids all factors
that are a shuffle product of a word with itself? James Currie realized that shuffle squares
can indeed be avoided applying the Lovász Local Lemma in his argument. However, this
solution of avoidability in principle led to a proof for a very large alphabet, the size of which
being a number of more than 40 digits. A few days after this Dagstuhl seminar Mike Müller
improved that result by giving a rather low upper bound on the alphabet size of 10 on which
shuffle squares can be avoided using a resent result by Joseph Miller. In general, it has to be
noted that progress was made in many more areas and several papers in preparation were
announced already.

Another notable highlight of the seminar was a session dedicated to word equations.
Senior researchers of that particular research area, like Wojciech Plandowski and Volker
Diekert, and young protagonists, like Aleksi Saarela, Štěpán Holub, and Artur Jeż, who talked
about their recent efforts in developing the field, contributed and exchanged ideas. Such
a unique assembly of major experts in word equations and their contributions at Dagstuhl
was rather unique and a remarkable event.

In the light of such developments, it can be safely claimed that this seminar was a great
success. Given the quality of presentations on this seminar and the constructive intensity of
discussions, it is self-evident that a follow-up should be organised. We are grateful to all
participants for their contributions to this successful seminar as well as to the staff of Schloss
Dagstuhl for their great service.

14111

30 14111 – Combinatorics and Algorithmics of Strings

2 Table of Contents

Executive Summary
Maxime Crochemore, James Currie, Gregory Kucherov, and Dirk Nowotka 28

Overview of Talks, Open Problems, and Solutions
Near Real-Time Suffix Tree Construction via the Fringe Marked Ancestor Problem
Danny Breslauer . 32

Avoidability of Shuffle Squares
James D. Currie . 32

Hairpins and unambiguous context-free languages
Volker Diekert . 33

On The Minimum Number of Abelian Squares in a Word
Gabriele Fici . 34

On The Maximum Number of Abelian Squares in a Word
Gabriele Fici . 35

Are there better measures of compressibility than Empirical Entropy?
Johannes Fischer . 36

Two open problems on pattern languages
Dominik D. Freydenberger . 36

Decomposition to palindromes
Anna E. Frid . 37

Order-preserving pattern matching with k mismatches
Paweł Gawrychowski . 38

Algebraic properties of word equations
Štěpán Holub . 38

Local Recompression for Word Equations
Artur Jeż . 38

String Range Matching
Juha Kärkkäinen . 39

Sum of Digits of n and n2

Steffen Kopecki . 39

The Burrows-Wheeler Transform with Permutations
Manfred Kufleitner . 40

Text Indexing: Easy and Difficult
Moshe Lewenstein . 40

Testing k-binomial equivalence
Florin Manea . 41

k-Abelian Pattern Matching
Robert Mercaş . 41

Bell numbers modulo 8
Eric Rowland . 42

Maxime Crochemore, James Currie, Gregory Kucherov, and Dirk Nowotka 31

Maximum Number of Distinct and Nonequivalent Nonstandard Squares in a Word
Wojciech Rytter . 43

Parametric solutions of word equations
Aleksi Saarela . 43

Efficient generation of repetition-free words
Arseny M. Shur . 44

Participants . 46

14111

32 14111 – Combinatorics and Algorithmics of Strings

3 Overview of Talks, Open Problems, and Solutions

3.1 Near Real-Time Suffix Tree Construction via the Fringe Marked
Ancestor Problem

Danny Breslauer (University of Haifa, Israel)

License Creative Commons BY 3.0 Unported license
© Danny Breslauer

Joint work of Danny Breslauer; Giuseppe F. Italiano
Main reference D. Breslauer, G. F. Italiano, “Near Real-Time Suffix Tree Construction via the Fringe Marked

Ancestor Problem,” Journal of Discrete Algorithms, 18:32–48, 2013.
URL http://dx.doi.org/10.1016/j.jda.2012.07.003

We contribute a further step towards the plausible real-time construction of suffix trees by
presenting an on-line suffix tree algorithm that spends only O(log logn) time processing each
input symbol and takes O(n log logn) time in total, where n is the length of the input text.
Our results improve on a previously published algorithm that takes O(logn) time per symbol
and O(n logn) time in total. The improvements are obtained by adapting Weiner’s suffix tree
construction algorithm to use a new data structure for the fringe marked ancestor problem, a
special case of the nearest marked ancestor problem, which may be of independent interest.

3.2 Avoidability of Shuffle Squares
James D. Currie (University of Winnipeg, CA)

License Creative Commons BY 3.0 Unported license
© James D. Currie

A shuffle square is a word w such that for some word v = Πn
i=1ai = Πn

i=1bi with ai, bi 6=
ε, 1 ≤ i ≤ n− 1, an 6= ε, we can write

w = Πn
i=1(aibi).

We then write w ∈ v � v. On the first day of the 2014 Dagstuhl seminar, Combinatorics
and Algorithmics of Strings, J. Karhumäki asked the following question:

I Question 1. Are shuffle squares avoidable?

That is, whether for a large enough alphabet Σ, there is a word of Σω in which no factor
is a shuffle square. On the last day of the seminar, I pointed out that a very basic application
of the Lovász Local Lemma gives avoidability.

I Theorem 1. Shuffle squares are k-avoidable, where k = de95e.

Evidently, it would be desirable to have a construction, and it remained to bring k down
to some reasonable size. Much better bounds on the alphabet size (currently, k = 10) have
been obtained by Mike Müller, cleverly using the criterion of Miller, recently promoted by
Rampersad.

Probabilistic methods will also show that shuffle powers are avoidable. A shuffle r-power
is a word w ∈ x � p for some words x and p with p a prefix of x and |xp|/|x| ≥ r.

