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LoPub: High-Dimensional Crowdsourced Data
Publication with Local Differential Privacy

Xuebin Ren, Chia-Mu Yu, Weiren Yu, Shusen Yang, Xinyu Yang, Julie A. McCann, and Philip S. Yu

Abstract—High-dimensional crowdsourced data collected from
numerous users produces rich knowledge about our society.
However, it also brings unprecedented privacy threats to the
participants. Local differential privacy (LDP), a variant of
differential privacy, is recently proposed as a state-of-the-art pri-
vacy notion. Unfortunately, achieving LDP on high-dimensional
crowdsourced data publication raises great challenges in terms
of both computational efficiency and data utility. To this end,
based on Expectation Maximization (EM) algorithm and Lasso
regression, we first propose efficient multi-dimensional joint
distribution estimation algorithms with LDP. Then, we develop
a Local differentially private high-dimensional data Publication
algorithm, LoPub, by taking advantage of our distribution
estimation techniques. In particular, correlations among multiple
attributes are identified to reduce the dimensionality of crowd-
sourced data, thus speeding up the distribution learning process
and achieving high data utility. Extensive experiments on real-
world datasets demonstrate that our multivariate distribution
estimation scheme significantly outperforms existing estimation
schemes in terms of both communication overhead and estimation
speed. Moreover, LoPub can keep, on average, 80% and 60%
accuracy over the released datasets in terms of SVM and random
forest classification, respectively.

Index Terms—local differential privacy, high-dimensional data,
crowdsourced data, data publication, private data release

I. INTRODUCTION

W ITH the development of various integrated sensors and
crowd sensing systems [26], crowdsourced information

from all aspects can be collected and analyzed to produce
rich knowledge about the group [22], [46], which can benefit
everyone in the crowdsourced system [27]. Particularly, with
multi-dimensional crowdsourced data (data records with mul-
tiple attributes), a huge amount of potential information and
patterns behind the data can be mined or extracted to provide
accurate dynamics and reliable prediction for both group and
individuals [29]. For example, various genomic data (each
gene as one dimension) from a large population of patients
can be analyzed to better diagnose and monitor patients’ health
status [33]. Users’ electricity usages in one day, as a typical
high dimensional data (each time slot as one dimension), can
be aggregated to obtain energy consumption dynamics, thus
making better demand response for the smart grid [39].

Despite the usefulness of crowdsourced information, the
massive data collection presents serious privacy concerns. End-
to-end encryption of data incurs operational limitations on
ciphertexts, thus significantly degrading the functionality of
crowd sensing systems. Differential privacy (DP) [17] has been
a de facto standard for privacy protection. Unfortunately, the
participants’ privacy can still be easily inferred or identified
due to the publication of crowdsourced data [20], [43], espe-
cially high-dimensional data, even with the consideration of
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existing privacy-preserving schemes (e.g., DP). The reasons
for privacy leaks are two-fold:
• Non-Local Privacy. Most existing solutions for privacy

protection focus only on centralized datasets under the
assumption that the server is trusted. However, an indi-
vidual’s data may still suffer from privacy leakage before
aggregation because of the lack of proper local protection
for the data on the user side [13], [24].

• Curse of High-dimensionality. With the increase of data
dimensions, privacy preservation techniques like DP [14],
[17], if naı̈vely applied to individual attributes with high
correlations, will either be weakened [31], [45], thereby
increasing the success ratio of many reference attacks
like cross-checking, or lead to low-quality data synthesis.
Even worse, the privacy guarantee of DP degrades expo-
nentially when multiple correlated queries are processed.
From the aspect of utility, conventional DP algorithms
can hardly achieve reasonable scalability and desirable
data accuracy due to the attribute correlations [45].

In addition to privacy vulnerability, the efficiency and imple-
mentation complexity of privacy preservation techniques are
also concerns. For example, in IoT applications, the ubiquitous
but resource-constrained sensors can only afford lightweight
operations. Another example is that privacy-preserving real-
time pricing mechanisms require not only effective privacy
guarantees for individuals’ electricity usage but also fast
response to the dynamical changes of demands and supply
in the smart grid [30].

Local differential privacy (LDP), a variant of DP, is re-
cently proposed as a state-of-the-art privacy notion. LDP is
particularly useful in distributed environment, where each
user contributes the single private data record to an untrusted
server. Compared to the conventional DP that finds very
few large-scale real-world deployments, LDP has found its
practical value in collecting user statistics without violating
user privacy. For example, RAPPOR [18] is a Google Chrome
extension that constantly collects Windows process names and
Chrome Homepages from user devices in a LDP manner.
Apple announces in WWDC 2016 its implementation of LDP
in iOS 10 and MacOS for discovering popular emojis and
identifying high energy and memory usage in Safari. Microsoft
also deploys an LDP-enabled data collection mechanism in
Windows Insiders program to collect application usage statis-
tics. Both users and software companies can benefit from the
LDP deployment; users have obvious need of user privacy. For
companies, the appreciation of user privacy may gain positive
reputation. More importantly, intruders or malicious insiders
of the system may be able to retrieve or even steal the user
data, violating user privacy. With the LDP deployment, since
even the server does not possess the raw data, the server has
very limited responsibility for privacy leakage.

All the above LDP implementations in fact only support
frequency estimation; i.e., the server can learn the proportion
of users with particular property in a population. Nonethe-
less, in reality, each user is usually associated with multiple
attributes and the server is interested in, e.g., learning the
correlation between attributes or releasing a privacy-preserving
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approximate dataset to the third-party for further analysis.
Hence, it is desirable to have a design of LDP-enabled data
synthesis mechanism to meet various requirements of privacy-
preserving data analysis.

Contributions. Our contributions can be summarized as
follows.
• Based on EM and Lasso regression, we propose three

efficient algorithms for multivariate joint distribution esti-
mation under the circumstance that each user individually
reports the data in a local differentially private manner.

• We propose LoPub, a total solution that can generate
an approximation of the original crowdsourced data with
the guarantee of LDP, by taking advantage of marginal
distributions learned from the data after a nontrivial
design of efficient dimensionality and sparsity reduction.

• We implemented and evaluated LoPub on real-world
datasets. Experimental results demonstrate the efficiency
and effectiveness of our proposed distribution estimation
and data synthesis mechanisms.

To the best of our knowledge, this is the first work
particularly addressing high-dimensional crowdsourced data
publication with LDP. We have a comparison among LoPub
and three similar solutions in TABLE I. One can see that
LoPub reaches lower communication cost, time, and storage
complexity. Due to the page limit, some detailed examples,
proofs and explanations that are not presented in this paper
can be found in our full length technical report [37].

TABLE I: Comparison of LoPub with existing methods
Comparison LoPub (Our method) RAPPOR [18] EM [19] JTree [10]

LDP Y Y Y N
High Dimension Y N N Y
Communication O(

∑
j |Ωj |) O(

∏
j |Ωj |) O(

∑
j |Ωj |) -

Time Complexity Low Large Large -
Space Complexity Low Large Large -

? |Ωj | is the domain size of the j-th dimension.

II. RELATED WORK

A. Differential Privacy in Centralized Setting
Differential privacy (DP) [14], [17], originally developed

for interactive query-response system, forms a mathematical
foundation for privacy protection by appropriately randomising
the results of statistical queries, using distributions such as
the Laplace, Gaussian or Geometric distributions. A special
form of DP is non-interactive DP, which corresponds to
releasing the sanitized dataset, or say, privacy-preserving data
publication. For privacy-preserving low-dimensional data pub-
lication, to show crowd statistics and to draw the correlations
between attributes, both the differentially private histogram
(univariate distribution) [3] and contingency table [34] are
widely investigated.

However, the techniques for non-interactive DP [15], [16]
suffer from the ”curse of dimensionality” [10], [45]. In other
words, they cannot reach either better utility (SVM and ran-
dom forest classification accuracy rates as utility metrics in our
consideration) or reasonable scalability due to the correlations
among attributes.

To deal with the correlations in high-dimensional data,
different schemes (e.g., approximations via low dimensional
data clusters) have been proposed [10], [11], [25], [28], [41],
[45]. For example Chen et al. [10] propose to reduce the
dimension by using junction tree algorithm to model the
correlations.

