Binary words containing infinitely many overlaps

James Currie
Department of Mathematics
University of Winnipeg
Winnipeg, Manitoba R3B 2E9 (Canada)
j.currie@uwinnipeg.ca
Narad Rampersad, Jeffrey Shallit
School of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1 (Canada)
nrampersad@math.uwaterloo.ca
shallit@graceland.math.uwaterloo.ca

Submitted: Nov 16, 2005; Accepted: Sep 15, 2006; Published: Sep 22, 2006
Mathematics Subject Classifications: 68R15

Abstract

We characterize the squares occurring in infinite overlap-free binary words and construct various α power-free binary words containing infinitely many overlaps.

1 Introduction

If α is a rational number, a word w is an α power if there exists words x and x^{\prime}, with x^{\prime} a prefix of x, such that $w=x^{n} x^{\prime}$ and $\alpha=n+\left|x^{\prime}\right| /|x|$. We refer to $|x|$ as a period of w. An α^{+}power is a word that is a β power for some $\beta>\alpha$. A word is α power-free (resp. α^{+}power-free) if none of its subwords is an α power (resp. α^{+}power). A 2 power is called a square; a 2^{+}power is called an overlap.

Thue [18] constructed an infinite overlap-free binary word; however, Dekking [8] showed that any such infinite word must contain arbitrarily large squares. Shelton and Soni [17] characterized the overlap-free squares, but it is not hard to show that there are some overlap-free squares, such as 00110011 , that cannot occur in an infinite overlap-free binary word. In this paper, we characterize those overlap-free squares that do occur in infinite overlap-free binary words.

Shur [16] considered the bi-infinite overlap-free and $7 / 3$ power-free binary words and showed that these classes of words were identical. There have been several subsequent papers $[1,10,11,14]$ that have shown various similarities between the classes of overlap-free binary words and $7 / 3$ power-free binary words. Here we contrast the two classes of words
by showing that there exist one-sided infinite $7 / 3$ power-free binary words containing infinitely many overlaps. More generally, we show that for any real number $\alpha>2$ there exists a real number β arbitrarily close to α such that there exists an infinite β^{+}power-free binary word containing infinitely many β powers.

All binary words considered in the sequel will be over the alphabet $\{0,1\}$. We therefore use the notation \bar{w} to denote the binary complement of w; that is, the word obtained from w by replacing 0 with 1 and 1 with 0 .

2 Properties of the Thue-Morse morphism

In this section we present some useful properties of the Thue-Morse morphism; i.e., the morphism μ defined by $\mu(0)=01$ and $\mu(1)=10$. It is well-known [12, 18] that the Thue-Morse word

$$
\mathbf{t}=\mu^{\omega}(0)=0110100110010110 \cdots
$$

is overlap-free.
The following property of μ is easy to verify.
Lemma 1. Let x and y be binary words. Then x is a prefix (resp. suffix) of y if and only if $\mu(x)$ is a prefix (resp. suffix) of $\mu(y)$.

Brandenburg [6] proved the following useful theorem, which was independently rediscovered by Shur [16].

Theorem 2 (Brandenburg; Shur). Let w be a binary word and let $\alpha>2$ be a real number. Then w is a power-free if and only if $\mu(w)$ is a power-free.

The following sharper version of one direction of this theorem (implicit in [10]) is also useful.

Theorem 3. Suppose $\mu(w)$ contains a subword u of period p, with $|u| / p>2$. Then w contains a subword v of length $\lceil|u| / 2\rceil$ and period $p / 2$.

Karhumäki and Shallit [10] gave the following generalization of the factorization theorem of Restivo and Salemi [15]. The extension to infinite words is clear.

Theorem 4 (Karhumäki and Shallit). Let $x \in\{0,1\}^{*}$ be α power-free, $2<\alpha \leq 7 / 3$. Then there exist $u, v \in\{\epsilon, 0,1,00,11\}$ and an α power-free $y \in\{0,1\}^{*}$ such that $x=$ $u \mu(y) v$.

