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Superintegrability with third order integrals of motion,
cubic algebras, and supersymmetric quantum mechanics.
II. Painlevé transcendent potentials

Ian Marquettea�

Département de Physique et Centre de Recherches Mathématiques, Université de Montréal,
C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada

�Received 10 November 2008; accepted 3 February 2009; published online 9 April 2009�

We consider a superintegrable quantum potential in two-dimensional Euclidean
space with a second and a third order integral of motion. The potential is written in
terms of the fourth Painlevé transcendent. We construct for this system a cubic
algebra of integrals of motion. The algebra is realized in terms of parafermionic
operators and we present Fock-type representations which yield the corresponding
energy spectra. We also discuss this potential from the point of view of higher order
supersymmetric quantum mechanics and obtain ground state wave functions.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3096708�

I. INTRODUCTION

Over the years many articles have been devoted to superintegrable systems with second order
integrals of motion.1–12 Integrable and superintegrable systems with third order integrals have also
been studied, albeit to a lesser degree.13–19 This article is the second in a series18 devoted to
superintegrable systems in quantum mechanics in two-dimensional Euclidean space E2. All clas-
sical and quantum potentials with one second and one third order integral of motion that separate
in Cartesian coordinates in the two-dimensional Euclidean space were found by Gravel.16 There
are 21 quantum potentials and 8 classical ones. The systems investigated are of the form

H =
Px

2

2
+

Py
2

2
+ g1�x� + g2�y� , �1.1�

A =
Px

2

2
−

Py
2

2
+ g1�x� − g2�y� , �1.2�

B = �
i+j+k=3

Aijk�L3
i ,p1

j p2
k� + �l1�x,y�,p1� + �l2�x,y�,p2� , �1.3�

where �,� is an anticommutator and L3=xP2−yP1 is the angular momentum. The constants Aijk and
functions V, l1, and l2 are known.16

The quantum case contains very interesting potentials written in term of higher transcendental
functions. The irreducible potentials with rational functions were studied.18 Polynomial
algebras18–31 and the parafermionic realizations of these algebras were found. The parafermionic
realizations made it possible to construct Fock-type representations and to obtain the energy
spectra. We also studied these potentials from the point of view of the supersymmetric quantum
mechanics.32–41
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Among the 21 types of superintegrable quantum potentials, five of the irreducible ones are
expressed in terms of Painlevé transcendents.42 Let us present one of the superintegrable potentials
of Ref. 16 written in terms of the fourth Painlevé transcendent, P4�z ,� ,��,

g1�x� =
�2

2
x2 + �

��

2
f��	�

�
x
 +

��

2
f2�	�

�
x
 + �	��xf�	�

�
x
 +

��

3
�− � + �� ,

�1.4�

g2�x� =
�2

2
y2, �1.5�

where �= �1, f�=df /dz, and z=	� /�x,

f��z� =
f�2�z�
2f�z�

+
3

2
f3�z� + 4zf2�z� + 2�z2 − ��f�z� +

�

f�z�
, �1.6�

f�z� = P4�z,�,�� . �1.7�

The six Painlevé transcendent functions appear in the theory of nonlinear differential equations.
The occurence of Painlevé transcendents as superintegrable potentials seems somewhat surprising.
It is less so once we remember the relation between the Schrödinger equation and the
Korteweg–de Vries equation.43 Solutions of the KdV include Painlevé transcendents. Unidimen-
sional potentials expressed in terms of Painlevé transcendents were also obtained in the context of
the dressing chain method44–46 and conditionals and higher symmetries.47 An important aspect of
the fourth Painlevé transcendent is the existence of particular solutions in terms of rational func-
tions and classical special functions for very specific values of the two parameters � and �.48

All Hamiltonians of Ref. 16 are, by construction, the sum of two unidimensional Hamiltonians
�H=Hx+Hy�. All the quantum potentials with rational function were related to supersymmetric
quantum mechanics �SUSYQM�.19 Higher order SUSYQM and shape invariance have been
investigated.49–55 In the case of the potential given by Eqs. �1.4� and �1.5�, the Hamiltonian Hy is
the well known harmonic oscillator. The Hamiltonian Hx, the corresponding Schrödinger equation,
has been obtained as a special case of third order shape invariance and solved.51

This article is organized in the following way. In Sec. II we construct the Fock-type repre-
sentations for the superintegrable potential given by Eq. �1.1� by means of realizations of cubic
algebras in terms of a parafermionic algebra. In Sec. III we will recall some aspects of third order
shape invariance that are related to the potential given by Eqs. �1.4� and �1.5� with �=−1. We will
also treat the case with �=1. We will relate these results to those obtained using the approach
involving the cubic algebra. In Sec. IV we will consider special cases and apply results of Secs. II
and III.