B. Differential Privacy in Distributed Setting
The schemes mentioned above mainly deal with central-

ized datasets. Nonetheless, there could be scenarios, where
distributed users contribute to the aggregate statistics. Some

efforts are also devoted to DP guarantee in distributed en-
vironment. For example, Su et al. [40] proposed a multi-
party setting to publish synthetic dataset from multiple data
owners. However, their multi-party computation can only
protect privacy among data owners. Ács and Castellucia [4]
and Bindschaedler et al. [8] use noise partitioning technique to
mimic the situation that the Laplace-distributed noise sample
applies to the aggregate data. Nonetheless, the design of these
schemes must involve sophisticated key management or even
homomorphic encryption, resulting in the impracticality and
inefficiency of these schemes. Despite the privacy protec-
tion against difference and inference attacks from aggregate
queries, an individual’s data may also suffer from privacy
leakage before aggregation [17]. Hence, local differential
privacy (LDP) [9], [13], [23], [24] has been proposed to
provide individual privacy guarantees for distributed users.
Fig. 1 and Fig. 2 illustrate the difference between conventional
differential privatization procedures and local privatization
procedures.

The problem that can be solved naturally in a LDP manner
is frequency estimation. Randomized response (RR), where
the user responds with either faithful or opposite answer
depending on coin flipping, is the simplest technique for
LDP-enabled frequency estimation. RR is originally designed
for binary answer, but can be easily extended to categorical
answer with the degrading response usefulness. RAPPOR
[18] encodes the data as a Bloom filter and then performs
RR on each bit of Bloom filter. The design of RAPPOR
enables the server to have an accurate decoding result. While
RAPPOR can be seen as collecting users’ 1-dimensional data,
Fanti et al. [19] propose an association learning scheme,
which extends the 1-dimensional RAPPOR to estimate the 2-
dimensional joint distribution. However, the sparsity in the
multi-dimensional domain and the way it iteratively scans
RAPPOR strings mean that it will incur considerable com-
putational complexity. In addition, while the communication
cost of each RAPPOR instance is the size of Bloom filter,
Bassily and Smith [7] propose an 1-bit protocol for LDP-
enabled frequency estimation with the optimal communication
efficiency. Wang et al. [42] introduce a framework that can
generalize the above protocols by reconciling the RR behaviors
in different frequency estimation schemes [7], [18], [19], such
that one may derive more accurate statistics. In addition to
frequency estimation, there are LDP protocols for the other
functionalities. For example, with the consideration of a prefix
tree and a user grouping based on the length of the random
prefix of data, Bassily et al. [6] develop an efficient way to
querying the frequency estimation mechanism, so as to find
out heavy hitters. The above all assume that each user is only
in possession of single data element. Qin et al. [35] propose a
heavy hitter estimation over set-valued data based on two-
round user-server interactions. The design of LDP-enabled
data collection can also be generalized to the case where the
user owns the frequently changing private data [12] and to the
case where the user owns a subgraph induced by a specific
vertex from a graph [36].

III. SYSTEM MODEL

Our system model is depicted in Fig. 3, where a number
of users and an honest-but-curious central server constitute a
crowdsourcing system. Users generate multi-dimensional data
records, and then send these data to the server in a LDP
manner. The server aims to release an approximate dataset
to third-parties for conducting data analysis. The server is
assumed to be able to collude with certain users, attempting
to infer others’ data. In addition, the server and users share
the same public information, such as the privacy-preserving
protocols (including the cryptographic hash functions used).
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Fig. 1: Main procedures of high-dimensional data publishing with Non-local ε = ε1 + ε2 DP
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Fig. 2: Main procedures of high-dimensional data publishing with ε-LDP

In this paper, we mainly focus on data privacy, and thus the
detailed network model is omitted.
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Fig. 3: An architecture of distributed high-dimensional private
data collection and publication

Problem Statement. More specifically, given a collection
of data records with d attributes from different users, our
goal is to enable the server to publish a synthetic dataset
that has the approximate joint distribution of d attributes with
LDP. Formally, let N be the total number of users (i.e., data
records1) and sufficiently large. Let X = {X1, X2, . . . , XN}
be the crowdsourced dataset, where Xi denotes the data record
from the ith user. We assume that there are d attributes
A = {A1, A2, . . . , Ad} in X . Each data record Xi can
be represented as Xi = [xi1, x

i
2, . . . , x

i
d], where xij denotes

the jth element of the ith user record. For each attribute
Aj (j = 1, 2, . . . , d), we denote Ωj = {ω1

j , ω
2
j , . . . , ω

|Ωj |
j }

as the domain of Aj , where ωij is the ith possible attribute
value of Ωj and |Ωj | is the cardinality of Ωj .

Alternatively, one can see dataset X of dimension N × d
as a matrix with heterogeneous entries. There is an inherent
multivariate data distribution that generates X consisting of N
sampled row vectors of size d. Because of the consideration of
data distribution, in the following we use terms, data records,

1We assume that each user is in possession of a multidimensional data
record.

row vectors, and samples interchangeably. With the above
notations, our problem can be formulated as follows. Given a
dataset X of dimension N × d and each data record is owned
by user individually, we aim to release an approximate dataset
X? of dimension N × d such that

PX?(A1 . . . Ad) ≈ PX(A1 . . . Ad), (1)

where PX(A1 . . . Ad) is defined as PX(xi1 = ω1, . . . , x
i
d =

ωd), i = 1, . . . , N , ω1 ∈ Ω1, . . . , ωd ∈ Ωd with PX(xi1 =
ω1, . . . , x

i
d = ωd) being defined as the d-dimensional joint

distribution on X .

IV. PRELIMINARIES

A. Differential Privacy (DP)
Differential privacy (DP) is the de facto standard for pro-

viding formal privacy guarantee [14]. It limits the adversary’s
ability of inferring the participation or absence of any user in
a dataset via adding carefully calibrated noise (e.g., Laplace-
distributed noise [14]) to query results. The algorithm M
satisfies ε-differential privacy (ε-DP) if for all neighboring
datasets D1 and D2 that differ on a single element (e.g., the
data of one person), and all subsets S of the image of M,

Pr[M(D1) ∈ S] ≤ eε × Pr[M(D2) ∈ S], (2)

where ε is called privacy budget, which serves as a privacy
parameter for the level of privacy protection, with the charac-
teristic that smaller ε means better privacy. According to the
sequential composition theorem [38], an extra privacy budget
will be required when DP mechanisms are applied mutiple
times.

B. Local Differential Privacy (LDP)
DP implicitly assumes a trusted server and therefore can

hardly apply to the case of privacy-aware crowdsourced sys-
tems. Recently, local differential privacy (LDP) is proposed for
crowdsourced systems to provide a stringent privacy guarantee
that data contributors trust no one but himself/herself [13],
[24]. In particular, for any user i, a mechanism M satisfies
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ε-local differential privacy (ε-LDP) if for any two data records
Xi, Xj , and for any possible outputs X̃ ∈ Range(M),

Pr[M(Xi) = X̃] ≤ eε × Pr[M(Xj) = X̃], (3)

where the probability is taken over M′s randomness and the
privacy budget ε has a similar impact on privacy as in the
ordinary DP in Section IV-A. Intuitively, since Pr[M(Xi) =
X̃] is very close to Pr[M(Xj) = X̃], an interpretation of the
privacy provided by Equation (3) is that the adversary seeing
X̃ cannot determine whether the input is Xi or Xj .

Randomized response (RR) [21], [44] is the simplest tech-
nique for achieving LDP and has been widely used in the
survey of people’s “yes or no” opinions about a sensitive
question. In particular, surveyees adopting RR give their true
answers with only a certain probability and opposite answers
with remaining probability. Due to the randomness, the survey-
or cannot determine the individuals’ true answers (i.e., LDP
is guaranteed) but still can extract the useful statistics from
the noisy responses. Recently, RAPPOR has been proposed
for statistics aggregation [18] and can be thought of as an
extension of RR via either unary encoding or Bloom filter
representation of user data.

V. LOPUB: HIGH-DIMENSIONAL DATA PUBLICATION
WITH LDP

We propose LoPub, a novel solution to achieve high-
dimensional crowdsourced data publication with LDP. In this
section, we first introduce the basic idea behind LoPub in
Section V-A and then elaborate on each component of LoPub
in more details in Sections V-B∼V-E.

A. Basic idea
Privacy-preserving high-dimensional crowdsourced data

publication aims at releasing an approximate dataset with
similar statistical information (i.e., in terms of statistical
distribution as defined in Equation (1)) to the source data
while guaranteeing the LDP. In the following, we make some
observations on the solution to local differentially private data
publication.

First, to achieve LDP, some local transformation over data
needs to be designed, so as to cloak individuals’ original data
records. Then, the central server needs to derive the distribu-
tion of original data, by which one can generate the synthetic
dataset. There are two plausible solutions for learning the
original data distribution. One is to obtain the 1-dimensional
distribution on each attribute independently. Unfortunately, the
lack of consideration of correlations between dimensions will
lead to the significant degradation of the utility. Another is to
consider all attributes as one and compute an d-dimensional
joint distribution. However, the possible domain will increase
exponentially with the number of dimensions, thus leading
to both low scalability and signal-noise-ratio problems [45].
Therefore, the technical challenge here is to find a solution for
reducing the dimensionality while keeping the necessary corre-
lations. Afterwards, with the statistical distribution information
on low-dimensional data, one can synthesize an approximate
dataset based on the learned distribution information.

