
PHYSICAL REVIEW A 84, 053606 (2011)

Entanglement-based perturbation theory for highly anisotropic Bose-Einstein condensates
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We investigate the emergence of three-dimensional behavior in a reduced-dimension Bose-Einstein condensate
trapped by a highly anisotropic potential. We handle the problem analytically by performing a perturbative
Schmidt decomposition of the condensate wave function between the tightly confined (transverse) direction(s)
and the loosely confined (longitudinal) direction(s). The perturbation theory is valid when the nonlinear scattering
energy is small compared to the transverse energy scales. Our approach provides a straightforward way, first,
to derive corrections to the transverse and longitudinal wave functions of the reduced-dimension approximation
and, second, to calculate the amount of entanglement that arises between the transverse and longitudinal spatial
directions. Numerical integration of the three-dimensional Gross-Pitaevskii equation for different cigar-shaped
potentials and experimentally accessible parameters reveals good agreement with our analytical model even for
relatively high nonlinearities. In particular, we show that even for such stronger nonlinearities the entanglement
remains remarkably small, which allows the condensate to be well described by a product wave function that
corresponds to a single Schmidt term.
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I. INTRODUCTION

Three-dimensional Bose-Einstein condensates (BECs) con-
fined in highly anisotropic traps are known to exhibit lower-
dimensional behavior when the number of condensed atoms
is well below a critical value [1]. Under such conditions,
the tightly confined dimension(s) can be effectively neglected
because the characteristic transverse energy scale far exceeds
the scattering (interaction) energy of the atomic cloud.

Among the applications that take advantage of this lower-
dimensional character, quantum interferometry protocols can
be particularly sensitive to the true three-dimensional nature of
the condensate. In recent work [2], simulations of a nonlinear
BEC interferometer in highly elongated geometries showed
significant deviations from the quasi-one-dimensional (quasi-
1D) model with increasing strength of the nonlinear scattering
interaction. Similar effects have been shown to impact the
propagation of solitons in quasi-1D attractive BECs [3–5];
this is a potential source of problems in implementations of
matter-wave interferometers.

Here we study effects associated with the emergence of
3D behavior in reduced-dimension BECs trapped by highly
anisotropic potentials. We develop a perturbative Schmidt
decomposition of the condensate wave function between
the tightly confined (transverse) direction(s) and the loosely
confined (longitudinal) direction(s). The perturbation theory is
valid as long as the nonlinear scattering energy is small com-
pared to the transverse energy scales. In contrast to variational
methods [6–8], corrections to the reduced-dimension approxi-
mation are found without relying on any a priori assumptions
about the condensate wave function or the shape of the trapping
potential. Because the perturbation formalism is tied to the
Schmidt decomposition, it automatically encodes information
about the entanglement between the spatial and longitudinal
directions. The dominant Schmidt term corresponds to the
optimal product-state approximation to the condensate wave

function [9]; within this dominant term, the perturbation
formalism provides corrections to the lowest-order transverse
and longitudinal wave functions of the reduced-dimension
approximation; the main effect is a reshaping of the BEC in
the tightly confined direction as the strength of the nonlinear
scattering interaction increases. The next Schmidt term de-
scribes the lowest-order entanglement between the transverse
and longitudinal directions; the perturbation formalism allows
us to calculate the form and amount of this entanglement.

We compare the results of our perturbation theory with
numerical integration of the 3D Gross-Pitaevskii (GP) equa-
tion. We study the case of 87Rb condensates trapped by cigar-
shaped potentials for various atom numbers and experimen-
tally accessible parameters. By considering different trapping
potentials, we also investigate the dependence of the results
on the inhomogeneity of the longitudinal potential. We find
surprisingly good agreement even for relatively high nonlin-
earities; in particular, even for such stronger nonlinearities, the
entanglement between transverse and longitudinal directions
remains remarkably small, which allows the condensate to be
well described by a product wave function that corresponds to
a single Schmidt term.

We begin our discussion by briefly reviewing in Sec. II
the mean-field description of quasi-reduced-dimension BECs,
followed by the perturbative derivation of the Schmidt decom-
position of the condensate wave function in Sec. III. Details of
the derivation of the Schmidt perturbation theory are relegated
to Appendix A; an equivalent perturbation theory based on
relative states is developed in Appendix B. Comparison of
the perturbative approximation with numerical solutions of
the time-independent, 3D GP equation is presented in Sec. IV
for the parameters of 87Rb condensates trapped by different
cigar-shaped potentials and various atom numbers. The spatial
entanglement between transverse and longitudinal directions
is particularly analyzed in Sec. IV C. Final remarks are given
in Sec. V.
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II. REDUCED-DIMENSION APPROXIMATION TO A BEC
IN A HIGHLY ANISOTROPIC TRAP

In the mean-field approximation, one describes a conden-
sate of N atoms at zero temperature by a wave function
ψ (normalized to unity) that is determined by the time-
independent GP equation

μψ =
(

− h̄2

2M
∇2 + V + g(N − 1)|ψ |2

)
ψ, (2.1)

where V is the external trapping potential, μ is the chemical
potential, and g = 4πh̄2a/M is the scattering strength deter-
mined by the s-wave scattering length a and the atomic mass
M . For brevity, we generally use

g̃ ≡ g(N − 1) (2.2)

in the following.
In the case of highly anisotropic potentials, the atomic

cloud is loosely trapped by a potential VL(r) in d dimensions,
referred to as longitudinal (L) dimensions, as opposed to
the remaining D = 3 − d transverse degrees of freedom (T ),
which are tightly confined in a potential VT (ρ). If the scattering
interaction is sufficiently small compared to the transverse
energy scale, one can neglect the effect of the nonlinear
interaction on the atomic transverse degrees of freedom and
hence approximate the condensate wave function by a product
wave function,

ψ0(ρ,r) = ξ0(ρ)φ(r). (2.3)

Here ξ0(ρ) is the ground-state wave function of the bare trans-
verse potential, and φ(r) is the solution of the d-dimensional,
longitudinal GP equation(

− h̄2

2M
∇2

L + VL(r) + g̃ηT |φ(r)|2
)

φ(r) = μLφ(r),

(2.4)

which is found by plugging the product ansatz (2.3) into the
GP equation (2.1) and projecting the result onto the subspace
spanned by ξ0. In Eq. (2.4), μL = μ − E0 is the longitudinal
part of the chemical potential, with E0 being the transverse
ground-state energy, and

ηT =
∫

dDρ |ξ0(ρ)|4. (2.5)

In this reduced-dimension approximation, the transverse
and longitudinal degrees of freedom are decoupled, which
should hold as long as the number of atoms in the condensate
is small compared to an (upper) critical atom number NT ,
defined as the number at which the scattering energy becomes
comparable to the transverse kinetic energy, that is,

g

2
(NT − 1)η = h̄2

2M

∫
dDρ |∇ξ0|2, (2.6)

where η = ∫
d3r |ψ |4 is a measure of the inverse volume

occupied by the condensate wave function ψ .
As N approaches NT , one can no longer neglect the effects

of the scattering interaction on the condensate transverse
degrees of freedom; as a result, the product ansatz (2.3) is no
longer a good approximation to the 3D wave function. Such

effects are responsible not only for modifying the transverse
and longitudinal wave functions, but also for entangling the
spatial directions. We show below that these effects can be
readily calculated in the perturbative regime where N is
small compared to NT by performing a perturbative Schmidt
decomposition of the condensate wave function.