II. CUBIC AND PARAFERMIONIC ALGEBRAS

We consider a quantum superintegrable Hamiltonian in E2 involving the fourth Painlevé
trascendent. We have two cases �=1 and �=−1 �with ��0�,

H =
Px

2

2
+

Py
2

2
+

�2

2
y2 + g1�x� , �2.1�

with g1�x� given in �1.4�. This Hamiltonian has two integrals of motion. The one of the second
order is given by Eqs. �1.2� and �1.4�. The third order one is given by the following equation:

095202-2 Ian Marquette J. Math. Phys. 50, 095202 �2009�

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.42.98 On: Fri, 30 Sep 2016

01:26:04



B =
1

2
�L,Px

2� +
1

2
��2

2
x2y − 3yg1�x�,Px� −

1

w2��2

4
g1xxx�x� + ��2

2
x2 − 3g1�x�
g1x�x�,Py� ,

�2.2�

where L=xPy −yPx.
The operators A and B generate the following cubic algebra:

�A,B� 
 C, �A,C� = 16�2�2B ,

�B,C� = − 2�2A3 − 6�2HA2 + 8�2H3 +
�2�4

3
�4�2 − 20 − 6� − 8���A − 8�2�4H

+
�5�3

27
�− 8�3 − 24� − 36�� + 24��2 + 8� + 36��� . �2.3�

The Casimir operator can be written as a polynomial in the Hamiltonian,

K = − 16�2H4 +
4�4�2

3
�4�2 − 8� + 4 − ���H2 −

4�5�3

27
�8�3 − 24��2 + 24� + 36�� − 8� − 36���H

−
4�6�4

3
�4� − 8�� − 8 − 6�� . �2.4�

Realizations of cubic algebras in terms of parafermionic algebras have been discussed in our
previous article.19 Our potential belongs to the Case 2 of Ref. 19. The cubic algebra has the form

�A,B� = C, �A,C� = �B, �B,C� = 	A3 + 
A2 + �A + � , �2.5�

where

	 = 	0, 
 = 
0 + 
1H, � = �0 + �1H + �2H2,

� = �0 + �1H + �2H2 + �3H3, � = �0 + �1H . �2.6�

This algebra has been realized in terms of a deformed oscillator algebra of the form

�N,bt� = bt, �N,b� = − b, btb = 
�N�, bbt = 
�N + 1� . �2.7�

The structure function 
�N� is given by


�N� = � K

− 4�
−

�

4	�

 + �−

�

4
+

�

2	�
+


	�

12

�N + u� + �− 
	�

4
+

�

4
+

	�

8

�N + u�2

+ �
	�

6
−

	�

4

�N + u�3 + �	�

8

�N + u�4. �2.8�

We can use Eq. �2.4� to rewrite the structure function in terms of the Hamiltonian.

A. Case �=1

From the general formula we obtain for our particular case the following structure function for
�=1:


�x� = − 4�2�4�x + u − � E

2��
+

1

2


�x + u − � − E

2��
+

5

6
−

�

3


 ,
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�x + u − � − E

2��
+

1

6
�� + 2 − 3i	�

2



�x + u − � − E

2��
+

1

6
�� + 2 + 3i	�

2



 . �2.9�

To obtain unitary representations,25,26 we should impose three constraints given by


�p + 1,ui,k� = 0, 
�0,u,k� = 0, ��x� � 0, ∀ x � 0. �2.10�

We have to distinguish the two cases, ��0 and ��0. For ��0 we get four possible values for
u with 
�0,u ,k�=0

u1 =
− E

2��
+

5

6
−

�

3
, u2 =

− E

2��
+

1

6
�� + 2 + 3	− �

2

 ,

u3 =
− E

2��
+

1

6
�� + 2 − 3	− �

2

, u4 =

E

2��
+

1

2
. �2.11�

We insert all these solutions for u and apply the constraint 
�p+1,ui ,k�=0, with i=1,2 ,3 ,4 to
find the energy spectrum.

Case 1:


�x� = 4�4�2x�p + 1 − x��x +
1

2
−

�

2
−	− �

8

�x +

1

2
−

�

2
+	− �

8

 , �2.12�

E = ���p +
4

3
−

�

3

 . �2.13�

Case 2:


�x� = 4�4�2x�p + 1 − x��x +	− �

2

�x −

1

2
+

�

2
+	− �

8

 , �2.14�

E = ���p +
5

6
+

�

6
+	− �

8

 . �2.15�

Case 3:


�x� = 4�4�2x�p + 1 − x��x −	− �

2

�x −

1

2
+

�

2
−	− �

8

 , �2.16�

E = ���p +
5

6
+

�

6
−	− �

8

 . �2.17�

Case 4:
We get three solutions for this case with negative energy,


�x� = 4�4�2x�p + 1 − x���p +
1

2

 +

�

2
+	− �

8
− x
��p +

1

2

 +

�

2
−	− �

8
− x
 ,

�2.18�

E = − ���p +
2

3
+

�

3

 , �2.19�
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�x� = 4�4�2x�p + 1 − x���p +
3

2

 −

�

2
−	− �

8
− x
��p + 1� −	− �

2
− x
 , �2.20�

E = − ���p +
7

6
−

�

6
−	− �

8

 , �2.21�


�x� = 4�4�2x�p + 1 − x���p +
3

2

 −

�

2
+	− �

8
− x
��p + 1� +	− �

2
− x
 , �2.22�

E = − ���p +
7

6
−

�

6
+	− �

8

 . �2.23�

To obtain unitary representions we should also impose ��x� to be a real function and ��x��0 for
x�0. The constraints do not allow all values for � and � so it may happen that only some of the
states are physically meaningful. We can have one, two, or three infinite sequences of energies that
correspond to each unitary representation.