To this end, we present LoPub, a Local differentially private
data Publication scheme for high-dimensional crowdsourced
data. Fig. 4 shows the overview of LoPub, which mainly
consists of four mechanisms, local data protection, multi-
dimensional distribution estimation, dimensionality reduction,
and data synthesis. We describe them in more details as
follows.

1) Local Data Protection. We first propose a local trans-
formation process (also called local randomizer) that

Original High-
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Fig. 4: An overview of LoPub

adopts RR on encoded data record, ensuring that each
user output satisfies LDP. Particularly, we locally trans-
form each attribute value to a random bit string. Then,
the sanitized data is sent to and aggregated at the central
server. The design of our local randomizer is described
in Section V-B.

2) Multi-dimensional Distribution Estimation. We then
propose three multi-dimensional joint distribution esti-
mation schemes to derive both the joint and marginal
probability distributions. Inspired by [19], we first ex-
tend the EM-based approach for distribution estimation.
However, such a straightforward extension does not con-
sider the sparsity in high-dimensional data, which will
lead to high computational complexity for distribution
estimation. To speedup the estimation, we present a
Lasso-based approach with the cost of slight accuracy
degradation. Finally, we propose a hybrid approach
striking the balance between the accuracy and efficiency.
These distribution estimation schemes are described in
Section V-C.

3) Dimensionality Reduction. Based on the learned dis-
tribution, we develop a technique for dimensionality re-
duction by identifying correlated attributes and splitting
attributes into several compact low-dimensional attribute
clusters. More specifically, considering the heteroge-
neous attributes, we adopt mutual information to mea-
sure the correlations, forming an undirected dependency
graph. Then, our technique splits the attributes according
to the junction tree built from the dependency graph.
We also propose a heuristic pruning scheme to further
speedup the process of correlation identification. We
present the techniques for dimensionality reduction in
Section V-D.

4) Synthesizing the New Dataset. Finally, we sample each
low-dimensional dataset according to the connectivity of
attribute clusters and the estimated joint (or conditional)
distribution on each attribute cluster, thus synthesizing
an approximate dataset.

B. Local Transformation for High-dimensional Data Record
Design Rationale. Local transformation in our design in-

cludes two key steps; one is representing the data record
as a Bloom filter and another is to introduce uncertainty.
Particularly, Bloom filter with multiple hash functions encodes
a set of data items into a pre-defined bit string. Thus, the
unique bit string is a representative feature of a data record.
Then, the individual user performs RR on each individual bit,
injecting uncertainty to the Bloom filter-encoded data.

Design of Local Randomizer. Under the above framework,
one observation can be made; given Bloom filter as a feature
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TABLE II: Notation
N number of users (data records) in the system
X entire crowdsourced dataset
Xi data record from the ith user
xij jth element of Xi

d number of attributes in X
Aj : jth attribute of X
Ωj domain of Aj
ωj candidate value in Ωj
Hj the set of hash functions for Aj that map x into a Bloom

filter
Hj,x(·) the xth hash function in Hj
hj the number |Hj | of hash functions in Hj

sij Bloom filter of xij (Si
j = Hj(xij))

sij [b] the bth bit of sij
ŝij randomized Bloom filter of sij
ŝij [b] the bth bit of ŝij
mj length of sij
f probability of flipping a bit of a Bloom filter

for a particular attribute value, a concatenation of d Bloom
filters can also serve as a feature for d attribute values
from a data record. One advantage of using Bloom filters as
features for different attributes is that, depending on domain
sizes of particular attributes, one can separately optimize the
parameters of Bloom filter, such as the length of Bloom filter,
so as to minimize the corresponding overhead. In addition,
when Bloom filter is seen as feature, existing machine learning
techniques like EM and Lasso regression will be effective
for further multivariate distribution estimation (described in
Section V-C). Some notations used in this paper are listed in
Table II.

In essence, our design of local randomizer consists of three
steps.

1) The ith user is assumed to have a data record Xi =
[xi1, x

i
2, . . . , x

i
d]. The ith user encodes each xij as a

Bloom filter via the set Hj of hash functions particularly
for Aj ; the ith user employs hj hash functionsHj,1, . . . ,
Hj,hj

from Hj to map xij to a length-mj bit string sij
(called a Bloom filter); i.e., xij is inserted to a length-mj

bit Bloom filter with hj hash functions from Hj . Note
that sij [b] denotes the bth bit of the bit string sij . In the
rest of this paper, we abuse the notation Hj(ω) as the
Bloom filter with those bits at positions Hj,1(ω), . . . ,
Hj,hj

(ω) being set to be 1.
2) Each bit sij [b] (b = 1, 2, . . . ,mj) in sij is randomly

flipped into 0 or 1 according to the following RR rule:

ŝij [b] =


sij [b], with probability of 1− f
1, with probability of f/2
0, with probability of f/2

(4)

where f ∈ [0, 1] is a parameter that quantifies the level
of randomness for LDP and controls the privacy level. In
essence, each user eventually sends out a noisy Bloom
filter (or called randomized Bloom filter).

3) After deriving the randomized Bloom filter ŝij (j =
1, . . . , d), the ith user concatenates ŝi1, . . . , ŝ

i
d to obtain

a (
∑d
j=1mj)-bit vector ŝi1|| . . . ||ŝid and send it to the

server.
Given the false positive probability p and the number |Ωi|

of elements to be inserted, the parameters of Bloom filter can
be easily optimized. In other words, the optimal length mj of
Bloom filter in the case of N � |Ωj | can be calculated as

mj =
ln(1/p)

(ln 2)2
|Ωj |. (5)

Furthermore, the optimal number hj of hash functions in the
Bloom filter is

hj =
mj

|Ωj |
ln 2 =

ln(1/p)

(ln 2)
. (6)

In the rest of this paper, we assume hj = h and mj = m for
all j for simplicity.

Communication Overhead. Denote CX as the communi-
cation cost (in terms of number of bits) for scheme X . We
have the following theorem for communication cost of our
local transformation.

Theorem 1: CLoPub can be calculated as

CLoPub =
d∑
j=1

mj =
ln(1/p)

(ln 2)2

d∑
j=1

|Ωj |. (7)

When RAPPOR [18] is directly applied to each attribute
value of the d-dimensional data, all Ω1 × · · · × Ωd candidate
value will be together regarded as 1-dimensional data2, then
the cost is

CRAPPOR =
ln(1/p)

(ln 2)2

d∏
j=1

|Ωj |, (8)

where
∏d
j=1 |Ωj | is due to the size of the candidate set

Ω1 × · · · × Ωd. The difference between Equation (7) and (8)
stems from the fact that given Bloom filter as a feature for a
particular attribute value, a concatenation of d Bloom filters
can also serve as a feature for d attribute values from a data
record.

Privacy Analysis: Because each user runs a local random-
izer on data records individually, one can argue the individual
privacy by claiming the privacy of local randomizer. According
to [18], local transformation of a specific attribute value can
achieve ε-LDP, where ε = 2h ln ((2− f)/f) with h being the
number of hash functions in the Bloom filter and f is the
probability of flipping a bit.

According to the sequential composition theorem [32], local
transformation of a d-dimensional data record achieves ε-LDP,
where

ε = 2dh ln ((2− f)/f) , (9)
with d being the number of attributes (dimensions) in original
data record Xi. Since the same transformation is done by all
users independently, the above ε-LDP guarantee holds for all
distributed users. It should be noted that, according to Equation
(9), the Bloom filter length mj as well as communication
cost CLoPub (or CRAPPOR) is independent of the privacy level
achieved.

C. Multivariate Distribution Estimation with LDP
After receiving noisy bit strings, the next step of server is

to estimate the joint distribution. We first propose a natural
extension of the 2-dimensional distribution estimation [19]
for high-dimensional distribution estimation (Section V-C1).
However, due to high complexity and overheads, it is only
preferable to low dimensions with small domain, which is
impractical to many real-world datasets with high dimensions.
Therefore, we then propose a Lasso regression-based distribu-
tion estimation to prevent the convergence issue, at the cost
of utility degradation (Section V-C2). Finally, we present a
hybrid algorithm to strike a balance between efficiency and
accuracy (Section V-C3).