III. PERTURBATIVE SCHMIDT DECOMPOSITION OF
CONDENSATE WAVE FUNCTION

Our goal is to find an approximate solution to Eq. (2.1)
that correctly accounts for the nonlinear effects on the tightly
confined directions, which are neglected by the reduced-
dimension approximation. Instead of proposing an alternative
to the product ansatz (2.3), we look for a solution to the GP
equation in the form of the Schmidt decomposition,

ψ(ρ,r) =
∞∑

n=0

cnχn(ρ)φn(r), (3.1)

where {χn} and {φn} form orthonormal Schmidt bases in
the transverse and longitudinal directions and the cn’s are
the (nonnegative) Schmidt coefficients (the squares c2

n are the
eigenvalues of the marginal transverse and longitudinal density
operators). The decomposition (3.1) is guaranteed to exist, but
the Schmidt basis must be determined from the GP equation
(2.1). We can assume that the condensate wave function and
the Schmidt basis functions are real.

As the deviations from the reduced-dimension approxima-
tion arise in a regime where the scattering interaction can be
considered as a perturbation to the single-particle transverse
Hamiltonian, we can solve for the Schmidt decomposition in
successive orders of a perturbation theory. We begin by writing
the GP equation in the form

μψ = (HT + εHL + εg̃|ψ |2)ψ, (3.2)

where HT (L) = −(h̄2/2M)∇2
T (L) + VT (L) is the transverse (lon-

gitudinal) single-particle Hamiltonian and ε is a formal
perturbation parameter that is set equal to 1 at the end of the
calculation. Notice that due to the asymmetry of the trapping
potential, the longitudinal Hamiltonian HL and the nonlinear
scattering interaction are treated as of the same size, both being
order ε smaller than the transverse Hamiltonian.

As ε goes to zero, we expect the solution of the GP equation
(2.1) to reduce to the product wave function (2.3), in which
the Schmidt decomposition has only one term. As ε increases,
the Schmidt decomposition acquires additional terms. We are
thus motivated to treat the Schmidt decomposition formally as
a power-series expansion in ε:

ψ =
∞∑

n=0

εnχnφn. (3.3)

In developing the perturbation theory, we find it convenient
to absorb the Schmidt coefficients into the transverse Schmidt
basis functions, which thus satisfy the orthogonality relation

〈χn|χm〉 = c2
nδnm. (3.4)

The longitudinal Schmidt basis functions are orthonormal,

〈φn|φm〉 = δnm. (3.5)
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The consequences of the normalization of the overall wave
function and of the orthogonality relations (3.4) and (3.5) are
spelled out in Appendix A.

We also look for the chemical potential as an expansion in
powers of ε,

μ =
∞∑

m=0

εmμm, (3.6)

and similarly for the Schmidt basis functions as

χn =
∞∑

m=0

εmχnm, (3.7)

φn =
∞∑

m=0

εmφnm. (3.8)

We seek a solution to the 3D GP equation (3.2) to first order
in ε. Thus, we are looking for a solution of the form

ψ1(ρ,r) = [χ00(ρ) + εχ01(ρ)][φ00(r) + εφ01(r)]

+ εχ10(ρ)φ10(r), (3.9)

which is spatially entangled (or nonseparable). We relegate
the details of the straightforward derivation of the perturbative
equations to Appendix A and only present the results here.

The m = 0 terms in the n = 0 Schmidt term correspond, as
expected, to the idealized description of a quasi-d-dimensional
BEC summarized in Sec. II: χ00 = ξ0 is the ground-state wave
function of the bare transverse potential, and this means that
μ0 = E0 is the ground-state energy of the transverse trap; φ00

is determined by the reduced-dimension GP equation (2.4),
here written as

μ1φ00 = (
HL + g̃ηT φ2

00

)
φ00, (3.10)

with the nonlinear interaction renormalized by the average of
χ2

00 over itself,

ηT ≡ 〈
χ00

∣∣χ3
00

〉 =
∫

dDρ χ4
00(ρ). (3.11)

Hereafter, for brevity, we usually represent spatial integrals in
terms of bra-ket inner products. The longitudinal GP equation
(3.10) also determines the first correction, μ1, to the chemical
potential.

There are four first-order corrections to be calculated. The
functions χ01 and φ01 are the first corrections within the n = 0
Schmidt term, that is, to the transverse and longitudinal wave
functions χ00 and φ00, whereas χ10 and φ10 describe the lowest-
order spatial entanglement. The transverse functions χ01 and
χ10 are determined by the linear differential equations

(μ0 − HT )
χ01

ηL

= g̃
(
χ2

00 − ηT

)
χ00 = (μ0 − HT )

χ10

�ηL

,

(3.12)

where

ηL ≡ 〈
φ00

∣∣φ3
00

〉 =
∫

ddr φ4
00(r) (3.13)

is the average of the probability distribution φ2
00 over itself,

and

�η2
L ≡ 〈

φ3
00

∣∣φ3
00

〉 − η2
L � 0 (3.14)

is the variance of φ2
00. Notice that the first-order transverse

corrections, χ01 and χ10, are driven by inhomogeneities in the
zero-order transverse profile χ2

00. We can write a solution of
Eq. (3.12) in terms of the eigenfunctions and eigenenergies of
the transverse Hamiltonian HT , that is, HT ξn = Enξn,

χ01

ηL

= χ10

�ηL

= −g̃

∞∑
n=1

ξn

〈
ξn

∣∣ξ 3
0

〉
En − μ0

. (3.15)

The longitudinal function φ01 is determined by the equation(
μ1 − HL − 3g̃ηT φ2

00

)
φ01 = −3g̃2ϒT φ5

00 − μ2φ00.

(3.16)

Here

ϒT ≡
∞∑

n=1

〈
ξn

∣∣ξ 3
0

〉2
En − μ0

� 0 (3.17)

is a coupling parameter, which is determined solely by the
properties of the transverse trap and which characterizes
the strength of the coupling of transverse and longitudinal
directions. The quantity η2

T /ϒT can be thought of as the
relevant quantification of the transverse energy scale as
far as the perturbation theory is concerned; moreover, the
dimensionless quantity

g̃ϒT ηL

ηT

= (N − 1)
gηLηT

η2
T /ϒT

, (3.18)

which is roughly N times the ratio of the scattering energy to
the transverse energy, can be identified as the small physical
perturbation parameter. Projecting Eq. (3.16) onto φ00 gives
an expression for the correction to the chemical potential,

μ2 = 2g̃ηT

〈
φ01

∣∣φ3
00

〉 − 3g̃2
(
η2

L + �η2
L

)
ϒT , (3.19)

which shows that Eq. (3.16) is a linear integro-differential
equation for φ01.