For ��0 we have two solutions,


�x� = 4�4�2x�p + 1 − x��x2 + �1 − ��x −
�

8
+

�2

4
−

�

2
+

1

4

 , �2.24�

E = ���p +
4

3
−

�

3

 , �2.25�


�x� = 4�4�2x�p + 1 − x��x2 − �1 + � + 2p�x + p2 + �p + p −
�

8
+

�2

4
+

�

2
+

1

4

 , �2.26�

E = − ���p +
2

3
+

�

3

 . �2.27�

B. Case �=−1

For the case �=−1 we obtain the following expression for the structure function:


�x� = − 4�2�4�x + u − � E

2��
+

1

2


�x + u − � − E

2��
+

1

6
−

�

3


�x + u − � − E

2��
+

1

6
�� + 4

− 3i	�

2



�x + u − � − E

2��
+

1

6
�� + 4 + 3i	�

2



 . �2.28�

Four cases occur for ��0,

u1 =
− E

2��
+

1

6
−

�

3
, u2 =

− E

2��
+

1

6
�� + 4 + 3	− �

2

 ,

u3 =
− E

2��
+

1

6
�� + 4 − 3	− �

2

 u4 =

E

2��
+

1

2
. �2.29�

Case 1:
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�x� = 4�4�2x�p + 1 − x��x −
1

2
−

�

2
−	− �

8

�x −

1

2
−

�

2
+	− �

8

 , �2.30�

E = ���p +
2

3
−

�

3

 . �2.31�

Case 2:


�x� = 4�4�2x�p + 1 − x��x +	− �

2

�x +

1

2
+

�

2
+	− �

8

 , �2.32�

E = ���p +
7

6
+

�

6
+	− �

8

 . �2.33�

Case 3:


�x� = 4�4�2x�p + 1 − x��x −	− �

2

�x +

1

2
+

�

2
−	− �

8

 , �2.34�

E = ���p +
7

6
+

�

6
−	− �

8

 . �2.35�

Case 4: We get three solutions for this case with negative energy,


�x� = 4�4�2x�p + 1 − x���p +
3

2

 +

�

2
−	− �

8
− x
��p +

3

2

 +

�

2
+	− �

8
− x
 ,

�2.36�

E = − ���p +
4

3
+

�

3

 , �2.37�


�x� = 4�4�2x�p + 1 − x���p +
1

2

 −

�

2
−	− �

8
− x
��p + 1� −	− �

2
− x
 , �2.38�

E = − ���p +
5

6
−

�

6
−	− �

8

 , �2.39�


�x� = 4�4�2x�p + 1 − x���p +
1

2

 −

�

2
−	− �

8
− x
��p + 1� +	− �

2
− x
 , �2.40�

E = − ���p +
5

6
−

�

6
+	− �

8

 . �2.41�

One interesting aspect of this potential is that we can have three, two, or one series of equidistant
energy levels.

For ��0 we get the following solution:


�x� = 4�4�2x�p + 1 − x��x2 − �1 + ��x −
�

8
+

�2

4
+

�

2
+

1

4

 , �2.42�
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E = ���p +
2

3
−

�

3

 , �2.43�


�x� = 4�4�2x�p + 1 − x��x2 − �3 + � + 2p�x + p2 + �p + 3p −
�

8
+

�2

4
+

�

2
+

9

4

 , �2.44�

E = − ���p +
4

3
+

�

3

 . �2.45�

III. THIRD ORDER SHAPE INVARIANCE AND SUPERINTEGRABLE SYSTEMS

The concept of higher-derivative supersymmetric quantum mechanics �HSQM� was intro-
duced by Andrianov et al.49 HSQM is characterized by polynomial relations between supercharges
and the Hamiltonian. Second order derivative supersymmetry was investigated in Ref. 50. We will
present in this section results not given in Ref. 51 but directly related to the potential given by Eq.
�1.1� with �=1. Let us recall some aspects of the particular case of third order shape invariance
related to the potential with �=−1 obtained in Ref. 51. In SUSYQM two superpartners are isos-
pectral or almost isospectral, and if we know the spectrum and the eigenfunctions of one super-
partner, we can obtain the spectrum and the eigenfunctions of the other superpartner. A special
case occurs when the two superpartners V1�x ,a0� and V2�x ,a0� satisfy the relation V2�x ,a1�
=V1�x ,a0�+R�a1�, where a1= f�a0� and R�a1� do not depend on x. In this special case we can find
directly the energy and the eigenfunctions. The superpartners are called shape invariant potentials.
We consider the following particular case of shape invariance:

