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Supersymmetry as a method of obtaining new
superintegrable systems with higher order integrals of
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The main result of this article is that we show that from supersymmetry we can
generate new superintegrable Hamiltonians. We consider a particular case with a
third order integral and apply Mielnik’s construction in supersymmetric quantum
mechanics. We obtain a new superintegrable potential separable in Cartesian coor-
dinates with a quadratic and quintic integrals and also one with a quadratic integral
and an integral of order of 7. We also construct a superintegrable system written in
terms of the fourth Painlevé transcendent with a quadratic integral and an integral
of order of 7. © 2009 American Institute of Physics. �doi:10.1063/1.3272003�

I. INTRODUCTION

Superintegrability1–14 and supersymmetric quantum mechanics �SUSYQMs�15–21 have at-
tracted a lot of attention in recent years. Both of these fields have important applications in
quantum chemistry, atomic physics, molecular physics, nuclear physics, and condensed matter
physics. Although they are two separate issues, many quantum systems such as the harmonic
oscillator, the hydrogen atom, and the Smorodinsky–Winternitz potential are both superintegrable
and supersymmetric.21 Superintegrability with third order integrals was the object of a series of
articles.22–26 The systems studied have a second and a third order integrals. They were studied by
means of cubic and deformed oscillator algebras. The supersymmetric quantum mechanics ap-
proach was used25 and also higher order supersymmetric quantum mechanics26 in order to calcu-
late energies and wave functions. These articles indicate that superintegrability is closely con-
nected to supersymmetry. We will show in this article that supersymmetry can provide a method
of generating new superintegrable systems. We will consider two-dimensional systems separable
in Cartesian coordinates. The separability implies the existence of a second order integral of
motion.

Let us recall some definitions concerning superintegrability and supersymmetry. In classical
mechanics a Hamiltonian system with Hamiltonian H and integrals of motion Xa,

H = 1
2gikpipk + V�x�,p��, Xa = fa�x�,p��, a = 1, . . . ,n − 1, �1.1�

is called completely integrable �or Liouville integrable� if it allows n integrals of motion �includ-
ing the Hamiltonian� that are well defined functions on phase space, are in involution �H ,Xa�p

=0, �Xa ,Xb�p=0, a ,b=1, . . . ,n−1, and are functionally independent �� , �p is a Poisson bracket�. A
system is superintegrable if it is integrable and allows further integrals of motion Yb�x� , p��,
�H ,Yb�p=0, b=n ,n+1, . . . ,n+k that are also well defined functions on phase space and the inte-
grals �H ,X1 , . . . ,Xn−1 ,Yn , . . . ,Yn+k� are functionally independent. A system is maximally superin-
tegrable if the set contains 2n−1 such integrals. The integrals Yb are not required to be in
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evolution with X1 , . . . ,Xn−1 nor with each other. The same definitions apply in quantum mechanics
but �H ,Xa ,Yb� are well defined quantum mechanical operators, assumed to form an algebraically
independent set.

In Sec. II, we recall definitions and results of supersymmetric quantum mechanics. We also
discuss some results obtained by Mielnik.27 Mielnik showed that the factorization of second order
operators is not necessarily unique. Supersymmetric quantum mechanics allows to find the eigen-
functions, the energy spectrum, and creation and annihilation operators. In Sec. III, we will
consider a two-dimensional Hamiltonian consisting of two one-dimensional Hamiltonians that are
superpartners. Such systems are by construction separable in Cartesian coordinates so a second
order integral exists. From the creation and annihilation operators of the one-dimensional part we
can generate a higher order integral of motion. The system is thus superintegrable. We show how
these results allow us to recover known superintegrable systems with a third order integral that are
special cases of a Hamiltonian written in terms of the fourth Painlevé transcendent. In Sec. IV, we
consider a particular case with a third order integral, apply the Mielnik’s method, and obtain a new
superintegrable potential separable in Cartesian coordinates with a quadratic and quintic integrals
and also one with a quadratic and seventh order integrals. We also construct a superintegrable
system written in terms of the fourth Painlevé transcendent with a quadratic and seventh order
integrals.

