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Seagrasses are hugely valuable to human life, but the global extent of seagrass meadows

remains unclear. As evidence of their value, a United Nations program exists (http://data.

unep-wcmc.org/datasets/7) to try and assess their distribution and there has been a call

from 122 scientists across 28 countries for more work to manage, protect and monitor

seagrass meadows (http://www.bbc.com/news/science-environment-37606827).

Emerging from the 12th International Seagrass Biology Workshop, held in October

2016, has been the view that grazing marine megafauna may play a useful role in helping

to identify previously unknown seagrass habitats. Here we describe this concept,

showing how detailed information on the distribution of both dugongs (Dugong dugon)

and green sea turtles (Chelonia mydas) obtained, for example, by aerial surveys and

satellite tracking, can reveal new information on the location of seagrass meadows. We

show examples of how marine megaherbivores have been effective habitat indicators,

revealing major, new, deep-water seagrass meadows and offering the potential for more

informed estimates of seagrass extent in tropical and sub-tropical regions where current

information is often lacking.

Keywords: blue carbon, ecosystem services, climate change mitigation, drone surveys, satellite tracking, animal

movement, benthic habitat mapping

BACKGROUND

Seagrasses are among the most valuable ecosystems on earth, are of fundamental importance to
human life and yet the lack of data on their distribution for much of the globe has limited the
ability of scientists to truly quantify and understand their roles on global scales (Duarte, 2017).
Each year seagrasses provide ecosystem services worth many trillions of dollars (Costanza et al.,
2014). For example, seagrassmeadows provide habitat for fish that are the primary source of protein
for millions of people from developing nations (Orth et al., 2006; Unsworth and Cullen, 2010;
Nordlund et al., 2017); play an important role in mitigating climate change (by storing carbon
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in sediment 40 times faster than a typical terrestrial forest)
(Duarte et al., 2013); protect coasts by raising the seafloor,
dissipating waves, stabilizing sediment and preventing erosion
(Duarte et al., 2013); can reduce the abundance of bacterial
pathogens capable of causing disease in humans and marine
organisms and can help improve the health of adjacent corals
(Lamb et al., 2017).

One of the greatest issues facing the effective management
and assessment of the global role of seagrass ecosystems is the
difficulty in mapping their distribution. At present there is high
uncertainty around how much seagrass exists globally, especially
in sub-tidal environments and particularly within the tropics.
Current estimates of global seagrass area range from 150,000
to 600,000 km2, with no progress over the past two decades
in narrowing this uncertainty band (Duarte, 2017). However,
the potential global seagrass area determined by light regime,
bathymetry, and seagrass light requirements is estimated to be
4,320,000 km2 (Gattuso et al., 2006), potentially yielding a 35-fold
increase of recent estimates of seagrass ecosystem services value.
The need to understand and effectively model our global carbon
cycle together with a growing desire to incorporate seagrass “blue
carbon” into climate mitigation strategies necessitates that we
improve our understanding of global seagrass extent.

The spatial extent of seagrass remains difficult to assess using
conventional remote sensing tools, particularly in either turbid,
deep environments or shallow waters where density can be
low. Historically poor seagrass research and conservation efforts,
together with the charisma problem that seagrass has been faced
with (Duarte et al., 2008), means that there are key global gaps
in mapping efforts. One of the reasons that the global extent of
seagrass meadows is so uncertain is because, unlike terrestrial
habitats, benthic habitats are generally not clearly visible from
the surface and are therefore more difficult, or in many cases
impossible, to map and monitor with conventional remote
sensing techniques. Nowhere is this truer than in tropical and
subtropical areas like SE Asia; which likely represent a substantial
component of the world’s seagrass resources but remain largely
unmapped (UNEP-WCMC and Short, 2016).

