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Abstract 14 

 15 

Oxygen minimum zones (OMZs) are large, low-oxygen areas in the global oceans. Although 16 

OMZs represent a serious threat to ecosystem functioning and services, our capability of modelling 17 

the main biogeochemical processes driving OMZ dynamic are still limited. Here we performed a 18 

full sensitivity analysis of a complex ecosystem model to rank the most important biogeochemical 19 

parameters influencing the simulation of the OMZ at an oligotrophic site in the open Arabian Sea. 20 

We applied a one-dimensional configuration of the European Regional Seas Ecosystem Model 21 

(ERSEM) - here advanced by including denitrification - coupled with the General Ocean 22 

Turbulence Model (GOTM). The coupled model was skilled in simulating the vertical gradients of 23 

climatological data of oxygen and nutrients. The sensitivity analysis of the model was carried out in 24 

two steps: i) a preliminary Morris screening analysis of 207 ERSEM parameters, which selected the 25 

three most influential groups of parameters; and ii) a subsequent Monte Carlo sampling-based 26 
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analysis for ranking the importance of the 38 parameters within the three selected groups. Overall, 27 

the four most important parameters for the simulation of the minimum oxygen concentration were 28 

found to be: 1) the cubic half saturation constant for oxygenic control of denitrification; 2) the 29 

parameter regulating the fraction of ingested matter excreted by heterotrophic nanoflagellates; 3) 30 

the bacterial efficiency at low oxygen levels; and 4) the specific rate of bacterial release of capsular 31 

material. Based on these findings, and assuming that the ranking of the model parameters reflects 32 

the relevance of the process they characterize, we present a conceptual model describing the most 33 

important biogeochemical processes affecting the OMZ at the study site. Our results suggest that 34 

including bacteria explicitly in ecosystem models is useful to simulate and predict OMZs, provided 35 

that efforts are invested in estimating parameters characterizing the microbial loop in marine 36 

ecosystems. 37 

 38 

Key words: marine ecosystem model; ERSEM; sensitivity analysis; oxygen minimum zone; 39 

bacteria; Arabian Sea 40 

 41 

1. Introduction 42 

 43 

Oxygen minimum zones (OMZs) are areas of the oceans characterized by low dissolved 44 

oxygen concentrations at intermediate depths (50-1000 m). Paulmier and Ruiz-Pino (2009) 45 

defined OMZs as regions where dissolved oxygen (DO) concentrations are less than 20 µmol L
-1

, 46 

decreasing to 1 µmol L
-1

 in the core of the OMZ. In the present ocean, OMZs are expanding as a 47 

consequence of eutrophication and climate change, representing a serious threat for ecosystem 48 

functioning and services such as fisheries (Oschlies et al., 2008; Stramma et al., 2008; Diaz and 49 

Rosenberg, 2008; Gilbert et al., 2010; Rabalais et al., 2014; Duarte et al., 2015, Breitburg et al., 50 

2018).  51 

The formation, maintenance and intensification of the OMZs are governed by the interaction 52 
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of physical processes (oxygen solubility driven by temperature and salinity, presence of regions 53 

of low ventilation and subsurface currents of poorly oxygenated water) with biological processes 54 

(primary production, heterotrophic activities, bacterial respiration and remineralization of 55 

organic matter). 56 

Physical processes influencing OMZs are linked to global patterns of temperature, salinity and 57 

circulation. For example, Bopp et al. (2002) used a coupled climate-ocean biogeochemistry 58 

model to predict the decrease in DO with climate change and the net outgassing of DO from the 59 

ocean. They argued that the physical processes driving the reduction in DO were: i) changes in 60 

surface water solubility due to temperature increase; and ii) changes in the ocean circulation 61 

pattern. Matear and Hirst (2003) used a climate model coupled with an oceanic biogeochemical 62 

model to investigate the multi-century impact of protracted global warming on the ocean 63 

biogeochemical cycles. Their model predicted a decline in the DO concentration through most of 64 

the subsurface ocean in the future years. 65 

Marine biogeochemical processes are also crucial drivers of OMZs, and OMZs strongly 66 

impact global biogeochemical cycles. As a basic conceptual scheme of biogeochemical drivers of 67 

OMZs (see, e.g., Sarmiento and Gruber, 2006), waters at intermediate depth receive organic 68 

matter produced and sinking from the upper euphotic layers; aerobic bacteria feeding on this 69 

organic matter and respiration by zooplankton consume oxygen and lower its concentration 70 

within the OMZ. Diaz and Rosenberg (2008) showed that hypoxic areas in the coastal oceans 71 

increased since the 1960s because of the increase in primary production fueled by riverine runoff 72 

and eutrophication. Oschlies et al. (2008) showed that OMZs are particularly sensitive to changes 73 

in the marine biology, by predicting a 50% increase in the global suboxic water volume by 2100 74 

in response to the respiration of excess organic carbon formed at higher atmospheric CO2 levels. 75 

Increase in primary production leads to increase in accumulation of particulate organic matter 76 

that, in turn, increases microbial activity and consumption of oxygen in the waters below. 77 

However, other processes complicate this basic scheme of OMZs, such as the possible switch of 78 
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the microbial community towards anaerobic bacteria, which can reduce nitrates to N2 gas through 79 

denitrification, and can reduce sulfate to hydrogen sulfide when the OMZ reaches anoxic 80 

conditions (Richards, 1965; Sarmiento and Gruber, 2006). Large amounts of biologically reactive 81 

nitrogen are removed from the oceans by anaerobic denitrifying bacteria in OMZs, with crucial 82 

impact on the global cycle of nitrogen (Paulmier and Ruiz-Pino, 2009). While the above-83 

mentioned studies have identified the different biogeochemical processes influencing the OMZ, 84 

an understanding of their comparative impacts has not yet been achieved. 85 

The overall objective of this study is to contribute to fill this gap, by ranking the importance 86 

of the biogeochemical processes which need to be carefully described to understand, simulate 87 

and predict OMZ formation and evolution in the oceans. This was done by ranking the 88 

importance of biogeochemical parameters of a complex marine ecosystem model. This model is 89 

the European Regional Seas Ecosystem Model (ERSEM) (Butenschön et al., 2016), which 90 

includes most of the biogeochemical processes driving OMZ dynamics. New for this study is that 91 

we included denitrification in ERSEM, since this process is relevant in OMZ systems, but it was 92 

not represented in the pelagic component of the model (Butenschön et al., 2016). We ranked the 93 

importance of ERSEM parameters for OMZ simulation, by using in sequence the Morris 94 

screening technique, followed by a Monte Carlo sampling-based ranking. These techniques are 95 

already proven to be useful with other marine biogeochemical models (Pastres and Ciavatta, 96 

2005; Cossarini and Solidoro, 2008) and a marine food-web model (Morris et al., 2014). This is 97 

the first systematic sensitivity analysis of ERSEM. 98 

In the present study, the analysis was performed using a one-dimensional (1-D) 99 

implementation of ERSEM for an oligotrophic site in the open Arabian Sea (Figure 1), 100 

advancing a comparable model configuration in this region by Blackford and Burkill (2002) and 101 

Blackford et al. (2004). The Arabian Sea is characterized by a vast OMZ with DO concentrations 102 

below 0.05 ml L
-1

, at depths between 150 and 1250m (Van Bennekom and Hiehle, 1994), and it 103 

is one of the three major denitrification sites in world oceans (Codispoti, 1989; Naqvi et al., 104 
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2005) with an annual denitrification rate of 10-30 Tg N yr
-1

 (Fauzi et al., 1993). At the present 105 

time, there is no consensus on which physical and biological processes maintain the spatial and 106 

seasonal pattern of the OMZ in the Arabian Sea (McReary et al., 2013; Roullier et al., 2014), and 107 

hypotheses include high respiration related to monsoon-driven primary productivity, slow 108 

advection of intermediate waters, and influx of low oxygen waters from the South Indian Ocean 109 