The question of minimal alphabet sizes for avoidability remains open, and a construction
is needed.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.jda.2012.07.003
http://dx.doi.org/10.1016/j.jda.2012.07.003
http://dx.doi.org/10.1016/j.jda.2012.07.003
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Maxime Crochemore, James Currie, Gregory Kucherov, and Dirk Nowotka 33

3.3 Hairpins and unambiguous context-free languages
Volker Diekert (Universität Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
© Volker Diekert

Joint work of Volker Diekert; Steffen Kopecki; Victor Mitrana
Main reference V. Diekert, S. Kopecki, V. Mitrana, “Deciding regularity of hairpin completions of regular

languages in polynomial time,” Information and Computation, 217:12–30, 2012.
URL http://dx.doi.org/10.1016/j.ic.2012.04.003

In DNA computing one deals with strings over the bases A, C, G, and T . The Watson-Crick
base pairing connects the bases A and T (resp. C and G) via hydrogen bonds; and the bases
A and T (resp. C and G) are complementary. On an abstract level, {A,C,G, T} forms a
finite alphabet with involution Σ. That is for each a ∈ Σ there is a unique a ∈ Σ such that
a = a for all a. In the case Σ = {A,C,G, T} we have A = T and C = G. A string of the
form γαβα, where α is not too short (say |α| ≥ 9), may create a hairpin during annealing.
This process may lead to elongation and denaturation; and new strings may occur as follows:

γ
α

β α

γ
α

β

α

γ
α

β

α
γ

γ
α

β

α
γ

original string hairpin bonded hairpin
completion

unraveled hairpin
completion

annealing elongation denaturation

In an abstract setting, a hairpin completion transforms a string γαβα into γαβα γ for
|α| ≥ κ where κ is some fixed small constant. This yields a transformation on formal
languages:

L 7→ H(L) = {γαβα γ ∈ Σ∗ | γαβα ∈ L}.

There is also a more symmetric (and more interesting) variant

L 7→ {γαβα γ ∈ Σ∗ | γαβα ∈ L ∨ αβαγ ∈ L}.

However, for simplicity of the presentation it is enough to consider the case L 7→ H(L). The
following two facts are known for regular languages L ⊆ Σ∗ by [1]:

Given a DFA for L with n states, we can decide in time O(n2) whether or not the hairpin
completion H(L) is regular.
If L is regular then H(L) is an unambiguous linear context-free language.

Analogous results hold also for the the symmetric variants, but proofs are much more
demanding and complexities increase. This leads to the following two problems where the
second one is motivated by our study of hairpin completions. Clearly, it has its interest in
formal languages theory in its own right.

I Question 2. Is the following problem PSPACE-complete? The input is an NFA for L with
n states. The question is whether or not the hairpin completion H(L) is regular.

I Question 3. Is the following problem decidable? The input is an unambiguous (linear)
context-free grammar G. The question is whether the generated language L(G) is regular.

14111

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.ic.2012.04.003
http://dx.doi.org/10.1016/j.ic.2012.04.003
http://dx.doi.org/10.1016/j.ic.2012.04.003

34 14111 – Combinatorics and Algorithmics of Strings

A positive solution of the second problem would show that the decidability of the regularity
for H(L) (for regular L) is merely a special case of a more general situation. There are many
more interesting open problems about hairpin formations, for example it is not known whether
or not regularity of the iterated hairpin completion of a singleton language is decidable. For
the exact statement of the problem and related questions we refer to [1, 2].

References
1 V. Diekert, S. Kopecki, and V. Mitrana. Deciding regularity of hairpin completions of

regular languages in polynomial time. In Information and Computation, 217:12–30, 2012.
2 L. Kari, S. Kopecki, and S. Seki. Iterated hairpin completions of non-crossing words. In

M. Bieliková et al. (editors) 38th Conference on Current Trends in Theory and Practice of
Computer Science, volume 7147 of LNCS, pages 337–348, 2012.

3.4 On The Minimum Number of Abelian Squares in a Word
Gabriele Fici (University of Palermo, IT)

License Creative Commons BY 3.0 Unported license
© Gabriele Fici

Joint work of Gabriele Fici; Aleksi Saarela

An abelian square is a word that can be written as uv, where v is obtained from u by
permuting letters (i.e., v is an anagram of u). Given an alphabet size k and an integer n, let
fk(n) be the least number of abelian square factors that a word of length n over an alphabet
of size k must contain. It is known that fk(n) = 0 for every n if k ≥ 4 [2], and it has been
conjectured by Mäkelä in 1992 that f3(n) = 3 for sufficiently large n, but this conjecture
seems hard to prove1. On the other side, it is easy to see that f1(n) = bn/2c. For the case
k = 2, we have partial results supporting the conjecture that f2(n) = bn/4c. More details
follow.

I Definition 1. A word w is Abelian Square Minimal (ASM) if no other word of the same
length over the same alphabet contains less abelian squares than w.

I Definition 2. An abelian square of the form a2i, for some letter a and integer i > 0, is
called a trivial abelian square.

We have proved the following result:

I Lemma 3. Let w be a binary word of length n containing only trivial abelian squares.
Then |AS(w)| ≥ bn/4c.

On the other hand, a sequence of binary words of length n containing only bn/4c distinct
abelian squares is easy to show (take a word with only one b, placed in the middle). Hence,
to prove that f2(n) = bn/4c, it is sufficient to prove the following:

I Conjecture 4. Let w be a binary ASM word of length |w| > 4. Then w contains only
trivial abelian squares.

1 Actually, Mäkelä asked if there exist arbitrarily large ternary words containing no abelian square of
length greater than 2 [3]. Rampersad performed computer searches yielding words of length at least
3160 satisfying this condition [4].