2When the orginal RAPPOR is directly applied, the high-dimensional
data will be regarded as one dimensional data. So, each user’s data will
be transformed into one bit string and randomly flipped to achieve LDP.
Now, the number of candidates would be |Ω1| × · · · × |Ωd|. In the case
of Bloom filter encoding, the minimal length of Bloom filter strings needs to
be CRAPPOR = |Ω1| × · · · × |Ωd| × ln(1/p)/((ln 2)2).
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1) EM-based Distribution Estimation: Here, we first extend
EM-based estimation [19] for k-dimensional marginal dataset
(2 ≤ k ≤ d).

We first introduce the following notations. Without loss
of generality, we consider k specified attributes as A1, A2,
. . . , Ak and their index collection C = {1, 2, ..., k}. For
simplicity, the event Aj = ωj or xj = ωj is abbreviated
as ωj . For example, the prior probability P (x1 = ω1, x2 =
ω2, . . . , xk = ωk) can be simplified into P (ω1ω2 . . . ωk)
or P (ωC). Algorithm 1 shows our EM-based k-dimensional
distribution estimation algorithm, EM JD. More specifically,
it consists of the following five main steps.

Algorithm 1 EM-based k-dimensional Joint Distribution
(EM JD)
Require: C : attribute indexes cluster, i.e., C = {1, 2, ..., k}

Aj : k-dimensional attributes (1 ≤ j ≤ k),
Ωj : domain of Aj (1 ≤ j ≤ k),
ŝij : observed Bloom filters (1 ≤ i ≤ N) (1 ≤ j ≤ k),
f : flipping probability,
δ : convergence accuracy.

Ensure: P (AC): joint distribution of k attributes specified by C.
1: initialize P0(ωC) = 1/(

∏
j∈C
|Ωj |).

2: for each i = 1, . . . , N do
3: for each j ∈ C do
4: compute P (ŝij |ωj) =

∏mj

b=1( f
2

)ŝ
i
j [b](1− f

2
)1−ŝij [b].

5: end for
6: compute P (ŝiC |ωC) =

∏
j∈C

P (ŝij |ωj).

7: end for
8: initialize t = 0 /* number of iterations */
9: repeat

10: for each i = 1, . . . , N do
11: for each (ωC) ∈ Ω1 × Ω2 × · · · × Ωk do
12: compute Pt(ωC |ŝiC) =

Pt(ωC)·P (ŝiC |ωC)∑
ωC

Pt(ωC)P (ŝiC |ωC)

13: end for
14: end for
15: set Pt+1(ωC) = 1

N

∑N
i=1 Pt(ωC |ŝiC)

16: update t = t+ 1
17: until max

ωC
Pt(ωC)−max

ωC
Pt−1(ωC) ≤ δ.

18: return P (AC) = Pt(ωC)

1) At first, we set an uniform distribution

P (ω1ω2 . . . ωk) = 1/(
k∏
j=1

|Ωj |) as the initial prior

probability (line 1 of Algorithm 1).
2) In local transformation, each bit sij [b] will be flipped

with probability f
2 . Thus, by comparing the bits Hj(ωj)

with the randomized bits, the conditional probability
P (ŝij |ωj) can be computed (lines 3∼5 of Algorithm 1).

3) The joint conditional probability can be easily calculated
by combining individual attributes; i.e., P (ŝiC |ωC) =∏
j∈C

P (ŝij |ωj) (line 6 of Algorithm 1).

4) Given all the conditional distributions of one particular
combination of bit strings, their corresponding posterior
probability can be computed by the Bayes’ Theorem,

Pt(ωC |ŝiC) =
Pt(ωC) · P (ŝiC |ωC)∑
ωC

Pt(ωC)P (ŝiC |ωC)
. (10)

where Pt(ωC)=Pt(ω1ω2 . . . ωk) is the k-dimensional
joint probability at the tth iteration (lines 11∼13 of
Algorithm 1).

5) After identifying posterior probability for each user, we
calculate the mean of the posterior probability from a
large number of users to update the prior probability
(lines 15∼16 of Algorithm 1). The prior probability
is used in the next iteration to update the posterior

probability. The above EM-like procedures are executed
iteratively until convergence, i.e., the maximum dif-
ference between two estimations is smaller than the
specified threshold (line 17 of Algorithm 1).

Complexity. Similar to the other works, we assume that
number N of user records is sufficiently large; i.e., N �
vk, where v denotes the average size of |Ωj |. Otherwise it is
difficult to extract the useful statistics from noisy data (or say,
to have an accurate estimation from a sample space with low
signal-noise-ratio).

Theorem 2: Given v as the average size of |Ωj |, the time
complexity of EM JD is

O
(
Nkmvk + tNv2k

)
. (11)

Theorem 3: The space complexity of EM JD is

O
(
Nkm+ 2Nvk

)
. (12)

EM JD can converge to a good estimation empirically.
However, EM JD suffers from the following three draw-
backs. First, EM JD might fail when converging to local
optimum. Especially when k increases, there will be many
local optimums to prevent good convergence because sample
space of all combinations in Ωj1 × Ωj2 × · · · × Ωjk explodes
exponentially. Second, the space overhead could be daunting
when either N or k is large. This makes the performance
of EM JD degrade dramatically and not applicable to high
dimensional data. Third, in fact, the effectiveness of EM JD
is sensitive to the initial value.

2) Lasso-based Distribution Estimation: To have better
efficiency of the distribution estimation, we instead present
a Lasso regression-based algorithm Lasso JD. As mentioned
previously, a Bloom filter can be thought of as a representative
feature of data. After RR, a large number of noises will be
injected to Bloom filter by individual users. More precisely,
one may consider that the server receives a large number of
samples from a specific distribution, however, with random
noise. In this sense, one may estimate the distribution from
the noisy samples by taking advantage of linear regression
y = Mβ, where M is predictor variables and y is response
variable, and β is the regression coefficient vector. Here, our
aim is to estimate the distribution on predictor variables M.
Instead of the original domain, M is represented as Bloom
filters. The use of Bloom filter can guarantee that the features
(predictor variables M) re-extracted at the server are the same
as ones extracted by the user. Moreover, response variable y
can be estimated from the randomized bit strings according
to the known f 3. Therefore, the only problem is to find a
good solution to the linear regression y = Mβ. Obviously, k-
dimensional data may incur a output domain Ω1×...×Ωk with
the size of |Ω1|×...×|Ωk|, which increases exponentially with
k. With fixed N entries in the dataset X , the frequencies of
many combination ω1ω2...ωk ∈ Ω1× ...×Ωk are rather small
or even zero. So, M is sparse and only part of the sparse
but effective predictor variables need to be chosen. Here, we
resort to Lasso regression, effectively solving the sparse linear
regression by choosing proper predictor variables.

Our Lasso-based distribution estimation, Lasso JD, is
shown in Algorithm 2 and consists of the following four major
steps.

1) After receiving all noisy Bloom filters, for each bit b in
each attribute j, the server counts the number of 1′s as
ŷj [b] =

∑N
i=1 ŝ

i
j [b] (lines 1∼3 of Algorithm 2).

3The estimation of each position in the bit count vector Y can be
accomplished via the RR recovery; since (1− f) original true bits are kept ,
f/2 new 1’s are added, and f/2 new 0’s are added, given the aggregated count
ŷ ofN users, there is (1−f)∗y+N∗f/2 = ŷ and y = (ŷ−N∗f/2)/(1−f),
where y denotes the true bit count.
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Algorithm 2 Lasso-based k-dimensional Joint Distribution
(Lasso JD)
Require: C : attribute indexes cluster i.e., {1, 2, ..., k},

Aj : k-dimensional attributes (1 ≤ j ≤ k),
Ωj : domain of Aj (1 ≤ j ≤ k),
ŝij : observed Bloom filters (1 ≤ i ≤ N) (1 ≤ j ≤ k),
f : flipping probability.

Ensure:
P (AC): joint distribution of k attributes specified by C .