Given this long-standing uncertainty with global estimates
of seagrass abundance, new methods to tackle this problem
may be needed. Scientists from diverse disciplines attending the
12th International Seagrass Biology Workshop, held in October
2016 (Hind-Ozan and Jones, 2017), came to the realization
that grazing marine megafauna may be used to help identify
previously unknown seagrass habitats. Here we describe this
idea that seagrass grazers, whose distribution can be remotely
assessed, may be used as a new tool to help identify the
location of seagrass meadows and to help to improve estimates
of the global distribution of seagrasses. So we build on the
long tradition of using indicator species to indicate habitat
types.

Two widely distributed, largely tropical and subtropical,
marine megavertebrates feed on seagrass: the green sea turtle
(Chelonia mydas) feeds primarily on seagrass in many regions
while the dugong (Dugong dugon) is a seagrass community
specialist (Figures 1A,B,E,F). So by assessing the distribution
of green turtles and dugongs, using existing data from surveys

and satellite tracking, we can potentially gain a new level
of understanding on the global extent of seagrass meadows.
Knowing the distribution of these seagrass grazers will not, in
itself, allow remote quantitative estimates of seagrass abundance.
Rather, knowing the location of these grazers will allow directed
in-water sampling of seagrass in areas hitherto ignored. So it
is this synergistic use of recording animal locations with in-
water surveys that may allow new knowledge to be gained
about seagrass distribution. We use two case studies to illustrate
the new insights that can be obtained in this way. The
same methodology could also apply to two other sirenian
species in the Atlantic, the West Indian and African manatees
(Trichechus spp.) that also feed on seagrass in some parts
of their ranges (Lefebvre et al., 1999), although their diet is
much less specialized than that of the dugong (Marsh et al.,
2011).

CASE STUDY: GREEN SEA TURTLES AND
THE GREAT CHAGOS BANK

Adult female green turtles (adults can be up to 1.5m long,
weigh >150 kg, and eat up to 2 kg of seagrass day−1) come
ashore to nest on sandy beaches, but then at the end of the
nesting season they may travel 100s or 1,000s of km to foraging
grounds, with each individual often having fidelity to a specific
foraging location (Hays et al., 2014). In many parts of their
range, seagrass is thought to form a major component of the
diet of green turtles. For example, in the Caribbean green turtles
often cultivate mono-specific meadows of the seagrass Thalassia
testudinum, feeding on themore easily digestible new growth that
develops after cropping (Bjorndal, 1980). Similarly in Mayotte in
the western Indian Ocean, several seagrass species are thought
to form the mainstay of the diet of green turtles (Ballorain
et al., 2010). Where the density of green turtles is very high,
green turtles may even overgraze seagrass meadows causing
habitat degradation (Christianen et al., 2014). However, at some
coastal foraging sites green turtles may also consume macroalgae
such as in parts of the Torres Strait, Australia (André et al.,
2005). Macroalgae may even dominate their diet, for example
in some areas of the eastern Pacific (Seminoff et al., 2002). On
occasion, green turtles may even consume invertebrates and be
considered omnivorous (Cardona et al., 2009; Burkholder et al.,
2011). However, at some sites where turtles are omnivorous,
age/size based shifts have been reported with larger turtles being
more likely to forage on seagrass (Cardona et al., 2009). In
short green turtles do not exclusively consume seagrass in all
areas. So tracking green turtles to their foraging grounds will
not definitively allow seagrass beds to be identified, but will
certainly give a good indication of where in-situ surveys can
be targeted to potentially document areas of seagrass that were
previously unknown. For green turtles it is known that they
migrate between disparate nesting areas and foraging areas.
So, for example, female turtles can be equipped with satellite
tags while nesting and then tracked back to their foraging
grounds. On the foraging grounds individuals typically show
a movement between night-time resting areas and day-time
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FIGURE 1 | The use of green turtles and dugongs as habitat indicators. (A) A green turtle (Chelonia mydas) (B) A dugong (Dugong dugon). Both species feed on

seagrasses and so the location of their foraging sites may indicate seagrass habitat. (C) Green turtles can be satellite tracked from their nesting beaches to their,

sometimes, very discrete foraging grounds. Here the tracks of 8 green turtles that had nested on Diego Garcia, in the Chagos Archipelago, are shown. Red stars

show the end point of each track, i.e., the location of each turtle’s foraging grounds. (D) Modern satellite tracking can provide very high accuracy locations