The remaining longitudinal function, φ10, is given by a
trivial algebraic equation,

φ10 = φ2
00 − ηL

�ηL

φ00. (3.20)

The first-order longitudinal corrections are driven by inhomo-
geneities in the zero-order longitudinal profile φ2

00.
It is an easy matter to derive from Eqs. (3.15) and (3.20)

that〈
χ01

∣∣χ3
00

〉
ηL

=
〈
χ10

∣∣χ3
00

〉
�ηL

= −g̃

∞∑
n=1

〈
ξn

∣∣ξ 3
0

〉2
En − μ0

= −g̃ϒT , (3.21)

〈
φ10

∣∣φ3
00

〉 = �ηL. (3.22)

At the order we are working, the first two Schmidt coefficients
are given by c2

0 = 〈χ00|χ00〉 = 1 and

c2
1 = 〈χ10|χ10〉 = g̃2�η2

L

∞∑
n=1

〈
ξn

∣∣χ3
00

〉2
(En − μ0)2

. (3.23)

The only nonlinear equation we have to solve is the
(differential) longitudinal GP equation (3.10) for φ00, but we
are faced with solving the linear integro-differential equation
(3.16) for φ01. It is easier and more instructive to combine these
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two equations into a single nonlinear differential equation for
the longitudinal contribution to the n = 0 Schmidt term,

φ0 = φ00 + εφ01 + O(ε2). (3.24)

To do this, we write Eqs. (3.10) and (3.16) in the forms

0 = (μ1 − HL)φ00 − g̃ηT φ3
0 + 3εg̃ηT φ2

0φ01 + O(ε2),

(3.25)

0 = (μ1 − HL)εφ01 − 3εg̃ηT φ2
0φ01

+ 3εg̃2ϒT φ5
0 + εμ2φ0 + O(ε2). (3.26)

Identifying μ̃L = μ1 + εμ2 as the longitudinal part of the
chemical potential, we can add these two equations (and then
set ε = 1) to obtain a GP-like equation for φ0, accurate to first
order in ε:

μ̃Lφ0 = (
HL + g̃ηT φ2

0 − 3g̃2ϒT φ4
0

)
φ0

= [
HL + gηT (N − 1)φ2

0 − 3g2ϒT (N − 1)2φ4
0

]
φ0.

(3.27)

In the second form of the right-hand side, we restore the
N dependence to reveal the intrinsic coupling strengths.
Relative to a GP equation, this longitudinal equation has
an additional quintic term, which acts as an effective three-
body, attractive interaction among the atoms. This attractive
interaction is mediated by the changes in the transverse wave
function, as evidenced by the appearance of the (non-negative)
coupling parameter ϒT in the coupling strength 3g2ϒT . Such
a self-focusing interaction has also been used to study the
propagation of solitons in attractive quasi-1D condensates
[3–5].

The coupling constants in Eq. (3.27) can be calculated
explicitly for a transverse harmonic potential, which we use
henceforth. In this case, the transverse ground-state wave
function is the Gaussian

χ00(ρ) = e−ρ2/2ρ2
0(

πρ2
0

)D/4 , (3.28)

where ρ0 = √
h̄/MωT . It is easy to see that

ηT =
(

1√
2πρ0

)D

. (3.29)

Moreover, for a pancake (D = 1), we have

〈
ξn

∣∣ξ 3
0

〉 =
{

(−1)n/2√
π n!

ηT �
(

n+1
2

)
, n even,

0, n odd.
(3.30)

For a cigar (D = 2), if we use polar coordinates for the
transverse eigenfunctions, they take the form ξnrm(ρ,ϕ), with
nr and m being radial and azimuthal quantum numbers and
with the eigenenergies given by Enrm = h̄ωT (2nr + |m| + 1).
Then we find that 〈

ξnrm

∣∣ξ 3
00

〉 = 2−nr ηT δm0. (3.31)

It follows from Eq. (3.17) that ϒT is given by

ϒT =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η2
T

h̄ωT
ln(8 − 4

√
3), D = 1 (pancake),

η2
T

2h̄ωT
ln 4

3 , D = 2 (cigar).

(3.32)

As a result, the coupling constants for a cigar-shaped trap
(d = 1) are gηT = 2h̄ωT a and 3g2ϒT = 6h̄ωT a2 ln(4/3),
whereas for a quasi-2D pancake (d = 2), we obtain gηT =
2
√

2πh̄ωT ρ0a and 3g2ϒT = 24πh̄ωT ρ2
0a

2 ln(8 − 4
√

3).

IV. NUMERICAL SIMULATIONS

The accuracy of the perturbative Schmidt decomposition
of the condensate wave function can be checked by direct
comparison to the numerical solution of the 3D GP equation
(2.1) for various atom numbers.

A. Trap geometry and numerical integrations

We restrict our comparisons to the case of highly elongated
(cigar-shaped) condensates of 87Rb atoms in the |F = 1,mF =
−1〉 hyperfine state, for which a = 100.4 a0, with a0 being the
Bohr radius, trapped by potentials of the form

V (ρ,z) = 1
2

(
Mω2

T ρ2 + kzq
)
, (4.1)

with q = 2, 4, and 10. Such choice of potentials allows us to
explore how the hardness of the potentials affects the results.
A hard-walled longitudinal trap corresponds to the limit q →
∞. We set the transverse frequency to 350 Hz, which gives
ρ0 	 0.6 μm.

For the case of a harmonic longitudinal trap (q = 2), we set
the longitudinal frequency to 3.5 Hz and find that NT 	 14 000
atoms [10]. To compare the simulations for the different
longitudinal power-law potentials, we choose the stiffness
parameter k so that NT has the same value for the two other
values of q; thus, all the traps have the same 1D regime of
atom numbers. We define z0 ≡ (h̄2/Mk)1/(q+2) as a measure
of the bare ground-state width in the longitudinal direction (z0

simplifies to the analog of ρ0 for a harmonic longitudinal trap).
With these choices, the aspect ratio of the bare traps, ρ0 :z0,
is approximately equal to 1 :10, 1 :24, and 1:57 for q = 2, 4,
and 10.

In addition to integrating the 3D GP equation (2.1), we
also numerically integrate the quasi-1D GP equation (3.10)
and the perturbative quintic equation (3.27) for the trapping
potentials (4.1) and different atom numbers [11,12]. The latter
two integrations yield the longitudinal wave functions φ00(z)
and φ0(z) and also determine μ1 and μ̃L.

Given φ00(z), we can determine the remaining Schmidt
functions: φ10 follows trivially from Eq. (3.20), whereas the
transverse terms can be found from Eqs. (3.15) and (3.31),
together with gηT /h̄ωT = 2a, all of which yields

χ0(ρ) = ξ00(ρ) − aηL(N − 1)
∞∑

nr=1

ξnr 0(ρ)

2nr nr

, (4.2)

χ10(ρ) = −a�ηL(N − 1)
∞∑

nr=1

ξnr 0(ρ)

2nr nr

, (4.3)
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where the functions ξnr 0(ρ) = e−ρ2/2ρ2
0 Lnr

(ρ2/ρ2
0 )/

√
πρ0 are

the m = 0 (azimuthally symmetric) Laguerre-Gaussian eigen-
functions for the 2D harmonic potential, with energies Enr 0 =
2h̄ωT nr .