3 Overlap-free squares

Let

$$
A=\{00,11,010010,101101\}
$$

and let

$$
\mathcal{A}=\bigcup_{k \geq 0} \mu^{k}(A)
$$

Pansiot [13] and Brlek [7] gave the following characterization of the squares in \mathbf{t}.
Theorem 5 (Pansiot; Brlek). The set of squares in \mathbf{t} is exactly the set \mathcal{A}.
We can use this result to prove the following.
Proposition 6. For any position i, there is at most one square in \mathbf{t} beginning at position i.

Proof. Suppose to the contrary that there exist distinct squares x and y that begin at position i. Without loss of generality, suppose that x and y begin with 0 . Then by Theorem 5, $x=\mu^{p}(u)$ and $y=\mu^{q}(v)$, for some p, q and $u, v \in\{00,010010\}$. Suppose $p \leq q$ and let $w=\mu^{q-p}(v)$. By Lemma 1, either u is a proper prefix of w or w is a proper prefix of u, neither of which is possible for any choice of $u, v \in\{00,010010\}$.

The set \mathcal{A} does not contain all possible overlap-free squares. Shelton and Soni [17] characterized the overlap-free squares (the result is also attributed to Thue in [4]).

Theorem 7 (Shelton and Soni). The overlap-free binary squares are the conjugates of the words in \mathcal{A}.

Some overlap-free squares cannot occur in any infinite overlap-free binary word, as the following lemma shows.

Lemma 8. Let $x=\mu^{k}(z)$ for some $k \geq 0$ and $z \in\{011011,100100\}$. Then xa contains an overlap for all $a \in\{0,1\}$.

Proof. It is easy to see that $x=u v v u v v$ for some $u, v \in\{0,1\}^{*}$, where u and v begin with different letters. Thus one of uvvuvva or vva is an overlap.

We can characterize the squares that can occur in an infinite overlap-free binary word. Let

$$
B=\{001001,110110\}
$$

and let

$$
\mathcal{B}=\bigcup_{k \geq 0} \mu^{k}(B) .
$$

Theorem 9. The set of squares that can occur in an infinite overlap-free binary word is $\mathcal{A} \cup \mathcal{B}$. Furthermore, if \mathbf{w} is an infinite overlap-free binary word containing a subword $x \in \mathcal{B}$, then \mathbf{w} begins with x and there are no other occurrences of x in \mathbf{w}.

Proof. Let \mathbf{w} be an infinite overlap-free binary word beginning with a square $y y \notin \mathcal{A} \cup \mathcal{B}$. Suppose further that $y y$ is a smallest such square that can be extended to an infinite overlap-free word. If $|y| \leq 3$, then $y y \notin \mathcal{A} \cup \mathcal{B}$ is one of 011011 or 100100 , neither of which can be extended to an infinite overlap-free word by Lemma 8.

We assume then that $|y|>3$. Since, by Theorem 7 , $y y$ is a conjugate of a word in \mathcal{A}, we have two cases.

Case 1: $y y=\mu(z z)$ for some $z \in\{0,1\}^{*}$. By Theorem 4, $\mathbf{w}=\mu\left(z z \mathbf{w}^{\prime}\right)$ for some infinite \mathbf{w}^{\prime}, where $z z \mathbf{w}^{\prime}$ is overlap-free. Thus $z z$ is a smaller square not in $\mathcal{A} \cup \mathcal{B}$ that can be extended to an infinite overlap-free word, contrary to our assumption.

Case 2: $y y=a \mu\left(z z^{\prime}\right) \bar{a}$ for some $a \in\{0,1\}$ and $z, z^{\prime} \in\{0,1\}^{*}$. By Theorem 4, $y y$ is followed by a in \mathbf{w}, and so yya is an overlap, contrary to our assumption.

Since both cases lead to a contradiction, our assumption that $y y \notin \mathcal{A} \cup \mathcal{B}$ must be false.

To see that each word in $\mathcal{A} \cup \mathcal{B}$ does occur in some infinite overlap-free binary word, note that Allouche, Currie, and Shallit [2] have shown that the word $\mathbf{s}=001001 \overline{\mathbf{t}}$ is overlap-free. Now consider the words $\mu^{k}(\mathbf{s})$ and $\mu^{k}(\overline{\mathbf{s}})$, which are overlap-free for all $k \geq 0$.