(Continued)
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FIGURE 1 | (e.g., Fastloc-GPS) (black dots) allowing space use on foraging grounds to be accurately assessed. In this case the foraging home-range is shown for

one of the turtles tracked in (C). Red, orange, blue colors show the 50, 90, and 95% kernel home-range estimates. On-site validation of the foraging habitats used by

(E) dugongs and (F) green turtles in the Indo-Pacific has confirmed the hitherto unknown location of extensive seagrass beds. (E) An aerial photo of 50+ foraging

dugongs. Black arrows indicate three of the dugongs. (F) An aerial photo (from a drone survey) of 20+ foraging green turtles. Black arrows indicate three of the green

turtles. Note the grazed area (white) around each green turtle. Photo in (A) courtesy of RD and BS Kirkby in (B) courtesy of EH Meesters, (C,D) from Hays et al.

(2014), (E) courtesy of Susan Sobtzick and (F) courtesy of MC.

feeding areas (Christiansen et al., 2017). So the day-time foraging
locations inform on where in situ surveys for seagrasses should
be targeted.

The range of green sea turtles extends throughout tropical
and subtropical oceans worldwide. From some nesting areas,
green turtles have been tracked by satellite and their post-nesting
migrations to their foraging grounds have been astounding and
unexpected (Figures 1C,D). For example, green turtles equipped
with satellite transmitters on nesting beaches on Diego Garcia, in
the Chagos Archipelago, have traveled to deep water sites (30m)
on the Great Chagos Bank (Hays et al., 2014) and have remained
there with a restricted home range of 36 km² for over 19 months
until satellite transmissions ceased (Christiansen et al., 2017).
The first tagged turtle recorded traveling to the Great Chagos
Bank was one of eight nesting females we equipped in 2012. We
have subsequently (as on 1 December 2017) tracked a total of
5 green turtles to the Great Chagos Bank of 23 nesting turtles
equipped (Hays, Esteban, unpublished). The Great Chagos Bank
extends over approximately 13,000 km2 and was not known to
contain seagrass meadows. In 2016 the first opportunity arose
to visit some of the areas that turtle tracking had identified as
likely foraging grounds (evidenced by high residency in discrete
areas) and use SCUBA and remote cameras to assess the benthic
habitat. Two of the green turtle foraging sites were visited
with three submarine surveys conducted at each site. Extensive
Thalassodendron ciliatum seagrass meadows occurred on all six
of these submarine surveys (depth range 12–29m). So where
seagrass meadows were previously unknown they may, in fact,
be extensive.

There are now many 100s of adult green turtles that have
been satellite tracked (see seaturtle.org), offering huge potential
to use these tracking data to identify and map the likely extent of
seagrass habitat. Importantly, there have been around 400 adult
green turtles tracked in the Indian Ocean and SE Asia region and
thus knowledge gained from those tracks could add substantially
to our understanding of the distribution of seagrass meadows in
this important, but unexplored region. Furthermore, advances
in tracking technology mean that very accurate locations (i.e.,
within a few 10s of meters) can now be obtained via satellite tags
(e.g., Dujon et al., 2014), meaning that patterns of space use can
be assessed in great detail (Hays et al., 2014). This high resolution
tracking data could be used to direct in situ surveys and hence
help validate models of seagrass distribution based on physical
properties alone. For example, we have used green turtle tracking
data in this way to show the existence of extensive seagrass
meadows at much deeper sites than expected. Some satellite
tags also collect data on water temperature, which may allow
information on the temperature regime required by seagrasses to
be refined.