H1a† = a†�H1 + 2�� , �3.1�

where a† and a are third order operators. This particular case of shape invariance can be con-
structed from a first order and second order supersymmetries given by the following interwining
relations:

H1q† = q†�H2 + 2��, H1M† = M†H2, �3.2�

where

Hi = Px
2 + Vi�x� , �3.3�

q† = � + W�x�, q = − � + W�x� , �3.4�

M† = �2 − 2h�x� � + b�x�, M = �2 + 2h�x� � + b�x� . �3.5�

The key element in obtaining the equivalence between Eqs. �3.1� and �3.2� is to define the
following third order operators a and a† written as products of first order and second order
supercharges:

a† = q†M, a = M†q . �3.6�

The third order shape invariance of the form given by Eq. �3.1� can be investigated using Eq. �3.2�.
The two interwining relations of Eq. �3.2� give, respectively, the following relations:

V1 = W��x� + W2�x�, V2 = − W��x� + W2�x� − 2� , �3.7�

and
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V1,2 = � 2h��x� + h2�x� +
h��x�
2h�x�

−
h�2�x�
4h2�x�

−
d

4h2�x�
+ � , �3.8�

b�x� = − h��x� + h2�x� −
h��x�
2h�x�

+
h�2�x�
4h2�x�

+
d

4h2�x�
. �3.9�

Equation �3.7�–�3.9� impose that the potential V1 should have the form

V1 = − 2h��x� + 4h2�x� + 4�xh�x� + �2x2 − � , �3.10�

with

h��x� =
h�2�x�
2h�x�

+ 6h3�x� + 8�xh2�x� + 2��2x2 − �� + ���h�x� +
d

2h�x�
, �3.11�

W�x� = W3�x� = − 2h�x� − �x . �3.12�

As in the case of first order supersymmetry, we can define

H = �H1 0

0 H2

, Q = � 0 0

M 0

, Q† = �0 M†

0 0

 . �3.13�

We get the following SUSY algebra:

�H,Q� = �H,Q†� = 0, �Q,Q� = �Q†,Q†� = 0, �Q,Q†� = �H − ��2 + d . �3.14�

Equation �3.11� can be transformed into the equation for the fourth Painlevé transcendent �1.4� by
the following transformations:

h�x� =
1

2
	�f�z�, z = 	�x, � = 1 +

�

�
, � =

2d

�2 , � =
�

�
, �3.15�

and we obtain

Ṽ1 =
�2

2
V1 =

�2

2
x2 −

��

2
f��	�

�
x
 +

��

2
f2�	�

�
x
 + �	��xf�	�

�
x
 − �� . �3.16�

Ṽ1�x� is the x part of the potential in �1.1� and coincides with g1�x� in Eq. �1.4� up to a constant.
A particular case of third order shape invariance called «reducible» was considered in Ref. 51 by
imposing further conditions. These conditions are d�0 and the existence of real functions W1 and
W2, such that

M† = �� + W1�x���� + W2�x��, W1,2 = − h�x� �
h��x� − 	− d

2h�x�
�3.17�

�reducible means that M† factorizes into product of two first order operators with real functions�.
The spectrum was obtained for cases where normalizable zero modes of the annihilation operator
exist. Zero modes of the annihilation operator satisfy

a�k
�0� = 0 �3.18�

�we use the terminology of HSQM where «zero mode» refers to Eq. �3.18� so that zero modes
may not have energy E0=0�. The energies of zero modes were obtained by imposing the vanishing
of the norm of a�k

�0� which involves the average of the operator product a†a,
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a†a = q†MM†q = q†��H2 − ��2 + d�q = H1��H1 − � − 2��2 + d� . �3.19�

The energies of the zero modes are

E1
�0� = 0, E2

�0� = � + 2� + 	− d, E3
�0� = � + 2� − 	− d . �3.20�

The corresponding eigenfunctions �k
�0� can be calculated explicitly and are

�1
0�x� = e�xW3�x��dx�, �3.21�

�2
0�x� = �W2�x� − W3�x��e−�xW2�x��dx�, �3.22�

�3
0�x� = �2	− d + �W2�x� − W3�x���W1�x� + W2�x���e−�xW1�x��dx�. �3.23�

The creation operator can also have zero modes �k
�0� which correspond to a possible truncation of

the sequence of excited levels. They were obtained by considering the following product:

aa† = �H1 + 2����H1 − ��2 + d� . �3.24�

The energies of the zero modes are

E1
�0� = � − 	− d, E2

�0� = � + 	− d, E3
�0� = − 2� , �3.25�

with the corresponding eigenfunctions

�1
0�x� = e�xW1�x��dx�, �3.26�

�2
0�x� = �W1�x� + W2�x��e�xW2�x��dx�, �3.27�

�3
0�x� = �� + 2� + 	− d + �W1�x� + W2�x���W2�x� − W3�x���e−�xW3�x��dx�. �3.28�

For nonsingular potentials it is not possible to have the negative energy E3
�0�, and the total number

of zero modes of the annihilation and creation operator cannot be more than three because of the
asymptotics of the eigenfunctions. We can have three, two, or one infinite sequence of levels.
These results coincide with those obtained as from the analysis of Fock-type representations of the
cubic algebra of the superintegrable potential. When we apply the creation operator a† on zero
modes, we create eigenfunctions with 2� more energy. These energies are corroborated �when we
add a harmonic oscillator in the y direction� by those obtained using the cubic algebra and given
by Eqs. �2.31�, �2.33�, and �2.35�.

