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Abstract 

The study details new sediment concentration measurements associated with some turbulence characterisation 

conducted at high frequency in the undular tidal bore of the Garonne River (France). Acoustic Doppler velocimetry was 

used, and the suspended sediment concentration was deduced from the acoustic backscatter intensity. The field data set 

demonstrated some unique flow features of the tidal bore including some large and rapid turbulent velocity fluctuations 

during and after the bore passage. Some unusually high suspended sediment concentration was observed about 100 s 

after the tidal bore front lasting for more than 10 minutes. It is thought that the tidal bore passage scoured the bed and 

convected upwards the bed material, reaching the free-surface after the bore passage. Behind the tidal bore, the net 

sediment flux magnitude was 30 times larger than the ebb tide net flux and directed upstream. A striking feature of the 

data set was the intense mixing and suspended sediment motion during the tidal bore and following flood tide. This 

feature has been rarely documented. 

 

Keywords: Tidal bore, Garonne River, Field works, Turbulence, Suspended sediment concentration, Suspended 

sediment flux, Sediment processes. 

 



CHANSON, H., REUNGOAT, D., SIMON, B., and LUBIN, P. (2011). "High-Frequency Turbulence and Suspended 
Sediment Concentration Measurements in the Garonne River Tidal Bore." Estuarine Coastal and Shelf Science, Vol. 
95, No. 2-3, pp. 298-306 (DOI 10.1016/j.ecss.2011.09.012) (ISSN 0272-7714). 
 

2 

1. INTRODUCTION 

A tidal bore is a series of waves propagating upstream as the tidal flow turns to rising, forming during spring tide 

conditions when the tidal range exceeds 4 to 6 m and the flood tide is confined to a narrow funnelled estuary whose 

bathymetry amplifies the tidal wave. During the flood tide when the sea level rises with time, the tidal wave propagates 

upstream and becomes steeper until it forms a bore front. The inception, development and propagation of the tidal bore 

may be predicted using the method of characteristics (Henderson 1966, Liggett 1994, Chanson 2011). After the 

formation of the bore, there is an abrupt rise in water depth at the bore front that is a discontinuity in the water depth, 

and pressure and velocity fields. The arrival of the tidal bore is associated with some intense mixing and upstream 

advection of the suspended material (Branner 1884, Tessier and Terwindt 1990, Wolanski et al. 2001,2004). The tidal 

bore affected estuaries are the natural habitats, feeding zones and breeding grounds of several forms of fish species and 

aquatic life forms (Rulifson and Tull 1999, Butcher 2004, Chanson and Tan 2010). The effects of tidal bores on 

sediment processes were studied previously (Chen et al. 1990, Tessier and Terwindt 1994, Greb and Archer 2007) and 

there are further anecdotal evidences. Past studies indicated that the arrival of the bore front was associated with intense 

bed material mixing and with upstream advection of suspended sediments. To date, the field observations of tidal bores 

remain very limited, and most studies were conducted with a coarse resolution in terms of temporal and spatial scales: it 

is challenging to analyse conclusively these data. 

In the South-West of France, some large tidal bores are observed in the Gironde estuary, and the Dordogne and 

Garonne Rivers (Fig. 1). The Garonne River is 575 km long excluding the Gironde Estuary and is affected by the tides 

from the confluence with the Dordogne River at Bec d'Ambès up to Castets. The tidal bore of the Garonne River occurs 

typically between Pont F. Mitterand in Bordeaux and upstream of Cadillac. In the present study, some detailed 

turbulence field measurements were conducted continuously at high-frequency (64 Hz) in the tidal bore of the Garonne 

River in Sept. 2010. The turbulent velocity components were sampled with an acoustic Doppler velocimeter (ADV) at 

0.8 m beneath the free-surface. The tidal bore propagation was observed in the Garonne River on both 10 and 11 Sept. 

2010. The results provided an unique characterisation of the turbulence and sediment flux close to the free-surface 

during the tidal bore events. 
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2. STUDY SITE AND INSTRUMENTATION 

2.1 Presentation 

The field study was conducted in the Garonne River (France) in the Bras d'Arcins (Arcins channel) between Île 

d'Arcins (Arcins Island) and the right bank close to Lastrene. The Arcins channel is about 1.8 km long, 70 m wide and 

about 1.1 to 2.5 m deep at low tide (Fig. 1 & 2). Figure 1 shows a map of the Garonne River and Arcins channel, while 

Figure 2 presents a cross-sectional survey conducted on 10 Sept. 2010 where z is the vertical elevation. In Figure 2, the 

ADV sampling volume location and water level immediately prior to the bore are shown. The sampling site was 

selected because the tidal bore was well-developed across the Arcins channel width while access was facilitated to the 

banks at low water by a pontoon and ramp. 