II. SUPERSYMMETRY AND MIELNIK’S FACTORIZATION METHOD

We begin this section by recalling definitions and results of supersymmetric quantum mechan-
ics. We define two first order operators,

A =
�

�2

d

dx
+ W�x�, A† = −

�

�2

d

dx
+ W�x� . �2.1�

We consider the following two Hamiltonians which are called “superpartners,”

H1 = A†A = −
�2

2

d2

dx2 + W2 −
�

�2
W�, H2 = AA† = −

�2

2

d2

dx2 + W2 +
�

�2
W�. �2.2�

There are two cases. The first is A�0
�1��0, E0

�1��0, A†�0
�2��0, and E0

�2��0. We have

En
�2� = En

�1� � 0, �n
�2� =

1

�En
�1�A�n

�1�, �n
�1� =

1

�En
�2�A

†�n
�2�, �2.3�

and the two Hamiltonians are isospectral. This case corresponds to broken supersymmetry.
For the second case the supersymmetry is unbroken and we have A�0

�1�=0, E0
�1�=0, A†�0

�2�

�0, and E0
�2��0. Without lost of generality we take H1 as having a zero energy ground state. We

have

En
�2� = En+1

�1� , E0
�1� = 0, �n

�2� =
1

�En+1
�1� A�n+1

�1� , �n+1
�1� =

1

�En
�2�A

†�n
�2�. �2.4�

We can define the matrices

H = �H1 0

0 H2
	 Q = �0 0

A 0
	 Q† = �0 A†

0 0
	 . �2.5�

They satisfy the relations

�H,Q� = �H,Q†� = 0, �Q,Q� = �Q†,Q†� = 0, �Q,Q†� = H . �2.6�

The operators Q, Q† are called “supercharges.” We have a sl�1 
1� superalgebra and H1 and H2 are
superpartners. Supersymmetric quantum mechanics allow us to obtain the creation and annihila-
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tion operators. The operators M† and M with b† and b, respectively, the creation and annihilation
operators for the Hamiltonian H1,

M = A†bA, M† = A†b†A , �2.7�

are thus the creation and annihilation operators for the Hamiltonian H2.
Supersymmetric quantum mechanics with higher order supercharges has been studied.28–32

The case with second order operators of the form

M† = �2 − 2h�x� � + c�x�, M = �2 + 2h�x� � + c�x� �2.8�

was investigated. The case with a first and second order supersymmetry was also treated.
As far as we could find, the generalized ladder operators appeared first Ref. 33, but we shall

follow a somewhat different approach. We present the further results in supersymmetric quantum
mechanics by recalling results obtained by Mielnik27 concerning the search of superpartners for
the harmonic oscillator. He pointed out that the factorization is not unique. He presented a new
derivation of an important class of potentials previously obtained by Abraham and Moses with the
Gelfand–Levitan formalism.34 Their energy and eigenfunctions can be directly obtained from the
harmonic oscillator up to a zero mode state. In Sec. III, we will show how this family of Hamil-
tonians is related to superintegrable systems with third order integrals.

We consider the following Hamiltonian:

Hosc =
1

2

d2

dx2 +
x2

2
. �2.9�

We introduce the following first order operators:

a =
1
�2

� d

dx
+ x	, a† =

1
�2

�−
d

dx
+ x	 . �2.10�

The Hamiltonians H1 and H2 are superpartners and have, in fact, the shape invariance properties,

a†a = Hosc − 1
2 = H1, aa† = Hosc + 1

2 = H2. �2.11�

This construction allows us to find the energy spectrum and the eigenfunction algebraically.
Mielnik27 considered the Hamiltonian H2 and showed that the operators a and a† are not unique.
He defined the following new operators:

b =
1
�2

� d

dx
+ ��x�	, b† =

1
�2

�−
d

dx
+ ��x�	 , �2.12�

and required

H2 = Hosc + 1
2 = bb†. �2.13�

He obtained the following Riccati equation:35

���x� + �2�x� = 1 + x2. �2.14�

The fact of knowing a particular solution ���x�=x� allows to find the general solution.35 He
defined