From the normalization of Eq. (4.3), we get

c1 =
√

〈χ10|χ10〉 =
√

Li2(1/4)(N − 1)a�ηL, (4.4)

where we use the polylogarithm function Lis(z) ≡∑∞
n=1 zn/ns .

B. Dominant Schmidt term

In this section, we study the dominant (n = 0) Schmidt
term, using various quantities to compare the predictions of the
Schmidt perturbation theory with the numerical predictions
of the 3D GP equation. We also include the predictions of
the quasi-1D, reduced-dimension approximation to determine
how significant the perturbative Schmidt terms are.

By integrating out the transverse dimensions from the
numerical solution of the 3D GP equation, we calculate the
axial (longitudinal) marginal distribution

nL(z) =
∫

d2ρ |ψ(ρ,z)|2. (4.5)

At the order we are working in perturbation theory, this
marginal distribution is given, according to Eq. (3.9), by
|φ0(z)|2, as the contribution from the n = 1 Schmidt term is
of higher order. In the quasi-1D approximation, this marginal
distribution is given by |φ00(z)|2.

In Fig. 1, we plot nL(z) against the distributions |φ0(z)|2
and |φ00(z)|2 for a condensate of 1000 atoms and the three
different values of q. The marginal distribution is very well
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FIG. 1. (Color online) Longitudinal marginal distribution for a
condensate of 1000 atoms in harmonic trap units [13]. The discrete
points are the results of the integration over the transverse plane
of the 3D GP ground-state solution for different trap geometries:
circles (blue) signify q = 2, squares (black) q = 4, and triangles
(red) q = 10. The corresponding solid lines represent the distribution
given by the n = 0 longitudinal Schmidt function, |φ0(z)|2, whereas
the dotted lines show the unperturbed distribution |φ00(z)|2. The
marginal distribution is well described by the Schmidt function for
all values of q. In the case of a harmonic trap (q = 2), the effect
of the quintic coupling on |φ0(z)|2 is evident, but becomes less
pronounced for higher q, as the longitudinal distribution becomes
more homogeneous.

described by the n = 0 Schmidt function φ0(z) for all the
potentials (4.1). The q = 2 case is particularly interesting
because the effect of the correction provided by the quintic
coupling in Eq. (3.27) proves to be quite noticeable due to
the inhomogeneity of the harmonic potential. As q increases,
however, this correction becomes less important, because the
axial distribution becomes more homogenous as a result of the
more hard-walled and flat-bottomed potentials.

The better performance of the Schmidt function φ0(z) over
φ00(z) is also evident in predictions for the chemical potential
μ as a function of the number of atoms in the condensate.
According to our perturbative expansion, the chemical poten-
tial is estimated to be μ̃ = h̄ωT + μ̃L = h̄ωT + μ1 + μ2, as
opposed to the estimate of the quasi-1D approximation, μ1D =
h̄ωT + μ1; these only differ by the longitudinal contribution
μ2. The difference comes directly from the difference between
the quasi-1D GP equation (3.10) and the perturbative quintic
equation (3.27), and it is from integrating these two equations
that we get μ1 and μ̃L. We compare, in Fig. 2, the two
approximations against the chemical potential given by the
numerical integration of the 3D GP equation. Deviations from
the quasi-1D model are again well captured by the perturbation
theory, especially for potentials with higher values of q.

We can also integrate out the longitudinal dimension to
calculate the transverse (radial) marginal distribution nT (ρ) =∫

dz |ψ(ρ,z)|2 and compare it with the approximate transverse
distributions |χ0(ρ)|2 and |ξ00(ρ)|2. As shown in Fig. 3, the
transverse distribution for a condensate of 1000 atoms is
well described by the Schmidt perturbation theory for all the
potentials (4.1); the perturbation theory correctly accounts for
the spreading of the condensate in the radial direction. In
contrast to the axial profile in Fig. 1, the correction to the

•
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• • • • • • • •

•

•

•

•
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μ

FIG. 2. (Color online) Chemical potential in units of h̄ωT as a
function of the number of atoms in the condensate for longitudinal
potentials (4.1). Discrete points represent the result obtained from
the numerical integration of the 3D GP equation, with circles (blue)
for q = 2, squares (black) for q = 4, and triangles (red) for q = 10.
The solid lines give the corresponding approximation coming from
the perturbative quintic equation (3.27), whereas the dotted lines are
the estimates from the quasi-1D GP equation (3.10). The correction
introduced by the perturbation theory becomes quite significant as N

increases above 1000 and does indeed lead to a better approximation
of the 3D numerical results in comparison with the quasi-1D model,
although the perturbation theory is noticeably failing, even for q =
10, as N approaches 5000.

053606-5



ALEXANDRE B. TACLA AND CARLTON M. CAVES PHYSICAL REVIEW A 84, 053606 (2011)

• •
•

•

•

•

•

•

•
•

•
• • • • • • • •

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

ρ

n T

FIG. 3. (Color online) Transverse marginal distribution for a
condensate of 1000 atoms in harmonic trap units [13]. The discrete
points are the results of the integration over the axial axis of the 3D
GP ground-state solution for different trap geometries: circles (blue)
denote q = 2, squares (black) q = 4, and triangles (red) q = 10. The
corresponding solid lines represent the distribution |χ0(ρ)|2, whereas
the black dashed line represents the bare (Gaussian) distribution
|ξ00(ρ)|2. For all values of q, the marginal distribution is well
described by the Schmidt function |χ0(ρ)|2, which represents a major
improvement over the bare distribution |ξ00(ρ)|2.

bare radial distribution is not affected by the inhomogeneity of
the longitudinal potentials. Instead, as predicted by Eq. (4.2),
it is set by the length ratio aηL; the radial distributions are
nearly the same because ηL varies only slightly among the
three values of q.

The success of our perturbation theory emboldens us to
push it a bit beyond where it really should work. Figure 4
plots the longitudinal marginal distribution for 5000 atoms, and
Fig. 5 plots the transverse marginal distribution for 5000 atoms.
In both figures, we can see the breakdown of the perturbation
theory, although it performs surprisingly well, especially for
higher values of q, given that this atom number is more than a
third of the way to NT .

C. Spatial entanglement

The last two Schmidt functions, χ10(ρ) and φ10(z), intro-
duce the final correction to the quasi-1D, reduced-dimension
approximation, namely, to the assumption of a spatially
separable 3D wave function. The validity and importance of
these corrections can be assessed in terms of two quantities.
The first of these is the probability PD of finding the
numerically determined solution of the 3D GP equation (3.2)
outside the subspace spanned by the Schmidt wave functions
χ0φ0 and χ1φ1. This probability deficit tells us the extent to
which the exact solution is confined to the 2D subspace of the
perturbative Schmidt wave function (3.9) and is given by

PD = 1 − c̃2
0 − c̃2

1, (4.6)

where c̃0 and c̃1 are Schmidt-like coefficients obtained by
projecting the exact 3D solution onto the (normalized) Schmidt
basis functions, χ0φ0/c0 and χ1φ1/c1. Computed values of the
deficit PD for the different longitudinal potentials are displayed
in Table I for various atom numbers. The very small values
of the deficit indicate the success of our perturbation theory.
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FIG. 4. (Color online) Longitudinal marginal distribution for a
condensate of 5000 atoms in harmonic trap units [13]. The discrete
points are the results of the integration over the transverse plane of
the 3D GP ground-state solution for different trap geometries: circles
(blue) designate q = 2, squares (black) q = 4, and triangles (red)
q = 10. The corresponding solid lines represent the distribution given
by |φ0(z)|2, whereas the dotted lines show the unperturbed distribution
|φ00(z)|2. For this many atoms, the self-focusing quintic term clearly
overcorrects the unperturbed distribution, signaling the breakdown
of the perturbation theory. This overcorrection is especially evident
for q = 2. For q = 4 and q = 10, the overcorrection is not as bad,
and the perturbation theory does a reasonably good job, even for this
quite large number of atoms.