Finally, to see that any occurrence of $x \in \mathcal{B}$ in \mathbf{w} must occur at the beginning of \mathbf{w}, we note that by an argument similar to that used in Lemma 8, ax contains an overlap for all $a \in\{0,1\}$, and so x occurs at the beginning of \mathbf{w}.

4 Words containing infinitely many overlaps

In this section we construct various infinite α power-free binary words containing infinitely many overlaps. We begin by considering the infinite $7 / 3$ power-free binary words.

Proposition 10. For all $p \geq 1$, an infinite $7 / 3$ power-free word contains only finitely many occurrences of overlaps with period p.

Proof. Let \mathbf{x} be an infinite $7 / 3$ power-free word containing infinitely many overlaps with period p. Let $k \geq 0$ be the smallest integer satisfying $p \leq 3 \cdot 2^{k}$. Suppose \mathbf{x} contains an overlap w with period p starting in a position $\geq 2^{k+1}$. Then by Theorem 4, we can write

$$
\mathbf{x}=u_{1} \mu\left(u_{2}\right) \cdots \mu^{k-1}\left(u_{k}\right) \mu^{k}(\mathbf{y})
$$

where each $u_{i} \in\{\epsilon, 0,1,00,11\}$. The overlap w occurs as a subword of $\mu^{k}(\mathbf{y})$. By Lemma 3, y contains an overlap with period $p / 2^{k} \leq 3$. But any overlap with period ≤ 3 contains a $7 / 3$ power. Thus, \mathbf{x} contains a $7 / 3$ power, a contradiction.

The following theorem provides a striking contrast to Shur's result [16] that the biinfinite $7 / 3$ power-free words are overlap-free.

Theorem 11. There exists a $7 / 3$ power-free binary word containing infinitely many overlaps.

Proof. We define the following sequence of words: $A_{0}=00$ and $A_{n+1}=0 \mu^{2}\left(A_{n}\right), n \geq 0$. The first few terms in this sequence are

$$
\begin{aligned}
A_{0} & =00 \\
A_{1} & =001100110 \\
A_{2} & =0011001101001100101100110100110010110 \\
& \vdots
\end{aligned}
$$

We first show that in the limit as $n \rightarrow \infty$, this sequence converges to an infinite word a. It suffices to show that for all n, A_{n} is a prefix of A_{n+1}. We proceed by induction on n. Certainly, $A_{0}=00$ is a prefix of $A_{1}=0 \mu^{2}(00)=001100110$. Now $A_{n}=0 \mu^{2}\left(A_{n-1}\right)$, $A_{n+1}=0 \mu^{2}\left(A_{n}\right)$, and by induction, A_{n-1} is a prefix of A_{n}. Applying Lemma 1 , we see that A_{n} is a prefix of A_{n+1}, as required.

Note that for all n, A_{n+1} contains $\mu^{2 n}\left(A_{1}\right)$ as a subword. Since A_{1} is an overlap with period $4, \mu^{2 n}\left(A_{1}\right)$ contains $2^{2 n}$ overlaps with period $2^{2 n+2}$. Thus, a contains infinitely many overlaps.

We must show that a does not contain a $7 / 3$ power. It suffices to show that A_{n} does not contain a $7 / 3$ power for all $n \geq 0$. Again, we proceed by induction on n. Clearly, $A_{0}=00$ does not contain a $7 / 3$ power. Consider $A_{n+1}=0 \mu^{2}\left(A_{n}\right)$. By induction, A_{n} is $7 / 3$ power-free, and by Theorem 2 , so is $\mu^{2}\left(A_{n}\right)$. Thus, if A_{n+1} contains a $7 / 3$ power, such a $7 / 3$ power must occur as a prefix of A_{n+1}. Note that A_{n+1} begins with 00110011. The word 00110011 cannot occur anywhere else in A_{n+1}, as that would imply that A_{n+1} contained a cube 000 or 111 , or the $5 / 2$ power 1001100110 . If A_{n+1} were to begin with a $7 / 3$ power with period ≥ 8, it would contain two occurrences of 00110011 , contradicting our earlier observation. We conclude that the period of any such $7 / 3$ power is less than 8 . Checking that no such $7 / 3$ power exists is now a finite check and is left to the reader.