��x� = x + ��x� �2.15�

and found

122102-3 Supersymmetry and superintegrability J. Math. Phys. 50, 122102 �2009�
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��x� =
e−x2

� + �0
xe−x�2

dx�
, �2.16�

where � is a constant. There are two cases: with a singularity and without singularity. The inverted
product b†b was not H2+const and was a new Hamiltonian,

H� = b†b = H2 − ���x� = −
1

2

d2

dx2 +
x2

2
−

d

dx
� e−x2

� + �0
xe−x�2

dx�
	 . �2.17�

We can obtain from H2 the creation and annihilation operators for H�. These operators are given
by the following expression:

s† = b†a†b, s = b†ab , �2.18�

with a and a† the annihilation and creation operators for H2. The eigenfunctions and energy
spectrum of the Hamiltonian H� can be obtained from Eq. �2.4�. The coherent states have also
been studied extensively.36 This system is a special case of a one-dimensional part of a Hamil-
tonian separable in Cartesian coordinates written in terms of the fourth Painlevé transcendent.

III. HIGHER ORDER INTEGRALS OF MOTION AND SUSYQM

Let us consider a two-dimensional Hamiltonian separable in Cartesian coordinates
Ht�x ,y , Px , Py�=Hx�x , Px�+Hy�y , Py� with creation and annihilation operators �polynomial in mo-
menta� Ax, Ax

†, Ay, and Ay
†. These operators satisfy

�Hx,Ax
†� = �xAx

†, �Hy,Ay
†� = �yAy

†. �3.1�

The following operators,

f1 = Ax
†mAy

n, f2 = Ax
mAy

†n, �3.2�

commute with the Hamiltonian H,

�Ht, f1� = �Ht, f2� = 0 �3.3�

if

m�x − n�y = 0, m,n � Z+. �3.4�

Creation and annihilation operators allow us to construct polynomial integrals of motion.
The following sums are also polynomial integrals that commute with the Hamiltonian H:

I1 = Ax
†mAy

n − Ax
mAy

†n, I2 = Ax
†mAy

n + Ax
mAy

†n. �3.5�

There are the integrals I1 and I2. The system Ht is thus superintegrable. By construction, the
Hamiltonian Ht possesses a second order integral �K=Hx−Hy�. The integral I2 is the commutator
of I1 and K. The Hamiltonian Ht is thus superintegrable. We will show how supersymmetry makes
it possible to construct superintegrable systems from one-dimensional Hamiltonian Hx with cre-
ation and annihilation operators Ax

† and Ax. We choose in the y-axis a superpartner �or a family of
superpartners�. This Hamiltonian Hy possess creation and annihilation operators that can be obtain
from Eq. �2.7�. A direct consequence of supersymmetry is the relation �x=�y. We have thus the
following integrals:

K = Hx − Hy, I1 = Ax
†Ay − AxAy

†, I2 = Ax
†Ay + AxAy

†. �3.6�

Let us apply this construction to the interesting systems found by Mielnik. We take in the x axis
the Hamiltonian H2 given by Eq. �2.9� and in the y axis its superpartner H� given by Eq. �2.17�.
We obtain a superintegrable system with integrals given by Eq. �3.6� with Eqs. �2.10� and �2.18�,
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K = Hx − Hy, I1 = ax
†sy − axsy

†, I2 = axsy
† + ax

†sy , �3.7�

where ax
†, ax, sy

†, and sy are, respectively, the creation and annihilation operators of H2 and H�.
These integrals are of orders 2, 3, and 4. This superintegrable system appears in the investi-

gation of superintegrable systems with a second and a third order integrals separable in Cartesian
coordinates. This is a particular case of a Hamiltonian written in terms of the fourth Painlevé
transcendent found by Gravel23 and studied in Ref. 26.