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Maxime Crochemore, James Currie, Gregory Kucherov, and Dirk Nowotka 35

Should the formula f2(n) = bn/4c be true, we would have that a longest binary word
containing only n abelian squares has length 4n+ 3. More precisely, it would be the word
a2n+1ba2n+1 or its complement b2n+1ab2n+1.

This is related to a conjecture of Fraenkel, Simpson and Paterson [1], who considered the
minimum number of inequivalent abelian squares (that is, having different Parikh vectors) in
a binary word:

I Conjecture 5. A longest word containing only n inequivalent abelian squares has length
4n+ 3, and has one of the forms: (ab)2n+1a, a2n+1ba2n+1 or their complements.

References
1 A. S. Fraenkel, J. Simpson, and M. Paterson. On weak circular squares in binary words. In:

CPM 1997, LNCS 1264, 76–82. Springer, 1997.
2 V. Keränen. Abelian squares are avoidable on 4 letters. In: ICALP 1992, LNCS 623, 41–52.

Springer-Verlag, 1992.
3 S. Mäkelä. Patterns in words. Master’s thesis, University of Turku, Finland, 2002.
4 N. Rampersad. Infinite sequences and pattern avoidance. Master’s thesis, University of

Waterloo, Canada, 2004.

3.5 On The Maximum Number of Abelian Squares in a Word
Gabriele Fici (University of Palermo, IT)

License Creative Commons BY 3.0 Unported license
© Gabriele Fici

An abelian square is a word that can be written as uv, where v is obtained from u by
permuting letters (i.e., v is an anagram of u). Given a word w of length n, we investigate
the maximum number of factors of w that are abelian squares. Contrarily to the case of
ordinary squares, where this number is linear in n, it is easy to show that a word of length n
can contain Θ(n2) many distinct abelian squares. Take for example wn = anbanban. For any
0 ≤ i, j ≤ n, if the factor aibanbaj has even length, then it is an abelian square. Therefore,
wn contains (n2 + 3n+ 1 + (−1)n)/2 many distinct abelian squares. This example motivates
us to search for infinite words all factors of which contain a quadratic (in their length) number
of distinct abelian squares.

I Definition 1. Let asw(n) denote the minimum number of distinct abelian squares in a
factor of w of length n. An infinite word w is Abelian Square Rich if asw(n) = Θ(n2).

Together with Julien Cassaigne, we proved that the Thue-Morse word (that is the fixed
point of the substitution µ : 0 7→ 01, 1 7→ 10) is Abelian Square Rich.

We raise the following question:

I Question 4. Is every Sturmian word Abelian Square Rich?

First, we can prove that a factor of a Sturmian word is an abelian square (resp. an abelian
k-power) if and only if both of its Parikh vector components are divisible by 2 (resp. by k).
Then, using standard techniques of Number Theory based on results of approximation of
irrationals by rationals, we can prove that the number of factors of length n of a Sturmian
word s that are abelian squares is, on average, linear in n. This implies the following result:

I Theorem 2. Let s be a Sturmian word. If s is k-power free for some k ∈ R+, then s is
Abelian Square Rich.

14111

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

36 14111 – Combinatorics and Algorithmics of Strings

For example, the Fibonacci word (that is the fixed point of the substitution φ : 0 7→
01, 1 7→ 0) is 5+

√
5

2 -power free, and therefore is Abelian Square Rich.
A slight different point of view consists in considering two abelian squares inequivalent if

they have different Parikh vectors, and not simply if they are different words [1]. Sturmian
words only have a linear number of inequivalent abelian squares, since they have abelian
complexity equal to 2 for every n > 0. Nevertheless, computations support the following
conjecture (also proposed by W. Rytter [2]).

I Conjecture 3. A word of length n contains O(n
√
n) many inequivalent abelian squares.

We propose the following open problem:

I Question 5. Let iasw(n) denote the minimum number of distinct inequivalent abelian
squares in a factor of w of length n. Does an infinite word w exist such that iasw(n) =
Θ(n
√
n)?

References
1 A. S. Fraenkel, J. Simpson, and M. Paterson. On weak circular squares in binary words. In:

CPM 1997, LNCS 1264, 76–82. Springer, 1997.
2 W. Rytter. Personal communication, 2014.

3.6 Are there better measures of compressibility than Empirical
Entropy?

Johannes Fischer (TU Dortmund, DE)

License Creative Commons BY 3.0 Unported license
© Johannes Fischer

Empirical entropy as a complexity measure is widely used in the analysis of data structures
and algorithms, although it does not capture very common types of text regularities. We ask
what one should expect from a better measure of compressibility, and propose a measure
based on longest common prefixes.

3.7 Two open problems on pattern languages
Dominik D. Freydenberger (Goethe-Universität Frankfurt am Main, DE)

License Creative Commons BY 3.0 Unported license
© Dominik D. Freydenberger

A pattern is a word α ∈ (Σ ∪X)+, where Σ and X are disjoint alphabets (of terminals and
variables, respectively). A pattern α generates the language

LNE,Σ(α) := {σ(α) | σ is a substitution},

where a substitution is a morphism σ : (Σ ∪X)+ → Σ+ with σ(a) = a for all a ∈ Σ.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Maxime Crochemore, James Currie, Gregory Kucherov, and Dirk Nowotka 37

3.7.1 Degrees of ambiguity

For every pattern α and every word w ∈ LNE,Σ(α), the degree of ambiguity of w (w. r. t. α)
is the number of distinct substitutions σ with σ(α) = w. The degree of ambiguity of α is
the maximal degree of ambiguity of any word w ∈ LNE,Σ(α). As shown by Mateescu and
Salomaa [1], for every k = 2m3n (m,n ≥ 0), a pattern with degree of ambiguity k can be
effectively constructed. For all other finite degrees of ambiguity, even the existence of such
patterns is unknown:

I Question 6. Are there patterns with degree of ambiguity k such that k is not of the form
k = 2m3n (m,n ≥ 0)?