In fact, we can prove the following stronger statement.
Theorem 12. There exist uncountably many $7 / 3$ power-free binary words containing infinitely many overlaps.

Proof. For a finite binary sequence b, we define an operator g_{b} on binary words recursively by

$$
\begin{aligned}
g_{\epsilon}(w) & =w \\
g_{0 b}(w) & =\mu^{2}\left(g_{b}(w)\right) \\
g_{1 b}(w) & =0 \mu^{2}\left(g_{b}(w)\right)
\end{aligned}
$$

Note that $g_{b}(0)$ always starts with a 0 , so that for any finite binary words p and $b, g_{p}(0)$ is always a prefix of $g_{p b}(0)$. Since $g_{0}(0)$ is not a prefix of $g_{1}(0), g_{p 0}(0)$ is not a prefix of $g_{p 1}(0)$ for any p, so that distinct b give distinct words. Given an infinite binary sequence $\mathbf{b}=b_{1} b_{2} b_{3} \cdots$ where the $b_{i} \in\{0,1\}$, define an infinite binary sequence $w_{\mathbf{b}}$ to be the limit of

$$
g_{\epsilon}(00), g_{b_{1}}(00), g_{b_{1} b_{2}}(00), g_{b_{1} b_{2} b_{3}}(00), \ldots
$$

By an earlier argument, each $w_{\mathbf{b}}$ is $7 / 3$ power-free. Since $g_{1}(00)=001100110$ is an overlap, $g_{b 1}(00)=g_{b}(001100110)$ ends with an overlap for any finite word b. Thus, each 1 in \mathbf{b} introduces an overlap in $w_{\mathbf{b}}$. Since uncountably many binary sequences contain infinitely many 1 's, uncountably many of the $w_{\mathbf{b}}$ are $7 / 3$ power-free words containing infinitely many overlaps.

Next, we show that the sequence a constructed in the proof of Theorem 11 is an automatic sequence (in the sense of [3]).

Proposition 13. The sequence a is 4-automatic.
Proof. We show that $\mathbf{a}=g\left(h^{\omega}(0)\right)$, where h and g are the morphisms defined by

$$
\begin{array}{ll}
h(0)=0134 \\
h(1) & =2134 \\
h(2) & =3234 \\
h(3) & =2321 \\
h(4) & =3421
\end{array} \quad \text { and } \begin{aligned}
& g(0)=0 \\
& g(1)=0 \\
& g(2)=0 \\
& g(3)=1 \\
& g(4)=1 .
\end{aligned}
$$

We make some observations concerning 2-letter subwords: The sequence $h^{\omega}(0)$ clearly does not contain any of the words $11,14,22,24,31,33,41$ or 44 . In fact, neither 12 nor 43 appears as a subword either: Words 12 and 43 do not appear internally in $h(i), 0 \leq i \leq 4$; therefore, if 43 appears in $h^{n}(0)$, it must 'cross the boundary' in one of $h(12), h(14), h(22)$ or $h(24)$. Since 14,22 and 24 do not appear in $h^{\omega}(0)$, word 43 can only appear in $h^{n}(0)$ as a descendant of a subword 12 in $h^{n-1}(0)$. However, the situation is symmetrical; word 12 can only appear in $h^{n}(0)$ as a descendant of a subword 43 in $h^{n-1}(0)$. By induction, neither 43 nor 12 ever appears.