When a potential allows only one infinite sequence of energies, this potential may also allow
a singlet state or a doublet of states,

a+��x� = a−��x� = 0, �a+�2��x� = a−��x� = 0. �3.29�

From an algebraic point of view these states correspond to trivial irreducible representations.
Such a case was discussed in Ref. 19 for the potential V=�2��x2+y2� /8a4+1 / �x−a�2+1 / �x
+a�2�. This potential is a special case of the potential given by Eq. �1.1�. The observed singlet state
can now be naturally understood as a phenomenon of third order shape invariance.

All the results we presented apply to our potential for �=−1. We will present here the results
that will be applicable to the case �=1. We follow the same approach as in Ref. 51 and we
consider the following potential:
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V2 = 2h��x� + 4h2�x� + 4�xh�x� + �2x2 − � . �3.30�

Equations �3.9�, �3.11�, and �3.12� remain the same. We can define as for V1 in Eq. �3.16� a

potential Ṽ2 using the transformations of Eq. �3.15�. The Hamiltonian H2 of the form given by Eq.
�3.3� with the potential given by Eq. �3.30� satisfies

H2a† = a†�H2 + 2�� �3.31�

when we postulate

a† = Mq†, a = qM†. �3.32�

We have the following product:

a†a = H2��H2 − ��2 + d�, aa† = �H2 + 2����H2 + 2� − ��2 + d� . �3.33�

The energies of the zero modes of the creation and annihilation operator are obtained by imposing
the vanishing of their norm. This involves the average of the operator products a†a and aa† given
by Eq. �3.33�. The eigenfunctions of the zero modes are obtained directly by solving a�k

�0�=0 and
a†�k

�0�=0. The energies of zero modes of the annihilation operator are

E1
�0� = 0, E2

�0� = � − 	− d, E3
�0� = � + 	− d , �3.34�

with the corresponding eigenfunctions

�1
0�x� = �� − 	− d + �W1�x� + W2�x���W1�x� − W3�x���e�xW3�x��dx�, �3.35�

�2
0�x� = �W1�x� + W2�x��e−�xW1�x��dx�, �3.36�

�3
0�x� = e−�xW2�x��dx�. �3.37�

The energies of zero modes of the creation operator are

E1
�0� = − 2�, E2

�0� = � − 2� − 	− d, E3
�0� = � − 2� + 	− d , �3.38�

with the corresponding eigenfunctions

�1
0�x� = e−�xW3�x��dx�, �3.39�

�2
0�x� = �W1�x� − W3�x��e�xW1�x��dx�, �3.40�

�3
0�x� = �− 2	− d + �W1�x� − W3�x���W1�x� + W2�x���e�xW2�x��dx�. �3.41�

Again the total number of zero modes of the annihilation and creation operators cannot be more
than 3 because of the asymptotics of the eigenfunctions. We can have three, two, or one infinite
sequence of levels. When we apply the creation operator a† on zero modes we create eigenfunc-
tions with 2� more energy. These energies are corroborated �when we add a harmonic oscillator in
the y direction� by those obtained by the cubic algebra and given by Eqs. �2.13�, �2.15�, and �2.17�.
When a potential possess only one infinite sequence of energies, this potential may also possess a
singlet state or a doublet states.

We will discuss the irreducible case that appears when d�0. For V1�x� we get

E1
�0� = 0, �0

0�x� = e�xW3�x��dx�. �3.42�

For V2�x� we get
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E1
�0� = 0, �0

0�x� = �� − 	d + �W1�x� + W2�x���W1�x� − W3�x���e�xW3�x��dx�, �3.43�

and W1 and W2 are not real functions.

IV. SPECIAL CASES

The fourth Painlevé transcendent satisfying Eq. �1.6� depends on two parameters and special
solutions in terms of rational or classical special functions exist.48 In this section, we will give the
unitary representations, the corresponding energy spectra, and the eigenfunctions for some special
cases.