Although the tides are semi-diurnal, the tidal cycles have slightly different periods and amplitudes indicating some 

diurnal inequality (Fig. 3). Figure 3 presents the water elevation observations recorded at Bordeaux about 9 km 

downstream of the sampling location and they are compared with the water elevations recorded on-site prior to and 

shortly after the passage of the tidal bore on the afternoons of the 10 and 11 Sept. 2010. 

The field measurements were conducted under spring tidal conditions and the tidal range data are summarised in Table 

1 (column 2). The measurements were conducted during the afternoon flood tides, and the sampling was stopped at 

sunset. The water elevations and some continuous high-frequency turbulence data were recorded prior to, during and 

after the passage of the tidal bore for a few hours each day. The start and end times are listed in Table 1 (columns 6 & 

8). Further details and information were reported by Chanson et al. (2010). 

 

2.2 Instrumentation 

The free surface elevations were measured manually using a survey staff. During the passage of the tidal bore, a video 

camera recorded the water level and the data were collected frame by frame at 25 fps. The survey staff was mounted 1 

m beside the ADV unit towards the right bank, to minimise any interference with the ADV sampling volume. 

The turbulent velocities were measured with a NortekTM Vector ADV (6 MHz, serial number VEC3332). The ADV 

system was equipped with a 3D downlooking head (Head ID VEC4665) and the unit was self-logging. The system was 

fixed to a heavy, sturdy pontoon and mounted vertically and the positive direction head was pointing downstream. The 

probe sampling volume was about 0.8 m below the free-surface (Table 1, column 9). Hence the present study was a 

point measurement that was probably not representative of the entire channel cross-section. 
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All the ADV data underwent a thorough post-processing procedure to eliminate any erroneous or corrupted data from 

the data sets to be analysed. The post processing included the removal of communication errors, the removal of average 

signal to noise ratio data less than 15 dB and the removal of average correlation values less than 60% (McLelland and 

Nicholas 2000). In addition, the phase-space thresholding technique developed by Goring and Nikora (2002) was 

applied to remove spurious points. 

Further observations were recorded with a digital camera PentaxTM K-7, a digital video camera CanonTM MV500i, a 

digital video camera JVCTM GR-D225E and a HD digital video camera CanonTM HF10E. 

 

2.3 Practical issues 

The accuracy on the ADV velocity measurements was 1% of the velocity range (± 2 m/s) (Nortek 2005). The accuracy 

of the water elevation was 0.5 cm prior to the tidal bore and 1-2 cm during the tidal bore passage. 

Note that the sampling duration was limited by installation of the ADV in the early afternoons and its dismantling at 

sunset. 

On 10 Sept. 2010, the ADV was set up with a control volume size of 3.5 mm. The pressure, signal amplitude, SNR and 

backscatter data appeared correct, but the velocity components exhibited some unacceptable noise for frequencies 

larger than 0.02 to 0.1 Hz (Chanson et al. 2010). While the exact cause of the problem remained unknown, it was 

thought that the ADV system was overloaded with the small control volume. 

Following some additional tests, a slightly different set-up was selected on 11 Sept. 2010 with a 6.6 mm control volume 

size. The change yielded good quality data sets which included the turbulent velocity components. 

 

3. OBSERVATIONS 

The tidal bore propagation in the Arcins channel was similar on both days during the afternoons. (The morning bores 

took place in the darkness and were not investigated for safety.) The tidal bore formed first at the downstream end of 

the channel about 4 min 45 s before it reached the sampling location (Fig. 4A). The tidal bore expanded rapidly across 

the entire channel width as a breaking bore (Fig. 4B). As the bore propagated upstream, its shape evolved in response 

to the local bathymetry. About 200 m downstream of the sampling point, the bore became undular and its front was 

flatter (Fig. 4C). The tidal bore was undular as it passed in front of the sampling location, and the bore front was well 

marked as illustrated by the surfer riding ahead of the first wave crest in Figures 4C and 4D. The undular tidal bore 



CHANSON, H., REUNGOAT, D., SIMON, B., and LUBIN, P. (2011). "High-Frequency Turbulence and Suspended 
Sediment Concentration Measurements in the Garonne River Tidal Bore." Estuarine Coastal and Shelf Science, Vol. 
95, No. 2-3, pp. 298-306 (DOI 10.1016/j.ecss.2011.09.012) (ISSN 0272-7714). 
 

5 

continued to propagate up to the upstream end of the channel for another 4 minutes. Figures 4A to 4D shows the 

development of the tidal bore at the channel downstream end as well as its upstream propagation towards and past the 

sampling location. 