(Swallow, 1984; Naqvi, 1987; Jayakumar et al., 2004; Wiggert et al., 2005). Results from both a 110 

box model (Sarma et al., 2002) and an eddy-resolving model (Resplandy et al., 2012) showed 111 

that horizontal oxygen transport is important for maintaining the OMZ. At the same time, 112 

ecosystem models of varying complexity, including the seminal NPZD model of McCreary et al. 113 

(1996) and the model by Ryabchencnko et al. (1998) that resolved also the microbial-loop, were 114 

used to investigate the contribution of biological processes to the OMZ. The three-dimensional 115 

(3-D) coupled model by Anderson et al. (2007) confirmed the relevance of modelling bacteria to 116 

simulate the biogeochemical fluxes and demonstrated that vertical sinking of organic particles (in 117 

contrast to their horizontal transport) was a major driver of denitrification in the regional OMZ. 118 

For the first time, Blackford and Burkill (2002) and Blackford et al. (2004) applied the more 119 

complex ERSEM to this region, in a 1-D configuration with the physical model GOTM, and they 120 

found that vertical processes and microbial trophic dynamics were important drivers of 121 

biogeochemical variability in the Arabian Sea. This model added the representation of size 122 

classes of detritus and variable elemental ratios in the simulation of the Arabian Sea ecosystem –123 

and these features were later recognized as essential ones to simulate OMZ in this region, as well 124 

as in the global ocean (Oschlies et al., 2008; McCreary et al., 2013). 125 

However, the relative contribution of the different biogeochemical processes to the formation 126 

and evolution of the OMZ in the Arabian Sea remains uncertain, and further research has been 127 

invoked to improve their representation in mathematical models of this ecosystem (McCreary et 128 

al., 2013; Roullier et al., 2014). Therefore, we tested the sensitivity analysis methods in a case 129 

study that aims to rank the biogeochemical processes that determine the annual minimum value 130 
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of oxygen concentration at the site in the open Arabian Sea in Figure (1). Here, spatial-temporal 131 

biogeochemical variability is lower, and the OMZ thinner, than in the Northern Arabian Sea 132 

(Kao et al., 2015), arguably making acceptable the application of a 1-D model configuration to 133 

study the formation of the and maintenance of the upper oxycline at the study site. 134 

The paper is structured as follows. Section 2 describes the coupled physical-biogeochemical 135 

model, the sensitivity methods and the set-up of the analysis. In Section 3, the results are 136 

presented: first the skill of the OMZ simulation is evaluated by comparing the results to 137 

climatological data, and then the results of the screening and Monte Carlo-based sensitivity 138 

analyses are synthetized. In Section 4 we discuss the results by presenting a conceptual model of 139 

the OMZ formation, and concluding remarks are pointed out in Section 5. 140 

 141 

2. Methods 142 

 143 

2.1 Model description 144 

 145 

The vertical dynamics of the water column were represented by coupling ERSEM with the 1-D 146 

hydrodynamic model GOTM (Figure 2) (Butenschön et al., 2016).  147 

The general equation for the coupled GOTM-ERSEM model can be written as, 148 

 149 

𝜕𝑐𝑖(𝒄,𝒑𝑏𝑖𝑜,𝒑𝑝ℎ𝑦𝑠,𝑡)

𝜕𝑡
=

𝜕𝑐𝑖

𝜕𝑡
|
𝑏𝑖𝑜

+
𝜕𝑐𝑖

𝜕𝑡
|
𝑝ℎ𝑦𝑠

       (1) 150 

 151 

In equation (1) the first term on the right represents the biogeochemical equations of ERSEM 152 

and the second term represents the physical equations of GOTM; c represents the state vector 153 

collecting the model variables ci, pbio the vector collecting the parameters of ERSEM, and pphys 154 

the vector of the parameters of GOTM. 155 

 156 
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The general equation of the scalar model output y can be written as, 157 

𝑦 = 𝑔𝑖(𝒄, 𝒑𝑏𝑖𝑜, 𝒑𝑝ℎ𝑦𝑠, 𝑧, 𝑡)        (2) 158 

 159 

Where gi is a function of the model variables c, of the model parameters p, of the depth z in 160 

the water column, and of time t. We focused this work on the sensitivity of the annual average of 161 

the minimum value of dissolved oxygen simulated in the water column (ci=O2), with respect to 162 

the biogeochemical parameters of ERSEM (pbio): 163 

 164 

𝑦 = ⟨𝑚𝑖𝑛𝑧[𝑂2(𝒑𝑏𝑖𝑜)]⟩𝑎        (3) 165 

 166 

Where minz represents the minimum in the water column, and ⟨ ⟩𝑎 the annual average. This 167 

minimum value was assumed to approximate the “intensity” of the OMZ (i.e. the degree of oxygen 168 

depletion, e.g. McCay et al., 2005) that is sensible to the biogeochemical processes investigated in 169 

this work. 170 

 171 

2.1.1 The biogeochemical model ERSEM 172 

 173 

ERSEM (Baretta et al., 1995; Blackford et al., 2004; Butenschön et al., 2016) is a biomass and 174 

functional group-based biogeochemical model describing the nutrient and carbon cycle within the 175 

low trophic levels of the marine ecosystem. Model state variables include living organisms, 176 

dissolved nutrients, organic detritus, oxygen and CO2. Pelagic living organisms are subdivided in 177 

three functional groups describing the planktonic trophic chain: primary producers (phytoplankton), 178 

consumers (zooplankton) and decomposers (bacteria). Primary producers and consumers are 179 

subdivided into 4 and 3 size-based functional types, respectively. The phytoplankton community is 180 

composed of picophytoplankton, nanoflagellates, dinoflagellates and diatoms, while the 181 

zooplankton community is composed of mesozooplankton, microzooplankton and heterotrophic 182 
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nanoflagellates (HNAN). Decomposers are modeled by one type of heterotrophic bacteria. 183 

Functional types belonging to the same group share common process descriptions but different 184 

parameterizations.  185 

A key feature of ERSEM is the decoupling between carbon and nutrient dynamics allowing the 186 

simulation of variable stoichiometry within the modeled organisms. Chlorophyll is also treated as 187 

an independent state variable following the formulation by Geider et al. (1997). Consequently each 188 

plankton functional type is modeled with up to five state variables describing the cellular content of 189 

carbon, nitrogen, phosphorus, silicon, and chlorophyll-a. Dissolved organic matter (DOM) is 190 

produced by different processes involving phytoplankton, bacteria and zooplankton while its 191 

consumption is exclusively regulated by bacteria uptake. DOM is subdivided into labile, semi-labile 192 

and semi-refractory components (Polimene et al., 2006), in order to provide a representation of the 193 

range of organic compounds present in the marine DOM and their different levels of degradability. 194 

Particulate organic matter (POM) is produced by phytoplankton and zooplankton and it is divided 195 

into three size-based categories corresponding to different sedimentation rates. In this way it is 196 

possible to simulate the carbon export from the surface to the intermediate OMZ layers. In the 197 

version of ERSEM applied here, the decomposition of particulate organic matter is directly 198 

mediated by bacteria, and the partition between labile and semi-labile organic matter occurs in 199 

relation of the nutritional status of phytoplankton and bacteria (Polimene et al., 2006, 2007; 200 

Butenschön et al., 2016).  201 

All the ERSEM equations are detailed in Butenschön et al. (2016) and we refer the reader to 202 

that paper for a comprehensive description of the mathematical formulations used in the model. 203 

Here we limit our description to the ERSEM representation of oxygen dynamics, which are the 204 

focus of the paper, and to the formulation describing denitrification, which was newly developed 205 

in this work. The pelagic net production of oxygen is modeled through the balance between gross 206 

primary production (gpp) and the whole community respiration (resp). The latter is computed as 207 

sum of the contributions of bacteria (carbon biomass BC), of NZ=3 zooplankton groups (ZC), and 208 
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NP=4 phytoplankton groups (PC) (Butenschön et al., 2016): 209 