1: for each j ∈ C do
2: for each b = 1, 2, . . . ,mj do
3: compute ŷj [b] =

∑N
i=1 ŝ

i
j [b]

4: compute yj [b] = (ŷj [b]− fN/2)/(1− f)
5: end for
6: set Hj(Ωj) = {Hj(ω) ∀ω ∈ Ωj}
7: end for
8: set y =

[
y1[1], . . . , y1[m1] y2[1], . . . , y2[m2] . . . yk[1], . . . , yk[mk]

]
9: set M =

[
H1(Ω1)×H2(Ω2)× · · · × Hk(Ωk)

]
10: compute ~β = Lasso regression(M,y)
11: return P (AC) = ~β/N

Fig. 5: Illustration of Lasso JD

2) The true count sum of each bit yj [b] can be estimated
as yj [b] = (ŷj [b]− fN/2)/(1− f) according to the RR
applied to the true count. These count sums of all bits
form a vector y with the length of

∑k
j=1mj (lines 4

and 8 of Algorithm 2).
3) The Bloom filters on each dimension Aj is constructed

by the server with the same hash functions from Hj .
Suppose all distinct Bloom filters on Ωj are Hj(Ωj) =
{Hj(ω) ∀ω ∈ Ωj}. The candidate set of Bloom filters
is then M =

[
H1(Ω1)×H2(Ω2)× · · ·×Hk(Ωk)

]
(lines

6 and 9 of Algorithm 2).
4) Fit a Lasso regression model to the counter vector y and

the candidate matrix M, and then choose the non-zero
coefficients as the corresponding frequencies of each
candidate string. By reshaping the coefficient vector into
a k-dimensional matrix, we can derive the k-dimensional
joint distribution estimation P (A1A2 . . . Ak). For exam-
ple, in Fig. 5, we fit a linear regression to y12 and the
candidate matrix M to estimate the joint distribution
PA1A2

(lines 10∼11 of Algorithm 2).
The efficiency of Lasso JD comes from the fact that the

N noisy Bloom filters will be scanned to count sums at
each position only once and then one-time Lasso regression
is performed to estimate the distribution. Furthermore, Lasso
regression could extract the most important (i.e., frequent)
features with high probability, which fits well with the sparsity
of high-dimensional data. The precise computation overhead
and memory overhead are shown below.

Complexity. Compared with EM JD, our Lasso JD can
effectively reduce the time and space complexity.

Theorem 4: The time complexity of Lasso JD is

O
(
v3k + kmv2k +Nkm

)
. (13)

As in Section V-C1, we assume N � vk. In this case, we
can see the time complexity of Lasso JD (Equation (13)) is
much less than that of EM JD (Equation (11))

Theorem 5: The space complexity of Lasso JD is

O
(
Nkm+ vkkm

)
. (14)

Generally, the regression operation will lose accuracy only
when there are many collisions between Bloom filter strings.
We observe that if there is no collision in the bit strings of each
single dimension, then there is no collision in concatenated
bit strings of different dimensions. In fact, the probability of
collision in concatenated bit strings will not increase with the
number of dimensions. Moreover, given the false positive rate
p, one can derive the optimal number of hash functions used
and optimal number of bits for Bloom filter for a specific
attribute. Therefore, we only need to choose proper m and h
to minimize the collision probability for each dimension and
then we are able to reach a proper estimation for multiple
dimensions.

3) Hybrid Algorithm: Recall that, with sufficient samples,
EM JD can demonstrate good convergence but also incurs
high complexity. On the other hand, Lasso JD can be very
efficient with a slight accuracy degradation compared with the
EM-based algorithm.

The high complexity of the EM JD stems from two facts;
first, it iteratively scans users’ reports and builds a prior
distribution table, which has the size of O(Nvk). In this sense,
for each record, one has to compare

∑
mj bits. However, in

the case of high dimensionality, the combination of Ωj will be
very sparse and has lots of zero items. Second, because EM
is sensitive to the initial configuration, the initial value of the
uniformly random assignment might lead to slow convergence.

To strike a balance between accuracy and efficiency, we
propose a hybrid algorithm, Lasso+EM JD (Algorithm 3),
which first eliminates the redundant candidates and estimates
the initial value with Lasso JD and then refines the conver-
gence using EM JD. Our proposed Lasso+EM JD possesses
two advantages:

1) The sparse candidates will be picked by Lasso JD very
efficiently. So, EM JD can just compute the conditional
probability on those sparse candidates instead of all
candidates, leading to the significant reduction of both
time and space complexity.

2) Lasso JD can generate a good initial estimation of the
joint distribution. Compared with using initial values
with uniformly random assignments, using the initial
value generated by Lasso JD can further speedup the
convergence of EM JD, which is sensitive to the initial
value especially when the candidate space is sparse.

The following two theorems show the time and space com-
plexity of Lasso+EM JD.

Theorem 6: The time complexity of Lasso+EM JD is

O
(
(v3k + kmv2k +Nkm) + (tN(v′)2 +Nkm(v′))

)
, (15)

where v′ is the average size of sparse items in Ω1 × ...×Ωk,
and v′ < vk.

Theorem 7: The space complexity of Lasso+EM JD is

O
(
Nkm+ vkkm+ 2Nv′

)
. (16)
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Algorithm 3 Lasso+EM k-dimensional Joint Distribution
(Lasso+EM JD)
Require: Aj : k-dimensional attributes (1 ≤ j ≤ k),

Ωj : domain of Aj (1 ≤ j ≤ k),
ŝij : observed Bloom filters (1 ≤ i ≤ N) (1 ≤ j ≤ k),
f : flipping probability.

Ensure: P (A1A2 . . . Ak): k-dimensional joint distribution.
1: compute P0(ω1ω2 . . . ωk) = Lasso JD(Aj ,Ωj , {ŝij}Ni=1, f)
2: set C′ = {x|x ∈ C, P0(x) = 0}.
3: for each i = 1, ..., N do
4: for each j = 1, ..., k do
5: compute P (ŝij |ωj) =

∏mj

b=1( f
2

)ŝ
i
j [b](1− f

2
)1−ŝij [b].

6: end for
7: if ω1ω2 . . . ωk ∈ C′ then
8: P (ŝi1ŝ

i
2 . . . ŝ

i
k|ω1ω2 . . . ωk) = 0

9: else
10: compute P (ŝi1ŝ

i
2 . . . ŝ

i
k|ω1ω2 . . . ωk) =

∏k
j=1 P (ŝij |ωj).

11: end if
12: end for
13: initialize t = 0 /* number of iterations */
14: repeat
15: ... ...
16: /* (similar to Algorithm 1) */
17: ... ...
18: until Pt(ω1ω2 . . . ωk) converges.
19: return P (A1A2 . . . Ak) = Pt(ω1ω2 . . . ωk)

D. Dimensionality Reduction with LDP
Generally, the above mulitivariate joint distribution estima-

tion algorithms can be applied to any k-dimensional data.
However, when k further increases, the domain size of the
multivariate distribution increases exponentially. With fixed
number of users N , the average count for each entry of
the domain is N/(|Ω|k), which is very small and lacks the
statistical significance. This will eventually lead to lower utility
for high-dimensional data. Therefore, it is crucial to reduce the
dimensionality before data synthesis.

We first present our proposed mutual information-based
method for dimensionality reduction in Section V-D1. After-
wards, we present a heuristic to speedup the dimensionality
reduction in Section V-D2.

1) Dimensionality Reduction via 2-dimensional Joint Dis-
tribution Estimation: The key to reducing dimensionality in a
high-dimensional dataset is to find the compact clusters, within
which all attributes are tightly correlated to or dependent on
each other. Our proposed dimensionality reduction technique
based on local differentially private data records, as shown in
Algorithm 4, consumes no extra privacy budget and consists
of the following three steps:
• Pairwise Correlation Computation. We use mutual

information to measure pairwise correlations between
attributes. The mutual information is calculated as

Im,n =
∑
i∈Ωm

∑
j∈Ωn

pij ln
pij
pi·p·j

, (17)

where Ωm and Ωn are the domains of attributes Am
and An, respectively. The notations pi· and p·j represent
the marginal probability of the ith value in Ωm and the
probability that An is the jth value in Ωn, respectively.
Then, pij is their joint probability. Particulary, pij can
then be efficiently obtained by using Lasso+EM JD. As
the corresponding marginal distributions, both pi· and p·j
then can be learned from pij or estimated with the 2-
dimensional joint distribution of Ai (or Aj) and itself Ai
(or Aj) (lines 2∼8 of Algorithm 4).

• Dependency Graph Construction. Dependency graph
can be used to depict the correlations among attributes.
Assume each attribute Aj is a node in the dependency
graph and an edge between two nodes Am and An
represents that attribute Am and An are correlated. Based

on mutual information between two attributes, the depen-
dency graph of attributes can be constructed as follows.
First, an adjacent matrix Gd×d (dependency graph with
d attributes as vertices) is initialized with all 0’s. Then,
all the attribute pairs (Am, An) are chosen to compare
their mutual information with an threshold τm,n, which
is defined as

τm,n = min(|Ωm| − 1, |Ωn| − 1)× φ2/2, (18)

where φ (0 ≤ φ ≤ 1) is a flexible parameter determining
the desired correlation level. Normally φ is set to be 0.3.
Gm,n and Gn,m are both set to be 1 if and only if Im,n >
τm,n (lines 9∼15 of Algorithm 4).