The passage of the tidal bore was followed by a pseudo-chaotic wave motion lasting for several minutes after the bore. 

At the sampling location, the free-surface elevation rose very rapidly by 0.50 m and 0.41 m in the first 5 seconds on 10 

and 11 Sept. 2010 respectively. For the next 35 minutes, the water elevation rose further by 1.69 m and 1.59 m on 10 

and 11 Sept. 2010 respectively. Figures 5A and 6 present the time-variations of the water depth at the ADV sampling 

location. Figure 5A illustrates the rapid water level rise associated with the tidal bore passage, and the horizontal axis 

scale correspond to 60 s. Figure 6 presents the water level variations during 1 h 23 min. on both days. 

The strength of a tidal bore is basically characterised by its Froude number. In the irregular channel, the bore Froude 

number Fr1 is calculated as: 
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  Irregular channel  (1) 

where V1 is the initial flow velocity positive downstream, U is the bore celerity positive upstream, A1 is the initial flow 

cross-section and B1 is the initial free-surface width (Liggett 1994, Chanson et al. 2010). The observed channel 

properties and bore celerity are summarised in Table 2. Equation (1) yields Fr1 = 1.30 and 1.20 for the field 

observations on 10 and 11 Sept. 2010 respectively. These values were typical of an undular tidal bore (Henderson 

1966, Chanson 2011). 

The turbulent velocity components on 11 Sept. 2010 are presented in Figure 5, where Vx is the longitudinal velocity 

positive downstream, Vy is the horizontal transverse velocity positive towards the Arcins Island and Vz is the vertical 

velocity component positive upwards. The time-variations of the water depth at the survey staff are shown also. The 

longitudinal velocity data were checked qualitatively with some free-surface velocity observations of floating debris on 

the channel centreline and close to the right bank between the pontoon and the right bank (Chanson et al. 2010). The 

turbulent velocity data showed the marked effect of the passage of the bore front at t = 68,302 s (Fig. 5). The 

longitudinal velocity component highlighted some rapid flow deceleration during the passage of the bore front. As the 

bore front reached the sampling volume (t = 68,302 s), a sudden rise in the free surface elevation took place associated 

with a sharp decrease in longitudinal velocity component and a flow reversal (Fig. 5A). The tidal bore passage was 

further characterised by some large fluctuations of all three turbulent velocity components. The observations were 

consistent with the earlier results of Wolanski et al. (2004) and Simpson et al. (2004) in the field, and Hornung et al. 
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(1995), Koch and Chanson (2009) and Chanson (2010) in laboratory. 

The longitudinal flow component changed from +0.3 m/s (oriented downriver) to -1 m/s (oriented upriver) immediately 

after the passage of the bore (Fig. 5A), with velocity fluctuations between 0 to -2 m/s for the entire study period. The 

large velocity fluctuations lasted for the entire sampling duration. The longitudinal velocity results were consistent with 

the visual observations before and after the tidal bore passage, although the surface current was stronger on the channel 

centreline than close to the right bank. At times, the authors noted some recirculation patterns next the waterline mark 

on the right bank, where the surface velocity flowed then downstream against the main flood flow direction. 

After the passage of the bore, the transverse velocity data fluctuated between +0.6 and -1.1 m/s for the entire study 

period, and the time-averaged transverse velocity component was -0.28 m/s (Fig. 5B). The finding implied some net 

transverse circulation towards the right bank next to the free-surface. This flow pattern was linked possibly with the 

irregular channel cross-section and the existence of some secondary flow motion. The vertical velocity data highlighted 

a marked effect of the tidal bore. After the bore passage, the vertical velocity fluctuated between +0.1 and -0.8 m/s for 

the entire record, with a time-averaged value of about -0.28 m/s (Fig. 5B). The backscatter amplitude data are shown 

also in Figure 5C. 

Note that the ADV sampling volume depth ranged from 0.7 to 0.9 m for the entire study duration, with an average of 

0.8 m. The velocity data characterised therefore the turbulence in the upper water column. Further the ADV was fixed 

to a pontoon. Although heavy and sturdy, the vertical motion of the pontoon cannot be ignored. 

 

4. SEDIMENT PROPERTIES 

The Garonne River bed material was documented by collecting some samples just above the low water mark at low tide 

on 11 Sept. 2010 next to the measurement site. The bed material was a cohesive mud mixture consisting of fine mud 

and silt materials, although the granulometry was not tested. It could be considered as a form of mud cream (crème de 

vase). A series of laboratory tests were conducted to characterise the bed material properties. 