3.7.2 Inclusion depth

For a pattern α, we define its inclusion depth IDΣ(α) as the largest n for which there exist
patterns β1, . . . , βn−1 with

Σ+ ⊃ LNE,Σ(β1) ⊃ · · · ⊃ LNE,Σ(βn−1) ⊃ LNE,Σ(α).

By definition, IDΣ(α) is always finite, and Luo [2] gives the lower bound IDΣ(α) ≥ 2|α| −
| var(α)| − 1, where var(α) is the set of variables in α. Apart from this, little is known about
IDΣ(α). In particular, the following question is open:

I Question 7. Given a pattern α, can we compute IDΣ(α)?

References
1 A. Mateescu and A. Salomaa, Finite Degrees of Ambiguity in Pattern Languages. RAIRO

ITA, 28(3–4):233–253, 1994.
2 W. Luo, Compute Inclusion Depth of a Pattern. In Proc. COLT 2005, LNAI 3559, pp. 689–

690, 2005.

3.8 Decomposition to palindromes
Anna E. Frid (Aix-Marseille University, FR)

License Creative Commons BY 3.0 Unported license
© Anna E. Frid

Joint work of Anna Frid; Svetlana Puzynina; Luca Q. Zamboni
Main reference A.E. Frid, S. Puzynina, L.Q. Zamboni, “On palindromic factorization of words,” Advances in

Applied Mathematics 50:737-748, 2013.
URL http://dx.doi.org/10.1016/j.aam.2013.01.002

Given a non-periodic infinite word, is it true that for each k it contains a factor (version:
a prefix) which cannot be decomposed as a concatenation of at most k palindromes? In
a 2013 paper with S. Puzynina and L. Zamboni, we have proved this conjecture for the
case of overlap-free words and for a wider class containing in particular the Sierpinski word.
However, the general case remains open, and moreover, there is no proof even for general
Sturmian words.

14111

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.aam.2013.01.002
http://dx.doi.org/10.1016/j.aam.2013.01.002
http://dx.doi.org/10.1016/j.aam.2013.01.002

38 14111 – Combinatorics and Algorithmics of Strings

3.9 Order-preserving pattern matching with k mismatches
Paweł Gawrychowski (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Paweł Gawrychowski

Joint work of Paweł Gawrychowski; Przemyslaw Uznanski
Main reference P. Gawrychowski, P. Uznanski, “Order-preserving pattern matching with k mismatches,” in Proc.

of the 25th Annual Symp. on Combinatorial Pattern Matching (CPM’14), to appear; pre-print
available as arXiv:1309.6453v2 [cs.DS].

URL http://arxiv.org/abs/1309.6453v2

We study a generalisation of the recently introduced order-preserving pattern matching, where
instead of looking for an exact copy of the pattern, we only require that the relative order
between the elements is the same. In our variant, we additionally allow up to k mismatches
between the pattern and the text, and the goal is to construct an efficient algorithm for
small values of k. For a pattern of length m and a text of length n, our algorithm detects an
order-preserving occurrence with up to k mismatches in O(n(log logm+ k log log k)) time.

3.10 Algebraic properties of word equations
Štěpán Holub (Charles University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Štěpán Holub

Joint work of Štěpán Holub; Jan Žemlička
Main reference Š. Holub, J. Žemlička, “Algebraic properties of word equations,” arXiv:1403.1951v1 [cs.FL], 2014.

URL http://arxiv.org/abs/1403.1951v1

In [1], Aleksi Saarela has introduced a new approach to word equations that is based on
linear-algebraic properties of polynomials encoding the equations and their solutions. We
develop further this approach and take into account other algebraic properties of polynomials,
namely their factorization.

It turns out, that a special factor of Saarela’s determinant corresponds to each length type
of a solution. This, in particular, allows to improve the bound for the number of independent
equations with minimal defect effect from quadratic to linear.

References
1 Aleksi Saarela. Systems of word equations, polynomials and linear algebra: A new approach.

CoRR, abs/1401.7498, 2014.

3.11 Local Recompression for Word Equations
Artur Jeż (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Artur Jeż

Main reference A. Jeż, “Recompression: a simple and powerful technique for word equations,” in Proc. of the 30th
Int’l Symp. on Theoretical Aspects of Computer Science (STACS’13), LIPIcs, Vol. 20, pp. 233–244,
2013.

URL http://dx.doi.org/10.4230/LIPIcs.STACS.2013.233

In this talk I will present an application of a simple technique of local recompression to word
equations. The technique is based on local modification of variables (replacing X by aX or
Xa) and iterative replacement of pairs of letters occurring in the equation by a ‘fresh’ letter,

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1309.6453v2
http://arxiv.org/abs/1309.6453v2
http://arxiv.org/abs/1309.6453v2
http://arxiv.org/abs/1309.6453v2
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1403.1951v1
http://arxiv.org/abs/1403.1951v1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.233
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.233
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.233
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.233

Maxime Crochemore, James Currie, Gregory Kucherov, and Dirk Nowotka 39

which can be seen as a bottom-up compression of the solution of the given word equation, to
be more specific, building an SLP (Straight-Line Programme) for the solution of the word
equation. Using this technique we give a new, independent and self-contained proofs of many
known results for word equations. To be more specific, the presented (nondeterministic)
algorithm runs in O(n logn) space and in time polynomial in n and logN , where n is the size
of the input equation and N the size of the length-minimal solution of the word equation.

