
Monte Carlo Tree Search Strategies

A dissertation presented
by

Tom Vodopivec

to
The Faculty of Computer and Information Science

in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

in the subject of
Computer and Information Science

Ljubljana, 

Monte Carlo Tree Search Strategies

A dissertation presented
by

Tom Vodopivec

to
The Faculty of Computer and Information Science

in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

in the subject of
Computer and Information Science

Ljubljana, 

APPROVAL

I hereby declare that this submission is my own work and that, to the best of my knowledge
and belief, it contains no material previously published or written by another person nor
material which to a substantial extent has been accepted for the award of any other degree

or diploma of the university or other institute of higher learning, except where due
acknowledgement has been made in the text.

— Tom Vodopivec —
January 

The submission has been approved by

dr. Branko Šter
Full Professor of Computer and Information Science

advisor and examiner

dr. Matej Guid
Assistant Professor of Computer and Information Science

examiner

dr. Mark Winands
Associate Professor of Computer and Information Science

external examiner
Maastricht University, Department of Data Science & Knowledge Engineering

PREVIOUS PUBLICATION

I hereby declare that the research reported herein was previously published/submitted
for publication in peer reviewed journals or publicly presented at the following occa-
sions:

[] Tom Vodopivec and Branko Šter. Enhancing upper confidence bounds for trees with
temporal difference values. In Proceedings of the  IEEE Conference on Computational
Intelligence and Games, pages –, Dortmund, . IEEE.
doi: ./CIG..

[] Tom Vodopivec. Monte Carlo tree search: a reinforcement learning method. Invited
lecture, Maastricht University, Department of Knowledge Engineering, Maastricht, The
Netherlands, //.

[] Tom Vodopivec, Spyridon Samothrakis, and Branko Šter. On Monte Carlo tree search
and reinforcement learning. Journal of Artificial Intelligence Research, :-–, .

[] Raluca D. Gaina, Adrien Couëtoux, Dennis J.N.J. Soemers, Mark H.M. Winands, Tom
Vodopivec, Florian Kirchgeßner, Jialin Liu, Simon M. Lucas, and Diego Pérez-Liébana.
The  Two-player GVGAI competition. IEEE Transactions on Computational
Intelligence and AI in Games, PP():-, . doi: ./TCIAIG..

I certify that I have obtained a written permission from the copyright owner(s) to
include the above published material(s) in my thesis. I certify that the above material
describes work completed during my registration as graduate student at the University
of Ljubljana.

http://dx.doi.org/10.1109/CIG.2014.6932895
http://dx.doi.org/10.1109/TCIAIG.2017.2771241

Anki in Goranu

Od malih nog sta me spodbujala k razmišljanju in
radovednosti. Sooblikovala sta moj značaj in željo po znanju –

za vedno bosta zaslužna za uspehe v mojem življenju.

To Anka and Goran

Since I was small you nourished my curiosity. You
helped to shape my personality and desire for knowledge – you

will always have merit for the successes in my life.

POVZETEK

Univerza v Ljubljani
Fakulteta za računalništvo in informatiko

Tom Vodopivec
Strategije drevesnega preiskovanja Monte Carlo

Po preboju pri igri go so metode drevesnega preiskovanja Monte Carlo (ang. Monte
Carlo tree search – MCTS) sprožile bliskovit napredek agentov za igranje iger: razisko-
valna skupnost je od takrat razvila veliko variant in izboljšav algoritma MCTS ter s tem
zagotovila napredek umetne inteligence ne samo pri igrah, ampak tudi v številnih dru-
gih domenah. Čeprav metode MCTS združujejo splošnost naključnega vzorčenja z na-
tančnostjo drevesnega preiskovanja, imajo lahko v praksi težave s počasno konvergenco
– to še posebej velja za temeljne algoritme MCTS, ki ne uporabljajo dodatnih izboljšav.
Zaradi tega jih raziskovalci in programerji pogosto združujejo z ekspertnim znanjem,
hevristikami in ročno izdelanimi strategijami. Kljub izrazitim dosežkom tako izbolj-
šanih metod (primer je AlphaGo, ki je nedavno prekosil najboljšega človeškega igralca
igre Go na svetu in s tem premagal ta velik izziv umetne inteligence), takšne domensko-
specifične izboljšave zmanjšujejo splošnost številnih aplikativnih algoritmov. Izboljšati
temeljne algoritme MCTS, brez izgube njihove splošnosti in prilagodljivosti, je težko
in predstavlja enega aktualnih raziskovalnih izzivov. Ta disertacija uvaja nov pristop za
nadgradnjo temeljnih metod MCTS in izpopolnjuje temeljno razumevanje tega podro-
čja v luči starejšega ter uveljavljenega področja spodbujevalnega učenja (ang. reinforce-
ment learning). Povezava med drevesnim preiskovanjem Monte Carlo, ki ga skupnost
uvršča med metode za preiskovanje in planiranje, ter spodbujevalnim učenjem je že
bila nakazana v preteklosti, a še ni bila temeljito preučena in tudi še ni pomembno
vplivala na širšo skupnost umetne inteligence. S to motivacijo v tem delu poglobljeno
analiziramo povezavo med tema dvema področjema, tako da identificiramo in opiše-
mo podobnosti ter razlike med njima. Uvajamo praktičen pristop razširitve metod
MCTS s koncepti iz spodbujevalnega učenja: naše novo ogrodje, drevesno preiskovanje
s časovnimi razlikami (ang. temporal difference tree search – TDTS), pooseblja novo
družino algoritmov, ki delujejo po konceptih MCTS, obenem pa za učenje koristijo

i

ii Povzetek T. Vodopivec

časovne razlike (ang. temporal differences) namesto vzorčenja Monte Carlo. To lahko
razumemo kot posplošitev metod MCTS z učenjem s časovnimi razlikami in sočasno
kot posplošitev klasičnih metod učenja s časovnimi razlikami z drevesnim preiskova-
njem in ostalimi koncepti iz metod MCTS (kot so postopna širitev drevesa in uporaba
privzete strategije). S pomočjo metod TDTS pokažemo, da uporaba uveljavljenih kon-
ceptov iz spodbujevalnega učenja v navezi z drevesnim preiskovanjem odpira možnosti
za razvoj širokega spektra novih algoritmov, od katerih so klasične metode MCTS le
ena izmed variant. V naših eksperimentih preizkusimo več tovrstnih algoritmov, osre-
dotočimo pa se na razširitev algoritma UCT (ang. upper confidence bounds for trees)
z algoritmom Sarsa(𝜆), ki je eden temeljnih algoritmov spodbujevalnega učenja. Naše
meritve potrjujejo, da algoritmi TDTS dosegajo boljše rezultate na enostavnih igrah
za enega igralca, klasičnih igrah za dva igralca in arkadnih video igrah: novi algoritmi
ohranjajo robustnost in računsko ter pomnilniško zahtevnost, obenem pa konsisten-
tno prekašajo algoritme MCTS. Naše ugotovitve zmanjšujejo razkorak med drevesnim
preiskovanjem Monte Carlo in spodbujevalnim učenjem ter pozivajo k močnejšemu
nadaljnjemu povezovanju teh dveh področij. Nazadnje, ta disertacija spodbuja k raz-
iskovanju in uveljavljanju bolj enotnega pogleda na dve izmed temeljnih paradigem
umetne inteligence – preiskovanje in učenje.

Ključne besede: umetna inteligenca, preiskovanje, planiranje, strojno učenje, drevesno
preiskovanje Monte Carlo, spodbujevalno učenje, učenje s časovnimi razlikami, UCB,
UCT, Sarsa, preiskovanje s časovnimi razlikami, namizne igre, video igre

ZAHVALA

Maša, največja zahvala gre tebi, saj si skupaj z menoj preživljala ta doktorska leta vse od
začetka do konca. Potrpežljivo si prenašala moje delovne večere, mesece v tujini, dolgotrajno
objavljanje člankov, pedagoške obremenitve in še vse kar je prišlo zraven. Ljubezen moja,
res hvala za vse – skupaj sva uspešno zaključila ta življenjski projekt! ... pa rekla si tudi,
da morem napisat, da si mi kuhala, pucala, pospravljala in skrbela za Marlija :)

Brane, velika zahvala gre tudi tebi, saj si mi bil vedno pripravljen nuditi podporo –
zjutraj in zvečer, med tednom in med vikendi, si mi pomagal poganjati eksperimente, pisati
enačbe in pripravljati odgovore na recenzije vseh vrst in oblik. Še enkrat hvala, da si me
uvedel v to izredno zanimivo znanstveno področje in za mentorstvo skozi ta leta.

Vsi bližnji sodelavci in sošolci – Davor, Nejc, Uroš, Jure B., Jure D., Rok, Mattia in
Brane (še enkrat) – fantje hvala vam za vse debate, anekdote, štose, odojke, čebovane, fan-
tastiše food, turkish delight, WoTe, itd. Skupaj smo kljub “doktorskim” sitnostim poskrbeli
za veselo in zabavno vzdušje. Še bomo kakšno rekli!

Dragi Spyros, najini pogovori v Essexu so obrodili odlično sodelovanje. Hvala za pomoč
pri oblikovanju idej in piljenju člankov v zadnjih nekaj letih – resnično si mi olajšal pot
do cilja. Želim ti vso srečo še naprej in upam, da ti bom lahko povrnil pomoč.

Hvala Diego, Mark in Simon za družbo na konferencah, gostoljubnost na raziskovalnih
obiskih in za lepe spomine, ki sem jih prinesel domov iz tujine.

Hvala vsem članom komisije mojega doktorskega dela za vložen trud in potrpežljivost v
zadnjem letu in pol – vaši komentarji so zelo pripomogli k uspešni objavi mojih raziskav
in h kakovosti mojega doktorata.

Zahvala Evropski uniji, ki je preko Evropskega socialnega sklada sofinancirala velik del
mojega doktorskega študija.

Hvala Marley za naslovno sliko – si zaslužiš veliko priboljškov :)
— Tom Vodopivec, Ljubljana, januar .

iii

ABSTRACT

University of Ljubljana
Faculty of Computer and Information Science

Tom Vodopivec
Monte Carlo Tree Search Strategies

Since their breakthrough in computer Go, Monte Carlo tree search (MCTS) methods
have initiated almost a revolution in game-playing agents: the artificial intelligence
(AI) community has since developed an enormous amount of MCTS variants and en-
hancements that advanced the state of the art not only in games, but also in several
other domains. Although MCTS methods merge the generality of random sampling
with the precision of tree search, their convergence rate can be relatively low in practice,
especially when not aided by additional enhancements. This is why practitioners often
combine them with expert or prior knowledge, heuristics, and handcrafted strategies.
Despite the outstanding results (like the AlphaGo engine, which defeated the best
human Go players, prodigiously overcoming this grand challenge of AI), such task-
specific enhancements decrease the generality of many applied MCTS algorithms. Im-
proving the performance of core MCTS methods, while retaining their generality and
scalability, has proven difficult and is a current research challenge. This thesis presents
a new approach for general improvement of MCTS methods and, at the same time, ad-
vances the fundamental theory behind MCTS by taking inspiration from the older and
well-established field of reinforcement learning (RL). The links between MCTS, which
is regarded as a search and planning framework, and the RL theory have already been
outlined in the past; however, they have neither been thoroughly studied yet, nor have
the existing studies significantly influenced the larger game AI community. Motivated
by this, we re-examine in depth the close relation between the two fields and detail not
only the similarities, but identify and emphasize also the differences between them.
We present a practical way of extending MCTS methods with RL dynamics: we de-
velop the temporal difference tree search (TDTS) framework, a novel class of MCTS-like
algorithms that learn via temporal-differences (TD) instead of Monte Carlo sampling.
This can be understood both as a generalization of MCTS with TD learning, as well

v

vi Abstract T. Vodopivec

as an extension of traditional TD learning methods with tree search and novel MCTS
concepts. Through TDTS we show that a straightforward adaptation of RL semantics
within tree search can lead to a wealth of new algorithms, for which the traditional
MCTS is only one of the variants. We experiment with several such algorithms, focus-
ing on an extension of the upper confidence bounds for trees (UCT) algorithm with the
Sarsa(𝜆) algorithm – an on-policy TD learning method. Our evaluations confirm that
MCTS-like methods inspired by RL dynamics demonstrate superior results on several
classic board games and arcade video games: the new algorithms preserve robustness
and computational complexity, while consistently outperforming their basic MCTS
counterparts. Our findings encourage cross-fertilization between the game AI and RL
communities, hopefully narrowing the gap between them, and promote a unified view
of search and learning methods, recommending it as a promising research direction.

Key words: artificial intelligence (AI), search, planning, machine learning, Monte Carlo
tree search (MCTS), reinforcement learning, temporal-difference (TD) learning, upper
confidence bounds (UCB), upper confidence bounds for trees (UCT), Sarsa, eligibility
traces, temporal-difference search, board games, video games

ACKNOWLEDGEMENTS

Maša, the biggest thanks goes to you, because you have been pushing through these doctoral
years of mine from the beginning till the end. You have patiently endured all my working
evenings, months abroad, tiresome publishing processes, pedagogic workload and everything
else that came by. My love, really thank you for everything – together we successfully com-
pleted this big life project! ... and, as you instructed me, I must also mention that you’ve
been cleaning, ironing, cooking, and taking care of Marley :)

Branko, also a big thank you, because every time when I needed support, you were more
than prepared to provide it. During weekdays and weekends you helped me run experi-
ments, write equations, and craft cover letters for all kinds of reviewers. Thanks again for
introducing me to science and thanks for your supervision throughout these years.

My close co-workers and classmates – Davor, Nejc, Uroš, Jure B., Jure D., Rok, Mattia
and Branko (again) – thanks for all the gags, odojks, čebovans, fantastiše foods, turkish
delights, WoTs, etc. Despite the doctoral annoyances, together we really had a great time.

Dear Spyros Samothrakis, our discussions in Essex started a great cooperation. Thank
you for all the help in shaping our ideas and papers in the last few years. You truly helped
me reach my goal faster and I still owe you for this. Wish you all the best my friend.

Thanks Diego Perez, Mark Winands, and Simon Lucas for your hospitality, for hanging
out at conferences, and for the wonderful memories I brought back home from abroad.

Thanks to the doctoral committee members for the effort you put in reviewing this work
and for your patience in the last year and a half. Your feedback significantly helped me in
publishing my research and improving the quality of this work.

I am also grateful to the European Union for funding a substantial part of my doctoral
study through the European Social Fund.

Thanks Marley for the cover photo – you deserve lots of treats :)
— Tom Vodopivec, Ljubljana, January .

vii

CONTENTS

Povzetek i

Zahvala iii

Abstract v

Acknowledgements vii

 Introduction 
. Scientific contributions . 
. Dissertation overview . 

 Monte Carlo tree search 
. Background . 
. The framework . 
. The UCT algorithm . 

 Relation to reinforcement learning 
. On learning, planning, and search 
. Markov decision processes . 
. Reinforcement learning . 
. Linking the terminology . 
. Temporal-difference learning . 
. The novelties of Monte Carlo tree search 
. Survey of MCTS enhancements that relate to RL 

ix

x Contents T. Vodopivec

 Merging Monte Carlo tree search and reinforcement learning 
. Extending the reinforcement learning theory 
. The temporal-difference tree search framework 
. The Sarsa-UCT algorithm . 
. Space-local normalization of value estimates 
. The parameters and their mechanics 
. Implementation remarks . 

.. Online updates . 
.. Off-policy control . 
.. Terminal and non-terminal rewards 
.. Transpositions . 
.. Summary . 

 Survey of research inspired by both fields 
. Studies that describe the relation between MCTS and RL 
. Temporal-difference search . 
. Research influenced by both MCTS and RL 

 Analysis on toy benchmarks 
. Experimental settings . 
. Results and findings . 
. An analytic example . 

 Performance on real games 
. Classic two-player adversary games 
. Real-time video games . 

 Discussion and future work 
. Findings . 
. Limitations of our analysis . 
. Promising directions . 

 Conclusion 

A Detailed results from two-player games 

Monte Carlo Tree Search Strategies xi

B Detailed results from the GVG-AI  competitions 

C Razširjeni povzetek 
C. Prispevki k znanosti . 
C. Drevesno preiskovanje Monte Carlo 
C. Spodbujevalno učenje . 
C. Pregled literature . 
C. Podobnosti in razlike med področjema 
C. Drevesno preiskovanje s časovnimi razlikami 
C. Algoritem Sarsa-UCT . 
C. Eksperimentalna analiza in ugotovitve 
C. Zaključek . 

Bibliography 



Introduction



  Introduction T. Vodopivec

In , the supercomputer Deep Blue won a six-game match against the World Chess
Champion Garry Kasparov, making history []. The next great challenge of artificial
intelligence (AI) became the ancient Asian game of Go []. All methods that were
applied with great success to games until then, were ineffective in Go because of its
orders-of-magnitude larger state space and branching factor – the state-of-the-art al-
gorithms have been reaching only a human-beginner level of play. This lasted for
nearly a decade, until in  a new search paradigm unexpectedly elevated the play-
ing strength of Computer Go players to a human-master level [] – the field of Monte
Carlo Tree Search (MCTS) [] was born. Fuelled by these successes, MCTS quickly
gained scientific attention and initiated almost a revolution in game-playing agents. In
the following years, the game AI community devised an enormous amount of MCTS
variants, extensions, and enhancements [], and successfully applied them to very di-
verse domains, including a wide range of games: MCTS-based algorithms became the
new state of the art in Go, Hex, Othello, and numerous other games. It took only an-
other decade, and the grand challenge of Go fell; in March , the AlphaGo engine
[] combined MCTS algorithms with deep neural networks [] and defeated one of
the world’s best human Go players, and in May  it defeated the current top Go
player in the world.

MCTS provides a strong framework, based on the generality of random sampling
and the precision of tree search. Provided an agent has access to an internal mental sim-
ulator, a considerable improvement in performance can be achieved compared to more
traditional search methods. Despite this, the convergence rate of basic MCTS meth-
ods, including the most popular upper confidence bounds for trees (UCT) algorithm [],
can be relatively low in practice, especially when not aided by task-specific enhance-
ments. Practitioners often need to resort to expert knowledge in form of handcrafted
strategies, evaluation functions, and heuristics (see [], for example). This decreases
the generality of many applied MCTS algorithms. Furthermore, such enhancements
are often computationally heavy, whereas their benefit varies greatly from task to task;
it is difficult to identify the most suitable ones (and to configure them correctly) for
a specific task. Improving the performance of core MCTS methods, while retaining
their generality and scalability, is a research challenge [].

We believe that the older and well-established field of reinforcement learning (RL)
[] can advance the fundamental view of MCTS methods, and in this way uncover
new possibilities for generally improving them. Although MCTS has been introduced

Monte Carlo Tree Search Strategies 

as a search and planning framework for finding optimal decisions through sampling
a given domain, strong relationships with RL have been suggested shortly after [].
This link, however, was not immediately apparent and has not been widely adopted
in the game artificial intelligence (AI) community. The relationship between the two
fields remained somewhat cryptic, with most applied researchers treating MCTS as
unrelated to RL methods. This distinction was also aided by the non-existence of a
common language between dedicated game researchers and RL researchers and by the
different fundamental motivations of both communities. For these reasons, the use of
RL techniques within tree search has not been thoroughly studied yet.

Our goal is to advance the field of Monte Carlo tree search by deepening its theoret-
ical insights towards the field of reinforcement learning, and in doing so, we hope to
lessen the gap between the two communities and to encourage their cross-fertilization.
At the same time, as a proof of concept, we want to exploit these ideas to produce new
general and domain-independent MCTS algorithms.

In this thesis we overview the reasons for the two communities evolving separately,
examine in depth the close relation between the two fields, and explore the benefits of
enhancing MCTS with RL concepts. Focusing on the game AI community by start-
ing from an MCTS point-of-view, we thoroughly describe the similarities between the
two classes of methods; we illustrate how can RL methods using Monte Carlo sam-
pling be understood as a generalization of MCTS methods. But, at the same time, we
also explicitly emphasize the differences – we identify which MCTS concepts are not
customary for traditional RL methods and can thus be understood as novel. We also
survey the numerous MCTS algorithms and enhancements that (intentionally or un-
intentionally) integrate RL dynamics and explain them with RL terminology. Follow-
ing these insights, we present a practical way of extending MCTS with RL dynamics:
we develop new MCTS-like algorithms with the help of the temporal-difference (TD)
learning [] paradigm, which combines the advantages of Monte Carlo sampling (as
used in MCTS) and dynamic programming [] and often outperforms both, without
sacrificing generality []. We develop the temporal-difference tree search (TDTS) frame-
work, which can be understood both as a generalization of MCTS with TD learning,
as well as an extension of traditional TD learning methods with novel MCTS concepts.
It promotes a unified view of the two fields, building upon the line of research led by
David Silver [], who developed the temporal-difference search framework, which is
similar to ours. We produce the first successful application of a TD learning method

  Introduction T. Vodopivec

to the original MCTS framework when using an incrementally-increasing tree struc-
ture with a tabular, non-approximated representation, and without domain-specific
features; its efficient combination with the upper confidence bounds (UCB) [] ban-
dit policy; and the evaluation and analysis of TD value-updates (backups) under such
conditions.

Through our new framework, we devise several MCTS-RL algorithms, including a
generalization of the UCT algorithm with the TD-learning algorithm Sarsa(𝜆) [].
We evaluate them on established benchmarks – on several toy games, single-player
games, and two-player games. Our algorithms preserve the robustness and computa-
tional complexity, while consistently outperforming their MCTS counterparts: they
reveal that learning from temporal-differences performs better than learning through
Monte Carlo sampling also in MCTS-like settings. Finally, our Sarsa-UCT(𝜆) algo-
rithm has been recently achieving strong results in the General Video Game AI (GVG-
AI) competition [], including two first positions in two-player competitions in 
and .

. Scientific contributions

In this thesis we studied several topics, from which we obtained three major and one
minor contribution (Figure .):

Figure .
The topics studied in this
thesis, grouped by the
main contributions. We
regard value-normalization
for UCB-based control poli-
cies as a minor contribution
that is not directly bound
to MCTS or RL, but is
more general and could be
applied also elsewhere.

Monte Carlo Tree Search Strategies 

Advancing the theoretical understanding of Monte Carlo tree search in light of
the reinforcement learning theory. We thoroughly examine the relation between
Monte Carlo tree search and reinforcement learning. We overview the reasons
for the two communities evolving separately and detail not only the similarities
between the two classes of methods, but also the differences – we identify the
MCTS dynamics that can be understood as novel in light of the RL theory. We
overview the existing MCTS enhancements and relate their dynamics to those
of RL, and investigate the studies that (knowingly or unknowingly) observed
some core RL concepts from an MCTS perspective. Our work popularizes
and encourages the adoption of RL concepts and methods within the game AI
community, hopefully narrowing the gap between the two fields.

A framework that unifies Monte Carlo tree search and reinforcement learning dy-
namics. To explore the benefits of unifying MCTS and RL methods, we extend
the RL theory to include the novel MCTS-concepts: we introduce into RL
the concept of representation policy and the concept of non-memorized part of
the search space, based on which we identify the need of additional assump-
tions regarding the non-memorized values. We analyse and evaluate temporal-
difference value-updates (backups) under such conditions. Our new frame-
work, denoted as temporal-difference tree search, can be understood both as a
generalization of MCTS with TD learning and eligibility traces, as well as an
extension of traditional TD learning methods with tree search and novel MCTS
concepts. It supports a unifying view of both fields and introduces a new class of
search and learning algorithms, opening several promising research directions.

A generalization of the UCT algorithm with an established temporal-difference
learning method. As a proof of concept of our unifying framework, we devise the
first successful application of a TD learning method with eligibility traces – the
Sarsa(𝜆) algorithm – to an MCTS method (the original UCT algorithm) when
using an incrementally-increasing tree structure with a tabular representation,
without value function approximation, and without domain-specific features.
We showcase that the new algorithm, Sarsa-UCT(𝜆), increases the performance
of UCT when the new parameters are tuned to an informed value.

  Introduction T. Vodopivec

A value-normalization technique for efficient use of UCB selection policies within
reinforcement learning algorithms. For correct convergence, UCB (upper confi-
dence bounds) selection policies require the feedback distribution (or the value
estimates) to be normalized in a specific range. In the general reinforcement
learning setting, it can be difficult to predict the feedback (reward) distribu-
tion and therefore it can be difficult to define the normalization bounds. We
devised a space-local value-normalization technique that enables efficient use of
UCB selection policies also in such settings, that is, also in combination with
general RL algorithms. It computes the normalization bounds individually for
each part of the search space and adapts them online by considering the feed-
back observed so far. The novel technique can be applied as a non-parametric
enhancement to any search or learning algorithm that uses selection policies
that require normalization of values.

. Dissertation overview

In the next chapter we provide the background on MCTS, its basics framework, and
the UCT algorithm, including a brief description of multi-armed bandits. We proceed
with a thorough analysis of the relation between MCTS and RL (Chapter ). We dis-
cuss the motivations behind each field and the reasons for the communities growing
apart. We describe Markov decision processes and temporal-difference learning, so that
we can link the terminologies of RL and MCTS and observe their similarities and dif-
ferences. We conclude the chapter with a survey of MCTS enhancements that resemble
established RL concepts. In the second part of our work we merge MCTS and RL into
a common framework (Chapter ) by extending the RL theory with MCTS concepts,
generalizing UCT with TD learning, and developing an efficient value-normalization
technique for UCB-based policies. There we also explain the relation of the newly-
introduced parameters with known MCTS enhancements and provide detailed im-
plementational remarks about the new algorithms. Then we overview the studies that
also previously addressed the relation between the two fields and studies that produces
algorithms by unifying concepts from both fields (Chapter ). The analysis and exper-
imental evaluation of our algorithms is performed on popular toy games (Chapter )
and real games (Chapter ). We discuss the performance of our algorithms and the
limitations of our analysis, and propose promising research directions (Chapter ).
Finally, we comment on the impact of our contributions (Chapter ).



Monte Carlo tree search



  Monte Carlo tree search T. Vodopivec

We introduce the main paradigm around which this thesis is centred – Monte Carlo
tree search. Here we describe the basic background of the field, along with its key
concepts, terminology, and dynamics.

. Background

The field ofMonte Carlo tree search (MCTS)was born in  when Coulom [] devised
efficient strategies for combining Monte Carlo search with an incremental tree structure,
coining the term MCTS. Simultaneously, Kocsis and Szepesvari [] combined tree
search with the UCB action-selection policy [], which is an asymptotically-optimal
policy for solving the multi-armed bandit problem from the field of probability theory.
This way, they designed the first and currently the most popular MCTS method – the
upper confidence bounds applied to trees (UCT) algorithm.

Since then, MCTS methods have proven useful in numerous search and planning
domains (e.g., scheduling, feature selection, constraint satisfaction, etc.) [], but they
particularly excel at decision problems that can be formulated as combinatorial games.
MCTS methods are currently the state-of-the-art choice for a wide range of game-
playing algorithms, spanning from classic games like Othello [], Amazons [], and
Arimaa [], to real-time games like Ms Pac-man [], the Physical Travelling Salesman
Problem [], and Starcraft []. The General Game Playing competition [] has also
been dominated by MCTS-based algorithms for years [–]. Some MCTS-based
players are stronger than top-level human players, e.g. in the game of Hex [].

The most notable success of MCTS has been achieved on the ancient Asian game
of Go [] . There, the state space is orders of magnitude larger than, for example, the
state space of chess. This is one of the reasons why methods that work well at the latter
(like Alpha-Beta pruning [], for example) prove much less effective on Go. Before
the invention of MCTS, the best Go algorithms were achieving a human-beginner
performance; MCTS quickly managed to elevate the playing strength to human-master
level [, , ] – an accomplishment that was thought to be decades away; but even
more impressive, in ten years since its inception it helped the AlphaGo engine [] defeat
the best human Go player in the world (in May ).

Monte Carlo Tree Search Strategies 

. The framework

In general, MCTS algorithms employ strong (heuristic) search methods to identify the
best available decision in a given situation []. They gain knowledge by simulating
action sequences on the given problem and thus require at least its generative model
(also known as a forward, simulation, or sample model).

The MCTS’s search process memorizes the gathered knowledge by incrementally
building a search tree. The growth of the tree is asymmetric and is guided in the most
promising direction by an exploratory action-selection policy. Nodes in the tree rep-
resent actions (or states) of the given task and hold the values of their estimates, upon
which future actions are selected. Like reinforcement learning methods [], MCTS
algorithms also deal with delayed feedback and the exploration-exploitation dilemma
– the need to balance between exploration of unvisited state space and exploitation of
knowledge to maximize the performance in a limited time setting.

The MCTS tree is computed iteratively and usually improves in quality when in-
creasing the number of iterations. An MCTS iteration usually consists of four phases
(Figure .):

. selection of actions already memorized in the tree (descent from the root to a
leaf node);

. playout, i.e., selection of actions until a terminal state is reached;

. expansion of the tree with new nodes;

. backpropagation of the feedback up the tree.

A tree policy guides the selection phase; it defines the policy for selecting actions in the
memorized part of the state space. When the algorithm reaches a leaf node, it explores
further into the non-memorized or unvisited state space with another action-selection
policy until a terminal state is reached and an outcome is produced – it uses a default
policy to guide the playout phase. The outcome is propagated and memorized up the
tree as the newly-gained experience (feedback) about the task. We refer to the sequence
of actions performed during the selection and playout phases as a simulation.

The MCTS framework is most often used for planning: the search is stopped after
a number of iterations or when a computational time limit is reached, and then the
memorized tree is used to output the “best” action available in the root node. The

  Monte Carlo tree search T. Vodopivec

Figure .
The iterative process
of Monte Carlo Tree
Search methods []. The
feedback 𝐺 gathered in
each simulation (i.e., in
the selection and playout
phase) is propagated
back the path traversed
in the tree to update the
memorized knowledge.

MCTS framework does not explicitly define the “best” action; however, the highest-
estimated one or the most visited one are usually chosen, with the latter being more
robust and, consequently, more popular.

It is also a known approach to delete the tree after each search and build it anew
in the next search (in the next batch of MCTS iterations). The decision whether to
employ such a technique is problem-specific. Such forgetting of already-gained knowl-
edge inherently slows down the convergence rate, because the same knowledge might
have to be discovered again; however, it also prevents previous estimates from biasing
the future estimates, which is beneficial when past knowledge gets outdated quickly.
This happens, for example, when the root state changes significantly between individ-
ual searches or when the simulation model is too noisy or only partially correct, hence
producing incorrect estimates.

Although basic MCTS algorithms build a search tree, many of them perform better
when building a directed graph based on transpositions []. To use transpositions, an
algorithm must be able to observe and identify equal states, which is not always possible
or might be computationally expensive.

The key advantage of MCTS algorithms is their generality, as they can be applied to
any problem that can be formulated as a sequence of actions. Furthermore, they have
a relatively low sensitivity to large state spaces, do not require domain-specific knowl-
edge, but, when knowledge is available, they can efficiently use it. MCTS methods are
also anytime – they can output an approximate solution after arbitrary execution time;
and usually improve their performance when given more computational time.

Due to the large branching factors of the problems where MCTS is applied to,
the convergence of basic MCTS algorithms may be slow. This has encouraged the

Monte Carlo Tree Search Strategies 

development of a multitude of extensions, enhancements, and variations of MCTS
algorithms, many of which rely on strong heuristics or domain-specific knowledge.
A comprehensive survey about MCTS and its extensions can be found in Browne et
al.[]. The MCTS enhancements and extensions that are relevant for our work are
described throughout this thesis.

. The UCT algorithm

The upper confidence bounds for trees (UCT) [] is one of the first MCTS algorithms
and is still the main representative of the field. It is one of the most studied, gener-
ally effective and widely used MCTS algorithms. One of the key characteristics that
contributed to its success is that the UCT’s tree policy guides the exploration by treat-
ing action-selection in each state (tree node) as an instance of a multi-armed bandit
problem.

Multi-armed bandits

In a multi-armed bandit problem [] the observer (e.g., a learning or planning algo-
rithm) can choose multiple times one of the available actions, where each action returns
a reward 𝑅 based on some probability distribution. The true expected reward that is
returned by each action – the true value of an action – is unknown to the observer. The
goal is to maximize the collected reward in a given number of action-selections (i.e.,
online). Therefore, the observer should try to estimate the true value by trial and error.
Each time, the observer decides either to exploit its current knowledge by selecting the
best-evaluated action so far or to explore other actions to gather more knowledge – to
improve the estimates. Balancing between these two tasks is known as the exploration-
exploitation dilemma. The term multi-armed bandit was derived from the analogy to
casino slot machines (also known as one-armed bandits).

The UCT tree policy

The UCT algorithm employs a tree policy that selects child nodes with the highest
value of

𝑄UCT = 𝑄MC + 𝑐𝑛p ,𝑛 , (.)

where

  Monte Carlo tree search T. Vodopivec

𝑄MC =
∑𝐺𝑖
𝑛 (.)

represents the average feedback, i.e., the sum of rewards 𝑅, that was gathered from
several MCTS iterations 𝑖 that passed through a node and

𝑐𝑛p ,𝑛 = 𝐶𝑝√
􏷡 􏸋􏸍 𝑛p

𝑛 (.)

is the exploration bias defined by the number of visits 𝑛 to a node, the number of visits
to its parent node 𝑛p, and a weighting parameter 𝐶𝑝 ≥ 􏷟. The parameter 𝐶𝑝 defines
how exploratory the algorithm is; a 𝐶𝑝 = 􏷟 produces greedy action-selection without
exploration. Nodes with no visits (𝑛 = 􏷟) are given the highest priority. By default,
ties are broken randomly. For the algorithm to converge correctly, the term𝑄MC must
have a value in range [􏷟, 􏷠], hence the same applies to individual feedbacks𝐺𝑖. In such
case, a default value of 𝐶𝑝 = 􏷠 proves to work well in practice.

The tree policy equations of UCT are based on the UCB selection policy [],
which has been proven to optimally solve the exploration-exploitation dilemma in the
limit. UCB policies select actions by considering the upper confidence bound of their
estimates: the exploration bias from Equation (.) is a measure of uncertainty (vari-
ance) of the current estimated value of an action. The first UCB selection policies were
devised by Auer et al. [], who applied optimal bounds for a limited distribution to
multi-armed bandits. They derived from Agrawal [], who made the bounds easier to
compute by defining them as a function of the total reward obtained by a single ban-
dit, and from Lai and Robbins [], who first analysed the optimal bounds on such
distributions.

Two basic UCT variants

With regards to the MCTS framework, we acknowledge two distinct variants of the
UCT algorithm: the original UCT algorithm [] (this is the first developed version),
and the more popular standard UCT algorithm, which is a modification that become
widely adopted by MCTS practitioners []. Both algorithms use the tree policy de-
scribed above and random action-selection as the default policy; however, the standard
version simplifies some aspects of the original version.

The original UCT algorithm memorizes all the visited states in each iteration (when
enough memory is available); identifies equal states that can be reached from different

Monte Carlo Tree Search Strategies 

sequences of actions (i.e., transpositions), evaluates them by averaging the outcomes,
and stores them in a transposition table (i.e., builds a directed graph) []; considers
the discounting of rewards (see Section .); and distinguishes between terminal and
non-terminal rewards by updating the values of visited states each with its appropriate
sum of rewards following its visit in a simulation.

The standard UCT algorithm [] memorizes only one new state per iteration and
does not identify equal states, so does not use transpositions and builds a tree instead of
a graph. It disregards discounting of rewards and does not distinguish between terminal
and non-terminal rewards – it backpropagates only the final outcome (i.e., the sum of
all rewards in a simulation). This leads to all visited states being updated with the
same value (in a single simulation), which makes it easier to satisfy the convergence
requirements of the UCB-based tree policy. Practitioners often re-extend this variant
with transpositions [, , ]. Pseudocodes for both variants can be found in the
original papers.

Although basic UCT variants use a uniform-random default policy, strong MCTS
algorithms are most often equipped with informed playout policies (i.e. policies that
incorporate a-priori knowledge), which greatly increase the performance of the algo-
rithm []. Also, the playouts are often truncated (i.e., stopped before reaching a ter-
minal state) to better search the space close to the current state, rather than diving
deep into parts of the space that are less likely to be ever visited []. Finally, applied
MCTS algorithms are often further augmented with domain-specific enhancements,
with some popular examples being the move-average sampling technique (MAST) [],
the all-moves-as-first (AMAF) heuristic [], and rapid action value estimation (RAVE)
[].



Relation to reinforcement
learning



  Relation to reinforcement learning T. Vodopivec

The main scientific contributions presented in this thesis derive from our understand-
ing of the relation between Monte Carlo tree search (MCTS) and reinforcement learn-
ing (RL) methods. Here we thoroughly explain and justify this relation, before pre-
senting our algorithms later on. This chapter attempts to increase the awareness of a
unifying view of both fields, with the goal of improving their cross-fertilization.

First, we discuss different points of view on learning, planning, and search, which
are probably among the reasons why the RL community and the search-and-games
community evolved separately. Then, we introduce to the reader Markov decision
processes – a framework for modelling decision-making problems that both MCTS
and RL methods can solve. We proceed with the basics of reinforcement learning,
introduce the terminology of RL concepts that make up the MCTS search dynamics,
and link RL concepts to the corresponding MCTS iteration phases, while emphasizing
the similarities. We investigate also the fundamental differences – the novel concepts
that MCTS methods introduce from an RL perspective. Lastly, we survey the MCTS
enhancements that implement similar mechanics as RL.

. On learning, planning, and search

Strong links between learning and planningmethods have been observed for decades []
and have also been re-analysed by several researchers in the recent years [–]. Both
paradigms solve similar problems and with similar approaches; both estimate the same
value functions and both update estimates incrementally. The key difference is the
source of experience: whether it comes from real interaction with the environment (in
learning) or from simulated interaction (in planning). This implies that any learning
methods, including RL methods, can be used for planning, when applied to a simu-
lated environment. Thereafter, given that MCTS is regarded as a search and planning
method, its search dynamics are comparable with those of sample-based RL methods,
and the overall MCTS framework is comparable with RL applied to planning. How-
ever, this connection might not be obvious at first sight – there are many researchers
that perceive only a marginal relation between the two fields. Below we suggest several
causes for this discrepancy, but we also argue that the fields in fact describe very similar
concepts, only from different points of view.

The viewpoints of these two communities are different because the underlying moti-
vations and goals of (heuristic) search and (reinforcement) learning methods are funda-
mentally different. MCTS researchers are less interested in generic learning solutions

Monte Carlo Tree Search Strategies 

and more keen to attack specific games with specific approaches; the knowledge (i.e.,
learning) is usually not transferred between different searches and games. On the other
hand, the RL community focuses mostly on universally-applicable solutions for a wider
class of problems and its philosophical foundations discourage using (too much) expert
knowledge in unprincipled ways (although this can prove very effective in practice).

