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ABSTRACT 

 
This paper presents a robust approach to detecting and 
identifying a fault in the load-frequency control loop of 
interconnected power systems. Although the approach 
is applicable to N-area systems, a two-area example is 
considered for simplicity. The approach is capable of 
detecting faults in real time and under real life 
operating conditions. The detection of faults is robust 
in that it takes place in the presence of unknown load 
and other external disturbances, such as plant and 
sensor noises. 
 

INTRODUCTION 

Load-frequency control is essential for successful 
operation of power systems, especially interconnected 
power systems [7]. Without it the frequency of power 
supply may not be able to be controlled within the 
required limit band. It is therefore very important that 
when a fault occurs in the control loop it is detected 
and identified in real time so that a remedial action can 
be undertaken. 
 So far detection of faults in power systems, 
especially transmission systems, has largely been the 
responsibility of “protection systems”, which have 
over the time proven to be quite effective in providing 
failure signals and invoking a protection action to 
safeguard equipment and/or aspects of power system 
operation. It is well known that protection systems are 
mainly hardware based and their design requires a fair 
amount of intricate detail. In addition, they are quite 
expensive to install, run and maintain. Although the 
area of protection of transmission and even of 
distribution systems has matured considerably, its 
application to the problem of load and frequency 
control has so far been vary basic.  
 In this paper, we introduce for the first time a 
software approach to fault detection and identification 
in the load-frequency control loops of interconnected 
power systems. It is shown that the presented scheme  
 

is capable of detecting faults in real time under real 
operating conditions such as the presence of unknown 
load disturbances, and plant and measurement noise. 
The paper presents simulation results where faults 
occur in one or more control loop(s) and in the 
communication channels which carry the transmitted 
signals from the sensors to the controller. 
 

POWER SYSTEM MODEL 

The linearised power system model considered is 
shown in Figure (1). In the figure the dotted lines 
represent the control loops, which in this paper are to 
be faulted. The disturbance inputs 1 2,d dp p  reflect the 

change in the load demand in areas 1 and 2, 
respectively, while various noise sources, shown as 

3 4 5 6, , ,d d d dp p p p , are also included to optionally 

reflect sensor and actuator noise. This model has been 
the subject of numerous studies in the problem of load-
frequency control (see for example [1], [6], [8], [10]). 
For simplicity, the system is chosen to comprise two 
interconnected areas with an additional DC link. The 
system data and parameters are taken to be the same as 
those first reported in [7], [8]. 
 
A state space representation of this system [8] is given 
as 
  
 1x Ax Bu Ed= + +ɺ  (1) 

 2y Cx Dd= +  (2) 

 
The state, control, disturbance and output variables are 
defined as follows:  

 

1 1 2 21 1 2 2

T

tie g v g v dcx p f p p ACE dt f p p ACE dt p =  ∫ ∫
 

1 2

T

c cu p p =   ;  
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Figure (1) A block-diagram for a Two Area Interconnected Power System for Load-frequency Control Studies 

 

 

 

1 2

3 4 5 6 7

1

2

;

;

d d

d d d d d

d p p

d p p p p p

 =  

 =  

 

1 2 1 2

T

tiey p f f ACE dt ACE dt =
 ∫ ∫ . 

 

DESIGN OF LOAD-FREQUENCY CONTROLLER 

An optimal output controller for the system described 
by equations (1)-(2) has been designed using a two-
stage process. The first stage involves the design of an 
optimal state feedback controller based on the 
approach reported in [2]. The second stage is 
projection of the state feedback controller to an output 
feedback controller using the numerical algorithm of 
[9] (detailed analysis of optimal output feedback 
controller design is given in [3]). 
 
In order to achieve zero steady state tie-line power and 
frequency deviations, an optimal proportional-plus-
integral controller structure is adopted (see [4] for 
further detail on this subject). As a result the following 
P-I controller has been obtained: 
 

1 1

2 2

1

2

p I

p I

K Ku
u y ydt

u K K

    
= = − −    

        
∫    

or 

 p Iu K y K ydt= − − ∫  (3) 

 
where 2 3

pK ×∈ℜ & 2 2
IK ×∈ℜ and have the following 

values: 

 
0.1791 0.3816 0.0241

0.3687 0.0071 0.2907pK
− 

=  − − 
 

1.2117 0.0497

0.1581 0.6258IK
 

=  − 
. 

 
The control law of equation (3) may be explicitly 
written in terms of the physical outputs, and the area 
control error (ACE) as  
 

 
1

1 2

2
2

tie

p I

P ACE dt
u K f K KDd

ACE dtf

   
   = − − −   
    

∫

∫
 (4) 

 
where 

1 1 1tieACE P B f+≜ , 2 2 2tieACE P B f− +≜ ; 

p IK K K =   .  

