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We report on double-beam optical tweezers that undergo previously unknown phase-transition-like

behavior resulting in the formation of more optical traps than the number of beams used to create them.

We classify the optical force fields which produce multiple traps for a double-beam system including the

critical behavior. This effect is demonstrated experimentally in orthogonally polarized (noninterfering)

dual-beam optical tweezers for a silica particle of 2:32 �m diameter. Phase transitions of multiple beam

trapping systems have implications for hopping rates between traps and detection of forces between

biomolecules using dual-beam optical tweezers. It is an example of a novel dynamic system with multiple

states where force fields undergo a series of sign inversions as a function of parameters such as size and

beam separation.
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Since their inception, it has been known that optical
tweezers have nonconservative force components in their
force fields; this is commonly expressed by the division of
the optical force into the gradient force (conservative) and
the scattering force (nonconservative) [1]. When single
Gaussian beam traps are used to measure forces, for ex-
ample, in biophysics [2], the trap is usually considered to
be a harmonic potential. That is, the gradient force is
assumed to be described by Hooke’s law, and the scattering
force is ignored. In this case, the trap can be described by a
single parameter, the trap stiffness k. This approximation is
useful as it provides quantitative results of sufficient accu-
racy, especially when considering other sources of uncer-
tainty in the system. While a more complete picture of the
optical force field is possible [3,4], this is not required for
such applications. However, with two trapping beams, the
approximation of any single linear response function fails
and nonequilibrium effects must be considered [5].

While in general the optical force field for a double-
beam trap cannot be modeled as a linear spring, or as a pair
of linear springs at the limits of small and large separations
of the two beams, such models can be used for small
displacements of trapped particles. For small separations
there should be one trap, which can be modeled as har-
monic, and for large separations, there are two noninter-
acting traps. Thus, at some intermediate separation of the
beams, there must be a transition from the single trap case
to the multiple traps case; this would constitute phase-
transition-like behavior. Here, we investigate the transition
from a single trap to multiple traps, using an accurate
electromagnetic computational model [6], and demonstrate
experimentally a particular case in a dual-beam optical
tweezers apparatus.

We assume that our two beams are completely uncorre-
lated, which could be experimentally obtained by using
beams from independent sources, and can be approximated
by using beams with orthogonal polarizations. Previously,

unusual behaviors of dual-beam optical tweezers may have
been misattributed to an interference between the two
beams. The experiment greatly reduces interference by
using orthogonal polarization.
We calculate [6] single-beam force fields and add

them with a varying lateral displacement to obtain the
total optical force field. We assume the beams are uncorre-
lated, but otherwise identically linearly polarized in a
high numerical aperture (NA ¼ 1:25; 1:3) aberration free
optical tweezers, trapping silica (np ¼ 1:45) and polysty-

rene (np ¼ 1:59) particles with radii of 0–2:66�med in

water, where �med is the wavelength units in the medium
(water).
We show two examples of such force fields in Fig. 1,

using a line integral convolution with white noise [7].
In the case of a 0:66�med radius particle shown in
Fig. 1(a), beam separation has resulted in the formation
of two traps. Between the two equilibrium points, the
particle is still axially trapped, and the potential barrier
between the traps is smaller than the energy required to
escape completely. Therefore, it should be possible to
observe hopping between the two traps, driven by
Brownian motion.
Different size regimes result in manifestly different

behavior. For larger particles, such as the 2�med particle
shown in Fig. 1(b), the force fields from a single beam have
a more complex spatial variation, and the superposition of
two such force fields has intricate alternating attractive and
repulsive regions. In the case shown, this has resulted in
three stable equilibrium positions. Whether or not the third
equilibrium point on the beam axis is stable or unstable
depends on the size and relative refractive index of the
trapped particle, since the axial forces, and hence the axial
equilibrium position, can vary rapidly with size and refrac-
tive index due to interference effects [3,4].
Figure 2 shows the beam separation at which multiple

traps form and its dependence on particle size. The

PRL 107, 248101 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

9 DECEMBER 2011

0031-9007=11=107(24)=248101(4) 248101-1 � 2011 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15135445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.107.248101


difference between the small and large particle cases can be
seen clearly. For small particles, the important factor is the
separation of the beams compared to the beam width. For
large particles, the separation of the beams compared to the
particle size is most important. The refractive index affects
the separation, since it affects the axial position at which
particles are trapped, and hence the width of the beams at
the trapping positions.