The obtained algorithm is easy to explain and generalises to many extension of word
equations: free monoids with involution, free groups, context unification.

3.12 String Range Matching
Juha Kärkkäinen (University of Helsinki, FI)

License Creative Commons BY 3.0 Unported license
© Juha Kärkkäinen

Joint work of Juha Kärkkäinen; Dominik Kempa; Simon J. Puglisi
Main reference J. Kärkkäinen, D. Kempa, S. J. Puglisi, “String Range Matching,” in Proc. of the 25th Annual

Symp. on Combinatorial Pattern Matching (CPM’14), to appear.

Given strings X and Y the exact string matching problem is to find the occurrences of Y
as a substring of X. An alternative formulation asks for the lexicographically consecutive
set of suffixes of X that begin with Y . We introduce a generalisation called string range
matching where we want to find the suffixes of X that are in an arbitrary lexicographical
range bounded by two strings Y and Z. The problem has applications in distributed suffix
sorting, where Y and Z are themselves suffixes of X.

Exact string matching can be solved in linear time using constant extra space. The open
question is:

I Question 8. What is the time-space complexity of string range matching?

We have described algorithms for string range matching that have an extra logarithmic
factor in either the time or the space [CPM 2014].

I Question 9. Are there algorithms with a better time-space complexity? Or can one show
that string range matching cannot be solved in linear time and constant extra space?

3.13 Sum of Digits of n and n2

Steffen Kopecki (University of Western Ontario – London, CA)

License Creative Commons BY 3.0 Unported license
© Steffen Kopecki

Joint work of Steffen Kopecki; Thomas Stoll
Main reference K.G. Hare, S. Laishram, T. Stoll, “The sum of digits of n and n2,” International Journal of

Number Theory, 07(7):1737–1752, 2011.
URL http://dx.doi.org/10.1142/S1793042111004319

I am presenting a problem that has been presented on last year’s workshop Challenges in
Combinatorics on Words at the Fields Institute by Thomas Stoll. Since last year we made
some progress in solving the problem, but despite our efforts there are still some cases left
open.

For n ∈ N, let s2(n) denote the sum of digits in the binary expansion of n. In other
words, if s2(n) = k, then n can be written as n = 2r0 + 2r1 + · · · + 2rk−1 for integers

14111

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
J. K�rkk�inen, D. Kempa, S.\protect \kern +.1667em\relax J. Puglisi, ``String Range Matching,'' in Proc. of the 25th Annual Symp. on Combinatorial Pattern Matching (CPM'14), to appear.
J. K�rkk�inen, D. Kempa, S.\protect \kern +.1667em\relax J. Puglisi, ``String Range Matching,'' in Proc. of the 25th Annual Symp. on Combinatorial Pattern Matching (CPM'14), to appear.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1142/S1793042111004319
http://dx.doi.org/10.1142/S1793042111004319
http://dx.doi.org/10.1142/S1793042111004319

40 14111 – Combinatorics and Algorithmics of Strings

0 ≤ r0 < r1 < · · · < rk−1. For k ∈ N, we are investigating the set of positive odd integers n
which satisfy the equation s2(n) = s2(n2) = k. We let

Sk = {n odd | s2(n) = s2(n2) = k}

and ask the question for which numbers k ∈ N the set Sk is infinite. Our investigation is
restricted to odd numbers because for every odd number n which satisfies the equation, there
is an infinite family of even numbers {n · 2i | i > 0} which satisfy the equation as well.

From [1] we obtain that
for k = 1, . . . , 8 the set Sk is finite, and
for k = 12, 13 and k ≥ 16 the set Sk is infinite.

Furthermore, since last year’s workshop, we could prove that
for k = 9, 10 the set Sk is finite.

I Question 10. Is the set Sk finite or infinite for k = 11, 14, 15.

References
1 K.G. Hare, S. Laishram, and T. Stoll. The sum of digits of n and n2. International Journal

of Number Theory, 7(07):1737–1752, 2011.

3.14 The Burrows-Wheeler Transform with Permutations
Manfred Kufleitner (Universität Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
© Manfred Kufleitner

We present a new variant of the Burrows-Wheeler Transform (BWT). It involves an action
of a group G on an ordered alphabet Σ. We write ag for the letter obtained by applying the
element g ∈ G to a ∈ Σ. For u = a1 · · · an we let ug = ag1 · · · agn be the homomorphic extension
to words u ∈ Σ∗. Let ũ denote the lexicographically minimal element in {ug | g ∈ G}. Let
(ṽ1, . . . , ṽn) be the sorted list of the conjugates vi of u. The BWT with permutations (BWTP)
of u is BWTPG(u) = (w, i, g) where w is the sequence of the last letters in the sorted list of
the words ṽi, the number i is an index with ũ = ṽi, and g ∈ G satisfies ũ = ug. It is easy to
show that BWTP is injective. It would be desirable to find efficient algorithms for computing
the BWTP and its inverse. Moreover, for some fixed compression algorithm, it would be
interesting to identify the groups G such that BWTPG(u) compresses best; this could help
in revealing hidden symmetries of u.

3.15 Text Indexing: Easy and Difficult
Moshe Lewenstein (Bar-Ilan University – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Moshe Lewenstein

Joint work of Amihood Amir; Timothy Chan; Moshe Lewenstein; Noa Lewenstein

Text indexing refers to the problem of preprocessing a text for future queries. The goal is to
construct a data structure quickly in minimum space in order to answer queries quickly.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Maxime Crochemore, James Currie, Gregory Kucherov, and Dirk Nowotka 41

For exact match queries data structures, such as suffix trees, suffix arrays, and others,
are well known to be constructible in linear time and space for later linear (pattern length)
queries.