 
Equation (4) may be more compactly expressed as: 
 

 ( ) 2p p I Iu K C K C x KDd= − + +  (5) 

 
where 
 

�

�

1

2

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

ACE dt

I

ACE dt

C

 ∫
 
 =
 
 

∫ 

 



CLOSED LOOP SYSTEMS: NOMINAL CONDITIONS   

Substituting the control law (5)  into the system 
equation (1)-(2) gives the following closed-loop 
nominal control system 
  
 c dx A x E d= +ɺ  (6)  

 dy Cx D d= +  (7) 

 
where [ ]; ;c p p I I dA A BK C BK C E E BKD= + + = −�  

 [ ]5 2 1 20 ; .
TT T

dD D d d d×  = =    

 
It is easy to verify that the closed-loop system (6) is 
stable with the following set of eigenvalues: 
 

-13.5692,-13.9100,-1.6389 8.2499, -0.90193.5499,

 -0.3335,-0.5502,-2.0357 j 0.1771

j j
λ

± ± 
=  ± 

 

CLOSED LOOP SYSTEMS UNDER FAULT CONDITIONS   

It is quite common that faults occur in the feedback 
control loops. Such faults may be attributed to a loss of 
signal or a communication channel or controller 
malfunction or a combination of all of these. 
 
In order to model faults in the load-frequency control 
loop, we adopt the following convention: 0

tiepγ =  

implies a fault in the tiep  feedback loop (see figure 1) 

while 1
tiepγ =  implies no fault in the loop. Similarly  

1
0,1fγ =  (resp. 

2
0.1fγ =  ) imply the no fault (resp. 

fault) conditions in the frequency feedback loops of 
areas 1 and 2 respectively. 
 
Incorporating faults, the new open-loop system 
becomes: 
 
 c f dx A x E f E d= + +ɺ  (8) 

 dy Cx D d= +  (9)  

 
where f  is the fault signal to be estimated and fE  is a 

fault distribution matrix, the structure of which implies 
the fault condition. 
 

DESIGN OF FAULT DETECTION FILTER 

In the following, we briefly present a robust fault 
detection filter (RFDF) design technique [11] suitable 
for the problem outlined above. The technique 
involves design of an optimal residual generator as the 
reference residual model. Based on this the fault 
detection problem is formulated as an H∞  model 

matching problem. This is then formulated as an H∞  

model optimisation problem and solved as a linear 
matrix inequality (LMI) problem. Once a solution is 
accomplished, a threshold for residual evaluation is 
obtained. 
 

The output of the residual generator reflects the fault 
condition of the system. In the absence of faults, for 
example, the output of the residual generator stays 
below a threshold value. Otherwise the output breaches 
the threshold, signifying a faulty operation of the plant. 
 
The development is described in following two steps: 
 
Step 1. Introduction of optimal reference residual 

model. 
Step 2. Minimization of H∞  norm of the difference 

between the reference residual model and 
actual residual generator by formulation of a 
LMI. 

 
Let us now consider the system described in (8)-(9).  
The task of fault detection comprises the tasks of 
residual generation and residual evaluation. For 
residual generation, the following RFDF is proposed: 

 

 ( )ˆ ˆ
cx A HC x Hy= − +ɺ  (10) 

 ˆ ˆy Cx=  (11)

ˆ( )r V y y= −  (12) 

 
where H is a gain matrix and V is a weighing matrix.  
Denoting the estimation error as ˆe x x= − , we obtain 
the state error dynamics as  
 
 ( ) ( )c f d de A HC e E f E HE d= − + + −ɺ  (13) 

 dr VCe VD d= +   (14) 

    
From equations (13)-(14), it can be deduced that the 
problem of RFDF design reduces to the determination 
of H and V such that: 
 
1. ( )cA HC−  is asymptotically stable.  

2. Generated r is such that it is robust to norm-bounded 
unknown disturbances and modelling errors and at 
the same time as sensitive as possible to faults. 

 

DESIGN OF OPTIMAL FAULT DETECTION FILTER 

The design of optimal fault detection filter for the 
generation of reference residual is formulated as  the 
following optimization problem: 
 

( ) ( )( )
[ ) ( ) ( )( )

1

1,
0,

min  
inf  

d c d d

H V
i c f

V D sI A HC E HD
J

V j I A HC Eω σ ω

−

∞
−

∈ ∞

+ − + −
=

− +
 

 (15) 
  
A solution to the minimization problem described by 
equation (15) is  
  

 ( ) 1T T
opt d dH E D YC Q−= +  (16) 

 1/ 2
optV Q−=  (17)  

    



where T
d dQ D D=  and positive semi-definite matrix Y 

is obtained as a solution of the following algebraic 
Ricatti equation (ARE) 

( ) ( )1 1 1TT T T
c d d c d dY A E D Q C A E D Q C Y YC Q CY− − −− + − −

( )21 0T T
d d d dE I D Q D E−+ − =  (18)  

 
Then, the optimal fault detection filter is described by 
the following set of equations: 
 
 opt opt opt optf optdx A x E f E d= + +ɺ  (19)

f opt opt optdr C x D d= +  (20) 

 
where 
 

 
( )
( )

; ;

; ;

opt c opt optf f

optd d opt d opt opt

A A H C E E

E E H D C V C

= − =

= − =
 

 .optd opt dD V D=  

 
Therefore, the overall system dynamics can be 
described by the following set of equations 
  

 wx Ax B w= +ɺ ɶ ɶɶ ɶ  (21) 

 e wr Cx D w= +ɶ ɶɶ  (22) 

   
where: 
 