• Compact Clusters Building. By triangulation, the de-
pendency graph Gd×d can be transformed to a junction
tree. Then, based on the junction tree algorithm, several
clusters C1, C2, . . . , Cl can be derived as the compact
clusters of attributes, each of which contains attributes
that are correlated. Hence, the whole attributes set can
be divided into several compact attribute clusters, which
have low correlations between clusters but more corre-
lations within each cluster. Within a cluster, the average
number of dimensions (or the number of attributes) will
be smaller than the total number of attributes. More
importantly, these low-dimensional clusters can then be
processed independently due to low correlations. Hence,
the high-dimensional data can be split into several low-
dimensional data, i.e., dimensionality reduction (lines
16∼17 of Algorithm 4).

Algorithm 4 Dimensionality reduction with LDP
Require: Aj : k-dimensional attributes (1 ≤ j ≤ k),

Ωj : domain of Aj (1 ≤ j ≤ k),
ŝij : observed Bloom filters (1 ≤ i ≤ N) (1 ≤ j ≤ k),
f : flipping probability,
φ : dependency degree

Ensure: C1, C2, ..., Cl: attribute indexes clusters
1: initialize Gd×d = 0.
2: for each j = 1, 2, . . . , d do
3: estimate P (Aj) by JD (i.e., Lasso+EM JD Algorithm 3)
4: end for
5: for each attribute m = 1, 2, . . . , d− 1 do
6: for each attribute n = m+ 1,m+ 2, . . . , d do
7: estimate P (AmAn) by JD
8: compute Im,n =

∑
i∈Ωm

∑
i∈Ωn

pij ln
pij

pi·p·j
9: compute τm,n = min(|Ωm| − 1, |Ωn| − 1) ∗ φ2/2

10: if I(m,n) ≥ τmn then
11: set Gm,n = Gn,m = 1
12: end if
13: end for
14: end for
15: build dependency graph with Gd×d
16: triangulate the dependency graph into a junction tree
17: split the junction tree into several cliques C1, C2, ..., Cl with elimination

algorithm.
18: return C = {C1, C2, ..., Cl}

Theorem 8: The time complexity of Algorithm 4 is

O(d2(v6 + 2mv4 + 2Nm+ tN(v′)2 + 2Nm(v′))). (19)

Theorem 9: The space complexity of Algorithm 4 is

O(2Nm+ 2v2m+ 2Nv′). (20)

2) Entropy based Pruning Scheme: In existing work [25],
[41] on homogeneous data, correlations can be simply captured
by distance or similarity metrics [47]. With the consideration
of heterogeneous attributes (i.e., attributes with different do-
mains) in our paper, mutual information is used to measure
general correlations. As the computation of pairwise depen-
dence is necessary for calculating the mutual information of
variables X and Y , we propose a pruning-based heuristic to
speedup this pairwise correlation learning process.
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Intuitively, there are two different situations in Algorithm 4:
• When φ = 0 or φ = 1, all attributes will be considered

mutually correlated or independent. Thus, there is no need
to compute pairwise correlation.

• In the case of φ (0 < φ < 1), less dependencies will be
included in the dependency graph; Gd×d will be sparser.
This also means that we may selectively neglect some
pairs. Inspired by the relationship between mutual infor-
mation and information entropy4, we first heuristically
filter out some portion of attributes Ax with least rela-
tive information entropy RH(Ax) = H(Ax)/|Ωx|, and
then verify the mutual information among the remaining
attributes, thus reducing the pairwise computations.

Furthermore, the adjacent matrix Gd×d varies with different
datasets. For example, the adjacent matrix Gd×d is rarely
sparse in binary datasets but will be very sparse in non-binary
datasets. Based on this observation, we can further simplify the
calculation by finding the independency in binary datasets or
finding the dependency in non-binary datasets. For example,
we first set all entries of Gd×d for a binary datasets as 1’s
and start from the attributes with least relative information
entropy RH(Ax) = H(Ax)/|Ωx| to find the uncorrelated
attributes. While for non-binary datasets, we first set Gd×d
as 0’s and then start from the attributes with largest average
entropy to find the correlated attributes. Our entropy-based
pruning scheme is shown in Algorithm 5.

Algorithm 5 Entropy-based Pruning Scheme
Require: Aj : k-dimensional attributes (1 ≤ j ≤ k),

Ωj : domain of Aj (1 ≤ j ≤ k),
ŝij : observed Bloom filters (1 ≤ i ≤ N) (1 ≤ j ≤ k),
f : flipping probability,
φ : dependency degree

Ensure: Gd×d: adjacent matrix Gd×d of dependency graph of attributes
Aj (j = 1, 2, ..., d)

1: initialize Gd×d = 0
2: for each j = 1, 2, . . . , k do
3: compute P (Aj) = JD(Aj ,Ωj , {ŝij}Ni=1, f)

4: compute RH(Aj) = − 1
|Ωj |

∑
p∈P (Aj)

p log p

5: end for
6: sort listA = {A1, A2, ..., Aj} according to entropy H(Aj)
7: pick up the previous blength(listA)× (1− φ)c items from listA as a

new list listA′
8: compute pairwise mutual information among listA′ and set dependency

graph Gd×d as in Algorithm 4.
9: return Gd×d

E. Synthesizing New Dataset
For brevity, we first define AC = {Aj |j ∈ C} and

X̂C = {xj |j ∈ C}. Then the process of synthesizing a
new dataset via sampling is shown in Algorithm 6. We first
initialize an empty set R to keep the sampled attributes. Then,
we randomly choose an attribute cluster C to estimate the joint
distribution and sample new data X̂C from attributes Aj ∈ C.
Next, given the cluster collection C derived in Algorithm 4, we
calculate C = C\C, find the connected component D of C, and
calculate R = R∪C. In the connected component, each cluster
D is traversed and sampled as follows. First we estimate the
joint distribution on the attributes AD by our distribution esti-
mations in Section V-C and derive the conditional distribution
P (AD\R|AD∩R). Then, we sample X̂D\R according to this
conditional distribution and the sampled data X̂D∩R. After the
traversal of D, the attributes in the first connected components

4The relationship between mutual information and information entropy can
be represented as I(X;Y ) = H(X) + H(Y ) − H(X,Y ), where H(X)
and H(X,Y ) denote the information entropy of variable X and their joint
entropy of X and Y , respectively.

are sampled. Afterwards, randomly choose a cluster in the
remaining C to sample the attributes in the second connected
components, until C is empty. Finally, a new synthetic dataset
X̂ is generated according to the estimated correlations and
distributions in origin dataset X . Algorithm 6 shows the above
procedures that synthesize a dataset from the collection of
clusters of attributes.

Algorithm 6 New Dataset Synthesizing
Require: C : a collection of attribute index clusters C1, ...Cl,

Aj : k-dimensional attributes (1 ≤ j ≤ k),
Ωj : domain of Aj (1 ≤ j ≤ k),
ŝij : observed Bloom filters (1 ≤ i ≤ N) (1 ≤ j ≤ k),
f : flipping probability,

Ensure: X̂: Synthetic Dataset of X
1: initialize R = ∅
2: repeat
3: randomly choose an attribute index cluster C ∈ C
4: estimate joint distribution P (AC) by JD
5: sample X̂C according to P (AC)
6: C = C \ C, R = R ∪ C, D = {D ∈ C|D ∩R 6= ∅}
7: for each D ∈ D do
8: estimate joint distribution P (AD) by JD
9: obtain conditional distribution P (AD\R|AD∩R) from P (AD)

10: sample X̂D\R according to P (AD\R|AD∩R) and X̂D∩R
11: C = C \D, R = R ∪D, D = {D ∈ C|D ∩R 6= ∅}
12: end for
13: until C = ∅
14: return X̂

Theorem 10: The time complexity of Algorithm 6 is

O(l(v3k + kmv2k +Nkm+ tN(v′)2 +Nkm(v′))), (21)

where l is the number of clusters after dimensionality reduc-
tion and k here refers to average number of dimensions in
these clusters.

Theorem 11: The space complexity of Algorithm 6 is

O(Nkm+ vkkm+ 2Nv′ +Nd). (22)

VI. EVALUATION

In this section, we conducted extensive experiments on real-
world datasets to demonstrate the efficiency of our algorithms
in terms of computation time and accuracy. We used three
real-world datasets: Retail [1], Adult [5], and TPC-E [2].

Retail is part of a retail market basket dataset, where each
record contains distinct items purchased in a shopping visit.
Adult is extracted from the 1994 US Census, and contains
personal information, such as gender, salary, and education
level. TPC-E contains trade records of “Trade type”, “Secu-
rity”, “Security status” tables in the TPC-E benchmark. We
setup a pre-processing phase on the data before running our
estimation such that some continuous domains are binned for
simplcity.