We first show several examples where this is still the case for extended query definitions.
We then show an interesting separation between the definition of sum-queries and product-
queries. For small constant sized alphabet 1, . . . , c sum-queries is solvable efficiently. On
the other hand, we show that product-queries, under the 3SUM-Hardness assumption, need
either O(n2) preprocessing time or O(n) query time.

This has consequences for the problem of histogram (or jumbled) indexing which has
garnered much interest lately.

3.16 Testing k-binomial equivalence
Florin Manea (Universität Kiel, DE)

License Creative Commons BY 3.0 Unported license
© Florin Manea

Joint work of Dominik Freydenberger; Paweł Gawrychowski; Juhani Karhumäki; Manfred Kufleitner; Florin
Manea; Wojciech Rytter

The binomial coefficient of two words u and v is the number of times v occurs as a scattered
factor of u, and it is denoted as

(
u
v

)
. Two words u and w over an alphabet Σ are k-binomial

equivalent if
(
u
v

)
=

(
w
v

)
for all words v ∈ Σ≤k. In this setting, it seems interesting to show that

one can decide in polynomial time for a pair of words u and w and a number k whether u and
w are k- binomial equivalent. As a first result, Paweł Gawrychowski showed that the problem
can be solved efficiently by a polynomial Monte-Carlo algorithm in the logarithmic word-size
RAM model. Then, Juhani Karhumäki and Wojciech Rytter noted that the problem can
be reduced at the problem of testing whether two nondeterministic finite automata without
λ-transitions are path equivalent. It is known that this problem can be solved in polynomial
time on a unit-cost RAM model. Further discussions involving Dominik Freydenberger and
Manfred Kufleitner led to a final solution of this problem, concluding that in fact the problem
can be solved in polynomial time in the logarithmic word-size RAM model. As an open
problem, we ask the following:

I Question 11. What is the complexity of finding, for two words w and u and a number k
all the factors of w that are k-binomial equivalent to u. Can this problem be solved more
efficiently than just checking whether each factor of w is k-binomial equivalent to u?

3.17 k-Abelian Pattern Matching
Robert Mercaş (Universität Kiel, DE)

License Creative Commons BY 3.0 Unported license
© Robert Mercaş

Joint work of Thorsten Ehlers; Florin Manea; Robert Mercaş; Dirk Nowotka
Main reference T. Ehlers, F. Manea, R. Mercaş, D. Nowotka, “k-Abelian Pattern Matching,” in Proc. of the 18th

Int’l Conf. on Developments in Language Theory (DLT’14), to appear.

Two words are called k-abelian equivalent, if they share the same multiplicities for all
factors of length at most k. We present an optimal linear time algorithm for identifying all
occurrences of factors in a text that are k-abelian equivalent to some pattern P . Moreover,

14111

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
T. Ehlers, F. Manea, R. Merca{�}, D. Nowotka, ``k-Abelian Pattern Matching,'' in Proc. of the 18th Int'l Conf. on Developments in Language Theory (DLT'14), to appear.
T. Ehlers, F. Manea, R. Merca{�}, D. Nowotka, ``k-Abelian Pattern Matching,'' in Proc. of the 18th Int'l Conf. on Developments in Language Theory (DLT'14), to appear.

42 14111 – Combinatorics and Algorithmics of Strings

an optimal algorithm for finding the largest k for which two words are k-abelian equivalent
is given. The complexity of algorithms for online versions of the k-abelian pattern matching
problem is also considered. In particular we show results regarding the investigation of the
pattern matching problem for k-abelian equivalences in the setting of online algorithms, and
propose a series of real-time solutions of this problem. One of the questions we propose is to:

I Question 12. Identify an optimal linear time complexity algorithm for the pattern matching
problem for k-abelian equivalences.

We also show results for an extended form of k-abelian equivalence.

3.18 Bell numbers modulo 8
Eric Rowland (University of Liège, BE)

License Creative Commons BY 3.0 Unported license
© Eric Rowland

The nth Bell number B(n) is the number of partitions of an n-element set. The sequence
B(n)n≥0 is 1, 1, 2, 5, 15, 52, 203, 877,

I Question 13. Is it true that B(n) is not divisible by 8 for all n ≥ 0?

Experiments suggest that (B(n) mod 8)n≥0 is a 2-automatic sequence, meaning that
there is a deterministic finite automaton with output that outputs B(n) mod 8 when fed the
standard base-2 representation of n. Recently, Yassawi and I [2] showed how to automatically
compute automata for many sequences modulo prime powers, thereby giving such congruences
purely mechanically. However, the sequence of Bell numbers appears to not be accessible by
this method.

During the workshop, Mike Müller found a paper of Lunnon, Pleasants, and Stephens [1]
which shows that (B(n) mod pα)n≥0 is in fact periodic. Modulo 8, the sequence of Bell
numbers has period 24. Computing the first 24 terms then gives a proof that no Bell
number is divisible by 8. Also, no Bell number is congruent to 6 modulo 8. A comment in
the OEIS entry for the Bell numbers, https://oeis.org/A000110, referencing the Lunnon–
Pleasants–Stephens paper has been clarified with the proper theorem. Steffen Kopecki found
an independent proof, using a Pascal-like triangle for the Bell numbers.