Noting that three stable equilibria occur in Fig. 1(b), we
investigated the number of traps that exist by calculating the
transverse forces along the zero axial force contour
[4]. Figure 3 shows three different trap formation behaviors.
The number or traps formed varies from (a) two, (b) three, to
(c) more. Only the two and three trap variations are likely to
be observed; the explanation for this can be constructed
with an argument demonstrated in Fig. 4. The two particles
pictured correspond to Figs. 1(a) and 1(b). For a small
particle, the stiffness (gradient of force with respect to
displacement) is uniform near the beam axis, and decreases
smoothly as the particle moves far from the beam axis. As a
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FIG. 2 (color online). (a) Critical beam separation (�sc) re-
quired to produce two or more traps as a function of particle
radius for silica (dots) and polystyrene (crosses) in NA ¼ 1:25
optical tweezers. (b) The same for a NA ¼ 1:3 objective lens.
For small particles, the beam separation required to produce
multiple traps is dependent only on the beam waist size. For
wavelength-sized or larger particles, there is a linear dependence
on the size; the best-fit gradients are shown. At larger separations
the silica and polystyrene curves diverge since the polystyrene
particles are trapped farther from the focus, and thus experienc-
ing stronger influence from both beams.
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FIG. 1 (color online). Force field visualization for two parti-
cles. The centers of the double beams which produce these force
fields are denoted with stars. (a) Force field of a trapped
subwavelength-sized microsphere in dual-beam optical tweez-
ers. The x-z plane pictured (with the beam propagating in theþz
direction, and the x axis is the separation axis) contains the
expected features for a simple double Gaussian potential past a
critical separation, creating two traps. The stable equilibriums
(circles) are the locations where the particle spends the most
time. Dynamics requires a change in the sign of curvature, in the
plane seen in the figure, and thus a saddle (cross) appears.
(b) Force field for a sphere with radius larger than the wave-
length. Simple Gaussian potentials do not describe the energy
landscape the particle experiences. A third stable point and an
upward sloping ridge (square) are now present.
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result, a small particle exhibits behavior where the local
stiffness of the combined traps smoothly changes between
being dominated by one trap to two. Larger particles typi-
cally have a stiffness which rapidly increases near the edges
of the trap and sharply falls off as the particle moves even
farther away. Because of this increase in stiffness, the two
new traps form around the central equilibrium before the
two individual traps are completely separated. The two new
traps appear while the original central trap still exists,
typically at a higher stiffness than the original single-
beam trap.

More than three traps around the critical separation are
possible, but would be difficult to observe experimentally,
for three reasons. The first reason is that the formation of
more than three traps was only observed in calculations for
a NA ¼ 1:3 lens and high refractive index polystyrene
particles, which are only marginally trapped and can easily
escape from the trap through Brownian motion. The sec-
ond reason is that the depth of the traps is so low that they
could be easily missed in experiments as the ensemble
could be mistaken for a single, floppy, loose trap. Third,
the stability of many double-beam optical tweezers is
limited to a few nanometers in the focal plane due to
instability in the motions of the optical apparatus.
If we are to observe the presence of multiple traps