As a consequence of the above, search methods are in general more focused on cre-
ating strong selection policies, often by exploiting heuristics (as is the case also with
MCTS), whereas RL methods are more focused on devising strong techniques for up-
dating the gained knowledge, giving less attention to selection policies. An example
of this is how the two classes of methods handle exploration: MCTS methods usually
entrust it to the selection policy itself (which is most often the UCB policy), whereas
RL methods often set optimistic initial estimates, which then guide the selection policy
towards less-visited parts of the state-space. Despite these differences, both methods
still need to perform all the common tasks listed above – both need to efficiently select
actions, update the knowledge, and balance the exploration-exploitation dilemma.

Another major reason is the common assumption in RL that we do not have a
(good) model of the environment. Reinforcement learning understands the sample-
based planning scenario as a special case – as the application of learning methods to
a simulated environment, for which we do require a model. Nevertheless, it is not
necessary to have a perfect or complete model, but an approximate or generative one
might be enough (as in MCTS). Alternatively, the model need not be given, but the
methods can learn it online (i.e., keep track of the transition probabilities). Recent
RL-inspired studies confirm that MCTS-like algorithms can also be applied in such
a way to non-simulated experience (Section .). Furthermore, even in traditional
MCTS, where a generative model is available, the model is not necessarily perfect or
complete; it might be highly stochastic or simulate only part of the environment (as in
the GVG-AI competition [], for example), it usually does not disclose the transition
probabilities, and it does not simulate the moves of other agents involved in the task.
For example, in multi-player games, the other players are usually understood as a part
of the environment that cannot be easily predicted, and are usually modelled separately.
Considering the above, also MCTS methods need to deal with model-related issues,
like RL methods.

Search methods often build a tree structure based on decisions, due to most games
being of such nature, and regard state-observability as a bonus that allows the use of

  Relation to reinforcement learning T. Vodopivec

transposition tables. On the other hand, in RL state-observability is often taken for
granted: RL research usually focuses on more generic, fully connected graphs of states
and actions, where transpositions are encoded by default in the representation. In
practice, graphs are rarely explicitly represented, simpler RL methods rather use tabular
representations (equal to transposition tables), and most RL methods use function
approximation techniques. Despite these differences in the underlying representations,
both search and RL methods strive to generalize the gained knowledge – transfer it to
relevant parts of the state-space. When linking MCTS with RL, Baier [] uses the
notion of “neighbourhoods” for parts of the state-space that share knowledge (that are
represented by the same estimates): in MCTS the neighbourhoods are usually defined
by specific enhancements that group states according to expert knowledge or heuristic
criteria (such as AMAF [], for example), whereas in RL they are defined by the
features used for function approximation (which are, in practice, also often selected
according to expert knowledge, but can often be very natural, such as direct board
images, for example).

Lastly, the games and search community embraced MCTS as a search technique
also due to its quick successes in the game of Go []. Even though the original UCT
algorithm [] was designed and analysed using Markov decision processes (MDPs)
(Section .), the community adopted a variant that ignores discounting of rewards,
which is an integral part of MDPs and RL methods.

All the above might have led to the lack of common language between the MCTS
and RL fields. As a consequence, much research has been done on similar concepts,
albeit from different perspectives – improving this cross-awareness would benefit both
communities. The rest of this chapter makes a step towards this goal and illustrates
how can RL methods be understood as a generalization of MCTS methods.

. Markov decision processes

One way of describing decision problems (also referred to as tasks) that both RL and
MCTS methods can solve is modelling them as Markov decision processes (MDPs) [].
These form the basic substrate of decision-making algorithms; all the work in this thesis
is based upon such representations.

An MDP (example in Figure .) is composed of

States 𝒮 , where 𝑠 is a state in general and 𝑆𝑡 ∈ 𝒮 is the (particular) state at

Monte Carlo Tree Search Strategies 

time 𝑡.

Actions𝒜 , where 𝑎 is an action in general and𝐴𝑡 ∈ 𝒜 (𝑆𝑡) is the action at time
𝑡, chosen among the available actions in state 𝑆𝑡. If a state has no actions then
it is terminal (also known as a stopping or absorbing state), for example, ending
positions in games.

Transition probabilities 𝑝(𝑠′|𝑠, 𝑎): the probability of moving to state 𝑠′ when
taking action 𝑎 in state 𝑠: Pr{𝑆𝑡+􏷪 = 𝑠′|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎}.

Rewards 𝑟(𝑠, 𝑎, 𝑠′): the expected reward after taking action 𝑎 in state 𝑠 and going
to state 𝑠′, where 𝑅𝑡+􏷪 = 𝑟(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+􏷪).

The reward discount rate 𝛾 ∈ [􏷟, 􏷠], which decreases the importance of later-
received rewards.

At each discrete time step 𝑡, an action is selected according to the policy 𝜋(𝑎|𝑠), which
defines the probabilities of selecting actions in states – it defines how will an agent
behave in a given situation. It may be a simple mapping from the current state to
actions, or may also be more complex, e.g., a search process. An MDP is deterministic

Figure .
An example Markov
decision process with three
states. The state 𝑆􏷫 is
terminal since it has no
actions.

when there is no randomness in the transitions – when every action leads to states with
probability either 􏷠 or 􏷟; otherwise it is stochastic; and the same applies to policies.

Solving an MDP requires finding a policy that maximizes the cumulative discounted
reward or the return

𝐺𝑡 =
∞
􏾜
𝑘=􏷩
𝛾𝑘𝑅𝑡+𝑘+􏷪 = 𝑅𝑡+􏷪 + 𝛾𝑅𝑡+􏷫 + 𝛾􏷫𝑅𝑡+􏷬 + (.)

In other words, an optimal policy maximizes the return from any state. To devise a
good policy, an agent can move through the MDP state space (explore it in a trial-and-
error fashion) and remember – learn – which actions in which states led to high rewards

  Relation to reinforcement learning T. Vodopivec

in order to use this knowledge to select better actions in the future. Such algorithms
usually try to learn (estimate) the values of states 𝑉(𝑠) and state-actions 𝑄(𝑠, 𝑎). The
value of a state 𝑉𝜋(𝑠) is the expected accumulated reward in the future (i.e., the ex-
pected return) when the agent continues from that state following a policy 𝜋; it differs
from the immediate reward. The value of a state-action𝑄𝜋(𝑠, 𝑎) is the expected return
when the agent performs action 𝑎 in state 𝑠 and then follows the policy 𝜋. The value
function assigns such values to all states or state-actions. An optimal value function
assigns such expected returns as if the agent were following an optimal policy.

Simultaneously to learning the value function, an agent may as well keep track of
transition probabilities 𝑝(𝑠′|𝑠, 𝑎), that is, learn a transition model of an MDP. A model
can be used for planning, that is, for learning from simulated interactions with the
environment. Sometimes, a model might be already available – it might be given to
the algorithm before learning begins. We distinguish between complete models, which
hold all the information about an MDP (including individual transition probabilities
and rewards), and forward models, which can be used as a black box for outputting
the next state and reward without explicitly knowing the underlying structure of the
MDP. The latter are simpler to construct and are customary used by MCTS methods,
as already mentioned in Section ..

In an interactive setting, the agent has to repeatedly decide whether to choose ac-
tions which seem the best, based on its gathered experience (i.e. the exploitation of
knowledge), or to explore unknown space in search of a better solution. This is the
same exploration-exploitation dilemma that is present in multi-armed bandit (MAB)
problems, as we described in Section .. In fact, MDPs can be understood as a gen-
eralization of bandit problems: a MAB problem is formally equivalent to a single-state
MDP, because the final outcome (sum of rewards) is known immediately after select-
ing an action[]. Solving problems where the outcome is not known immediately
(where the feedback is delayed) is more difficult; these classify as reinforcement learning
problems [], which we describe in the next Section.

MDP tasks may be episodic or continuing. Episodic tasks consist of sequences of
limited length (not fixed), referred to as episodes. We will denote the final time step of
a single episode as 𝑇 , but knowing that its value is specific for the particular episode.
On the other hand, continuing tasks have no episodes (or can be understood to have
a single episode with 𝑇 = ∞). The return from the current time step 𝑡 until the final

Monte Carlo Tree Search Strategies 

time step 𝑇 in an episodic situation is

𝐺𝑡 =
𝑇−𝑡−􏷪
􏾜
𝑘=􏷩

𝛾𝑘𝑅𝑡+𝑘+􏷪 = 𝑅𝑡+􏷪 + 𝛾𝑅𝑡+􏷫 + 𝛾􏷫𝑅𝑡+􏷬 + ... + 𝛾𝑇−𝑡−􏷪𝑅𝑇 , (.)

where 𝑇 − 𝑡 is the remaining duration of the episode.
Discounting (𝛾 < 􏷠) makes early-collected rewards more important, which in prac-

tice results in preferring the shortest path to the solution. Apart from this, discounting
is necessary to ensure convergence in MDPs of infinite size, in MDPs with cycles, and
when function approximation is used. However, throughout this thesis we will em-
phasize the case of 𝛾 being set to 􏷠. This is due to the fact that many of the games
we experiment with have tree-like structures (without cycles) and are customarily not
treated with 𝛾 < 􏷠; in most games it is irrelevant how many moves are required to
achieve a win.

To summarize, formally, an MDP is a tuple (𝒮 ,𝒜 , 𝑝, 𝑟, 𝛾) with a solution policy
𝜋, which can be devised via learning or planning with the help of state values𝑉(𝑠) and
state-action values 𝑄(𝑠, 𝑎) and a (learnt or given) model.

. Reinforcement learning

Reinforcement learning is a well-understood and established paradigm for agents learn-
ing from experience []. It is often considered a class of problems (spanning over con-
trol theory, game theory, optimal control, etc.), but may as well be considered a class of
methods that can solve RL problems. It is regarded as one of the most general known
learning paradigms, because it can efficiently learn from a simple feedback in the form
of a scalar signal.

We derive most of our fundamental understanding of RL from the comprehensive
work of Sutton and Barto []. A second edition of their book is in progress, where
they address also MCTS methods [].

The basic model

In a RL problem (Figure .), an agent performs actions in an environment, gathers
experience (i.e., sample interactions with the environment) by observing the state of the
environment, and receives feedback in form of rewards. The agent uses rewards as basis
for adapting its behaviour (i.e., identifying which actions to take in a certain state) to

  Relation to reinforcement learning T. Vodopivec

maximize its cumulative reward in the future. Rewards may be immediate, but may
as well be delayed in time, which makes the problem more difficult. It is particularly
suitable to model such an environment with Markov decision processes (MDPs). Since
multi-armed bandit problems are special cases of MDPs, algorithms for solving them
also classify as RL methods.

Figure .
The basic reinforcement
learning model []. State
observations may carry
full or partial information
about the current state of
the environment.

An environment might be fully observable or partially observable. In the former,
observations contain all the information that is required to uniquely distinguish all the
states (and state-actions) in the environment. In the latter, observations carry limited
or noisy information about the current state, which makes the problem harder, because
the agent has to imply its location in the state space – at best, it can narrow down to a
subset of possible states. This is usually modelled with partially observable MDPs []
(which are related to imperfect-information games); however, these are not in the focus
of this thesis.

Since the agent is not told which actions to take, the RL problem is harder than the
supervised learning problem. The agent is required to discover the best behaviour by
analysing the environment’s model or by learning from experience. The latter can be
already available (given in advance) or might be gathered through the exploration of the
environment (by trying out different actions). Same as in MAB and MDP problems,
the exploration-exploitation dilemma is a central challenge also for RL problems, be-
cause the agent has to decide whether to take actions that yielded high reward in the
past or to explore less-known actions, which might turn out to be even better.

In general, RL problems can be solved by learning a value function and then us-
ing it to design a good policy (Section .). Methods that operate in such a way are
known as action-valuemethods, with the three most common being dynamic program-
ming, Monte Carlo methods, and temporal-difference methods. The latter two classify

Monte Carlo Tree Search Strategies 

as sample-based RL methods, which, unlike dynamic programming, do not require a
model of the environment, but can learn from sample interactions. In this study we
focus on these; however, RL problems can also be solved differently, without explicitly
learning the value function – for example, with policy gradient methods and evolution-
ary algorithms. A survey of many state-of-the-art RL algorithms is given by Wiering
and Otterlo [].

Dynamic programming

The dynamic programming (DP) paradigm is the theoretical foundation of numerous
RL methods. It provides the means to iteratively compute the optimal value function
using the Bellman equation []. The most distinguished DP methods are policy iter-
ation and value iteration. The main drawback of DP methods is that they require a
complete and accurate model of the environment (i.e., of the MDP) []. Due to this,
they do not scale well to large state spaces.

Monte Carlo methods

Unlike dynamic programming methods, large state spaces are exactly where Monte
Carlo (MC) methods prove useful. Since MC methods learn from experience, they do
not require knowledge of the environment – do not require a model; therefore, they are
not affected by the main drawback of DP methods. When no model is available, MC
methods gather experience only from online sampling, but when a model is available,
they can use it to gather experience also from simulated sampling, like MCTS methods
do. Moreover, it is enough if the model outputs only sample transitions (e.g., like a
generative model, as described in Section .), which is still less demanding than the
complete transition model needed by DP methods. In general, MC methods learn a
value function by averaging the experienced rewards. This is also their main drawback:
depending on the task, they might produce only a near-optimal solution in a finite
amount of time. However, when given enough computational time, they can find an
arbitrarily accurate solution. MC methods had been treated separately from other RL
methods for decades, until  [], but their first recorded use in such a setting dates
back to  [].

  Relation to reinforcement learning T. Vodopivec

Temporal-difference methods

The temporal-difference (TD) learning paradigm unifies the advantages of both DP and
MC methods, and is regarded as the biggest achievement of decades of research in the
reinforcement learning field. TD methods can learn from sampled experience, like MC
methods, but offer better convergence guarantees, like DP methods. Two of the most
popular RL algorithms employ TD learning: TD(𝜆) [] and Q-learning []. We
describe these methods further below in this chapter and put them to use in Chapter
, where we show how to generalize and improve the learning aspects of MCTS with
such well-understood RL dynamics.

Value-function approximation

RL methods are often inherently associated with techniques for state-space approxima-
tion. While it is true that many basic RL algorithms have difficulties handling large
state spaces and thus benefit from such approximation (which is also known as value-
function approximation), this is not always necessary. Algorithms that employ simpler
representations, such as tabular (i.e., a table with a single entry for each state), also
work well on certain tasks. We focus on those, for simplicity and for ease of compar-
ison with MCTS methods, which are usually implemented exactly with such discrete
representations. Despite this, the ideas we present in this thesis also extend to more
complex or approximate representations.

. Linking the terminology

We illustrate the similarities between MCTS and sample-based RL methods by linking
the terminologies of both fields; we position the dynamics that make up the MCTS
iteration phases within the RL theory and acknowledge the MCTS researchers who
observed some traditional RL dynamics from an MCTS perspective.

Sampling-based planning

From an RL point of view, Monte Carlo learning methods sample through the state
space of a given task to gather experience about it in an episodic fashion. Increasing
the number of samples produces more experience to learn from, therefore, it usually
improves the performance of the algorithm. When a model of the task is available,
the experience can be simulated – in such case the simulated episodes are analogous

Monte Carlo Tree Search Strategies 

to MCTS simulations. A trajectory is the path that a learning algorithm takes in an
episode; in MCTS this is the path from the root node to a terminal position in an
iteration – it comprises the visited states and selected actions in both the selection and
playout phases. Episodes and trajectories have a length of one or more (simulated) time
steps, with one selected action per time step. Each occurrence of state 𝑠 or state-action
pair (𝑠, 𝑎) in a trajectory is called a visit to 𝑠 or (𝑠, 𝑎), respectively.

Observing rewards

The gathered experience (i.e., the trajectories and the collected rewards) can be used
to improve the value estimates – to update the value function. MDP-based methods,
including RL and the standard UCT variant[], assign credit to a state (or state-action)
by considering the rewards that were collected exclusively after that state was visited.
Otherwise, the evaluation might get biased by assigning credit to states and actions
that do not deserve it. Therefore, RL algorithms remember the time of occurrence
of each reward in the trajectory – they distinguish between terminal and non-terminal
rewards – and update the value of each visited state with its appropriate return (i.e., sum
of rewards). Considering this, the original UCT variant [] complies with RL theory,
whereas the standard UCT variant [] ignores the time of occurrence of rewards and
updates all the visited nodes with the same final sum of rewards. This may lead to sub-
optimal (or erroneous) behaviour of the standard UCT variant on tasks that exhibit
non-terminal rewards; however, such implementation is often used exactly on tasks
with terminal rewards only (e.g., on classic games that exhibit an outcome only in a
terminal position), which mitigates this drawback.

Memorizing feedback

A backup is the process of updating memorized knowledge (i.e., updating the value
function) with newly-gathered feedback; we refer to it as a synonym for the MCTS
backpropagation¹ phase. An online algorithm computes backups after each time step,
whereas an offline algorithm computes backups in batch at the end of each episode.
This is analogous to performing the MCTS backpropagation phase multiple times in
a single MCTS iteration (after each action), or performing it once, at the end of the
playout phase, as assumed in the classic MCTS framework. Thus, the classic MCTS
framework proposes offline algorithms. Basic MC methods in RL are also offline.

¹Backpropagation is also a training method for artificial neural networks.

  Relation to reinforcement learning T. Vodopivec

Guiding the exploration – control

In RL, the concept of control assumes that trajectories are guided by a control policy,
which dictates which actions will be performed, and, consequently, which states will
be visited. It encloses both the MCTS tree policy and the MCTS default policy. RL
methods that follow a control policy are generally known as RL control methods, and
those that learn by Monte Carlo sampling classify as Monte Carlo control methods.

A policy may explicitly maintain the probabilities of selecting actions in states 𝜋(𝑎|𝑠)
(all or a part of them), or might compute them only when needed, and discard them
afterwards (e.g., compute them only for the current state, online). The latter requires
less memory resources and usually only marginally increases the computational time,
hence it is frequent in practical implementations of RL methods, and is also typical for
MCTS algorithms.

To guarantee convergence, a RL sampling algorithm must visit all states (or state-
actions) an infinite number of times in the limit, therefore, its control policy must
always keep choosing each action in each state with a probability greater than zero –
it must keep exploring forever. Two examples of such policies are the UCB policy
(described in Section .) and the 𝜀-greedy policy []. The latter is popular among
basic RL methods due to its simplicity; it defines action-selection probabilities as

𝜋(𝑎|𝑆𝑡) =
⎧⎪⎨
⎪⎩
􏷠 − 𝜀 for the best-evaluated action in state 𝑆𝑡 at time 𝑡,
𝜀/|𝒜 (𝑆𝑡)| otherwise.

(.)
The parameter 𝜀 ∈ [􏷟, 􏷠] balances the trade-off between exploration and exploitation
by defining the probability of not choosing the best action, but rather a sub-optimal
one. For example, an 𝜀 = 􏷠 results in a random policy, whereas a 𝜀 = 􏷟 results in a
greedy policy. Therefore, it defines the exploration rate of the policy, similarly as the
parameter 𝐶𝑝 in the UCT algorithm.

A sample-based RL algorithm is guaranteed to converge to an optimal solution if,
beside using an exploratory control policy, its exploration rate decays to zero in the
limit []. Hence, decreasing 𝜀 with time often yields a higher performance, and
becomes even more similar to UCB, which gets less exploratory with increasing the
number of visits. The decay is usually linear or exponential, depending on whether the
total duration is known in advance or if the task is finite or infinite.

Similarly to MCTS methods, recently also RL methods started to employ stronger

Monte Carlo Tree Search Strategies 

exploration policies [], with some of these based on (contextual) bandits [, ].

Finding a good policy

Gathering samples and evaluating the value function by following a fixed control pol-
icy is known as policy evaluation. Refining the control policy based on previous eval-
uations (i.e., based on the value function) is known as policy improvement. Iterating
through these two processes in alternation (Figure .) makes up the paradigm of gen-
eralized policy iteration (GPI) []. A vast range of learning and search methods can
be essentially described as GPI, including MCTS methods: in the selection phase the
tree policy takes decisions based on previous estimates (i.e., policy improvement) and
in the backpropagation phase current feedback is used to update the estimates (i.e.,
policy evaluation), repeating these steps in each iteration.

Figure .
Generalized policy itera-
tion []: in each iteration,
the policy is evaluated to
produce a value function
and then, upon this value
function, the policy is
greedily improved.

When policy improvement is greedy with respect to the value function produced
by policy evaluation, GPI converges towards the optimal policy and optimal value
function. It is not necessary that the improvement is completely greedy – it is enough
if the improved policy is only moved towards a greedy policy. The process can be run
for an arbitrary number of iterations, producing an arbitrarily close-to-optimal policy
and value function. Rephrasing from another perspective, the current policy and value
function of GPI (or RL) algorithm can usually be retrieved at any moment, which is
analogous to MCTS algorithms’ ability to return an output in-between each iteration,
that is, the anytime behaviour of MCTS methods. Lastly, increasing the number of
GPI iterations usually results in a more optimal solution, the same as in MCTS.

Assigning value to actions

When improving a policy, the actions get compared to identify the better ones. Thus,
they need a value to base the comparison on. This is achieved either by directly evaluat-

  Relation to reinforcement learning T. Vodopivec

ing state-actions (𝑄-values) or by evaluating states (𝑉-values) and assigning each action
the value of the state it leads to. The latter is known as evaluating actions with after-
states [] (or post-decision states []). For example, on deterministic tasks, this equals
to 𝑄(𝑠, 𝑎) ← 𝑉(𝑠′), where 𝑠′ is the afterstate of action 𝑎 from state 𝑠.

Evaluating with afterstates² improves the learning rate on tasks where multiple move
sequences lead to the same position – it is useful on games with transpositions. How-
ever, when an algorithm does not identify transpositions, there is no difference between
the two approaches. When the task is stochastic (i.e., the same action leads to different
states) or allows simultaneous actions (e.g., in a multi-agent setting), evaluating ac-
tions with afterstates is more complex than evaluating directly state-actions – it is not
enough to simply assign the value of an arbitrary (or last-observed) afterstate to the
preceding action, but some average over all possible afterstates of that action is used
instead by considering the transition probabilities.

MCTS methods can also be implemented either way. Such mechanics have been
observed by several MCTS researchers: Childs et al. [] distinguish between UCT
(evaluating state-actions) andUCT (evaluating afterstates) as two variants of the UCT
algorithm when used with transpositions; and Saffidine et al. [] analyse the same
concept when they compare storing feedback in graph edges to storing it in graph
nodes, but do not mention the link to RL.

First-visit and every-visit updates

MCTS methods by default store the value function as a tree structure, whereas RL
methods most often store it as a directed graph, i.e., they use transpositions by default.
When storing it as a tree, each node in the trajectory is visited exactly once per episode;
however, when storing it as a graph, a single node might be visited several times per
episode. In such a setting, there are two common approaches for updating the value
of a node in an episode: either multiple times per episode (once for each visits of that
node), or only once per episode (for the first visit of that node). Algorithms that use
the first approach are known as every-visit, while those that use the latter are known
as first-visit. MCTS algorithms usually do not observe when was a state first visited –
in the backpropagation phase they update their estimates for every occurrence up to
the tree root. A first-visit MCTS algorithm would update only the closest-to-the-root

²This is not to be confused with Q-learning [] – the use of afterstates is independent of the learning
algorithm.

Monte Carlo Tree Search Strategies 

occurrence of a specific node, and would ignore its other occurrences. Updating mul-
tiple times may cause a significantly slower convergence due to possible cycles in a
given task, hence every-visit algorithms are less robust and often perform worse than
first-visit algorithms [, ]. Nevertheless, when transpositions are not used, then there
is no difference between the two approaches.

Childs et al. [] also recognized these issues when adapting UCT to use transpo-
sitions. They noted the relation to the RL theory and suggested to use its solutions –
specifically, its first-visit mechanics – to tackle such problems in MCTS.

On-policy and off-policy exploration – evaluating one policy while following another

From an RL point of view, an agent might be involved with one or two control poli-
cies. In on-policy control the agent is evaluating and simultaneously improving the
exact policy that it follows. Conversely, in off-policy control, the agent is following one
policy, but may be evaluating another – it is following a behaviour policy while evalu-
ating a target policy []. Only the behaviour policy must be exploratory, whereas the
target policy can be deterministic or greedy. This is useful in, for example, planning
tasks, where during the available simulation time it is important to keep exploring (to
ascertain convergence towards the optimal solution), but at the end it is preferred to
output the best action according to a greedy policy (to maximally exploit the gathered
knowledge).

These mechanics directly relate to the MCTS backpropagation phase. On-policy
MCTS algorithms backup the exact feedback values, keeping an average for each node
(e.g., the basic UCT algorithm), whereas off-policy MCTS algorithms backup some
other value instead, for example, the value of the best child, valuing a node by maximiz-
ing across children values (which is analogous to a greedy target policy). Coulom []
analysed such backup methods along proposing the basic MCTS framework, but he
did not derive from the RL theory. Also, Feldman and Domshlak [] analysed the
behaviour of MC search methods and found beneficial to treat separately the goal of
evaluating previous actions and the goal of identifying new optimal actions, which
they named as the principle of the separation of concerns. Following this principle, they
are probably the first that explicitly differentiate between on-policy and off-policy be-
haviour in an MCTS setting. Their MCTSe scheme could be understood as a frame-
work for off-policy MCTS algorithms (with the addition of online model-learning).

  Relation to reinforcement learning T. Vodopivec

Describing MCTS algorithms with RL terminology

Summarizing this section, the search dynamics of MCTS are comparable to those of
Monte Carlo control. For example, the original UCT algorithm [] searches identically
as an offline on-policy every-visit MC control algorithm [] that uses UCB as control
policy; this similarity stems from the fact that the original UCT algorithm is based on
MDPs. On the other hand, the standard UCT algorithm [] also equals to the same
RL algorithm, but when the latter is modified to perform naïve offline updates (i.e., to
backup only the final sum of rewards in an episode, ignoring the information of when
were individual rewards received), to not identify states (i.e., not use transpositions),
and to employ an incremental representation of the state space, which we discuss later.
Similar reasoning would apply to other MCTS algorithms as well. Although the two
basic UCT variants employ a separate random policy in the playout phase, using only
the UCB policy in both the tree and playout phases produces the same behaviour
– candidate actions in the playout have no visits so far, so UCB chooses them at
random. However, when the playout policy is not random, the (default) MCTS and
RL learning procedures differ, as we further discuss in Chapter .

. Temporal-difference learning

Evaluating policies with Monte Carlo sampling is only one way of solving the rein-
forcement learning problem. An alternative is to use temporal-difference (TD) learning,
which often performs better [].

Temporal-difference learning [] is probably the best known RL method and can
be understood as a combination of Monte Carlo (MC) methods and dynamic pro-
gramming (DP). Like MC methods, it gathers experience from sampling the search
space without requiring any model of the environment. Like DP, it updates state
value estimates based on previous estimates, instead of waiting until receiving the final
feedback. Updating estimates based on other estimates is known as bootstrapping, and
it decreases the variance of evaluations and increases the bias, but usually improves the
learning performance []. The term temporal differences derives from the fact that the
previous value of the state in the next time step affects the current value of the state in
the current time step.

Monte Carlo Tree Search Strategies 

Comparing Monte Carlo and temporal-difference updates

Monte Carlo methods usually compute the value of each visited state 𝑆𝑡 as the average
of returns 𝐺 gathered from 𝑛 episodes that have visited state 𝑆𝑡 so far. When rewritten
in incremental form, the state value estimates 𝑉(𝑠) get updated at the end of each
episode (when 𝑡 = 𝑇) by

𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + 𝛼𝑛􏿮𝐺𝑡 − 𝑉(𝑆𝑡)􏿱 , ∀𝑡 < 𝑇 , (.)

where the update step-size 𝛼𝑛 ∈ [􏷟, 􏷠] decreases with the number of visits to the node,
normally as 𝛼𝑛 = 􏷠/𝑛. The first episode has 𝑛 = 􏷠, and 𝑉􏷩(𝑠) are also regarded as the
initial state values 𝑉init(𝑠). Monte Carlo methods normally have to wait until time 𝑇
before updating the value estimates (since 𝐺 is not available sooner) – they perform
offline updates.

On the other hand, TD methods may perform online updates at each time step 𝑡 by
considering the predicted state value 𝑅𝑡+􏷪 + 𝛾𝑉𝑡(𝑆𝑡+􏷪) as the target instead of 𝐺𝑡:

𝑉𝑡+􏷪(𝑆𝑡) = 𝑉𝑡(𝑆𝑡) + 𝛼𝑡􏿮(𝑅𝑡+􏷪 + 𝛾𝑉𝑡(𝑆𝑡+􏷪)) − 𝑉𝑡(𝑆𝑡)􏿱 . (.)

The difference between the predicted state value 𝑅𝑡+􏷪+𝛾𝑉𝑡(𝑆𝑡+􏷪) and the current state
value 𝑉𝑡(𝑆𝑡) is called the TD error 𝛿𝑡:

𝛿𝑡 = 𝑅𝑡+􏷪 + 𝛾𝑉𝑡(𝑆𝑡+􏷪) − 𝑉𝑡(𝑆𝑡) . (.)

Eligibility traces

It is not necessary that a single TD error 𝛿𝑡 updates only the last visited state value
𝑉𝑡, as in Equation (.), but it can be used to update the values of several (or all)
previously visited states. Such an algorithm traces which states were previously visited
and gives them credit, that is, eligibility, regarding how far back (how long ago) they
were visited. This is known as performing 𝑛-step backups instead of one-step backups;
and the parameter defining the weight of the backed-up TD error is known as the
eligibility trace decay rate 𝜆 ∈ [􏷟, 􏷠]. Eligibility traces 𝐸 are memory variables that
are updated for all states at each time step. Two popular update mechanics are the
accumulating eligibility traces, where

𝐸𝑡(𝑠) =
⎧⎪⎨
⎪⎩
𝛾𝜆𝐸𝑡−􏷪(𝑠) if 𝑠 ≠ 𝑆𝑡,
𝛾𝜆𝐸𝑡−􏷪(𝑠) + 􏷠 if 𝑠 = 𝑆𝑡,

(.)

  Relation to reinforcement learning T. Vodopivec

and replacing eligibility traces, where

𝐸𝑡(𝑠) =
⎧⎪⎨
⎪⎩
𝛾𝜆𝐸𝑡−􏷪(𝑠) if 𝑠 ≠ 𝑆𝑡,
􏷠 if 𝑠 = 𝑆𝑡.

(.)

By using eligibility traces, state values can be updated online after each time step ac-
cording to

𝑉𝑡+􏷪(𝑠) = 𝑉𝑡(𝑠) + 𝛼𝑡𝛿𝑡𝐸𝑡(𝑠) , ∀𝑠 ∈ 𝒮 , (.)

or offline at the end of each episode as

𝑉(𝑠) ← 𝑉(𝑠) + 𝛼𝑛
𝑇
􏾜
𝑡=􏷩
𝛿𝑡𝐸𝑡(𝑠) , ∀𝑠 ∈ 𝒮 . (.)

Merging TD backups with eligibility traces results in arguably the most popular
policy-evaluation method, TD(𝜆) []. When 𝜆 = 􏷟, the algorithm updates only a
single previous state, the same as given by Equation (.). Conversely, when 𝜆 = 􏷠, it
updates all states, and with the same TD error – it produces exactly the same backups as
Monte Carlo methods by Equation (.) []. Thus, the TD(𝜆) method may be viewed
as a generalization of MC methods, where accumulating traces are related to every-visit
MC and replacing traces to first-visit MC. In this way, eligibility traces augment MC
methods with bootstrapping. Figure . illustrates the differences (and similarities)
between Monte Carlo and temporal-difference backups.

Figure .
Comparison of Monte
Carlo and temporal-
difference backups: (a) MC
updates every state-value
estimate 𝑉(𝑠) towards
the rewards 𝑅 collected
after visiting that state
(with a step-size 𝛼), (b)
TD(􏷩) updates an estimate
only with the following
TD-error 𝛿, and (c) TD(𝜆)
updates every estimate with
all following TD-errors,
decayed with 𝛾 and 𝜆
(eligibility). The grey
squares represent terminal
states.

Monte Carlo Tree Search Strategies 

Temporal-difference control and Monte Carlo tree search

Reinforcement-learning methods that evaluate and improve policies with bootstrap-
ping TD-learning backups instead of Monte Carlo backups are known as TD control
methods. These are a generalization of Monte Carlo control methods (due to 𝜆 = 􏷠
resulting in equal backups, as described earlier). A popular on-policy³ TD control
algorithm that uses eligibility traces is the Sarsa(𝜆) algorithm [], which we later em-
ploy to extend the UCT algorithm (Section .). The most popular off-policy TD
control method is 𝑄-learning [], and its use with eligibility traces – 𝑄(𝜆).

In Section . we observed that many of the MCTS search dynamics can be de-
scribed by MC control. Given that TD control generalizes MC control, it is also
strongly related to MCTS. In fact, MCTS methods that evaluate nodes by averag-
ing the outcomes produce backups that equal those of a TD(􏷠) algorithm, and their
four MCTS phases resemble an iteration of a Sarsa(􏷠) algorithm. Conversely, MCTS
methods evaluate nodes differently (e.g., that back up the maximum value of children
nodes []) resemble off-policy TD methods like Q(􏷠), for example.

In the context of MCTS, Childs et al. [] partially analysed bootstrapping dynam-
ics soon after the invention of this field, although without mentioning their relation to
temporal differences and RL theory. They presented several methods of backpropaga-
tion when adapting the UCT algorithm to use transpositions: their UCT algorithm
updates the estimates according to previous estimates – it bootstraps similarly as TD(􏷟).

. The novelties of Monte Carlo tree search

Although the strong similarity of MCTS and RL methods has been observed by several
RL researchers (Section .), to our knowledge, the novelties of MCTS methods in
light of RL have rarely been emphasized. As shown so far, many of the MCTS dynamics
can be described with RL theory; despite the different points of view, the underlying
concepts are in practice very similar. Silver [] explicitly noted that “once all states
have been visited and added into the search tree, Monte-Carlo tree search is equivalent
to Monte-Carlo control using table lookup.” However, what happens before all states
have been visited? How do RL and MCTS methods relate until then? These questions
lead us to the key difference between these two classes of methods, to the aspects of
MCTS that we have not linked with RL yet – the MCTS concepts of playout and

³Not to confuse on-policy control with online backups (Section .).

  Relation to reinforcement learning T. Vodopivec

expansion. We argue that these two concepts are not not commonly seen as standard RL
procedures and they seem to be (alongside the constant replanning) the key innovations
of MCTS in relation to RL theory.

Finding goal states or solutions in large state spaces may lead to intractable problems,
either in computational or memory needs, when approached with naive or brute-force
algorithms. Complete exploration of such spaces is often impossible, but, on the other
hand, there is danger of local optimality if the algorithm is not exploratory enough.
There are two main memorization approaches when solving tasks where it is infeasible
to directly memorize the whole state space due to its size: () describing the whole
state space by approximation, or () keeping in memory only a part of the state space
at once.

The first is the leading approach in RL algorithms, which usually employ value func-
tion approximation techniques. These may also use domain-specific features, which
might considerably increase performance if the feature set is carefully chosen. Good
quality features, however, might not be readily available, as has been the case with the
game of Go for many years – though recent developments seem to imply that features
can be learned on the fly []. Tabular RL algorithms, which do not use approximation,
but instead memorize each value with a single table entry, are often inefficient on large
tasks.

The second approach is typical for search methods, especially for MCTS methods
[]. These are usually tabular, but memorize only the part of the state space that is
considered most relevant. This relevancy is sometimes defined with heuristic criteria,
but most often it is directly entrusted to the selection policy – an MCTS method
usually expects that its tree policy will guide the exploration towards the most relevant
part of the state space, which should as such be worth memorizing. The memorization
is handled in the MCTS expansion phase. There has been plenty of research on such
memorization techniques, ranging from replacement schemes for transposition tables
[], which have already been thoroughly studied in the𝛼-𝛽 framework [], to MCTS
expansion enhancements, such as progressive unpruning [] and progressive widening
[]. The latter two are also related to the first play urgency concept [].

The approaches used by MCTS methods may be generally described asmechanics for
changing the state-space representation online, that is, changing the architecture or size
of the memorized model simultaneously to learning or planning from it. In this sense,
the basic MCTS framework foresees the use of a direct-lookup table (representing ei-

Monte Carlo Tree Search Strategies 

ther a tree or a graph) that expands in each iteration – that gets incremented online.
Such concepts have been receiving high attention over the last decades (also before the
invention of MCTS) in the field of machine learning in general. They are strongly re-
lated to methods like incremental decision trees [], adaptive state aggregation [],
automatic online feature identification [], online basis function construction [],
incremental representations [], etc. We will refer to such methods as adaptive repre-
sentations.

Within the RL community, the use of adaptive representations is decades-old [],
but recently it gained even more prominence through the successes of Go []. Also,
advances in representation learning and global function approximation (which, for
example, resolve catastrophic forgetting []) led to the popularization of neural net-
works [, ]. Along the same lines, we have seen the introduction of unified neural-
network architectures that imbue agents with even better exploration capabilities in-
spired by the notions of artificial curiosity and novelty-seeking behaviour [, ].
Evolutionary methods have also seen a resurgence []; these too have a long history
within RL contexts []; they are less sensitive to hyperparamaters, initial features,
and reward shaping. Finally, as an evolution of Dyna-like architectures [], Silver et
al. [] explore how learning and planning can be combined into a single end-to-end
system. Neural network are global function approximators, where a single update can
potentially change the value/policy function for the entire state space. There has been a
number of methods developed [–] where the aim is to learn a set of basis functions
that capture a higher-level representation of the state space, which might potentially al-
low for more “local” higher level features. We have also seen more explicit cases of local
function approximations [, ], where an update changes the value/policy function
only for a (local) part of the space.

Despite the research, we are not aware of RL methods that employ explicit (tabular)
adaptive or incremental representations as in MCTS methods. Also, the latter in gen-
eral memorize and update only a subset of the visited states – they explicitly distinguish
between memorized and non-memorized parts of an episode. Although the RL theory
distinguishes between well-explored and unexplored states – through the KWIK learn-
ing formalism [–] – it is (usually) not familiar with the notion of non-memorized
(i.e., non-represented) parts of space. Therefore, it does not recognize the playout phase
and neither the use of a separate policy for it, such as the MCTS default policy. Lastly,
although classic RL theory can describe a random MCTS default policy (if we assume

  Relation to reinforcement learning T. Vodopivec

the control policy to select random actions when in absence of estimates), it can hardly
describe more complex MCTS default policies, which are customary for strong MCTS
algorithms.

. Survey of MCTS enhancements that relate to RL

We conclude our linking of MCTS and RL with an overview of the numerous MCTS
enhancements that are not directly inspired by RL theory, but still exhibit similar dy-
namics as traditional RL methods. These enhancements are mostly related to complex
backups, weighting and discounting techniques, biasing the estimates with prior, ini-
tial, or heuristic knowledge, and forgetting techniques.

Max-backups

As noted previously, MCTS-like algorithms that backup maximum values instead of
means are related to off-policy TD learning algorithms; they most often resemble the
Q-learning algorithm []. Coulom [] was the first to experiment with this in an
MCTS setting and observed that backing up the means is better when there are fewer
visits per state, whereas using some type of max-backups is better when the number of
visit is high.