References
1 W.F. Lunnon, P.A.B. Pleasants and N.M. Stephens, Arithmetic properties of Bell numbers

to a composite modulus I, Acta Arithmetica 35 (1979) 1–16.
2 Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions,

to appear in Journal de Théorie des Nombres de Bordeaux, available from http://arxiv.org/
abs/1310.8635.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://oeis.org/A000110
http://arxiv.org/abs/1310.8635
http://arxiv.org/abs/1310.8635

Maxime Crochemore, James Currie, Gregory Kucherov, and Dirk Nowotka 43

3.19 Maximum Number of Distinct and Nonequivalent Nonstandard
Squares in a Word

Wojciech Rytter (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
© Wojciech Rytter

Joint work of Tomasz Kociumaka; Jakub Radoszewski; Wojciech Rytter; Tomasz Waleń
Main reference T. Kociumaka, J. Radoszewski, W. Rytter, T. Waleń, “Maximum Number of Distinct and

Nonequivalent Nonstandard Squares in a Word,” in Proc. of the 18th Int’l Conf. on Developments
in Language Theory (DLT’14), to appear.

The combinatorics of squares in a word depends on how the equivalence of halves of the
square is defined. We consider Abelian squares, parameterized and order-preserving squares.
The word uv is an Abelian (parameterized, order-preserving) square if u and v are equivalent
in the Abelian (parameterized, order-preserving) sense. The maximum number of ordinary
squares is known to be asymptotically linear, but the exact bound is still investigated.

We present several results on the maximum number of distinct squares for nonstandard
subword equivalence relations. Let SQAbel(n, k) and SQ′Abel(n, k) denote the maximum
number of Abelian squares in a word of length n over alphabet of size k, which are distinct
as words and which are nonequivalent in the Abelian sense, respectively.

We prove that

SQAbel(n, 2) = Θ(n2), SQ′Abel(n, 2) = Ω(n1.5/ logn) .

We also give linear bounds for parameterized and order-preserving squares for small
alphabets:

SQparam(n, 2) = Θ(n), SQop(n,O(1)) = Θ(n) .
As a side result we construct infinite words over the smallest alphabet which avoid nontrivial
order-preserving squares and nontrivial parameterized cubes (nontrivial parameterized squares
cannot be avoided in an infinite word).

3.20 Parametric solutions of word equations
Aleksi Saarela (University of Turku, FI)

License Creative Commons BY 3.0 Unported license
© Aleksi Saarela

By Hmelevskii’s theorem [1], every constant-free word equation on three unknowns has a
parametric solution. In [3], an exponential upper bound was proved for the length of such a
parametric solution.

I Question 14. How many parametric formulas do we need in such a solution, at most?

The best known lower bound for the number of formulas is three: The equation xyxzyz =
zxzyxy has a parametric solution

(x, y, z) = (p, q, ε), (x, y, z) = (p, q, pq), (x, y, z) = (pi, pj , pk),

but it can be proved that it does not have a parametric solution with just two formulas. As
another example, consider the equation xy = zn. It has a parametric solution with dn/2e
formulas, but it is not known whether this is optimal.

The above-mentioned equation xyxzyz = zxzyxy is also related to the following big open
problem:

14111

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
T. Kociumaka, J. Radoszewski, W. Rytter, T. Wale�, ``Maximum Number of Distinct and Nonequivalent Nonstandard Squares in a Word,'' in Proc. of the 18th Int'l Conf. on Developments in Language Theory (DLT'14), to appear.
T. Kociumaka, J. Radoszewski, W. Rytter, T. Wale�, ``Maximum Number of Distinct and Nonequivalent Nonstandard Squares in a Word,'' in Proc. of the 18th Int'l Conf. on Developments in Language Theory (DLT'14), to appear.
T. Kociumaka, J. Radoszewski, W. Rytter, T. Wale�, ``Maximum Number of Distinct and Nonequivalent Nonstandard Squares in a Word,'' in Proc. of the 18th Int'l Conf. on Developments in Language Theory (DLT'14), to appear.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

44 14111 – Combinatorics and Algorithmics of Strings

I Question 15. How long sequences E1, . . . , En of non-trivial word equations on three
unknowns do we have such that the systems E1, . . . , Ei (i = 1, . . . , n) are pairwise non-
equivalent and have non-periodic solutions?

The best known example is the sequence xyz = zxy, xyxzyz = zxzyxy, xz = zx. For
more information, see [2].

References
1 Ju. I. Hmelevskĭı. Equations in free semigroups. American Mathematical Society, 1976.

Translated by G. A. Kandall from the Russian original: Trudy Mat. Inst. Steklov. 107
(1971).

2 Juhani Karhumäki and Aleksi Saarela. On maximal chains of systems of word equations.
Proc. Steklov Inst. Math., 274:116–123, 2011.

3 Aleksi Saarela. On the complexity of Hmelevskii’s theorem and satisfiability of three un-
known equations. In Proceedings of the 13th DLT, volume 5583 of LNCS, pages 443–453.
Springer, 2009.

3.21 Efficient generation of repetition-free words
Arseny M. Shur (Ural Federal University – Ekaterinburg, RU)

License Creative Commons BY 3.0 Unported license
© Arseny M. Shur

When some repetition is proved to be avoidable over some alphabet, we usually get an explicit
construction of infinite repetition-free words. Normally, such constructions are based on
substitutions satisfying certain restrictions (in the simplest case, just on morphisms). As a
result, the obtained words have some “additional” properties, like ultimate recurrence, which
do not follow from repetition-freeness. Hence it is quite useful to have a generator which can
produce any word from a given repetition-free language. Such generators can rely on the
general “local resampling” idea used by Moser and Tardos for the constructive proof of the
Lovasz Local Lemma [2].