IV. CONSTRUCTION OF NEW SUPERINTEGRABLE SYSTEMS

A. Hamiltonians involving the error function

We consider the following superintegrable systems obtained in Ref. 23 and studied in Ref. 25
from the point of view of cubic algebras and SUSYQM,

Hg = −
�2

2
� d2

dx2 +
d2

dy2	 + �2� x2 + y2

8a4 +
1

�x − a�2 +
1

�x + a�2 . �4.1�

We consider the case a= ia0 , a0�R. Let us define the two operators,

c† =
1
�2

�− �
d

dx
+

�

2a0
2x + �� 1

x − ia0
+

1

x + ia0
		 , �4.2�

c =
1
�2

��
d

dx
+

�

2a0
2x + �� 1

x − ia0
+

1

x + ia0
		 . �4.3�

We have

Hs1 = b†b =
Px

2

2
+

�2x2

8a0
4 +

�2

�x − ia0�2 +
�2

�x + ia0�2 +
3�2

4a0
2 , �4.4�

Hs2 = bb† =
Px

2

2
+

�2x2

8a0
4 +

5�2

4a0
2 . �4.5�

The Hamiltonian Hg is the sum up to a constant of Hs1 and Hs2. We apply Mielnik’s procedure to
the Hamiltonian Hs1 to find all the superpartners. We define the following operator:

d =
�

2
� d

dx
+ ��x�	, d† =

�

2
�−

d

dx
+ ��x�	 , �4.6�

and demand Hs1=d†d. We obtain the following Riccati equation:

���x� + �2�x� =
�2x2

8a0
4 +

�2

�x − ia0�2 +
�2

�x + ia0�2 +
3�2

4a0
2 . �4.7�

We know a particular solution,

�0 =
1

2a0
2x + � 1

x − ia0
+

1

x + ia0
	 . �4.8�

Because we know a particular solution we can found the general solution. We consider

� = �0�x� + ��x� �4.9�

and obtain the following equation:
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���x� + �2�x� + 2�0�x���x� = 0. �4.10�

We consider the transformation z�x�=1 /��x� and obtain a first order linear inhomogeneous equa-
tion,

− z��x� + 2�0�x�z�x� + 1 = 0. �4.11�

We obtain

z�x� = ex2/2a0
2
�a0

2 + x2�2� +
1

4a0
3 �a0

2 + x2��2a0x + ex2/2a0
2�2��a0

2 + x2�Erf� x
�2a0

		 , �4.12�

��x� =
1

2a0
2x + � 1

x − ia0
+

1

x + ia0
	

+
1

ex2/2a0
2
�a0

2 + x2�2� +
1

4a0
3 �a0

2 + x2��2a0x + ex2/2a0
2�2��a0

2 + x2�Erf� x
�2a0

		 .

�4.13�

Using the function z�x� given by Eq. �4.12� the family of superpartner is thus given by

H� = Hs1 − ���x� =
Px

2

2
+

�2x2

8a0
4 +

�2

�x − ia0�2 +
�2

�x + ia0�2 +
3�2

4a0
2

−
d

dx� 1

ex2/2a0
2
�a0

2 + x2�2� +
1

4a0
3 �a0

2 + x2��2a0x + ex2/2a0
2�2��a0

2 + x2�Erf� x
�2a0

		� .

�4.14�

The eigenfunctions and energy spectrum of Hamiltonian Hs1
have been obtained in Ref. 25 from

supersymmetry. The eigenfunctions and energy spectrum of H� can be obtained directly from Hs1
and Eq. �2.4�. We can also obtain the creation and annihilation operators from those of Hs1. If we
take Hx=Hs1 and Hy =H� �the Hamiltonian H� is thus now given in term of the variable y�, we
obtain a new superintegrable Hamiltonian,