Ramanujan and Selman [] develop the UCTMAX𝐻 algorithm – an adversarial
variant of UCT that uses a heuristic board evaluation function and computes mini-
maxing backups. They show that such backups provide a boost in performance when
a reasonable domain-specific heuristic is known.

Lanctot et al. [] also use minimaxing for backing up heuristic evaluations; how-
ever, they propose not to replace playouts with such evaluations, but rather to store the
feedback from both as two separate sources of information for guiding the selection
policy. This is similar to how AlphaGo [] and the studies leading to it (Chapter )
combine prior knowledge with online feedback. The authors show this might lead to
stronger play performance on domains that require both short-term tactics and long-
term strategy – the former gets tackled by the minimax backups, and the latter by the
ordinary MCTS playout backups. Baier and Winands [] provide similar conclu-
sions also for several MCTS-minimax hybrid approaches that do not require evaluation
functions.

Monte Carlo Tree Search Strategies 

Reward-weighting

The discounting mechanics of eligibility traces in RL decrease a reward’s weight pro-
portionally with the distance from the state it was received. In the context of MCTS,
this translates to weighting the iterations according to their duration, e.g., diminish-
ing the weight of rewards with increasing distance to game end. To our knowledge,
there has been no proper implementation of eligibility traces in the complete MCTS
framework (including the non-memorized playout phase) yet; however, the MCTS
reward-weighting schemes noted here could classify as simplified or similar approaches.

Cowling et al. [] exponentially decrease the final reward based on the number of
plies from the root to the terminal state with a discount parameter in range [􏷟, 􏷠]. This
results in all nodes in the tree being updated with the same value, regardless of each
nodes’ distance to the terminal state – this differs from eligibility-trace mechanics,
which keep decaying rewards also within the tree, in this way updating each visited
node with a different value. Their experiments show benefits of such decaying.

Kocsis and Szepesvari [] diminish the exploration rate in the UCT algorithm when
descending the tree (i.e., with increasing tree depth). Such decaying of the UCT’s pa-
rameter 𝐶𝑝 achieves a similar effect as diminishing the weight of node-estimates closer
to the root, and is in turn similar to diminishing the weight of those memorized re-
wards that are far from the terminal position. Such weighting is more limited than
the eligibility trace mechanism, because it disregards that the rewards stored in a sin-
gle node may have been gathered from episodes of different duration – nodes at the
same tree level may have different distances to the terminal position. Therefore, the
rewards are not differentiated according to the game duration, but rather according to
the distance from the starting position.

Xie and Liu [] develop a similar mechanism by modifying the MCTS backprop-
agation step – they weight MCTS iterations according to their recency. They assume
that early iterations contain less reliable value estimates, hence should be given a lower
weight than later iterations. They partition the sequence of iterations and weight dif-
ferently each partition. Their results show that later partitions deserve a higher weight,
since these generally contain shorter iterations, which are more accurate.

  Relation to reinforcement learning T. Vodopivec

Initial bias, heuristics, and forgetting

In the MCTS selection phase, nodes (i.e., states) in the tree are compared by their
value and selected accordingly. Adhering to the basic framework, values for unvisited
states are not defined yet. This may cause the selection mechanism to be unpredictable.
Hence, it is sensible to assign a value to nodes prior to their first visit – assign them an
initial bias – and later overrule this bias with the estimates produced by the tree policy,
e.g., overrule the bias with UCB values. This is analogous to the use of initial values
𝑉init and the update step-size parameter 𝛼 in RL methods (Section .); the initial
values correspond to the values that are assigned to nodes before their first visit, and
the update step-size defines the rate at which the initial values get overruled by the new
estimates – it controls the rate of “forgetting” past knowledge.

In the context of MCTS, Gelly and Wang [] define the idea of assigning initial
values as the first-play urgency. They fully replace the initial bias immediately after
the first visit of a node, and show that this improves the performance of the UCT
algorithm. Chaslot et al.[] propose to calculate the bias with a heuristic evaluation
function and decrease its impact when the state gets more visits. They label this as the
progressive bias enhancement for MCTS methods; this is analogous to a continuous
transition (instead of a discrete one) from the first-play urgency to the value learned
by the tree policy.

Several MCTS enhancements set the initial or progressive bias according to heuris-
tic or previously-learned knowledge. A widespread approach is to use history heuris-
tics [], i.e., the information from previously-played moves, to improve the tree pol-
icy and the playout policy. Kozelek [] distinguished the use of such information
either on a tree-tree level or a tree-playout level (depending in which MCTS phases the
information is collected, and then used). He employed history heuristics in the selec-
tion phase to significantly improve the performance of MCTS methods on the game
Arimaa. Finnsson and Bjornsson [] used it in form of the move-average sampling
technique (MAST) for seeding node values also in the playout phase in CadiaPlayer.
Gelly and Silver [] improved MCTS in a similar way by setting the initial values of
unvisited nodes in the tree to the same value as their grandfathers and labelled this as
the grandfather heuristic; however, they observe the improvement is smaller than using
values learned offline by reinforcement learning methods. Nijssen and Winands []
propose the progressive history enhancement – a type of progressive bias that uses history

Monte Carlo Tree Search Strategies 

score as the heuristic bias; a node’s history score is expressed as the average win rate of all
the episodes that visited that node. Their enhancement proves helpful in multi-player
games. Other popular enhancements, such as all moves as first (AMAF) [], rapid
action value estimation (RAVE) [], and last good reply (LGR) [], are also related to
history heuristics.

Beside the progressive bias [] enhancement (described above), several other “for-
getting” dynamics have been applied to MCTS. The most basic and popular one is
discarding the tree (partially or completely) after each search [], as already described
in Section .. Hashimoto et al. [] proposed a backup operator that assigns higher
importance to recently visited actions (and lower importance to other actions). Their
accelerated UCT algorithm selects actions according to accelerated winning rates. The
latter are computed through the notion of a forgetting “velocity”, which defines the
decaying rate individually for each value estimate based on the recency of its visit; its
update scheme is similar to those used for RL eligibility traces (Section .). They study
the benefits of such an approach on several two-player games and observe it improves
the strength of the Computer Go algorithm Fuego [].

Baier and Drake [] applied forgetting not directly to the estimates, but indirectly
through the one-move and two-move LGR playout policies [], which remember and
then prioritize moves that previously led to a win in response to an opponents move (or
combination of moves). They extend LGR policies to forget moves that (after being
memorized) lead to a loss; this proved beneficial on Go.

Tak et al. [] also observe the benefits of forgetting the estimates produced by
domain-independent playout policies: they propose the application of a decay factor
to the n-gram selection technique (NST) [] and to MAST [] (both used by the Gen-
eral Game Playing champion program CadiaPlayer []). They analyse three decay-
ing schemes: move decay (previously studied in combination with NST by Stankiewicz
[]), batch decay, and simulation decay. Their experiments show that decaying signif-
icantly improves the performance of such playout policies on several types of games,
except on single-player games. Their extension of the NST policy with a decay fac-
tor generalizes the forgetting LGR policies studied by Baier and Drake []; the latter
behave as using a maximal decay factor, completely forgetting the previous estimate.

Feldman and Domshlak [] developed a forgetting variant of their best recommen-
dation with uniform exploration (BRUE) algorithm: the resulting BRUE(𝛼) algorithm
could be linked to constant-𝛼 Monte Carlo methods [], because its parameter 𝛼 oper-

  Relation to reinforcement learning T. Vodopivec

ates in a similar way as the learning rate 𝛼 used in RL algorithms, for example, as in
Equation (.).



Merging Monte Carlo tree
search and reinforcement

learning



  Merging Monte Carlo tree search and reinforcement learning T. Vodopivec

In the previous chapters we covered the strong connection between Monte Carlo tree
search (MCTS) and reinforcement learning (RL) methods. We explained how RL
theory offers a rich description of the MCTS backpropagation phase, whereas MCTS
introduces into RL the distinction between a memorized and non-memorized part of
the state space. Following these insights, we present a line of reasoning that extends
both MCTS and RL into a single framework that unifies the advantages of both fields.
As a proof of concept we showcase an algorithm that generalizes UCT with TD learning
in such a way and link its new parameters with existing MCTS enhancements. We
also introduce an efficient value-normalization technique for the requirements of UCB
selection policies when used with general RL methods. Lastly, to encourage a faster
adoption of our methods, we provide extensive implementation guidelines.

. Extending the reinforcement learning theory

To develop a framework that could describe the incremental representations used by
MCTS algorithms, we first require an extension of RL theory with novel MCTS con-
cepts – we need the RL theory to acknowledge a non-represented (i.e., non-memorized)
part of the state space – this is the part that is not described (estimated) by the repre-
sentation model at a given moment. Based on this we introduce into RL the notions
of a representation policy and a playout value function.

Representation policy

A representation policy defines how is the representation model of the state space (or
value-function) adapted online; it defines the boundary between the memorized and
non-memorized parts of the state space and how it changes through time. The pol-
icy can dictate either a fixed or adaptive representation. For example, in TD search
applied to Go [] the representation policy keeps a fixed size and shape of the feature-
approximated state space, whereas in the standard UCT algorithm [], it increments
the lookup table (tree or graph) by one entry in each MCTS iteration and discards it
after each batch of iterations.

Sample-based (RL and MCTS) search algorithms could be understood as a com-
bination of a learning algorithm, a control policy, and a representation policy. These
define how the estimates get updated, how actions get selected, and how is the un-
derlying representation model adapted, respectively. Incremental representations, as
used in MCTS, are only one type of adaptive representations, as described previously

Monte Carlo Tree Search Strategies 

(Section .). In this sense, the representation policy can also be understood as a gen-
eralization of the MCTS expansion phase (which defines when and how to expand the
tree in MCTS algorithms). Also, it introduces into RL the notion of a playout, which
is the part of a trajectory (in an episode) where states and actions have no memorized
estimates and hence cannot be updated.

The notions of a representation policy and a non-represented part of the state space
extend beyond tabular representations also to approximate representations (e.g., value-
function approximation). In fact, using an adaptive representation is not exclusive with
function approximation, but it is complementary – approximate models can also be
made adaptive. This offers another dimension of variation: for example, on one end,
an incremental approximate representation can weakly describe the whole state space
and get more features added with time, in this way improving the overall approxima-
tion accuracy; whereas, on the other end, it can initially approximate only a part of
the state space (with high accuracy) and then use the newly-added features to extend
the representation to previously non-represented states (instead of improving the accu-
racy). The first example is more common to RL, whereas the second is more common
to MCTS, but an algorithm can be configured to anything in-between. Following all
the above, when function approximation is used, the representation policy not only
defines the boundaries between the memorized and non-memorized state space, but it
also impacts how will the approximation accuracy change over time.

Assumptions about playout estimates

The notion of a non-represented part of the state space is common to MCTS algorithms
and can also be easily handled by RL algorithms that perform Monte Carlo backups:
in each episode the algorithm updates the represented (memorized) estimates with the
return 𝐺, as in Equation (.), and skips the update on the non-represented estimates
in the playout. On the other hand, more general (online and offline) RL algorithms
that perform TD(𝜆) backups – which update the estimates with TD errors 𝛿, as by
Equations (.) or (.), and not directly with the return 𝐺 – might have difficulties
in computing the TD errors in the non-represented part of the state space, because
the value estimates 𝑉𝑡(𝑆𝑡+􏷪) and 𝑉𝑡(𝑆𝑡) required by Equation (.) are not available.
A solution is to avoid computing TD backups in the playout phase by treating the
last-encountered represented state (i.e., the tree-leaf node) as a terminal state and then
observe and backup only the discounted sum of rewards collected afterwards. This

  Merging Monte Carlo tree search and reinforcement learning T. Vodopivec

should be easy to implement, although we consider it is less principled, as it formally
requires to change the TD-backup rules according to the current position in the state
space.

As an arguably more principled alternative solution, we suggest to make assumptions
on the missing values of playout states (and actions) in a similar way as assumptions are
made on the initial values 𝑉init(𝑠) and𝑄init(𝑠, 𝑎). We introduce the notion of a playout
value function, which replaces the missing value estimates in the non-memorized part
of the state space with playout values 𝑉playout(𝑠) and 𝑄playout(𝑠, 𝑎). The employed (or
assumed) playout value function is arbitrary, but it impacts the control policy, because
the latter makes decisions also based on the values in the playout. For example, assum-
ing equal playout values for all states would result in a policy to select random actions
in the playout (as in the default MCTS setting). We refer to the part of an RL control
policy that bases its decisions on playout values (rather than on the ordinary values) as
the playout policy.

By the default MCTS setting, the playout value function has no memory to store
estimates: in such case it can be regarded as a rule-based assumption on the values of
the states (and actions) encountered in the playout – in this way it can serve as an entry
point for evaluation functions, heuristics, and expert knowledge about the given task.
On the other hand, the playout value function can also be configured to use memory;
in such case it could be regarded as an additional, secondary representation of the state
space. In this way it can recreate playout-related MCTS enhancements that generalize
the gathered experience through low-accuracy approximation of the state space, such
as storing the values of all actions regardless of where they occur in the state space (i.e.,
the MAST enhancement []), for example.

Domain-specific knowledge or heuristics inserted through playout values might pro-
duce more informed backups and speed up the convergence – this is probably the best
option in practice. However, when such knowledge is not available, more basic as-
sumptions must be made. When the reward discount rate 𝛾 = 􏷠, a natural assumption
that performs well (by experimental observation, Section ) is to set playout values to
equal the initial values: 𝑉playout(𝑠) = 𝑉init(𝑠) for all states 𝑠. In such case the effect
of both values is similar – they emphasize exploration when set optimistically (Sec-
tion .) and vice versa. Otherwise, when 𝛾 < 􏷠, to avoid an undesired accumulation
of TD errors in the playout, the easiest solution is to set them to equal 􏷟; although this
produces a TD error towards 􏷟 at each transition from the memorized part of the space

Monte Carlo Tree Search Strategies 

(the MCTS tree phase) into the non-memorized part (the playout). A more complex,
but arguably better option is to set the first playout value to match 𝑉(𝑆leaf)/𝛾, where
𝑆leaf is the last-encountered memorized state (the tree-leaf node), and then divide each
next playout value with 𝛾 – in such case the TD errors would be produced only by
rewards 𝑅𝑡, indifferently of the configuration of the algorithm. Regardless of the cho-
sen playout value function, an RL algorithm would converge as long as the primary
representation (i.e., the tree in MCTS) keeps expanding towards the terminal states of
a given task, thus reducing the length of the playout phase towards zero in the limit.

From a theoretical perspective, we regard playout values as a by-product of acknowl-
edging a non-memorized part of the state space and using adaptive representation poli-
cies. A formal analysis of how such values generally impact RL algorithms is not in our
focus, here we only suggest them as a viable alternative to ignoring the issue of missing
estimates in the playout. To summarize, although in theory the assumed playout val-
ues fill the place of missing value estimates for TD-like backups, in practice they can
be regarded more as a placeholder (entry point) for expert knowledge about the given
problem domain.

. The temporal-difference tree search framework

Based on the extended RL theory from the previous section, we introduce the temporal-
difference tree search (TDTS) framework: a generalization of MCTS that replaces Monte
Carlo (MC) backups with temporal-difference (TD) backups and eligibility traces (Fig-
ure .). From an RL point of view, TDTS describes sample-based TD control algo-
rithms that use eligibility traces (including MC control algorithms when 𝜆 = 􏷠) and
recognize the novel MCTS-inspired notions that we introduced previously – mainly
the non-memorized part of the state space and a representation policy for adaptive
(incremental) models. Although the TDTS framework is inspired by planning tasks,
where the experience is simulated, it can also be applied to learning tasks (in case a
model is not available).

The framework encompasses both online and offline backups, first-visit and every-
visit updating, and on-policy and off-policy control. It can be used on top of any
kind of representation policy: constant or adaptive, exact or approximate (tree, graph,
tabular, function approximation, etc.). With the help of a representation policy and
playout value function, it can fully recreate the four MCTS iteration phases: () selec-
tion – control in the memorized part of the search space; () expansion – changing the

  Merging Monte Carlo tree search and reinforcement learning T. Vodopivec

Figure .
Temporal-difference tree
search (TDTS) backups.
Unlike traditional RL
methods, the TDTS frame-
work distinguishes parts
of the state space where
estimates are not memo-
rized (and not updated).
Unlike traditional MCTS
methods, TDTS em-
ploys TD-learning update
mechanics (Section .)
instead of Monte Carlo
backups.

representation; () playout – control in the non-memorized part of the search space;
and () backpropagation – updating the value estimates.

In general, RL can empower MCTS with strong and well-understood backup (i.e.,
learning) techniques. Considering this, since the TDTS framework replaces MC back-
ups in MCTS with bootstrapping backups, our further analysis and evaluation primar-
ily focuses on the benefits of this replacement – on the comparison of such backups in
the default MCTS setting. Therefore, from here on we assume that the analysed TDTS
algorithms are by default configured to match MCTS – to perform offline backups and
use a direct-lookup table (representing a tree or a graph) with the representation pol-
icy expanding it in each iteration. This allows an easier comparison with traditional
MCTS algorithms (such as UCT), and for an easier extension from MCTS to TDTS
(in Section . we further justify why we deem this important). Despite the con-
figuration, our analysis and experiments would apply similarly also to more complex
representations (for example, value-function approximation) and to online updates, as
previously noted.

. The Sarsa-UCT algorithm

As an instance of a TDTS method, we combine Sarsa(𝜆) and UCT into the Sarsa-
UCT(𝜆) algorithm. This is an on-policy generalization of UCT with TD backups
and eligibility traces, as well as a generalization of Sarsa(𝜆) with an incremental repre-
sentation policy and playout values. We choose UCT, because it is the most popular
and well-studied MCTS algorithm – it forms the backbone of several MCTS enhance-

Monte Carlo Tree Search Strategies 

ments and game-playing engines; improving its base performance might improve the
performance of several algorithms that depend on it. On the other side we choose
Sarsa(𝜆), because it is the canonical on-policy TD (and RL) algorithm, and because
it can fully reproduce the behaviour of the original UCT algorithm (as explained in
Section .). Furthermore, it has less requirements for convergence compared to off-
policy RL methods (for example, compared to Q-learning).

Algorithm  presents the Sarsa-UCT(𝜆) iteration when it builds a tree representa-
tion and evaluates actions with afterstates (hence the use of 𝑉-values instead of 𝑄-
values). The essential difference with the standard UCT algorithm (Section .) is
the backpropagation method (lines –); however, the algorithms behave equally
when 𝜆 = 𝛾 = 􏷠, and thus can be used interchangeably in any of the existing UCT-
enhancements. A re-improvement over the standard UCT is distinguishing the inter-
mediate rewards (lines –), just like in the original UCT. This might be omitted
when the cost of observing rewards (e.g., computing the score of a game) after each
time step is too high or when in the given task there are only terminal rewards; the
algorithm would work correctly also if only the terminal outcomes were observed, just
with a slower convergence rate.

The eligibility-trace mechanism is efficiently computed with decaying and accumu-
lating the TD errors during the backpropagation phase (line ). Such implementa-
tion results in every-visit behaviour (when the algorithm is enhanced with transposition
tables) and in offline backups at the end of each episode. A first-visit variant updates
the state values only for their first visits in each episode (which is often beneficial, as
explained in Section .): such code would extend each 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 entry (line ) with
a first-visit flag, and check for it before backing up (line ). Furthermore, perform-
ing online backups (i.e., after each time step) when using transpositions might increase
the convergence rate in exchange for a higher computational cost; it is a reasonable
trade-off when states get revisited often in the course of an episode or when the cost
of simulating the task is orders of magnitude higher than performing backups. When
used with transpositions, the UCB’s exploration bias (line ) must be modified to
consider the sum of children visit counters ∑𝑛(𝑆𝑖) instead of the parent’s counter
𝑛(𝑠); this is necessary for the UCB policy to work correctly []. Additional details
about implementing such algorithms with transpositions and offline updates are given
in Section ..

The algorithm has no need to memorize the probabilities of selecting actions 𝜋(𝑎|𝑠),

  Merging Monte Carlo tree search and reinforcement learning T. Vodopivec

Algorithm 
An iteration of a tabular offline Sarsa-UCT(𝜆) algorithm that builds a tree and evaluates actions with afterstates. Produces
offline backups and every-visit behaviour. The parameters 𝑉init and 𝑉playout can be constants or functions mapping states to
values.

: parameters: 𝐶𝑝, 𝑉init, 𝑉playout, 𝛾, 𝜆, 𝛼 (optional)
: global tables / data structures: 𝑡𝑟𝑒𝑒, 𝑉, 𝑛 ▷ the memorized experience

: procedure SarsaUCTiteration(𝑆􏷩)
: 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ← GenerateEpisode(𝑆􏷩)
: ExpandTree(𝑒𝑝𝑖𝑠𝑜𝑑𝑒)
: BackupTDerrors(𝑒𝑝𝑖𝑠𝑜𝑑𝑒)
: end procedure

: procedure GenerateEpisode(𝑆􏷩)
: 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ← empty list

: 𝑠 ← 𝑆􏷩 ▷ initial state
: while 𝑠 is not terminal
: if 𝑠 is in 𝑡𝑟𝑒𝑒 ▷ selection phase
: 𝑎 ← UCBTreePolicy(𝑠)
: else ▷ playout phase
: 𝑎 ← RandomPlayoutPolicy(𝑠)
: end if
: (𝑠, 𝑅) ←SimulateTransition(𝑠, 𝑎)
: Append (𝑠, 𝑅) to 𝑒𝑝𝑖𝑠𝑜𝑑𝑒
: end while
: return 𝑒𝑝𝑖𝑠𝑜𝑑𝑒
: end procedure

: procedure ExpandTree(𝑒𝑝𝑖𝑠𝑜𝑑𝑒)
: 𝑆new ← first 𝑠 in 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 that is not in 𝑡𝑟𝑒𝑒
: Insert 𝑆new in 𝑡𝑟𝑒𝑒
: 𝑉(𝑆new) ← 𝑉init(𝑆new) ▷ initialize value estimate
: 𝑛(𝑆new) ← 􏷟 ▷ initialize visit counter
: InitNormalizationBounds(𝑆new)
: end procedure

Monte Carlo Tree Search Strategies 

: procedure BackupTDerrors(𝑒𝑝𝑖𝑠𝑜𝑑𝑒)
: 𝛿sum ← 􏷟 ▷ cumulative decayed TD error
: 𝑉next ← 􏷟
: for 𝑖 = Length(𝑒𝑝𝑖𝑠𝑜𝑑𝑒) down to 􏷠
: (𝑠, 𝑅) ← 𝑒𝑝𝑖𝑠𝑜𝑑𝑒(𝑖)
: if 𝑠 is in 𝑡𝑟𝑒𝑒
: 𝑉current ← 𝑉(𝑠)
: else ▷ assumed playout value
: 𝑉current ← 𝑉playout(𝑠)
: end if
: 𝛿 ← 𝑅 + 𝛾𝑉next − 𝑉current ▷ single TD error
: 𝛿sum ← 𝜆𝛾𝛿sum + 𝛿 ▷ decay and accumulate
: if 𝑠 is in 𝑡𝑟𝑒𝑒 ▷ update value
: 𝑛(𝑠) ← 𝑛(𝑠) + 􏷠
: 𝛼← 􏷪

𝑛(𝑠) ▷ MC-like step-size
: 𝑉(𝑠) ← 𝑉(𝑠) + 𝛼𝛿𝑠𝑢𝑚
: end if
: 𝑉next ← 𝑉current

: UpdateNormalizationBounds(𝛿sum, 𝑠)
: end for
: end procedure

: procedure UCBTreePolicy(𝑠)
: for each 𝑠

𝑎𝑖→ 𝑆𝑖 ▷ i.e., for each afterstate 𝑆𝑖
: if 𝑆𝑖 is in 𝑡𝑟𝑒𝑒
: 𝑉norm ← GetNormalizedEstimate(𝑆𝑖)
: 𝑄UCB(𝑠, 𝑎𝑖) ← 𝑉norm + 𝐶𝑝√

􏷫 􏸥􏸧(𝑛(𝑠))
𝑛(𝑆𝑖)

: else
: 𝑄UCB(𝑠, 𝑎𝑖) ← ∞
: end if
: end for
: return 􏸀􏸑􏸆􏸌􏸀􏸗

𝑎
􏿴𝑄UCB(𝑠, 𝑎)􏿷

: end procedure

  Merging Monte Carlo tree search and reinforcement learning T. Vodopivec

because these are implicitly determined by the UCB policy (line ) at each time
step: the policy assigns a probability 􏷠 to the action with the highest value 𝑄UCB(𝑠, 𝑎)
and probabilities 􏷟 to the remaining actions. When multiple actions are best, they are
given equal probability (i.e., random tie-breaking). Our algorithm employs a novel
value-normalization technique (lines , , and ) that enables the use of the UCB
policy with TD learning. We detail it in the next section.

The computational cost of Sarsa-UCT(𝜆) is nearly equal to that of UCT, larger
only by a small constant factor that is insignificant in practice. The increase is due to
the accumulation of TD errors during backups and due to value-normalization before
applying the UCB policy. The number of backups per episode is still𝑂(𝑀), where𝑀
is the number of memorized nodes in the episode (i.e., the length of the tree traversal in
the MCTS selection phase). An optimization that is not presented in our pseudocode
is to omit memorizing individual states and rewards in the playout (lines –) and
instead compute only the playout-part of the cumulative TD error 𝛿sum, which can
later be used as the initial value in the backup procedure (line ).

The variant of Sarsa-UCT(𝜆) that is given in Algorithm  is designed for single-
player tasks with full observability (with perfect information). It works both on de-
terministic and stochastic tasks. Adapting the algorithm to other types of tasks is as
easy (or as difficult) as adapting the basic UCT algorithm – the same methods apply.
For example, a straightforward implementation of minimax behaviour for two-player
sequential zero-sum adversary games is to compute 𝑄-values (line ) with −𝑉norm

instead of 𝑉norm when simulating the opponent’s moves; we use this approach when
evaluating the algorithm on classic games (Section .). A general approach for multi-
player tasks is to learn a value function for each player – to memorize a tuple of value
estimates for each state and update these with tuples of rewards. Extending to games
with simultaneous moves can be done by replacing the action 𝑎 with a tuple of actions
(containing the actions of all players). Lastly, a simple way for applying it to partially
observable tasks (with imperfect information) is to build the tree from selected actions
𝑎 instead of observed states 𝑠, this way ignoring the hidden information in the observa-
tions (and also the stochasticity of the task); we used this approach when implementing
a Sarsa-UCT(𝜆) player for the General Video Game AI competition (Section .).

Monte Carlo Tree Search Strategies 

. Space-local normalization of value estimates

To guarantee convergence, UCB selection policies (including UCB) require that the
value estimates (𝑉(𝑠) or 𝑄(𝑠, 𝑎)) are in range [􏷟, 􏷠], as noted in Section .. This
constraint can be satisfied by normalizing the estimates or by setting the weighting
parameter𝐶𝑝 to an upper bound with regards to the minimum and maximum possible
value of the estimates – the two approaches are mathematically equal, according to
Equations (.) and (.).

Common techniques

When performing MC backups (𝜆 = 􏷠) without reward-discounting (𝛾 = 􏷠), as in
many MCTS methods, on finite tasks with rewards only in terminal states this can be
easily solved by setting the rewards in the desired range – e.g., many classic games can
return a reward of 􏷠 for a win, 􏷟.􏷤 for a draw, and 􏷟 for a loss. When the rewards
cannot be changed, then the minimum and maximum possible final rewards can be
used as normalization bounds (or for setting the parameter 𝐶𝑝 accordingly).

When the time of occurrence of non-terminal rewards is ignored, like in the standard
UCT algorithm [], the same backup value is used to update the estimates of all visited
states in an episode. In such case, it is easier to guarantee convergence, because all the
estimates can be normalized with the same bounds – the parameter 𝐶𝑝 can be equal
across all states and actions (the simplicity of this approach might be one reason why
the standard UCT variant became more popular than the original one).

But, when the time of occurrence of rewards is considered, as is customary for RL
methods, then the optimal bounds may differ across the state-space when the given task
includes non-terminal rewards. In such case, on tasks with non-terminal rewards, but
still in range [􏷟, 􏷠], the rewards can be divided with the maximum possible duration
𝑇max of an episode to ascertain that all possible returns are in range [􏷟, 􏷠]. This equals
to multiplying 𝐶𝑝 with 𝑇max and using this “worst-case” normalization bound across
all states. This was proposed alongside the original UCT algorithm []; however, it is
rarely used in practice, because it often produces too wide bounds on large parts of the
search space; the high value of 𝐶𝑝 makes the learning algorithm too exploratory for
most applied domains – it slows down the convergence rate.

  Merging Monte Carlo tree search and reinforcement learning T. Vodopivec

A novel technique

An alternative to the approach above is adapting 𝐶𝑝 to individual parts of the search
space (i.e., to each state or state-action) online, according to the reward distribution in
the given task. Such an approach is efficient even in the general RL setting, where the
true distribution of rewards may be unknown (and not necessarily in range [􏷟, 􏷠]), and
where both 𝜆 and 𝛾 may be less than 􏷠, due to the use of TD backups and eligibility
traces, as in our TDTS methods. To our knowledge, there has been no significant
research on such techniques yet.

Following this line of thought, we devised a value-normalization method that com-
putes the normalization bounds individually for each part of the search space and
adapts them online by considering the rewards observed so far. We refer to this method
as the space-local value normalization (Algorithm ).

For each state (tree node or table entry), beside storing the value estimate (𝑉 or 𝑄)
and the number of visits 𝑛, the method stores also a local lower and upper bound of the
value estimate of that state: 𝑏lower(𝑠) and 𝑏upper(𝑠), respectively. These bounds are used
to normalize the value estimate in the range [􏷟, 􏷠] before passing it to the UCB selection
policy (Algorithm , lines –). The method stores also a global lower and upper
bound over all the estimates: 𝐵lower and 𝐵upper, respectively. The global bounds are used
instead of the local bounds when the latter are not yet valid – for example, in states
with zero visits. In the case when also the global bounds are invalid, normalization
cannot be performed.

The global bounds are updated at each backup to memorize the minimum and max-
imum cumulative discounted TD-error 𝛿sum (Algorithm , lines –) that was en-
countered so far – they remember the all-time minimum and maximum target value
towards which any estimate was ever updated (the all-time minimum and maximum
discounted return 𝐺 could also be used instead). These bounds can be initialized ac-
cording to prior knowledge (or heuristics) of the given task, e.g., to 􏷟 and 􏷠 for classic
games with win/lose/draw outcomes.

The local bounds for each state value estimate are updated at each backup (Algo-
rithm , line ) to remember the all-time minimum and maximum value estimates
of the children nodes (i.e., the one-step successor states). This is meaningful, because
the value estimates already include the information about rewards in specific parts of
the search space (due to RL backup rules). Furthermore, they also indirectly supply

Monte Carlo Tree Search Strategies 

Algorithm 
The space-local value normalization used in the Sarsa-UCT algorithm.

: global variables: 𝐵upper, 𝐵lower ▷ set arbitrary initial values
: global tables: 𝑏upper, 𝑏lower

: procedure InitNormalizationBounds(𝑠) ▷ initialize local bounds
: 𝑏upper(𝑠) ← −∞
: 𝑏lower(𝑠) ← +∞
: end procedure

: procedure GetNormalizedEstimate(𝑠)
: if 𝑏lower(𝑠) < 𝑏upper(𝑠) ▷ use local bounds
: return 􏿴𝑉(𝑠) − 𝑏lower(𝑠)􏿷 / 􏿴𝑏upper(𝑠) − 𝑏lower(𝑠)􏿷

: else if 𝐵lower < 𝐵upper ▷ use global bounds
: return 􏿴𝑉(𝑠) − 𝐵lower􏿷 / 􏿴𝐵upper − 𝐵lower􏿷
: else ▷ both bounds invalid
: return 𝑉(𝑠)
: end if
: end procedure

: procedure UpdateNormalizationBounds(𝛿sum, 𝑠)
: if 𝐺 > 𝐵upper ▷ global bounds
: 𝐵upper ← 𝛿sum ▷ 𝐺 can also be used instead of 𝛿sum

: end if
: if 𝐺 < 𝐵lower

: 𝐵lower ← 𝛿sum

: end if
: if 𝑉(𝑠) > 𝑏upper(𝑡𝑟𝑒𝑒(𝑠).𝑝𝑎𝑟𝑒𝑛𝑡) ▷ parent’s local bounds
: 𝑏upper(𝑡𝑟𝑒𝑒(𝑠).𝑝𝑎𝑟𝑒𝑛𝑡) ← 𝑉(𝑠)
: end if
: if 𝑉(𝑠) < 𝑏lower(𝑡𝑟𝑒𝑒(𝑠).𝑝𝑎𝑟𝑒𝑛𝑡)
: 𝑏lower(𝑡𝑟𝑒𝑒(𝑠).𝑝𝑎𝑟𝑒𝑛𝑡) ← 𝑉(𝑠)
: end if
: end procedure

  Merging Monte Carlo tree search and reinforcement learning T. Vodopivec

information about the learning parameters 𝛼, 𝛾, and 𝜆 into the local bounds; this is
a step up over the global bounds. By default, the local bounds get initialized to ±∞,
but can also be initialized to more informed values, for example to 𝑉init (or 𝑄init). In
such case, when the initial value estimates 𝑉init are not reliable, it might be better to
overwrite the local bounds after the first visit of a state.

Our new method is helpful when it is difficult or impossible to define in advance
the minimum and maximum values of all the estimates. Due to this, it enables the
efficient use of UCB selection policies within RL methods in general, therefore, also
with algorithms that employ TD backups and eligibility traces or reward-discounting.
It can serve as a non-parametric enhancement to any search or learning algorithm that
uses selection policies that require normalization of values. Its evaluation is presented in
Section . (Figures .–.) and in Section . (Figure .). We experimented also
with some variants of it – with local bounds memorizing the minimum and maximum
value estimate of all successor states (e.g., of the whole tree-branch) from each state,
and with memorizing the minimum and maximum discounted return (backup target
value) of each state. Both proved to perform worse than the one-step-successor bounds
described above, but still performed better than using only global normalization.

Our normalization approach can also be understood as a method for online adapta-
tion (or tuning) of the UCB’s exploration rate 𝐶𝑝, where it changes both in time and
space – each state (node in the tree) gets its own value of 𝐶𝑝 at each time step. Little
research has been made about this in the context of MCTS: Kozelek [] experimented
with some schemes for changing 𝐶𝑝 in time (but still using the same value across the
whole state space), but did not get promising results; and Chaslot et al.[] configured
neural networks to output the values of parameters similar to 𝐶𝑝 based on the current
state (online), but give few details about their approach and experiment only on their
MoGo player for Go. The research above was focused on tuning 𝐶𝑝 to directly opti-
mize the algorithms performance, whereas our primary goal is to adapt 𝐶𝑝 for sake of
the normalization requirements of the UCB policy (indirectly affecting performance).

Silver [] also suggests adapting the exploration rate 𝐶𝑝 online to efficiently in-
tegrate the UCT’s tree policy (i.e., the UCB selection policy) into his TD search
framework, but he gives no details about these experiments except that nothing per-
formed as robustly and effectively as a simple 𝜀-greedy control policy with a constant
𝜀. In contrast, our experiments (see Chapter ) show that when using our normal-
ization technique, an 𝜀-greedy policy with a decreasing 𝜀 performs better than with a

Monte Carlo Tree Search Strategies 

constant 𝜀, and the UCB control policy preforms even better. This might be due to
our approach adapting 𝐶𝑝 also space-locally, and not only through time.

. The parameters and their mechanics

Our TDTS framework and the Sarsa-UCT(𝜆) algorithm extend the standard UCT
algorithm with four new parameters: the update step-size 𝛼, the eligibility trace decay
rate 𝜆, the initial state values 𝑉init(𝑠), and the assumed playout state values 𝑉playout(𝑠).
The latter two can be implemented either as constant parameters or as functions that
assign values to states online. The reward discount rate 𝛾 is already present in the
original UCT algorithm [], as mentioned in Section ., and the exploration rate 𝐶𝑝
is present in most UCT variants. The new parameters generalize UCT with several
mechanics (Table .), many of which had already been analysed by the MCTS com-
munity through different MCTS-extensions (Section .), but also with some new
ones in the light of the RL theory that we described in the previous sections. A similar
approach can be employed to extend every MCTS algorithm.

Update step-size and initial values

The update step-size 𝛼 controls the weight given to individual updates. For correct
convergence, it should be decreasing towards zero in the limit. When 𝛼 is less-than-
inversely decreasing, e.g., linearly, more recent updates get higher weight. This is sen-
sible when the policy is improving with time, implying that recent feedback is better.
This way, 𝛼 can also be understood as a forgetting rate of past experience – either on a
time-step basis, or in-between individual searches, e.g., retaining or forgetting the tree
in-between searches.

A common technique is to decrease 𝛼 inversely with the number of updates or visits
of a state (as presented in Algorithm , line ) []. This corresponds to averaging the
feedback – giving equal weight to each update – and is also the default approach of
MCTS methods []. In such case, when the starting value of𝛼 is 􏷠, initial values𝑉init(𝑠)
and 𝑄init(𝑠, 𝑎) have no impact because they get overwritten after the first visit – this is
the default MC approach, as given by Equation (.). On the other hand, when the
starting value of 𝛼 is less than 􏷠, initial values do not get completely overwritten: the
smaller the starting 𝛼 value, the bigger impact they have. This is sensible when initial
values are good approximations of the true values. In this way, initial values provide
the means to introduce prior knowledge, expert knowledge, and heuristics. All the above

  Merging Monte Carlo tree search and reinforcement learning T. Vodopivec

Table .
The parameters of Sarsa-UCT(𝜆).

Parameter ⋅ Control mechanics
⋅ Related uses in MCTS

Exploration rate
𝐶𝑝 ≥ 􏷟

⋅The exploration tendency of the UCB [] control policy.
⋅ In the original UCT [] and in its variants. Also an alter-
native value-normalization method for the UCB policy.

Update step-size
𝛼 ∈ [􏷟, 􏷠]

⋅ The forgetting rate: the impact of initial values and the
weight of individual feedbacks.
⋅ Forgetting techniques [, , , , ], progressive
bias [], progressive history [, ], BRUE(𝛼) [].

Initial values
𝑉init(𝑠) or
𝑄init(𝑠, 𝑎)

⋅ Prior or expert knowledge in form of initial-estimate bias
(when the initial update step-size 𝛼 is less than 􏷠). Empha-
size exploration when chosen optimistically.
⋅ First-play urgency [], history heuristics [, ], grand-
father heuristics and use of offline-learned values [], sev-
eral enhancements with heuristics and expert knowledge in
the tree and expansion phases [].

Reward discount
rate
𝛾 ∈ [􏷟, 􏷠]

⋅The discounting of long-term rewards: prioritizing short-
term rewards when 𝛾 < 􏷠 (changes the task). The reliability
of distant feedback.
⋅ In the original UCT [], omitted from many of its later
variants [].

Eligibility trace
decay rate
𝜆 ∈ [􏷟, 􏷠]

⋅ Bootstrapping backups when 𝜆 < 􏷠. First-visit or every-
visit behaviour. The reliability of distant feedback. Trade-
off between variance and bias.
⋅ Reward-weighting schemes [, ], indirectly also in the
original UCT through adapting the 𝐶𝑝 value [].