The density of the wet sediment was s = 1.418. The rheological properties of mud samples were tested with a 

Rheometer TA-ARG2 (Serial 5L2980) equipped with a plane-cone setup ( = 60 mm, cone angle: 20.005°) and a gap 

truncation of 52 μm. Between the sample collection and the tests, the mud was left to consolidate for 3 days. Each 

specimen was subjected to a controlled strain rate loading and unloading between 0.01 s-1 and 1,000 s-1 with steady 

state flow steps s at constant temperature (20 Celsius). The rheometry tests provided some information on the apparent 
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yield stress of the fluid c and the effective viscosity μ. The yield stress and apparent viscosity were estimated during 

the unloading phase, to be consistent with earlier thixotropic experiments (Roussel et al. 2004, Chanson et al. 2006). 

The yield stress and viscosity results were derived by fitting the rheometer data with a Herschel-Bulkley model between 

shear stress  and shear rate ∂V/∂z: 

 
m

c z

V










   (2) 

where 0 < m ≤ 1 (Huang and Garcia 1998, Wilson and Burgess 1998). 

Some typical experimental results are presented in Figure 7. The behaviour of the mud material was fairly typical of a 

thixotropic material and the data highlighted some differences between the loading and unloading sequence. The 

magnitude of the shear rate during unloading was smaller than the shear rate magnitude during loading for a given 

shear stress. For shear rates larger than 300 s-1, the tests gave close results, suggesting a conservation of the 

macroscopic structure possibly in the form of particle arrangement into thin layers. On average over the tests, the 

apparent viscosity was  = 48.8 Pa.s, the yield stress was about c = 55.5 Pa and m ~ 0.275. 

The acoustic Doppler velocimeter (ADV) was calibrated in terms of suspended sediment concentration. While the ADV 

is designed to record the instantaneous velocity components, the signal strength, or acoustic backscatter strength, may 

be related to the instantaneous suspended sediment concentration (SSC) with proper calibration (Kawanisi and Yokosi 

1997, Fugate and Friedrichs 2002). Although the method was initially developed for non-cohesive sediments, it was 

recently extended successfully to cohesive materials (Chanson et al. 2008, Ha et al. 2009). The calibration of the ADV 

was accomplished by measuring the signal amplitude of known, artificially produced concentrations of material 

obtained from the bed material sample, diluted in tap water and thoroughly mixed. The suspended sediment 

concentrations ranged from less than 0.02 g/l to 74 g/l, and all the experiments were conducted within a couple of days 

from the sample collection. The laboratory experiments were conducted with the same Nortek™ Vector ADV unit 

using the same settings as for the field observations. For each test, a known mass of sediment was introduced in a water 

tank which was continuously stirred with two propeller mixers. In addition the tank was stirred manually during the 

most turbid water tests to check and prevent any sediment deposition on the tank bottom. The mass of wet sediment 

was measured with a Mettler™ Type PM200 (Serial G77187) balance, and the error was less than 0.01 g. The mass 

concentration was deduced from the measured mass of wet sediment and the measured water tank volume. 

The relationships between acoustic backscatter amplitude (Ampl), acoustic backscatter intensity (BSI) and suspended 

sediment concentrations (SSC) were tested systematically, and the experimental results are summarised in Figure 8. 
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Herein the backscatter intensity was deduced from the average amplitude as: 

 AmplBSI   043.05 1010  (3) 

where BSI is dimensionless and the average amplitude Ampl is in counts. The coefficient 10-5 is a value introduced to 

avoid large values of backscatter intensity (Nikora and Goring 2002). First the results were independent of the ADV 

settings. No major difference was observed between the calibration tests from the ADV settings on 10 Sept. and 11 

Sept. 2010. Second there was a good correlation between all the data showing two characteristic trends. For SSC ≤ 0.48 

g/l, the data yielded a monotonic increase in suspended sediment concentration with increasing backscatter intensity. 

The relationships between SSC and amplitude, and SSC and BSI, were roughly linear. For larger SSCs (i.e. SSC > 0.48 

g/l), the experimental results demonstrated a decreasing backscatter intensity with increasing SSC. For the laboratory 

tests with low suspended loads (SSC  0.48 g/l), the best fit relationships were: 

 02.60367.0  AmplSSC  SSC  0.48 g/l  (4a) 

 189.00019.0  BSISSC  SSC  0.48 g/l  (4b) 

where the suspended sediment concentration SSC is in g/l, and the amplitude Ampl is in counts. For large suspended 

sediment loads (i.e. SSC > 0.48 g/l), the data were best correlated by 

 AmplSSC  17.27.381  SSC > 0.48 g/l  (5a) 

 )010.0exp(15.79 BSISSC   SSC > 0.48 g/l  (5b) 

Equations (4) and (5) are compared with the data in Figure 8. For large suspended sediment concentration within 0.4 < 

SSC < 75 g/l, the results showed a good correlation between the acoustic backscatter strength and the SSC, although the 

ADV signal was saturated. 