For larger atom numbers, however, the population outside the
2D space increases as the perturbation theory begins to break
down.

Within this 2D subspace, we can assess the validity of
the perturbative wave function in terms of an entanglement
measure. Since the perturbative wave function has the form of
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FIG. 5. (Color online) Transverse marginal distribution for a
condensate of 5000 atoms in harmonic trap units [13]. The discrete
points are the results of the integration over the axial axis of the 3D
GP ground-state solution for different trap geometries: circles (blue)
denote q = 2, squares (black) q = 4, and triangles (red) q = 10. The
corresponding solid lines represent the distribution |χ0(ρ)|2, whereas
the black dashed line represents the bare (Gaussian) distribution
|ξ00(ρ)|2. For this many atoms the perturbation theory starts to break
down, as the Schmidt function |χ0(ρ)|2 overcorrects the unperturbed
distribution |ξ00(ρ)|2. For all values of q, the marginal distribution is
still reasonably well described by the perturbation theory.
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TABLE I. Probability deficit PD × 104. Small values are indica-
tive of the overall success of the two-Schmidt-term perturbation
theory. The values of the probability deficit for N = 1000 and
q = 4,10 are of the same size as the numerical uncertainties and
thus can only be taken as indicating that the probability deficit is very
small.

q N = 1000 N = 2000 N = 3000 N = 4000 N = 5000

2 0.19 1.76 6.88 18.05 39.23
4 0.03 0.44 1.81 4.91 10.41
10 0.05 0.21 0.88 1.44 3.06

a two-qubit entangled state, we can use Wootters’s concurrence
[14] for a pair of qubits as the entanglement measure.

The concurrence of a bipartite pure state |�AB〉 varies
smoothly from 0 for product states to 1 for maximally entan-
gled states. From its definition, C = |〈�∗

AB |σy ⊗ σy |�∗
AB〉|,

in terms of the Pauli matrix σy and the complex conjugate
of |�AB〉, it is easy to show that the concurrence for the
perturbative condensate wave function (3.9) is given by

C = 2c0c1 = 2
√

Li2(1/4)(N − 1)a�ηL, (4.7)

where we use the perturbative coefficients c0 = 1 and c1 as
given by Eq. (4.4). The concurrence tells us about the amount
of entanglement generated by the nonlinear interaction be-
tween the radial and axial directions. This information, which
quantifies the importance of the nonseparable corrections, is
essentially contained in the Schmidt coefficient c1.

In Fig. 6, we compare the concurrence of the exact 3D
solution, given by C̃ = 2c̃0c̃1, with the concurrence (4.7) of
the perturbative Schmidt theory [15]. One can see that the
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FIG. 6. (Color online) Concurrence of the condensate wave
function as a function of the number of atoms in the condensate.
The discrete points are the concurrence calculated from the Schmidt
coefficients found from the numerical solution of the 3D GP equation,
as described in the text: circles (blue) signify q = 2, squares (black)
q = 4, and triangles (red) q = 10. The corresponding lines are the
concurrence of the perturbative Schmidt wave function, as given by
Eq. (4.7). The entanglement between transverse and longitudinal
dimensions decreases for higher values of q, since the potential
becomes more homogeneous. Moreover, the entanglement remains
remarkably small even for relatively large N , indicating that the
condensate is well approximated by a single Schmidt term.
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FIG. 7. (Color online) Average atomic density Nη in harmonic
trap units [13] as a function of the number of atoms in the condensate.
Discrete points are the results obtained from the numerical solution
of the 3D GP equation for different trap geometries: circles (blue) are
for q = 2, squares (black) for q = 4, and triangles (red) for q = 10.
The corresponding solid lines are those obtained from the entire
perturbative Schmidt wave function (3.9), and the dashed lines are
those of the dominant Schmidt term only, whereas the dotted lines,
which deviate substantially from the exact numerical results, are
the result, NηT ηL, obtained from the quasi-1D approximation. The
agreement between the exact results and those of the perturbation
theory, even for relatively large atom numbers, is remarkable.
The difference between the solid and dashed lines comes from
the nonseparable corrections to the dominant Schmidt term; this
contribution is quite small, confirming the conclusions drawn from
the concurrence.

entanglement remains remarkably small even for relatively
large atom numbers. Notice that as the inhomogeneity of the
longitudinal potential decreases, so does the spatial entangle-
ment, which is an immediate consequence of Eq. (3.20). In
fact, for homogeneous longitudinal potentials, such as rings or
boxes, the spatial entanglement vanishes completely.

The probability (4.6) and concurrence play complementary
roles in assessing the accuracy of the perturbation theory:
The deficit PD tells us to what extent the exact solution is
confined to the 2D subspace of the perturbation theory, and
the concurrence C tells us whether the perturbation theory
captures correctly the entanglement in this subspace.

We can also use another, more directly physical quantity to
quantify the effects of the nonseparable correction, namely, the
condensate average density Nη = N〈ψ |ψ3〉. This parameter is
of special interest in interferometric applications of BECs [2].
The average density is particularly appealing, because it can be
used to measure any of the perturbative corrections introduced
by the Schmidt decomposition, not just the nonseparable
corrections. In Fig. 7, we plot the average density obtained
from the 3D GP ground-state solution, as well as its estimates
obtained from (i) the entire perturbative Schmidt wave function
(3.9), (ii) the dominant Schmidt term alone, χ0φ0, and
(iii) the quasi-1D, reduced-dimension approximation, which
gives average density NηLηT . Notice that the approximation
provided by the Schmidt decomposition is remarkably good
even for relatively large atom numbers. The same is true
for the approximation given by the dominant Schmidt term,
which demonstrates how small is the effect of the nonseparable
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corrections. Not surprisingly, in view of our previous results,
the unperturbed estimate NηLηT quickly deviates from the
exact numerical results.

The results of this section point to the interesting conclusion
that the nonseparable corrections to the dominant Schmidt term
are small even for relatively large N . Therefore, as far as the
ground-state properties go, one can nearly neglect the spatial
entanglement and describe the condensate wave function in
terms of the product wave function corresponding to the first
Schmidt term.