Playout values
𝑉playout(𝑠) or
𝑄playout(𝑠, 𝑎)

⋅ Prior or expert knowledge in the playout: guide the play-
out control policy and impact the accumulation of TD er-
rors in the playout.
⋅ Several enhancements with heuristics and expert knowl-
edge in the playout phase [].

Monte Carlo Tree Search Strategies 

allows the implementation of numerous enhancements (including “forgetting”) that
have been studied also in MCTS (Section .).

Initial values may also be chosen optimistically (set to high values compared to
the reward distribution) for the algorithm to favour exploration, for example, using
𝑉init(𝑠) = 􏷠 in games with only terminal rewards that are in range [􏷟, 􏷠] (as is the case
in many classic games). In general, initial values can strongly affect the convergence
rate of the algorithm, hence it is reasonable to set them according to the expected dis-
tribution of rewards in a given task (i.e., in range [􏷟, 􏷠] for the example given above).

Reward discount rate and eligibility trace decay rate

The reward discount rate 𝛾 and the eligibility trace decay rate 𝜆 both diminish the im-
pact of a reward proportionally to the distance from where it was received, as given in
Equations (.)–(.). This is a way of modelling the reliability of distant feedback
(e.g., long playouts might be less reliable) and is useful when the generative model is
not accurate or the control policy is far from optimal (e.g., random).

Except for the above, the two mechanics differ essentially due the role of 𝛾 in Equa-
tion (.). A 𝛾 < 􏷠 gives higher importance to closer rewards, which is a way of
favouring the shortest-path to the solution, even when it is sub-optimal – this changes
the goal of the given task. It causes the estimates to converge to a different value than
the final reward, which might be undesired.

On the other hand, a 𝜆 < 􏷠 enables bootstrapping TD backups, which often out-
perform pure MC backups (i.e., 𝜆 = 􏷠) []. In this way the estimates change more
slowly (same as when 𝛾 < 􏷠), but they still converge towards the same, non-decayed
value. Furthermore, through adopting different update schemes for 𝜆, as given by
Equations (.) and (.), we can implement every-visit or first-visit update dynamics,
respectively.

Playout values

The assumed playout values 𝑉playout(𝑠) and 𝑄playout(𝑠,𝑎) guide the playout control policy
(unless it ignores them, as is the case with a fully random policy, for example). They are
not necessarily constant or equal for every playout state, but might also get computed
(adapted) online – this is a way of introducing heuristic or expert knowledge in the
playout phase, for example, with the help of evaluation functions (which are popular
among applied MCTS algorithms []).

  Merging Monte Carlo tree search and reinforcement learning T. Vodopivec

When 𝛾 < 􏷠 or 𝜆 < 􏷠 playout values may strongly affect the convergence speed,
because they influence the accumulation of TD errors in the playout, as discussed in
Section ..

. Implementation remarks

Most MCTS algorithms could be enhanced to perform TD backups with eligibility
traces instead of MC backups, in a similar way as we enhanced UCT into Sarsa-
UCT(𝜆). A great advantage of this approach is that it cannot detriment the perfor-
mance of an algorithm (when implemented correctly) – in the worst-case, the trace
decay rate 𝜆 can be left on 􏷠, resulting in ordinary MC backups. Furthermore, signif-
icant improvements might be achieved (see results in Chapters  and ) when 𝜆 < 􏷠;
although, when extending complex algorithms in such a way, the parameters (existing
and new) might have to be re-tuned.

We hereby encourage the research community to further explore the potential of our
TDTS framework and of TD backups in general by applying them to the huge variety
of MCTS algorithms, variants, and extensions on different domains. We also encour-
age the use of our space-local value normalization technique on algorithms that employ
UCB selection policies. To ease this process, here we outline some general guidelines
about the necessary implementation choices when extending MCTS methods in this
way.

.. Online updates

TD methods can update value estimates online, this is, backup the observed reward
after each time step, unlike MC methods, which backup exclusively at episode end
(i.e., offline). This can significantly improve the convergence rate on tasks that exhibit
transpositions and non-terminal rewards (when these are both correctly observed by
the algorithm). Otherwise, when either condition is false, online updating brings no
benefit over offline updating, but only consumes more computational power, hence it
is not advised.

Online updating produces 𝑂(𝑇􏷫) backup steps in a single episode instead of 𝑂(𝑇)
steps, where𝑇 is the duration of the episode (i.e., the number of time steps). This might
decrease the overall performance of the algorithm if it is run in a limited-time setting
(e.g., when it is used for planning, like MCTS methods), because it might gather less

Monte Carlo Tree Search Strategies 

experience (compute less MCTS iterations). Therefore, when deciding whether to per-
form online updates, one should primarily consider the expected duration of episodes
in the given task and the computational cost of simulating the task – one should deter-
mine whether the cost of a single backup is negligible compared to simulating a single
step of the task. Finally, other components of the algorithm that affect its computa-
tional complexity and the quality of the estimates should also be considered, such as
hand-coded or heuristic strategies, evaluation functions, etc.

.. Off-policy control

As described in Section ., backing up some other value instead of the reward pro-
duced by the control policy changes the dynamics of RL algorithms from on-policy
to off-policy control. These are two fundamentally different classes of RL methods,
hence, doing so has strong implications for the convergence conditions of the learning
process. Off-policy methods are more difficult to implement, are slower to converge,
may be computationally more expensive, and may exhibit worse online performance;
but on the other hand, they are also more general, less prone to getting stuck in local
optima, and might produce more optimal (target) policies – they might be more ad-
visable for planning (as in the case of MCTS methods), where the online performance
is not crucial.

Our Sarsa-UCT(𝜆) algorithm is by definition an on-policy method, so it is not suit-
able for backing up differently than defined in Algorithm  (lines –). It should
backup only rewards produced by the control policy and not, for example, the max-
imum value of direct successor states (i.e., children nodes), as is sometimes used in
MCTS algorithms (i.e., the “Max” value backup []).

Implementation of off-policy TDTS methods is a complex topic, especially if also
transpositions are used, and is as such out of the scope of this thesis.

.. Terminal and non-terminal rewards

The presented Sarsa-UCT(𝜆) algorithm observes the rewards at each time step, like the
original UCT algorithm, but it could also be simplified to consider only the final sum
of rewards, ignoring the time of occurrence of individual rewards and assuming that
all rewards were received in the final state, like the standard UCT algorithm. When
ignoring the time of occurrence of rewards the quality of the value estimate of the
starting state (i.e., the very first root node) is not affected; however, the value function

  Merging Monte Carlo tree search and reinforcement learning T. Vodopivec

for all the other states will be biased if the given task exhibits non-terminal rewards.
The further away a state is from the starting state, the more biased its estimate might
be, because it might get unjustly credited (or blamed) for rewards that occurred before
visiting that state (the same applies to actions). Therefore, the value function might be
wrong, causing slow convergence or even divergence of the learning process.

Many MCTS algorithms discard the tree after each search, that is, reset the estimates
after each batch of episodes; this alleviates the problem above, because in this way
the visited states have biased estimates less frequently (this depends on the branching
factor and the amount of transpositions in a task). However, periodically discarding
the estimates has deeper implications – it might both improve or detriment the overall
performance, depending on the task itself and on the quality of the generative model
(depending on whether past experience is helpful and relevant, or whether it is biased
and outdated).

Despite the possibly-incorrect value function, ignoring the time of occurrence of re-
wards can also be beneficial. Besides simplifying the normalization of value estimates
for use with UCB-based control policies, as we described in Section ., it might also
lower the overall computational complexity of the algorithm. The basic RL theory does
not consider that observing a reward might incur a computational cost due to how re-
wards are modelled in a given task – the basic MDP model does not include such
dynamics. For example, in some tasks rewards are expressed as changes in score at each
time step, but observing the score might require significant computational resources
– this is the case with numerous games in the General Game Playing [] competi-
tion. Hence, computing the score (observing the reward) at each time step instead of
computing it only in terminal positions might decrease the number of simulations the
algorithm can produce in a limited amount of time, which might decrease its overall
performance.

Summing up, when the computational cost of observing the rewards is negligi-
ble, it is advisable to consider their time of occurrence and use an appropriate value-
normalization technique if the algorithm employs a UCB selection policy (e.g., the
space-local value normalization presented in Section .). Otherwise, when the com-
putational cost of observing the rewards is significant, a task-specific analysis might be
required to assess what performs best. However, if one already established that discard-
ing the estimates after each batch of episodes is beneficial, then considering only the
final sum of rewards might be acceptable (but only when the number of episodes in

Monte Carlo Tree Search Strategies 

each batch is reasonably low and when the biased states do not get revisited too often
during a batch).

.. Transpositions

Identifying and exploiting transpositions in general brings great benefits to learning
algorithms; RL methods do this by default, whereas MCTS methods treat this as an
enhancement. Still, using transpositions is not always advisable – understanding their
drawbacks and implications is critical. Furthermore, a correct implementation might
not be trivial, because it depends heavily on the choice and configuration of the un-
derlying learning algorithm.

The cost of observing states

Similar as with observing rewards, observing states (or some of their features) might
also incur computational costs. Computing a unique identifier from each observed
state (e.g., passing the features through a hashing function), which is usually required
to access or update the value estimates, might further increase the cost, especially when
the state description is complex, such as in the GVG-AI competition games [], for
example.

In deterministic tasks, the same sequence of actions always leads to the same position
in the state space – each sequence uniquely defines a state. As a result, there is no need
to directly observe states, because these sequences already serve as identifiers; this is
the default implementation of basic MCTS methods that build a tree without using
transpositions.

In non-deterministic tasks, on the other hand, states must be identified by observing
them if an algorithm is to learn the true value function. But, when it is enough to learn
only an approximate of the true value function, the algorithm can still identify states
based on sequences of actions – this is the same as if the algorithm would assume
the task is deterministic, ignoring the stochasticity. The produced value function is
an approximate, because multiple successor states that derive from the same action get
evaluated as one. This works sufficiently well when there is little diversity in the reward
distribution among these “grouped” states and when the task is not too stochastic. It is
also a viable approach when states can be only partially observed, or cannot be observed
at all (this transcends into the theory of partially observable MDPs [], which is out
of the scope of this thesis).

  Merging Monte Carlo tree search and reinforcement learning T. Vodopivec

The benefits of identifying transpositions

A transposition is a state that can be reached from different sequences of actions. An
algorithm can identify them by comparing the state features or the unique identifiers
(e.g., hash values) of the states visited so far. When states are already identified by
observing them (due to the reasons described above), transpositions can be exploited
without additional computational cost.

The main advantage of exploiting transpositions is that the value estimates of such
states get updated more frequently. This speeds up the convergence towards their true
value; it can considerably improve the performance of the algorithm, depending on
the number of transpositions that are present in a task (the more, the better). The
performance can be increased even further by computing updates online instead of
offline (this cannot be done without using transpositions), as described earlier.

On the other hand, if states are to be observed only to identify transpositions (and
need not to be observed otherwise), then the improvement in learning rate must com-
pensate the additional computational cost. Therefore, using transpositions is advisable
on highly non-deterministic tasks, where the states must be observed either way, or
when the cost of observation is low compared to the cost of simulating a time step of
the task.

Using transpositions in general RL methods

When using transpositions in combination with TD learning and eligibility traces one
must decide whether to implement every-visit or first-visit behaviour (i.e., accumulat-
ing or replacing traces, respectively). The latter is preferable due to better convergence
guarantees, as noted in Section ., but requires a slightly more complex implemen-
tation: the algorithm needs to remember the time step of the first visit of each state
(or state-action) in the last episode, so that if a state gets visited multiple times in an
episode, all but the first visit will be ignored during backup (an estimate will be up-
dated only once per episode). Therefore, to obtain first-visit behaviour, besides the
ordinary counter of visits 𝑛, each state (tree node) requires an additional counter 𝑛𝑒
to remember the number of updates, i.e., to count the number of episodes in which a
state was visited. The new counter 𝑛𝑒 replaces 𝑛 when computing the update step-size
𝛼 (Algorithm , line ). The ordinary visit counter 𝑛 still affects the exploratory bias
of the UCB control policy (line ). When some other control policy is used, e.g.,

Monte Carlo Tree Search Strategies 

𝜀-greedy, 𝑛 might not be required.
When using transpositions with on-policy control (e.g., as in our Sarsa-UCT(𝜆)

algorithm), implementing the above is enough; however, when using them with off-
policy control (e.g., with Q-learning), a correct and efficient implementation is more
difficult, as already mentioned earlier.

A further improvement

Lastly, when using transpositions, the backup process can be devised to update the es-
timates on all possible paths from the terminal state towards the root, and not only on
the one trajectory that was traversed by the algorithm. This might remarkably improve
the convergence rate by increasing the frequency of updating individual estimates, but
might also heavily increase the computational cost of backups. Furthermore, care must
be taken not to break the convergence prerequisites of RL control methods; the esti-
mates on the “alternative” paths must be updated differently: instead of updating them
towards the last return (as the estimates on the visited trajectory are), they must be up-
dated by considering only the change of value of their successor (children) states, and
their visits counters should not be incremented. The algorithm must keep counters of
how many times it visited a direct successor state from each state (i.e., node). These
counters are necessary for recomputing a node’s value when any of its successors change
in value.

In the context of MCTS, these convergence issues have been observed by Childs et
al. [] when they analysed methods of backpropagation using UCT with transposi-
tions – their UCT algorithm backpropagates the same as we suggest above, and, as
expected, the authors report it might be beneficial when simulating the task is compu-
tationally more expensive than updating the estimates this way. Saffidine et al. [],
also studied the idea of updating all parents when using transpositions – they name
this as the update-all backpropagation. They likewise recognize the problem with con-
vergence, and demonstrate it on a counterexample.

.. Summary

Most of the implementational choices we detailed in this section depend heavily on
the computational complexity of the task that a planning algorithm is solving. On one
side, when the cost of simulating a time step of the task is high, sophisticated backup
and memorization methods can improve the performance by extracting as much as

  Merging Monte Carlo tree search and reinforcement learning T. Vodopivec

possible information out of each “precious” piece of experience. On the other side,
when the cost of observing rewards, observing states, or uniquely identifying states
is high, this might unnecessarily slow down the algorithm, causing it to gather less
experience in a limited time. Furthermore, the (relative) amount of non-determinism,
of transpositions, and of non-terminal rewards in the task, influence the gain of such
computationally-heavier methods (and define whether they are sensible to implement
at all), as described throughout this section.

Summarizing, prior to implementing such an algorithm, it boils down to assessing
what is the optimal ratio of distributing the computational budget for the given task:
whether to gather more learning samples (perform more simulations), or to make better
use of the learning samples. The same applies whether to use evaluation functions
(which is a well-known dilemma, hence we do not detail it). In the end, it is highly
probable that domain-specific experimentation will be needed; however, we hope that
the guidelines presented here might help the reader to develop a better intuition about
implementing TDTS, MCTS, and RL algorithms in general.



Survey of research inspired by
both fields



  Survey of research inspired by both fields T. Vodopivec

This chapter surveys the existing literature that was inspired by both Monte Carlo
tree search (MCTS) and reinforcement learning (RL) methods. First we describe the
studies that touch on the relation between MCTS with RL methods; there we deem
as the most important the line of research leading to the temporal-difference search
algorithm []. Then we survey the studies that combined techniques from both fields
without explicitly commenting on the relation between them.

. Studies that describe the relation between MCTS and RL

We provide an overview of the studies that previously described the connection be-
tween MCTS and RL algorithms and emphasize how our study upgrades and consol-
idates these descriptions.

Gelly and Silver [] outlined the links between RL and MCTS soon after the inven-
tion of the latter: they describe the UCT algorithm as “a value-based reinforcement-
learning algorithm that focusses exclusively on the start state and the tree of subsequent
states”. Continuing this line of research [, ], Silver et al.[, ] advanced the un-
derstanding of RL and MCTS from two separate classes of algorithms into a common
one by devising a generalization of MCTS known as the temporal-difference (TD) search
(Section .).

Baier [] presents a concise “learning view on MCTS” in the introductory part
of his thesis. He covers some of the topics we presented in the previous chapters: he
links bandit problems with RL (due to their role in the UCT algorithm); links plan-
ning and search with learning; and examines the concepts of policy evaluation and
policy improvement in the UCT algorithm. He is the only researcher we know of that
links with RL also some MCTS enhancements: he compares the widespread use of
function-approximation techniques in RL with the popular enhancements AMAF []
and RAVE [], observing that both MCTS and RL make use of generalization tech-
niques that transfer knowledge to “similar” states. Several other studies (Section .)
were inspired by both fields, and although most of them acknowledge their relation,
they provide either only brief descriptions [, ] or none at all.

The RL view on planning and heuristic search, and its strong connection to learning,
is most comprehensively described in the canonical RL textbook by Sutton and Barto
[]. A second edition is in progress, where they also overview MCTS methods [] in
a similar way as in the TD search study [].

The studies emphasized above are the only ones that describe the relation between

Monte Carlo Tree Search Strategies 

MCTS and RL more in detail. Nevertheless, none of them is primarily focused on
the relation itself. For example, Silver et al.[] state that MCTS methods (including
UCT) equal TD search under “specific circumstances”, and that therefore they clas-
sify as RL methods; however, these circumstances were not explored, as their analysis
was heavily focused on improving playing strength in Go and finding good function-
approximation features for achieving this. Also, Baier [] is primarily focused on
comparing and evaluating MCTS enhancements for one-player and two-player do-
mains. Due to this, to our opinion the connection between the two fields has not been
thoroughly analysed and described yet. Not all the aspects of MCTS (as being more
novel) have been considered yet, and the gap between the two communities has also
not been given attention yet.

This is where our work comes in. Unlike previous studies, we explicitly highlight
the issue of the RL and MCTS communities growing apart and primarily focus on
improving the cross-awareness between them. We try to achieve this by providing
a comprehensive description of the relation between the two classes of methods they
represent, upgrading the descriptions from the previous studies and focusing on exactly
those “specific circumstances” in which TD search and MCTS are equal. We argue
that our work is the first that discusses the reasons behind this gap, that discusses the
different perspectives, that fully relates the terminology by explaining the dynamics
(both similar and different) with concepts and terms from both communities, that
surveys MCTS enhancements that implement similar dynamics as basic RL algorithms,
and that analytically explores how can bootstrapping be beneficial in basic MCTS-
like settings (i.e., when using an incremental table representation) and evaluates it on
complex real-time (arcade video) games.

Previous studies have already linked some basic concepts in MCTS and RL: they
explained the connection of MCTS to sample-based planning in RL (i.e., gathering
experience, requiring a simulative model, performing backups, using a control policy),
the connection to MDPs, the role of the exploration-exploitation dilemma, and the
concepts of policy evaluation and policy improvement. On top of this similarities,
we add the distinction between terminal and non-terminal rewards, online and of-
fline backups, every-visit and first-visit updating, on-policy and off-policy control, and
evaluating actions with afterstates or state-actions. Also, we acknowledge the MCTS
researchers that re-observed these dynamics from an MCTS perspective. And further-
more, we differentiate the original MDP-derived variant of the UCT algorithm from

  Survey of research inspired by both fields T. Vodopivec

the standard variant adopted by the community. Finally, besides the similarities listed
above, we also discuss the differences that basic RL theory cannot directly explain (the
novelties of MCTS) – a non-memorized part of the search space due to the use of
incremental (adaptive) representations.

. Temporal-difference search

The TD search algorithm [] is the first proper online integration of TD learning into
the MCTS framework: it generalizes MCTS by replacing Monte Carlo backups with
bootstrapping TD backups. Since our TDTS framework also extends MCTS with TD
backups, it is related to TD search. The two equal when TDTS is configured to use
on-policy control with an 𝜀-greedy policy, value function approximation (opposed to a
tabular representation), not to use incremental representations, but to pre-allocate the
representation for the whole state space (eliminating the playout policy and playout
values), and to update all the visited states in each iteration. Despite this similarity,
the two frameworks have been developed independently and with somewhat different
goals: TD search adopts TD backups in MCTS to improve tree search in combina-
tion with Go-specific heuristics, whereas we adopt them to prove the connection and
benefits of RL concepts in tree search algorithms in general. This led to two concep-
tually different frameworks – TDTS introduces the notions of a non-represented part
of the state space, a representation policy, playout value function, and playout policy
(the latter is known to MCTS, but not to RL). Therefore, it implements by default the
four MCTS phases, unlike TD search, which by default has no playout and expansion
phases, and no playout policy. Lastly, TD search seems centred on on-policy control
methods, whereas we introduce TDTS with more generality – it is intended also for
off-policy control or any other kind of backups. In general, TDTS can be understood
as an upgrade of TD search with the MCTS-inspired notions listed above, dealing with
an incremental state representation in a more principled way.

Unfortunately, despite the promising results, the TD search framework has not be-
come very popular among the game AI community and MCTS practitioners. We
suggest this might be because the analysed TD search algorithm was configured specif-
ically for Go, and based on RL-heavy background: much emphasis was put in function
approximation methods – in learning the weights of a heuristic evaluation function
based on features specific to Go, which makes their analysis specific to features useful
in this domain and makes the algorithm more difficult to implement in other domains.

Monte Carlo Tree Search Strategies 

By considering these observations, we introduce the TDTS framework more from a
games-and-search perspective. The example TDTS algorithms we experiment with are
focused on the default MCTS setting (with a UCB policy, tree representation, ex-
pansion and playout phases) and they do not include domain-specific features, thus
retaining more generality. In this way, they are easier to implement as an extension
of traditional MCTS algorithms, and they preserve the computational speed of the
original UCT algorithm, unlike TD search, which was observed as being significantly
slower []. Also our analysis of bootstrapping backups is focused on such a setting,
so that we more clearly convey their benefits. Lastly, we do not focus the empirical
evaluation on a single game, but on several games of different types, and achieve im-
provement also in combination with the UCB policy. With this we hope the ideas
will get better recognition in both communities.

. Research influenced by both MCTS and RL

Several researchers extended MCTS with RL mechanics or vice versa. The researchers
vary in how strongly they perceive the relation between the two fields: some understand
them as more (or completely) separate, some acknowledge a (strong) connection, and
some take it for granted without mentioning it.

Keller and Helmert [] propose the trial-based heuristic tree-search framework,
which is a generalization of heuristic search methods, including MCTS. In their frame-
work they analyse a subset of RL dynamics, specifically, the use of dynamic-prog-
ramming (DP) backups instead of Monte Carlo backups. Their MaxUCT algorithm
modifies the backpropagation to perform asynchronous value iteration [], with online
model-learning. Due to the backup of maximum values instead of means, which was
first explored in an MCTS setting by Coulom [] and later by Ramanujan and Selman
[], such algorithms are related to Q-learning []. Due to model-learning, they are
also related to adaptive real-time dynamic programming [] and the Dyna framework
[]. Feldman and Domshlak [] continue the work above and analyse the use of
DP updates in MCTS more in depth [].

Hester and Stone[] in their RL framework for robots TEXPLORE employ an
algorithm similar to the one we propose in this thesis (Section .). However, they
are not focused on the improvement of MCTS methods, nor their relation to RL,
but rather focus on their novel model-learning method [] and use UCT mainly
to guide the state-space exploration. They present an extension of the original UCT

  Survey of research inspired by both fields T. Vodopivec

with 𝜆-returns [], which they labelled as UCT(𝜆). Their method does not employ
a playout phase and does not expand the memory structure (tree) incrementally, and
most importantly, does not take the mean of the returns, but rather the maximum,
which differentiates it from standard on-policy MCTS algorithms. Our new algorithm
is similar to theirs, but it preserves all the characteristics of MCTS, while memorizing
the mean of returns, thus employing the Sarsa(𝜆) algorithm instead of Q(𝜆).

Simultaneously to our research, Khandelwal et al.[] devised four UCT variants
that employ temporal-difference updates in the backpropagation phase. They test the
algorithms on benchmarks from the International Planning Competition (IPC) and
on grid-world problems and observe that such backup methods are more beneficial
than tuning the UCT action-selection policy. Their findings are aligned with ours and
provide further motivation for applying bootstrapping backups to the MCTS setting.
One of their algorithms, MCTS(𝜆), is a combination of on-policy 𝜆-returns [] and
UCT, which updates the estimates similarly to the example configuration of the Sarsa-
UCT(𝜆) algorithm that we used for our experiments. Otherwise, Sarsa-UCT(𝜆) is
more general as it preserves all the RL-based parameters, whereas MCTS(𝜆) omits the
update step-size and reward discount rate. Also, MCTS(𝜆) backups do not consider the
playout phase; the algorithm adds all the visited states to the search tree. This is unlike
to Sarsa-UCT(𝜆), which distinguishes between the memorized and non-memorized
values. Also, in MCTS(𝜆), the offline TD-backups at the end of the episode are
slightly different, because they compute TD errors from the already-updated successor
estimate, instead of considering the previous, not-yet-updated value. Lastly, Sarsa-
UCT(𝜆) normalizes the value-estimates before passing them to the UCB selection
policy.

The researchers noted above mainly focused on backpropagation methods, but, as
described, some also extended the basic UCT algorithm with online model-learning.
Veness et al. [] were one of the first to explore this in an MCTS context. They
derived from RL theory to implement a generalization of UCT that uses Bayesian
model-learning, labelling it 𝜌UCT.

Besides Veness et al. [] and Silver et al.[], there are more researchers that ac-
knowledge a strong relation between RL and MCTS. Asmuth and Littman [] derive
from RL and MDPs when extending the forward search sparse sampling (FSSS) tech-
nique [] – a sample-based planner inspired by sparse sampling[] – to produce the
BFS algorithm, which they deem as “an application of Bayesian techniques for rein-

Monte Carlo Tree Search Strategies 

forcement learning”. They restate the RL view of learning and planning and reconfirm
the strong connection between the two from a Bayesian perspective. Silver and Veness
[] extend MCTS to partially observable MDPs, producing the partially observable
Monte-Carlo planning algorithm; Guez et al. [] further upgrade this algorithm
with principles from model-based RL into the Bayes-adaptive Monte-Carlo planner and
show it outperforms similar RL algorithms on several benchmarks. Rimmel and Tey-
taud [] explicitly acknowledge that MCTS is analogous to RL, and, inspired by this,
develop the contextual MCTS algorithm by enhancing the UCT playout phase with
tile coding (a known function approximation method in RL []). Wang and Sebag
[] develop the multi-objective MCTS (MOMCTS) algorithm and regard it as “the
first extension of MCTS to multi-objective reinforcement learning []”.

Some studies treat RL and MCTS more like two standalone groups of algorithms,
but use the value-estimations of both to develop stronger algorithms. Gelly and Sil-
ver [] were the first to combine the benefits of RL and MCTS. On the game of Go
they used offline TD-learned values of shape features from the RLGO player [] as ini-
tial estimates for the MCTS-based player MoGo []. Soon afterwards, Silver et al. []
extended this “one-time” interaction between RL and MCTS to an “interleaving” in-
teraction by defining a two-memory architecture, noted as Dyna- – an extension of
Sutton’s Dyna []. Dyna- employs a short-term memory that is updated by MCTS
during simulation (i.e., during planning), and a long-term memory that is updated
with RL methods based on real interaction with the environment. A combined value
from both memories is used for action selection. Daswani et al. [] suggest using
UCT as an oracle to gather training samples for RL feature-learning, which is simi-
lar to using Dyna- for feature-learning []. Finnsson and Bjornsson [] employ
gradient-descent TD [] for learning a linear function approximator online; they use
it to guide the MCTS tree policy and default policy in CadiaPlayer, a twice-champion
program in the General Game Playing competition []. Ilhan and Etaner-Uyar []
also learn a linear function approximator online, but through the true online Sarsa(𝜆)
algorithm [] and they use it only in the playout for informing an 𝜀-greedy default
policy; they improve the performance of vanilla UCT on a set of GVG-AI games.
Robles et al. [] employ a similar approach, but they learn the approximator already
offline and evaluate their approach on the game of Othello; they observe that guiding
the default policy is more beneficial than guiding the tree policy. Osaki et al. []
developed the TDMC(𝜆) algorithm, which enhances TD learning by using winning

  Survey of research inspired by both fields T. Vodopivec

probabilities as substitutes for rewards in non-terminal positions. They gather these
probabilities with plain MC sampling; however, as future research they propose to use
the UCT algorithm. This is similar to one of our algorithms, only that we derive from
the opposite direction – we take UCT and integrate TD learning in its framework.

The AlphaGo engine[] is certainly the most successful combination of RL and
MCTS estimates in modern history. In March , it overcame the grand challenge
of Go [] by defeating one of the world’s best human Go players. In the beginning of
, it competed in unofficial internet fast-paced matches against several Go world
champions, achieving 􏷥􏷟wins and no losses. Finally, in May , it officially defeated
the current top Go player in the world in a full-length three-game match, winning all
three games. AlphaGo, however, is much more than a combination of MCTS and
RL; it employs a multitude of AI techniques, including supervised learning, reinforce-
ment learning, tree search, and, most importantly, deep neural networks [], which are
key to its success. Its playout policy and value estimators are represented with neural
networks, both pre-trained offline from a database of matches and from self-play, and
then further refined during online play. An UCT-like selection algorithm, labelled
asynchronous policy and value MCTS algorithm, is used for online search. It observes
both the estimates from the pre-trained network and from Monte Carlo evaluations
(playouts) – it evaluates positions (and actions) as a weighted sum of the two estimates.

Lastly, although not directly influenced by MCTS, Veness et al.[] show the
benefits of combining bootstrapping backups with minimax search. Their algorithm
achieved master-level play in Chess, specifically due to the search component – it is a
successful example of a study on the intersection of the same two communities that we
are also addressing.


Analysis on toy benchmarks



  Analysis on toy benchmarks T. Vodopivec

We inquire whether swapping Monte Carlo (MC) backups with temporal-difference
(TD) backups increases the planning performance in MCTS-like algorithms. Hence,
our primary goal is testing whether an eligibility trace decay rate 𝜆 < 􏷠 performs better
than 𝜆 = 􏷠 when temporal-difference tree search (TDTS) algorithms are configured
similarly to MCTS. We also observe the optimal value of 𝜆 under different settings
and the performance-sensitivity of the new parameters of TDTS methods.

In this chapter we experiment with several TDTS algorithms on single-player toy
games, which allow us to evaluate a large number of configurations due to the low com-
putation time. In the next chapter we proceed with the evaluation on more complex
(real) games.

As previously noted, discounting (𝛾 < 􏷠) is not new to MCTS methods, hence,
assessing its impact experimentally is not in the focus of this study. Furthermore,
using a 𝛾 < 􏷠 causes an algorithm to search for the shortest path to the solution,
which is not in line with classic games that have only terminal outcomes – there, every
solution (victory) is equally optimal, regardless of its distance. Lastly, we have no need
for discounting, because there are no cycles in our games and function approximation
is not used. Due to all the above, we employ a discount rate 𝛾 = 􏷠 throughout all of
our experiments.

. Experimental settings

We detail the benchmarked algorithms and their configurations, benchmark tasks,
measured metrics, and experimental control variables.

Algorithms

We test a tabular first-visit Sarsa(𝜆) algorithm [] with and without using transposi-
tions, and with and without memorizing all nodes per episode – that is, we test an on-
policy TD(𝜆) control algorithm with replacing traces when building a directed graph
and when building a tree, when using a fixed representation model and when using
an incremental one. The control policies are either random, 𝜀-greedy, or UCB with
value-normalization as described in Section .. The playout control policy is random.
These configurations produce algorithms that span from on-policy MC control [] to
our Sarsa-UCT(𝜆) algorithm, including both the original [] and standard [] UCT
variants.

Monte Carlo Tree Search Strategies 

Benchmark tasks

The benchmark tasks are two single-player left-right toy games that base on a discrete
one-dimensional state space with the starting position in the middle and terminal states
at both ends (Figure .). The game Random walk gives a reward of +􏷠 when reaching
the rightmost state and rewards of 􏷟 otherwise, whereas the game Shortest walk gives a
reward of 􏷟 when reaching the rightmost state and a rewards of −􏷠 (a penalty) for every
other move. The latter is more difficult and could be interpreted as a shortest-path
problem. Variants of such games are popular among both the RL [] and MCTS
communities [, ]. A single play (an episode) could in theory be infinitely long
due to the player never reaching one of the goal states; however, for practical reasons
in our experiments we use a limit of 􏷠􏷟􏷟􏷟􏷟 time steps (moves) per episode.

𝑎􏷪
𝑎􏷫

𝑎􏷬 𝑎􏷭A B C D E

Figure .
A five-state left-right toy
game with an example
episode that starts from C
and terminates in E after
four actions.

On Random walk we test the quality of policy evaluation with a random control
policy, whereas on Shortest walk we test the quality of policy iteration with 𝜀-greedy
and UCB policies. We experiment on odd game-sizes from 􏷤 to 􏷡􏷠.

Metrics

We observe the quality of the value function, the one-step planning performance, and
the overall planning performance.

The quality of the value function is measured as the root mean square error (RMSE)
of the learned values from the optimal values: when transpositions are used we measure
the RMSE across all states, but when a tree is build we measure the RMSE only for
the root-node and its children (because, in a tree, several nodes might relate to the
same state, but those closer to the root have most impact when performing MCTS-
like planning).

The one-step planning performance is measured as the probability of selecting the
optimal action in the starting state by a fully greedy policy. It is analogous to the
failure rate [] and choice-error probability [] metrics.

  Analysis on toy benchmarks T. Vodopivec

The overall planning performance is measured as the expected number of time steps
required to complete the task – to reach the rightmost state from the starting state –
when following the same control policy as is used for learning; such policy is usually
stochastic, hence the expected number of time steps is computed from multiple repeats
given the current value estimates.

Control variables

The main control parameters are the eligibility trace decay rate 𝜆 ∈ [􏷟, 􏷠] and the avail-
able computational time per search. The latter is expressed as the number of simulated
episodes per search or as the number of simulated time steps (equivalent to the number
of simulated actions) per search.

Other configuration details of the algorithms: the update step-size 𝛼 is either in-
versely decreasing with the number of episodes that visited a state or it is held constant
on 􏷟.􏷟􏷠, 􏷟.􏷟􏷤, 􏷟.􏷠􏷟, or 􏷟.􏷡􏷟; the initialization values 𝑉init are set constant to −􏷤, 􏷟,
􏷟.􏷤, 􏷠, 􏷤, 􏷠􏷟, or 􏷡􏷟; the assumed playout values 𝑉playout equal 𝑉init or 􏷟; the 𝜀-greedy
control policy exploration rate 𝜀 is constant on 􏷟.􏷠 or linearly decreases from 􏷟.􏷠 to-
wards 􏷟; in each episode (iteration), the algorithm memorizes either all newly-visited
nodes or 􏷠, 􏷤, or 􏷠􏷟 newly-visited nodes, in order of visit. The reward discount rate 𝛾
and UCB exploration rate 𝐶𝑝 are fixed on 􏷠. The UCB exploration bias is computed
according to Algorithm  (line ).

The above produces millions of different configurations. For each configuration
we ran at least 􏷠􏷟􏷟􏷟􏷟 repeats and averaged the results. This was enough to achieve
insignificantly small confidence bounds on most experiments.

. Results and findings

The full extent of produced results exceeds the needs of this work, so here we present
only the most illustrative examples, and focus rather on a detailed summary of our
findings. Except where stated differently, the figures in this section portray the perfor-
mance on the Shortest walk toy game of size 􏷠􏷠 of a TDTS algorithm that employs
Sarsa(𝜆) with an 𝜀-greedy control policy (with 𝜀 = 􏷟.􏷠) and random playout control
policy, that builds a tree, does not use transpositions, adds one new node per episode,
sets initial values to 􏷟, and assumes playout values equal to initial values. The confi-
dence bounds are insignificantly small due to a high number of repeats.

Monte Carlo Tree Search Strategies 

The most relevant metrics

The two planning-performance metrics provide similar conclusions; although, the over-
all planning performance is arguably the most informative (Figures . and .), because
it considers the ranking of all memorized actions and not only of those in the root state.
This is even more relevant when the memory structure is preserved between searches –
when the MCTS tree is not discarded after each search – because actions deeper in the
tree might eventually become root-actions later on.

Simulated time steps

0 2000 4000 6000 8000 10000

E
x
p
e
c
te

d
 t
im

e
 s

te
p

s
 t
o
 c

o
m

p
le

te
 t
a

s
k

5

10

15

20

25

λ=0.0

λ=0.5

λ=0.9

λ=1.0 (MC backups)

Figure .
Overall planning perfor-
mance. The algorithm
performs best when 𝜆 > 􏷩
and 𝜆 < 􏷪. An optimal
policy wins this game in
five time steps.

When not using transpositions, both planning metrics show an improvement of
𝜆 < 􏷠 over 𝜆 = 􏷠, which is in contrast with the metric assessing the quality of the
value function (the RMSE of root-state children) – the latter shows a drastic increase
in RMSE when 𝜆 < 􏷠 (Figure .). This is expected, because a 𝜆 < 􏷠 causes the
value estimates to change more slowly; more updates are required to reach the target
backup value. However, devising an optimal policy does not require an optimal value-
function [] – it suffices to optimally rank the available actions to select the best one,
regardless of how much their estimates differ from the true values. This has been also
observed in MCTS, where different algorithms might have approximately equal er-
ror in value estimates, but very different regrets []. As a consequence, reducing the
variance in value estimates at the cost of higher bias can be beneficial, because the selec-
tion algorithm can then rank actions more accurately []. Considering all the above,

  Analysis on toy benchmarks T. Vodopivec

the two planning metrics we chose are more reliable; whereas expressing the quality of
the value function as RMSE is less suitable for such benchmarks. This is why we used
the overall planning performance (the expected number of time steps to complete the
task) as the main metric for our observations on the toy-game experiments.

Figure .
One-step planning per-
formance. When using a
𝜆 < 􏷪, the algorithm might
learn an optimal policy
significantly faster than
using lambda 𝜆 = 􏷪. Simulated time steps

0 2000 4000 6000 8000 10000

P
ro

b
a

b
ili

ty
 o

p
ti
m

a
l
fi
rs

t
a
c
ti
o
n

0.4

0.5

0.6

0.7

0.8

0.9

1.0

λ=1.0 (MC backups)

λ=0.9

λ=0.5

λ=0.0

Figure .
Quality of the value
function. Algorithms that
use a 𝜆 < 􏷪 converge
considerably slower
towards the optimal
value function. However,
this metric might be
misleading, because a
𝜆 < 􏷪 still improves on
the policy (Figures . and
.). Since a tree is built,
the root mean squared
error (RMSE) is observed
only for the root state and
its children. Simulated episodes

100 101 102 103

V
a
lu

e
 f

u
n
c
ti
o
n

 R
M

S
E

0

 5

10

15

20

25

λ=1.0 (MC backups)

λ=0.9

λ=0.5

λ=0.0

Monte Carlo Tree Search Strategies 

The benefits of TD backups and eligibility traces

The experiments confirm that 𝜆 < 􏷠 performs better than 𝜆 = 􏷠 under the majority
of configurations, implying that TD backups are beneficial over MC backups (visible
from nearly every figure in this section). This has been long-known for the default RL
setting [], that is, when building a directed graph and memorizing all nodes, and has
also been recently observed in specific MCTS configurations [, , ]. However,
it has not been observed yet in the default MCTS setting – when using an incremental
tree structure, when adding a limited number of nodes per episode, and when not using
transpositions. Furthermore, we observe that TD backups are much more beneficial
(produce a larger gain) exactly when not using transpositions (Figure .); when using
transpositions they produce only a marginal improvement in our toy games.