The point of the previous paragraph is that

$$
\begin{aligned}
& h(0) \text { always occurs in the context } h(0) 2 \\
& h(1) \text { always occurs in the context } h(1) 2 \\
& h(2) \text { always occurs in the context } h(2) 2 \\
& h(3) \text { always occurs in the context } h(3) 3 \\
& h(4) \text { always occurs in the context } h(4) 3
\end{aligned}
$$

The word $h^{\omega}(0)$ can thus be parsed in terms of a new morphism f :

$$
\begin{aligned}
f(0) & =1342 \\
f(1) & =1342 \\
f(2) & =2342 \\
f(3) & =3213 \\
f(4) & =4213
\end{aligned}
$$

The parsing in terms of f works as follows: If we write $h^{\omega}(0)=0 w$, then $w=f(0 w)$. It is useful to rewrite this relation in terms of the finite words $h^{n}(0)$. For non-negative integer n let x_{n} be the unique letter such that $h^{n}(0) x_{n}$ is a prefix of $h^{\omega}(0)$. Thus $x_{0}=1$, $x_{1}=2$, etc. We then have

$$
\begin{equation*}
h^{n}(0) x_{n}=0 f\left(h^{n-1}(0)\right), \quad n \geq 1 \tag{1}
\end{equation*}
$$

Since for all $a \in\{0,1,2,3,4\}, g(f(a))=\mu^{2}(g(a))$, we have $g(f(u))=\mu^{2}(g(u))$ for all words u. Therefore, applying g to (1)

$$
\begin{aligned}
g\left(h^{n}(0) x_{n}\right) & =g\left(0 f\left(h^{n-1}(0)\right)\right) \\
& =g(0) g\left(f\left(h^{n-1}(0)\right)\right) \\
& =0 \mu^{2}\left(g\left(h^{n-1}(0)\right)\right), \quad n \geq 1
\end{aligned}
$$

From this relation we show by induction that A_{n} is the prefix of $g\left(h^{n+1}(0)\right)$ of length $\left(4^{n+1}+3 \cdot 4^{n}-1\right) / 3$. Certainly, $A_{0}=00$ is the prefix of length 2 of $g(h(0))=0011$. Consider $A_{n}=0 \mu^{2}\left(A_{n-1}\right)$. We can assume inductively that A_{n-1} is the prefix of $g\left(h^{n}(0)\right)$ of length $\left(4^{n}+3 \cdot 4^{n-1}-1\right) / 3$. Writing $g\left(h^{n}(0)\right)=A_{n-1} z$ for some z, we have

$$
\begin{aligned}
g\left(h^{n+1}(0) x_{n+1}\right) & =0 \mu^{2}\left(g\left(h^{n}(0)\right)\right) \\
& =0 \mu^{2}\left(A_{n-1} z\right) \\
& =A_{n} \mu^{2}(z),
\end{aligned}
$$

for some x_{n+1}, whence A_{n} is a prefix of $g\left(h^{n+1}(0)\right)$. Since $\left|A_{n}\right|=4\left|A_{n-1}\right|+1$, we have $\left|A_{n}\right|=\left(4^{n+1}+3 \cdot 4^{n}-1\right) / 3$, as required.

The result of Theorem 11 can be strengthened even further.
Theorem 14. For every real number $\alpha>2$ there exists a real number β arbitrarily close to α, such that there is an infinite β^{+}power-free binary word containing infinitely many β powers.

Proof. Let $s \geq 3$ be a positive integer, and let $r=\lfloor\alpha+1\rfloor$. Let t be the largest positive integer such that $r-t / 2^{s}>\alpha$, and such that the word obtained by removing a prefix of length t from $\mu^{s}(0)$ begins with 00 . Let $\beta=r-t / 2^{s}$. Since $\alpha \geq r-1$, we have $t<2^{s}$. Also, $\mu^{3}(0)=01101001$ and $\mu^{3}(1)=10010110$ are of length 8 , and both contain 00 as a subword; it follows that $|\alpha-\beta| \leq 8 / 2^{s}$, so that by choosing large enough s, β can be made arbitrarily close to α.

We construct sequences of words A_{n}, B_{n} and C_{n}. Define $C_{0}=00$. For each $n \geq 0$:

1. Let $A_{n}=0^{r-2} C_{n}$.
2. Let $B_{n}=\mu^{s}\left(A_{n}\right)$.
3. Remove the first t letters from B_{n} to obtain a new word C_{n+1} beginning with 00 .