CASE STUDY: DUGONGS IN THE TORRES
STRAIT

Dugongs are large air-breathing mammals (adults up to ∼3m
long, weigh up to 500 kg and consume up to 35 kg of seagrass
day−1; Marsh et al., 2011). Dugongs are visible during aerial
surveys, when they are at the surface or in a sub-surface detection
zone, the depth of which varies according to water clarity and
location (Figure 1E; Pollock et al., 2006; Hagihara et al., 2014,
2018). Depending on the nature of the sediment and the species
of seagrass, dugongs use two modes of feeding: excavating whole
plants or cropping leaves (Marsh et al., 2011). When feeding
in excavating mode, dugongs leave feeding trails in seagrass
meadows that are visible from the air in exposed intertidal
meadows or in shallow clear water. Some animals and feeding
trails might even be visible from very high resolution satellite
imagery such as WV3 with 30 cm on ground resolution or from
orthorectified images collected from unmanned aerial surveys
(Hodgson et al., 2013). Automated systems that use machine
learning to detect dugong from the large number of images
captured in these aerial surveys are already under development
(Maire et al., 2015).

Areas occupied by dugongs can guide ground surveys
to establish the extent of seagrass meadows. For example,
information on the distribution of dugongs in Torres Strait
between northern Australia and Papua NewGuinea (Marsh et al.,
1997) was used to direct ground surveys that revealed a total
seagrass area in excess of 30,000 km2, including the discovery
of the largest continuous seagrass meadow mapped in Australia,
totaling over 8,750 km2 of mostly deep-water (>15m) seagrasses
growing to around 30m (Taylor and Rasheed, 2010). Similarly,
the location of large numbers of dugong obtained both by aerial
surveys and through local knowledge of hunters was used to
guide seagrass surveys in the Northern Torres Strait, leading to
extensive intertidal and subtidal seagrasses being mapped in the
vicinity of Orman Reefs (Rasheed et al., 2008). This significantly
expanded the known mapped area of seagrass in the region
and led to an understanding of the large amount of carbon
incorporated by Torres Strait seagrass productivity (Rasheed
et al., 2008).

Satellite tracking of dugong is less prevalent than for
turtles. In the tracked individuals, we observed that dugong
movements tend to be irregular and localized although some
individuals undertake highly directional movements exceeding
500 km, sometimes including return to the start point (Sheppard
et al., 2006; Gredzens et al., 2014). As dugong are seagrass
community specialists, their use of space should provide greater
certainty of seagrass presence than that of green turtles due
to their closer association with this habitat (Sheppard et al.,
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2007; Marsh et al., 2011, 2018). In fact, the fossil record of
dugong relatives (Sirenia) has already been used to provide a
paleobiogeographic overview of seagrass distribution through
time (Vélez-Juarbe, 2014), reiterating how present-day work
may couple information on dugong occurrence with seagrass
assessment studies.

CONCLUSIONS

These case studies highlight the huge potential for productive
collaborations between scientists studying the distribution and
movement of green turtles and dugong (and manatees) and
those attempting to assess the global roles of seagrass ecosystems,
but we also note the caveats of this approach. Information
on the location of dugongs and green turtles can be used to
direct in-water surveys of hitherto unknown seagrass meadows.
Furthermore, potentially knowing the location of these grazers
may help to inform models that are used to assess seagrass
extent, such as those based on light and ocean bathymetry
(Gattuso et al., 2006). Changes in the movement of grazers over
time may potentially also inform on the dynamics of seagrass
meadows. Our proof-of-concept discovery of seagrass meadows
on the Great Chagos Bank emphasizes how little is known of
deeper-water seagrasses and points to the likelihood of extensive
undiscovered deeper-water seagrass meadows elsewhere. We
hope that this article stimulates discussion and new approaches

to narrow down uncertainties in estimates of the global extent of
seagrass.
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