Eligibility trace decay rate λ

0 0.2 0.4 0.6 0.8 1

E
x
p
e
c
te

d
 t
im

e
 s

te
p
s
 t

o
 c

o
m

p
le

te
 t
a
s
k

8

10

12

14

16

18

20

22

24

26

Without transpositions

With transpositions

Figure .
TD backups (𝜆 < 􏷪) are
more beneficial when not
using transpositions. The
results were computed after
the algorithm simulated
􏷪􏷩􏷩􏷩 time steps (the
setting is the same as
described in the beginning
of this section).

The optimal value of the eligibility trace decay rate 𝜆 is usually larger than 􏷟 and
smaller than 􏷠, but 𝜆 = 􏷟 often performs worse than 𝜆 = 􏷠 (Figure .). There
is a 𝜆-threshold above which the performance is at least equal to using MC backups
(i.e., using 𝜆 = 􏷠) – a safe range for setting its value. In general, when increasing the
available computational time, the threshold and the optimal 𝜆 decrease towards some
value below 􏷠 (Figure .). Decreasing the size of the game (playing a game with less
states) has a similar effect.

  Analysis on toy benchmarks T. Vodopivec

Figure .
Sensitivity to the eligibility
trace decay rate 𝜆. With
increasing the number of
simulated time steps, the
optimal 𝜆 limits towards
some value below 􏷪. Eligibility trace decay rate λ

0 0.2 0.4 0.6 0.8 1

E
x
p
e
c
te

d
 t
im

e
 s

te
p
s
 t
o

 c
o
m

p
le

te
 t
a
s
k

10

20

30

40

50

100 simulated

time steps

1000 simulated

time steps

3000 simulated

time steps

10000 simulated

time steps

Figure .
Increasing the available
computation time or
decreasing the game size in
general shifts the optimal
𝜆 and the 𝜆-threshold
towards a lower value.
The threshold defines
below which 𝜆 value
the algorithm performs
worse than using ordinary
MC backups (a safe
range for setting the
parameter). When given
little computation time,
the algorithms perform
poorly regardless of 𝜆;
therefore the results are
very noisy up to a few
hundred simulated time
steps per move. Simulated time steps

0 2000 4000 6000 8000 10000

E
lig

ib
ili

ty
tr

a
c
e
 d

e
c
a
y
 r

a
te

 λ

0.0

0.2

0.4

0.6

0.8

1.0

Optimal λ at size 11

λ-threshold at size 11

Optimal λ at size 15

Optimal λ at size 7

Different control policies

A 𝜆 < 􏷠 also performs better regardless of the employed control policy (Figure .);
this confirms that (in this domain) the Sarsa-UCT(𝜆) algorithm is superior to the UCT
algorithm when 𝜆 is set to an informed value However, we stress that when the UCB

Monte Carlo Tree Search Strategies 

policy is used on tasks with unknown or non-terminal rewards (such as the Shortest
walk game), space-local value normalization is necessary for TD backups (𝜆 < 􏷠) to
improve on MC backups (as we explain below).

Simulated time steps

2000 4000 6000 8000 10000

E
x
p
e
c
te

d
 t
im

e
 s

te
p
s
 t

o
 c

o
m

p
le

te
 t
a
s
k

5

 6

 7

 8

 9

10

11

12

13

14

UCB1, =0.9Sarsa-UCT()

Linear -greedy, =0.5

Constant -greedy, =0.5

Linear -greedy, =1

Constant -greedy, =1

UCB1, =1UCT

Figure .
The performance of
different control policies.
All policies perform best
when 𝜆 < 􏷪; this confirms
that (in this domain) the
Sarsa-UCT(𝜆) algorithm
is superior to the UCT
algorithm. The UCB
policy (with space-local
value normalization)
performs best, but an
𝜀-greedy policy with a
linearly-decreasing 𝜀 also
performs comparably
well. The given values of
𝜆 are those that perform
best with their respective
policies. An optimal policy
wins this game in five time
steps.

The UCB policy with the proposed space-local value normalization technique con-
siderably outperforms the 𝜀-greedy policy with the constant exploration rate, and
slightly outperforms the 𝜀-greedy policy with the linearly-decreasing exploration rate.

The 𝜀-greedy policy with a decreasing exploration rate performs surprisingly well: it
produces an optimal policy in the end (as expected, since 𝜀 becomes 􏷟) and reaches a
near-optimal policy only slightly slower than the UCB policy. It requires the number
of simulated time steps (or episodes) to be known in advance, but despite this, it is still
simpler than UCB in the sense that it is unaffected by the reward distribution – it
does not require value-normalization.

The default value of the UCB exploration rate 𝐶𝑝 = 􏷠 performs well on most set-
tings. We did not experiment with a decreasing exploration rate 𝐶𝑝. Also, other values
of 𝐶𝑝 and 𝜀 that we have not tested might further improve the UCB and 𝜀-greedy
policies and even change the balance between them; due to this, we stress that our
experiments do not identify which policy performs best in general.

  Analysis on toy benchmarks T. Vodopivec

The UCB control policy and value normalization

The Shortest walk toy game is challenging for the UCB policy due to its (in theory)
unbounded cumulative reward: the algorithm gets a −􏷠 for each move, and a single
episode can last up to 􏷠􏷟􏷟􏷟􏷟 moves (we do not allow longer episodes). Due to this,
also when the algorithm performs MC backups (𝜆 = 􏷠), the UCB policy performs
considerably better with the help of our space-local value normalization instead of an
ordinary global normalization (Figure .). Even more important, when using UCB
with global normalization we could not improve on MC backups in any of our experi-
ments (Figure .); we discover that when the UCB policy is used with TD backups,
regardless of the setting, the space-local value normalization is necessary for a 𝜆 < 􏷠 to
prove beneficial. In such case, the gain is remarkable when transpositions are not used,
and still considerable when they are used (Figure .). Lastly, the space-local nor-
malization technique seems robust to the choice of initial values, playout values, game
size, and number of simulated time steps – it provides an improvement regardless of
these settings.

Figure .
Efficiency of space-
local normalization on
UCB with MC backups
(𝜆 = 􏷪). When not using
transpositions the gain is
remarkable, whereas when
using them it is minimal,
although still statistically
significant (not visible in
figure). Simulated time steps

0 2000 4000 6000 8000 10000

E
x
p
e
c
te

d
 t
im

e
 s

te
p

s
 t
o
 c

o
m

p
le

te
 t
a

s
k

5

10

15

20

25

30

35

40

45

50

Without transpositions
Global normalization

Without transpositions
Space-local normalization

With transpositions, any normalization

We implemented the global normalization both with constant bounds (on Shortest
walk we set the upper bound to the optimal score and the lower bound to −􏷠􏷟􏷟􏷟􏷟) as
well as with the algorithm adaptively changing the bounds according to the minimum
and maximum score encountered so far; however, there was no significant difference in

Monte Carlo Tree Search Strategies 

Simulated time steps

0 2000 4000 6000 8000 10000

E
x
p
e
c
te

d
 t
im

e
 s

te
p
s
 t
o

 c
o
m

p
le

te
 t
a
s
k

10

20

30

40

50

λ=1λ=0.99

λ=0.9λ=0.5

Space-local normalization

λ=0.9

λ=0.5λ=1

λ=0.99

Global normalization

Figure .
Global normalization and
space-local normalization
of value estimates when
using the UCB control
policy, without using
transpositions. Space-local
value normalization is
required for TD backups
(𝜆 < 􏷪) to improve on MC
backups (𝜆 = 􏷪).

Simulated time steps

0 2000 4000 6000 8000 10000

E
x
p
e
c
te

d
 t
im

e
 s

te
p

s
 t
o
 c

o
m

p
le

te
 t
a

s
k

6.5

7.0

7.5

8.0

8.5

λ=0.9 λ=0.5

λ=0.9λ=0.5

Space-local normalization

Global normalization

Figure .
Global normalization and
space-local normalization
of value estimates when
using the UCB control
policy and transpositions.

the performance of the two approaches. We have not experimented with hand-tuned
global bounds.

  Analysis on toy benchmarks T. Vodopivec

Impact of initial and playout values

When 𝜆 = 􏷠, initial values𝑉init have no impact (as explained in Section .), but when
𝜆 < 􏷠, they might improve the performance if set to an informed value (e.g., 􏷟.􏷤 in the
Random walk game), but may also seriously detriment it when set badly (e.g., 􏷤 in the
Shortest walk game when using 𝜆 = 􏷟.􏷠, Figure .). Setting playout values 𝑉playout

to equal initial values performs better than setting them to 􏷟, except when the initial
values are bad. In this sense, setting them to 􏷟 is slightly safer. Despite the above, on
most tasks it is enough to set the initial values approximately in the rewards range. This
can be achieved in many tasks, e.g., in classic two-player games the outcome is usually 􏷠
or 􏷟, suggesting initial values of 􏷟.􏷤 (neutral) or 􏷠.􏷟 (optimistic). Nonetheless, because
both initial and playout values have no impact when 𝜆 = 􏷠 and 𝛾 = 􏷠, MC backups
are safer regarding the bias. Although we did not experiment with 𝛾 < 􏷠, we believe
the impact of initial values would be similar as described above due to the discounting
mechanics of𝛾 (discussed in Section .); but, on the other hand, the impact of playout
values might be heavier due to the resulting TD errors in the playout phase (discussed
in Section .).

Figure .
The impact of initial
and playout values when
performing TD backups;
results when 𝜆 = 􏷩.􏷪.
Tuning initial values
might further increase
the performance, but also
detriment it when set
badly. The same holds for
playout values, although
their impact is smaller:
setting them to 􏷩 is slightly
safer, but produces less
gain. Simulated time steps

0 2000 4000 6000 8000 10000

E
x
p
e
c
te

d
 t
im

e
 s

te
p
s
 t

o
 c

o
m

p
le

te
 t
a
s
k

10

20

30

40

50

60

Vinit = Vplayout = 0

Vinit = 5, Vplayout = 0

Vinit = Vplayout = 5

Vinit = Vplayout = –5

Vinit = –5, Vplayout = 0

Monte Carlo Tree Search Strategies 

Impact of the update step-size, number of added nodes, and transpositions

In our first batch of experiments we observed that an inversely decreasing update step-
size 𝛼 performed better than a constant 𝛼 in all of the settings, so we have not experi-
mented with a constant 𝛼 in combination with the UCB policy. The benefits of this
scheme for updating 𝛼 were expected due to the convergence requirements of such
algorithms and because the task is stationary and small [].

We also reconfirm that adding only one node per episode instead of all nodes does
not critically inhibit convergence [, ]: the impact is minimal when using transposi-
tions and moderate when not using them (Figure .). In contrast, we observe the
performance might drop considerably when omitting the use of transpositions, i.e.,
when changing the representation from a graph to a tree; the amount of deterioration
is strongly affected by the value of 𝜆 (Figure .).

Simulated time steps

0 2000 4000 6000 8000 10000

E
x
p
e
c
te

d
 t
im

e
 s

te
p
s
 t

o
 c

o
m

p
le

te
 t
a
s
k

8

 9

10

11

12

13

14

15

With transpositions

Expanding all nodesExpanding one node

Expanding one node

Expanding all nodes

Without transpositions

Figure .
The impact of transposi-
tions and number of added
nodes per iteration; results
when 𝜆 = 􏷩.􏷲. The use of
transpositions has a bigger
impact on the performance
compared to memorizing
all the visited states in an
iteration.

. An analytic example

Our results show an overall faster convergence of TD(𝜆) updates over MC updates,
with the difference being largest in the early episodes of the algorithms. We analyse
why should TD(𝜆) updates work better in such case – in the early iterations of an
MCTS algorithm.

  Analysis on toy benchmarks T. Vodopivec

When using TD(𝜆), the values of the states visited during the playout phase may be
assumed to have initial values 𝑉init, such as 􏷟.􏷤. Let us assume that 𝛾 = 􏷠 and that the
task has only a terminal non-zero reward (e.g., the Random walk game). This results
in TD errors in the playout being zero; the only non-zero TD error is the final one,
owing to the final reward. The value of the root is updated as

𝑉𝑛(𝑆􏷩) = 𝑉𝑛−􏷪(𝑆􏷩) + 𝛼 􏿮𝛿􏷩 + 𝜆𝛿􏷪 + 𝜆􏷫𝛿􏷫 + ... + 𝜆𝑇−𝑃−􏷪𝛿𝑇−𝑃−􏷪 + 𝜆𝑇−􏷪𝛿𝑇−􏷪􏿱 ,

where 𝑃 is the length of the playout and 𝑇 is the total length of an episode. For
example, in the early MCTS iterations, the only nodes in the tree are the root node
and its children. In such case

𝑉𝑛(𝑆􏷩) = 𝑉𝑛−􏷪(𝑆􏷩) + 𝛼 􏿮𝛿􏷩 + 𝜆𝑇−􏷪𝛿𝑇−􏷪􏿱

= 𝑉𝑛−􏷪(𝑆􏷩) + 𝛼 􏿮􏷟 + 𝜆𝑃(𝑅𝑇 − 𝑉init)􏿱 .

Therefore, when 𝜆 < 􏷠, a smaller 𝑃 results in a larger update. In this way, those actions
that lead to shorter simulations contribute more to the update, causing child nodes to
differ in value regarding how fast the final state was reached. On the other hand, when
𝜆 = 􏷠 there is no difference in state values, since 𝜆𝑃 is always 􏷠.

By using a simple Random Walk example, we show the difference between these
two cases: 𝜆 < 􏷠 and 𝜆 = 􏷠. Suppose the game has five states: A, B, C, D and
E (Figure .). There are two possible actions, leading to the left or right neighbour
state. C is the initial state (𝑆􏷩 = C), whereas A and E are terminal states. The only
reward 𝑅 = 􏷠 is delivered when going from D to E, otherwise 𝑅 = 􏷟. An example
episode would consist of taking actions

𝑎􏷩 = left,
𝑎􏷪 = right,
𝑎􏷫 = right, and

𝑎􏷬 = right;

the final state is E at time 𝑡 = 􏷣. At the end of the episode, a TD(𝜆) algorithm with
replacing traces produces the eligibility traces

𝑒􏷭(B) = 𝜆􏷫,
𝑒􏷭(C) = 𝜆􏷪, and

𝑒􏷭(D) = 𝜆􏷩 = 􏷠.

Monte Carlo Tree Search Strategies 

Although

𝑉􏷪(B) = 𝑉􏷩(B) + 𝛼[𝛿𝑡 + 𝜆𝛿𝑡+􏷪 + 𝜆􏷫𝛿𝑡+􏷫],

in the beginning all the TD errors except 𝛿𝑡+􏷫 are 􏷟, and 𝛼􏷪 = 􏷠/􏷠 = 􏷠. Therefore,

𝑉􏷪(B) = 𝑉􏷩(B) + 𝛼𝜆􏷫𝛿𝑡+􏷫
= 𝑉init + 𝛼𝜆􏷫(𝑅𝑇 − 𝑉init)
= 􏷟.􏷤 + 𝜆􏷫(􏷠 − 􏷟.􏷤)
= 􏷟.􏷤(􏷠 + 𝜆􏷫).

Similarly,

𝑉􏷪(C) = 􏷟.􏷤(􏷠 + 𝜆), and

𝑉􏷪(D) = 􏷟.􏷤(􏷠 + 𝜆􏷩) = 􏷠.

We now compare what happens when 𝜆 < 􏷠 and when 𝜆 = 􏷠. In the first case, say
𝜆 = 􏷟.􏷦,

𝑉􏷪(B) = 􏷟.􏷤(􏷠 + 􏷟.􏷣􏷨) = 􏷟.􏷦􏷣􏷤,
𝑉􏷪(C) = 􏷟.􏷤(􏷠 + 􏷟.􏷦) = 􏷟.􏷧􏷤, and

𝑉􏷪(D) = 􏷠.

When 𝜆 = 􏷠,

𝑉􏷪(B) = 𝑉􏷪(C) = 𝑉􏷪(D) = 􏷠.

Observe that at 𝜆 < 􏷠 the values of the states B, C and D monotonically increase,
whereas at 𝜆 = 􏷠 they are all 􏷠. In the former case, the best greedy action at C would
be going right, whereas in the latter both left and right would be equally good. Further
note that at 𝜆 = 􏷠, another episode (or more consequential episodes) finishing in E
would still leave all state values at 􏷠.

Performance on real games



  Performance on real games T. Vodopivec

In the previous chapter we assessed the benefits of temporal-difference tree search
(TDTS) configurations on single-player toy games. Here, we continue with the eval-
uation of Sarsa-UCT(𝜆) (Algorithm ) on classic two-player games, where it learns
from self-play, and on real-time single-player video games, where little computational
time is available per move.

. Classic two-player adversary games

We investigate the planning performance of TD backups in MCTS-like algorithms
when learning from simulated self-play on adversary multi-agent tasks. For this, we
measure the playing strength of the Sarsa-UCT(𝜆) algorithm on the classic games of
Tic-tac-toe, Connect four, Gomoku, and Hex. These games have been frequently used
for benchmarking MCTS algorithms[].

The games

We briefly describe the classic two-player games we used as benchmark problems in our
experiments. In all of them players take turns in placing “pieces” on an initially empty
“board”, one piece at a time. Players might either win, draw, or lose – the outcome
is defined only in terminal positions. Therefore, we implement the games to feedback
a reward of 􏷠 for a win, 􏷟.􏷤 for a draw, and 􏷟 for a loss in terminal positions; and a
reward of 􏷟 in non-terminal positions.

Tic-tac-toe (also known as Noughts and Crosses) is played on a 􏷢 × 􏷢 board with a
winning condition of three pieces in a straight line (either horizontally, vertically, or
diagonally). Although the first player has an advantage, the game always end in a draw
if both players play optimally. Because of its small search space, Tic-tac-toe can be
regarded as a toy game. Here, we evaluated the algorithms at lower computational
times per move (compared to other games), otherwise all matches would end in draws.

Gomoku (also known as Five in a row or Gobang) is an extension of Tic-tac-toe: the
board is a square of arbitrary size (the side is usually of even length in range [􏷨, 􏷠􏷨]) and
the first player that places five own pieces in a straight line wins. It can be understood
as a very simplified variant of the game of Go. The basic version of Gomoku was
solved up to boards of size 􏷠􏷤 × 􏷠􏷤. Additional rules have been proposed to lower the
advantage of the first player; however, our implementation does not use them.

In Connect four (also known as Four in a row) the players alternate in dropping
pieces from the top of a fixed-size board that is seven column wide and six rows high.

Monte Carlo Tree Search Strategies 

They may choose any column that is not filled up. The winning player is the first who
connects at least four own pieces in a straight line. The game has been solved with the
outcome that the first player can force a win with perfect play if starting in the middle
column.

In Hex the players alternate in placing pieces on empty places on an arbitrary-sized
rhombus board with a hexagonal grid. The winner is the first player to form a con-
nected path of own pieces between two opposing borders of his own colour. The game
cannot end in a draw. It was solved for board sizes up to 􏷧 × 􏷧. The first player has
an advantage, so a “pie rule” is generally used after the first move; however, we do not
implement it.

Configuration

The playing strength of the evaluated algorithm is expressed as the average win rate
against a standard UCT player; draws count towards 􏷤􏷟%. Both players have an equal
amount of available time per move and equal configuration: both learn from simulated
self-play, do not use transpositions, add one new node per episode, preserve the tree
between moves, and output the action with the highest value after each search.

The Sarsa-UCT(𝜆) algorithm is configured to compute TD errors from one-ply
successor states, same as, e.g., the TD-Gammon algorithm [], and in contrast to
the TD search algorithm [], which computed them from two-ply successors on the
game of Go (i.e., in this way ignoring the values of opponent’s simulated moves).

To mimic an adversary setting, we implement the minimax behaviour in Sarsa-
UCT(𝜆): we extend Algorithm  to compute 𝑄-values (line ) with −𝑉norm instead
of 𝑉norm (i.e., to select the lowest-evaluated actions) when simulating the opponent’s
moves. This equals to modelling the real opponent player as if it is using the same
learning (or search) algorithm.

The experimental control parameters are the eligibility trace decay rate 𝜆, the ex-
ploration rate 𝐶𝑝, and the available time per move, which is expressed as the num-
ber of simulated time steps (simulated moves) per real move. The fixed parameters
are 𝛾 = 􏷠, 𝑉init = 􏷟.􏷤, and 𝑉playout = 𝑉init. The update step-size 𝛼 decreases inversely
with the number of node visits (as given in Algorithm , line ). We experiment
with the number of simulated time steps per move from 􏷠􏷟􏷪 to 􏷠􏷟􏷮 and with board
sizes of Gomoku and Hex from × to × (Tic-tac-toe and Connect four have
fixed board sizes). The results presented in this section are averaged from at least 􏷡􏷟􏷟􏷟

  Performance on real games T. Vodopivec

and up to 􏷡􏷟􏷟􏷟􏷟 repeats; the 􏷨􏷤%-confidence bounds are insignificantly small, except
where stated otherwise.

Parameter optimization

For each experimental setting we first found the exploration rate𝐶𝑝 where two standard
UCT players performed most equally one against the other, i.e., where both had the
most equal win and draw rates for each starting position (Figure .). Then, we fixed
one UCT player on this 𝐶𝑝 value, and re-optimized the 𝐶𝑝 value of the other player
to check if there exists a counter-setting that performs better (Figure .); however,
we found none – the optimal value of 𝐶𝑝 did not significantly change in any setting.
Finally, we swapped one UCT player with the Sarsa-UCT(𝜆) player, set it the same
𝐶𝑝 value, and searched for its highest win rate with regard to 𝜆 (Figure .). The
parameter 𝐶𝑝 was optimized with a resolution of 􏷟.􏷟􏷤 in range [􏷟, 􏷠.􏷤], whereas 𝜆 was
tested at values 􏷟, 􏷟.􏷠, 􏷟.􏷡, 􏷟.􏷣, 􏷟.􏷥, 􏷟.􏷧, 􏷟.􏷨, 􏷟.􏷨􏷤, 􏷟.􏷨􏷨, 􏷟.􏷨􏷨􏷨, 􏷟.􏷨􏷨􏷨􏷨, and 􏷠. The
optimizations were performed either manually or with a linear reward-penalty learning
automata [].

Figure .
First step of parameter
optimization: search of
the exploration rate 𝐶𝑝
where two standard UCT
players perform most
equally. Example results
for Tic-tac-toe at 􏷪􏷩􏷩 and
􏷪􏷩􏷩􏷩 simulated time steps
per move.

Exploration rate C
p

0 0.5 1 1.5 2

D
ra

w
 r

a
te

0.20

0.30

0.40

0.50

0.60

0.70

0.80

100 simulated time steps per move

1000 simulated time steps per move

Monte Carlo Tree Search Strategies 

Exploration rate C
p

0 0.5 1 1.5 2

W
in

 r
a
te

0.42

0.44

0.46

0.48

0.50

0.52

100 simulated time steps per move

1000 simulated time steps per move

Figure .
Second step of parameter
optimization: search of a
exploration rate 𝐶𝑝 that
yields highest performance
against an opponent that
uses the 𝐶𝑝 value found
in the first optimization
step. Example results for
Tic-tac-toe at 􏷪􏷩􏷩 and
􏷪􏷩􏷩􏷩 simulated time steps
per move.

Eligibility trace decay rate λ

0 0.2 0.4 0.6 0.8 1

W
in

 r
a

te

0.35

0.40

0.45

0.50

0.55

0.60

100 simulated time steps per move

1000 simulated tim
e steps per m

ove

Figure .
Last step of parameter
optimization: search
of the eligibility trace
decay rate 𝜆 for the Sarsa-
UCT(𝜆) algorithm that
yields the highest gain
in performance over the
standard UCT algorithm.
Example results for Tic-
tac-toe at 􏷪􏷩􏷩 and 􏷪􏷩􏷩􏷩
simulated time steps per
move.

The benefits of TD backups

Our measurements show that tuning the eligibility trace decay rate 𝜆 increases the per-
formance of the algorithm; however, the optimal value of 𝜆 strongly depends on the
amount of computation time available per move (Figures . and .): by increasing

  Performance on real games T. Vodopivec

the number of simulated time steps the optimal value shifts towards 􏷠. Due to the
this, increasing the number of simulated time steps per move also strongly impacts the
gain in performance of Sarsa-UCT(𝜆) over the UCT algorithm. Figure . confirms
our theoretical expectation (from Chapters  and ) that the UCT algorithm behaves
identically to Sarsa-UCT(􏷠) – their performances are equal, despite our distinct im-

Figure .
The sensitivity of Sarsa-
UCT(𝜆), expressed as
win rate against the
UCT algorithm, to the
parameter 𝜆 and the
available computation time
on Gomoku and Hex.
Increasing the number of
simulated time steps per
move causes the optimal
value of 𝜆 to shift towards
􏷪. Eligibility trace decay rate λ

0 0.2 0.4 0.6 0.8 1

W
in

 r
a
te

0.00

0.20

0.40

0.60

0.80

1.00

Gomoku 7x7

Hex 7x7

10000 time steps per move

1000 time steps per move

Gomoku 7x7

Hex 7x7

Figure .
The sensitivity to 𝜆 and
the available computation
time on Tic-tac-toe. The
results show that UCT
behaves identically to
Sarsa-UCT(􏷪), as expected
(Chapters  and ) –
their performances are
equal, despite our distinct
implementations of the
two algorithms. Simulated time steps per move

100 101 102 103

W
in

 r
a

te

0.30

0.35

0.40

0.45

0.50

0.55

0.60

λ=0.0

λ=0.1

λ=0.9
λ=1.0 (MC backups)

Monte Carlo Tree Search Strategies 

plementations of the two algorithms.

Sarsa-UCT vs. UCT

Our main results show that Sarsa-UCT(𝜆) outperforms UCT on all tested games when
the amount of available time per move is low, and that it performs at least as well as
UCT when otherwise (Figure .). This confirms that TD backups converge faster also
when learning from self-play. The gain diminishes when increasing the time because
both algorithms play closer to optimal and more matches end in draws, but primarily
because the optimal value of 𝜆 goes towards 􏷠, which effectively results in both algo-
rithms behaving equally – for this reason Sarsa-UCT(𝜆) cannot perform worse than
UCT even when further increasing the computation time. On the other hand, the ef-
fect of enlarging the state space is inverse (e.g., a larger board size in Gomoku and Hex)
– it increases the gain of Sarsa-UCT(𝜆) and lowers the optimal 𝜆 value. Considering
the above, the drop in gain of the Sarsa-UCT(𝜆) algorithm when increasing the time
is directly related to the optimal value of 𝜆. In turn, what is the optimal value of 𝜆
in general (what affects it) has been one of the central research challenges in the field
of reinforcement learning for decades [] (and its solution is not in the scope of this
thesis). See Appendix A for full results on two-player games.

Simulated time steps per move

102 103 104 105

W
in

 r
a

te
 a

g
a

in
s
t

U
C

T
 [

%
]

50

 60

 70

 80

 90

100

Tic-tac-toe

Connect four

Hex 7x7

G
om

oku 7x7

G
om

oku 9x9

Gomoku 11x11

Gomoku 13x13
Hex 11x11

Figure .
Performance of Sarsa-
UCT(𝜆) on classic two-
player games. Value-
normalization is not used;
otherwise, the advantage
of Sarsa-UCT over UCT
would be even higher
(Figure .).

Since these two-player games produce non-zero rewards only in terminal states,
UCB performs well also without value normalization (the results in Figure . show
such configuration). Still, even on these games, space-local value normalization fur-

  Performance on real games T. Vodopivec

ther increases the performance when 𝜆 < 􏷠 and generally decreases the sensitivity to
𝜆 (Figure .).

Figure .
The benefit of space-
local value normalization
on Sarsa-UCT(𝜆), ex-
pressed as win rate against
UCT. Example results on
Gomoku × at 􏷪􏷩􏷩􏷩􏷩􏷩
simulated time steps per
move and 𝐶𝑃 = 􏷩.􏷩􏷮.
Each point was computed
from at least 􏷭􏷩􏷩􏷩 repeats. Eligibility trace decay rate λ

0.7 0.75 0.8 0.85 0.9 0.95 1

W
in

 r
a
te

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Space-local normalization

Without normalization

Figure .
Sensitivity of Sarsa-
UCT(𝜆) to 𝜆 and 𝐶𝑝
expressed as win rate
against the standard UCT
player on Tic-tac-toe.
Best performance is at
approximately 𝜆 = 􏷩.􏷯􏷮
and 𝐶𝑝 = 􏷩.􏷪; note the
poor performance when
𝜆 is near 􏷩. Example
results at 􏷪􏷩􏷩 simulated
time steps per move.
(Figure granulation is
due to a lower number of
experimental repeats per
point – 􏷪􏷩􏷩􏷩.)

Lastly, in preliminary experiments we observe that concurrently tuning both 𝜆 and
𝐶𝑝 might further increase the performance. This is because the value of 𝜆 affects the

Monte Carlo Tree Search Strategies 

magnitude of TD updates, and consequently also the bounds for value normalization
(required by the UCB policy). Therefore, it also affects the optimal value of 𝐶𝑝:
for example, in Tic-tac-toe with 􏷠􏷟􏷟 simulated time steps per move, at 𝜆 = 􏷠, the
optimal value of 𝐶𝑝 is approximately 􏷟.􏷢, whereas at 𝜆 = 􏷟.􏷠􏷤, its optimal value is
approximately 􏷟.􏷟􏷤 (Figure .). In contrast, the value of 𝐶𝑝 does not seem to affect
the optimal value of 𝜆; however, we tested this only in the Tic-tac-toe setting described
above – there the optimal 𝜆 = 􏷟.􏷥􏷤 regardless of the 𝐶𝑝 value.

. Real-time video games

We assess the performance of Sarsa-UCT(𝜆) also on tasks where there is little compu-
tational time available per decision. Real-time video games are examples of such tasks.
The General Video Game AI (GVG-AI) [] framework is especially suitable for this, as
it includes a wide selection of such games and, furthermore, provides an excellent plat-
form for comparative evaluation through the GVG-AI competition. The results from
the competitions and the source code of the algorithms presented in this section are
available on the GVG-AI web site (www.gvgai.net).

The General Video Game AI framework

The GVG-AI framework [] is a code package in Java for implementing and evalu-
ating AI players (i.e., learning and planning algorithms) for two-dimensional arcade
games that take inspiration from early computer games (e.g., Pac-man, Sokoban, The
legend of Zelda, etc.). It contains several example algorithms, including two variants
of the UCT algorithm, and offers for experimentation a large set of different games –
􏷠􏷡􏷟 single-player and 􏷥􏷟 two-player games to date – with 􏷤 levels for each game.

The games run in real time and enforce a 􏷣􏷟-milliseconds time limit per move.
During this time, the AI players may determine the best moves by simulating episodes
with the help of a forward model of the game. At each moment, the game returns
the same observations as would be seen by a human player: the time step, score (a
real number), victory status (win, loss, ongoing), a list of available actions, a list of
visible objects and their details, and a history of interaction-events. In terms of MDPs
(Section .), states can be uniquely identified from the list of current objects and the
history of events, whereas rewards can be modelled as changes in the victory status and
score. The games have up to six actions and up to hundreds of observation objects per
state, and are usually limited to a duration of 􏷡􏷟􏷟􏷟 time steps (sequential actions).

www.gvgai.net

  Performance on real games T. Vodopivec

The General Video Game AI competition

The GVG-AI competition [, ] ranks AI algorithms based on their performance
on the games from the GVG-AI framework. At each competition event, the algorithms
– also refereed to as controllers – face a set of 􏷠􏷟 new and previously-unseen games and
get evaluated according to three goals (metrics): the primary goal of each algorithm is
to maximize its win rate (i.e., changing the victory status to “win”), the secondary goal
is to maximize its score, and the tertiary goal is to minimize the number of required
time steps.

On single-player competitions, the algorithms get executed 􏷤􏷟􏷟 times in total: 􏷠􏷟
times on each of the 􏷤 levels of each of the 􏷠􏷟 games. The average of each of the three
metrics gets computed for each game from its 􏷤􏷟 executions. Then the algorithms get
ranked separately for each game, with the secondary metric (score) being a tie-breaker
in case the first metric (win rate) equals among more contestants; the tertiary metric
(number of time steps) is another tie-breaker in case both the primary and secondary
metric equal. Then a Formula- score system is applied for each game: the algorithms
get awarded points in respect to their rank – from the first to the tenth position the
points go as following: 􏷡􏷤, 􏷠􏷧, 􏷠􏷤, 􏷠􏷡, 􏷠􏷟, 􏷧, 􏷥, 􏷣, 􏷡, and 􏷠. The rest get 􏷟 points.
Finally, the points are summed across all games and the algorithms get ranked according
to them – the winner is the algorithm with most points.

On two-player competitions, the algorithms are executed in pairs in a round-robin
fashion, resulting in 􏷥􏷟􏷟􏷟 executions per algorithm; the ranking is similar, but uses a
Glicko rating (an improvement of the Elo rating).

Two Sarsa-UCT controllers

We develop two Sarsa-UCT(𝜆) controllers for GVG-AI games: one for single-player
competitions (labelled ToVo) and one for two-player competitions (labelled ToVo).
Both are implemented as an extension of the standard UCT algorithm provided in the
GVG-AI framework (the latter is labelled as the sampleOLMCTS controller).

Since we are mainly interested in the benefit of TD backups, we configure the single-
player Sarsa-UCT(𝜆) to fully match UCT (𝛾 = 􏷠, and 𝑉􏸢􏸧􏸢􏸭 = 𝑉􏸩􏸥􏸚􏸲􏸨􏸮􏸭 = 􏷟), except
for the use of space-local value normalization and the eligibility trace decay rate 𝜆,
which is the only control parameter. The exploration rate 𝐶𝑝 = 􏷠 in both algorithms
and is used according to Algorithm  (line ). The algorithm observes neither the

Monte Carlo Tree Search Strategies 

list of objects nor the history, so it does not identify states – it builds a tree based
on actions, without using transpositions. It regards action-sequences as (approximate)
identifiers of the current state, thus ignoring the possible stochasticity of the underlying
task (assuming a deterministic task). Therefore, in stochastic GVG-AI games, multiple
successor states that derive from the same sequence of actions get evaluated as one (as
mentioned in Section .). The algorithm truncates simulations after 􏷠􏷟 plies from the
current game state; in this way, it simulates a higher number of shallow episodes rather
than few deep ones, which is analogous to a more breadth-first-search behaviour. The
tree is discarded after each move and built anew in the next search. After each search,
it outputs the action with the highest number of visits. We leave the reward-modelling
the same as in the framework-given UCT implementation: the algorithm observes
rewards only at the end of simulations and computes them by

𝑅 = 􏷠􏷟􏷰 ⋅ 𝑣𝑖𝑐𝑡𝑜𝑟𝑦𝑆𝑡𝑎𝑡𝑢𝑠 + 𝑠𝑐𝑜𝑟𝑒 , (.)

where 𝑣𝑖𝑐𝑡𝑜𝑟𝑦𝑆𝑡𝑎𝑡𝑢𝑠 is either 􏷠 (win), −􏷠 (loss), or 􏷟 (non-terminal state). Before
applying the UCB equation, the algorithms normalize the value estimates to [􏷟, 􏷠]
based on the minimum and maximum return observed so far.

In contrast to our single-player controller, we configure the two-player Sarsa-UCT(𝜆)
controller to exploit more of its potential. The algorithm observes not only the final
reward, but also intermediate rewards (the same as the original UCT algorithm) by
computing the difference in score after every game tick. It expands the tree with all
the visited nodes in an iteration and retains it between searches. It gradually forgets
old knowledge via a more sophisticated update scheme for 𝛼 and it searches for the
shortest path to the solution by discounting rewards with a 𝛾 < 􏷠. The opponent is
modelled as a completely random player and is assumed as part of the environment
– its value-estimates are not memorized. The scoring considers the win status of the
opponent with a weight of 􏷢􏷢%, compared to the weight of the own win state. Lastly,
the algorithm is augmented with two specifically-designed enhancements related to the
MCTS playout phase:

Weighted-random playouts. The algorithm performs a weighted random selec-
tion of actions in the playout. The weight of each action is set uniformly ran-
domly at the beginning of each playout. This exploits the two-dimensionality
of GVG-AI games, causing the avatar to move further away from its current
position – to be more explorative and revisit the same states less often.

  Performance on real games T. Vodopivec

Dynamic playout length. The playouts of GVG-AI algorithms are often trun-
cated after a number of actions to produce a higher number of shallow itera-
tions instead of few deep ones. The ToVo controller starts each search with
short playouts and then it prolongs them as the number of iterations increases.
This emphasizes the search in the immediate vicinity of the avatar, and, when
there is enough computation time, to search also for more distant goals that
might be otherwise out of reach.

Apart from these enhancements, the algorithm uses no prior knowledge and no offline
training. During development, we manually tuned the learning parameters with exper-
imentation. We settled on the following parameter values: exploration rate 𝐶𝑝 = √􏷡,
reward discount rate 𝛾 = 􏷟.􏷨􏷨, eligibility trace decay rate 𝜆 = 􏷟.􏷥, forgetting 􏷤􏷟% of
knowledge after each search, and dynamic playout length starting at 􏷤 and increasing
by 􏷤 every 􏷤 iterations up to a maximum length of 􏷤􏷟.

Local experiments on single-player games

Before participating in the competitions, we tested whether our single-player Sarsa-
UCT(𝜆) controller performs better than the UCT controller from the GVG-AI frame-
work. We use the space-local value normalization also in the latter, but otherwise we
leave it equal – this is done to fairly assess the impact of TD-backups by ruling out the
impact of value-normalization.

We experimentally measure the win rate and score of the UCT and Sarsa-UCT(𝜆)
algorithms on the GVG-AI single-player training sets , , and  (each set consists
of 􏷠􏷟 games). The only control parameter is the eligibility trace decay rate 𝜆 – we
test the values 􏷠, 􏷟.􏷨􏷤, 􏷟.􏷨, 􏷟.􏷧, 􏷟.􏷥, 􏷟.􏷢, 􏷟.􏷠, and 􏷟.􏷟. We perform at least 􏷤􏷟 re-
peats for each of the 􏷤 levels of each of the 􏷢􏷟 games. The experiments run in real-
time on an Intel Core i- . GHz CPU with  GB of  MHz DDR
RAM; the algorithms produce roughly from 􏷡􏷟􏷟 to 􏷡􏷟􏷟􏷟 simulated moves (calls to the
StateObservation.advance() procedure in the GVG-AI framework) per real move
(i.e., 􏷣􏷟 milliseconds), depending on the game.