 210 

𝜕𝑂2

𝜕𝑡
|
𝑏𝑔𝑐

= −𝑝𝑂
𝑟𝑒𝑠𝑝 𝜕𝐵𝐶

𝜕𝑡
|
𝑟𝑒𝑠𝑝

− 𝑝𝑂
𝑟𝑒𝑠𝑝 ∑

𝜕𝑍𝐶
𝑖

𝜕𝑡
|
𝑟𝑒𝑠𝑝

𝑁𝑍
𝑖=1 − 𝑝𝑂

𝑟𝑒𝑠𝑝 ∑
𝜕𝑃𝐶

𝑖

𝜕𝑡
|
𝑟𝑒𝑠𝑝

𝑁𝑃
𝑖=1 + 𝑝𝑂

𝑠𝑦𝑛 ∑
𝜕𝑃𝐶

𝑖

𝜕𝑡
|
𝑔𝑝𝑝

𝑁𝑃
𝑖=1 (4) 211 

 212 

Where 𝑝𝑂
𝑟𝑒𝑠𝑝

 is a stoichiometric factor converting the amount of carbon respired into oxygen 213 

consumption, and 𝑝𝑂
𝑠𝑦𝑛

 is a stoichiometric factor converting the amount of carbon assimilated 214 

through photosynthesis into oxygen production. 215 

Denitrification was represented here by modifying the equation in Vichi et al (2007). This 216 

process was represented as the minimum of a potential denitrification (Denitpot) and the bacterial 217 

nitrate demand (BND): 218 

 219 

𝐷𝑒𝑛𝑖𝑡 = 𝑚𝑖𝑛(𝐷𝑒𝑛𝑖𝑡𝑝𝑜𝑡, 𝐵𝑁𝐷)       (5) 220 

Where: 221 

𝐷𝑒𝑛𝑖𝑡𝑝𝑜𝑡 = 𝐷𝑒𝑛𝑖𝑥 ∙ 𝑁𝑂3        (6) 222 

And 223 

𝐵𝑁𝐷 = 𝐵𝑂𝐷 ∙ 𝛿 ∙ (1 − 𝑂2𝑙𝑖𝑚)       (7) 224 

 225 

In equation (6), 𝑁𝑂3 is the available concentration of nitrate and Denix is the maximum specific 226 

denitrification rate. In equation (7), BOD is the bacterial oxygen demand, which is a function of the 227 

available organic carbon (POC+DOC), 𝛿 is a stoichiometric factor converting O2 to NO3, and 𝑂2𝑙𝑖𝑚 228 

is a cubic Michaelis-Menten function describing oxygen limitation (Vichi et al., 2007): 229 

 230 

𝑂2𝑙𝑖𝑚 =
(𝑂2)

3

(𝑂2)3+(𝑐ℎ𝑁3𝑜𝑋)3
        (8) 231 

 232 

Where 𝑐ℎ𝑁3𝑜𝑋 is the half-saturation constant for oxygenic control of nitrogen transformation. 233 
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Equations 7 and 8 imply that under well oxygenated conditions the BND is close to zero while it 234 

increases under low oxygen condition. If the environmental nitrate concentration is insufficient to 235 

satisfy the BND, then the production of reduction equivalents (HS) occurs. This latter process 236 

mimics the formation of reduced sulfur (HS
-
) as observed when both oxygen and nitrate are 237 

depleted: 238 

 239 

𝐻𝑆 = 𝐵𝑂𝐷 ∙ 𝛿′ ∙ (1 − 𝑂2𝑙𝑖𝑚) − 𝐷𝑒𝑛𝑖𝑡 ∙ 휀′      (9) 240 

 241 

Where 𝛿′and 휀′are stoichiometric factors converting O2 to HS
-
 and nitrate to HS

-
, respectively. 242 

The above equations 5-9 represent aerobic and anaerobic (e.g. denitrifying) bacteria through a 243 

single functional group. The model, in fact, describes a bulk bacteria biomass able to switch 244 

between different kinds of metabolism (aerobic, anaerobic) depending on environmental conditions, 245 

i.e., on O2 and nitrate concentrations in the water column. We note that the model does not include 246 

chemolithotrophic bacteria, though they can be important for the nitrogen cycle within OMZs (Lam 247 

et al., 2009). However, Ward et al. (2009) found that heterotrophic denitrification is the main 248 

process responsible for N loss in the OMZ of the Arabian Sea, largely exceeding the 249 

chemolithotrophic anaerobic ammonia oxidation (anammox), making the absence of 250 

chemolithotrophy acceptable in our application. 251 

 252 

2.1.2 The hydrodynamic model GOTM 253 

 254 

GOTM (General Ocean Turbulence Model; Burchard et al., 1999) is a 1-D water column model 255 

used for the computation of hydrodynamic and thermodynamic processes related to vertical mixing. 256 

The model calculates velocities, turbulence, temperature and salinity, as well as heat, momentum 257 

and freshwater fluxes between the ocean and the atmosphere, when forced with local 258 

meteorological inputs. Routines for nudging observations also exist in GOTM and they were 259 

applied here for the relaxation of the model simulation towards salinity and water temperature 260 
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profiles (see also the model set up in Section 2.4.1). Such relaxation has been widely used in 261 

previous GOTM-ERSEM applications  in both shelf-sea and open ocean sites (e.g. Blackford et al., 262 

2004; Torres et al., 2006; Polimene et al., 2012; 2014; 2015, Butenschön et al., 2016).  263 

 264 

2.2. The screening Morris method  265 

 266 

The GOTM-ERSEM model was subjected initially to a screening sensitivity analysis. This aimed 267 

to identify the subset of ERSEM parameters that are most important for the simulation of the 268 

minimum oxygen concentration at the study site. The screening sensitivity analysis used the Morris 269 

method, as proposed in Morris (1991), modified by Campolongo et al. (2007), and applied with 270 

marine models by Cossarini and Solidoro (2008) and Morris et al. (2014). The Morris technique, 271 

described thoroughly in Saltelli et al. (2008), is a qualitative sensitive analysis based on the concept 272 

of Elementary Effect (EE), which is an approximation of the first order partial derivative of the 273 

model output y with respect to an input factor Xi, i.e. a model parameter. If a model has k number 274 

of independent input factors Xi, where i=1, 2, ..., k, the elementary effect of the parameter Xi is 275 

given by: 276 

 277 

𝐸𝐸𝑖
𝑗
=

𝑦(𝑋1
𝑗
,𝑋2

𝑗
,… ,𝑋𝑖−1

𝑗
,𝑋𝑖

𝑗
+,𝑋𝑖+1

𝑗
,… ,𝑋𝑘

𝑗
)−𝑦(𝑋𝑖

𝑗
,𝑋2

𝑗
,… ,𝑋𝑘

𝑗
)


     (10) 278 

 279 

Where j represents an initial point in the space of the parameters, y represents the model output, 280 

and the increment  [0,1] is a pre-defined proportion of the range of variation of the parameters, 281 

which,  being constant, allows the sensitivity index  to account for the statistical distribution of the 282 

input factors (see the explicative example at page 120 in Saltelli et al., 2008). All the input 283 

parameters in (10) are incremented, in random order, leading the input vector X to cover a 284 

“trajectory” j in the space of the parameters. The trajectory has (k+1) nodes, that are sets of 285 

parameter values used to run the model (k+1) times and compute k elementary factors EE
j
. A 286 
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number j=1, …, r of trajectories is built by selecting randomly their j=1, …, r initial points in the 287 

space of the parameters. The initial points of the trajectories and the increments of the input factors 288 

are computed within ranges of variability that need to be defined. 289 

Following Campolongo et al. (2007), we computed the sensitivity index for the input parameter 290 