Since each A_{n} begins with the r power 0^{r}, each $B_{n}=\mu^{s}\left(A_{n}\right)$ begins with an r power of period 2^{s}. Removing the first t letters ensures that C_{n+1} commences with an $\left(r 2^{s}-t\right) / 2^{s}$ power, viz., a β power. The limit of the C_{n} gives the desired infinite word. Let us check that this limit exists:

Let w be the word consisting of the first t letters of $\mu^{s}(0)$. Since all the A_{n} commence with 0 by construction, all the B_{n} commence with $\mu^{s}(0)$, and hence with w. This means that $B_{n}=w C_{n+1}$ for each n.

We show that A_{n} is always a prefix of A_{n+1} by induction. Certainly A_{0} is a prefix of A_{1}. Assume that A_{n-1} is a prefix of A_{n}. Since $A_{n}=0^{r-2} C_{n}$ and $A_{n+1}=0^{r-2} C_{n+1}, A_{n}$ is a prefix of A_{n+1} if C_{n} is a prefix of C_{n+1}. Since $B_{n-1}=w C_{n}$ and $B_{n}=w C_{n+1}, C_{n}$ is a prefix of C_{n+1} if B_{n-1} is a prefix of B_{n}. By Lemma $1, B_{n-1}$ is a prefix of B_{n} if A_{n-1} is a prefix of A_{n}, which is our inductive assumption. We conclude that A_{n} is a prefix of A_{n+1}.

It follows that C_{n} is a prefix of C_{n+1} for $n \geq 0$, so that the limit of the C_{n} exists. It will thus suffice to prove the following claim:

Claim: The A_{n}, B_{n} and C_{n} satisfy the following:

1. The word C_{n} contains no β^{+}powers.
2. The only β^{+}power in A_{n} is 0^{r}.
3. Any β^{+}powers in B_{n} appear only in the prefix $\mu^{s}\left(0^{r}\right)$.

Certainly C_{0} contains no β^{+}powers, and since $\beta>r-1$, the only β^{+}power in A_{0} is 0^{r}. Suppose then that the claim holds for A_{n} and C_{n}.

Now suppose that $B_{n}=\mu^{s}\left(0^{r-2}\right) \mu^{s}\left(C_{n}\right)$ contains a β^{+}power u with period p. Since C_{n} contains no β^{+}powers, Theorem 2 ensures that $\mu^{s}\left(C_{n}\right)$ contains no β^{+}powers. We can therefore write $B_{n}=x u y$ where $|x|<\left|\mu^{s}\left(0^{r-2}\right)\right|$. In other words, u overlaps $\mu^{s}\left(0^{r-2}\right)$ from the right. By Theorem 3, the preimage of B_{n} under μ, i.e., $\mu^{s-1}\left(A_{n}\right)$, contains a β^{+}power of length at least $|u| / 2$ and period $p / 2$. In fact, iterating this argument, A_{n} contains a β^{+}power of period $p / 2^{s}$ of length at least $|u| / 2^{s}$. Since the only β^{+}power in A_{n} is 0^{r}, with period 1 , we see that $p / 2^{s}=1$, whence $p=2^{s}$ and $|u| \leq r 2^{s}$.

Recall that B_{n} has a prefix $\mu^{s}\left(0^{r}\right)$ which also has period 2^{s}, and that this prefix is overlapped by u. It follows that all of $x u$ is a β^{+}power with period $p=2^{s}$. However, as just argued, this means that $|x u| \leq r 2^{s}=\left|\mu^{s}\left(0^{r}\right)\right|$, so that u is contained in $\mu^{s}\left(0^{r}\right)$ and part 3 of our claim holds for B_{n}. We now show that parts 1 and 2 hold for C_{n+1} and A_{n+1} respectively, and the truth of our claim will follow by induction.