The results (Table .) reveal that Sarsa-UCT(𝜆) improves on UCT when using a
𝜆 < 􏷠; the gain in score is higher than the gain in win rate. On this set of 􏷢􏷟 games,
a 𝜆 of 􏷟.􏷥 performs best both in terms of win rate and score, as well as in terms of
robustness – it elevates the win rate in 􏷤􏷢% of the games, while lowering it in 􏷢􏷦% of
them, and elevates the score in 􏷦􏷟% of the games, while lowering it in 􏷡􏷢% of them.

Monte Carlo Tree Search Strategies 

The relative increase in win rate is 􏷥% and in score is 􏷧% in the median across games
(not presented in the table).

Table .
Performance of Sarsa-UCT(𝜆) on the first 􏷬􏷩 games of the GVG-AI framework. A setting of 𝜆 = 􏷪 corresponds to the UCT
algorithm.

Eligibility trace decay rate 𝜆
􏷠 􏷟.􏷨 􏷟.􏷧 􏷟.􏷥 􏷟.􏷢 􏷟.􏷠 􏷟 Best**

W
in

ra
te Average [] 􏷢􏷡.􏷢 􏷢􏷢.􏷟 􏷢􏷢.􏷣 􏷢􏷢.􏷧 􏷢􏷢.􏷟 􏷢􏷡.􏷣 􏷧.􏷠 􏷢􏷥.􏷠

Count better* 𝑛/𝑎 􏷠􏷠 􏷠􏷢 􏷠􏷥 􏷠􏷢 􏷧 􏷟 􏷠􏷨
Count worse* 𝑛/𝑎 􏷠􏷡 􏷠􏷠 􏷠􏷠 􏷠􏷣 􏷠􏷦 􏷡􏷥 􏷟

Sc
or

e

Average 􏷣􏷠.􏷧 􏷣􏷣.􏷤 􏷣􏷥.􏷧 􏷤􏷟.􏷨 􏷣􏷦.􏷨 􏷣􏷠.􏷡 􏷡.􏷡 􏷤􏷢.􏷧
Count better* 𝑛/𝑎 􏷠􏷣 􏷠􏷡 􏷡􏷠 􏷠􏷥 􏷠􏷟 􏷟 􏷡􏷢
Count worse* 𝑛/𝑎 􏷠􏷢 􏷠􏷣 􏷦 􏷠􏷡 􏷠􏷦 􏷡􏷥 􏷟

*Number of games (out of 􏷢􏷟) where Sarsa-UCT(𝜆) performs better/worse than UCT.

**Assuming the most suitable value of 𝜆 is used for each game.

Although each value presented above is an average from at least 􏷦􏷤􏷟􏷟 sample results,
we cannot give confidence bounds due to the large variance in win rates and scores
across different games. We took this into consideration when performing the statistical
analysis and, although not presented here, observing the distributions of results more
in detail leads to similar conclusions.

Competition results

Although 𝜆 = 􏷟.􏷥 performed best in local single-player experiments, 𝜆 = 􏷟.􏷧 seemed
to perform similarly well on the first test set on the GVG-AI server, so at first we
decided to settle for a slightly safer setting (a value closer to 􏷠 is considered safer, as
explained in Section .); therefore, we submitted a Sarsa-UCT(􏷟.􏷧) controller to the
CIG’ and CEEC’ single-player GVG-AI competitions, and Sarsa-UCT(􏷟.􏷥) to
subsequent competitions.

So far, the majority of the competitions resulted in favour of our controllers. The

  Performance on real games T. Vodopivec

Table .
Results from GVG-AI single-player competitions.

Single-player competitions

CIG’ CEEC’ GECCO’ CIG’ GECCO’

Final rank

(a lower value is better)

Sarsa-UCT / / / / /

Standard UCT / / / / /

Ranking points
Sarsa-UCT     

Standard UCT     

Average win rate []
Sarsa-UCT . . . . .

Standard UCT . . . . .

Average score
Sarsa-UCT . -. . -. .

Standard UCT . -. . -. .

Count games (out of )

where Sarsa-UCT is

better/worse than UCT

Win and score + - +/- +/- +/- +/-

Win +/- +/- +/- +/- +/-

Score +/- +/- +/- +/- +/-

single-player variant outperformed the framework-given UCT controller in 􏷣 out of 􏷤
competitions (Table .), and, most importantly, our two-player version outperformed
all other controllers and ranked first in 􏷡 out of 􏷢 competitions (Table .), and has also
been achieving top positions on all two-player training sets on the GVG-AI server so
far. It ranked overall third in the  championship, despite the poor performance
on the second competition – the latter was due to a too aggressive configuration of
the two domain-specific enhancements (that we have not sufficiently tested prior to
submission). Also the single-player variant ranked moderately high considering it em-
ploys neither expert or prior knowledge nor domain-specific heuristics or features. A
similar observation goes with the two-player variant, despite its two domain-inspired
enhancements, which are still very general, suggesting there is plenty of room for im-
provement. Since the single-player variant differs from UCT only in the use of TD-
backups, it allows for a direct comparison. On the other hand, the two-player variant is
more complex, so it is difficult to assess how much each of its mechanics contributes to
its success – on local tests each of them added some performance. The detailed results
for the  competitions are given in Appendix B (for the subsequent competitions
we direct the reader at the GVG-AI web page).

Monte Carlo Tree Search Strategies 

Table .
Results from GVG-AI two-player competitions.

Two-player competitions

WCCI’ CIG’ CEEC’

Final rank

(a lower value is better)

Sarsa-UCT / / /

Standard UCT / / /

Ranking points
Sarsa-UCT   

Standard UCT   

Average win rate []
Sarsa-UCT . . .

Standard UCT . . .

Average score
Sarsa-UCT . -. .

Standard UCT . . .

Count games (out of )

where Sarsa-UCT is

better/worse than UCT

Win and score +/- +/- +/-

Win +/- +/- +/-

Score +/- +/- +/-

At most single-player competitions our controller achieved a higher win rate than
UCT, except at CEEC’, but even there it ranked higher, because it excelled in games
that were difficult for other algorithms, and in this way it collected more ranking points
due to the scoring system. On the other hand, despite the higher average win rate, at
CIG’ it ranked worse than UCT; however, there the performance of both was so
poor that both ranked among the last – this set of games was particularly difficult
for MCTS algorithms without expert enhancements. Considering the overall perfor-
mance on the GVG-AI games, apart from the TD backups providing a boost when
𝜆 is set to an informed value, our controllers have similar strengths and weaknesses as
classic MCTS algorithms. Their performance is high in arcade-like games with plenty
of rewards (which provide guidance for the algorithms) and poor in puzzle-like games
(which require accurate long-term planning); in games where the original UCT per-
forms poorly (i.e., a win rate of 􏷟%), so usually does also Sarsa-UCT. This can also be

  Performance on real games T. Vodopivec

observed by comparing the numerous GVG-AI controllers.
With a deeper analysis we discover that the optimal value of𝜆 depends heavily on the

played game – it spans from 􏷠 to just above 􏷟, but its overall optimal value is somewhere
in between, which is in line with our previous observations on other types of games.
Therefore, in some games a 𝜆 < 􏷠 is beneficial, while in others it is detrimental. From a
rough assessment, it seems more beneficial for the games from the training set , which
are defined as “puzzle” games (do not contain NPC’s); however, the sample is small and
additional validation would be necessary. Nevertheless, if we were able to determine
and use the best 𝜆 for each individual game, we could achieve a strong improvement
over the UCT algorithm (last column in Table .) – effectively overpowering standard
UCT completely. Identifying a correct value of 𝜆 is crucial, but extremely problem
specific – so far we have not yet reliably identified which GVG-AI game features have
most impact. The GVG-AI framework aims specifically at providing a repertoire of
games that capture as a wide range of environments as possible, and our results confirm
that this is true for different values of 𝜆.

Apart from the two minor two-player enhancements, we have not experimented
with combining our GVG-AI controller with established MCTS enhancements. Soe-
mers [], the author of the MaastCTS GVG-AI controller (single-player champion
and two-player runner-up in ), gained no benefit when integrating our algorithm
into his controller. However, his controller has already been heavily enhanced – with
progressive history [], n-gram selection techniques [], tree reuse, custom-designed
evaluation functions, etc. – which combined might have already covered the benefits
of TD-backups. Nevertheless, our two-player Sarsa-UCT(𝜆) outperforms MaastCTS
at at 􏷢 out 􏷣 game sets (including competitions and test sets), which suggests our algo-
rithm is competitive also against such heavily-enhanced MCTS algorithms.



Discussion and future work



  Discussion and future work T. Vodopivec

We summarize our results and findings, discuss the limitations of our analysis (pro-
pose short-term future work), and describe the research directions that we deem most
promising (propose long-term future work).

. Findings

The focus of our experiments and analysis was to assess the benefits of swapping Monte
Carlo (MC) backups with temporal-difference (TD) learning backups and eligibility
traces in MCTSlike algorithms. To do this, we evaluated the performance of several
temporal-difference tree search (TDTS) algorithms (Section .) – including the origi-
nal UCT algorithm, the standard UCT algorithm, and the Sarsa-UCT(𝜆) algorithm
(Section .) – under numerous configurations.

We tested the algorithms’ value-function quality, policy quality, planning quality,
and playing strength in the following scenarios: policy evaluation, policy iteration,
learning, planning, single-player tasks, two-player adversary tasks, learning from self-
play, toy games, classic games, and real-time arcade video games (where the low amount
of time per move forces quick decision-making). We also competed with two Sarsa-
UCT(𝜆) algorithms at the General Video Game AI competition [].

Performance

Computing TD backups proved better in most of the scenarios listed above and under
most configurations of the algorithms. The increase in performance was most notable
on tasks that impose a low number of simulations per decision. It seems that preferring
actions that lead to winning a game in a smaller number of moves increases the prob-
ability of winning (at least in average, in the games we analysed), and bootstrapping
backups (𝜆 < 􏷠) cause shorter playouts to have more impact in updating the value
estimates than longer playouts (Section .), hence their advantage. To the contrary,
when using MC backups (𝜆 = 􏷠), the playout lengths have no impact on the state-
value updates; due to this, different states may thus have equal values (especially in the
early stages of a game) and ties have to be broken randomly, which leads to selecting
sub-optimal moves more often.

Algorithms that use eligibility traces are inherently sensitive to the value of 𝜆. What
is the optimal value of 𝜆 in general is a well-known research question in the field
of RL [] and fully answering it is not in the scope of this study. Nevertheless, we
observe that using a 𝜆 close to 􏷠 performs well in practice, but it also produces the

Monte Carlo Tree Search Strategies 

least improvement over 𝜆 = 􏷠. The optimal value of 𝜆 differs from task to task: it
depends heavily on the size of the search-space, and, most critically, on the number of
computed simulations per move (i.e., the number of MCTS iterations per search). In
our toy-game experiments, the gain of bootstrapping backups (𝜆 < 􏷠) increases both
when the task diminishes in size and when the algorithms are allowed more simulation
time. However, our two-player-game experiments contradict with the above: in this
case the gain decreases when more time is available per move. We are not yet certain
what causes this discrepancy between the two classes of games. Additional research of
how incremental representations and playout concepts impact the convergence rate of
general RL methods might clarify this question.

When both the task and the number of simulations per move are fixed, it is not
difficult to identify the optimal 𝜆 (e.g., with experimentation); however, when the
number of simulations is not fixed or cannot be predicted, as in many real applications
where the time limit is not constant, then a constant value of 𝜆 < 􏷠 might perform
significantly worse than a 𝜆 = 􏷠. Due to this, in practice, such algorithms may have
difficulties on tasks where the number of simulations per move is variable, unless the
value of 𝜆 is left on 􏷠 (the safe option) or is somehow adapted online (which we do not
yet fully understand how to achieve). We deem this the main disadvantage of TDTS
methods.

Initial values 𝑉init(𝑠) and 𝑄init(𝑠, 𝑎) have no impact when the starting value of the
update step-size 𝛼 is 􏷠 and when 𝜆 = 􏷠; however, the lower the values of these two
parameters, the bigger the impact of initial values. In such case, initial values might
significantly impact the convergence rate – either improve it when set to an informed
value (e.g., through expert knowledge and heuristics) or detriment it when set far from
optimal. Regardless, their optimal value usually depends only on the given task, and
not so much on the number of simulations per move. Therefore, getting them (at least
approximately) right is usually easier than finding an optimal 𝜆; and the same is true
also for the rest of the parameters.

Best configuration on toy games

We tested which playout value assumptions, control policies, and value-normalization
techniques perform best. The playout value assumption 𝑉playout = 𝑉init proved better
than 𝑉playout = 􏷟 and better than some other assumptions that we experimented with.
When using the UCB policy with common value-normalization methods (that is,

  Discussion and future work T. Vodopivec

a constant value of the exploration rate 𝐶𝑝 or normalization through a global upper
and lower bound of the returns), the improvement of TD backups is much smaller,
and the UCB policy often performs worse than the 𝜀-greedy policy. On the other
hand, when normalizing the value estimates also locally (for example, with our space-
local value normalization technique), the improvement is considerably large, and the
UCB policy performs equal or better than 𝜀-greedy; however, we stress that we did
not optimize the parameters of the two policies, so we cannot claim which one per-
forms better in general. Lastly, we experimented with different variants of space-local
normalization, but the one we presented in Section . performed best.

Computational complexity

Swapping MC backups with TD backups and eligibility traces usually increases the
computational cost of an algorithm only by a constant factor that is usually negligible.
This is in contrast with Silver et al.[], who report that their TD search algorithm
applied to Go performs significantly slower than vanilla UCT; however, this is reason-
able, because they used complex heuristic and handcrafted policies and value-function
approximation with features that must be computed from the game state, all of which
is computationally expensive. In essence, TDTS methods – and RL methods in general
– are not necessarily slower than MCTS methods (nor TD backups slower than MC
backups), but they have numerous implementational choices (some of which could
also be understood as enhancements) that improve the convergence rate by better ex-
ploiting the gathered feedback at the expense of an increased computational cost –
ample details about this were given in Section ..

. Limitations of our analysis

Several mechanics that we have not assessed might seriously impact the performance
of TDTS algorithms, and might even additionally increase it.

RL methods discount rewards (i.e., use a 𝛾 < 􏷠) on continuous tasks to guarantee
convergence, nonetheless, doing so on episodic tasks also often improves their perfor-
mance []. We carried out only few rough experiments on toy games and GVG-AI
games, where we observed that the effects of 𝛾 might be similar to those of the eligi-
bility trace decay rate 𝜆, but a more robust evaluation is necessary.

On toy games we observed that a constant update step-size 𝛼 performs worse than
a MC-like decreasing 𝛼 (Section .), as is usually the case with small and station-

Monte Carlo Tree Search Strategies 

ary tasks. On more complex and large tasks, however, schemes for adapting 𝛼 online
often perform better – we have only touched this topic (in our two-player GVG-AI
controller) and have not yet systematically studied it. For example, linear or exponen-
tial schemes that give higher weight to recent rewards while still decreasing 𝛼 towards
􏷟 in the limit might be sensible, since the control policy improves with time and there-
fore recent rewards might be more relevant than old ones. Such “forgetting” schemes
from the field of MCTS (e.g., [, ]) and RL (e.g., []) might further improve
the performance of TDTS algorithms.

When learning from self-play on two-player games, we configured the TDTS al-
gorithms to compute backups from one-ply successor states. Silver et al. [] report
significantly better performance when using a two-ply TD update instead, therefore,
it might be worth verifying how this affects TDTS methods in general.

Lastly, our methods should be evaluated on more complex games and of differ-
ent types (e.g., multi-player, simultaneous, with imperfect information, etc.), with a
higher number of iterations per move, and with variable time per move, to better asses
the benefits of bootstrapping updates (i.e., 𝜆 < 􏷠) also in such scenarios. Here we
suggest to evaluate the performance of the algorithms not only through self-play (as
we did in our two-player games), but also through ”go-deep” experiments []; the
main focus of such experiments is to measure how quickly with increasing the available
computational time the algorithms achieve optimal (or near-optimal) action-selection
in specific (carefully-picked) situations – this might provide insightful comparison on
the learning rates of the new algorithms and on their sensitivity to parameter values.

. Promising directions

Beside resolving the limitations of our experiments (as presented above), and studying
the impact of several implementational options (as given in Section .), there is also
plenty of unexplored potential deriving from the central ideas presented in this thesis.
We roughly split the promising long-term research goals in three directions: encour-
aging cross-fertilization between MCTS and RL, understanding better the impact of
representation policies on reinforcement learning methods in general, and identifying
the best control policy when using explicit incremental representations in RL methods.

  Discussion and future work T. Vodopivec

Cross-fertilization between MCTS and RL

The changes introduced to the basic MCTS algorithm by Sarsa-UCT(𝜆) are generic
and can be combined (to the best of our knowledge) with any known enhancement.
This is because the introduced update method is principled: the new parameters closely
follow the reinforcement learning methodology – they can formally describe concepts
such as forgetting, first-visit updating, discounting, initial bias, and other (Section .).
As such, Sarsa-UCT(𝜆) is not better or worse than any other enhancement, but it is
meant to complement other approaches, especially ones that embed some knowledge
into the tree search, which can be done in Sarsa-UCT(𝜆) as easily as in UCT or any
other basic MCTS algorithm. Therefore, it can likely benefit from enhancements that
influence the tree, expansion, and playout phases, from generalization techniques (such
as transpositions or MAST [], as shown earlier, for example), and from position-
evaluation functions (which are well-known also to the RL community) and other
integrations of domain-specific heuristics or expert knowledge. It could benefit even
from other MCTS backpropagation enhancements, although in such case it might be
reasonable to keep separate estimates for each backup method, to retain the conver-
gence guarantees of the RL-based backups.

Since the TDTS algorithms are interchangeable with the original MCTS algorithms,
extending the existing MCTS algorithms (and MCTS-based game-playing engines)
should not be difficult, and, most importantly, the extension is “safe”, because the
resulting algorithms would perform at least equally well (when 𝜆 = 􏷠) or possibly
better (when 𝜆 < 􏷠). For example, in our experiments the algorithms always employed
a random playout control policy, and without any handcrafted, heuristic, expert, or
prior knowledge; however, it would be meaningful to evaluate them in combination
with all these enhancements – this could be done by integrating them into state-of-
the-art game-playing algorithms that use MCTS, such as AlphaGo [], MoHex [], or
CadiaPlayer [], for example.

Also, we presented an extension of the UCT algorithm with the Sarsa(𝜆) algorithm;
however it would be interesting to extend it with other established RL algorithms in-
stead. Sarsa-UCT(𝜆) is an on-policy method and might diverge when performing
backups differently than we devised it to, e.g., if it was implemented to back up the
value of the best children instead of the last feedback. Hence, combining off-policy
TD learning methods, such as Q-learning [], with MCTS-like incremental repre-

Monte Carlo Tree Search Strategies 

sentations might also be interesting. There have already been successful applications
of similar types of backups in MCTS [].

Finally, in our experiments and analysis we focused on the benefits of RL concepts
for MCTS; however, there is also potential to explore in the other direction – to inves-
tigate further the benefits of MCTS concepts for RL. We suggest to take example of
strong heuristic (and specialized) control policies and ingenious playout-related gener-
alization approaches from the numerous MCTS enhancements. For example, the use
of explicit incremental representations and playout control policies in RL methods is
uncommon in general. There is little known about combining off-policy TD learning
methods with MCTS-like representations and tree search, but given the successes of
off-policy RL methods [] and recent off-policy MCTS methods [, ], it cer-
tainly deserves attention. Furthermore, it would also be interesting to integrate such
algorithms into established frameworks such as Dyna [] or Dyna- [], which al-
ready provide efficient mechanics for introducing initial bias in the estimates and for
transferring knowledge between searches through the concepts of a long-term (perma-
nent) and short-term (transient) memory.

Representation policies and their impact on reinforcement learning methods

The concept of a representation policy (Section .) introduces novel MCTS dynamics
into RL methods, namely, a policy for adapting the state representation online, and the
concept of a playout. The convergence of MC learning methods under such conditions
has already been proved [], but what about other RL methods? What is the effect of
not using transpositions – how much does this relate to partially observable MDPs [],
and what insights can be taken from that field? How well do these concepts integrate
into more complex, approximate, or non-incremental representations? What is the
impact of different playout-value assumptions – what kind of (more sophisticated)
assumptions might be required to guarantee convergence?

The questions above open a whole new research dimension for both MCTS and
RL methods. Theoretical insight in how these concepts impact the convergence rate
and requirements of RL methods in general might help to better understand what
defines the optimal value of the learning parameters, such as the eligibility trace decay
rate 𝜆, to which our algorithms are especially sensitive. Exploring schemes for adapting
𝜆 online, for example, based on the number of simulated time steps per move, might
alleviate the main drawback of TDTS algorithms. A first step in this direction might be

  Discussion and future work T. Vodopivec

describing other, more complex, MCTS methods from a RL point of view (describing
them through the TDTS framework) in the same way as we did with basic MCTS
methods (i.e., the UCT algorithm) in this thesis. In would be interesting to analyse
the existing MCTS-related off-policy dynamic programming methods (e.g., MaxUCT
[] and BRUE []) from this perspective; which could also be easily enhanced with
TD backups and eligibility traces.

Additionally, it would be interesting to examine MCTS or RL algorithms with rep-
resentations that are not directly related to the two fields, such as feature identification
[] or state aggregation [] methods. The existing convergence proofs of these spe-
cific methods might help to analyse the dynamics of such learning algorithms. Also,
when using transpositions, it might be worth exploring other replacement schemes
[] for memorizing estimates, or devising new ones; for example on some tasks in
might be sensible to memorize a limited number of states not only close to the starting
state, but also close to a terminal state, or memorize only such states that display some
heuristic qualities.

Best control policy when using incremental representations

What is the best control policy for the general reinforcement learning problem is an
open question by itself []; and what policy is best when employing explicit incre-
mental (adaptive) representations might have never been even considered before. Al-
though very simple, the 𝜀-greedy selection policy is widely used among traditional RL
methods as it often performs very well. Also Silver [] reported that no policy, includ-
ing UCB, performed better than an 𝜀-greedy policy in his experiments with the TD
search algorithm. On the other hand, UCB-based policies, despite regarded as diffi-
cult to apply to the general reinforcement learning problem [], have recently started
being adopted by RL practitioners [, ]. Also in our experiments, UCB proved to
perform equally well or better than 𝜀-greedy policies when it is combined with a rather
simple normalization technique (Section .), even when the algorithm employs TD
learning and eligibility traces. This suggest that such UCB-oriented normalization ap-
proaches are promising. Analysing them on more complex algorithms (e.g., on such
that tackle non-stationary tasks or that use function approximation) might further
popularize UCB policies also outside the MCTS field and might help clarify when it is
meaningful to use them. To better deal with non-stationary tasks, our normalization
technique could be extended with “forgetting” dynamics to gradually adapt the nor-

Monte Carlo Tree Search Strategies 

malization bounds instead of only memorizing the all-time minimum and maximum
value estimates.

Lastly, we also encourage studying other selection policies in such settings. For ex-
ample, policies based on Thompson sampling [] that bootstrap [] are emerging
alongside contextual-bandit problems as an alternative to UCB and 𝜀-greedy selection
policies for (deep) exploration in complex representations (such as neural networks)
[].



Conclusion



  Conclusion T. Vodopivec

The goal of this thesis was to fundamentally improve the Monte Carlo tree search
paradigm through general, domain-independent enhancements. We achieved this by
resorting to the established field of reinforcement learning.

Summary

In this work we thoroughly examined the relation between Monte Carlo tree search
(MCTS) methods and reinforcement learning (RL) methods. We described MCTS in
terms of RL concepts and re-exposed the similarities between the two fields, but we
also explicitly identified and emphasized the differences between the two fields – the
novelties that MCTS methods introduce into RL theory. We also identified a large
number of existing MCTS algorithms and enhancements that resemble, are related
to, or re-observe traditional RL dynamics. We outlined that many MCTS methods
evaluate states in the same way as the TD(􏷠) learning algorithm and in general behave
similarly to Monte Carlo control and the Sarsa(􏷠) algorithm. We observed that the
RL theory is able to better describe and generalize the learning aspects of MCTS (i.e.,
its backpropagation phase), but, in turn, the MCTS field introduces playout-related
mechanics that are unusual for classic RL theory.

With this insight, we first introduced for RL the concepts of representation policies
and playout value functions, which allow to fully describe all the phases of an MCTS
iteration, while still abiding to the RL theory. To promote such a unified view of both
fields, as a proof of concept we integrated temporal-difference (TD) learning and eligi-
bility traces into MCTS and devised the temporal-difference tree search (TDTS) frame-
work. The latter classifies as a specific configuration of Silver’s TD search method [],
but also extends it with the novel concepts from MCTS. The parameters and imple-
mentational options of TDTS can reproduce a vast range of MCTS enhancements
and RL algorithms, illustrating its power. To showcase a TDTS algorithm, we merged
Sarsa(𝜆) and UCT into the Sarsa-UCT(𝜆) algorithm. Simultaneously, we also de-
vised an effective space-local value normalization technique for the convergence needs
of UCB-based control policies in combination with general RL methods; without it,
the UCB policy performs poorly when combined with TD updates and eligibility
traces. From an MCTS perspective, our new algorithms retain the robustness and
computational cost of the UCT algorithm, while improving on its performance; our
experiments confirmed this on several types of tasks: on single-player toy games, two-
player classic games when learning from self-play, and real-time arcade video games

Monte Carlo Tree Search Strategies 

with low computational time per move.

Importance and impact

This thesis confirms the benefits of extending MCTS with RL dynamics and presents
a practical way for achieving this, improving the theoretical understanding of MCTS
methods and hopefully narrowing the gap between the TD search and MCTS frame-
works. It offers a wealth of unexplored potential, since any MCTS algorithm can be
generalized by any RL method in a similar way as we have done; or the other way
around – any RL method can be extended into an MCTS-like algorithm by combin-
ing it with an incremental or adaptive representation. Moreover, a great advantage of
merging algorithms in this way is that the generalized algorithm cannot have a lower
performance – in the worst-case the new parameters can be set to mimic the behaviour
of the original algorithm. If we managed to intrigue the MCTS reader to explore
the RL view on planning and search [] or the RL reader to experiment with any
of the numerous MCTS enhancements [], including ingenious generalization tech-
niques, specialized control policies, and incremental representations, then we fulfilled
our goal.

Finally, we succeed in generally improving Monte Carlo tree search, but we go even
beyond: we support that the fields of reinforcement learning and heuristic search ad-
dress a similar class of problems, only from different points of view – they overlap to
a large extent. Hence, rather than perceiving the RL interpretation of MCTS as an
alternative, we suggest to perceive it as complementary. Exactly this line of thought
allowed us to pinpoint the similarities and differences of both, and to combine their
advantages, of which our findings are proof. We regard this a step towards a unified
view of learning, planning, and search.

A

Detailed results from
two-player games



 A Detailed results from two-player games T. Vodopivec

Table A.
Sarsa-UCT(𝜆) on two-player games: full results, including the best values of 𝐶𝑝 and 𝜆 found in the optimization process. The
algorithm did not employ value normalization. The matches were played from both starting positions. Draws count towards a
􏷮􏷩% win rate.

Game
Simulated time
steps per move

Win rate []
at best 𝜆 Best 𝜆 Own

𝐶𝑝
Opponent
𝐶𝑝

Num. of
matches

Tic-tac-toe

􏷠􏷟 􏷤􏷧.􏷣 􏷟.􏷠􏷟–􏷟.􏷨􏷨 􏷟.􏷠 􏷟.􏷡 􏷠􏷟􏷟􏷟􏷟
􏷤􏷟.􏷟 􏷤􏷤.􏷣 􏷟.􏷥 􏷟.􏷠 􏷟.􏷡 􏷡􏷟􏷟􏷟
􏷠􏷟􏷟 􏷤􏷤 􏷟.􏷥􏷤 􏷟.􏷡 􏷟.􏷡 􏷣􏷟􏷟􏷟􏷟
􏷡􏷟􏷟 􏷤􏷡.􏷢 􏷟.􏷧 􏷟.􏷢 􏷟.􏷡 􏷡􏷟􏷟􏷟
􏷤􏷟􏷟 􏷤􏷟.􏷣 􏷟.􏷨􏷨􏷨 􏷟.􏷡􏷤 􏷟.􏷡􏷤 􏷡􏷣􏷟􏷟􏷟􏷟
􏷠􏷟􏷟􏷟 􏷤􏷟.􏷠 􏷟.􏷨􏷨􏷨–􏷠.􏷟 􏷟.􏷢 􏷟.􏷢 􏷥􏷟􏷟􏷟􏷟

Connect four

􏷠􏷟􏷟 􏷦􏷨.􏷦 􏷟.􏷠􏷟–􏷟.􏷨􏷨 􏷟.􏷡􏷤 􏷟.􏷟􏷤 􏷡􏷟􏷟􏷟
􏷤􏷟􏷟 􏷧􏷦.􏷤 􏷟.􏷠􏷟–􏷟.􏷨􏷨 􏷟.􏷡􏷤 􏷟.􏷡􏷤 􏷡􏷟􏷟􏷟
􏷠􏷟􏷟􏷟 􏷥􏷦.􏷡 􏷟.􏷥􏷤 􏷟.􏷠􏷤 􏷟.􏷟􏷤 􏷣􏷟􏷟􏷟􏷟
􏷡􏷟􏷟􏷟 􏷤􏷢.􏷢 􏷟.􏷨􏷨􏷨 􏷟.􏷡􏷤 􏷟.􏷟􏷤 􏷡􏷟􏷟􏷟
􏷤􏷟􏷟􏷟 􏷤􏷟.􏷧 􏷟.􏷨􏷨􏷨–􏷠.􏷟 􏷟.􏷠􏷤 􏷟.􏷠􏷤 􏷠􏷡􏷟􏷟􏷟
􏷠􏷟􏷟􏷟􏷟 􏷤􏷟.􏷠 􏷟.􏷨􏷨􏷨–􏷠.􏷟 􏷟.􏷡 􏷟.􏷡 􏷡􏷟􏷟􏷟

Hex ×

􏷠􏷟􏷟􏷟 􏷦􏷠.􏷦 􏷟.􏷨􏷤 􏷟.􏷟􏷤 􏷟.􏷡􏷤 􏷡􏷟􏷟􏷟􏷟
􏷡􏷟􏷟􏷟 􏷥􏷠.􏷣 􏷟.􏷨􏷤 􏷟.􏷡 􏷟.􏷡 􏷡􏷟􏷟􏷟
􏷤􏷟􏷟􏷟 􏷤􏷤.􏷤 􏷟.􏷧–􏷟.􏷨􏷤 􏷟.􏷡 􏷟.􏷡 􏷥􏷟􏷟􏷟
􏷠􏷟􏷟􏷟􏷟 􏷤􏷟.􏷢 􏷟.􏷨􏷨􏷨–􏷠.􏷟 􏷟.􏷡 􏷟.􏷡 􏷡􏷟􏷟􏷟

Hex ×
􏷠􏷟􏷟􏷟 􏷧􏷦.􏷦 􏷟.􏷧–􏷟.􏷨􏷨􏷨􏷨 􏷟.􏷠􏷤 􏷟.􏷠􏷤 􏷠􏷡􏷟􏷟􏷟
􏷠􏷟􏷟􏷟􏷟 􏷥􏷡.􏷟 􏷟.􏷨􏷤–􏷟.􏷨􏷨􏷨􏷨 􏷟.􏷠 􏷟.􏷠 􏷣􏷟􏷟
􏷠􏷟􏷟􏷟􏷟􏷟 􏷤􏷟.􏷟 􏷟.􏷨􏷨􏷨–􏷠.􏷟 􏷟.􏷡􏷤 􏷟.􏷡􏷤 􏷡􏷟􏷟

Gomoku ×

􏷠􏷟􏷟􏷟 􏷦􏷦.􏷦 􏷟.􏷦 􏷟.􏷠 􏷟.􏷠 􏷣􏷟􏷟􏷟
􏷡􏷟􏷟􏷟 􏷥􏷧.􏷧 􏷟.􏷨 􏷟.􏷠 􏷟.􏷠 􏷡􏷟􏷟􏷟
􏷤􏷟􏷟􏷟 􏷤􏷧.􏷢 􏷟.􏷨􏷤 􏷟.􏷠􏷤 􏷟.􏷠􏷤 􏷡􏷟􏷟􏷟
􏷠􏷟􏷟􏷟􏷟 􏷤􏷠.􏷣 􏷟.􏷨􏷨–􏷠.􏷟 􏷟.􏷠􏷤 􏷟.􏷡 􏷡􏷟􏷟􏷟

Gomoku ×
􏷠􏷟􏷟􏷟 􏷨􏷤.􏷡 􏷟.􏷣–􏷟.􏷨􏷨􏷨􏷨 􏷟.􏷡􏷤 􏷟.􏷡􏷤 􏷡􏷟􏷟􏷟
􏷠􏷟􏷟􏷟􏷟 􏷥􏷦.􏷡 􏷟.􏷨–􏷟.􏷨􏷤 􏷟.􏷠 􏷟.􏷠 􏷡􏷟􏷟
􏷠􏷟􏷟􏷟􏷟􏷟 􏷤􏷣.􏷟 􏷟.􏷨􏷨􏷨–􏷟.􏷨􏷨􏷨􏷨 􏷟.􏷡 􏷟.􏷡 􏷣􏷟􏷟

Gomoku ×

􏷠􏷟􏷟􏷟 􏷨􏷥.􏷟 􏷟.􏷠–􏷟.􏷨􏷨􏷨􏷨 􏷟.􏷠􏷤 􏷟.􏷠􏷤 􏷡􏷟􏷟􏷟
􏷡􏷟􏷟􏷟 􏷨􏷦.􏷥 􏷟.􏷠–􏷟.􏷨􏷨􏷨􏷨 􏷟.􏷠􏷤 􏷟.􏷠􏷤 􏷡􏷟􏷟􏷟
􏷠􏷟􏷟􏷟􏷟 􏷧􏷣.􏷟 􏷟.􏷣–􏷟.􏷨 􏷟.􏷠􏷤 􏷟.􏷠􏷤 􏷠􏷟􏷟􏷟
􏷡􏷟􏷟􏷟􏷟 􏷦􏷤.􏷟 􏷟.􏷥–􏷟.􏷨 􏷟.􏷟􏷤 􏷟.􏷟􏷤 􏷧􏷟􏷟
􏷤􏷟􏷟􏷟􏷟 􏷦􏷢.􏷤 􏷟.􏷨􏷤 􏷟.􏷟􏷤 􏷟.􏷟􏷤 􏷡􏷟􏷟
􏷠􏷟􏷟􏷟􏷟􏷟 􏷦􏷠.􏷟 􏷟.􏷨􏷤 􏷟.􏷟􏷤 􏷟.􏷟􏷤 􏷣􏷟􏷟􏷟
􏷠􏷟􏷟􏷟􏷟􏷟􏷟 􏷤􏷢.􏷡 􏷟.􏷨􏷨􏷨􏷨–􏷠.􏷟 􏷟.􏷡 􏷟.􏷡 􏷡􏷟􏷟

Gomoku ×
􏷠􏷟􏷟􏷟􏷟 􏷨􏷣.􏷟 􏷟.􏷨–􏷟.􏷨􏷤 􏷟.􏷡 􏷟.􏷡 􏷣􏷟􏷟
􏷠􏷟􏷟􏷟􏷟􏷟 􏷦􏷦.􏷟 􏷟.􏷧􏷤 􏷟.􏷟􏷠 􏷟.􏷟􏷠 􏷣􏷟􏷟

B

Detailed results from the
GVG-AI  competitions



 B Detailed results from the GVG-AI  competitions T. Vodopivec

Table B.
Detailed results from the GVG-AI  comptetitions.

Win rate [] Score Rank points

Sar
sa-

UCT(
𝜆)

UCT
Sar

sa-
UCT(

𝜆)

UCT
Sar

sa-
UCT(

𝜆)

UCT

C
IG

co
m

pe
tit

io
n

(𝜆
=
􏷟.
􏷧)

Game  􏷡 􏷣 􏷥􏷡.􏷦 􏷣􏷨.􏷢 􏷠
Game  􏷠􏷟􏷟 􏷨􏷥 􏷤􏷡.􏷥 􏷣􏷟.􏷠 􏷡􏷤 􏷥
Game  􏷡 􏷧 􏷡.􏷧 􏷠.􏷣
Game  􏷟 􏷟 􏷟.􏷦 􏷟.􏷧
Game  􏷟 􏷟 􏷟.􏷣 􏷟.􏷤
Game  􏷧􏷥 􏷦􏷥 􏷟.􏷨 􏷟.􏷧 􏷠􏷟 􏷠
Game  􏷠􏷟􏷟 􏷠􏷟􏷟 􏷠􏷟.􏷟 􏷠.􏷦
Game  􏷟 􏷟 􏷤.􏷣 􏷣.􏷤
Game  􏷠􏷡 􏷠􏷟 􏷟.􏷠 􏷟.􏷠
Game  􏷠􏷡 􏷟 􏷠􏷟.􏷠 􏷤.􏷟

C
EE

C
co

m
pe

tit
io

n
(𝜆
=
􏷟.
􏷧)

Game  􏷣 􏷥 􏷟.􏷟 􏷟.􏷟
Game  􏷧 􏷠􏷣 􏷠.􏷨 􏷠.􏷦
Game  􏷠􏷟􏷟 􏷠􏷟􏷟 􏷥.􏷥 􏷧.􏷨
Game  􏷟 􏷟 −􏷠􏷢􏷥.􏷟 −􏷤􏷦.􏷥
Game  􏷟 􏷟 −􏷠􏷡.􏷨 −􏷠􏷤.􏷤
Game  􏷟 􏷟 −􏷡􏷠􏷨.􏷨 −􏷡􏷨􏷨.􏷨
Game  􏷟 􏷟 􏷟.􏷡 −􏷟.􏷢 􏷠􏷧
Game  􏷥 􏷠􏷣 −􏷠.􏷨 􏷡􏷟.􏷠 􏷥 􏷠􏷧
Game  􏷟 􏷟 􏷟.􏷢 􏷟.􏷠
Game  􏷟 􏷟 −􏷠􏷥.􏷠 􏷢.􏷟

Average 􏷡􏷠.􏷥 􏷡􏷠.􏷣 −􏷠􏷠.􏷥 −􏷠􏷠.􏷧
Count better* 􏷣 􏷠􏷢
Count worse* 􏷤 􏷥

*Number of games (out of 􏷡􏷟) where Sarsa-UCT(􏷟.􏷧) performs better/worse than UCT.