V. CONCLUSION

We begin our concluding section by noting that there
is another way to do the perturbation theory, which we
call the relative-state method, in contrast to the Schmidt-
decomposition method developed in this paper. The relative-
state method starts from a relative-state decomposition of the
condensate wave function in the bare transverse eigenbasis ξn,

ψ(ρ,r) = ξ0(ρ)ϕ0(r) + ε

∞∑
n=1

ξn(ρ)ϕn(r), (5.1)

where, as before, ε is a formal perturbation parameter that is set
equal to 1 at the end of the calculation. The longitudinal wave
functions ϕn are determined by projecting the 3D GP equation
(3.2) onto the transverse eigenfunctions ξn; the longitudinal
wave functions are neither normalized nor orthogonal.

In Appendix B, we formulate the relative-state perturbation
theory and show explicitly that the two perturbation theories
are equivalent at the order we are working. Even though
the relative-state perturbation theory is easier to implement,
especially at higher orders than we consider in this paper,
it obscures the physics of the condensate wave function.
In the Schmidt perturbation theory, the n = 0 term gives
the best product approximation to the exact wave function,
and the Schmidt theory gets directly at how that term is
modified by higher-order effects of the nonlinear scattering
interaction. The n > 0 terms in the Schmidt theory describe
entanglement of the transverse and longitudinal directions, and
the Schmidt approach neatly separates this entanglement from
the dominant (n = 0) Schmidt term. The relative-state theory
can be used to calculate all these effects—and, as noted, it
gives the same results at the order we are working—but it does
not divide up the terms in perturbation theory in this neatly
interpreted way.

We close with two ideas, on both of which we have
already commenced work. The comparisons of the Schmidt
perturbation theory with the exact numerical results, pre-
sented in Sec. IV, suggest that the ground-state condensate
wave function, for surprisingly high atom numbers, is well
approximated by the two-Schmidt-term perturbation theory
and even by the dominant Schmidt term alone. This prompts
us to wonder what happens to the Schmidt decomposition of
the ground-state wave function as the atom number crosses
over from reduced-dimension behavior for atom numbers
below NT to 3D behavior above NT . We have evidence, to
be presented elsewhere, that throughout the crossover, the
ground-state wave function continues to be well approximated
by two Schmidt terms, and this suggests that an approximate

description based on just two Schmidt terms might work
through the entire crossover and into the 3D regime.

As we noted above, the corrections to the reduced-
dimension approximation are particularly important for in-
terferometric schemes that use BECs [2]. A remaining
problem in that regard is to assess how such corrections
propagate in time and affect the condensate dynamics in
a highly anisotropic trap. We plan to address these ques-
tions in a future publication, which will develop the cor-
responding perturbation theory for the time-dependent GP
equation.
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APPENDIX A: PERTURBATION EXPANSION

Our objective in this Appendix is to derive the equations
for χ00, φ00, χ01, φ01, χ10, and φ10. The first two of these
give the lowest-order contribution to the dominant (n =
0) Schmidt term, and the second two are the first-order
corrections to the lowest-order behavior of this dominant
Schmidt term. The last two give the lowest-order contribution
to the second Schmidt term and thus describe the lowest-
order entanglement between the transverse and longitudinal
directions.

We only need to work to at most second order in ε to
determine the quantities we are interested in, so we use the
Schmidt decomposition (3.3) in the form

ψ = χ0φ0 + εχ1φ1 + ε2χ2φ2 + O(ε3). (A1)

The transverse and longitudinal basis functions are further
expanded as in Eqs. (3.7) and (3.8).

We first consider the consequences of the various normal-
ization and orthogonality conditions. The overall normaliza-
tion of the wave function,

1 = 〈ψ |ψ〉 = 〈χ0|χ0〉 + ε2〈χ1|χ1〉 + O(ε4)

= 〈χ00|χ00〉 + 2ε〈χ01|χ00〉 + ε2(2〈χ02|χ00〉
+ 〈χ01|χ01〉 + 〈χ10|χ10〉) + O(ε4), (A2)

implies that

〈χ00|χ00〉 = 1, (A3)

〈χ01|χ00〉 = 0, (A4)

〈χ02|χ00〉 = −〈χ01|χ01〉 + 〈χ10|χ10〉
2

. (A5)

The orthogonality relations (3.4) for the transverse basis
functions, carried to second order in ε, imply

c2
nδnm = 〈χn|χm〉 = 〈χn0|χm0〉 + ε(〈χn1|χm0〉 + 〈χn0|χm1〉)

+ ε2(〈χn2|χm0〉 + 〈χn0|χm2〉 + 〈χn1|χm1〉) + O(ε3).

(A6)
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For the cases of interest, we get

n = m = 0 : c2
0 = 〈χ0|χ0〉 = 1 − ε2〈χ10|χ10〉 + O(ε3),

(A7)

n = 1, m = 0 : 〈χ10|χ00〉 = 0, 〈χ11|χ00〉 = −〈χ10|χ01〉,
(A8)

n = 2, m = 0 : 〈χ20|χ00〉 = 0, (A9)

n = m = 1 : c2
1 = 〈χ1|χ1〉 = 〈χ10|χ10〉 + O(ε).

(A10)

Likewise, the orthonormality (3.5) of the longitudinal basis
functions, carried to the same order in ε, gives

n = m = 0 : 〈φ00|φ00〉 = 1,
(A11)

〈φ01|φ00〉 = 0, 〈φ02|φ00〉 = −〈φ01|φ01〉/2,

n = 1, m = 0 : 〈φ10|φ00〉 = 0,
(A12)

〈φ11|φ00〉 = −〈φ10|φ01〉,
n = 2, m = 0 : 〈φ20|φ00〉 = 0, (A13)

n = m = 1 : 〈φ10|φ10〉 = 1. (A14)

Now we use the Schmidt decomposition (A1) to expand the
GP equation (3.2) to second order in powers of ε, that is,

(μ0 + εμ1 + ε2μ2)χ0φ0 + (μ0 + εμ1)εχ1φ1 + μ0ε
2χ2φ2

= HT (χ0φ0 + εχ1φ1 + ε2χ2φ2) + ε
(
HL + g̃χ2

0 φ2
0

)
χ0φ0 + ε2

(
HL + 3g̃χ2

0 φ2
0

)
χ1φ1 + O(ε3). (A15)

By projecting Eq. (A15) onto φ0 and then onto χ0, keeping in mind the strict orthogonality and reality of the Schmidt basis
functions, we get

(HT − μ0)χ0 + ε
[〈φ0|(HL − μ1)|φ0〉 + g̃

〈
φ0

∣∣φ3
0

〉
χ2

0

]
χ0

+ ε2
[−μ2χ0 + 〈φ0|(HL − μ1)|φ1〉χ1 + 3g̃

〈
φ1

∣∣φ3
0

〉
χ2

0 χ1
] + O(ε3) = 0, (A16)

〈χ0|(HT − μ0)|χ0〉φ0 + ε
[〈χ0|(HT − μ0)|χ1〉φ1 + 〈χ0|χ0〉(HL − μ1)φ0 + g̃

〈
χ0

∣∣χ3
0

〉
φ3

0

]
+ ε2

[−〈χ0|χ0〉μ2φ0 + 〈χ0|(HT − μ0)|χ2〉φ2 + 3g̃
〈
χ1

∣∣χ3
0

〉
φ2

0φ1
] + O(ε3) = 0. (A17)