During the present field investigations, the authors observed that the Arcins channel waters were very turbid before, 

during and after the tidal bore. For example, they could not see their fingers below 1-3 cm from the water surface, and 

the people who went into the water got covered by fine sediment materials. In the Gironde estuary and Garonne River 

estuarine zone, the currents exceed the critical erosion except during neap tides (Cancino and Neves 1999). Recent SSC 

observations reported typically values from 0.5 to 2.5 g/l close to the surface (Doxaran et al. 2009). Therefore 

Equations (5a) and (5b) were considered to be representative of the relationship between the suspended sediment 

concentration (SSC) and the acoustic backscatter intensity (BSI) in the Arcins channel on 10 and 11 Sept. 2010. 
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5. SUSPENDED SEDIMENT CONCENTRATIONS AND FLUXES 

The visual observations prior, during and after the tidal bore showed a significant amount of suspended sediment load 

in the waters. The waters were very turbid and murky. Further a large number of turbulent patches of mud flocs were 

seen at the free-surface during the flood flow for the two hours after the tidal bore. These turbulent patches were likely 

the results of turbulent burst events, generated next to the bed associated with coherent flow structures or 

macroturbulence (Nezu and Nakagawa 1993, Trevethan and Chanson 2010). Bursting is the quasi-cyclic turbulent 

energy production in turbulent boundary layers first identified by Kline et al. (1967) playing a major role in terms of 

sediment scour, transport and accretion. In natural systems, a number of studies linked the origin of the 

macroturbulence to shear layer development in the wake of bed forms, and the re-suspension of bottom sediment 

materials (Barua and Rahman 1998, Best 2005). 

The time-variations of the suspended sediment concentration (SSC) deduced from Equation (5) are presented in Figures 

6A and 6B for the field studies on 10 and 11 Sept. 2010 respectively. The water depth data are reported also for 

completeness, as the ADV apparatus was fixed to the floating pontoon. Both data sets were near-identical (Fig. 6). 

They showed some increase in SSC with decreasing water depth prior to the tidal bore arrival. The trend could be 

linked with the larger depth-averaged shear stress in the shallower water column as well as some more intense 

secondary motion at the end of the ebb tide. The pontoon went down with the decreasing water depth, as well as the 

sampling volume of the ADV fixed to the structure. When the tidal bore front reached the measurement zone, the water 

depth suddenly increased from 1.8 m to 2.25 m, the SSC increased with time although the ADV elevation increased. 

Importantly the maximum SSC did not coincide with the exact moment of the bore front passage. The constant increase 

of SSC was thus associated with the high turbulent intensity, a vertical flux of sediment suspension and the strong 

mixing capacity of the tidal bore front. The tidal bore was associated with large fluctuations of the SSC including 

during the flood flow motion. Some unusual event was observed about 100 s after the tidal bore front on both days, 

lasting for more than 10 minutes (e.g. t = 68,400 to 69,000 s in Fig. 6B). On both days, the event details indicated a 

sharp decrease in SSC about 50-70 s after the bore front passage (e.g. t = 68,355 s in Fig. 6B), followed by a major 

event with large and rapid fluctuations in SSC: e.g., between t = 68,380 and 68,800 s in Figure 6B. It is conceivable 

that the bed material was sheared during the tidal bore front passage and associated flow reversal, and the sediments 

were convected upwards by the flood tide turbulent motion. The suspended sediment would be advected upstream 

behind the bore and reach the free-surface with some delay after the front passage.  
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After the bore front passage, the water depth increased with time as the river flowed upstream, and the ADV sampling 

volume rose away from the river bed. The decrease in SSC could be associated with a lesser amount of suspended 

sediment reaching the ADV sampling volume. The sedimentation of the heaviest particles could have also been more 

important than the re-suspension. This was followed by a major event with large and rapid fluctuations in SSC: e.g., 

between t = 68,380 and 68,800 s in Figure 6B. The drastic increase of concentration could be caused by the volumes of 

mud cream from the river banks affected by the water level rise. It could have also resulted from the nature of the 

suspensions, as the mud cream trapped on the river banks could release more small-sized suspensions with some delay. 