C

Razširjeni povzetek



 C Razširjeni povzetek T. Vodopivec

Leta  je superračunalnik Deep Blue v šahovskem dvoboju premagal svetovnega pr-
vaka Kasparova []. Kmalu zatem je naslednji velik izziv umetne inteligence pri igranju
iger začela postajati starodavna azijska igra go. Vse metode, ki so bile v preteklosti z
izjemnimi uspehi uporabljene pri drugih igrah (na primer, pri šahu, dami in backgam-
monu), so bile pri igri go neučinkovite – vse do leta  so najboljši algoritmi igrali na
ravni človeških začetnikov []. Takrat je preboj naredila nova preiskovalna paradigma,
danes znana kot drevesno preiskovanje Monte Carlo (ang. Monte Carlo Tree Search –
MCTS) [], ki je dvignila sposobnosti računalniških igralcev go na raven mojstrov [].
Novo področje je hitro pridobilo znanstveno pozornost in bilo uspešno aplicirano na
širokem spektru iger ter tudi drugje: danes poznamo več kot  različnih algoritmov
MCTS in uporabljajo jih praktično vsi najboljši algoritmi za igranje iger go, hex, othel-
lo in drugih iger[]. Preteklo je le še eno desetletje in padel je tudi naslednji velik izziv
umetne inteligence – algoritem AlphaGo [] je s pomočjo globokih nevronskih mrež
[] in drevesnega preiskovanja Monte Carlo maja  premagal z izidom tri proti nič
najboljšega igralca go-ja na svetu.

Metode MCTS združujejo splošnost naključnega vzorčenja in natančnost drevesne-
ga preiskovanja. Ob predpostavki, da ima preiskovalni algoritem na razpolago simu-
lacijski model danega problema, te metode dosegajo bistveno boljše rezultate kot tra-
dicionalne metode preiskovanja. Kljub temu pa imajo lahko v praksi težave s počasno
konvergenco, kar še posebej drži za temeljne algoritme MCTS, ki se ne poslužujejo
dodatnih izboljšav: primer je algoritem UCT [], ki v praksi velja za kanonični algo-
ritem MCTS. Zaradi tega jih raziskovalci in programerji pogosto nadgrajujejo z bolj
kompleksnimi, domensko-naravnanimi pristopi – z ekspertnim znanjem, hevristikami
in ročno-izdelanimi politikami. Posledično, takšne specifične izboljšave zmanjšuje-
jo splošnost številnih aplikativnih algoritmov MCTS in poleg tega so lahko računsko
zelo zahtevne, njihov doprinos pa zelo variira od problema do problema. Izboljšava
temeljnih algoritmov MCTS, brez izgube njihove splošnosti in prilagodljivosti, se je
izkazala za težavno, zato je to eden od aktualnih raziskovalnih izzivov tega področja.

Naša disertacija razkriva, da lahko k reševanju tega izziva pripomore starejše in uve-
ljavljeno področje spodbujevalnega učenja (ang. reinforcement learning) []. Naš cilj
je izboljšati temeljno razumevanje drevesnega preiskovanja Monte Carlo s pomočjo
konceptov iz spodbujevalnega učenja in s tem odkriti nove možnosti za domensko-
neodvisne izboljšave temeljnih algoritmov MCTS. Sočasno tudi želimo zbližati razi-
skovalne skupnosti teh dveh področij, tako da pokažemo prednosti bolj enotnega po-

Monte Carlo Tree Search Strategies 

gleda na obe področji in tako da ponudimo praktičen način implementacije takšnih
algoritmov.

C. Prispevki k znanosti

V tej doktorski disertaciji so podani naslednji izvirni prispevki k znanosti;

Napredek temeljnega razumevanja drevesnega preiskovanja Monte Carlo v luči te-
orije spodbujevalnega učenja. Identifikacija in analiza podobnosti ter razlik med
tema dvema področjema. Pregled obstoječih razširitev metod MCTS, ki po-
ustvarjajo temeljne mehanizme spodbujevalnega učenja. Pregled raziskav na
področju MCTS, ki vede ali nevede ponovno odkrivajo koncepte spodbujeval-
nega učenja, le da iz druge perspektive.

Združitev konceptov drevesnega preiskovanja Monte Carlo in spodbujevalnega uče-
nja v enotno ogrodje. Razširitev temeljnih konceptov spodbujevalnega učenja z
novimi koncepti iz področja MCTS: uvedba predstavitvene politike (ang. repre-
sentation policy) ter razločevanje dela preiskovalnega prostora, ki ga algoritem
ne hrani v pomnilniku (ki ga trenutna predstavitev ne opisuje). Uvedba doda-
tnih predpostavk glede stanj in akcij, ki niso hranjene v pomnilniku – uvedba
vrednostne funkcije v odigravanju (ang. playout value function). Uvedba meto-
de drevesnega preiskovanja s časovnimi razlikami (ang. temporal difference tree
search), ki združuje karakteristike obeh področij.

Posplošitev algoritma UCT z uveljavljeno metodo učenja s časovnimi razlikami.
V dokaz zmožnosti nove metode drevesnega preiskovanja s časovnimi razlika-
mi smo razvili algoritem Sarsa-UCT(𝜆), ki združuje drevesno preiskovanje po
principu MCTS in algoritem Sarsa(𝜆) iz spodbujevalnega učenja. Potencial no-
vega algoritma smo eksperimentalno potrdili na treh tipih iger: enostavne igre
za enega igralca, klasične igre za dva igralca in arkadne video igre.

Metoda za normiranje vrednosti, ki omogoča uporabo politik UCB za izbiro akcij
znotraj algoritmov spodbujevalnega učenja. Algoritem UCT za izbiro akcij upo-
rablja politiko za mnogoroke bandite UCB, ki zahteva normirane vrednosti ak-
cij. Uvajamo novo metodo normiranja z imenom prostorsko-lokalno normiranje
vrednosti (ang. space-local value normalization), ki omogoča uporabo politik
UCB v kombinaciji s poljubnimi algoritmi spodbujevalnega učenja.

 C Razširjeni povzetek T. Vodopivec

C. Drevesno preiskovanje Monte Carlo

Metode MCTS simulirajo naključna zaporedja akcij z namenom pridobivanja znanja
za gradnjo preiskovalnega drevesa. Drevo razraščajo asimetrično v najbolj obetavni
raziskovalni smeri. Njihove glavne prednosti so, da lahko izstavijo rezultat ob vsakem
trenutku izvajanja, da imajo relativno nizko občutljivost na velike prostore stanj in
da ne potrebujejo specifičnega znanja problema, če pa je le-ta na razpolago, ga lah-
ko učinkovito izkoristijo. Uporabne so pri vseh problemih, ki jih lahko prevedemo
na zaporedje odločitev, na primer, kombinatorična optimizacija, planiranje, vodenje
sistemov v realnem času, ipd.

Pri metodah MCTS je značilen iterativni postopek vzorčenja, kjer vsaka iteracija v
splošnem sestoji iz štirih glavnih faz v naslednjem vrstnem redu:

. sestop po drevesu oz. po predstavitvi prostora stanj, ki je hranjena v pomnilniku,
dokler algoritem ne doseže ali končnega stanja problema ali pa se znajde v delu
prostora, ki ga ne hrani v pomnilniku;

. odigravanje do končnega stanja, kjer se pridobi končno povratno informacijo;

. širitev drevesa z novimi vozlišči, ki predstavljajo akcije ali stanja (širitev predsta-
vitve v pomnilniku); in

. vzvratni prenos prejete povratne informacije nazaj po drevesu do začetnega stanja
(do korena drevesa).

Prvi fazo usmerja drevesna politika (ang. tree policy) izbire akcij, drugo fazo pa privzeta
politika (ang. default policy) izbire akcij. Čeprav osnovni algoritmi MCTS gradijo pre-
iskovalno drevo, jih veliko dosega boljše rezultate, če gradijo usmerjen graf na podlagi
transpozicij [].

Trenutno najbolj razširjen in splošno-učinkovit algoritem na področju MCTS se
imenuje UCT (ang. upper confidence bounds applied to trees), ki sta ga leta 
razvila Kocsis in Szepesvari []. Drevesno preiskovanje sta združila z asimptotično-
optimalno politiko UCB (ang. upper confidence bounds) [] za mnogoroke bandite
(ang. multi-armed bandits) iz teorije iger. Coulom [] je sočasno razvil učinkovite
metode gradnje drevesa in prenosa informacije po njem. Gelly in Silver [] sta med
prvimi uspešno integrirala ekspertno znanje v njun algoritem MCTS in naredila preboj
pri igri go. Browne in sod. [] so pripravili najbolj temeljit pregled področja do danes.

Monte Carlo Tree Search Strategies 

Algoritem UCT uporablja drevesno politiko, ki v vsakem vozlišču drevesa izbere
naslednjo akcijo z največjo oceno po enačbi:

𝑄UCT = 𝑄MC + 𝑐𝑛p ,𝑛 , (C.)

kjer

𝑄MC =
∑𝐺𝑖
𝑛 (C.)

predstavlja povprečje vrednosti povratnih informacij 𝐺, ki jih je algoritem nabral, ko
je obiskal določeno vozlišče (stanje ali akcijo) tekom več iteracij 𝑖 in kjer

𝑐𝑛p ,𝑛 = 𝐶𝑝√
􏷡 􏸋􏸍 𝑛p

𝑛 (C.)

predstavlja raziskovalni potencial posamezne akcije; potencial je definiran s številom
obiskov naslednjega vozlišča 𝑛, s številom obiskov trenutnega vozlišča 𝑛𝑝 ter z utež-
jo 𝐶𝑝 ≥ 􏷟. Slednja uravnava raziskovalnost algoritma: na primer, 𝐶𝑝 = 􏷟 naredi algo-
ritem požrešen, večanje vrednosti 𝐶𝑝 pa dela algoritem bolj naključen. Zgornje enačbe
temeljijo na politiki izbire akcij UCB [], ki v limiti dokazano optimalno rešuje pro-
blem raziskovanja prostora in izkoriščanja znanja (ang. the exploration-exploitation
dilemma). Za pravilno konvergenco potrebuje vrednosti 𝑄MC normirane v območju
[􏷟, 􏷠].

C. Spodbujevalno učenje

Spodbujevalno učenje opisuje učeče agente, ki s poskušanjem ugotavljajo, kako se “do-
bro” obnašati v danem okolju. Uveljavljeno je kot ena najbolj splošnih paradigem uče-
nja, saj se tovrstni algoritmi lahko učinkovito učijo iz enostavne povratne informacije
v obliki skalarnega signala. Naše razumevanje tega področja izhaja iz življenjskega de-
la Suttona in Barta [, ] ter iz pregleda najsodobnejših algoritmov spodbujevalnega
učenja, ki sta ga pripravila Wiering in Otterlo [].

V osnovnem modelu spodbujevalnega učenja nastopa agent, ki izvaja akcije v danem
okolju. Ob tem agent opazuje trenutno stanje okolja in prejema povratno informacijo
v obliki nagrade (ang. reward). Agent uporablja nagrade (ki so lahko tudi negativne
– kazni) za spreminjanje svojega obnašanja tako, da skuša maksimirati prejeto nagrado
– agent ugotavlja, katere akcije v katerih stanjih ga lahko privedejo do najvišje skupne

 C Razširjeni povzetek T. Vodopivec

nagrade v prihodnosti. Nagrada, do katere pripelje določena akcija, je lahko časovno
zakasnjena. Zato je problem spodbujevalnega učenja težji od problema nadzorovanega
učenja, kjer učeči agent za vsako izvedeno akcijo dobi neposredno povratno informacijo
v obliki optimalne akcije. Pri spodbujevalnem učenju mora agent sam identificirati
najboljše akcije preko učenja z raziskovanjem ali preko analize modela okolja, če je
ta na razpolago. Agent se uči politike izbire akcij (ang. action-selection policy), ki
določa verjetnosti izbire akcij za vsa stanja preiskovalnega prostora. Ob tem si pomaga
z gradnjo vrednostne funkcije, ki ovrednoti vsako stanje glede na pričakovano količino
prejete nagrade v prihodnosti, če bi se agent znašel v tem stanju. Če se agent nauči
dobre (ali optimalne) vrednostne funkcije, lahko iz nje običajno na trivialen način
izlušči tudi optimalno politiko.

Poznamo tri glavne skupine metod, ki lahko rešijo problem spodbujevalnega učenja:
dinamično programiranje [], metode vzorčenja po Monte Carlu [] in metode učenja s
časovnimi razlikami (ang. temporal-difference (TD) learning) []. Metode vzorčenja
po Monte Carlu in metode učenja s časovnimi razlikami se lahko učijo iz izkušenj – iz
vzorčnih interakcij z okoljem – kar pomeni, da ne potrebujejo predhodnega poznavanja
okolja, temveč lahko vzorce naberejo sprotno med učenjem, ali pa jih simulirajo, če
imajo na voljo vsaj simulacijski model okolja. Metode učenja s časovnimi razlikami
razumemo kot posplošitev metod Monte Carlo, saj združujejo prednosti dinamičnega
programiranja in vzorčenja po Monte Carlu ter tako v praksi pogosto dosegajo hitrejšo
konvergenco k optimalni rešitvi []. Med najbolj znane algoritme učenja s časovnimi
razlikami uvrščamo TD(𝜆) [], Q-učenje [] in Sarsa(𝜆) [].

C. Pregled literature

Drevesno preiskovanje Monte Carlo je bilo vpeljano kot metoda za planiranje s kombi-
nacijo mnogorokih banditov [] in drevesnega preiskovanja []. Kmalu po njegovem
izumu je začela postajati razvidna vez s spodbujevalnim učenjem []. Kljub temu
pa odnos med obema področjema še ni bil temeljito analiziran in posledično tudi še
ni bistveno vplival na raziskovalno skupnost. Nekateri raziskovalci so začeli ponovno
odkrivati koncepte spodbujevalnega učenja, namesto da bi bili o njih ozaveščeni in si
z njimi pomagali pri razvoju bolj zmogljivih algoritmov.

Naša glavna referenca so raziskave, ki jih je vodil David Silver (ki je pozneje postal
vodilni avtor algoritma AlphaGo []). Skupaj s sodelavci [] je prvi obelodanil po-
vezavo med preiskovalnimi mehanizmi metod MCTS in mehanizmi spodbujevalnega

Monte Carlo Tree Search Strategies 

učenja []. Ugotovitve je uporabil za razvoj metode preiskovanja s časovnimi razli-
kami (ang. temporal-difference search) []. Metode, ki jih razvijamo mi, se uvrščajo
pod metode preiskovanja s časovnimi razlikami, toda sočasno jih posplošujejo z novimi
koncepti, vezanimi na MCTS. Zaradi tega naše metode ohranjajo več lastnosti (splo-
šnost in učinkovitost) osnovnih metod MCTS in jih je lažje implementirati v obliki
razširitev obstoječih metod MCTS.

Številni raziskovalci so bodisi namerno ali nenamerno dodajali mehanizme spodbu-
jevalnega učenja metodam MCTS. Feldman in Domshlak [, , ] sta v njuni
metodi MCTSe ponovno odkrila številne temeljne koncepte spodbujevalnega uče-
nja [, ]. Keller in Helmert [] predlagata enotno ogrodje za hevristično dreve-
sno preiskovanje na podlagi vzorčenja – njun algoritem MaxUCT je podoben asinhro-
ni iteraciji vrednosti [] s sprotnim učenjem modela, kar se klasificira kot adaptivno
realno-časovno dinamično programiranje [] (podskupina ogrodja Dyna []); takšni
algoritmi so tesno povezani s Q-učenjem []. Hester in Stone [, ] sta razši-
rila algoritem UCT s koncepti spodbujevalnega učenja in nov algoritem poimenovala
UCT(𝜆). Slednjega lahko opišemo kot naivni Q(𝜆) [], ki uporablja politiko UCB
[]. Drugi raziskovalci, ki so zavestno izhajali iz teorije spodbujevalnega učenja pri
razvoju novih algoritmov MCTS, so Veness in sod. [] (algoritem 𝜌UCT), Asmuth
in Littman [] (algoritem BFS), Wang in Sebag [] (algoritem MOMCTS), Osaki
in sod. [] (algoritem TDMC(𝜆)) ter Baier [], ki sicer ni razvijal kombiniranih
metod, toda v svojem uvodnem delu doktorske disertacije izpostavi prisotnost spod-
bujevalnega učenja v drevesnem preiskovanju Monte Carlo.

Navajamo obstoječe variante in izboljšave metod MCTS, pri katerih smo ugotovi-
li močno povezavo s temeljnimi koncepti spodbujevalnega učenja: spreminjanje teže
nagrad oz. povratne informacije [, , ], prirejanje začetne vrednosti vozliščem
(stanjem ali akcijam) na podlagi predhodnega znanja ali hevristik [, , , , ,
, , ] ter pozabljanje znanja [, , , , , ].

C. Podobnosti in razlike med področjema

S poglobljeno teoretično analizo smo identificirali podobnosti in razlike med področje-
ma. Ugotavljamo, da po eni strani lahko metode MCTS razumemo kot podmnožico
metod spodbujevalnega učenja, ki se učijo s pomočjo vzorčenja po Monte Carlu, po
drugi strani pa vnašajo na področje spodbujevalnega učenja nove koncepte, ki jih kla-
sično spodbujevalno učenje ne zna opisati.

 C Razširjeni povzetek T. Vodopivec

S pomočjo konceptov spodbujevalnega učenja lahko opišemo številne mehanizme
drevesnega preiskovanja Monte Carlo. Tako lahko izpostavimo podobnosti med obe-
ma družinama metod:

soočanje z zakasnjeno povratno informacijo;

iskanje ravnovesja med raziskovanjem prostora ter izkoriščanjem znanja (ang.
the exploration-exploitation dilemma);

iterativno ali epizodično nabiranje izkušenj in vzorcev;

pomnjenje obiskanih stanj ter izbranih akcij, bodisi v obliki preiskovalnega dre-
vesa (privzeto za temeljne metode MCTS) ali grafa na osnovi transpozicij (pri-
vzeto za temeljne metode spodbujevalnega učenja);

vrednotenje obiskanih stanj in akcij preko mehanizmov vzvratnega prenosa po-
vratne informacije – učenje na podlagi nagrad iz okolja;

raziskovanje prostora stanj s pomočjo politik izbire akcij, ki se tekom učenja
(preiskovanja) izboljšujejo na podlagi nabranih izkušenj in usmerjajo raziskova-
nje v najbolj obetavno smer. To je temeljni mehanizem spodbujevalnega učenja
znan kot posplošena iteracija politike (ang. generalized policy iteration), s kate-
rim lahko opišemo veliko število algoritmov umetne inteligence. Posplošena
iteracija politike dokazano konvergira k optimalni rešitvi, če ima algoritem na
razpolago več časa za učenje (ali preiskovanje);

možnost izstavitve približne rešitve po poljubnem času izvajanja - zaustavitev
algoritmov po poljubnem pretečenem času (ravno zaradi tega, ker obe skupini
metod delujeta po mehanizmu posplošene iteracije politike); in

zmožnost učenja iz simulacij – planiranja – če je na voljo simulacijski model
problema (okolja).

Tako lahko originalen algoritem UCT [] opišemo kot metodo spodbujevalnega uče-
nja, ki uporablja vzorčenje po Monte Carlu in politiko izbire akcij UCB, in ki ima
na razpolago model okolja, s pomočjo katerega lahko simulira interakcijo z okoljem v
okviru razpoložljivega računskega časa.

Monte Carlo Tree Search Strategies 

Zgornje ugotovitve kažejo, da lahko spodbujevalno učenje zelo dobro opiše fazi se-
stopa in vzvratnega prenosa metod MCTS. Po drugi strani pa ima osnovna teorija spod-
bujevalnega učenja težave pri opisovanju faz razširitve in odigravanja. Razlog je v nači-
nu, kako se ena in druga skupina metod spopada s težavo omejene količine pomnilnika
pri reševanju velikih problemov. Metode spodbujevalnega učenja običajno to rešujejo
s funkcijsko aproksimacijo prostora stanj – predstavitev v pomnilniku je ves čas učenja
fiksna in opisuje celoten prostor stanj, toda z določeno stopnjo nenatančnosti glede na
izbrane značilke. Po drugi strani pa preiskovalne metode, vključno z MCTS, hranijo
v pomnilniku v določenem trenutku le del prostora stanj – tisti del, ki je najbolj rele-
vanten glede na izbran kriterij ali hevristiko. Na tak način preiskovalne metode spremi-
njajo predstavitev med postopkom učenja (preiskovanja). Takšno sprotno spreminjanje
predstavitve (modela prostora stanj, vrednostne funkcije ali politike izbire akcij) je ne-
navadno za spodbujevalno učenje in ga z osnovnimi koncepti ne more opisati. Nadalje
sledi, da spodbujevalno učenje ne pozna privzete politike in ne razločuje med delom
prostora stanj, ki se nahaja v pomnilniški predstavitvi (ekvivalent zgrajenemu dreve-
su MCTS), in delom, ki se ne nahaja v pomnilniku (ekvivalent fazi odigravanja), za
katerega ne beležimo spodbude in ne posodabljamo vrednostne funkcije. Zato osnov-
no spodbujevalno učenje ne more opisati standardne različice algoritma UCT [], ki,
za razliko od originalne različice [], ne uporablja transpozicij, gradi drevo namesto
usmerjenega grafa in v vsaki iteraciji (epizodi) doda v graf samo eno novo obiskano
stanje, namesto vseh obiskanih stanj.

C. Drevesno preiskovanje s časovnimi razlikami

S pomočjo dosedanjih ugotovitev predstavljamo novo ogrodje za učenje in preiskova-
nje: drevesno preiskovanje s časovnimi razlikami (ang. temporal difference tree search
– TDTS). Slednje smatramo kot posplošitev metod MCTS, saj ohranja vse njihove
mehanizme, toda namesto vzorčenja po Monte Carlu uporablja za učenje algoritem
TD(𝜆) []. Algoritem TD(𝜆) pri vrednosti 𝜆 = 􏷟 privede do učenja izključno s ča-
sovnimi razlikami, medtem ko 𝜆 = 􏷠 privede do enakega učenja kot metode Monte
Carlo – vse vmesne vrednosti pa kombinirajo oba pristopa. Tako so metode MCTS
ena izmed robnih variant našega ogrodja TDTS.

Iz drugega zornega kota, TDTS posplošuje algoritme spodbujevalnega učenja z dre-
vesnim preiskovanjem in sprotnim spreminjanjem predstavitve prostora stanj. Preko
TDTS vpeljujemo v teorijo spodbujevalnega učenja dva nova koncepta:

 C Razširjeni povzetek T. Vodopivec

Predstavitveno politiko, ki določa, kako se model prostora stanj spreminja. Na
primer, pri standardnem algoritmu UCT določa, da se preslikovalna tabela, ki
ponazarja drevo ali usmerjen graf, sprotno povečuje za en element na epizodo.
Enako predstavitveno politiko uporablja naše ogrodje TDTS. Predstavitveno
politiko lahko razumemo kot posplošitev faze razširitve metod MCTS.

Vrednostno funkcijo v odigravanju, ki vpeljuje razločevanje med delom preisko-
valnega prostora, ki ga algoritem hrani v pomnilniku, in delom, ki ga ne. Funk-
cija določa vrednosti stanj (in akcij), ki jih predstavitev ne hrani v pomnilniku.
Te vrednosti so potrebne, ker metode spodbujevalnega učenja za pravilno delo-
vanje v splošnem potrebujejo vrednosti vseh stanj, te pa v fazi odigravanja niso
na voljo. Zato moramo predpostaviti njihovo vrednost na podoben način kot
predpostavimo začetne vrednosti pri klasičnih metodah spodbujevalnega učenja.
Učenje s časovnimi razlikami je primer metode, ki za pravilno posodabljanje
vrednostne funkcije potrebuje takšne predpostavke.

Po eni strani lahko TDTS klasificiramo kot metodo preiskovanja s časovnimi razlika-
mi [], toda po drugi strani, TDTS nadgrajuje to isto metodo z novimi koncepti, ki
smo jih opisali zgoraj.

C. Algoritem Sarsa-UCT

Za potrditev naše ideje smo razvili konkreten primer metode TDTS: algoritem Sarsa-
UCT(𝜆) predstavlja prvo učinkovito aplikacijo učenja s časovnimi razlikami na enega
izmed temeljnih algoritmov MCTS ob ohranitvi vseh štirih faz MCTS. Izbrali smo
algoritma Sarsa(𝜆) ter UCT, ker sta dva izmed najbolj raziskanih in široko uporabljenih
predstavnikov svojih področij. Ključna razlika med Sarsa-UCT(𝜆) in standardnim
algoritmom UCT je v načinu posodabljanja vrednostne funkcije. Sarsa-UCT(𝜆) ravno
tako izbira vozlišča z najvišjo vrednostjo po Enačbi (C.), vendar namesto vrednosti
𝑄MC uporablja vrednosti 𝑄TD(𝜆), ki jih računa z uporabo algoritma TD(𝜆) [].

Naša metoda ohranja enako računsko in pomnilniško zahtevnost kot originalen
algoritem UCT, obenem pa preko štirih novih parametrov (ki izhajajo iz algoritma
TD(𝜆)) omogoča implementacijo širokega spektra obstoječih algoritmov MCTS in
številne nove algoritme. Preko teh parametrov lahko algoritmom TDTS določamo
hitrost in način pozabljanja znanja, težo predhodnega znanja glede na sprotno pri-
dobljeno znanje, hevristike v fazah sestopa in odigravanja, zanesljivost simulacijskega

Monte Carlo Tree Search Strategies 

modela, zanesljivost dolgoročne povratne informacije, prednost kratkoročnih nagrad,
predhodno ali ekspertno znanje, in, najpomembneje, kako močno se bo algoritem po-
služeval učenja s časovnimi razlikami – parameter 𝜆.

Ker algoritem Sarsa-UCT(𝜆) tako kot algoritem UCT uporablja drevesno politiko
UCB, za pravilno delovanje potrebuje vrednosti normirane v razponu [􏷟, 􏷠]. Če je
Sarsa-UCT(𝜆) nastavljen tako, da popolnoma posnema delovanje algoritma UCT (ko
𝜆 = 􏷠), potem je postopek normiranja enostavnejši – dovolj je nastavitev parametra
𝐶𝑝 na ustrezno vrednost za trenutni problem, kot je to praksa pri algoritmu UCT [].
V nasprotnem primeru (ko 𝜆 < 􏷠) pa je normiranje bolj težavno; zato je politika
UCB redkeje uporabljena pri algoritmih spodbujevalnega učenja; še pri metodi pre-
iskovanja s časovnimi razlikami [] so avtorji poročali o nezadovoljivih rezultatih ob
njeni uporabi. Za namen normiranja vrednosti pri algoritmu Sarsa-UCT(𝜆) smo raz-
vili novo tehniko, ki sprotno spreminja zgornjo in spodnjo mejo normiranja za vsako
stanje posebej, zato smo jo poimenovali prostorsko-lokalno normiranje vrednosti (ang.
space-local value normalization). Metoda je neparametrična in se avtomatsko prilagaja
nastavljenim parametrom učenja algoritma – apliciramo jo lahko na poljubno metodo
spodbujevalnega učenja, tudi izven domen TDTS ali MCTS.

C. Eksperimentalna analiza in ugotovitve

Osrednji cilj naše eksperimentalne analize je bil ugotoviti, ali zamenjava učenja z vzor-
čenjem po Monte Carlu z učenjem s časovnimi razlikami v metodah MCTS izboljša
zmogljivost teh metod. V ta namen smo implementirali in primerjali več TDTS al-
goritmov: od originalnega algoritma UCT, preko standardnega algoritma UCT, do
algoritma Sarsa-UCT(𝜆). Ugotavljali smo, kako vrednost parametra 𝜆, ki uravnava
do kolikšne mere se algoritem poslužuje učenja s časovnimi razlikami, vpliva na ob-
našanje algoritma pri različnih konfiguracijah učnih parametrov in pri različni količini
časa na razpolago za učenje. Za testne domene smo izbrali dve enostavni teoretični igri
za enega igralca (ki se pogosto pojavljata tudi v drugih raziskavah [, , ]), štiri
klasične igre za dva igralca (križci in krožci, štiri v vrsto, gomoku, in hex) ter nabor
arkadnih video iger iz mednarodnega tekmovanja inteligentnih agentov za igranje iger
General Video Game AI competition (GVG-AI) []. Merili smo kakovost vrednostne
funkcije, kakovost politike izbire akcij, kakovost planiranja in moč igranja. Slednjo
smo izrazili kot delež zmag proti nasprotniku (pri igrah z dvema igralcema) ali kot
količino nabrane nagrade (pri igrah z enim igralcem).

 C Razširjeni povzetek T. Vodopivec

Z našimi algoritmi smo se tudi udeležili številnih tekmovanj GVG-AI. V tekmo-
vanjih za enega igralca smo preizkušali osnovni algoritem Sarsa-UCT(𝜆), ki čim bolj
posnema standardni UCT algoritem, razen po uporabi učenja po časovnih razlikah
(𝜆 < 􏷠) – naš algoritem se je uvrstil bolje kot standardni UCT v štirih od petih tekmo-
vanj. V tekmovanjih za dva igralca smo preizkušali različico algoritma Sarsa-UCT(𝜆),
ki ima parametre nastavljene tako, da čim bolj izkorišča potencial TDTS ogrodja – s
to različico smo dvakrat (od treh tekmovanj) dosegli prvo mesto, kar izpostavljamo kot
najboljši dosežek naših algoritmov.

Ugotavljamo, da novi algoritmi TDTS ohranjajo robustnost in enako računsko ter
pomnilniško zahtevnost, obenem pa dosegajo boljše rezultate od tradicionalnih algorit-
mov MCTS v večini testnih domen in v večini uporabljenih konfiguracij. V splošnem
je doprinos večji, ko je na razpolago manj računskega časa; z večanjem računskega časa
pa postajajo novi algoritmi bolj enakovredni algoritmom MCTS – to je bolj opazno na
igrah z dvema igralcema in manj na igrah z enim igralcem. Doprinos je tudi večji, ko
algoritmi ne uporabljajo transpozicij in gradijo drevo (to je privzeta nastavitev metod
MCTS).

Uporaba učenja s časovnimi razlikami nekoliko poveča občutljivost algoritmov na
začetne vrednosti, predvsem pa naredi algoritme zelo občutljive na vrednost parametra
𝜆: optimalna vrednost tega parametra je odvisna od konfiguracije in danega problema,
pri čemer lahko prenizka vrednost povzroči slabše delovanje od čistega učenja z vzorče-
njem po Monte Carlu (ko 𝜆 = 􏷠) – to smatramo kot glavno slabost algoritmov TDTS.
Ob upoštevanju tega je konservativna nastavitev parametra 𝜆 bliže vrednosti 􏷠 bolj
varna, vendar tudi ustvari manj doprinosa v zmogljivosti algoritmov. Kako teoretično
določiti optimalno vrednost parametra 𝜆, je že dve desetletji eden od glavnih odprtih
izzivov spodbujevalnega učenja in je izven zmožnosti te disertacije, da ga razreši. Kljub
temu pa opažamo, da lahko z eksperimentiranjem najdemo zadovoljivo vrednost 𝜆, pri
čemer je to lažje, če se razpoložljiv čas za učenje ne spreminja. V nasprotnem primeru
bi potrebovali dodatne mehanizme za sprotno spreminjanje vrednosti 𝜆, kar pa sodi v
napredne tehnike spodbujevalnega učenja [].

Kljub temu, da smo preizkusili veliko število konfiguracij parametrov algoritmov
TDTS, smo v naših eksperimentih merili le različne načine učenja algoritmov, ostale
mehanizme (ki smo jih omenili v prejšnjem poglavju) pa smo izpustili. Izmed teh me-
hanizmov bi v prihodnje bili zanimivi za raziskovanje še predvsem pozabljanje znanja
in pripisovanje večje teže bližnjim nagradam. Oba mehanizma imata velik potencial,

Monte Carlo Tree Search Strategies 

da še dodatno izboljšata zmogljivost algoritmov TDTS, saj sta se že v preteklosti izka-
zala kot dobra tako v domeni spodbujevalnega učenja, kot v domeni MCTS. Poleg tega
bi bilo smiselno preveriti algoritme TDTS tudi na drugih tipih iger, na primer, na več-
igralskih igrah, s sočasnim izvajanjem potez, z nepopolno informacijo, z zašumljenim
generacijskim modelom, itd.

Naše ugotovitve nakazujejo, da je še veliko neraziskanega potenciala v metodah in
idejah, ki smo jih predstavili v tej disertaciji. V grobem lahko te obetavne raziskovalne
smeri razdelimo na dve skupini: () izboljšanje sodelovanja in prehoda idej med po-
dročjema preiskovanja in spodbujevalnega učenja ter () temeljita teoretična analiza,
kako predstavitvene politike v splošnem vplivajo na metode spodbujevalnega učenja.

C. Zaključek

Glavni cilj te disertacije je bilo izboljšanje temeljnih algoritmov drevesnega preiskova-
nja Monte Carlo (MCTS) z uporabo domensko-neodvisnih pristopov, ki bi ohranili
splošnost novih algoritmov. To smo uspeli doseči z integracijo dobro raziskanih in
uveljavljenih metod spodbujevalnega učenja v ogrodje MCTS. S tem smo potrdili, da
kombiniranje metod iz teh dveh področij odpira možnosti za razvoj številnih novih
algoritmov, ki po zmogljivostih prekašajo klasične algoritme MCTS. S posnemanjem
pristopa, ki smo ga uporabili pri naših raziskavah, bi lahko na podoben način nad-
gradili poljubne algoritme MCTS z močnimi metodami učenja – ali obratno, poljub-
ne metode spodbujevalnega učenja bi lahko nadgradili z drevesnim preiskovanjem in
adaptivnimi predstavitvami prostora stanj. S tem zmanjšujemo razkorak med razisko-
valnimi skupnostmi teh dveh področij in jih spodbujamo k tesnejšemu sodelovanju, ki
bi lahko prineslo razvoj potencialno nove družine algoritmov umetne inteligence.

Čeprav smo izpolnili naš glavni cilj, smo pri naših raziskavah šli še dlje: pokazali
smo, da se metode spodbujevalnega učenja in metode preiskovanja v veliki meri pre-
krivajo, saj se ukvarjajo z zelo podobnimi problemi, le da do njih pristopajo iz drugač-
nih zornih kotov. Zato predlagamo, da se uvrščanje preiskovalnih metod v področje
spodbujevalnega učenja ne razume kot nova ali nasprotujoča razlaga že uveljavljenim
razlagam raziskovalne skupnosti, ampak bolj kot komplementarna razlaga, iz katere
lahko črpamo veliko znanja in idej za v prihodnje. Dosežki, ki smo jih predstavili v tej
disertaciji, izhajajo iz takšnega razmišljanja in ga še naprej spodbujajo. To smatramo
kot korak v smeri enotnega pogleda na učenje, planiranje in preiskovanje.

BIBLIOGRAPHY

[] Murray Campbell, A. Joseph Jr. Hoane, and Feng-
hsiung Hsu. Deep Blue. Artificial Intelligence,
(-):–, jan . ISSN .
doi: ./S-()-. URL
http://www.sciencedirect.com/science/
article/pii/S0004370201001291.

[] Sylvain Gelly, Levente Kocsis, Marc Schoe-
nauer, Michèle Sebag, David Silver, Csaba
Szepesvári, and Olivier Teytaud. The grand
challenge of computer Go: Monte Carlo tree
search and extensions. Communications of the
ACM, ():–, . ISSN -.
doi: ./.. URL http:
//doi.acm.org/10.1145/2093548.2093574.

[] Sylvain Gelly, Yizao Wang, Rémi Munos,
and Olivier Teytaud. Modification of UCT
with Patterns in Monte-Carlo Go. Re-
search Report RR-, INRIA, . URL
http://hal.inria.fr/inria-00117266.

[] Rémi Coulom. Efficient Selectivity and Backup
Operators in Monte-Carlo Tree Search, pages
–. Springer Berlin Heidelberg, Berlin,
Heidelberg, . ISBN ----.
doi: ./----_. URL http:
//dx.doi.org/10.1007/978-3-540-75538-8_7.

[] Cameron B. Browne, Edward Powley, Daniel White-
house, Simon M. Lucas, Peter I. Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-
don Samothrakis, and Simon Colton. A Survey
of Monte Carlo Tree Search Methods. IEEE
Transactions on Computational Intelligence and AI
in Games, ():–, mar . ISSN -
X. doi: ./TCIAIG... URL
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6145622.

[] David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya

Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis.
Mastering the game of Go with deep neural networks
and tree search. Nature, ():–, jan
. ISSN -. doi: ./nature.
URL http://dx.doi.org/10.1038/nature16961.

[] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning. Nature, ():–, may
. ISSN -. doi: ./nature.
URL http://www.nature.com/doifinder/10.
1038/nature14539.

[] Levente Kocsis and Csaba Szepesvári. Bandit Based
Monte-Carlo Planning. In Johannes Fürnkranz,
Tobias Scheffer, and Myra Spiliopoulou, editors,
Proceedings of the Seventeenth European Conference on
Machine Learning, volume  of Lecture Notes in
Computer Science, pages –, Berlin/Heidelberg,
Germany, . Springer. ISBN ---X.
URL http://www.sztaki.hu/~szcsaba/papers/
ecml06.pdf.

[] Richard S. Sutton and Andrew G. Barto. Reinforce-
ment Learning: An Introduction. The MIT Press,
. ISBN .

[] David Silver. Reinforcement Learning and Simulation-
Based Search in Computer Go. Ph.d. thesis, University
of Alberta, Edmonton, Alta., Canada, . URL
http://dl.acm.org/citation.cfm?id=1834781.

[] Richard S. Sutton. Learning to predict by the meth-
ods of temporal differences. In Machine Learning,
pages –. Kluwer Academic Publishers, .

[] Richard Bellman. Dynamic Programming. Princeton
University Press, Princeton, NJ, USA,  edition,
.

[] Peter Auer, Nicolò Cesa-Bianchi, and Paul
Fischer. Finite-time Analysis of the Mul-
tiarmed Bandit Problem. Machine Learn-
ing, (-):–, . ISSN -
. doi: ./A:. URL
http://dx.doi.org/10.1023/A:1013689704352.



http://dx.doi.org/10.1016/S0004-3702(01)00129-1
http://www.sciencedirect.com/science/article/pii/S0004370201001291
http://www.sciencedirect.com/science/article/pii/S0004370201001291
http://dx.doi.org/10.1145/2093548.2093574
http://doi.acm.org/10.1145/2093548.2093574
http://doi.acm.org/10.1145/2093548.2093574
http://hal.inria.fr/inria-00117266
http://dx.doi.org/10.1007/978-3-540-75538-8_7
http://dx.doi.org/10.1007/978-3-540-75538-8_7
http://dx.doi.org/10.1007/978-3-540-75538-8_7
http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6145622
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6145622
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature14539
http://www.nature.com/doifinder/10.1038/nature14539
http://www.nature.com/doifinder/10.1038/nature14539
http://www.sztaki.hu/~szcsaba/papers/ecml06.pdf
http://www.sztaki.hu/~szcsaba/papers/ecml06.pdf
http://dl.acm.org/citation.cfm?id=1834781
http://dx.doi.org/10.1023/A:1013689704352
http://dx.doi.org/10.1023/A:1013689704352

 Bibliography T. Vodopivec

[] Gavin A. Rummery and Mahesan Niranjan. On-
Line {Q}-Learning Using Connectionist Systems.
Technical Report CUED/F-INFENG/TR , Cam-
bridge University Engineering Department, England,
. URL http://mi.eng.cam.ac.uk/reports/
svr-ftp/auto-pdf/rummery_tr166.pdf.