experimentally, through hopping of a particle between
the traps due to Brownian motion, it is important to realize
that past a certain separation either no zero axial force
contour exists or the maximum axial restoring force gives a
smaller barrier than between the two beams, and thus a
trapped particle will be more likely to escape completely
than to hop between the traps. This is especially the case
for particles with refractive indices greater than 1.5.
Therefore, a silica particle of 2:32 �m was selected to be
trapped. Using a 1070 nm laser source (YLM-5-LP, IPG
Photonics) two beams with orthogonal linear polarization
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FIG. 3 (color online). Trap locations along the beam separa-
tion axis (x axis) along the zero axial force contour. (a) Small
particles, smaller than a wavelength in radius form two traps. For
a 0:4� radius polystyrene particle, a single trap changes to a
double trap at a separation of �sc ¼ 0:68�med. (b) Particles of
radius larger than the wavelength form three traps. At the critical
separation for a 1:33�med radius particle, two new traps form
some distance from the original, central, trap. The strength of the
central trap reduces until �sb ¼ 2:72�med, where that point
becomes a saddle. (c) For particular configurations of double-
beam optical tweezers many traps can form at particular particle
sizes. Here, using a NA ¼ 1:3 objective lens, a 0:88�med poly-
styrene particle forms four traps over a small separation range
due to ripples in the radial force curve.
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FIG. 4 (color online). Component (f1; f2) and total forces
(f1 þ f2) experienced along the separation direction at the stable
trap height corresponding to Figs. 2(a) and 2(b). The resulting
traps are denoted with crosses. The horizontal dotted line
corresponds to zero force in the separation direction.
(a) Subwavelength particles such as the one depicted here gain
two traps past the critical separation. The gradient of force is
fairly constant until the peak where it falls off. The falloff
enables a double trap to form. (b) Larger than wavelength radius
particles initially produce three traps past the critical separation.
The increase in gradient enables the trap at the center to be
sustained past the critical separation until the traps no longer
overlap at which point it becomes a double trap system.
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were focused by a NA ¼ 1:25 (PLAN 100�A=1:25,
Nikon) into a sample of water containing the silica parti-
cles. By means of a gimbal mounted mirror one of the
beams was moved with respect to the other [8] to a known
region where three traps would form. A movable 1:1 tele-
scope was required to ensure the beams were focused in the
xy plane. The particle was observed to hop between three
stable trapping locations. This was observed by means of a
camera (Proscilica GE680, Allied Vision Technologies
GmbH) operating at 500 frames per second. Figure 5(a)
depicts the histogram of position data obtained with a
center of mass algorithm similar to [9], where accurate
measurements of particle positions in optical tweezers are
made using high-speed video microscopy. It was deter-
mined that three traps were present using the transverse
occupation probability in Maxwell’s statistical distribution
for distinguishable particles; a representation of the
pseudopotential surface in this plane appears in Fig. 5(b).

We have shown that double-beam optical tweezers often
do not display trapping behavior dictated by a simple
harmonic trapping model of optical tweezers. Particles
smaller than the beam waist follow this intuitive picture.
Closely paralleling the intensity gradient of the light trap-
ping the particle, two beams produce two traps at twice the
beam waist. In choosing a particle larger than the wave-
length in radius, we break the double well potential ap-
proximation for two beams. Three traps form at a critical
separation proportional to approximately twice the sum of
beam waist and radius in particles with radius about a
wavelength in size and larger. It is possible but unlikely
to observe even greater numbers of traps near critical
separations. This has implications for experiments where
dual-beam optical tweezers are used to detect forces as the
addition of an extra pseudopotential between the extrema
can affect force and position measurements. This could
also have applications in biophysics in the situation where
the bandwidth of the trap needs to be strictly controlled
without increasing, or decreasing, the optical power trav-
eling the beam path. One of the best descriptors of the
behavior of double-beam traps is that of a phase transition,
in much the same manner as a phase transition between
states of matter. Double-beam optical tweezers display
first-order transitions and a (classical) second-order phase
transition. Previously only second-order phase-transition-
like behavior had been observed, for example, [5]; here we
report that double-beam optical tweezers display first-
order transition behavior.
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FIG. 5 (color online). (a) Histogram of normalized probability
of particle position for a 2:32 �m silica particle trapped in
NA ¼ 1:25 dual-beam optical tweezers. Lighter regions denote
regions of higher occupation probability. The stable trapping
points for the particle are approximately the highest probability
regions. The separation of the two farthest traps is about
�x ¼ 1:35 �m. (b) The pseudopotential resulting from taking
� log½�ðx; yÞ� of (a). The displacement of the two outer traps in
medium wavelength units is 1:7�med. The energy differences
between the three traps is on the order of kBT.
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