Datasets Type #. Records (N ) #. Attributes (d) Domain Size
Retail Binary 27,522 16 216

Adult Integer 45,222 15 252

TPC-E Mixed 40,000 24 277

All the experiments were run on a machine with Intel Core
i5-5200U CPU 2.20GHz and 8GB RAM, using Windows 7
and Python 2.7. We simulated the crowdsourced environment
as follows. First, users read each data record individually
and locally transform it into noisy Bloom filters. Then, the
crowdsourced bit strings are estimated by the central server
for synthesizing and publishing the high-dimensional dataset.
We have three strategies, EM JD, Lasso JD, and Las-
so+EM JD, in implementing LoPub, which are described be-
low. We run the comparison among EM JD, Lasso JD, and
Lasso+EM JD since LoPub adopts a novel LDP paradigm
on high-dimensional data. Other competitors are either for
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Fig. 6: Histogram (f = 0.5)

non-LDP [10], [28], [45] or on low-dimension data [18], [19],
[23] and therefore not comparable.

For fair comparison, we randomly chose 100 combinations
of k attributes from d dimensional data.

The efficiency of LoPub is measured by computation time
and accuracy. The computation time includes CPU time and
IO cost. Each set of experiments is run 100 times, and the
average running time is reported. To measure accuracy, we
used the distance metric AVD (average variant distance),
as suggested in [10], to quantify the closeness between the
probability distributions P (ω) and Q(ω). The AVD is defined
as

DistAVD(P,Q) =
1

2

∑
ω∈Ω

|P (ω)−Q(ω)|. (23)

The default parameters are described as follows. In the
binary dataset Retail, the maximum number of bits and the
number of hash functions used in the bloom filter are m = 16
and h = 5, respectively. In the non-binary datasets Adult
and TPC-E, the maximum number of bits and the number
of hash functions used in Bloom filter are m = 64 and h = 5,
respectively. The convergence gap is set as 0.001 for fast
convergence.

A. Multivariate Distribution Estimation
We first demonstrate the running results of our proposed

multivariate (k = 2) distribution estimation schemes with
different domain sizes |Ω|, in Fig. 6. For example, Figs. 6(a),
6(b), and 6(c) show the histograms on a 2 attribute pairs with
different domain sizes (i.e., |Ω| = 4, 16, or 32). As we can see,
given privacy protection of f = 0.5, Lasso JD can estimate
the multivariate distribution effectively but Lasso+EM JD
can have an even better estimation with less complexity. Par-
ticularly, in Fig. 6(c), we can see that Lasso JD can choose
those sparse candidates but the items with less probability are
assigned to be zero. On the other hand, Lasso+EM JD can
use the estimation result from Lasso JD as the initial input
of EM JD to speedup the estimation.

1) Computation Time: We first evaluate the computation
time of EM JD, Lasso JD, and Lasso+EM JD for multi-
variate joint distribution estimation on three real-world dataset-
s with respect to both privacy level f and dimensions k.

Fig. 7 compares the average computation time of 2−way
joint distribution estimation on the three datasets Retail, Adult
and TPC-E with the varying privacy levels f . One can see that
for different privacy levels f , Lasso JD is consistently much
faster than EM JD and Lasso+EM JD, especially when f is
large. This is because EM JD has to repeatedly scan each
user’s bit string. In other words, the time consumption of
EM JD increases with f because there will be more iterations
for the fixed convergence gap. In contrast, Lasso JD uses the
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Fig. 8: Computation time vs. k

regression to estimate the joint distribution more efficiently.
Furthermore, the time complexity of Lasso+EM JD is also
less than EM JD as the initial estimation of Lasso JD can
effectively reduce both the candidate attribute space and the
number of iterations needed. In addition, when f is growing,
the computation time of Lasso JD increases slowly, unlike
EM JD and Lasso+EM JD. This is because the time com-
plexity of Lasso JD is mainly subject to the number of users.

Fig. 8 depicts the average computation time with different
dimensions k, given a strong privacy protection f = 0.9. We
should note that, since the domain size of each attribute on
dataset Retail is 2, the maximal number of dimension k is
chosen as 6 with the domain size of 26 = 64. While the
average domain size of Adult and TPC-E after binning is 8,
the maximal k is chosen to be 4 with the domain size of
4096. When k is even larger, the maximal domain size will be
close to or even exceed the number of records, which will not
guarantee the estimation accuracy due to the lack of statistical
significance.

As we can see in Fig. 8(a), EM JD runs with acceptable
time complexity on low dimension k = 2. When k = 3, the
time complexity of EM JD increases sharply. When k further
increases, it does not return any result within an reasonable
time in our experiment. However, Lasso JD can generate
the estimation with only a few seconds. This discrepancy is
consistent with our complexity analysis, where we envision
that the exponential growth of the candidate set will have a
significant impact on EM JD. So, with the initial estimation
of Lasso JD, the combined estimation Lasso+EM JD can
run faster than EM JD with limited candidate set. The compu-
tation time of EM JD and Lasso JD on three datasets with
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Fig. 9: Accuracy vs. f
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different k exhibits a similar tendency, as shown in Figs. 8(b)
and 8(c). We omitted the detailed report here due to the space
constraint.

2) Accuracy: Next, we compare the estimation accuracy of
EM JD, Lasso JD, and Lasso+EM JD.

Fig. 9 reports the average AVD of EM JD, Lasso JD, and
Lasso+EM JD on three datasets with different privacy levels
f . In particular, when k = 2, the AVD of Lasso JD does not
change with f as the aggregated bit sum vector is insensitive
for small f . The AVD of EM JD is very small when f is
small, but when f grows, it will sharply increase to as high
as 0.28. In contrast, Lasso JD retains the error around 0.08
even when f = 0.9. However, in practice, when f is small,
i.e., f = 0.5, one can only achieve ε-DP with ε = 10.98 for
each dimension, which is insufficient in general. So, in this
sense, when f is large, the AVD of Lasso JD is comparable
to or even better than that of EM JD. This is because Lasso
regression is insensitive to f when estimating the coefficients
from the aggregated bit sum vectors. Nonetheless, EM JD
is sensitive to f and prone to some local optimal value
because it scans each record of bit strings. In comparison,
Lasso+EM JD achieves a better tradeoff between Lasso JD
and EM JD. For example, it has less AVD than Lasso JD
when f is small and outperforms EM JD when f is large.
Similar to the conclusion in the binary dataset, when f is large,
the trend of Lasso JD is very close to EM JD. Besides,
Lasso+EM JD shows very similar performance to EM JD
and incurs relatively small bias.

Fig. 10 also compares the average AVD of EM JD, Las-
so JD, and Lasso+EM JD on the three datasets with d-
ifferent k, given sufficient privacy f = 0.9 (ε = 2.0 for
each dimension). We can see that, the AVD of all estimation
algorithms increases with k, Particularly, in Fig. 10(a), when k
increases from 2 to 6, the estimation error increases gradually.
The reason is that the average frequency on k-dimensional
attributes is N/vk and its statistical significance decreases with
k exponentially. That is also why dimensionality reduction is
necessary for high-dimensional data. When privacy protection
is strong, baseline EM JD is quite sensitive to the initial value
and prone to some local optimal due to the scan of each
individual’s noisy bit string, which leads to great bias. Instead,
the AVD of Lasso JD does not vary with f very much as
the aggregated bit sum vector is insensitive to f . However,
Lasso+EM D can further balance between Lasso JD and
EM JD because the candidate set is much more sparse when
k is larger and Lasso+EM JD can effectively reduce the
size of candidate set and iterations. Similar conclusion can
be made from the non-binary datasets Adult and TPC-E. As
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Fig. 11: Correlation Identification Rate

mentioned before, because of the exhaustive scan on larger
candidate domain, the estimation accuracy for k = 4 or higher
dimensions of EM JD are not reported on datasets Adult and
TPC-E.

B. Correlation Identification
In this section, we present correlations among the multi-

ple attributes that we learn from user data. Particularly, we
evaluated loss ratio of dependency relationship of attributes in
three datasets. The parameters used in the simulation are set
as follows. The dependency threshold is 0.3 for Retail, and is
0.4 for Adult and TPC-E. The number of bits and the number
of hash functions in the bloom filter are 16 and 5 for Retail,
and 64 and 5 for Adult and TPC-E.

1) Accuracy: Fig. 11 shows both the ratio of correct
identification (accuracy), added (false positive) and lost (true
negative) correlated pairs after estimation, respectively. From
these figures, we can see that all these estimation algorithm-
s can have a relatively accurate identification among the
attributes; among which EM JD and Lasso+EM JD gain
better accuracy than Lasso JD. One can also see that the
accurate rate decreases with f (i.e., privacy level). In Fig.
11(a), the accuracy identified rate is about 85% when the
privacy is small (f is less than 0.9). While in Figs. 11(b)
and 11(c), the accuracy rate is as high as 95% because the
dependency threshold is relatively loose as 0.4. High accurate
identification guarantees the correlations among attributes.