Part 1 follows immediately from part 3.
Now suppose that A_{n+1} contains a β^{+}power u. Recall that $A_{n+1}=0^{r-2} C_{n+1}$, and C_{n+1} begins with 00 , but contains no β^{+}powers. It follows that u is not a subword of C_{n+1}. Therefore, 000 must be a prefix of u. If $u=0^{q}$ for some integer q, then $q \leq r$ by the construction of A_{n+1}, and

$$
r \geq q>\beta>\alpha>r-1
$$

This implies that $q=r$, and $u=0^{r}$, as claimed. If we cannot write $u=0^{q}$, then $|u|_{1} \geq 1$. Because u is a 2^{+}power, 000 must appear twice in u with a 1 lying somewhere between the
two appearances. This implies that 000 is a subword of C_{n+1}, and hence of $B_{n}=\mu^{s}\left(A_{n}\right)$. However, no word of the form $\mu(w)$ contains 000 . This is a contradiction.

We conclude by presenting the following open problem.
Does there exist a characterization (in the sense of $[5,9]$) of the infinite $7 / 3$ power-free binary words?

5 Acknowledgments

Thanks to the referee for pointing out Brandenburg's proof of Theorem 2.

References

[1] A. Aberkane, J. Currie, "Attainable lengths for circular binary words avoiding k powers", Bull. Belg. Math. Soc. Simon Stevin, 2004, to appear.
[2] J.-P. Allouche, J. Currie, J. Shallit, "Extremal infinite overlap-free words", Electron. J. Combin. 5 (1998), \#R27.
[3] J.-P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge, 2003.
[4] J. Berstel, "Axel Thue's work on repetitions in words". In P. Leroux, C. Reutenauer, eds., Séries formelles et combinatoire algébrique, Publications du LaCIM, pp 65-80, UQAM, 1992.
[5] J. Berstel, "A rewriting of Fife's theorem about overlap-free words". In J. Karhumäki, H. Maurer, G. Rozenberg, eds., Results and Trends in Theoretical Computer Science, Vol. 812 of Lecture Notes in Computer Science, pp. 19-29, Springer-Verlag, 1994.
[6] F.-J. Brandenburg, "Uniformly growing k-th power-free homomorphisms", Theoret. Comput. Sci. 23 (1983), 69-82.
[7] S. Brlek, "Enumeration of factors in the Thue-Morse word", Discrete Appl. Math. 24 (1989), 83-96.
[8] F. M. Dekking, "On repetitions in binary sequences", J. Comb. Theory Ser. A 20 (1976), 292-299.
[9] E. Fife, "Binary sequences which contain no $B B b$ ", Trans. Amer. Math. Soc. 261 (1980), 115-136.
[10] J. Karhumäki, J. Shallit, "Polynomial versus exponential growth in repetition-free binary words", J. Combin. Theory Ser. A 104 (2004), 335-347.
[11] R. Kolpakov, G. Kucherov, Y. Tarannikov, "On repetition-free binary words of minimal density", WORDS (Rouen, 1997), Theoret. Comput. Sci. 218 (1999), 161-175.
[12] M. Morse, G. Hedlund, "Unending chess, symbolic dynamics, and a problem in semigroups", Duke Math. J. 11 (1944), 1-7.
[13] J. J. Pansiot, "The Morse sequence and iterated morphisms", Inform. Process. Lett. 12 (1981), 68-70.
[14] N. Rampersad, "Words avoiding $\frac{7}{3}$-powers and the Thue-Morse morphism", Internat. J. Found. Comput. Sci. 16 (2005), 755-766.
[15] A. Restivo, S. Salemi, "Overlap free words on two symbols". In M. Nivat, D. Perrin, eds., Automata on Infinite Words, Vol. 192 of Lecture Notes in Computer Science, pp. 198-206, Springer-Verlag, 1984.
[16] A. M. Shur, "The structure of the set of cube-free \mathbb{Z}-words in a two-letter alphabet" (Russian), Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 201-224. English translation in Izv. Math. 64 (2000), 847-871.
[17] R. Shelton, R. Soni, "Chains and fixing blocks in irreducible binary sequences", Discrete Math. 54 (1985), 93-99.
[18] A. Thue, "Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen", Kra. Vidensk. Selsk. Skrifter. I. Math. Nat. Kl. 1 (1912), 1-67.