A. Case �=5, �=−8, f„z…=4z„2z2−1…„2z2+3… / „2z2+1…„4z4+3…, and �=1

We have with Eqs. �1.4� and �1.5�

V�x,y� =
�2

2
�x2 + y2� −

8�3�

�2�x2 + ��2 +
4�2�

�2�x2 + ��
+

2��

3
. �4.1�

From the cubic algebra we get two unitary representations. The first unitary representation is
given by Eq. �2.14� with the corresponding energy given by Eq. �2.15�,

��x� = 4�4�2x�p + 1 − x��x + 3��x + 2�, E = ���p + 8
3� , �4.2�

The second solution is given by Eq. �2.12� or Eq. �2.20� with the corresponding energy spectrum,

��x� = 4�4�2x�p + 1 − x��x − 3��x − 1�, E = ���p − 1
3� . �4.3�

This representation is valid only for p=0.
We will also treat this systems using the results on supersymmetry. The eigenfunctions for the

x part consist of an infinite sequence �n�x� starting from psi3
0�x� of Eq. �3.37� and a singlet state

��x� given by Eqs. �3.35� and �3.40�,

�n�x� = Nn�a†�ne−�x2/2�
x�3� + 2�x2�
�� + 2�x2�

, ��x� = C0
e−�x2/2�

� + 2�x2 , �4.4�

a��x� = 0, a†��x� = 0. �4.5�

The creation and annihilation operators are given by Eq. �3.32� with the following expressions for
W1, W2, and W3:

W1 =
− �− � + 2�x2��9�3 + 27�2�x2 + 12��2x4 + 4�3x6�

�x�3� + 2�x2��3�2 + 4�2x4�
, �4.6�

W2 =
− �� − 2�x2��3�2 + 3��x2 + 2�2x4�

�x�3�2 + 8��x2 + 4�2x4�
, �4.7�

W3 =
− �x�− 9�3 + 22�2�x2 + 20��2x4 + 8�3x6�

��� + 2�x2��3�2 + 4�2x4�
. �4.8�

With the eigenfunctions for the y part of the Hamiltonian and the formula for the energies given
by Eq. �3.34�, we obtain the two following series of solutions:

�n,k = �n�x�e−�y2/2�Hk�	�

�
y
, E = ���n + k +

8

3

 , �4.9�
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�m = ��x�e−�y2/2�Hm�	�

�
y
, Em = ���m −

1

3

 . �4.10�

B. Case �=5, �=−8, f„z…=4z„2z2−1…„2z2+3… / „2z2+1…„4z4+3…, and �=−1

We have with Eqs. �1.4� and �1.5�

V�x,y� =
�2

2
�x2 + y2� −

192�4�2x2

�4�2x4 + 3�2�2 +
16�2�2x2

4�2x4 + 3�2 . �4.11�

From the cubic algebra we obtain three unitary representations. The first unitary representation
is given by Eq. �2.32� with the corresponding energy spectrum Eq. �2.33�,

��x� = 4�4�2x�p + 1 − x��x + 4��x + 2�, E = ���p + 3� , �4.12�

The second solution is given by Eq. �2.38� with the corresponding energy spectrum given by Eq.
�2.39�,

��x� = 4�4�2x�p + 1 − x��p − 3 − x��p − x�, E = − ���p − 1� . �4.13�

This representation is valid only for p=0,1.
The third solution is given by Eq. �2.30� with the corresponding energy spectrum given by Eq.

�2.31�,

��x� = 4�4�2x�p + 1 − x��x − 3��x − 2�, E = ���p − 1� . �4.14�

This representation is valid only for p=0,1.
We investigate this system using the results on supersymmetry. The eigenfunctions for the x

part consist of an infinite sequence �n�x� starting from �0
2�x� given by Eq. �3.22� and doublet states

�1�x� and �2�x� given by Eqs. �3.22�, �3.21�, and �3.26�,

�n�x� = Nn�a†�ne−�x2/2�
�− 9�3 + 18�2�x2 + 12��2x4 + 8�3x6�

�3�2 + 4�2x4�
, �4.15�

�1�x� = C1e−�x2/2�
�� + 2�x2�

�3�2 + 4�2x4�
, �2�x� = C2e−�x2/2�

x�3� + 2�x2�
�3�2 + 4�2x4�

. �4.16�

a�1�x� = 0, a†�1�x� = �2�x�, a†�2�x� = 0. �4.17�

The creation and annihilation operators are given by Eq. �3.6� with W1, W2, and W3 as in Eqs.
�4.5�–�4.7�.

With the eigenfunctions in the y part and the formula for the energies given by Eq. �3.20�, we
obtain the three following kinds of solutions:

�n,k = �n�x�e−�y2/2�Hk�	�

�
y
, E = ���n + k + 3� , �4.18�

�m1
= �1�x�e−�y2/2�Hm1

�	�

�
y
, Em1

= ���m1 − 1� , �4.19�

�m2
= �2�x�e−�y2/2�Hm2

�	�

�
y
, Em2

= ��m2. �4.20�
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C. Case �=0, �=−2
9, f„z…=−2

3z, and �=1

We have

V�x,y� =
�2

2
�1

9
x2 + y2
 . �4.21�

From the cubic algebra we get three cases with unitary representations, and using Eqs. �2.12�
and �2.17�, we have