In our experiment, the incorrect identification is consid-
ered separately with false positive rate and true negative,
which reflect the efficiency and effectiveness of dimension
reduction. In essence, false positive identification leads to the
consideration of the correlations that do not exist; this kind
of misidentification only incurs redundant correlations and
extra time for learning distribution without imposing leaning
errors. On the other hand, true negative identification implies
the loss of some correlations among attributes, thus causing
information loss in our dimension reduction. For false positive
identification, we can see that EM JD and Lasso+EM JD
are less than Lasso. This comes from the fact that Lasso JD
will choose the sparse probabilities and the mutual information
estimated is generally high due to the concentrated probability
distribution. Especially in non-binary datasets Adult and TPC-
E, the sparsity is much higher, so the estimated probability
distribution is more concentrated and the false positive iden-
tification rate is high.

The true negative identification in both Adult and TPC-E
is small because the true correlations are not very high itself
because all attributes have a large domain. Instead, the true
correlations in Retail are high and almost any two attributes
are dependent. Therefore, the true negative identification is
comparatively higher.

2) Effectiveness of Pruning Scheme: We also validated the
pruning scheme proposed in Section V-D2 with simulations
on the three datasets. We first define the dependency loss ratio
as the ratio between the dependency loss after pruning with
the original number of dependencies in the adjacent matrix
Gd×d of dependency graph. The complexity reduction ratio is
defined as the ratio of reduced pairwise comparisons.



1556-6013 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2018.2812146, IEEE
Transactions on Information Forensics and Security

12

TABLE III: Dependency Loss Ratio and Complexity Reduc-
tion Ratio (Adult)

φ 0.1 0.2 0.3 0.4 0.5
#. Dep (Pruning) 88 38 22 12 6

#. Dep 102 42 24 14 8
Loss Ratio 0.137 0.095 0.083 0.143 0.250

#. Pairs (Pruning) 91 66 55 36 28
#. Pairs 105 105 105 105 105

Reduction Ratio 0.133 0.371 0.476 0.657 0.733

TABLE IV: Dependency Loss Ratio and Complexity Reduc-
tion Ratio (TPC-E)

φ 0.1 0.2 0.3 0.4 0.5
#. Dep (Pruning) 44 16 16 8 8

#. Dep 46 24 20 10 10
Loss Ratio 0.043 0.333 0.200 0.200 0.200

#. Pairs (Pruning) 231 171 136 66 45
#. Pairs 276 276 276 276 276

Reduction Ratio 0.163 0.380 0.507 0.761 0.837

Tables III, IV, and V illustrate the effectiveness of our
proposed heuristic pruning scheme. Particularly, as shown in
Tables III and IV, with the increase of φ, which shows the
strength of correlations, the number of original dependencies
in dataset Adult decreases dramatically. Also, the dependen-
cies after the heuristic pruning decrease accordingly and their
number is quite close to the original dependence. However,
when φ increases, the number of pairwise comparison be-
comes less, compared to the full pairwise comparison. So,
it shows that the heuristic pruning scheme can effectively
reduce the complexity with only small sacrifice of dependency
accuracy. Similar conclusion can be found in Table IV on
non-binary dataset TPC-E. On the binary dataset Retail, due
to the prior knowledge that binary datasets normally have
strong mutual dependency, we slightly change the pruning
scheme. More specifically, we assume that all the attributes
are dependent with each other and our pruning scheme aims
at finding the non-dependency from those attributes Aj with
less entropy H(Aj). According to Table V, the number of
dependencies after pruning decreases slowly and the minus
symbol in the dependency loss ratio means that there is no
loss of dependencies but there are redundant dependencies that
should not exist in original datasets. It should be noted that
redundant dependencies cover all the original dependencies.
Therefore, the redundancy will not degrade data utility since
more correlations are kept. However, efficiency in terms of
dimensionality reduction, which should cut off as many un-
necessary correlations as possible, is hindered. So, according
to Table V, we can also say that the heuristic pruning scheme
can achieve up to 50% complexity reduction without loss of
dependencies.

C. SVM and Random Forest Classifications
To show the overall performance of LoPub, we evaluated

both the SVM and random forest classification error rate in
the datasets synthesized by three different implementations,
Lasso JD, EM JD, and Lasso+EM JD of LoPub. We first
sampled from the three original datasets Retail, Adult, and
TPC-E to get both the training sets and test sets. Then, we
generated the privacy-preserving synthetic datasets from the

TABLE V: Dependency Loss Ratio and Complexity Reduction
Ratio (Retail)

φ 0.1 0.15 0.2 0.25 0.3
#. Dep (Pruning) 256 256 256 250 244

#. Dep 240 240 238 220 200
Loss Ratio −0.067 −0.067 −0.076 −0.136 −0.220

#. Pairs (Pruning) 91 91 78 66 55
#. Pairs 120 120 120 120 120

Reduction Ratio 0.242 0.242 0.350 0.450 0.512
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Fig. 12: SVM Classification Rate of LoPub
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Fig. 13: Random Forest Classification Rate of LoPub

training data. Next, we trained three different SVM classifiers
and three random forest classifiers on the synthetic datasets.
Lastly, we evaluated the classification rate on the original
sampled test sets. Particularly, the average random forest
classification rate is computed on all the original attributes
and the average SVM classification rate is computed on all
the original binary-state attributes in each dataset, for example,
all attributes in binary dataset Retail, the 10th (gender) and
15th (marital) attribute in Adult, and the 2nd, 10th, 23rd, and
24th attribute in TPC-E. For comparison, we also trained
the corresponding SVM and random forest classifiers on each
sampled training set and measured their classification rate.

Fig. 12 shows the average accurate SVM classification rate
on three datasets Retail, Adult and TPC-E. In all subfigures,
the average SVM classification rate decreases with f . Gener-
ally, when f is small (f < 0.9), the classification rate drops
slowly. Nevertheless, when f = 0.9, there will be a large
gap. This is because the level of different privacy protections
varies as shown in Equation (9). For SVM, the classification
rate is relatively close to the that of non-private case. This
can be attributed to the fact that SVM classification only
considers binary-state attributes and the distribution estimation
on binary-state attributes can be more accurate than non-binary
attributes, which have sparser distribution. In all figures, we
can see that Lasso JD has generally worse classification rate
because of its biased estimation. EM JD generally outper-
forms others but still shows performance degradation when
f is large, while Lasso+EM JD could find a better balance
between other methods.

However, in Fig. 13, due to the high sparsity in the distribu-
tion of non-binary attributes, the joint distribution estimation
on non-binary attributes may be biased and that is why the
random forest classification on our synthetic datasets is not
as good as SVM classification. Nonetheless, the synthetic
data still keeps sufficient information of original crowdsourced
datasets. For example, the worst random forest classification
rate of our proposed Lasso JD and Lasso+EM JD in the
three datasets is 67%, 42%, and 26%, which are much
larger than the average random guess rate of 50%, 15%,
and 13%, respectively. EM JD only works well when f
is small while Lasso JD causes larger bias in the random
forest classification with small f . However, with the initial
estimation of Lasso JD, Lasso+EM JD works well and
degrades gracefully with f .

The overall computational time for synthesizing new
datasets is also presented in Fig. 14. Despite the worst utility,
Lasso JD is the most efficient solution, which achieves
approximately ten times faster than the EM JD. Without the
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Fig. 14: Overall Time of LoPub

dominant I/O time for data synthesization, the reduction of
computation time can be even greater. As mentioned before,
that is because Lasso JD can estimate the joint distribution
regardless of the number of bit strings. With the initial esti-
mation of Lasso JD, Lasso+EM JD can then be effectively
simplified from two aspects: the sparse candidates can be
limited and the initial value is well set. Instead, the baseline
EM JD not only needs to build prior probability distribution
for all candidates but also begins the convergence with a
randomness value.

VII. CONCLUSION

In this paper, we propose a novel solution, LoPub, to
achieve the high-dimensional data publication with LDP in
crowdsourced data publication systems. Specifically, LoPub
learns from the distributed data records to build the corre-
lations and joint distribution of attributes, synthesizing an
approximate dataset for privacy protection. To realize the
efficient multi-variate distribution estimation, we propose three
distribution estimation schemes, among which the hybrid
scheme with the combined use of EM and Lasso regression
reaches the best balance between the data utility and privacy.
The experimental results using real-world datasets show that
LoPub is an efficient and effective mechanism to release
a high-dimensional dataset while providing sufficient LDP
guarantees for crowdsourced data providers.
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