Xi by averaging the absolute values of the elementary effects of that parameter across all the 291 

trajectories: 292 

 293 

𝜇𝑖
∗ =

1

𝑟
𝛴𝑗=1
𝑟 |𝐸𝐸𝑗

𝑖|         (11) 294 

 295 

The sensitivity index 𝜇𝑖
∗ is computed by averaging |𝐸𝐸𝑗

𝑖| computed at points sampled within the 296 

whole space of the parameters. Therefore, this technique can be considered as a global screening 297 

technique, though each single elementary effect is a first order derivative, i.e. a local sensitivity 298 

(Campolongo et al., 2007). Importantly, the index μ* allows one to reduce the computational cost of 299 

the screening analysis by computing the sensitivity of input parameters pooled in groups. In fact, 300 

Campolongo et al., 2007 and Saltelli et al. (2008) showed that using the absolute values of the 301 

Elementary Effects preserves the reliability of the sensitivity index in eq. 11 also when the 302 

parameters within a group are changed by the same  proportion simultaneously, but in opposite 303 

direction (i.e. different signs of ). Exploiting this property, we subdivided the parameters of 304 

ERSEM into groups that refer to different ecosystem processes, and the sensitivity index μ* was 305 

calculated for each group (see Ciavatta et al., 2009 for an analogous approach). The drawback of 306 

grouping input factors is the loss of information regarding the relative importance of factors 307 

belonging to the same group. This was addressed by performing a Monte Carlo-based sensitivity 308 

analysis of the parameters within the groups. 309 

 310 

 311 

 312 
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2.3. Monte Carlo simulations and ranking method 313 

 314 

A Monte Carlo sampling-based sensitivity analysis was applied to rank the importance of the m 315 

parameters X=(X1, X2, …, Xi …, Xm), i=1, 2, …, m, within the groups identified as most important 316 

in the Morris screening analysis (Saltelli et al., 2008). A crude Monte Carlo sampling scheme was 317 

used to generate a number n of realizations of the input factor vector X. These realizations were 318 

input to n model simulations that computed the target model output y in equation (3). The input-319 

output relationship was represented by means of a multiple-regression model: 320 

 321 

𝑦 = 𝑏0 + ∑ 𝑏𝑖𝑋𝑖
𝑚
𝑖=1 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠       (12) 322 

 323 

and the standardized regression coefficients βi were used as global sensitivity indices of the input 324 

factors (Saltelli et al., 2008): 325 

 326 

𝛽𝑖 =
𝑏𝑖𝑋𝑖

𝑦
          (13) 327 

 328 

Where 𝑋𝑖 and 𝑦 are the standard deviations of the realizations of the input factor Xi and of the 329 

model output y, respectively. The regression coefficients in eq. (13) provide meaningful parameter 330 

rankings only when the linear regression explains a relatively large fraction of the model output 331 

variability (Saltelli et al., 2000). We assessed the linear regression by computing the fraction of 332 

explained variance (R
2
), the regression significance (F-statistic of the null hypothesis of constant 333 

model, p<0.01), as well as the significance of the standardized regression coefficients (t-statistic, 334 

p<0.05). 335 

 336 

 337 

 338 
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2.4 Set up of the analysis 339 

 340 

2.4.1 Set up of the model 341 

 342 

The 1-D GOTM-ERSEM model was implemented for an oligotrophic site in the central Arabian 343 

Sea (65ºE, 13ºN), which falls within the OMZ in this region (Paulmier and Ruiz-Pino, 2009; Naqvi, 344 

1991). The actual depth of the central Arabian Sea is close to 4500 m, but we have simulated the 345 

water column up to a depth of 500 m only, using 100 vertical levels. The selection of this maximum 346 

depth was based on previous studies, indicating that the upper 500 meters include the upper 347 

oxycline and the absolute minimum of oxygen (McCreary et al., 2013, Resplandy et al., 2012), as 348 

confirmed here by test simulations extending till the depth of 1500 meters (not shown). A deep-349 

water remineralization closure scheme was applied to the lower boundary of the model (Figure 2). 350 

The closure describes the recycling of organic matter (producing inorganic nutrients and CO2) as a 351 

linear function of the sinking biomass, at rates specified by the ERSEM remineralization parameters 352 

(Blackford et al., 2004; Butenschön et al., 2016).  353 

In our application, GOTM simulation was relaxed to daily profiles of salinity and temperature 354 

derived from the output of the 3-D model HYCOM configured for the Indian Ocean (George et al., 355 

2010). GOTM-ERSEM was forced with daily meteorological data and cloud cover data from 356 

NCEP/NCAR reanalysis (Kalnay et al., 1996) and precipitation data from GPCP (Adler et al., 357 

2003). The profiles of the initial conditions of nutrients (nitrate, phosphate and silicate) were 358 

obtained from the World Ocean Atlas 2009 (Garcia et al., 2010a; Garcia et al., 2010b). The initial 359 

condition of oxygen was set equal to a constant value throughout the water column (20 mmol m
-3

, 360 

consistent with climatological data at depth), to avoid pre-setting the position of the OMZ in the 361 

water column and letting the model simulation setting it. The model simulation was carried out for a 362 

period of four years (2002 to 2005) after a spin-up time of five years, which has been shown to be  363 

sufficient to achieve stable solutions of the 1D GOTM-ERSEM integration (e.g. Blackford et al 364 
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2004; Polimene et al., 2014) . The output of the four-year simulation was used to assess the skill of 365 

the model in simulating oxygen and nutrients (nitrate, phosphate and silicate), through comparison 366 

with World Ocean Atlas 2009 climatology (Garcia et al., 2010a; Garcia et al., 2010b), in the 367 

absence of in-situ observations of these variables at the study site. The sensitivity analysis and 368 

parameter ranking was carried out on the model output for the year 2002. 369 

 370 

2.4.2 Set up of the Morris screening analysis  371 

 372 

The configuration of ERSEM applied here has 342 pelagic parameters. However, parameters 373 

defining biogeochemical constants (e.g. the inverse of the Redfield ratio of phosphorous to carbon) 374 

were not object of this investigation, thus the number of parameters included in the screening 375 

analysis was 207. These parameters were categorized and divided into k=21 groups (Table 1). The 376 

increment of the input factors was set =2/3, following the recommendation in Saltelli et al., 2008. 377 

Groups 1 to 7 comprised of parameters characterizing primary production, whereas groups 8 to 378 

12 were bacteria-related parameters. The remaining groups included zooplankton parameters, food 379 

matrix parameters, deep-water remineralization closure parameters, sedimentation parameters and 380 

light extinction parameters. 381 

The analysis was carried out with the range of variability of the uniform distribution of the 382 

parameters kept within -30% to +30% of the reference value of the parameters. The 30% variation 383 

with respect to the reference values of the parameters is often assumed in sensitivity analyses of 384 

environmental models when the real ranges are unknown (see, e.g., Ciavatta et al., 2009; Polimene 385 

et al., 2015; Pinna et al., 2015). In our application of the Morris method, we set a number r=10 386 

trajectories for the k=21 groups of parameters. Thus the computational cost of the screening 387 

sensitivity analysis was (k+1) · r = 220 model runs. 388 

 389 

2.4.3 Set-up of the Monte Carlo sampling-based sensitivity analysis 390 
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 391 

The Monte Carlo sampling-based sensitivity analysis was performed by selecting n=1000 392 

random values for each of the m independent input parameters found to be the most relevant in the 393 

screening analysis. In choosing this number n of model simulations, we considered the rule of 394 

thumb of at least 20 realizations for each input factor desirable for multiple regression analysis 395 