It could also be due to the chaotic motion of the flow. At the end of ebb tide, the river bank mud was in contact with air, 

and the sediment matter flocked and dried up. After the tidal bore induced motion, the sediment flocks sediment could 

have been disintegrated and a greater particle counts have been recorded in the ADV sampling volume, showing 

possibly higher SSCs. Finally, during the flood flow, the water depth increased with time although, the SSC remained 

constant on average. It seemed that a pseudo-stationary phase was reached next to the free surface. Sediments must be 

sufficiently and permanently mixed over the whole water column to get a constant concentration value, in particular 

near the free surface where the ADV sampling volume was located. As already described, large dynamic turbulent 

patches were observed, bursting from below the free surface and stretching it, creating some large circles of different 

brown colours. This was the sign that a large amount of sediment was brought to the surface and mixed. 

The present results were used to estimate the instantaneous advective suspended sediment flux per unit area qs 

calculated as: 

 xs VSSCq   (6) 

where qs and Vx are positive in the downstream direction. In Equation (6), the suspended sediment concentration SSC is 

in kg/m3, the longitudinal velocity component Vx is in m/s and the sediment flux per unit area is in kg/m2/s. The results 

are presented in Figure 9 in terms of the instantaneous sediment flux qs. The sediment flux data showed typically a 

downstream positive suspended sediment flux during the end of the ebb tide prior to the tidal bore (Fig. 9). The arrival 

of the tidal bore was characterised by a rapid reversal and the suspended sediment flux was negative during the flood 

tide after the tidal bore passage. The instantaneous sediment flux data qs showed some large and rapid time-fluctuations 

that derived from a combination of velocity and suspended sediment concentration fluctuations. The suspended 

sediment flux data demonstrated some high-frequency fluctuations with some form of sediment flux bursts that were 

likely linked to and caused by some turbulent bursting phenomena next to the boundaries. Some low-frequency 
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fluctuations in sediment flux were also observed (Fig. 9). 

For the study, the sediment flux data were integrated with respect of time. The result gives the net sediment mass 

transfer per unit area during a period T: 
  

T

x dtVSSC  (7) 

Prior the tidal bore (65,000 < t < 68,200 s), the net sediment mass transfer per area was positive and Equation (7) 

yielded +4,770 kg/m2 during the 53 minutes of data prior the tidal bore. Immediately after the passage of the bore, the 

net sediment mass transfer per unit area was negative and equal to 186,120 kg/m2 for 68,300 < t < 72,500 s (i.e. 70 

minutes). That is, the net sediment flux was about 30 times larger in magnitude than the sediment flux prior to the tidal 

bore. Past studies indicated that the arrival of the bore front was associated with intense bed material mixing and with 

upstream advection of suspended material behind the bore front (Chen et al. 1990, Greb and Archer 2007). The present 

data set (Fig. 9) supported and complemented the findings. 

 

6. CONCLUSION 

Some detailed turbulent velocity measurements were conducted continuously at high-frequency (64 Hz) prior to, during 

and after the tidal bore of the Garonne River (France) in Sept. 2010. The velocity components were sampled with an 

acoustic Doppler velocimeter (ADV) with its sampling volume about 0.8 m beneath the free-surface in the Arcins 

channel. 

The tidal bore was undular. Its Froude number was estimated from the channel bathymetry and tidal bore observations: 

Fr1 = 1.30 and 1.20 on 10 and 11 Sept. 2010 respectively. The bore passage was characterised by a pseudo-chaotic 

wave motion lasting for several minutes after the bore. The free-surface elevation rose very rapidly by 0.50 m and 0.41 

m in the first 5 seconds, and by further 1.69 m and 1.59 m for the next 35 minutes on 10 and 11 Sept. 2010 

respectively. The turbulent velocity data showed the marked impact of the tidal bore propagation. The longitudinal 

velocity component highlighted some rapid flow deceleration during the passage of the tidal bore, associated with a 

sudden rise in the free surface elevation, and a flow reversal after the tidal bore front passage. The observations were 

consistent with earlier field and laboratory results, and they demonstrated the intense turbulent mixing induced by the 

tidal bore. 

The ADV backscatter amplitude was calibrated in terms of the suspended sediment concentration in laboratory using 
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the soft mud bed material. The results provided an unique characterisation of the turbulence, suspended sediment 

concentration (SSC) and sediment flux beneath to the free-surface during the tidal bore with high temporal and spatial 

resolution. The tidal bore passage was associated with large fluctuations in SSC, and some high SSC level was 

observed about 100 s after the tidal bore front lasting for more than 10 minutes. It is thought that the turbulent mixing 

induced by the tidal bore passage convected upwards the bed material and the suspended sediments were advected 

upstream behind the bore, reaching the free-surface with some delay after the front passage. While, prior to the tidal 

bore, the suspended sediment flux data showed a downstream motion, the arrival of the tidal bore was characterised by 

a rapid sediment flux reversal. The magnitude of net sediment mass transfer per area was 30 times larger than the ebb 

tide net flux and it was directed upstream. 