We now expand the Schmidt-basis functions in powers of ε as in Eqs. (3.7) and (3.8). Keeping terms to second order, we find
that the transverse part of the first Schmidt term is determined by

(μ0 − HT )χ00 = 0, (A18)
(μ0 − HT )χ01 = [〈φ00|(HL − μ1)|φ00〉 + g̃ηLχ2

00

]
χ00, (A19)

(μ0 − HT )χ02 = [
2〈φ01|(HL − μ1)|φ00〉 + 4g̃

〈
φ01

∣∣φ3
00

〉
χ2

00 − μ2
]
χ00

+ [〈φ00|(HL − μ1)|φ00〉 + 3g̃ηLχ2
00

]
χ01 + [〈φ10|(HL − μ1)|φ00〉 + 3g̃

〈
φ10

∣∣φ3
00

〉
χ2

00

]
χ10, (A20)

and the longitudinal part by

〈χ00|(HT − μ0)|χ00〉φ00 = 0, (A21)

[〈χ00|χ00〉(μ1 − HL) − g̃ηT φ2
00

]
φ00 = 2〈χ01|(HT − μ0)|χ00〉φ00 + 〈χ00|(HT − μ0)|χ00〉φ01 + 〈χ10|(HT − μ0)|χ00〉φ10,

(A22)[〈χ00|χ00〉(μ1 − HL) − 3g̃ηT φ2
00

]
φ01

= [〈χ01|(HT − μ0)|χ01〉 + 2〈χ02|(HT − μ0)|χ00〉 + 2〈χ01|χ00〉(HL − μ1) + 4g̃
〈
χ01

∣∣χ3
00

〉
φ2

00 − 〈χ00|χ00〉μ2
]
φ00

+ 2〈χ01|(HT − μ0)|χ00〉φ01 + [〈χ01|(HT − μ0)|χ10〉 + 〈χ11|(HT − μ0)|χ00〉 + 3g̃
〈
χ10

∣∣χ3
00

〉
φ2

00

]
φ10

+〈χ00|(HT − μ0)|χ00〉φ02 + 〈χ10|(HT − μ0)|χ00〉φ11 + 〈χ20|(HT − μ0)|χ00〉φ20, (A23)

where ηT and ηL, defined in Eqs. (3.11) and (3.13), are the lowest-order terms in the expansions of 〈χ0|χ3
0 〉 and 〈φ0|φ3

0〉. We
now use the normalization and orthogonality conditions from above and the transverse equations to discard the first longitudinal
equation and to simplify considerably the other two:(

μ1 − HL − g̃ηT φ2
00

)
φ00 = 0, (A24)(

μ1 − HL − 3g̃ηT φ2
00

)
φ01 = [〈χ01|(HT − μ0)|χ01〉 + 4g̃

〈
χ01

∣∣χ3
00

〉
φ2

00 − μ2
]
φ00

+ [〈χ01|(HT − μ0)|χ10〉 + 3g̃
〈
χ10

∣∣χ3
00

〉
φ2

00

]
φ10. (A25)

The lowest-order (m = 0) equations for the dominant
(n = 0) Schmidt term are the transverse Schrödinger equation
(A18) for χ00 and a longitudinal GP equation (A24) for φ00.

Both χ00 and φ00 are normalized to unity. These lowest-order
equations are precisely those that give the reduced-dimension
approximation discussed in Sec. II.
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We can now use the longitudinal equations to simplify the
transverse equations and these simplified transverse equations,
in turn, to simplify further the longitudinal equations, the
results being

(μ0 − HT )χ00 = 0, (A26)
(μ0 − HT )χ01 = g̃ηL

(
χ2

00 − ηT

)
χ00, (A27)

(μ0 − HT )χ02 = [
2g̃

〈
φ01

∣∣φ3
00

〉(
2χ2

00 − ηT

) − μ2
]
χ00

+ g̃ηL(3χ2
00 − ηT )χ01

+ g̃
〈
φ10

∣∣φ3
00

〉(
3χ2

00 − ηT

)
χ10, (A28)(

μ1 − HL − g̃ηT φ2
00

)
φ00 = 0, (A29)(

μ1 − HL − 3g̃ηT φ2
00

)
φ01

= [
g̃
〈
χ01

∣∣χ3
00

〉(
4φ2

00 − ηL

) − μ2
]
φ00

+ g̃
〈
χ10

∣∣χ3
00

〉(
3φ2

00 − ηL

)
φ10. (A30)

Notice that the right-hand side of Eq. (A27) is orthogonal to
χ00, as required by the left-hand side.

The remaining first-order terms, χ10 and φ10, provide
the first correction to a product wave function and thus
describe to lowest order the entanglement of the transverse
and longitudinal dimensions. These terms are determined by
projecting Eq. (A15) onto φ1 and χ1. The first of these gives

(HT − μ0)χ1 + 〈φ1|(HL − μ1)|φ0〉χ0

+ g̃
〈
φ1

∣∣φ3
0

〉
χ3

0 + O(ε) = 0. (A31)

Plugging in the expansions (3.7) and (3.8), we find that

(μ0 − HT )χ10 = [〈φ10|(HL − μ1)|φ00〉 + g̃
〈
φ10

∣∣φ3
00

〉
χ2

00

]
χ00

= g̃
〈
φ10

∣∣φ3
00

〉(
χ2

0 − ηT

)
χ00, (A32)

where to obtain the second form, we use the longitudinal
equation (A29) for φ00. The right-hand side of Eq. (A32) is
orthogonal to χ00, as required by the left-hand side.

Projecting Eq. (A15) onto χ1 yields

〈χ1|(HT − μ0)|χ0〉φ0

+ ε
[〈χ1|(HT − μ0)|χ1〉φ1 + g̃

〈
χ1

∣∣χ3
0

〉
φ3

0

] + O(ε2) = 0.

(A33)

Applying the expansions (3.7) and (3.8) gives at lowest order,
〈χ10|(HT − μ0)|χ00〉φ00 = 0, which is already satisfied, and at
the next order,

〈χ10|(μ0 − HT )|χ10〉φ10

= [〈χ11|(HT − μ0)|χ00〉 + 〈χ10|(HT − μ0)|χ01〉
+ g̃

〈
χ10

∣∣χ3
00

〉
φ2

00

]
φ00 + 〈χ10|(HT − μ0)|χ00〉φ01.