(Hair at al., 2006). As in the Morris application, we have used uniform distribution to generate 396 

random values within the range -30% to +30% of the reference value of the input parameters (see, 397 

e.g., Ciavatta et al., 2009; Polimene et al., 2015; Pinna et al., 2015). Each realization of the vector of 398 

input parameters was used to run a model simulation. The multiple regression analysis of the input-399 

output relationship was performed using the software Origin, and the regression coefficients 400 

defining the sensitivity index for the parameter ranking were estimated using the least-squares 401 

method proposed by Draper and Smith (1981). 402 

 403 

3 Results 404 

 405 

3.1 Skill of the reference simulation 406 

 407 

The model had significant skill in simulating the climatology of oxygen and nutrient 408 

observations at the study site. This is illustrated in Figures 3 and 4, which show comparable 409 

climatologies from the model output and the World Ocean Dataset 2009, and it is demonstrated 410 

quantitatively by the Taylor diagram in Figure 5, where all the variables are close to the optimal 411 

skill point. 412 

The model represented the magnitude and range of all the variables, though it tended to 413 

underestimate nitrate and to overestimate phosphate (Figure 3). At surface, both the climatological 414 

data and the model confirm stable oligotrophic conditions, with nitrate concentrations < 2 mmol m
-3

 415 

and phosphate < 0.5 mmol m
-3

 in all the months. The vertical gradients were reproduced adequately 416 
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by the model: oxygen decreased from the aerated surface layer downwards, nutrients were higher in 417 

the ocean interior, and changes occurred more sharply between 50-200 m. In particular, in Figure 4, 418 

the model represented well the average vertical profile of oxygen (ρ>0.99, p<0.01, and RMSD=19 419 

mmol m
-3

), the depth of its absolute minimum (200 m in both the data and model climatologies), 420 

though the model tended to underestimate the oxygen climatological data on average (bias = -17 421 

mmol m
-3

).  422 

The seasonal variability of the data is less well represented in the simulation. The model 423 

simulated the deepening of mixed layer and associated variability in DO concentration during the 424 

monsoon season from June to September (Figure 3). Some fluctuations of nutrient profiles are also 425 

reproduced in the monsoon season in the upper layer, but to a much lower extent. In particular, the 426 

simulation did not capture temporal variability below the oxycline and nutricline, such as the 427 

increase of silicate concentration at depth ~400 in May-June in the climatology dataset. Biases 428 

below the nutricline are likely due to the lack of lateral advection, as mentioned in Discussion. 429 

The general good agreement between model and data is confirmed by the results in Figure 5, 430 

since the correlation coefficients are high (ρ>0.9, p<0.01), the variability of the climatology and the 431 

simulation are comparable (σ/σo = 0.9), and the biases are relatively low, with the exceptions of 432 

phosphate that was overestimated (bias/σo=0.4) and nitrate that was underestimated (bias/σo= -0.5). 433 

High scores for the skill metrics are driven primarily by the model ability in simulating the average 434 

vertical gradients of the climatological data, rather than their seasonal variability. 435 

 436 

3.2 Screening sensitivity analysis 437 

 438 

The relevance of the groups of parameters resulting from the Morris analysis is shown in Figure 439 

6. The 14
th

 group (zooplankton loss parameters), 9
th

 group (bacterial loss parameters) and 11
th

 group 440 

(additional nutrient remineralization parameters) were found to be the three most relevant groups 441 

for the simulation of the OMZ, in order. The parameters included in the groups 14 and 9 442 
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characterize the biological processes of oxygen consumption by the zooplankton functional groups 443 

and by bacterial functional group, respectively. The parameters included in group 11 are associated 444 

to first order remineralization processes converting organic nutrients onto inorganic forms 445 

(phosphate and ammonium). These processes are assumed to complement the biologically mediated 446 

remineralization activity which is described in the model (Blackford et al., 2004; Butenschön et al., 447 

2016). A complete list of the 38 parameters included in the three above groups is given in Table 2. 448 

 449 

3.3 Ranking of the parameters 450 

 451 

The 38 model parameters that emerged collectively as the most important in the screening 452 

analysis (Table 2) were the input factors to the Monte Carlo sampling-based sensitivity and ranking 453 

analysis. The results are presented in Table 3, which ranks the parameters in descending order of 454 

importance based on the magnitude of the standardized regression coefficient |β| (eq. 13).  455 

The four most important parameters, with |β| higher than 0.3, were found to be: 1) the cubic half 456 

saturation constant for oxygenic control of denitrification (chN3oX); 2) the parameter regulating the 457 

fraction of ingested matter excreted (i.e. not assimilated) by the heterotrophic nanoflagellates 458 

(pu_eaZ6X); 3) the bacterial efficiency at low oxygen levels (puB1oX); and 4) the specific rate of 459 

bacterial release of capsular material (frB1R3). The first 21 parameters in Table 3 were associated 460 

to significant regression coefficients (t-test, p<0.05), while the remaining 17 parameters did not 461 

significantly influence the simulated minimum of oxygen. Importantly, the ranking provided by the 462 

sensitivity analysis was trustworthy, since the linear regression explained most of the model output 463 

variability (R
2
=0.94), and it was highly significant (F-test, p<0.01) (see Table 3). 464 

To assess further the robustness of the ranking, we performed a supplementary regression 465 

analysis including only the first eleven independent variables in Table 3 (i.e. those with ||>0.1, 466 

arbitrarily); the results confirmed the overall dominance of those parameters in explaining the 467 

dissolved oxygen variability (R
2
=0.93, F-test p<0.01), and reproduced their ranking in Table 3. This 468 
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suggests that the results in Table 3 were not affected remarkably by redundancy among the many 469 

model parameters included in the analysis. We note also that the parameters object of the regression 470 

analysis were sampled randomly from independent uniform distributions, thus multicollinearity 471 

among regressors is not an issue in our application.  472 

 473 

4. Discussion 474 

 475 

The results indicated that model parameters regulating the metabolism of aerobic and anaerobic 476 

(denitrifying) bacteria and the loss terms of zooplankton (heterotrophic nanoflagellates, HNAN) 477 

play a prime role in our simulation of the OMZ at the study site. Assuming that the ranking of the 478 

model parameters reflects the relevance of the processes they characterize, we have inferred a 479 

conceptual model describing the most important biogeochemical processes affecting the OMZ in 480 

the oligotrophic site of the Arabian Sea area studied here (Figure 7).  481 

At the surface, where light is sufficient to allow net growth of primary producers, oxygen is 482 

produced by phytoplankton and is consumed by both autotrophic and heterotrophic (zooplankton 483 

and bacteria) respiration, besides being exchanged with the atmosphere (Figure 7). Net 484 

photosynthesis fades at a depth of ~100 m marking the threshold between euphotic and twilight 485 

zone.  486 

In the upper twilight zone (~100-200 m), heterotrophic prokaryotes are the most active 487 

organisms, while grazers’ biomass (mesozooplankton) is close to zero because of the negligible 488 

concentration of phytoplankton. Here oxygen is consumed by remineralization of the sinking 489 

detritus and therefore DO decreases drastically. Anaerobic respiration of POC via denitrification 490 

becomes relevant, though the level of oxygen remains sufficient to also allow some aerobic 491 

respiration (Figure 7). As a consequence, the Michaelis-Menten constant “chN3oX” emerges as the 492 

most important parameter in our analysis, because it regulates the magnitude of denitrification and 493 

therefore the amount of organic matter which is respired without consuming oxygen (“chN3oX” in 494 
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equation 8 has rank=1 in Table 3). In other words, this parameter impacts the OMZ simulation 495 

because it sets the threshold at which bacteria either do or do not consume oxygen. The efficiency 496 

of bacteria in using POC to grow is also crucial in determining the intensity of the OMZ, here 497 

approximated by the absolute minimum value of the oxygen profile. Low efficiency implies that a 498 

large portion of the carbon taken up by bacteria is respired, with a consequent high oxygen 499 

consumption (or nitrate consumption, in case of anaerobic metabolism) and low net bacterial 500 

production. On the contrary, high efficiency implies that a lower portion of carbon is respired, 501 

resulting in a higher bacteria biomass production. This explains the high rank scored by the bacteria 502 

efficiency parameter (“puB1oX” ranked 3
rd

 in Table 3).  503 

At ~200 m, both the simulation and the climatology show the absolute minimum of oxygen 504 