An algorithm for square-like repetitions was first proposed by Grytczuk, Kozik, and
Witkowski [1] and reformulated for squares by Rampersad. We modified this algorithm
to convert random words over Σk = {1, . . . , k} to square-free words over Σk+1; this can
be done more efficiently than the conversion over the same alphabet. Without falling into
implementation details, our algorithm works as follows. On each step, one letter is appended
to the right end of the square-free word under construction. If the resulting word ends with
a square, then the right half of this square is dismissed, otherwise we just proceed to the
next step. To get the letter for appending, we take a random letter over Σk, say i, sort the
letters of Σk+1 by the recency of their last occurrence in the square-free word, and take the
(i+1)th element of the sorted list.

We proved the following

I Theorem 1. The expected number of random k-ary letters used by the above algorithm to
construct a (k+1)-ary square-free word of length n is

N = n(1 + 2/k2 + 1/k3 + 4/k4 +O(1/k5)) +O(1).

Thus, if k is not small, then the algorithm converts random words to square-free words of
nearly the same length. However, for the extremal case of ternary square-free words we have

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Maxime Crochemore, James Currie, Gregory Kucherov, and Dirk Nowotka 45

no theoretical bound on the conversion rate. From experiments we learned that the expected
value of N is linear in n in this case and, moreover, N ≈ 12.5n. The following problems
naturally develop the obtained results.

I Question 16. Give an upper bound on the conversion ratio of the above algorithm for the
case of ternary square-free words.

I Question 17. Give efficient algorithms generating cube-free words; words, avoiding frac-
tional powers; Abelian square-free words.

References
1 J. Grytczuk, J. Kozik, and M. Witkowski. Nonrepetitive sequences on arithmetic progres-

sions. Electronic J. Combinatorics, 18(1):# P209, 2011.
2 R.A. Moser and G. Tardos. A constructive proof of the general Lovász local lemma. Journal

of the ACM, 57:11:1–11:15, 2010.

14111

46 14111 – Combinatorics and Algorithmics of Strings

Participants

Dany Breslauer
University of Haifa, IL

Julien Cassaigne
CNRS – Marseille, FR

Julien Clément
Caen University, FR

Maxime Crochemore
King’s College London, GB

James D. Currie
University of Winnipeg, CA

Volker Diekert
Universität Stuttgart, DE

Gabriele Fici
University of Palermo, IT

Johannes Fischer
TU Dortmund, DE

Dominik D. Freydenberger
Goethe-Universität Frankfurt am
Main, DE

Anna E. Frid
Aix-Marseille University, FR

Paweł Gawrychowski
MPI für Informatik –
Saarbrücken, DE

Amy Glen
Murdoch University, AU

Štěpán Holub
Charles University – Prague, CZ

Artur Jeż
MPI für Informatik –
Saarbrücken, DE

Juha Kärkkäinen
University of Helsinki, FI

Juhani Karhumäki
University of Turku, FI

Steffen Kopecki
University of Western Ontario –
London, CA

Gregory Kucherov
University Paris-Est –
Marne-la-Vallée, FR

Manfred Kufleitner
Universität Stuttgart, DE

Gad M. Landau
University of Haifa, IL

Alessio Langiu
King’s College London, GB &
University of Palermo, IT

Thierry Lecroq
University of Rouen, FR

Moshe Lewenstein
Bar-Ilan University, IL

Florin Manea
Universität Kiel, DE

Giancarlo Mauri
University of Milan-Bicocca, IT

Robert Mercaş
Universität Kiel, DE

Fillippo Mignosi
University of L’Aquila, IT

Mike Müller
Universität Kiel, DE

Dirk Nowotka
Universität Kiel, DE

Wojciech Plandowski
University of Warsaw, PL

Ely Porat
Bar-Ilan University, IL

Svetlana Puzynina
University of Turku, FI

Antonio Restivo
University of Palermo, IT

Eric Rowland
University of Liège, BE

Wojciech Rytter
University of Warsaw, PL

Aleksi Saarela
University of Turku, FI

Arseny M. Shur
Ural Federal University –
Ekaterinburg, RU

Jamie Simpson
Curtin University of Technology –
Perth, AU

German Tischler
Wellcome Trust Sanger Institute –
Hinxton, GB

Esko Ukkonen
University of Helsinki, FI

Mikhail V. Volkov
Ural Federal University –
Ekaterinburg, RU

	Executive Summary Maxime Crochemore, James Currie, Gregory Kucherov, and Dirk Nowotka
	Table of Contents
	Overview of Talks, Open Problems, and Solutions
	Near Real-Time Suffix Tree Construction via the Fringe Marked Ancestor Problem Danny Breslauer
	Avoidability of Shuffle Squares James D. Currie
	Hairpins and unambiguous context-free languages Volker Diekert
	On The Minimum Number of Abelian Squares in a Word Gabriele Fici
	On The Maximum Number of Abelian Squares in a Word Gabriele Fici
	Are there better measures of compressibility than Empirical Entropy? Johannes Fischer
	Two open problems on pattern languages Dominik D. Freydenberger
	Decomposition to palindromes Anna E. Frid
	Order-preserving pattern matching with k mismatches Paweł Gawrychowski
	Algebraic properties of word equations Štepán Holub
	Local Recompression for Word Equations Artur Jez
	String Range Matching Juha Kärkkäinen
	Sum of Digits of n and n2 Steffen Kopecki
	The Burrows-Wheeler Transform with Permutations Manfred Kufleitner
	Text Indexing: Easy and Difficult Moshe Lewenstein
	Testing k-binomial equivalence Florin Manea
	k-Abelian Pattern Matching Robert Mercas
	Bell numbers modulo 8 Eric Rowland
	Maximum Number of Distinct and Nonequivalent Nonstandard Squares in a Word Wojciech Rytter
	Parametric solutions of word equations Aleksi Saarela
	Efficient generation of repetition-free words Arseny M. Shur

	Participants