, 0
T TT T T T T

optx e x x w f d   = =   ɶ

( ) ,c opt c
A diag A HC A A = − 
ɶ

, , 0
d d f

d optd f optf w f d

d f

E HD E

B E B E B B B

E E

 − 
    = = =    
     

ɶ ɶ ɶ ɶ ɶ

0 , 0 0 , .opt w d d d optdC VC C D D D VD D  = − = = −   
ɶ ɶ ɶ ɶ

 

DESIGN OF RFDF:  

The solution of RFDF design problem, described by 
the equations (10)-(12), is based upon the application 
of a well-known bounded real lemma [5]. The design 
is formulated as an H∞ model-matching problem and 

involves the computation of the unknown matrices H 
and V. This is achieved by the formulation and solution 
of a LMI as stated in Theorem 1 below.  
 
Theorem1 [11]: Given 0γ > , if there exist scalars 

matrices 1 20,  0,  P P> >  3 0,  P > 1,  Y V such that the 

LMI  
 

 0ijN  <   (23) 

 

in which the submatrices { },   , 1,2, ,7ijN i j ∈ …  are 

detailed in [11] holds, then system (21)-(22) is 
asymptotically stable and the H∞ performance  

 
 

2 2er wγ<  (24) 

 
is satisfied. In this case the observer gain matrix is 
given by 
 
 1

1 1H P Y−=  (25) 

   

In this example, the matrix 46 46
ijN N × = ∈ℜ  . 

 
The residual generation is carried out as per equation 
(14). It is important to note that in this procedure the 
residual is adaptive so that as the plant conditions vary 
so too does the threshold. The generated residual tracks 
the threshold in the fault-free case, and is otherwise 
different. For evaluation of the generated residual, a 
threshold, thJ , is used. thJ  is calculated as upper bound 

on the residual for the fault free case. That is, 
 
 

2
( )th dJ r t=  (26) 

 

0
where ( ) ( ) .d f

r t r t
=

=  

 
Then,  
 
 

2
 with faults  alarmthr J> ⇒ ⇒   (27) 

 
2

  no faults thr J≤ ⇒  (28) 

 

APPLICATION TO TAIPS   

The fault detection technique outlined above is tested 
on the TAIPS described in section 2 by equations (8)-
(9) under the PI control law of equation (3). 
  
The test involves the following noise-free scenarios:  
 
Scenario I: The closed-loop power system is disturbed 
by a 0.01 p.u. change in the load demand in area 1 at 
time t=0. After 15s, fault occurs in the control loop of 
area 1, which results in total loss of the control signal  

1 11 p Iu K y K ydt= + ∫ . At time t=16s the fault is cleared 

and the control loop is closed leading to normal 
operation of the power system. 
 
Scenario II: The same conditions as in scenario I are 
repeated but the fault is unable to be cleared and stays 
in place for the remainder of the simulation study. 
 
The simulation results of the two scenarios are shown 
in Figures 2 and 3.  With respect to scenario I, figures 
2a-2c show the responses of the tie-line power change, 
and the frequencies in areas 1 and 2, respectively. As 
can be seen from these responses the controller, after 
some transitional period, is able to affect zero steady 
state change in these variables whenever an internal or 
external disturbance takes place, as required. 
 
 



 
Figure 2 (a). Response of tie lineP −     

 
 
 

 
Figure 2(b). Response of  1f  

 
 
 

 
Figure 2(c). Response of 2f  

 
 
 

 
Figure 2 (d). Residual generation 

 

 

 

 

Figure 3(a). Response of tie lineP −      

 

 

Figure 3(b). Response of  1f  

 

 

Figure 3 (c) Response of  2f  

 

 

Figure 3 (d) Residual generation 
  
 

 



Figure 2(d) demonstrates the generated residual. It can 
be seen that the residual tracks the threshold for the no 
fault period and surges above the threshold in the event 
of the fault. The surge above the threshold line 
signifies the fact that a fault has taken place in that 
particular loop. 
Figures 3(a)-3(c) illustrate the simulation results of 
scenario II where the responses of the tie-line power, 
and the frequencies in areas 1 and 2, respectively, are 
shown. It is clear from these figures that the tie-line 
power and frequencies of area 1 and area 2 are not able 
to return to the required zero steady state change due to 
the loss of the control loop.  
Figure 3(d) shows the response of the residual 
generator. As expected, the residual instantaneously 
diverges from the threshold at t = 15 s., signifying the 
occurrence of fault at that time in the particular control 
loop.  
 

CONCLUSIONS 

In this paper, we present a robust filter based approach 
for the detection and identification of faults in the load-
frequency control loop of two area interconnected 
power system (TAIPS). A closed loop model of the 
TAIPS system is obtained by using an optimal output 
controller. Then, the malfunctioning in the feedback 
loops is modelled as occurring faults. The robust fault 
detection filter is employed for fault detection and 
identification in presence of unknown disturbances and 
noise. Simulation results have been presented for two 
fault scenarios. The results conform to the physical and 
expected behaviour of the system under prescribed 
conditions. 
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