A striking feature of the analysed data set was the large and rapid fluctuations in suspended sediment flux during the 

tidal bore and flood flow. This feature was not documented, but an important difference between the ADV data set used 

in this study from earlier reported field measurements was that the present data were collected continuously at relatively 

high frequency (64 Hz) during a relatively long period (at least 2 hours). It is however acknowledged that the present 

investigation was a point measurement about 0.8 m beneath the free-surface. Any extrapolation would imply that the 

sampling volume was representative of the entire channel cross-section. 

Lastly the present field study was conducted at the end of the summer during low freshwater conditions. Both spring 

tide conditions and low water levels were essential for the occurrence of the tidal bore of the Garonne River in the 

Arcins channel. During the wet winter season, on the other hand, the tidal bore is unseen when the river water level is 

higher, even during spring tides. 
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Table 1 - Tidal bore field measurements in the Arcins channel, Garonne River (France) 

 
Date Tidal 

range 
(m) 

ADV 
system 

Sampling 
rate 
(Hz) 

Sampling 
duration 

Start 
time 

Tidal 
bore 
time 

End 
time 

Sampling volume 

10/09/2010 6.03 Nortek 
Vector 
(6MHz) 

64 2h 45 
min 

17:15 18:17 20:00 About 7 m from right bank 
waterline (at low tide), 0.81 m 
below water surface. 

11/09/2010 5.89 Nortek 
Vector 
(6MHz) 

64 2h 20 
min 

18:00 18:59 20:10 About 7 m from right bank 
waterline (at low tide), 0.81 m 
below water surface. 

 

Notes: Tidal range: measured at Bordeaux; All times are in French local times (GMT+1). 
 

 

 

Table 2 - Tidal bore properties in the Arcins channel (Garonne River, France) 

 
Date V1 (m/s) U (m/s) A1 (m

2) B1 (m) A1/B1 
(m) 

Fr1 Remarks 

10/09/2010 +0.33 4.5 106 75.4 1.40 1.30 Undular bore. 

11/09/2010 +0.30 4.2 109 75.8 1.43 1.20 Undular bore. 

 

Notes: A1: channel cross-section area immediately prior to the bore passage; B1: free-surface width immediately prior to 

the bore passage; Fr1: tidal bore Froude number (Eq. (1)); U: tidal bore celerity positive upstream on the channel 

centreline; V1: downstream surface velocity on the channel centreline immediately prior to the bore passage. 
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FIGURE CAPTIONS 

Fig. 1 - Fig. 1 - Map of the Garonne River and sampling site location 

 

Fig. 2 - Surveyed cross-section of Arcins channel with the low tide water level on 10 Sept. 2010 afternoon (Blue line) 

and the corresponding ADV sampling volume location (Red diamond) - Looking upstream 

 

Fig. 3 - Measured water elevations at Bordeaux (44°52'N, 0°33'W) (Data: Vigicrue, Ministère de l'Environnement et du 

Développement Durable) and observations in the Arcins channel on 10 and 11 Sept. 2010 

 

Fig. 4 - Tidal bore in Bras d'Arcins (Arcins channel) on 10 Sept. 2010 

(A) Tidal bore formation at the channel downstream end at 18:13:00 just upstream of Pont F. Mitterrand 

(B) Breaking tidal bore at 18:15:14 - Note the surfer awaiting the bore 

(C) Undular tidal bore downstream of the sampling location at 18:17:18 - Note surfer close to the Arcins Island 

(D) Undular tidal bore shortly after passing the ADV sampling location (Bottom right) at 18:17:42 

 

Fig. 5 - Water depth, turbulent velocity components and amplitude at 0.8 m below the water surface during the tidal 

bore passage on 11 Sept. 2010 - Post-processed ADV data, sampling rate: 64 Hz 

(A) Water depth and horizontal velocity component Vx 

(B) Transverse and vertical velocity components (Vy, Vz) 

(C) Signal amplitude (Ampl) and water depth 

 

Fig. 6 - Water depth and suspended sediment concentrations at 0.8 m below the water surface on 10 and 11 Sept. 2010 - 

Post-processed ADV data, sampling rate: 64 Hz 

(A) 10 Sept. 2010 

(B) 11 Sept. 2010 

 