(Figure 4). Here there is a zone where the sinking detritus is still sufficient to allow some bacterial 505 

respiration. At this depth POC concentration is low and becomes a limiting factor for bacteria 506 

growth and respiration. This is illustrated in Figure 8, which shows that the simulated bacteria 507 

biomass follows (with a lag) the seasonal cycle of the detritus sinking from the euphotic zone. POC 508 

limitation implies that the oxygen minimum is linked to the ability of heterotrophs (bacteria and 509 

zooplankton predators) to survive in starvation conditions, i.e. it is linked to heterotrophs’ “basal 510 

metabolism”. This explains why parameters defining the basal metabolism of heterotrophs (i.e. 511 

bacteria rest respiration, and mortality of bacteria, HNAN and microzooplankton) are all within the 512 

ten most important parameters in Table 3. In other words, these parameters are important because 513 

they determine how much the heterotrophs are suited to survive and consume oxygen at the depth 514 

where POC is a limiting food. 515 

Below the depth of 200 meters and till the depth of 500 m simulated here, oxygen increases 516 

slightly with depth because bacteria biomass is small (due to the reduced export of POC) and the 517 

consumption of oxygen is negligible. At that depth, the lack of heterotrophic biomass and low 518 

vertical transport maintain the DO concentration at ~5 mmol L
-1

, which is a reminiscence of the 519 

initial condition, slightly lower than the climatological data at the study site (Figure 4). 520 
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The conceptual model in Figure 7 is consistent with previous experimental and modelling 521 

works, which showed that the dynamic POC-bacteria (both anaerobic and denitrifiers) is a relevant 522 

biological driver of the OMZ in the global oceans, as well as in the Arabian Sea (e.g. Ulloa et al., 523 

2012; Roullier et al., 2014). Bacteria are the principal contributors of the community respiration in 524 

the pelagic ecosystems (Carlson et al., 2007, Cole. et al., 1988) and diverse microbial community 525 

act simultaneously both at the transition zones and within global OMZs (Beman and Carolan, 526 

2013). This clearly holds for the Arabian Sea, where, for example, Gonsalves et al. (2011) observed 527 

aerobic and denitrifying bacteria coexisting in both a coastal site and an off-shore site, though 528 

denitrifiers were dominating the community at the coastal site. The importance of bacterial 529 

degradation of detritus, rather than dissolved organic carbon, was stressed also in previous 530 

modelling studies of the Arabian Sea (Anderson et al., 2007), and Roullier et al. (2014) argued that 531 

the anaerobic microbial respiration enhances production and accumulation of observed particles (of 532 

size < 100 µm) in the upper part of the OMZ in this region. Figure 8 shows that the absolute values 533 

of POC and bacteria biomass simulated by the model are low at the study site. This can be due to 534 

the oligotrophic nature of the central part of the Arabian Sea, which is a permanently stratified area 535 

and has lower biomass and bacterial activity with respect to the coastal regions. In fact, Gonsalves 536 

et al. (2011) measured lower concentrations of total organic carbon TOC in an offshore site with 537 

respect to a coastal one, and Campbell et al. (1998) reported lower bacteria and phytoplankton 538 

biomass in the central part of the basin than in in-shore waters.  539 

Besides the POC-bacteria dynamics, the “complexity” of our ecosystem model pointed out the 540 

relevance of two processes less extensively investigated in previous modelling analysis of the OMZ 541 

in the Arabian Sea, i.e. the grazing on bacteria and the bacteria release of recalcitrant organic 542 

carbon (Figure 7). 543 

In the simulated trophic web, bacterial biomass (thus its overall respiration and oxygen control) 544 

is top-down controlled by zooplankton grazing. Therefore, the parameter defining the efficiency of 545 

heterotrophic nanoflagellates (HNAN), which are the main grazers of bacteria, became an important 546 
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factor for the formation of the OMZ, explaining rank=2 of “pu_eaZ6X” in Table 3. The primary 547 

role of HNAN in controlling bacterial biomass in the Arabian Sea was observed previously by 548 

Weisse (1999). 549 

Our application suggested for the first time that bacteria production of recalcitrant organic 550 

carbon can have a relevant influence on the maintenance of an OMZ. The parameter regulating the 551 

release of capsular material by bacteria ranked in 4
th

 position (frB1R3 in Table 3). This release 552 

produces recalcitrant dissolved organic carbon (RDOC), which is regarded as an important element 553 

for the global carbon cycle and potentially for climate regulation (Jiao et al., 2010; 2014). Our 554 

results suggest that the bacterially-mediated production of RDOC influences also the maintenance 555 

of the OMZs, because it reduces the bulk biomass of bacteria and therefore their oxygen 556 

consumption trough respiration. 557 

The sensitivity analysis suggested that processes related to primary production have a less direct 558 

impact on the oxygen minimum at the site investigated here, though these processes are of 559 

importance in OMZ formation and evolution in general (Diaz and Rosenberg, 2008). In our study, 560 

the group of parameters related to primary production had relatively low importance and were not 561 

selected by the Morris screening analysis (groups 1-7 in Figure 6). This can be due to the fact that 562 

the model was implemented in a relatively oligotrophic area with a fully stratified water column 563 

(Figure 3) and relatively low primary production. Therefore, the mass of organic matter exported 564 

from the surface to the OMZ is low in absolute value (Figure 8). The weak connection between the 565 

euphotic (productive) zone and the twilight zone (where the OMZ is observed), makes the OMZ 566 

weakly dependent on primary production in our simulation. 567 

Though our study site was chosen in a relatively stable oligotrophic area of the open Arabian 568 

Sea, where vertical 1-D processes were found to be dominant in driving both particle transport 569 

(Roullier et al., 2014) and denitrification (Anderson et al., 2007), the use of a 1-D model is certainly 570 

a limitation of our work. The assimilation of temperature and salinity profiles integrates the effects 571 

of 3-D hydrodynamics to a certain extent (Section 2.4.1), but lateral fluxes of oxygen and other 572 
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biogeochemical components potentially relevant to the OMZ were not simulated. Therefore, we 573 

focused our simulation on the first 500 m of the water column, were the absolute minimum oxygen 574 

value is observed (Figure 4). This zone is above the deep oxycline at ~1000 m, typically observed 575 

in the Arabian Sea due to the influx of deep oxygen-rich waters (Swallow, 1984; Ulloa et al., 2012; 576 

Roullier et al., 2014) that clearly cannot be represented by a 1D model configuration. Furthermore, 577 

the model cannot account for the episodic intrusion of oxygen within the OMZ (Ulloa et al., 2012), 578 

which might contribute in sustaining aerobic activity. Our model does simulate aerobic activity 579 

within the OMZ (sustained by the residual initial conditions) however it does not reproduce the 580 

presence of mesozooplankton at depth, which are reported in previous works (e.g. Banse et al., 581 

2014; Roullier et al., 2014). Similarly, the lack of lateral supply of POC might also contribute to the 582 

low concertation of detritus simulated at depth (Figure 8). Finally, the absence of lateral circulation 583 

might explain also the discrepancies between simulated and climatological seasonal cycles of 584 

nutrients and oxygen at depths below the absolute minimum (Figure 3). In particular, the model 585 

could not simulate the increase in silicate concentration observed typically in June at ~400 m, which 586 

extends upwards, and the decrease of nitrate concentration observed in June and October between 587 