(A34)

Simplifying this equation using Eqs. (A26), (A27), and
(A32) gives a remarkably simple algebraic equation for φ10,〈

φ10

∣∣φ3
00

〉
φ10 = φ3

00 − ηLφ00. (A35)

This means that φ3
00 is a linear combination of the orthonormal

functions φ00 and φ10 and hence that〈
φ3

00

∣∣φ3
00

〉 = η2
L + 〈

φ10

∣∣φ3
00

〉2
. (A36)

Since ηL = 〈φ00|φ3
00〉 is the average value of φ2

00 over the
distribution φ2

00 and 〈φ3
00|φ3

00〉 is the second moment of φ2
00,

〈φ10|φ3
00〉2 is the (non-negative) variance of φ2

00, which we
denote as �η2

L. Putting all this together, we have

〈
φ10

∣∣φ3
00

〉 = �ηL ≡
√〈

φ3
00

∣∣φ3
00

〉 − η2
L, (A37)

φ10 = φ2
00 − ηL

�ηL

φ00. (A38)

We now let {ξn} be the set of energy eigenfunctions of the
bare transverse potential, with En denoting the corresponding
energy eigenvalues; that is, HT ξn = Enξn. From Eq. (A26),
we have χ00 = ξ0 and μ0 = E0. Equations (A27) and (A32)
imply that

χ01

ηL

= χ10

�ηL

= −g̃

∞∑
n=1

ξn

〈
ξn

∣∣ξ 3
0

〉
En − E0

, (A39)

and this, in turn, gives us the relations (3.21).
The one remaining step we need to take is to use the relations

(3.21) and our result (A38) for φ10 to simplify the equation
[Eq. (A30)] for φ01:(

μ1 − HL − 3g̃ηT φ2
00

)
φ01 = 3g̃2ϒT φ5

00 − μ2φ00, (A40)

where ϒT is the transverse coupling parameter defined by
Eq. (3.17). Projecting this equation onto φ00—or, equivalently,
projecting the equation for χ02 [Eq. (A28)] onto χ00—gives
the expression (3.19) for the chemical potential. Plugging this
expression for μ2 back into the equation for φ01 [Eq. (A40)]
shows that it is a linear integro-differential equation for φ01.
Solving this integro-differential equation and using the result
in Eq. (3.19) determines μ2.

This completes the set of equations we need. Section III
summarizes the final forms of our perturbative equations and
also derives a GP-like, but quintic equation for φ0 = φ00 +
εφ01, which we use in preference to the separate equations for
φ00 and φ01.

APPENDIX B: RELATIVE STATE DECOMPOSITION

In this Appendix, we show explicitly that a relative-state
perturbation expansion is equivalent, at the order we are
working, to the Schmidt-decomposition method developed in
this paper.

In the relative-state method, one starts with the expan-
sion (5.1). The longitudinal wave functions, determined
by projecting the 3D GP equation (3.2) onto the trans-
verse eigenfunctions ξn, are neither orthogonal nor normal-
ized, but rather satisfy the following overall normalization
condition:

〈ϕ0|ϕ0〉 + ε2
∞∑

n=1

〈ϕn|ϕn〉 = 1. (B1)

We need to expand the longitudinal functions ϕn in
powers of ε,

ϕn =
∞∑

m=0

εmϕnm. (B2)
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Expanding the GP equation (3.2) to second order in powers
of ε and projecting the result onto ξ0 gives(

μ − E0 − εHL − εg̃ηT ϕ2
0

)
ϕ0

−3ε2g̃ϕ2
0

∞∑
n=1

〈
ξ 3

0

∣∣ξn

〉
ϕn + O(ε3) = 0. (B3)

Using the expansion (3.6) of the chemical potential and the
expansion (B2), we can work out order-by-order contributions
to Eq. (B3), obtaining

μ0 = E0, (B4)(
μ1 − HL − g̃ηT ϕ2

00

)
ϕ00 = 0, (B5)(

μ1 − HL − 3g̃ηT ϕ2
00

)
ϕ01

= −μ2ϕ00 + 3g̃ϕ2
00

∞∑
n=1

〈
ξ 3

0

∣∣ξn

〉
ϕn0. (B6)

The projection of Eq. (3.2) onto ξn yields, to lowest order in
ε, an algebraic equation for ϕn0, whose solution is

ϕn0 = −g̃ϕ3
00

〈
ξ 3

0

∣∣ξn

〉
En − μ0

. (B7)

As expected, the lowest-order equations (B4) and (B5)
correspond to the already familiar description of a quasi-
d-dimensional BEC discussed in Sec. II. The first-order
equations (B6) and (B7) can also be put in a more familiar
form. First, by plugging (B7) into (B6), the equation for ϕ01

becomes(
μ1 − HL − 3g̃ηT ϕ2

00

)
ϕ01 = −3g̃2ϒT ϕ5

00 − μ2ϕ00, (B8)

where ϒT is defined in Eq. (3.17). This is the same as Eq. (3.16),
and thus we have that ϕ0 = φ0 to first order in ε. Second, by
decomposing (B7) into a term proportional to ϕ00 and a term
orthogonal to ϕ00, we get

ϕn0 = −g̃

〈
ξ 3

0

∣∣ξn

〉
En − μ0

(
ηLϕ00 + �ηL

ϕ3
00 − ηLϕ00

�ηL

)
, (B9)

where ηL and �ηL are the quantities introduced in Eqs. (3.13)
and (3.14). Comparing to the results of the Schmidt perturba-
tion theory, namely Eqs. (3.15) and (3.20), it is easy to see that
the term proportional to ϕ00 introduces the correction to ξ0,

whereas the term orthogonal to ϕ00 describes the lowest-order
spatial entanglement. In fact, from these results, we can rewrite
the relative-state decomposition (5.1) as

ψ =
(

ξ0 − εg̃ηL

∞∑
n=1

ξn

〈
ξ 3

0

∣∣ξn

〉
En − μ0

)
(ϕ00 + εϕ01) − εg̃�ηL

×
∞∑

n=1

ξn

〈
ξ 3

0

∣∣ξn

〉
En − μ0

(
ϕ3

00 − ηLϕ00

�ηL

)
+ O(ε2), (B10)

= (χ00 + εχ01)(φ00 + εφ01) + εχ10φ10 + O(ε2),

(B11)

which explicitly demonstrates the equivalence between the
perturbative relative-state and Schmidt decompositions. The
key feature that collapses the relative-state decomposition to
just two Schmidt terms at first order in ε is that the part of
ϕn0 in Eq. (B9) that is orthogonal to ϕ00 is proportional to an
n-independent function of z, the only dependence on n being
the constant 〈ξ 3

0 |ξn〉/(En − μ0).
Not surprisingly, the relative-state method also allows one

to write an effective GP-like equation for ϕ0 with an additional
attractive quintic term, just as in Eq. (3.27). By inserting
Eq. (B7) into Eq. (B3), we can write(

μ̃L − HL − g̃ηT ϕ2
0 + 3εg̃2ϒT ϕ4

0

)
ϕ0 + O(ε2) = 0,

(B12)

where μ̃L = μ1 + εμ2.
As a final remark, we point out that such a self-focusing

interaction has also been used to study the propagation of
solitons in attractive quasi-1D condensates, trapped by an
infinitely long cylindrical harmonic potential [3–5]. Those
studies, however, use neither a relative-state decomposition
nor a Schmidt decomposition of the entire condensate wave
function to derive the additional quintic nonlinearity. Instead, it
arises from a Taylor expansion of a local, transverse chemical
potential about the maximum density of the condensate, which
leads to a coupling constant that differs (for d = 1) from
3g2ϒT by a factor of 4. This factor corresponds precisely to
the difference between using the maximum of the Gaussian
ground-state probability distribution and the average of the
distribution, ηT , over itself.
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