Fig. 7 - Rheometry tests: loading and unloading cycle of mud samples 
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Fig. 8 - Relationship between suspended sediment concentration, acoustic signal amplitude and acoustic backscatter 

intensity with the sediment mud collected at Arcins - Comparison between the data and Equations (4) and (5) 

(A) Relationship between suspended sediment concentration (SSC in g/l) and acoustic signal 

(B) Relationship between suspended sediment concentration (SSC in g/l) and acoustic backscatter intensity (BSI) 

 

Fig. 9 - Time variations of the suspended sediment flux per unit area (SSC×Vx) at 0.8 m below the surface and water 

depth on 11 Sept. 2010 - Post-processed ADV data, sampling rate: 64 Hz 
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Fig. 1 - Map of the Garonne River and sampling site location 
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Fig. 2 - Surveyed cross-section of Arcins channel with the low tide water level on 10 Sept. 2010 afternoon (Blue line) 

and the corresponding ADV sampling volume location (Red diamond) - Looking upstream 
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Fig. 3 - Measured water elevations at Bordeaux (44°52'N, 0°33'W) (Data: Vigicrue, Ministère de l'Environnement et du 

Développement Durable) and observations in the Arcins channel on 10 and 11 Sept. 2010 

Time (s) since 00:00 on 10 Sept. 2010

z 
(m

 N
G

F
 I

G
N

69
)

50000 70000 90000 110000 130000 150000 170000 190000

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

50000 70000 90000 110000 130000 150000 170000 190000

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
Bordeaux
Arcins 10 Sept. 2010
Arcins 11 Sept. 2010

 

 



CHANSON, H., REUNGOAT, D., SIMON, B., and LUBIN, P. (2011). "High-Frequency Turbulence and Suspended 
Sediment Concentration Measurements in the Garonne River Tidal Bore." Estuarine Coastal and Shelf Science, Vol. 
95, No. 2-3, pp. 298-306 (DOI 10.1016/j.ecss.2011.09.012) (ISSN 0272-7714). 
 

21 

Fig. 4 - Tidal bore in Bras d'Arcins (Arcins channel) on 10 Sept. 2010 

(A) Tidal bore formation at the channel downstream end at 18:13:00 just upstream of Pont F. Mitterrand 

 

(B) Breaking tidal bore at 18:15:14 - Note the surfer awaiting the bore 

 

(C) Undular tidal bore downstream of the sampling location at 18:17:18- Note surfer close to the Arcins Island 

 

(D) Undular tidal bore shortly after passing the ADV sampling location (Bottom right) at 18:17:42 
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Fig. 5 - Water depth, turbulent velocity components and amplitude at 0.8 m below the water surface during the tidal 

bore passage on 11 Sept. 2010 - Post-processed ADV data, sampling rate: 64 Hz 

(A) Water depth and horizontal velocity component Vx 
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(B) Transverse and vertical velocity components (Vy, Vz) 

Time (s) since 00:00 on 11 Sept. 2011

V
z 

(m
/s

)

V
y 

(m
/s

)

68290 68295 68300 68305 68310 68315 68320 68325 68330 68335 68340 68345 68350
-1.5 -1

-1.3 -0.8

-1.1 -0.6

-0.9 -0.4

-0.7 -0.2

-0.5 0

-0.3 0.2

-0.1 0.4

0.1 0.6

0.3 0.8

0.5 1

68290 68295 68300 68305 68310 68315 68320 68325 68330 68335 68340 68345 68350
-1.5 -1

-1.3 -0.8

-1.1 -0.6

-0.9 -0.4

-0.7 -0.2

-0.5 0

-0.3 0.2

-0.1 0.4

0.1 0.6

0.3 0.8

0.5 1

Vy

Vz

Vz
Vy

 

(C) Signal amplitude (Ampl) and water depth 
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Fig. 6 - Water depth and suspended sediment concentrations at 0.8 m below the water surface on 10 and 11 Sept. 2010 - 

Post-processed ADV data, sampling rate: 64 Hz 
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Fig. 7 - Rheometry tests: loading and unloading cycle of mud samples 
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Fig. 8 - Relationship between suspended sediment concentration, acoustic signal amplitude and acoustic backscatter 

intensity with the sediment mud collected at Arcins - Comparison between the data and Equations (4) and (5) 

(A) Relationship between suspended sediment concentration (SSC in g/l) and acoustic signal 
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(B) Relationship between suspended sediment concentration (SSC in g/l) and acoustic backscatter intensity (BSI) 
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Fig. 9 - Time variations of the suspended sediment flux per unit area (SSC×Vx) at 0.8 m below the surface and water 

depth on 11 Sept. 2010 - Post-processed ADV data, sampling rate: 64 Hz 
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