200 and 400 m. The relative increase of oxygen observed in climatological summer and autumn 588 

between 200 and 400m was not captured by the model either. However, the average annual vertical 589 

gradients were well represented by the model, as demonstrated by the skill metrics in Figure 5, and 590 

this supports further the use of the  oxygen minimum value as target metric of the sensitivity 591 

analysis The choice of this OMZ indicator is coherent with the objective of this paper, which 592 

focuses on the effects of biogeochemical processes on the intensity of the minimum oxygen, rather 593 

than on the extension of the OMZ (e.g. water volume; Cabré et al., 2015), which cannot be 594 

represented by a one-dimensional model.  595 

The 1-D ERSEM-GOTM applied here resulted adequate also in previous studies in the Arabian 596 

Sea (Blackford and Burkill, 2002; Blackford et al., 2004), as well as in other shelf and open ocean 597 

locations (e.g. Butenschön et al., 2016; Torres et al., 2006). We argue that our 1-D implementation 598 
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in a relative stable OMZ site is particularly suitable for the objective of our biology-focused 599 

sensitivity analysis. On the one hand, a comprehensive sensitivity analysis can have a prohibitive 600 

computational cost with 3-D implementations of complex ecosystem models (Pastres and Ciavatta, 601 

2005). On the other hand, the 1-D implementation allowed us to focus on the biogeochemical 602 

processes in “isolation”, i.e. without the need to disentangle them from physical-driven mechanisms 603 

that could influence the simulation in 3-D implementations. In particular, the use of the ERSEM 604 

model (Butenschön et al., 2016) which embeds a fully resolved microbial loop (Polimene et al., 605 

2006 and 2007) allowed us to focus on bacterial processes with a level of details not resolved in 606 

most of the marine ecosystem models applied previously (e.g. Anderson et al., 2007, Resplandy et 607 

al., 2012; McCreary et al., 2013), including previous versions of ERSEM as well (Blackford and 608 

Burkill, 2002; Blackford et al., 2004). 609 

Finally, we recognize that our approach is based on the assumption that the ranking of the 610 

parameters reflects directly the ranking of the processes (i.e., if a parameter is important, the 611 

equation/process that includes that parameter is important) and that this assumption could not be 612 

always true. Indeed a parameter can result important (or not) because the equation/process in which 613 

is included is not well represented in the model. For example, a specific process could be poorly 614 

represented in the model even if it is crucial for the functioning of the real ecosystem, leading the 615 

parameter to be neglected by the sensitivity analysis. These weaknesses, which are implicit in any 616 

modelling study, need to be kept into account and inevitably add some degree of uncertainty to the 617 

results presented here. 618 

 619 

5. Conclusions 620 

 621 

This paper identifies the most relevant biogeochemical processes involved in the ERSEM 622 

simulation of the OMZ in a central oligotrophic site of the Arabian Sea. We found that processes 623 

related to both aerobic and denitrifying bacteria along with the loss term of bacteria and 624 
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heterotrophic flagellates (HNAN) are the most important. This outcome also highlights the 625 

relevance of our new representation of denitrification in ERSEM. Other processes, like primary 626 

production, were found to be less relevant. These findings are consistent with previous studies, 627 

which suggested that the impact of bacteria on the OMZ is important in the Arabian Sea as well as 628 

in other parts of the global oceans (e.g. Ulloa et al., 2012; Roullier et al., 2014). Presently, only few 629 

marine ecosystem models include an explicit description of the microbial loop, but our study 630 

strongly indicates that OMZ models should explicitly include heterotrophic bacteria and their 631 

production of recalcitrant carbon.  632 

Despite the clear limits of our 1-D model configuration, our application provided an objective 633 

list of the most important biogeochemical parameters that need to be quantified for future 634 

applications of a global configuration of ERSEM (Kwiatkowski et al., 2014) aiming to simulate the 635 

biogeochemical and physical dynamic underpinning OMZs and their predicted expansions. To this 636 

regard, we note that the sensitivity methods proposed here are in principle applicable to OMZ scalar 637 

metrics alternative to the absolute minimum applied here (e.g. OMZ area and volume below pre-set 638 

oxygen thresholds, Cabré et al., 2015) more suitable for three-dimensional applications accounting 639 

for horizontal transport processes.  640 

Finally, we note that the analysis presented here is the first systematic sensitivity study of the  641 

ERSEM model with respect to its full set of parameters.  The tools developed here are not limited to 642 

the study of the OMZs but can be applied straightforwardly to the study of different aspects of 643 

ocean biogeochemistry  (e.g. carbon fluxes in the subtropical  gyres), and to prioritize the 644 

parameters to be estimated in data assimilative simulations, as we are investigating in the 645 

framework of ongoing work. 646 

 647 

 648 

 649 

 650 
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Table 1. List of the 21 groups of pelagic parameters investigated in the screening Morris analysis. 

 

Group Description Number of parameters 

1 Photosynthetic parameters                                                                      20 

2 Metabolic carbon lost parameters (respiration)                                        5 

3 Lost carbon by lysis parameters                                                               4       

4 Nutrient parameters                                                                                 38      

5 Q10 parameters : regulating temperature factors                                       4 

6 Photosynthetically available fraction of irradiation                                    1    

7 Other primary production parameters                                                     17     

8 Maximum specific gross uptake of bacteria                                              6 

9 Bacterial loss parameters                                                                                   6   

10 Nutrient uptake / remineralization                                                             4 

11 Additional nutrient remineralization                                                          11 

12 Other bacteria parameters                                                                        2       

13 Maximum zooplankton uptake                                                                13      

14 Zooplankton loss parameters                                                                   21 

15 Q10 of zooplankton                                                                                     7   

16 Zooplankton nutrient quotas                                                                      6 

17 Food matrix parameters                                                                           20 

18 Deep-water remineralization closure parameters                                                                         4 

19 Sedimentation parameters                                                                        7     

20 Cellular structural parameters                                                                   4 

21 Light extinction parameters                                                                       7 
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Table 2. Parameters included in the groups 9, 11 and 14 of the Morris screening analysis, 

which were investigated in the Monte Carlo-based sensitivity analysis. 

 
No. Notation Description and units 

Group 9: Bacterial loss parameters 

1 frB1R3 Fraction of activity respiration of bacterial uptake converted to semi-refractory DOC [unitl] 

2 puB1oX Bacterial growth efficiency at low oxygen levels [unitless] 

3 puB1X Bacterial growth efficiency at high oxygen levels [unitless] 

4 sdB1X Specific mortality of bacteria at reference temperature [day
-1

] 

5 srsB1X Specific rest respiration at reference temperature [day
-1

] 

6 DeniX Maximum specific denitrification rate [day
-1

] 

Group 11: Additional nutrient remineralization parameters 

7 chN3oX Michaelis-Menten constant for oxygenic control of denitrification [mmol O2 m
-3

] 

8 puR4_B1X Fraction of small size POM available for bacteria uptake [unitless] 

9 puR6_B1X Fraction of medium size POM available for bacteria [unitless] 

10 puR8_B1X Fraction of large size POM available for bacteria [unitless] 

11 redfieldX Carbon to Nitrogen Redfield ratio [unitless] 

12 rR2R1X  Specific rate for breakdown of semi-labile to labile DOC [unitless] 

13 sN4N3X Specific nitrification rate at reference temperature and silt concentration [day
-1

] 

14 sR1N1X Specific dissolution of labile DOP to phosphate  [day
-1

] 

15 sR1N4X Specific dissolution of labile DON  to ammonium  [day
-1

] 

16 reoX Specific reoxidation rate of reduction equivalents [day
-1

] 

17 R1R2X Labile fraction of DOM production [unitless] 

Group 14: Zooplankton loss parameters 

18 pe_R1Z4X DOM-fraction of uptake excreted by mesozooplankton [unitless] 

19 pu_eaRZ4X Fraction of POM-uptake excreted by mesozooplankton [unitless] 

20 pu_eaZ4X Fraction of prey-uptake excreted by mesozooplankton [unitless] 