He = Hx + Hy =
Px

2

2
+

Py
2

2
+

�2y2

8a0
4 +

�2

�y − ia0�2 +
�2

�y + ia0�2 +
3�2

4a0
2

−
d

dy� 1

ey2/2a0
2
�a0

2 + y2�2� +
1

4a0
3 �a0

2 + y2��2a0y + ey2/2a0
2�2��a0

2 + y2�Erf� y
�2a0

		� +
�2x2

8a0
4

+
�2

�x − ia0�2 +
�2

�x + ia0�2 +
3�2

4a0
2 . �4.15�

The creation and annihilation operators for the Hamiltonian Hs1 are

mx
† = cx

†ax
†cx, mx = cx

†axcx, �4.16�

with
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ax =
�

2a0
2�x + 2a0

2 d

dx
	, ax

† =
�

2a0
2�x − 2a0

2 d

dx
	 . �4.17�

The creation and annihilation operators of the Hamiltonian H� are

ry
† = dy

†my
†dy, ry = dy

†mydy . �4.18�

We can find from Eq. �3.6� the integrals of motion of the Hamiltonian He of the orders 2, 7, and
8,

K = Hx − Hy, I1 = mx
†ry − mxry

†, I2 = mx
†ry + mxry

†. �4.19�

The integral I2 is given by the commutator of the integrals K and I1.
Because the harmonic oscillator is also isospectral to H� we have also the following superin-

tegrable systems where we take Hx=Hs2 and Hy =H�:

Hf = Hx + Hy =
Px

2

2
+

Py
2

2
+

�2x2

8a0
4 +

�2y2

8a0
4 +

�2

�y − ia0�2 +
�2

�y + ia0�2 +
9�2

4a0
2

−
d

dy� 1

ey2/2a0
2
�a0

2 + y2�2� +
1

4a0
3 �a0

2 + y2��2a0y + ey2/2a0
2�2��a0

2 + y2�Erf� y
�2a0

		� .

�4.20�

We have from Eq. �3.6� the following integrals of orders 2, 5, and 6:

K = Hx − Hy, I1 = ax
†ry − axry

†, I2 = ax
†ry + axry

†. �4.21�

The integral I2 is given by the commutator of the integrals K and I1.

B. Hamiltonians with fourth Painlevé transcendent

The following superintegrable system written in terms of the fourth Painlevé transcendent can
also be related to supersymmetric quantum mechanics:26

Hp1 =
Px

2

2
+

Py
2

2
+ g1�x� + g2�y� , �4.22�

g1�x� =
	2

2
x2 + 


�	

2
f���	

�
x	 +

	�

2
f2��	

�
x	 + 	��	xf��	

�
x	 +

�	

3
�− � + 
� ,

�4.23�

g2�y� =
	2

2
y2. �4.24�

This Hamiltonian has a second and third order integrals.
The function f is the fourth Painlevé transcendent and f�=df /dz, z=�	

� x,

f��z� =
f�2�z�
2f�z�

+
3

2
f3�z� + 4zf2�z� + 2�z2 − ��f�z� +

�

f�z�
, �4.25�

f�z� = P4�z,�,�� . �4.26�

We will show that we can find new superintegrable systems from the superpartners of a one-
dimensional Hamiltonian with potential g1 given by Eq. �4.23�. This system was discussed in Refs.
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26 and 30 and has a first and second order supersymmetry that allow to get the eigenfunctions and
the energy spectrum. This system can have three, two, or one infinite sequence of levels depending
on parameters � and �. When a potential possesses only one infinite sequence of energies, this
potential may also allow singlet or doublet states.

Let us consider

Hi = Px
2 + Vi�x�, i = 1,2, �4.27�

with a supersymmetry of orders 1 and 2 with the following operators:

q† =
�

�2
��+ W�x��, q = −

�

�2
��+ W�x�� , �4.28�

M† = �2 − 2h�x� � + b�x�, M = �2 + 2h�x� � + b�x� . �4.29�

From first order supersymmetry we have

V1 = W��x� + W2�x�, V2 = − W��x� + W2�x� −
2	

�
�4.30�

�another relations can be obtained from the supersymmetry of second order�. The compatibility
condition leads to

W�x� = − h�x� −�	

�
x . �4.31�

The potentials V1 and V2 are obtained from �4.23� putting, respectively, 
=−1 and 
=1 and adding
�	�� /3−
 /3−1� �with h�x�=�	