[] Diego Perez, Spyridon Samothrakis, Julian To-
gelius, Tom Schaul, Simon Lucas, Adrien Couetoux,
Jerry Lee, Chong-u Lim, and Tommy Thompson.
The  General Video Game Playing Com-
petition. IEEE Transactions on Computational
Intelligence and AI in Games, . ISSN -
X. doi: ./TCIAIG... URL
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=7038214.

[] Joseph A. M. Nijssen. Playing Othello Using Monte
Carlo. B.sc. thesis, Maastricht, .

[] Julien Kloetzer. Monte-Carlo Opening Books
for Amazons. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
volume  LNCS, pages –. . ISBN
. doi: ./----_.
URL http://link.springer.com/10.1007/
978-3-642-17928-0_12.

[] Tomáš Kozelek. Methods of MCTS and the game
Arimaa. Master’s thesis, Charles University in Prague,
. URL http://kozelek.cz/akimot/mt.pdf.

[] Tom Pepels, Mark H. M. Winands, and Marc Lanc-
tot. Real-Time Monte Carlo Tree Search in Ms Pac-
Man. IEEE Transactions on Computational Intelligence
and AI in Games, ():–, sep . ISSN
-X. doi: ./TCIAIG...
URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6731713.

[] Diego Perez, Edward Powley, Daniel White-
house, Spyridon Samothrakis, Simon Lucas, and
Peter I. Cowling. The  Multi-objective
Physical Travelling Salesman Problem Com-
petition.  IEEE Congress on Evolution-
ary Computation (CEC), pages –, jul
. doi: ./CEC... URL
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6900243.

[] Dennis Soemers. Tactical Planning Using MCTS in
the Game of StarCraft. B.sc. thesis, Maastricht, .

[] Michael Genesereth, Nathaniel Love, and Barney
Pell. General game playing: Overview of the AAAI
competition. AI Magazine, ():–, .
ISSN -. doi: ./aimag.vi..
URL https://www.aaai.org/ojs/index.php/
aimagazine/article/viewArticle/1813.

[] Hilmar Finnsson and Yngvi Björnsson. Simulation-
based approach to general game playing. In Pro-
ceedings of the rd national conference on Artificial
intelligence - Volume , AAAI’, pages –.
AAAI Press, . ISBN ----. URL
http://dl.acm.org/citation.cfm?id=1619995.
1620038.

[] Hilmar Finnsson and Yngvi Björnsson. CADIA
PLAYER : A Simulation-Based General Game Player.
IEEE Transactions on Computational Intelligence and
AI in Games, ():–, .

[] Jean Mehat and Tristan Cazenave. Combining
UCT and Nested Monte Carlo Search for Single-
Player General Game Playing. IEEE Transactions
on Computational Intelligence and AI in Games,
():–, dec . ISSN -X.
doi: ./TCIAIG... URL
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5604665.

[] Broderick Arneson, Ryan B. Hayward, and Philip
Henderson. Monte Carlo Tree Search in Hex. IEEE
Transactions on Computational Intelligence and AI
in Games, ():–, dec . ISSN -
X. doi: ./TCIAIG... URL
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5551182.

[] Arthur L. Samuel. Some Studies in Machine Learning
Using the Game of Checkers. II: Recent Progress.
IBM J. Res. Dev., ():–, nov . ISSN
-. doi: ./rd... URL
http://dx.doi.org/10.1147/rd.116.0601.

[] Sylvain Gelly and David Silver. Combining online
and offline knowledge in UCT. In Proceedings of
the th international conference on Machine learn-
ing, ICML ’, pages –, New York, NY,
USA, . ACM. ISBN ----.
doi: ./.. URL http:
//doi.acm.org/10.1145/1273496.1273531.

[] Guillaume M. J-B. Chaslot, Christophe Fiter,
Jean-Baptiste Hoock, Arpad Rimmel, and Olivier
Teytaud. Adding Expert Knowledge and Ex-
ploration in Monte-Carlo Tree Search, pages –
. Springer Berlin Heidelberg, Berlin, Hei-
delberg, . ISBN ----.
doi: ./----_. URL http:
//dx.doi.org/10.1007/978-3-642-12993-3_1.

[] Mark H. M. Winands, Yngvi Björnsson, and Jahn-
Takeshi Saito. Monte-Carlo Tree Search in Lines of
Action. IEEE Transactions on Computational Intelli-
gence and AI in Games, ():–, . ISSN
-X. URL http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=5523941.

http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/rummery_tr166.pdf
http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/rummery_tr166.pdf
http://dx.doi.org/10.1109/TCIAIG.2015.2402393
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7038214
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7038214
http://dx.doi.org/10.1007/978-3-642-17928-0_12
http://link.springer.com/10.1007/978-3-642-17928-0_12
http://link.springer.com/10.1007/978-3-642-17928-0_12
http://kozelek.cz/akimot/mt.pdf
http://dx.doi.org/10.1109/TCIAIG.2013.2291577
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6731713
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6731713
http://dx.doi.org/10.1109/CEC.2014.6900243
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6900243
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6900243
http://dx.doi.org/10.1609/aimag.v26i2.1813
https://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1813
https://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1813
http://dl.acm.org/citation.cfm?id=1619995.1620038
http://dl.acm.org/citation.cfm?id=1619995.1620038
http://dx.doi.org/10.1109/TCIAIG.2010.2088123
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5604665
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5604665
http://dx.doi.org/10.1109/TCIAIG.2010.2067212
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5551182
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5551182
http://dx.doi.org/10.1147/rd.116.0601
http://dx.doi.org/10.1147/rd.116.0601
http://dx.doi.org/10.1145/1273496.1273531
http://doi.acm.org/10.1145/1273496.1273531
http://doi.acm.org/10.1145/1273496.1273531
http://dx.doi.org/10.1007/978-3-642-12993-3_1
http://dx.doi.org/10.1007/978-3-642-12993-3_1
http://dx.doi.org/10.1007/978-3-642-12993-3_1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5523941
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5523941

Monte Carlo Tree Search Strategies 

[] Benjamin E. Childs, James H. Brodeur, and Levente
Kocsis. Transpositions and move groups in Monte
Carlo tree search.  IEEE Symposium On Com-
putational Intelligence and Games, pages –,
dec . doi: ./CIG... URL
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5035667.

[] Donald A. Berry and Bert Fristedt. Bandit
problems: Sequential Allocation of Experiments.
Springer Netherlands, . ISBN --
--. doi: ./----.
URL http://link.springer.com/10.1007/
978-94-015-3711-7.

[] Rajeev Agrawal. Sample mean based index poli-
cies with O (log n) regret for the multi-armed
bandit problem. Advances in Applied Prob-
ability, ():–, . URL http:
//www.jstor.org/stable/10.2307/1427934.

[] T. L. Lai and Herbert Robbins. Asymptotically
efficient adaptive allocation rules. Advances in applied
mathematics, :–, .

[] Levente Kocsis, Csaba Szepesvári, and Jan Willem-
son. Improved monte-carlo search. Technical
Report , University of Tartu, Estonia, . URL
http://www.ualberta.ca/~szepesva/papers/
cg06-ext.pdf.

[] Abdallah Saffidine, Tristan Cazenave, and Jean
Mehat. UCD: Upper Confidence Bound for Rooted
Directed Acyclic Graphs. In International Con-
ference on Technologies and Applications of Artificial
Intelligence, pages –. Ieee, nov . ISBN
----. doi: ./TAAI...
URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5695494.

[] Richard J. Lorentz. Amazons Discover Monte-Carlo.
In H.Jaap Herik, Xinhe Xu, Zongmin Ma, and
MarkH.M. Winands, editors, Proceedings of the th
international conference on Computers and Games, vol-
ume  of Lecture Notes in Computer Science, pages
–. Springer Berlin Heidelberg, . ISBN
----.

[] Sylvain Gelly and Yizao Wang. Exploration ex-
ploitation in go: UCT for Monte-Carlo go.
In NIPS: Neural Information Processing Systems
Conference On-line trading of Exploration and
Exploitation Workshop, . URL https:
//hal.inria.fr/hal-00115330/document.

[] Sylvain Gelly and David Silver. Monte-Carlo
tree search and rapid action value estimation
in computer Go. Artificial Intelligence, 
():–, jul . ISSN -.
doi: ./j.artint.... URL http:
//dx.doi.org/10.1016/j.artint.2011.03.007.

[] John Asmuth and Michael L. Littman. Learning is
planning: near Bayes-optimal reinforcement learning
via Monte-Carlo tree search. The Computing Research
Repository (CoRR), abs/., feb . URL
http://arxiv.org/abs/1202.3699.

[] David Silver, Richard S. Sutton, and Martin Müller.
Temporal-difference search in computer Go. Machine
Learning, ():–, feb . ISSN -
. doi: ./s---. URL http:
//dx.doi.org/10.1007/s10994-012-5280-0.

[] Richard S Sutton and Andrew G Barto. Reinforcement
Learning: An Introduction. Unpublished work in
progress, second edition, .

[] Hendrik Baier. Monte-Carlo Tree Search Enhancements
for One-Player and Two-Player Domains. Ph.d. thesis,
Maastricht University, .

[] Richard Bellman. A Markovian decision process,
. ISSN .

[] Leslie Pack Kaelbling, Michael L. Littman, and An-
drew W. Moore. Reinforcement learning: a survey.
Journal of Artificial Intelligence Research, :–,
.

[] Leslie Pack Kaelbling, Michael L. Littman, and
Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial
Intelligence, (-):–, . ISSN .
doi: ./S-()-X.

[] Marco Wiering and Martijn van Otterlo. Rein-
forcement Learning: State-of-the-Art, volume  of
Adaptation, Learning, and Optimization. Springer
Berlin Heidelberg, Berlin, Heidelberg, . ISBN
----. doi: ./----
. URL http://link.springer.com/10.1007/
978-3-642-27645-3.

[] D. Michie and R. A. Chambers. Boxes: An Exper-
iment in Adaptive Control. Machine Intelligence ,
pages –, .

[] Christopher J. C. H. Watkins. Learning from
Delayed Rewards. Ph.d. thesis, Cambridge
University, England, . URL http:
//www.cs.rhul.ac.uk/~chrisw/thesis.html.

[] John N. Tsitsiklis. On the convergence of
optimistic policy iteration. JMLR, :–
, . ISSN -. URL http:
//dl.acm.org/citation.cfm?id=944922.

[] Wei Chu, Lihong Li, Lev Reyzin, and Robert E
Schapire. Contextual bandits with linear payoff
functions. In International Conference on Artificial
Intelligence and Statistics, pages –, .

http://dx.doi.org/10.1109/CIG.2008.5035667
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5035667
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5035667
http://dx.doi.org/10.1007/978-94-015-3711-7
http://link.springer.com/10.1007/978-94-015-3711-7
http://link.springer.com/10.1007/978-94-015-3711-7
http://www.jstor.org/stable/10.2307/1427934
http://www.jstor.org/stable/10.2307/1427934
http://www.ualberta.ca/~szepesva/papers/cg06-ext.pdf
http://www.ualberta.ca/~szepesva/papers/cg06-ext.pdf
http://dx.doi.org/10.1109/TAAI.2010.79
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5695494
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5695494
https://hal.inria.fr/hal-00115330/document
https://hal.inria.fr/hal-00115330/document
http://dx.doi.org/10.1016/j.artint.2011.03.007
http://dx.doi.org/10.1016/j.artint.2011.03.007
http://dx.doi.org/10.1016/j.artint.2011.03.007
http://arxiv.org/abs/1202.3699
http://dx.doi.org/10.1007/s10994-012-5280-0
http://dx.doi.org/10.1007/s10994-012-5280-0
http://dx.doi.org/10.1007/s10994-012-5280-0
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dx.doi.org/10.1007/978-3-642-27645-3
http://dx.doi.org/10.1007/978-3-642-27645-3
http://link.springer.com/10.1007/978-3-642-27645-3
http://link.springer.com/10.1007/978-3-642-27645-3
http://www.cs.rhul.ac.uk/~chrisw/thesis.html
http://www.cs.rhul.ac.uk/~chrisw/thesis.html
http://dl.acm.org/citation.cfm?id=944922
http://dl.acm.org/citation.cfm?id=944922

 Bibliography T. Vodopivec

[] Ian Osband, Charles Blundell, Alexander Pritzel,
and Benjamin Van Roy. Deep exploration via boot-
strapped DQN. In Advances in Neural Information
Processing Systems, pages –, .

[] B. Van Roy, D. P. Bertsekas, Y. Lee, and J. N. Tsit-
siklis. A Neuro-Dynamic Programming Approach
to Retailer Inventory Management. In Proceedings
of the th IEEE Conference on Decision and Control,
volume , pages –. IEEE, . ISBN
---. doi: ./CDC...
URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=652501.

[] Satinder P. Singh and Richard S. Sutton. Reinforce-
ment Learning with Replacing Elibibility Traces.
Machine Learning, :–, .

[] Zohar Feldman and Carmel Domshlak. Simple
Regret Optimization in Online Planning for Markov
Decision Processes. Journal of Artificial Intelligence
Research, pages –, .

[] Dennis M. Breuker, Jos W. H. M. Uiterwijk, and
H. Jaap van den Herik. Replacement schemes for
transposition tables. ICCA Journal, ():–,
. ISSN -X.

[] Guillaume M. J-B. Chaslot, Mark H. M. Winands,
H. Jaap van den Herik, Jos W. H. M. Uiterwijk,
and Bruno Bouzy. Progressive Strategies For
Monte-Carlo Tree Search. New Mathematics and
Natural Computation, ():–, . URL
http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.106.3015.

[] Rémi Coulom. Computing ”Elo Ratings” of Move
Patterns in the Game of Go. Journal of The Interna-
tional Computer Games Association, ():–,
.

[] Paul E. Utgoff. Incremental Induction of Decision
Trees. Machine Learning, ():–, .
ISSN . doi: ./A:.
URL http://link.springer.com/10.1023/A:
1022699900025.

[] Dimitri. P. Bertsekas and David.A. Castañón.
Adaptive aggregation methods for infinite hori-
zon dynamic programming. IEEE Transactions
on Automatic Control, ():–, jun .
ISSN . doi: ./.. URL
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=24227.

[] Alborz Geramifard, Joshua Redding, Jonathan P.
How, Finale Doshi, and Nicholas Roy. Online
Discovery of Feature Dependencies. Proceedings of
the th International Conference on Machine Learning
(ICML-), pages –, .

[] Philipp W. Keller, Shie Mannor, and Doina Pre-
cup. Automatic basis function construction for
approximate dynamic programming and reinforce-
ment learning. Proceedings of the rd international
conference on Machine learning - ICML ’, pages
–, . doi: ./..
URL http://dl.acm.org/citation.cfm?id=
1143844.1143901.

[] Richard S Sutton, Steven D Whitehead, et al. Online
learning with random representations. In Proceedings
of the Tenth International Conference on Machine
Learning, pages –, .

[] Martin Riedmiller. Neural fitted q iteration-first
experiences with a data efficient neural reinforcement
learning method. In ECML, volume , pages
–. Springer, .

[] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, ():
–, .

[] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In In-
ternational Conference on Machine Learning, pages
–, .

[] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski,
Tom Schaul, David Saxton, and Remi Munos. Unify-
ing count-based exploration and intrinsic motivation.
In Advances in Neural Information Processing Systems,
pages –, .

[] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and
Trevor Darrell. Curiosity-driven Exploration by
Self-supervised Prediction. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the th Interna-
tional Conference on Machine Learning, volume  of
Proceedings of Machine Learning Research, pages –
, International Convention Centre, Sydney,
Australia, – Aug . PMLR. URL http://
proceedings.mlr.press/v70/pathak17a.html.

[] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya
Sutskever. Evolution strategies as a scalable alter-
native to reinforcement learning. arXiv preprint
arXiv:., .

[] Kenneth O Stanley and Risto Miikkulainen. Efficient
evolution of neural network topologies. In Evolu-
tionary Computation, . CEC’. Proceedings of the
 Congress on, volume , pages –. IEEE,
.

[] Richard S. Sutton. Integrated Architectures for
Learning , Planning , and Reacting Based on Approx-
imating Dynamic Programming. In ICML, pages
–, .

http://dx.doi.org/10.1109/CDC.1997.652501
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=652501
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=652501
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.3015
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.3015
http://dx.doi.org/10.1023/A:1022699900025
http://link.springer.com/10.1023/A:1022699900025
http://link.springer.com/10.1023/A:1022699900025
http://dx.doi.org/10.1109/9.24227
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=24227
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=24227
http://dx.doi.org/10.1145/1143844.1143901
http://dl.acm.org/citation.cfm?id=1143844.1143901
http://dl.acm.org/citation.cfm?id=1143844.1143901
http://proceedings.mlr.press/v70/pathak17a.html
http://proceedings.mlr.press/v70/pathak17a.html

Monte Carlo Tree Search Strategies 

[] David Silver, Hado van Hasselt, Matteo Hessel,
Tom Schaul, Arthur Guez, Tim Harley, Gabriel
Dulac-Arnold, David P Reichert, Neil Rabinowitz,
Andre André Barreto, and Thomas Degris. The
Predictron: End-To-End Learning and Planning. In
Doina Precup and Yee Whye Teh, editors, Proceed-
ings of the th International Conference on Machine
Learning (ICML) , Sydney, NSW, Australia, -
August , volume  of Proceedings of Machine
Learning Research, pages –. PMLR, .
URL http://proceedings.mlr.press/v70/
silver17a.html.

[] Ishai Menache, Shie Mannor, and Nahum Shimkin.
Basis function adaptation in temporal difference
reinforcement learning. Annals of Operations Research,
():–, .

[] Huizhen Yu and Dimitri P Bertsekas. Basis function
adaptation methods for cost approximation in mdp.
In Adaptive Dynamic Programming and Reinforcement
Learning, . ADPRL’. IEEE Symposium on,
pages –. IEEE, .

[] Ashique Rupam Mahmood and Richard S Sutton.
Representation search through generate and test. In
AAAI Workshop: Learning Rich Representations from
Low-Level Sensors, .

[] Shimon Whiteson, Matthew E Taylor, Peter Stone,
et al. Adaptive tile coding for value function approxima-
tion. Computer Science Department, University of
Texas at Austin, .

[] Bohdana Ratitch and Doina Precup. Sparse dis-
tributed memories for on-line value-based reinforce-
ment learning. In European Conference on Machine
Learning, pages –. Springer, .

[] Lihong Li, Michael Littman, and Thomas J Walsh.
Knows What It Knows: A Framework For Self-
Aware Learning. Proceedings of the th International
Conference on Machine Learning, pages –,
.

[] Thomas J. Walsh, Sergiu Goschin, and Michael L.
Littman. Integrating Sample-based Planning and
Model-based Reinforcement Learning. In Twenty-
Fourth AAAI Conference on Artificial Intelligence,
.

[] István Szita and Csaba Szepesvári. Agnostic KWIK
learning and efficient approximate reinforcement
learning. Journal of Machine Learning Research, :
–, . ISSN .

[] Raghuram Ramanujan and Bart Selman. Trade-offs
in sampling-based adversarial planning. Proc. st
Int. Conf. Automat. Plan. Sched., …, pages –,
.

[] Marc Lanctot, Mark H M Winands, Tom Pepels,
and Nathan R. Sturtevant. Monte Carlo Tree
Search with Heuristic Evaluations using Implicit
Minimax Backups. IEEE Conference on Computa-
tonal Intelligence and Games, CIG, jun . ISSN
. doi: ./CIG... URL
http://arxiv.org/abs/1406.0486.

[] Hendrik Baier and Mark H. M. Winands. Monte-
Carlo Tree Search and minimax hybrids. In
 IEEE Conference on Computational In-
teligence in Games (CIG), number c, pages –.
IEEE, aug . ISBN ----
. doi: ./CIG... URL
http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6942254http:
//ieeexplore.ieee.org/document/6633630/.

[] Peter I. Cowling, Colin D. Ward, and Edward J.
Powley. Ensemble Determinization in Monte
Carlo Tree Search for the Imperfect Information
Card Game Magic: The Gathering. IEEE Trans-
actions on Computational Intelligence and AI in
Games, ():–, dec . ISSN -
X. doi: ./TCIAIG... URL
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6218176.

[] Fan Xie and Zhiqing Liu. Backpropagation Mod-
ification in Monte-Carlo Game Tree Search. In
Proceedings of the Third International Symposium on
Intelligent Information Technology Application - Volume
, IITA ’, pages –, Washington, DC,
USA, . IEEE Computer Society. ISBN --
--. doi: ./IITA... URL
http://dx.doi.org/10.1109/IITA.2009.331.

[] Jonathan Schaeffer. The history heuristic and
alpha-beta search enhancements in practice.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, ():–, .
ISSN . doi: ./.. URL
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=42858.

[] Joseph A. M. Nijssen and Mark H. M. Winands.
Enhancements for Multi-Player Monte-Carlo Tree
Search, pages –. Springer Berlin Heidel-
berg, Berlin, Heidelberg, . ISBN ---
-. doi: ./----_.
URL http://link.springer.com/10.1007/
978-3-642-17928-0_22.

[] Peter Drake. The Last-Good-Reply Policy for Monte-
Carlo Go. International Computer Games Association
Journal, ():–, .

[] Junichi Hashimoto, Akihiro Kishimoto, Kazuki
Yoshizoe, and Kokolo Ikeda. Accelerated UCT and
Its Application to Two-Player Games, pages –.
Springer Berlin Heidelberg, Berlin, Heidelberg, .

http://proceedings.mlr.press/v70/silver17a.html
http://proceedings.mlr.press/v70/silver17a.html
http://dx.doi.org/10.1109/CIG.2014.6932903
http://arxiv.org/abs/1406.0486
http://dx.doi.org/10.1109/CIG.2013.6633630
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6942254 http://ieeexplore.ieee.org/document/6633630/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6942254 http://ieeexplore.ieee.org/document/6633630/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6942254 http://ieeexplore.ieee.org/document/6633630/
http://dx.doi.org/10.1109/TCIAIG.2012.2204883
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6218176
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6218176
http://dx.doi.org/10.1109/IITA.2009.331
http://dx.doi.org/10.1109/IITA.2009.331
http://dx.doi.org/10.1109/34.42858
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=42858
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=42858
http://dx.doi.org/10.1007/978-3-642-17928-0_22
http://link.springer.com/10.1007/978-3-642-17928-0_22
http://link.springer.com/10.1007/978-3-642-17928-0_22

 Bibliography T. Vodopivec

ISBN ----. doi: ./---
-_. URL http://link.springer.com/10.
1007/978-3-642-31866-5_1.

[] Markus Enzenberger, Martin Muller, Broderick
Arneson, and Richard Segal. Fuego – An Open-
Source Framework for Board Games and Go Engine
Based on Monte Carlo Tree Search. IEEE Trans-
actions on Computational Intelligence and AI in
Games, ():–, dec . ISSN -
X. doi: ./TCIAIG... URL
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5599855.

[] Hendrik Baier and Peter D. Drake. The power of
forgetting: Improving the last-good-reply policy in
Monte Carlo Go. IEEE Transactions on Computa-
tional Intelligence and AI in Games, ():–,
. URL http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=5672398.

[] Mandy J. W. Tak, Mark H. M. Winands, and Yngvi
Bjornsson. Decaying Simulation Strategies. IEEE
Transactions on Computational Intelligence and AI
in Games, ():–, dec . ISSN -
X. doi: ./TCIAIG... URL
http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6763042.

[] Mandy J. W. Tak, Mark H. M. Winands, and Yngvi
Björnsson. N-grams and the last-good-reply policy
applied in general game playing. IEEE Transactions
on Computational Intelligence and AI in Games, ():
–, . ISSN X. doi: ./TCI-
AIG...

[] Jan A. Stankiewicz. Knowledge-Based Monte-Carlo
Tree Search in Havannah. Master’s thesis, Maastricht
University, The Netherlands, .

[] Guillaume M. J-B. Chaslot, Jean-Baptiste Hoock,
Fabien Teytaud, and Olivier Teytaud. On the huge
benefit of quasi-random mutations for multimodal
optimization with application to grid-based tuning of
neurocontrollers. ESANN, (April):–, . URL
http://hal.inria.fr/inria-00380125/.

[] Joseph A. M. Nijssen. Monte-Carlo Tree Search for
Multi-Player Games. . ISBN .

[] David Silver, Richard Sutton, and Martin Müller.
Reinforcement Learning of Local Shape in the Game
of Go. In Proceedings of the th international joint
conference on Artifical intelligence, IJCAI’, pages
–, San Francisco, CA, USA, . Morgan
Kaufmann Publishers Inc. URL http://dl.acm.
org/citation.cfm?id=1625275.1625446.

[] David Silver, Richard S. Sutton, and Martin Müller.
Sample-based learning and search with perma-
nent and transient memories. In Proceedings
of the th international conference on Machine

learning, ICML ’, pages –, New York,
NY, USA, . ACM. ISBN ---
-. doi: ./.. URL
http://dl.acm.org/citation.cfm?id=1390278.

[] Arpad Rimmel and Fabien Teytaud. Multiple
Overlapping Tiles for Contextual Monte Carlo Tree
Search. In Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume  LNCS,
pages –. . ISBN .

[] Thomas Keller and Malte Helmert. Trial-based
Heuristic Tree Search for Finite Horizon MDPs. In
Twenty-Third International Conference on Automated
Planning and Scheduling, pages –, .

[] Andrew G. Barto, Steven J. Bradtke, and Satin-
der P. Singh. Learning to act using real-time
dynamic programming. Artificial Intelligence,
pages –, . ISSN -. URL
http://www.sciencedirect.com/science/
article/pii/000437029400011O.

[] Zohar Feldman and Carmel Domshlak. On MABs
and Separation of Concerns in Monte-Carlo Planning
for MDPs. In Twenty-Fourth International Confer-
ence on Automated Planning and Scheduling, pages
–, .

[] Zohar Feldman and Carmel Domshlak. Monte-Carlo
Tree Search : To MC or to DP ? In ECAI, .

[] Todd Hester and Peter Stone. TEXPLORE: Real-
time sample-efficient reinforcement learning for
robots. Machine Learning, ():–, .
ISSN . doi: ./s---.

[] Todd Hester and Peter Stone. Real Time Targeted
Exploration in Large Domains. In The Ninth In-
ternational Conference on Development and Learning
(ICDL), .

[] Piyush Khandelwal, Elad Liebman, Scott Niekum,
and Peter Stone. On the Analysis of Complex Backup
Strategies in Monte Carlo Tree Search. International
Conference on Machine Learning (ICML), , .

[] Joel Veness, Kee Siong Ng, Marcus Hutter, William
Uther, and David Silver. A Monte-Carlo AIXI
approximation. Journal of Artificial Intelligence Re-
search, ():–, . ISSN -. URL
http://dl.acm.org/citation.cfm?id=2016945.
2016949.

[] Michael Kearns, Y Mansour, and Ay Ng. A Sparse
Sampling Algorithm for Near-Optimal. Machine
learning, pages –, .

[] David Silver and Joel Veness. Monte-Carlo
Planning in Large POMDPs. Advances in neural
information processing systems (NIPS), pages –,
. URL http://papers.nips.cc/paper/
4031-monte-carlo-planning-in-large-pomdps/.

http://dx.doi.org/10.1007/978-3-642-31866-5_1
http://dx.doi.org/10.1007/978-3-642-31866-5_1
http://link.springer.com/10.1007/978-3-642-31866-5_1
http://link.springer.com/10.1007/978-3-642-31866-5_1
http://dx.doi.org/10.1109/TCIAIG.2010.2083662
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5599855
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5599855
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5672398
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5672398
http://dx.doi.org/10.1109/TCIAIG.2014.2310782
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6763042
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6763042
http://dx.doi.org/10.1109/TCIAIG.2012.2200252
http://dx.doi.org/10.1109/TCIAIG.2012.2200252
http://hal.inria.fr/inria-00380125/
http://dl.acm.org/citation.cfm?id=1625275.1625446
http://dl.acm.org/citation.cfm?id=1625275.1625446
http://dx.doi.org/10.1145/1390156.1390278
http://dl.acm.org/citation.cfm?id=1390278
http://www.sciencedirect.com/science/article/pii/000437029400011O
http://www.sciencedirect.com/science/article/pii/000437029400011O
http://dx.doi.org/10.1007/s10994-012-5322-7
http://dl.acm.org/citation.cfm?id=2016945.2016949
http://dl.acm.org/citation.cfm?id=2016945.2016949
http://papers.nips.cc/paper/4031-monte-carlo-planning-in-large-pomdps/
http://papers.nips.cc/paper/4031-monte-carlo-planning-in-large-pomdps/

Monte Carlo Tree Search Strategies 

[] Arthur Guez, David Silver, and Peter Dayan. Scalable
and efficient bayes-adaptive reinforcement learning
based on Monte-Carlo tree search. Journal of Artifi-
cial Intelligence Research, :–, . ISSN
. doi: ./jair..

[] Weijia Wang and Michèle Sebag. Hypervolume
indicator and dominance reward based multi-
objective Monte-Carlo Tree Search. Machine
Learning, (-):–, sep . ISSN
-. doi: ./s---.
URL http://link.springer.com/10.1007/
s10994-013-5369-0.

[] Zoltán Gábor, Zsolt Kalmár, and Csaba Szepesvári.
Multi-criteria Reinforcement Learning. In Pro-
ceedings of the International Conference on Machine
Learning, volume , pages –, . ISBN
---.

[] Mayank Daswani, Peter Sunehag, and Marcus Hut-
ter. Feature Reinforcement Learning : State of the
Art. In AAAI- Workshop, pages –, .

[] Hilmar Finnsson and Yngvi Björnsson. Learning
Simulation Control in General Game-Playing Agents.
Proceedings of the th AAAI Conference on Artificial
Intelligence, (September):–, . URL
http://www.aaai.org/ocs/index.php/AAAI/
AAAI10/paper/download/1892/2124.

[] Ercüment Ilhan and A. Şima Etaner-Uyar. Monte
Carlo Tree Search with Temporal-Difference Learning
for General Video Game Playing. In IEEE Conference
on Computational Intelligence and Games, New York,
USA, .

[] Harm Van Seijen, A. Rupam Mahmood, Patrick M
Pilarski, Marlos C. Machado, and Richard S Sut-
ton. True Online Temporal-Difference Learn-
ing. Journal of Machine Learning Research, 
(September), dec . ISSN . URL
http://arxiv.org/abs/1512.04087.

[] David Robles, Philipp Rohlfshagen, and Simon M.
Lucas. Learning non-random moves for playing
Othello: Improving Monte Carlo Tree Search. 
IEEE Conference on Computational Intelligence and
Games, CIG , (September ):–, .
doi: ./CIG...

[] Yasuhiro Osaki, Kazutomo Shibahara, Yasuhiro
Tajima, and Yoshiyuki Kotani. An Othello evaluation
function based on Temporal Difference Learning
using probability of winning.  IEEE Symposium
On Computational Intelligence and Games, pages –
, dec . doi: ./CIG...
URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5035641.

[] Joel Veness, David Silver, William Uther, and Alan
Blair. Bootstrapping from game tree search. Pro-
ceedings of Advances in Neural Information Processing
Systems, pages –, .

[] Tristan Cazenave. Nested Monte-Carlo Search. In
International Joint Conference on Artificial Intelligence,
pages –, .

[] Zohar Feldman and Carmel Domshlak. Online
Planning in MDPs Rationality and Optimization.
.

[] Marc Lanctot, Abdallah Saffidine, Joel Veness,
Christopher Archibald, and Mark H. M. Winands.
Monte Carlo *-Minimax Search. In Proceedings of the
rd International Joint Conference on Artificial Intelli-
gence (IJCAI), Beijing, China, August -, , pages
–, . URL http://www.aaai.org/ocs/
index.php/IJCAI/IJCAI13/paper/view/6862.

[] Joel Veness, Marc Lanctot, and Michael Bowling.
Variance reduction in monte-carlo tree search. Pro-
ceedings of Advances in Neural Information Processing
Systems, pages –, .

[] Gerald Tesauro. TD-Gammon, a Self-teaching
Backgammon Program, Achieves Master-level Play.
Neural Comput., ():–, . ISSN -
. doi: ./neco..... URL http:
//dx.doi.org/10.1162/neco.1994.6.2.215.

[] Kumpati S. Narendra and Mandayam A. L.
Thathachar. Learning automata - an introduction.
Prentice Hall, . ISBN ----.

[] Diego Perez-liebana, Spyridon Samothrakis, Julian
Togelius, Tom Schaul, and Simon M Lucas. Gen-
eral Video Game AI: Competition, Challenges and
Opportunities. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, .

[] Dennis J. N. J. Soemers. Enhancements for Real-
Time Monte-Carlo Tree Search in General Video Game
Playing. Master’s thesis, Maastricht University, The
Netherlands, .

[] Tom Vodopivec and Branko Šter. Forgetting Early
Estimates in Monte Carlo Control Methods. Journal
of Electrical Engineering and Computer Science, ():
–, .

[] Matej Guid and Ivan Bratko. Factors affecting dimin-
ishing returns for searching deeper. ICGA Journal, :
–,  .

[] Matthieu Geist and Bruno Scherrer. Off-policy learn-
ing with eligibility traces: a survey. The Journal of
Machine Learning Research, :–, . URL
http://dl.acm.org/citation.cfm?id=2627445.

http://dx.doi.org/10.1613/jair.4117
http://dx.doi.org/10.1007/s10994-013-5369-0
http://link.springer.com/10.1007/s10994-013-5369-0
http://link.springer.com/10.1007/s10994-013-5369-0
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/download/1892/2124
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/download/1892/2124
http://arxiv.org/abs/1512.04087
http://dx.doi.org/10.1109/CIG.2011.6032021
http://dx.doi.org/10.1109/CIG.2008.5035641
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5035641
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5035641
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6862
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6862
http://dx.doi.org/10.1162/neco.1994.6.2.215
http://dx.doi.org/10.1162/neco.1994.6.2.215
http://dx.doi.org/10.1162/neco.1994.6.2.215
http://dl.acm.org/citation.cfm?id=2627445

 Bibliography T. Vodopivec

[] William R. Thompson. On the Likelihood that One
Unknown Probability Exceeds Another in View of the
Evidence of Two Samples. Biometrika, (/):,
dec . ISSN . doi: ./.
URL http://www.jstor.org/stable/2332286?
origin=crossref.

[] Dean Eckles and Maurits Kaptein. Thompson

sampling with the online bootstrap. ArXiv e-prints,
page , . URL http://arxiv.org/abs/
1410.4009.

[] Ian Osband, Charles Blundell, Alexander Pritzel, and
Benjamin Van Roy. Deep Exploration via Boot-
strapped DQN. ArXiv e-prints, feb . URL
http://arxiv.org/abs/1602.04621.

http://dx.doi.org/10.2307/2332286
http://www.jstor.org/stable/2332286?origin=crossref
http://www.jstor.org/stable/2332286?origin=crossref
http://arxiv.org/abs/1410.4009
http://arxiv.org/abs/1410.4009
http://arxiv.org/abs/1602.04621

INDEX

𝜀-greedy policy, 
𝑛-step backup, 

accumulating eligibility trace, 
action, , 
adaptive representation, 
afterstate, 
agent, 
AlphaGo, 
anytime, , 
arcade video games, 

backpropagation, 
behaviour, 
behaviour policy, 
bootstrapping, 

complete model, 
Connect four, 
control, 
control policy, 
cumulative discounted reward, see return

Deep Blue, 
default policy, 
dynamic programming, 

eligibility trace, 

eligibility trace decay rate, , 
environment, 
episode, , 
eploration rate, 
every-visit algorithm, 
expansion, 
experience, 
exploration, 
exploration bias, 
exploration rate, 
exploration-exploitation dilemma, , ,



first-visit algorithm, 
forgetting, , 
forward model, 
full observability, 

General Video Game AI competition, 
General Video Game AI framework, 
generalized policy iteration (GPI), 
Go, 
Gomoku, 
GVG-AI controller, 

Hex, 

incremental representation, 



 INDEX T. Vodopivec

initial values, , 

learning, , 

Markov decision process, 
MCTS iteration, 
MCTS phases, 
Monte Carlo backup, 
Monte Carlo control, 
Monte Carlo methods, 
Monte Carlo tree search (MCTS), 
multi-armed bandit problem, 

observation, , 
off-policy control, , 
offline bakcup, see offline update
offline update, , 
on-policy control, 
one-step backup, 
online backup, see online update
online update, , , , 
original UCT, , 

partial observability, 
planning, , 
planning performance, 
playout, , 
playout values, 
policy, 
policy evaluation, 
policy improvement, 

Random walk, 
real interaction, 
real-time video games, 

reinforcement learning, 
replacing eligibility trace, 
representation policy, 
return, 
reward, , 
reward discount rate, , 

Sarsa(𝜆) algorithm, , 
Sarsa-UCT algorithm, , 
search, 
selection, 
Shortest walk, 
simulated interaction, 
simulation, , 
space-local value normalization, 
standard UCT, , 
state, 
state value, see value function
state-action value, see value function
sum of rewards, see return

target policy, 
TD(𝜆) algorithm, 
temporal differences, 
temporal-difference backup, 
temporal-difference control, 
temporal-difference error, 
temporal-difference learning, , 
temporal-difference tree search, 
terminal state, 
Tic-tac-toe, 
time step, , 
ToVo, 
ToVo, 
toy games, 

Monte Carlo Tree Search Strategies 

trajectory, 
transition model, 
transition probability, 
transpositions, 
tree policy, 
two-player games, 

UCB selection policy, , 
update step-size, , 
upper confidence bounds for trees, 

value function, , 
value normalization, 
visit, 

	Povzetek
	Zahvala
	Abstract
	Acknowledgements
	Introduction
	Scientific contributions
	Dissertation overview

	Monte Carlo tree search
	Background
	The framework
	The UCT algorithm

	Relation to reinforcement learning
	On learning, planning, and search
	Markov decision processes
	Reinforcement learning
	Linking the terminology
	Temporal-difference learning
	The novelties of Monte Carlo tree search
	Survey of MCTS enhancements that relate to RL

	Merging Monte Carlo tree search and reinforcement learning
	Extending the reinforcement learning theory
	The temporal-difference tree search framework
	The Sarsa-UCT algorithm
	Space-local normalization of value estimates
	The parameters and their mechanics
	Implementation remarks
	Online updates
	Off-policy control
	Terminal and non-terminal rewards
	Transpositions
	Summary

	Survey of research inspired by both fields
	Studies that describe the relation between MCTS and RL
	Temporal-difference search
	Research influenced by both MCTS and RL

	Analysis on toy benchmarks
	Experimental settings
	Results and findings
	An analytic example

	Performance on real games
	Classic two-player adversary games
	Real-time video games

	Discussion and future work
	Findings
	Limitations of our analysis
	Promising directions

	Conclusion
	Detailed results from two-player games
	Detailed results from the GVG-AI 2015 competitions
	Razširjeni povzetek
	Prispevki k znanosti
	Drevesno preiskovanje Monte Carlo
	Spodbujevalno učenje
	Pregled literature
	Podobnosti in razlike med področjema
	Drevesno preiskovanje s časovnimi razlikami
	Algoritem Sarsa-UCT
	Eksperimentalna analiza in ugotovitve
	Zaključek

	Bibliography