21 puZ4X Mesozooplankton assimilation efficiency [unitless] 

22 sdZ4oX Specific mortality of mesozooplankton due to oxygen limitation [day
-1

] 

23 sdZ4X Specific basal mortality of mesozooplankton [day
-1

]  

24 srsZ4X Specific rest respiration of mesozooplankton at reference temperature [day
-1

] 

25 Z4mortX Specific overwintering mortality of mesozooplankton [day
-1

] 

26 Z4repwX Specific overwintering respiration of mesozooplankton [day
-1

] 

27 pe_R1Z5X DOM-fraction of uptake excreted by microzooplankton [unitless] 

28 pu_eaZ5X Fraction of prey-uptake excreted by microzooplankton [unitless] 

29 puZ5X Microplankton assimilation efficiency [unitless] 

30 sdZ5oX Specific mortality of microzooplantkon due to oxygen limitation [day
-1

] 

31 sdZ5X Specific basal mortality of microzooplankton [day
-1

] 

32 srsZ5X Specific rest respiration of microzooplankton at reference temperature [day
-1

] 

33 pe_R1Z6X DOM-fraction of uptake excreted by heteroflagellates [unitless] 

34 pu_eaZ6X Fraction of prey-uptake excreted by heteroflagellates [unitless] 

35 puZ6X Heteroflagellates assimilation efficiency [unitless] 

36 sdZ6oX Specific mortality of heteroflagellates due to oxygen limitation [day
-1

] 

37 sdZ6X Specific basal mortality of heteroflagellates [day
-1

] 

38 srsZ6X Specific rest respiration of heteroflagellates at reference temperature [day
-1

] 
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Table 3. Ranking of the parameters from the regression analysis of the output of the Monte 

Carlo simulations. | β | is the absolute value of the standardized regression coefficients, which 

are reported with their standard errors, and p-value is the level of significance of the t-test on 

the parameters. See Table 2 for description of the parameter notations. N.S. indicates model 

parameters that were not associated to significant regression coefficients (t-statistic). 

 

Rank Parameter | β |      Standard error p-value Group 

1 chN3oX 0.462 0.008 p<0.05 11 

2 pu_eaZ6X 0.422 0.008 p<0.05 14 

3 puB1oX 0.373 0.008 p<0.05 9 

4 frB1R3 0.314 0.008 p<0.05 9 

5 pu_eaZ5X 0.300 0.008 p<0.05 14 

6 srsB1X 0.251 0.008 p<0.05 9 

7 sdZ6oX 0.185 0.008 p<0.05 14 

8 sdB1X 0.170 0.008 p<0.05 9 

9 puZ5X 0.139 0.008 p<0.05 14 

10 sdZ5oX 0.110 0.008 p<0.05 14 

11 puZ6X 0.109 0.008 p<0.05 14 

12 srsZ5X 0.080 0.008 p<0.05 14 

13 puZ4X 0.044 0.008 p<0.05 14 

14 srsZ6X 0.037 0.008 p<0.05 14 

15 puB1X 0.036 0.008 p<0.05 9 

16 sdZ6X 0.035 0.008 p<0.05 14 

17 pe_R1Z4X 0.031 0.008 p<0.05 14 

18 pu_eaZ4X 0.031 0.008 p<0.05 14 

19 sdZ5X 0.021 0.008 p<0.05 14 

20 srsZ4X 0.020 0.008 p<0.05 14 

21 rR2R1X 0.018 0.008 p<0.05 11 

22 sR1N1X 0.010 0.008 N.S. 11 

23 DeniX 0.009 0.008 N.S. 9 

24 Z4mortX 0.009 0.008 N.S. 14 

25 pe_R1Z5X 0.008 0.008 N.S. 14 

26 sdZ4X 0.008 0.008 N.S. 14 

27 sR1N4X 0.006 0.008 N.S. 11 

28 pe_R1Z6X 0.005 0.008 N.S. 14 

29 redfieldX 0.005 0.008 N.S. 11 

30 sdZ4oX 0.005 0.008 N.S. 14 

31 puR4_B1X 0.004 0.008 N.S. 11 

32 reoX 0.004 0.008 N.S. 11 

33 Z4repwX 0.004 0.008 N.S. 14 

34 sN4N3X 0.004 0.008 N.S. 11 

35 R1R2X 0.003 0.008 N.S. 11 

36 pu_eaRZ4X 0.002 0.008 N.S. 14 

37 puR6_B1X 0.001 0.008 N.S. 11 

38 puR8_B1X 0.001 0.008 N.S. 11 

 

Regression statistics: 

Number of cases = 1000; Coefficient of determination: R
2
=0.94; F-value= 414.2 
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Figure Captions  870 
 871 

Figure 1. Location of the study site in the Arabian Sea (65°E, 13°N). 872 

 873 

Figure 2. Schematic of the coupled GOTM-ERSEM model configuration used in this study. 874 

ERSEM describes the biogeochemical and trophic processes that drive the evolution of inorganic 875 

and organic variables in the simulated pelagic environment, and the exchanges of oxygen and 876 

carbon dioxide with the atmosphere. Remineralization closure equations represent the fluxes at the 877 

deep water boundary. GOTM describes the physical vertical mixing in the water column, taking 878 

account of the meteorological forcing. The black arrows represent ecosystem processes described 879 

by Butenschön et al. (2016), and the white arrow represents denitrification, which was included in 880 

ERSEM in this work.  881 

 882 

Figure 3. Model climatology computed from a simulation of years 2002-2005 (left), versus 883 

climatology data derived from the World Ocean Dataset 2009 (right), for oxygen and nutrients. 884 

 885 

Figure 4. Annual average profile of oxygen in the climatologies derived from the model simulation 886 

of years 2002-2005 (“Model”) and from the World Ocean Dataset 2009 (“Data”). 887 

 888 

Figure 5. Taylor diagram summarizing the model skill in reproducing the climatological data of 889 

oxygen (O2), nitrate (NO3), phosphate (PO4) and silicate (SiO). The diagram represents the 890 

Pearson correlation coefficient (ρ), the standard deviations of model and data (σ and σo, 891 

respectively) and the model bias. The optimal skill point is represented by the black dot with 892 

coordinates (1,0). 893 

 894 

 895 

Figure 6. Result of the screening analysis based on the Morris method applied to 21 groups of 896 
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model parameters. The three most important groups (i.e. the ones with the highest values of the 897 

sensitivity index µ*) were, in order: I) group 14 (zooplankton loss parameters); II) group 9 898 

(bacterial loss parameters); and III) group 11 (additional nutrient remineralization parameters). 899 

 900 

Figure 7. Conceptual diagram of the most relevant biogeochemical processes driving the 901 

Oxygen Minimum Zone (OMZ) at the oligotrophic study site in the open Arabian Sea. At surface, 902 

oxygen (O2) is exchanged with the atmosphere, produced by phytoplankton, and consumed by both 903 

autotrophic and heterotrophic (zooplankton and bacteria) respiration. Net photosynthesis fades at 904 

the depth of ~100 m, which parts euphotic and twilight zone. Below this depth, bacteria 905 

remineralize aerobically the detritus sinking from the surface, thus consuming oxygen down to its 906 

lowest value at ~200 m. At low oxygen values, bacteria respire by reducing nitrate (NO3) via 907 

denitrification. We found that the release of recalcitrant dissolved organic carbon (RDOC) and 908 

grazing of heterotrophic nanoflagellates (HNAN) also contribute significantly to the formation of 909 

the OMZ, by reducing the bulk biomass of bacteria, hence their overall respiration. 910 

 911 

Figure 8. Simulated annual evolution of particulate organic carbon (POC, continuous blue line) 912 

and bacteria biomass (dashed red line), at the depth of 200 m where the average annual minimum 913 

of dissolved oxygen occurs. 914 