� f��	
� x��. We can apply the method to the Hamiltonian H1�x� and

find new operators k† and k that factorize H1,

k =
�

2
� d

dx
+ ��x�	, k† =

�

2
�−

d

dx
+ ��x�	 . �4.32�

This leads to a Riccati equation that we can solve because we know the particular solution W�x�,
and we find

z�x� =
1

��x�
= e�x2W�x��dx��� + �x

e�x�2W�x��dx�dx�	 , �4.33�

��x� = W�x� +
1

z�x�
. �4.34�

We obtain

HSUSY =
Px

2

2
−

d

dx
���x�� +

	2

2
x2 −

�	

2
f���	

�
x	 +

	�

2
f2��	

�
x	 + 	��	xf��	

�
x	 − �	 .

�4.35�

The eigenfunctions and the corresponding energy spectrum of H1, H2, and thus Hp1
were discussed

in Refs. 26 and 30. Thus we can obtain directly with Eq. �2.4� eigenfunctions and corresponding
energy spectrum of Hamiltonian HSUSY given by Eq. �4.35�. We also know the creation and
annihilation operators of the Hamiltonian H1 �and H2� and we can obtain from them the creation
and annihilation operators for HSUSY by the supersymmetry. From these operators, we can form
two integrals of motion and we have from the separation of variables in Cartesian coordinates an
integral of order of 2. This system is superintegrable.
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The creation and annihilation operators of H1 are given by the following third order operators:

a† = q†M†, a = M†q , �4.36�

M† = � d

dx
+ W1	� d

dx
+ W2	, M = �−

d

dx
+ W1	�−

d

dx
+ W2	 , �4.37�

with

W1,2 = −
1

2
�	

�
f��	

�
x	 ��

1

2
�	

�
f���	

�
x	 − �− �

	

�2�

1

2
�	

�
f��	

�
x	 � . �4.38�

The creation and annihilation operators of HSUSY are given by

v† = k†a†k, v = k†ak . �4.39�

The operators v† and v are quintic operators. If we take Hx�x�=H1 and Hy�y�=HSUSY, we obtain
the following Hamiltonian:

Hss =
Px

2

2
+

	2

2
x2 −

�	

2
f���	

�
x	 +

	�

2
f2��	

�
x	 + 	��	xf��	

�
x	 − �	 −

d

dy
���y�� +

	2

2
y2

−
�	

2
f���	

�
y	 +

	�

2
f2��	

�
y	 + 	��	yf��	

�
y	 − �	 , �4.40�

with the integrals of motion

K = Hx − Hy, I1 = ax
†vy − axvy

†, I2 = ax
†vy + axvy

†. �4.41�

The integral I2 is given by the commutator of the integrals K and I1. The integral K is of order of
2, I1 is of order of 7, and I2 of order of 8.

V. CONCLUSION

In this article, we showed how supersymmetric quantum mechanics gives us a method of
obtaining new superintegrable systems with higher order integrals of motion. Supersymmetry in
quantum mechanics makes it possible to find eigenfunctions and energy spectra from a superpart-
ner using Eqs. �2.3� and �2.4�. From a one-dimensional Hamiltonian and its superpartner we have
constructed a two-dimensional superintegrable system and its integrals. The integrals are given by
the Eq. �3.6�.

We discussed results obtained by Mielnik27 in context of SUSYQM. We showed how we can
generate a superintegrable system from the Hamiltonian he obtained and recover a particular case
of a system with a third order integral from Ref. 23 and studied in Ref. 26.

From the method, we have explicitly constructed superintegrable systems written in terms of
the error function and the fourth Painlevé transcendent. These systems have higher integrals of
motion. They possess, respectively, a second and a quintic integrals and a second and seventh
order one. The supersymmetry allows also to find the wave functions and the energy spectrum.

This method of generating superintegrable systems can be applied to other systems obtained
in the context of supersymmetric quantum mechanics. The results can be generalized in higher
dimensions.
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