��x� = 4�4�2x�p + 1 − x��x + 1
3��x + 2

3�, E = ���p + 4
3� , �4.22�

��x� = 4�4�2x�p + 1 − x��x − 1
3��x + 1

3�, E = ���p + 1� , �4.23�

��x� = 4�4�2x�p + 1 − x��x − 2
3��x − 1

3�, E = ���p + 2
3� . �4.24�

We apply the results coming from supersymmetry. We get the following known eigenfunctions
from Eqs. �3.35�, �3.37�, and �3.36�, respectively, and the corresponding energy with Eq. �3.34�,

�n1,k1
= Nn1k1

�a†�n1e−�x2/6��− 3� + 2�x2�e−�y2/2�Hk1
�	�

�
y
 , �4.25�

E1 = ���n1 + k1 + 4
3� , �4.26�

�n2,k2
= Nn2k2

�a†�n2e−�x2/6�xe−�y2/2�Hk2
�	�

�
y
 , �4.27�

E2 = ���n2 + k2 + 1� , �4.28�

�n3,k3
= Nn3k3

�a†�n3e−�x2/6�e−�y2/2�Hk3
�	�

�
y
 , �4.29�

E2 = ���n2 + k2 + 2
3� . �4.30�

The creation and annihilation operators are given by Eq. �3.32� with the following expression for
W1, W2, and W3:

W1 =
1

x
+

�x

3�
, W2 = −

1

x
+

�x

3�
, W3 = −

�x

3�
. �4.31�

D. �=−1, �=−32
9 , f„z…=−2z /3− „2z2−3… /z„2z2+3…, and �=1

We have

V�x,y� =
�2

2
�1

9
x2 + y2
 −

24�3�

�2�x2 + 3��2 +
4�2�

�2�x2 + 3��
. �4.32�

From the cubic algebra we get the three cases with unitary representations from Eq. �2.12� to
Eq. �2.17�,

��x� = 4�4�2x�p + 1 − x��x + 1
3��x + 5

3�, E = ���p + 5
3� , �4.33�
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��x� = 4�4�2x�p + 1 − x��x − 1
3��x + 4

3�, E = ���p + 4
3� , �4.34�

��x� = 4�4�2x�p + 1 − x��x − 5
3��x − 4

3�, E = ���p� . �4.35�

From the supersymmetry we obtain the following eigenfunctions from Eqs. �3.35�–�3.37�,
respectively, and the energy with Eq. �3.34�,

�n1,k1
= Nn1k1

�a†�n1e−�x2/6�x
�− 45�2 + 4�2x4�

�3� + 2�x2�
e−�y2/2�Hk1

�	�

�
y
 , �4.36�

E1 = ���n1 + k1 + 5
3� , �4.37�

�n2,k2
= Nn2k2

�a†�n2e−�x2/6�
�9�2 − 12��x2 − 4�2x4�

�3� + 2�x2�
e−�y2/2�Hk2

�	�

�
y
 , �4.38�

E2 = ���n2 + k2 + 4
3� , �4.39�

�n3,k3
= Nn3k3

�a†�n3
e−�x2/6�

�3� + 2�x2�
e−�y2/2�Hk3

�	�

�
y
 , �4.40�

E3 = ���n3 + k3� . �4.41�

The creation and annihilation operators are given by Eq. �3.32� with the following expressions for
W1, W2, and W3:

W1 =
− 27�3 + 27�2�x2 + 48��2x4 + 4�3x6

27�3x − 36�2�x3 − 12��2x5 , �4.42�

W2 =
351�3�x + 126�2�2x3 + 12��3x5 − 8�4x7

81�4 − 54�3�x2 − 106�2�2x4 − 24��3x6 , �4.43�

W3 =
− 9�2 − 3��x2 + 2�2x4

9�2x + 6��x3 . �4.44�

E. Case �=0, �=−2, f„z…=−2z−�„z…, and �=1

We have

��z� =
���z�
��z�

, ��z� = 1 − tEc�z� . �4.45�

Ec�z� is the complementary error function and is given by

Ec�z� =
2

	�
�

z

�

e−t2dt . �4.46�

We have with Eqs. �1.4� and �1.5�
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V�x,y� =
�2

2
�x2 + y2� −

2

3
�� +

4e−2�x2/ht��

��1 − tEc�	�

�
x

2 +

4e−�x2/h + �	��x

��1 − tEc�	�

�
x

 . �4.47�

The cubic algebra provides two unitary representations. The first unitary representation is given by
Eq. �2.12� with the corresponding energy given by Eq. �2.13�. Equations �2.14� and �2.15� give the
same unitary representation and energy spectrum, and we have

��x� = 4�4�2x�p + 1 − x�x�x + 1�, E = ���p + 4
3� . �4.48�

The second solution is given by Eq. �2.16� with the corresponding energy spectrum given by Eq.
�2.17�,

��x� = 4�4�2x�p + 1 − x��x − 1�2, E = ���p + 1
3� . �4.49�

This unitary representation is valid only for p=0.
We also use supersymmetry to treat this system. The eigenfunctions for the x part consist of an

infinite sequence �n�x� starting from �3
0 given by Eq. �3.37� and a singlet state ��x� given by Eqs.

�3.36� and �3.39�,

�n�x� = Nn�a†�ne−3�x2/2�

�− t	�� − e�x2/�	��x + e�x2/�	�t�xEc�	�

�
x



��− 1 + tEc�	�

�
x

 , �4.50�

��x� = C0
e−�x2/2�

	���1 − tEc�	�

�
x

 , �4.51�

a��x� = 0, a†��x� = 0. �4.52�

The creation and annihilation operators are given by Eq. �3.32� with the following expressions for
W1, W2, and W3:

W1 =

�− t�x − e�x2/�	�	�

�
�� + �x2� + e�x2/�	�t	�

�
�� + �x2�Ec�	�

�
x



��− t − e�x2/�	�	�

�
x + e�x2/�	� +	�

�
xEc�	�

�
x

 , �4.53�

W2 =
A

B
, �4.54�

A = e−�x2/��2t2	�� + 3e�x2/�	�t�x − e2�x2/��	�

�
�h − �x2� + �− 3e�x2/h	�t2�x

+ 2e2�x2/��t	�

�
�� − �x2�
Ec�	�

�
x
 − e2�x2/��t2	�

�
�� − �x2��Ec�	�

�
x

2
 ,

�4.55�
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B = �	��− 1 + tEc�	�

�
x

�− t − e�x2/�	�	�

�
x + e�x2/�	�t	�

�
xEc�	�

�
x

 ,

�4.56�

W3 =
�x

�
+

2e−�x2/� +	�

�

	��1 − tEc�	�

�
x

 . �4.57�

With the eigenfunctions for the y part of the Hamiltonian and the formula for the energies given
by Eq. �3.34�, we obtain the two following families of solutions:

�n,k = �n�x�e−�y2/2�Hk�	�

�
y
, E = ���n + k +

4

3

 , �4.58�

�m = ��x�e−�y2/2�Hm�	�

�
y
, Em = ���m +

1

3

 . �4.59�

F. Case �=0, �=−2, f„z…=−2z−�„z…, and �=−1

This case gives the harmonic oscillator. The zero mode is given by Eq. �3.22� is the well
known ground state of the harmonic oscillator. There is other special solutions in terms of the
complementary error function exist.

Many special solutions of the fourth Painlevé equation will give us singular Hamiltonians.
These potentials can be regularized in several manners.19,56–58

V. CONCLUSION

The main results of this article are that we have constructed the cubic algebra, Fock-type
presentations, and the corresponding energy spectrum for the potential given by Eqs. �1.4� and
�1.5�. Other superintegrable potentials written in term of Painlevé transcendents are known,16

namely,

V1 = �2��1
2PI��1x� + �2

2PI��2y�� , �5.1�

V2 = ay + �2�2PI��x� , �5.2�

V3 = bx + ay + �2�b�2/3PII
2��2b

�2 
1/3

x,0
 , �5.3�

V4 = ay + �2�2b2�1/3�PII���− 4b

�2 
1/3

x,k
 + PII
2��− 4b

�2 
1/3

x
,k
 . �5.4�

These potentials together with that in Eqs. �1.4� and �1.5� were also obtained as one-dimensional
potentials in the context of higher and conditional symmetries by Fushchych and Nikitin.46 For
these four superintegrable potentials the simplest underlying structure of the type �2.5� is actually
a finite dimensional Lie algebra that does not allow us to find the energy spectrum. Let us present
these algebras.

For V1 we have
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�A,B� 
 C = − i�5�1
5�2

5, �A,C� = 0, �B,C� = 0. �5.5�

For V2 we have

�A,B� 
 C = − i�5�5, �A,C� = 0, �B,C� = 0. �5.6�

For V3 and V4 we have

�A,B� 
 C = 4abi��H + 1
2A�, �A,C� = 0, �B,C� = 8a2b2�2�H + 1

2A� . �5.7�

These algebras coincide with the classical Poisson algebras presented earlier.17 In these four cases
we have a triplet of commuting operators. The x part of the potential V4 was also obtained in the
context of supersymmetric quantum mechanics.55 The methods of this article are not directly
applicable in that case, but it may be possible to generalize them.

The question of how these aspects of SUSYQM, shape invariance, and superintegrability are
related is interesting and will require more study. Supersymmetry could also be a tool for the
classification of superintegrable potentials. Higher order supersymmetry could be a suitable ap-
proach to treat these potentials. The search for superintegrable systems with higher order integrals
of motion is thus closely related to the subject of polynomial algebras and higher order supersym-
metric quantum mechanics.

The search for a grand unifying theory in particle physics is an important problem of comtem-
porary physics. One model that is envisaged as a candidate is string theory. The x part of the
potential given by Eq. �1.1� appears also in the context of string theory59 where supersymmetry is
used as a method for constructing exact solutions. A more recent article60 discusses how super-
symmetric quantum mechanics can be used to construct solutions in string theory.
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